
The VLDB Journal (1997) 6: 312–332 The VLDB Journal
c© Springer-Verlag 1997

A configurable type hierarchy index for OODB
Thomas A. Mueck, Martin L. Polaschek

Abteilung für Data Engineering, Universität Wien, Rathausstr. 19/4, A-1010 Wien, Austria; e-mail:{mueck, polaschek}@ifs.univie.ac.at

Edited by E. Bertino. Received October 7, 1996 / Accepted March 28, 1997

Abstract. With respect to the specific requirements of ad-
vanced OODB applications, index data structures for type
hierarchies in OODBMS have to provide efficient support
for multiattribute queries and have to allow index optimiza-
tion for a particular query profile.

We describe themultikey type indexand an efficient im-
plementation of this indexing scheme. It meets both require-
ments: in addition to its multiattribute query capabilities it
is designed as a mediator between two standard design al-
ternatives, key-grouping and type-grouping.

A prerequisite for the multikey type index is a lineariza-
tion algorithm which maps type hierarchies to linearly or-
dered attribute domains in such a way that each subhierarchy
is represented by an interval of this domain. The algorithm
extends previous results with respect to multiple inheritance.

The subsequent evaluation of our proposal focuses on
storage space overhead as well as on the number of disk I/O
operations needed for query execution. The analytical results
for the multikey type index are compared to previously pub-
lished figures for well-known single-key search structures.

The comparison clearly shows the superiority of the mul-
tikey type index for a large class of query profiles.

Key words: OODB – Access methods – Indexing – Type
hierarchies – Multiple inheritance

1 Introduction

The specific performance requirements of advanced OODB
applications (e.g., CIM systems, geographical information
systems) yield additional challenges for type hierarchy in-
dices. In this context, multiattribute search structures are a
recently discussed alternative (see [21], [11], [12], [19], [17],
and [5]) to previously used B+-tree structures.

We propose the so calledmultikey type index(MT-index)
which supports multiattribute queries as well as data struc-
ture configuration based on query profiles. At the data struc-
ture level, the MT-index uses the concept of multiattribute
search structures and provides a seamless integration of the
type hierarchy by means of a linearization algorithm. Aiming

at state-of-the-art OODBMS supporting multiple inheritance
the algorithm is designed to handle this specific feature. Al-
though our proposal does not rely on aparticular multiat-
tribute search structure, we provide an application example
based on the hB-tree [14]. Other data structures like the
BV-tree [7] or the hBΠ -tree [6] could be used without any
modification of the framework. We justify our approach by
a comparison of the corresponding performance figures to
earlier published results ([16, 20]).

Previous work on type hierarchy indexing uses B+-tree
structures. In [13], the indexing performance of one B+-tree
per indexed type (calledSingle Class Index) is compared
to the Class Hierarchy Indexusing one B+-tree as a stor-
age structure for all types (further enhanced by leaf node
directories). TheClass Divisionapproach presented in [21]
can be viewed as a mediator between these two alterna-
tives. Using a replication scheme for OIDs, the class divi-
sion approach trades storage space and update performance
for query performance. So calledH-treesare introduced in
[16], the central idea is to represent the type hierarchy in the
index structure by nested single-type B+-trees.CG-trees[12]
andhcC-trees[24] focus on a more general problem, namely
set membership. Technically speaking, both approaches aug-
ment B+-trees by multiple lists to group OIDs with respect
to set membership. TheNested Inherited Index[2] and the
Generalized Nested Inherited Index[23] are B+-tree-based
hybrid approaches supporting type membership as well as
path expressions. Multi-attribute index structures as an al-
ternative to B+-tree structures in the context of type hierar-
chy indexing are discussed in [21], [11], [12], [19] and [17].
A summary of various indexing approaches in the realm of
OODB can be found in [3] and [18].

The paper is structured as follows: the rest of this intro-
ductory section contains a detailed problem statement and
an outline of the solution described later on. Section 2 deals
with a selection of related work considered most relevant
for the following presentation. Section 3 contains the for-
mal definition of the termoptimal linearization, Section 4
describes the hierarchy linearization algorithm as a prerequi-
site for the MT-index. Implementation issues are discussed
in Sect. 5, in particular, a multiattribute search structure is
used to demonstrate the potential of our approach. An an-

313

Q1 select x from x in person where x.income > 10000 and x.entry
< ”01-01-1990”

Q2 select x from x in facultyMember where x.income >= 20000
and x.income < 30000

Q3 select x from x in associateProfessor where x.income < 45000
and x.entry = ”08-07-1992”

Fig. 1. Type hierarchy and example queries

alytical evaluation is presented in Sect. 6. This evaluation
contains material on the index size as well as query perfor-
mance in case of exact match and (partial) range queries. At
the end of the paper, there are conclusions and references.

1.1 Problem statement

We address two independent technical issues in the context
of object set indexing:

1. queries referring to type subhierarchies and
2. adaptive index organizations with respect to query pro-

files.

ad 1: Like in SQL, any query in an OODB may refer either
to a single attribute or to several attributes at once (in the lat-
ter case, it is calledmultiattributequery). Additionally, any
query in an OODB may refer either to one type or, implicitly,
to a subhierarchy and therefore to a set of types. The type
hierarchy and the queries of Fig. 1 illustrate the concepts
of single-attribute and multiattribute queries as well as the
implicit qualification of a subhierarchy by a type identifier.
The first query is a single-attribute range query implicitly
referring to all types of the hierarchy (person represents all
objects of typePerson and all objects of subtypes of type
Person). The second query is a multiattribute range query,
the referenced hierarchy is a subhierarchy, thus less object
types than in the previous example qualify for the query. In
the third query, a single type (i.e.,AssociateProfessor) is
addressed. Being a multiattribute query, a range is specified
for attribute income, whereas an exact match is given for
attributeentry.

As the example queries show, the indexing component
of an OODBMS has to deal with multiattribute queries as
well as with type hierarchy predicates.
ad 2: Focusing on the data structure implementation of a
type hierarchy index, there are two design alternatives: key-
grouping versus type-grouping approaches (see also [12]
where the more general termset groupingwas used for type-
grouping):

type income weight
ω1 Student 20000 70
ω2 TeachingAssistant 30000 91
ω3 Student 20000 65
ω4 AssistantProfessor 30000 72
ω5 FullProfessor 30000 85
ω6 AssistantProfessor 29000 93
ω7 AssistantProfessor 30000 105

Fig. 2. Database instances

– data structures based onkey-groupingmaintain a first-
level data structure organization for key values. All ob-
ject identifiers with the same key value (e.g., all the peo-
ple with an income of 10,000) may or may not be further
organized with respect to their types (second-level orga-
nization);

– type-groupingstructures also maintain an asymmetric
data organization, however, in this case the first-level
order criterion is the object type (e.g., all objects of
typePerson are stored in one search data structure) and
second-level search structures support key value access.

This design decision has a major influence on the resulting
I/O performance in case of exact match and range queries,
independent of the actual data structure implementation. In
general, a key-grouping type hierarchy index supports exact
match queries better than range queries, whereas for type-
grouping structures, the reverse is true.

Following from this, an indexing component should in-
corporate the advantages of both key-grouping and type-
grouping structures, depending on concrete query profiles.

Summing up, the technical problem tackled in this paper
is the design of an efficient index data structure support-
ing single-attribute as well as multiattribute queries in type
hierarchies. Additionally, the proposed index data structure
has to be configurable with respect to key-grouping ver-
sus type-grouping. The first requirement is straightforward
with respect to advanced OODB applications. The second
requirement aims at an adaptable indexing framework in the
sense that the importance of type-grouping increases with
the fraction of range queries in the profile.

1.2 Proposed solution

The MT-index incorporates the type hierarchy structure of a
given database scheme into a standard multiattribute search
structure in such a way that the hierarchy is mapped to one
of the attribute domains (calledtype domainin the sequel).
The result is an index withk + 1 keys corresponding to the
k indexed object properties and to one additional key repre-
senting type membership. The principle is shown in Fig. 3.
Looking, for example, at query Q2, it qualifies instances
of FacultyMember as well as instances of the subtypes of
FacultyMember if these instances fulfill the query predi-
cate. Consequently, this query contains an implicit predicate
on the object type, i.e,x.type ≤ FacultyMember, where
≤ denotes the partial order relation of the type hierarchy.
Using an MT-index, implicit type predicates are mapped to
ranges of the type domain. An additional benefit of the type
domain is the full control over the index data structure with

314

20000 30000 income

type domain ω1
ω5

Student

FullProfessor weight

70
85

Fig. 3. 3D data space of an MT-index for two indexed properties (income
andweight)

grouping by key
grouping by type/set

I/
O

 c
os

t

1 |T|

(a)

Number of queried types/sets

I/
O

 c
os

t

1 |T|

(b)

Number of queried types/sets

Fig. 4a,b. Efficiency of a exact match queries andb range queries [12]

respect to its type-grouping behavior. Basically, the parti-
tioning strategy for the type domain immediately determines
the “degree” of type-grouping. Inhibiting any partitioning fa-
vors key-grouping, whereas a forced total partitioning (i.e.,
one partition per type domain value) favors type-grouping.
Any compromise between these two alternatives is possible.

An obvious prerequisite for this mapping is a lineariza-
tion of the type hierarchy (see Fig. 3). However, since there
are |T |! linearizations for a particular type setT , one may
ask if one linearization should be preferred to another. In
what follows we

– show that some linearizations of a givenT are better than
others with respect to the resulting query performance,

– present an algorithm which is able to find all optimal
linearizations for a given type hierarchy,

– discuss an implementation using the well-known hB-tree,
and

– justify the MT-index approach by an analytical perfor-
mance comparison to B+-tree-based index structures.

Summing up, the proposed solution is shown to be an inter-
esting alternative in the context of type hierarchy indexing,
especially when considering the indexing requirements of
non-standard OODB applications.

2 Key grouping versus type grouping

Figure 4 shows the relationship between key-grouping and
type-grouping on the one hand and exact match and range
queries on the other hand (performance measured in num-
ber of I/O operations). Using key-grouping, the number of
qualified types does not influence the I/O cost of a particu-
lar query, since the number of I/O operations is determined
only by the range specified for the indexed attribute. On the
contrary, in case of type-grouping, the number of qualified
types is the main performance factor. For each qualified type,

usually a type-specific data structure has to be scanned for
matching key values. The relationship between key-grouping
and type-grouping performance is as follows:

– Considering a particular exact match query, the I/O
cost for any key-grouping structure will be constant and
smaller or equal than the I/O cost for any type-grouping
approach.

– On the contrary, for a particular range query, the I/O
cost for any key-grouping structure will still be constant,
however, larger or equal than the I/O cost for any type-
grouping approach.

In the remainder of this section we present prominent exam-
ples of type-grouping and key-grouping index implementa-
tions. To justify our own proposal, we subsequently relate
the performance of the MT-index (implemented by means
of an hB-tree) to these B+-tree approaches (cf. the figures in
[16]).

2.1 Key grouping – the CH-index

A CH-index (class-hierarchy index) [13] maintains one
search structure for all types of the indexed hierarchy and
therefore implements a pure key-grouping strategy. The CH-
index permits efficient single-scan access to the instances of
all types of the indexed hierarchy. It outperforms any type-
grouping index if a query qualifies the indexed type and all
its subtypes or at least a major subset of the indexed hierar-
chy. However, if only a few types of the indexed hierarchy
are qualified by a query, a type-grouping index (see below)
performs better, because only a few (small) indices have
to be scanned, in particular one for each type in the query
scope.

B+-trees are chosen as underlying data structure (see
Fig. 5). An index record of a CH leaf node consists of
record length, key length (for variable-length keys), key
value, overflow page pointer, and the list of object identifiers
of objects holding the key value in the indexed attribute. The
object identifiers in the list are grouped by type. The key di-
rectory contains the offset for each type having objects in the
list of object identifiers, thus speeding up intra-node lookup.

If a query refers to a large number of types, a small
fraction of the OIDs found during the index traversal have
to be discarded and vice versa. There are two extreme cases:
if all types are qualified by the query, no OIDs will be out
of query scope, whereas if a query refers only to one type,
probably a large number of OIDs are fetched in vain.

Using this search structure, the whole B+-tree has to be
scanned inall cases, even if most of the entries in the leaf
nodes have to be discarded in a subsequent processing step.
In case of a query over the full type hierarchy, the CH-
index is an attractive proposal for both range queries and
exact match queries. If the query refers to a subhierarchy
or to single types, exact match queries still perform well,
whereas range query performance degrades drastically.

2.2 Type grouping – the SC-index and the H-tree

An early technique used in the ORION system is called
single classindex (SC-index) in [13]. Using single-class in-

315

pointer
child

valuepointer
child

value value pointer
child

...
bound. bound. bound.

no.
id-1 offset offsetid-2types
type type

...
offsetid-m

type

length
key

value
key overflow

pointer directory
type no. list of OIDs

of type 1 ...
no. list of OIDs

of type m
sibling
pointer...OIDs OIDs

record
length

record

Fig. 5. CH-index structure

overflow parent
pointer pointervalue pointer

child
...pointer

child
value pointer

childno.

entries

bound. bound.
entries

link

nested tree

pointer

upper

bound

lower

bound ...

no. link

entries

link entry

record

no.

entries

overflow

pointer

key

length

key

value

no.

OIDs
list of OIDs

parent

pointer

sibling

pointer...

Fig. 6. H-tree structure

dexing, the index creation for an object property requires
the construction ofoneB+-tree for each typein the indexed
hierarchy, thus implementing pure type-grouping.

Queries implicitly referring to large subhierarchies scan
a large number of B+-trees. Although several trees are tra-
versed, the positive aspect is that all retrieved OIDs qualify
with regard to the object type. A favorable case is a range
query over one type. Exact match queries over more than
one type are not favorable.

The H-tree [16, 15, 20] can be viewed as a direct suc-
cessor of the SC-index. The main difference between the
SC-index and the H-tree is that the former maintains a set
of isolated type-specific B+-trees, whereas the latter uses a
nesting structure for these B+-trees. The nesting reflects the
structure of the indexed type hierarchy.

In particular, the H-tree component (i.e., the B+-tree) of
the indexed type isnested(see below) with the H-trees of
the immediate subtypes of the indexed type, the H-trees of
these types are nested with the H-trees of their respective
subtypes and so forth. Thus, an H-tree index for an attribute
in an inheritance subgraph is a hierarchy of H-trees nested

according to the supertype-subtype relationship. The refer-
ences used to establish the nesting are used for traversal
shortcuts during query execution.

The motivation behind index nesting is to avoidfull scans
of each H-tree component when a number of types in the
indexed hierarchy is queried. In particular, when scanning
the trees of a type and its subtypes, one needs to perform a
full search in the H-tree component of the supertype (called
outer component) and only partial searches in the H-trees of
the subtypes (called inner components). This restriction of
the traversal process is the major advantage of the H-tree
compared to the SC-index.

Figure 6 shows the organization of an H-tree component.
H-tree leaf nodes closely resemble SC-index leaf nodes. Data
item key valueholds one value of the indexed object prop-
erty. Inner nodes contain interval boundary values and point-
ers to successor nodes (child pointers) like in standard B+-
trees. The link entries implement the nesting feature. Each
link entry contains a pointer to a subtree of the H-tree com-
ponent of a subtype. Additional parts of the link entry are
the boundary values of this nested subtree. As the number of

316

-2 20000 30000 1 17000 30000 1 28000 - - 0 -

2 17000 30000 0 -

2 - 29000 1 30000 2ω6 ω7 ω4

2 15000 32000

H-tree component forH-tree component for AssistantProfessorFacultyMember

Fig. 7. H-tree component for AssistantProfessor

������

������

type domain

income3000020000

AssociateProfessor

AssistantProfessor

Person

TeachingAssistant

FullProfessor

Student

FacultyMember

Fig. 8. Query volume for Q2 under suboptimal linearization

link entries per node is not restricted, overflow pages (orga-
nized with the help of overflow pointers) may be necessary
to store additional pointers. Access to the predecessor of a
particular node is supported by parent pointer entries in the
H-tree nodes.

Figure 7 shows parts of an H-tree created for attribute
income of type Person and its subtypes. The figure shows
part of the H-tree component for typeFacultyMemberwith
one link entry with lower boundary = 17, 000 and upper
boundary = 30, 000. The nested tree pointer refers to a node
of the H-tree component for typeAssistantProfessor. The
positive aspect of the H-tree approach is the exclusion of
a number of inner tree nodes from the tree traversal during
query processing. The problems are a decreased node fanout
due to the space requirements of the link entries on the one
hand and complex query and update algorithms on the other
hand.

3 Type hierarchy mapping

As already mentioned in Sect. 1, queries contain implicit
predicates on the object type. In an MT-index such a predi-
cate corresponds to a range of the type domain. The reason
for the following considerations is that the query perfor-
mance of an MT-index is largely determined by the choice
of the actual type hierarchy linearization. Figures 8 and 9
show the differences in the size of the actual query volumes
based on different linearizations.

Assuming an arbitrary linearization, the query range in
the type domain may also contain types not qualifying for the
query request (see Fig. 8). Since the resource consumption
of a range query is positively correlated with the size of the
respective range, we aim at minimal ranges for all extents
(see Fig. 9 for the extent ofFacultyMember). This means a

type domain

20000 30000 income

TeachingAssistant

Person

Student

FacultyMember

FullProfessor

AssistantProfessor

AssociateProfessor

Fig. 9. Query volume for Q2 under optimal linearization

BA C

D

Fig. 10. Hierarchy without optimal linearization

linearization in such a way that exactly one interval contains
all types which are part of one subhierarchy.

This yields for each possible type in a query a subspace
which does not contain any object identifiers not belonging
to the query result. Consequently, a type domain setup (lin-
earization) resulting in minimal query subspace volumes for
all possible query requests is calledoptimal. More specif-
ically, an orderingv is optimal for (T,≤), if v is a total
ordering (see (1) in definition below), and for each subhier-
archy of (T,≤) (with T≤t denoting the subhierarchy rooted
at t), there is a closed interval [u, v] in (T,v), containing
the same elements (i.e., types) asT≤t (see (2) in definition
below).

Definition 1 (Optimal linearization)
Let (T,≤) be a type hierarchy andT≤t be the subhierarchy
rooted att (i.e., the interval]∞, t] in (T,≤)). An orderingv
is calledoptimal linearizationfor (T,≤), if

∀t, u ∈ T : t v u ∨ u v t and (1)

∀t ∈ T : ∃u, v ∈ T≤t such

that [u, v](T,v) = T≤t . (2)

There are type hierarchies without optimal linearization. Fig-
ure 10 shows the smallest hierarchy for which such a lin-
earization does not exist. Although stating a necessary and
sufficient condition for the existence of an optimal lineariza-
tion for a type hierarchy is not totally trivial, a closer look
at the above definition yields at least one necessary and one
sufficient condition (super(t) denoting the set of direct su-
pertypes oft):

317

E F

D

B

CA

E F

D

B

CA

(a) (b)

Fig. 11a,b.Type hierarchies (a) with and (b) without optimal linearization

A E D F C B

A E D F C

B ???

(a) (b)

Fig. 12a,b.Set diagrams for type hierarchies of Fig. 11

– An optimal linearization exists if each type has at most
one supertype, i.e., in the case of single inheritance (∀t ∈
T : |super(t)| ≤ 1 is sufficient).

– An optimal linearization does not exist if any type has
more than two supertypes (∀t ∈ T : |super(t)| ≤ 2 is
necessary).

In the case of single inheritance, the computation of
the optimal linearization is straightforward. For example, a
standard depth-first traversal of the hierarchy will do. The
respective traversal has been proposed in [21]. Additional
work dealing with depth-first linearization can be found in
[8].

In the multiple inheritance case, Fig. 11 illustrates that
the second existence condition is only necessary. For both
hierarchies depicted in this figure, the condition holds. How-
ever, a closer look at the two type hierarchies reveals that
hierarchy (a) has an optimal linearization, whereas hierar-
chy (b) has none. Informally, this result can be obtained by
the isolation of all non-trivial subhierarchies, in particular
{AE}, {CF}, {DEF}, {BCDEF} for (a) and{AE}, {CF},
{DEF}, {BDEF} for (b). The goal is a ‘flattening’ of the
hierarchy such that the set of type identifiers forms a string
and each subhierarchy is represented by a substring of this
string. Drawing the corresponding set diagrams for the two
hierarchies (see Fig. 12) we observe that, in the first case,
the diagram can be flattened in this way whereas in the
second case this is not possible, since one of the subhierar-
chies cannot be represented by a substring (in Fig. 12 this
is {BDEF}).

In the following section, we present an algorithm which
produces all optimal linearizations for a given hierarchy
(T,≤). The novel feature of this algorithm is its ability to
cope with multiple inheritance hierarchies.

4 The mapping algorithm

Readers mainly interested in the performance comparison
may skip this entire section.

4.1 Notation, operators and linearization function

4.1.1 Notation

The main part of the proposed algorithm is a recursive func-
tion order. Another integral part of this algorithm is astruc-

1. begin order(S,≤)
S: set of type identifiers
≤: partial ordering

2. if S contains less than 3 elementsthen return S
3. assign the set of all unmarked maximal elements toM
4. assign a set of lists toL in such a way that each list contains

one set corresponding to a subhierarchy rooted at an element ofM
5. mark all elements ofM
6. assign all elements ofS to S′ which are not member

of any subhierarchy
7. foreach element ofA of L do
8. removeA from L

9. if there exists an elementB of L such that
there is aBj of B and anAi of A
with non-empty intersectionthen

10. if A ◦B is definedthen
11. replaceB by A ◦B in L
12. elsethere is no solution
13. end
14. else
15. while there exists an unmarked maximal elementx such that

there are at least 2 elements ofA having
a non-empty intersection
with the subhierarchy rooted atx do

16. if A ∗ S≤x is definedthen
17. refineA with S≤x, i.e., with the subhierarchy rooted

at x
18. markx
19. elsethere is no solution
20. end
21. end
22. call order (recursively) for each element ofA and add the list

of all results toS′
23. end
24. end
25. return S′
26. end order

Fig. 13. Pseudocode for functionorder

tured setS′ constructed during the traversal of (T,≤). Ele-
ments ofS′ are either atoms (i.e., type identifiers) orstruc-
tured lists. Elements of structured lists are structured sets.
The recursive definition of this data structure allows arbi-
trary nestings. In the sequel, two special cases are used:flat
sets, i.e., structured sets containing merely atoms, andflat
lists, i.e., structured lists containing merely flat sets.

The following notational conventions for variables hold:
variables for flat sets like{ABCD} are denoted by
A,B,C, . . ., for structured sets like{({AB}{C})D} by
A,B,C, . . ., for flat lists like ({AB}{C}{D}) by
A,B,C, . . . and for atoms bya, b, c, There are no vari-
ables used for structured lists.

4.1.2 Operations

Operations and symbols subsequently used are:

– {}, () and∅ denote the set constructor, the list construc-
tor, and the empty set, respectively.

– Set operators defined on flat sets are union (∪), difference
(\), cardinality (||), intersection (∩) and set membership
∈.

318

i j A ◦B
|A| 1 (A1, · · · , A|A|−1, A|A| \B1, A|A| ∩B1, B1 \A|A|, B2, · · · , B|B|)
|A| |B| (A1, · · · , A|A|−1, A|A| \B|B|, A|A| ∩B|B|, B|B| \A|A|, B|B|−1, · · · , B1)

1 1 (A|A|, · · · , A2, A1 \B1, A1 ∩B1, B1 \A1, B2, · · · , B|B|)
1 |B| (A|A|, · · · , A2, A1 \B|B|, A1 ∩B|B|, B|B| \A1, B|B|−1, · · · , B1)

Fig. 14. Concatenation operator (formal definition)

– The operators∪, \ and∈ are also defined for the top
level of structured sets.

– |A| denotes the number of flat sets contained in the flat
list A, which are denoted byA1, A2, . . . , A|A|.

– max yields a subset of a partially ordered setA in such a
way that all elements in the subset are maximal elements
of A and none of them are minimal elements ofA, i.e.,

max(A,≤) 7→ {a ∈ A| 6 ∃a′ ∈ A : a < a′

∧ ∃a′′ ∈ A : a′′ < a} .
– ◦ concatenates twooverlappingflat lists, i.e., flat lists

with common types in their respective sets. More pre-
cisely, two flat listsA and B overlap if and only if⋃
Ai ∩

⋃
Bi /= ∅. All sets in such a list have to be

non-empty and pairwise disjoint.
It should be noted that◦ is defined if and only if !∃(i, j) :
Ai ∩Bj /= ∅, i ∈ {1, |A|}, j ∈ {1, |B|}. Informally, each
of the two sets containing the common types has to be
at one end of its enclosing list to enable concatenation.
If this holds, there are four cases as depicted in Fig. 14
(empty sets are removed from the concatenation result).
Example: ({B} {CD} {EF}) ◦ ({FG} {H}) yields ({B}
{CD} {E} {F} {G} {H}), whereas ({B} {CD} {EF})
◦ ({DG} {H}) is undefined, since{CD}∩{DG}/= ∅ and
{CD} is not placed at either end of its enclosing list.

– ∗ represents refinement.A ∗ B is defined if and only if
A denotes a flat list of pairwise disjoint and non-empty
sets,B denotes a flat set, !∃(i, j) : i < j and

∀k, 1≤ k ≤ |A| :

Ak ∩B = ∅ for k < i
Ak ∩B /= ∅ for k = i
Ak ⊂ B for i < k < j
Ak ∩B /= ∅ for k = j
Ak ∩B = ∅ for k > j

If A ∗B is defined, the result is given by (again, empty
sets are removed from the result):

A ∗B 7→ (A1, · · · , Ai−1, Ai \B,Ai ∩B,
Ai+1, · · · , Aj−1, Aj ∩B,Aj \B,
Aj+1, · · · , A|A|)

Example: ({B} {CDE} {FG} {H}) ∗ {DEF} yields ({B}
{C} {DE} {F} {G} {H}). ({B} {CDE} {FG} {H}) ∗
{DEGH} is undefined, since{CDE}∩{DEGH}/= ∅ and
{H}∩{DEGH}/= ∅ and{FG}6⊂{DEGH}.

4.1.3 Functionorder

A pseudocode representation of functionorder is given in
Fig. 13. The exact definition of this function together with
an execution trace for an example hierarchy can be found in
the Appendix. After termination of the algorithm, a postpro-
cessing step on the result produces all optimal linearizations
(see below).

A

C D

B

G H

E

F

Fig. 15. Example type hierarchy

In a wrapping procedure, a setD is initialized as empty
set. Its purpose is to hold already processed (marked) type
identifiers. The same wrapping procedure passesT as actual
parameter to the initial call to functionorder.

For a given type hierarchy (T ,≤), e.g.,T = {ABCDEFG}
with ≤ shown in Fig. 15, after termination oforder the
result contained inS′ can be used to construct all opti-
mal orderings. For the above example, the value ofS′ is
{({B({EF})}{H}{DG}{AC})}. The set of all optimal lin-
earizations is constructed in the following way. Each set in
the result can be represented by an arbitrary permutation
of its elements, whereas each list yields only two correct
representations (i.e., forward or backward sequence). In par-
ticular, sets{EF}, {DG}, and{AC} can be represented by
2! permutations each. The same is true for the set{B({EF})}
containing one atomic element B and a list ({EF}) as second
element. It should be noted that this list contains only one
element, namely set{EF}, so there is only one correct repre-
sentations of this list. The list containing four elements, i.e.,
{B({EF})}, {H}, {DG} and {AC}, has two correct repre-
sentations. All in all a simple postprocessing traversal yields
2! ·2! ·2 ·2! ·2! = 32 optimal linearizations forT , e.g., B-E-
F-H-D-G-A-C, B-F-E-H-D-G-A-C, E-F-B-H-D-G-A-C, etc.

Applying the algorithm to the hierarchy of Fig. 1 re-
sults in{Person, ({FacultyMember, AssistantProfessor, Full-
Professor, AssociateProfessor} {TeachingAssistant} {Stu-
dent})} thus giving 2!· 2 · 4! = 96 optimal linearizations.

Like in the case of most other graph algorithms, the run-
time function of the linearization algorithm depends not only
on |S| but also on the number of edges in the inheritance
hierarchy. Additionally, the number of invocations of◦ and
∗ depends heavily on the specific structure of the hierarchy
(e.g., in case of a single inheritance hierarchy, neither the re-
finement operator nor the concatenation operator are invoked
at all). Although a formal derivation of the runtime func-
tion is beyond the scope of the paper, empirical experiments
show that the resource consumption for practically relevant
hierarchy sizes is almost negligible. For example, a C++ im-
plementation of the algorithm needed 0.013 s CPU time for
a 52-node 3-way tree on an outdated 133-MHz Pentiumr
running SolarisTM. The linearization of a 52-node multiple
inheritance hierarchy including various invokations of◦ and
∗ needed 0.024 s CPU time.1

1 The results were obtained by calling the linearization algorithm 10,000
times and dividing the CPU time figures accordingly.

319

4.2 Informal linearization example

The example hierarchies of the previous section (see
Fig. 11) are used for an informal presentation of the lin-
earization task. Let (S,≤) denote the hierarchy to be pro-
cessed:

1. The (unmarked) maximal elements of (S,≤) together
with the subhierarchies rooted at these elements are deter-
mined and marked. For the running example, the results
for the two hierarchies are given as:

E

A

F

D C

E

B

E

A

F

C

D

E F

B

Hierarchy (a) Hierarchy (b)

In what follows some notational conventions for the nec-
essary data structures (abstract representations) hold:
– squares represent single types
– marked types are shaded
– solid shapes represent sets
– dashed shapes symbolize lists

2. Non-disjoint subhierarchies are concatenated (operator◦,
see example Fig. 16). If there are non-disjoint subhierar-
chies which cannot be concatenated (i.e., the intersecting
parts are not located on either end of the lists), no lin-
earization exists.

D C

B

F

EA

E

E

EA

D

F

F

C

E

B

E

Hierarchy (a) Step 1 Hierarchy (b) Step 1

With respect to hierarchy (a) there is only one concate-
nation step (intersection contains E). The processing of
hierarchy (b) involves two concatenation operations, one
for an intersection containing E, the other one for an in-
tersection containing F.

EA

D

FB

F

C

F

Hierarchy (b) Step 2

3. The lists resulting from the previous step are refined (op-
erator ∗, see example Fig. 5.1), more specifically, for
each subhierarchy rooted at an unmarked maximum, it
is checked, whether or not the subhierarchy has a non-
empty intersection with more than one list element. In
this case, a refinement attempt is made. If there is any

such subhierarchy without a possible refinement, no lin-
earization exists.
The reason for such a refinement is obvious when looking
at hierarchy (a) after the application of the concatenation
operator. It is easy to show that an immediate recursive
descent with the rightmost list element{BCDF} would
produce incorrect results.
Considering hierarchy (a), there are two candidates (sub-
hierarchies) for refinement:{CF} and{DEF}. However,
{CF} has a non-empty intersection with only one list ele-
ment, i.e.,{BCDF}. Consequently, no refinement is done
with {CF}. {DEF} has non-empty intersections with both
{BCDF} and {E}, the result of the refinement is given
below.

EA

F

B

C

D C

FE

D

D

F

EA

D

FB C

D

FE

Hierarchy (a) Hierarchy (b)

In case of hierarchy (b) the only refinement candidate
is {DEF}. This subhierarchy has a non-empty intersec-
tion with consecutive list elements. However, the refine-
ment fails, because the interior list element{BD} is not
a subset of{DEF}. At this point the linearization algo-
rithm terminates for hierarchy (b). There is no optimal
linearization for this hierarchy.
The next iteration for hierarchy (a) yields the subhierar-
chies {E} and {CF} as candidates.{CF} is a relevant
candidate having non-empty intersections with{DF} and
{BC}. We arrive at a configuration like:

E C

F

A E D F C B

F C

Hierarchy (a)

4. Using the◦ and ∗ operators, steps 1–3 produce lists of
sets. The same processing scheme is applied to each ele-
ment of these lists recursively. The results of the recursive
descents are collected in the overall result set.
The final recursive calls for the list elements do not cause
any modifications in the context of our running example.
The final result is A-E-D-F-C-B and B-C-F-D-E-A.

5 Implementation issues

In this section we apply the linearization algorithm for the
purpose of type hierarchy indexing. In particular, the im-

320

2B

2B

A B

A|A|\B A B|A| 1\A|A|

A

A|A| B1

B1A

B

1|A| -1

-1 A|A|

Fig. 16. Concatenation operation (informally)

plementation of an MT-index with the help of optimal lin-
earizations is outlined.

5.1 Boundary structure and value structure

In general, an MT-index can be built usinganymultiattribute
search structure. Consequently, this section is not focused
on any particular data structure like, e.g., the BV-tree [7],
hB-tree [14], or the hBΠ -tree [6]. The only data structure
requirement is a non-degenerating behavior in case of data
skew.

Multiattribute search data structures interpretm-tuples
as elements of anm-dimensional geometrical space. Physi-
cally stored tuples have to be enclosed by anm-dimensional
hyperrectangle (calleddata spacein the sequel) defined by
totally ordered attribute domains. Initially, the data space is
mapped to a single disk page. When the storage space of this
disk page is exhausted, the data space has to be partitioned
into two subspaces, mapped to one disk page each. In any
case of page overflow, this pattern is repeated. Thus, the data
space is successively partitioned into an increasing number
of subspaces as the number of stored tuples increases.

In most cases, an exact match query will qualify one sub-
space and therefore one disk page, whereas a range query
will qualify a set of buddy subspaces corresponding to a set
of disk pages. This concept of data space partitioning is the-
oretically appealing as it allows to implementsymmetrical
index structures without any distinction between one cluster-
ing andm− 1 non-clustering data structures form indexed
object properties. However, from a technical point of view,
subspace boundary values have to be stored and maintained
in order to reconstruct the data space partitioning in case of
query or update operations.

This means that any multiattribute search structure used
to implement database indices has to contain two parts,
namely one storage structure for boundary values (i.e., the
partitioning information) and a second storage structure for
tuples containing, in our application context, the object iden-
tifiers, the types, and the actual values of the indexed at-
tributes. In what follows, the termsboundary structureand
value structurewill be used to refer to these parts, respec-
tively.

One possible data structure setup could look like this: in
any disk page of the value structure, thekey values compo-
nentcontains a particular value combination of the indexed
object properties. This component is followed by a list of
object identifiers such that each identifier refers to an object
having the attribute values given in the key values compo-
nent. It should be noted that, in this context, the type iden-
tifier can be handled like any other attribute value, i.e., as

part of the key values component. The optimal linearization
algorithm guarantees minimum length query intervals in this
type dimension.

The execution of query requests with the help of an MT-
index involves two phases:

– a traversal of the boundary structure (either kept in main
memory or on mass storage) collecting the set of relevant
disk page addresses and

– a processing of the corresponding set of mass storage
transfer operations: checking all tuples stored in the
fetched disk pages and discarding all tuples not quali-
fying for the query request.

An important advantage of this kind of indexing framework
is that exactly the samesearch structure technology could
be applied to maintainone index structure forall relevant
attributes ofPerson, e.g., income, weight, name, and so
on. Considering, for example,

Q4 select x from x in facultyMembers
where x.income < 50 000 and x.entry < ”04-10-1989”

the execution needs associative access to attributeincome as
well as toentry. In single key approaches, the OODBMS is
forced to maintain two distinct search data structures, prob-
ably spending considerably more storage space for index
maintenance and considerably more index scan time.

The splitting strategy for the type domain can be adapted
to a concrete query profile. The domain split potential is de-
termined by the data volume: the minimum data page occu-
pancy (e.g., 0.66) and the given raw data volume determine
the number of data pages, which in turn determines the num-
ber of domain splits (see Sect. 6.2). Consequently, the only
tunable parameter is the relative number of splits allocated
to each domain. A larger number of splits in one domain
implies a smaller number of splits in one or more of the
other domains.

With respect to the limited total number of domain splits,
an MT-index could increase the number of splits in the type
domain (thus increasing the degree of type-grouping)

– if the fraction of queries referring to subhierarchies is
large compared to the fraction of queries referring to the
entire indexed hierarchy and

– if the number of types in the qualified subhierarchies is
typically small compared to the total number of types in
the indexed hierarchy.

5.2 The hB-Tree as MT-index

The hB-tree [14] is a multiattribute search structure with
guaranteed index and data node occupancy for arbitrary raw
data distributions. Figure 18 shows an hB-tree. The three
rectangles represent internal hB-tree nodes. The leaf nodes
(denoted by capital letters) are not shown in this figure. The
boundary values contained in internal hB-tree nodes are or-
ganized as k-d-trees [1]. With respect to leaf node organiza-
tion (value structure), we present two alternatives which are
orthogonal to possible leaf node data structures like linked
lists or k-d-trees as proposed in [14]: Figure 19a shows a
leaf node organization using a directory. For each occur-
ring combination of attribute values and type identifier the

321

A1

A1 Ai i+1A j-1A Aj A|A|

A|A|j-1Ai+1A

A *

BA

B

iA BAi \ B Aj \ B j BA
Fig. 17. Refinement operation (informally)

15000

b

F ext

C

C

G

B

c

D A E A

20000

Person

30000

40000

TA

TA FacultyMember

a

c b

b

Person

30000

Fig. 18. The hB-tree used as MT-index

(a)

E

2 ω1 ω3Student 20000 TA 1 ω2 ...30000

(b)

E

ω1 ω3Student 20000 Student 20000 TA ω2 ...30000

Fig. 19. Leaf node organizations

list of corresponding OIDs is stored. The counter is used to
calculate the offset to the next values/type combination. Fig-
ure 19b shows a leaf node organization without directory. In
this case, leaf nodes contain one record per indexed object
with OID, type, andk attribute values. Informally, the ad-
vantage of a leaf node directory decreases with increasingk
and increasing attribute domain cardinalities, since particular
combinations become less likely, i.e., lists of OIDs become
shorter.

Continuing the example of Fig. 18, Fig. 20 depicts the re-
sulting data space partitioning with the corresponding high-
level representation of the hB-tree. Additionally, a closer
look at this figure leads to another technical issue: temporar-
ily sacrificing the minimum node occupancy, one could split
the type domain to the full extent, i.e., one region boundary
per typein advance. Clearly, such a pre-splitting scheme al-
lows the omission of the type identifiers from the leaf node
records, thus saving index space.

6 Performance analysis and comparison

Index size and query performance of the MT-index are com-
pared to the analytical performance results of the CH-index
and the H-tree. As usual, there is no dominating approach
for all hierarchy structures and query profiles; however, we
are able to provide a few rules of thumb for index selection.

a

C F G A D E

c

B

b

15000

20000

30000

40000

50000

A
B

CD
E

F G

FullProfessor

AssociateProfessor

AssistantProfessor

FacultyMember

TeachingAssistant

Student

Person

(a) (b)

Fig. 20. Visualization and data structure representation of the hB-tree

Table 1. Model parameters

Param. Meaning
T Set of indexed types
TQ ⊂ T Set of types referenced by a queryQ
k Number of indexed attributes
dQ ≤ d Number of attribute values qualified by queryQ
n Number of objects
ni Number of objects of typeti ∈ T
f fanout: number of successors of an internal node
size(x) Size ofx in bytes
e Number of records in an index leaf node
nvt Number of objects per value per type
bLi Number of index leaf nodes forti
bIi Number of internal index nodes forti
bi Total number of index nodes forti

As in [16] and [13] and most other analytical approaches,
our estimations are based onbest caseassumptions, e.g.,
maximum index page occupancy. The corresponding aver-
age case figures do not yield significantly different results
(see [14] and [20]). A central parameter of the following
models (see [13] and [16]) is denoted bynt and describes
the attribute configuration: each value of the indexed at-
tribute occurs in objects ofnt types. Letd anddi denote the
number of different values stored in the indexed attribute and
the number of different values stored in objects of typeti, re-
spectively. The relationship between these three parameters
is described bydi = d · nt|T | with 1≤ nt ≤ |T |. We interpret
the two extreme values ofnt: nt = 1 ⇒ d =

∑
|T | di and

nt = |T | ⇒ d = di. In the first case, each attribute value
occurs in objects of exactly one type, whereas in the second
case each attribute value occurs in objects of all types. The
former situation is referred to asno overlap, the latter as
full overlap, and anynt value between 1 and|T | aspartial
overlap.

All other parameters are described in Table 1. Storage
space assumptions made for particular data items are given in

322

Table 2. Size of data items

Data item Size Meaning
Node 4096 Index node (internal or leaf)
Counter 2 Counter used for OIDs, node entries,. . .
Att 4 Indexed attribute
OID 12 Object identifier
Offset 2 Offset within a node
TypeId 2 Type identifier
NodeId 8 Node identifier

Table 2.RecandDir refer to leaf node records and internal
directories maintained in leaf nodes, respectively. In what
follows, the analytical models for the single-key structures
are based on slightly modified material presented in [16].

6.1 Storage space requirements

The results of two experiments focusing on the index size
are presented in Sects. 6.1.2 and 6.1.3. The evaluation re-
sults on the analytical model are given in Sect. 6.1.1. In both
experiments the number of indexed types is varied. The dif-
ference between the two experimental settings is that, in the
first case, a constant number of objects per type is assumed,
whereas in the second case a constant total number of objects
is distributed over a variable number of types.

Both experiments are made fork = 1 andk = 2 (i.e.,
one indexed attribute in contrast to two indexed attributes),
as well as fornt = 1 (no overlap),nt = |T |

2 (partial overlap),
andnt = |T | (full overlap). Fork = 1, a leaf node organi-
zation (grouping by value and type) is used for the hB-tree,
whereas fork > 1 this additional organization is omitted.

6.1.1 Analytical model

The CH-index is a balanced multiway tree featuring a so-
phisticated leaf node organization: in a leaf node, object IDs
are grouped by attribute value and object type. In contrast
to this approach, the nesting of an H-tree corresponds to
the structure of the type hierarchy, therefore, a type-oriented
leaf node organization is obsolete. Due to the structure of
the CH-index (in contrast to the H-tree), the parametersb,
bL, andbI are used without subscripti.

size(Dir) = size(Counter) + nt · (size(TypeId)
+ size(Offset))

size(Rec(CH)) = size(Att) + size(Dir)
+nt · (size(Counter) + nvt · size(OID))

e(CH) =

⌊
size(Node)− size(Counter)

size(Rec(CH))

⌋
bL =

⌈
d

e(CH)

⌉

bI =

⌈
bL

f (CH)

⌉
+

⌈

bL

f (CH)

⌉
f (CH)

 + · · · + 1

with

f (CH) =

⌊
size(Node)

size(Att) + size(NodeId)

⌋
Maintaining one CH-index for each indexed attribute2 yields
a total storage space consumption for a CH-index implemen-
tation of

b(CH) = k · (bL + bI) .

In the case of the H-tree, we have to calculate the size by
means of the overall sum for all|T | nested type-specific
multiway trees. Consequently, we obtain for this data struc-
ture

size(Rec(H)) = size(Att) + size(Counter)
+nvt · size(OID)

e(H) =

⌊
size(Node)− size(Counter)

size(Rec(H))

⌋
bLi =

⌈
di
e(H)

⌉

bIi =

⌈
bLi
f (H)

⌉
+

⌈

bLi
f (H)

⌉
f (H)

 + · · · + 1

bi = bLi + bIi

with

f (H) =

⌊
2
3
· size(Node)

size(Att) + size(NodeId)

⌋
The reduced fanout is caused by the link entries. These tu-
ples (consuming one third of the internal nodes) are used
to implement the nesting, see above. Again, we assume one
H-tree per indexed attribute, and consequently estimate a
storage space consumption of

b(H) = k ·
∑
ti∈T

bi .

In the case of an hB-tree used to implement an MT-index
we have to distinguish between the above-mentioned leaf
node organizations (see Sect. 5.2, excluding the pre-splitting
alternatives):

– grouping by attribute value and type:

size(Rec(hB)) = k · size(Att) + size(TypeId)
+ size(Counter) + nvt · size(OID)

e(hB) =

⌊
size(Node)− size(Counter)

size(Rec(hB))

⌋
bL =

⌈
n

e(hB) · nvt

⌉
2 In this model, we assume that the execution of ak-attribute query re-

sults in the traversal ofk single-key indices. A possible alternative is the
traversal ofone index structure and the subsequent fetching of the refer-
enced objects. However, objects not qualifying for the query (i.e., objects
with non-matching values in the other attributes) have to be discarded after-
wards. The problem in this context is the significant waste of I/O bandwidth
caused by the transfer of non-qualifying objects.

323

– no grouping:

size(Rec(hB)) = k · size(Att) + size(TypeId) + size(OID)

e(hB) =

⌊
size(Node)− size(Counter)

size(Rec(hB))

⌋
bL =

⌈ n

e(hB)

⌉
In the following evaluation, the first variant is chosen for
the case of one indexed attribute and the second variant in
case of more than one indexed attribute. At this point, a
closer look at the fanout of hB-tree nodes is needed. The
internal nodes are organized as k-d-trees [1]. Each k-d-tree
node contains one attribute value, two node identifiers of
successor nodes, and two additional bytes of maintenance
information. The resulting fanout

f (hB) =

⌊
size(Node)

(size(Att) + 2 · size(NodeId) + 2) · r
⌋

contains a reduction factorr quantifying the overhead of the
k-d-tree organization. In particular, a number of references
in the k-d-tree again reference k-d-tree nodes belonging to
the same hB-tree node. These references do not contribute
to the fanout of the hB-tree node. In [14], an evaluation
yields 1 ≤ r ≤ 1.5, in our case variations ofr do not
yield significantly different results. Based on this fanout, we
obtain

bI =

⌈
bL

f (hB)

⌉
+

⌈

bL

f (hB)

⌉
f (hB)

 + · · · + 1 ,

b(hB) = bL + bI .

6.1.2 Experiment 1: constant number of objects per type

For fixedni and d, |T | is increased. In other words, for a
constant number of objects per type new types are added.
The underlying assumption is that the creation of a new type
more or less implies the insertion of new database objects
of this type. Actual experimental values areni = 10, 000,
d = 10, 000 and 1≤ |T | ≤ 50. Under these assumptions, the
database populationn is increased from 10, 000 to 500, 000.
The resulting total number of index blocks for the CH-index,
the H-tree, and the MT-index are depicted in Fig. 21. In the
one-dimensional case, the storage space consumption of the
three approaches is more or less the same, for overlapping
attribute configurations, the H-tree dominates the MT-index
by about 5% in the case of partial overlap and by about 8%
in the case of full overlap.

Unsurprisingly, fork > 1, the MT-index outperforms the
single-key approaches with respect to index size. The space
overhead reduction is most appealing for the case of full
overlap and less impressive in the case of a non-overlapping
attribute configuration.

6.1.3 Experiment 2: constant total number of objects

Although the setup for this experiment seems almost the
same as in Experiment 1, the application context is to-
tally different: For fixedn andd, |T | is increased, i.e., for

a constant number of objects the number of types is in-
creased. This corresponds to the creation of new types and
a subsequent migration of existing objects to the newly cre-
ated types. Actual experimental values aren = 500, 000,
d = 10, 000 and 1≤ |T | ≤ 50. Results are presented in
Fig. 22.

In the case of increasing|T | with fixed n, the influence
of nt is even stronger than in the case of increasingn and
|T |. Again, discussing the single-attribute case first, the OIDs
in hB-tree nodes are grouped by combinations of attribute
value and type. Consequently, in the non-overlapping case,
the size of the hB-tree is constant, because existing attribute
values and the corresponding OIDs are assigned to the newly
created types, i.e.,nvt is constant. The same holds for the
CH-index, but not for the H-tree, where the creation of new
index trees causes a slightly increased storage overhead.

In case of partial and full overlap, the ranking between
CH-index and H-tree changes, the MT-index is somewhere
in between. In case of partial overlap, the advantage of the
H-tree over the MT-index is upper bound by about 5% (9%
in case of full overlap). The result for the CH-index is caused
by the comparatively small number of records per leaf node
(6 records for|T | ≤ 12, 5 for 12< |T | ≤ 35 and 4 for
|T | > 35).

The results for two indexed attributes (see Fig. 22) are
almost self-explanatory. The overall index size yielded by
the single-key approaches is simplyk times the index size
of the single-attribute case. Due to the robust directory or-
ganization of the hB-tree, the index size does not increase
if the number of stored OIDs does not increase. As there
is no additional hB-tree leaf node organization fork > 1,
neither the attribute configuration nor|T | has any impact on
the index size.

6.2 Query performance

Four experimental settings are used to evaluate the query
performance of the MT-index. Each of these experiments
focuses on one parameter of possible query profiles, in par-
ticular:

– In Experiment 1, the size of the query interval in the
type domain is varied. The experiment is done for one
and for two indexed attributes, as well as for exact match
queries and range queries, respectively.

– In Experiment 2, the focus is on the variation of the query
intervals in all other attributes with a fixed query scope
in the type domain. Using a hierarchy with ten types,
evaluation results are given for range queries against the
full hierarchy as well as for range queries against a sub-
hierarchy with five types. Again, the one-attribute case
is compared to the two-attribute case.

– In Experiment 3, the impact of the hierarchy lineariza-
tion on the query performance is determined. For the
two-attribute case, the performance of three MT-index
scenarios is compared to the H-tree and the CH-index.
The first scenario is based on an optimal linearization as
described in Sect. 3, the second scenario uses multiple
index scans, one index scan per queried type, whereas
the third scenario is based on minimum single scan with

324

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(a) k = 1, nt = 1 (b) k = 2, nt = 1

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(c) k = 1, nt = |T |
2 (d) k = 2, nt = |T |

2

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(e) k = 1, nt = |T | (f) k = 2, nt = |T | Fig. 21a–f. Index size: results of Experiment 1

a subsequent elimination of objects belonging to non-
matching types. Similar to the previous setting, the size
of the query intervals in the indexed attributes is varied.

– The fourth experimental setting addresses a case which is
less favorable for the MT-index, namely queries referring
only to a subset of the set of indexed attributes. Range
queries referring to a varying number of types as well
as range queries against a fixed number of types with a
increasing size of the query interval are investigated.

For all query performance evaluations, a fully overlapping
attribute configuration is assumed (nt = |T |). Prior to the
evaluation experiments we describe the underlying analytical
model for the three data structures in question.

6.2.1 Analytical model

Assuming a traversal ofk single-key indices for ak-attribute
query, the estimated number of disk-I/O operations for a
query qualifyingdQ attribute values is given by

325

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(a) k = 1, nt = 1 (b) k = 2, nt = 1

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(c) k = 1, nt = |T |
2 (d) k = 2, nt = |T |

2

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 in

de
x

no
de

s,
 b

Number of types, |T|

H-tree
CH-index

MT-index (using hB-tree)

(e) k = 1, nt = |T | (f) k = 2, nt = |T | Fig. 22a–f. Index size: results of Experiment 2

k ·
(
height(CH) +

⌈
dQ

e(CH)

⌉)
for the CH-index and by

k ·
∑
ti∈TQ

(
height(H)

i +

⌈
di
d · dQ
e(H)

⌉)

for the H-tree (see [16]).height(CH) (height(H)
i) denotes the

height of the CH-index (the H-tree for typeti).

An estimation of the number of disk-I/O operations in an
m-dimensional multiattribute search structure like the hB-
tree is less straightforward. We use a probabilistic model
outlined in [22]. In particular, the number of I/O operations
for a multiattribute range query is calculated with the help of
a random variableV (S,Q,R). This variable represents the
fetched data volume in a data space which has been normal-
ized to [0, 1[m. The random variableV is expressed in terms
of attribute domain structureS(s1, · · · , sm), query profile
Q(q1, · · · , qm), and data space partitioningR(r1, · · · , rm).

326

1 2 3 4
1

16

(a) Attribute domains (b) Data space partitioning

Fig. 23a,b.An example for a 2-dimensional data spaceS = (1
4 ,

1
16) and its

current partitioningR = (1
2 ,

1
4)

1 4
1

16

2 3

(a) 3 I/O operations (b) 2 I/O operations

1 2 3 4
1

16

Fig. 24a,b. Query templateQ = (1
4 ,

6
16), query requests (dark shaded)

Q1 : A1 = 2∧ A2 ∈ [8, 13] andQ2 : A1 = 4∧ A2 ∈ [2, 7] and resulting
I/O operations (light shaded)

The dimension-specific values1si ,
1
ri

andqi represent for di-
mensioni the domain cardinality, the number of subintervals
yielded by index split operations and the length of the query
interval (see Figs. 23 and 24).

Two model assumptions are made: (a) the domain cardi-
nality equals 2j , with j being a positive integer, and (b) all
subintervals are of the same length. The latter assumption is
based on the usual data distribution models, basically uni-
formly distributed and uncorrelated raw data, which yield a
regular partitioning grid (see example below) in most search
structures.

An example illustrated in Fig. 23 contains a particularS
(left-hand side) andR (right-hand side). The query template,
two possible positions of the query window and the resulting
number of I/O operations are shown in Fig. 24 for the same
example.

In this model representation, one tuple corresponds to a
minimal rectangle in the data space (see shaded area (3, 5) in
Fig. 23a). The data space partitioningR(1

2,
1
4) yields 8 mass

2

1

1
1
2
2
1
1
2

2
2
1

1
1

2
2
2
3
2
2
2
3
2
2
2

(a) s=1/16, r=1/4, q=3/16 (b) s=1/16, r=1/4, q=6/16

Fig. 25a,b. Position of the query window in dimensionj and number of
I/O operations as a function ofsj , rj , qj

storage transfer units (see Fig. 23b, one of the transfer units
is shaded). In Fig. 24, the same query template, i.e.,Q(1

4,
6
16)

causes either two or three I/O operations, depending on the
actual placement of the query window in the data space.

More precisely, letWj(sj , qj , rj) denote the random
variable for the resulting number of I/O operations in a spe-
cific dimensionj. A closer look at Fig. 25 and a careful
analysis of the corresponding I/O pattern yields two values
for Wj , in particular

w′
j =

⌈
qj
rj

⌉
rj and w′′

j =

⌈
qj
rj

⌉
rj + rj .

Using bj as an abbreviation for
⌈
qj
rj

⌉
rj and analyzing

Fig. 25, the probabilistic density function ofWj can be de-
scribed as

P(Wj = bj) =
(bj − qj + sj)(1− bj + rj)

rj(1− qj + sj)
, (3)

P(Wj = bj + rj) =
(1− bj)(qj − bj + rj − sj)

rj(1− qj + sj)
. (4)

Recalling the two-point distribution ofWj , probability
P(Wj = bj + rj) equals 1− P(Wj = bj). Equations 3 and 4
yield an expectation value forWj

E(Wj) = bj +
(1− bj)(qj + rj − sj − bj)

1− qj + sj
, (5)

which corresponds to the estimated interval length in dimen-
sion j as a function of (sj , rj , qj).

Under the assumption of uniformly distributed and un-
correlated raw data and stating a similar assumption for the
random positions of the query window, we deriveV (S,R,Q)
as the product over allWj , that is

V =
∏

1≤j≤m
Wj , (6)

and the corresponding expectation value as

E(V)=
∏

1≤j≤m

(
bj +

(1− bj)(qj + rj − sj − bj)
1− qj + sj

)
. (7)

In what follows, simple approximations for Eqs. 5 and 7 are
used:

Ẽ(Wj) =

{
qj + rj − sj if qj ≤ 1− rj
1 if qj > 1− rj

and

Ẽ(V) =
∏

1≤l≤n
Ẽ(Wj) .

In our application context,m = k + 1 holds fork in-
dexed attributes, i.e., one additional dimension representing
the type domain. The model parameters for the type do-
main are calculated as follows: The domain structure and
the query range for the type dimension are given by

s1 =
1
|T | and q1 =

|TQ|
|T | ,

the partitioning of the type domain is given by

327

r1 =

1

k+1
√
bL

if |T |k+1 ≤ bL

1
|T | otherwise

(8)

In other words, the standard splitting strategy is also applied
to the type domain3. Considering a maximum split potential
of |T | subintervals in the type dimension and the overall split
potential given by the number of data nodesbL we obtain
the two cases described in Eq. 8.

The model parameters for all other dimensions are given
by sj = 1

d , qj = dQ

d , andrj = 1
k
√
r1·bL

. Recalling that̃E(V) is

an approximation for the expected volume in [0, 1[m, we ob-

tain
⌈
bL · Ẽ(V)

⌉
I/O operations for data nodes. The number

of index node I/O operations ranges fromheight(hB) nodes
in the case of a point query tobI nodes for a range query, as-
suming the very unlikely case, that all internal nodes have to
be read during query execution. For the worst case, we there-

fore obtainbI +
⌈
bL · Ẽ(V)

⌉
disk-I/O operations for range

query execution.

6.2.2 Experiment 1: varying number of queried types

In this setting, a range query with a fixed query range as well
as an exact match query are considered. In both cases, the
number of qualified types is varied and a fully overlapping
attribute configuration is used.

In the case of the range query, 20% of the attribute do-
main is qualified by the query request, in terms of the an-
alytical model, this meansd

Q

d = 0.2. For n = 500, 000,
d = 10, 000, and|T | = 10 the number of I/O operations
is calculated for different sets of qualified typesTQ with
1≤ |TQ| ≤ 10. Results are given in Fig. 26a and b.

Also, in the case of the exact match query evaluation the
number of qualified types is varied. Forn = 500, 000, d =
10, 000,dQ = 1, and|T | = 10 the number of I/O operations
is determined. As in the previous case, the cardinality of the
sets of qualified typesTQ is increased from 1 to 10. Results
are visualized in Fig. 26c and d.

The range query setup produces significantly different
results for the CH-index on the one hand and for the H-
tree and the MT-index on the other hand. The CH-index is
characterized by a constant number of I/O operations. The
reason is that OIDs ofall typesare stored in one data struc-
ture without sufficient support for type-specific access. As
a result, all leaf nodes containing qualified attribute values
have to be read. Subsequently, OIDs of non-qualified types
have to be discarded. In this context, the H-tree has a clear
advantage, because for each type a distinct tree is maintained
and only trees of qualified types have to be scanned. An in-
teresting point is that the MT-index without type-separated
trees performs similar to the H-tree, losing only about 3%
I/O performance.

A first non-obvious conclusion can be drawn: the type di-
mension approach in the MT-index framework is a compet-
itive alternative to the maintenance of type-separated trees,

3 We do not include the pre-splitting scheme mentioned in Sect. 5.2 in
this analytical model.

e.g., H-trees. For multiattribute configurations, the perfor-
mance advantage of the MT-index is most appealing for
small query ranges like in this experiment (about 70% ad-
vantage over the H-tree ford

Q

d = 0.2). It can be seen in
Fig. 27 that this advantage is slightly smaller in the case of
larger query intervals.

With respect to exact match queries (not considered in
[16, 20]), the results are completely different. In the case of
the CH-index, a single tree traversal is always sufficient to
answer an exact match query, whereas in the H-tree again
|TQ|, trees have to be traversed. For large|TQ| the MT-
index performs significantly worse than the CH-index, how-
ever, in comparison to the H-tree, an up to 40% performance
gain for k = 1 (up to 70% fork = 2) can be observed.

6.2.3 Experiment 2: varying query range

In this context, the focus is solely on range queries with
varying ranges. The number of queried types is 5 and 10,
respectively, in both cases out of ten indexed types. In par-
ticular, for n = 500, 000, d = 10, 000, and|T | = 10, the
number of I/O operations is calculated. The query range
is varied between 10% and 100% of the attribute domain,
i.e., 0.1 ≤ dQ

d ≤ 1. The corresponding results are depicted
in Fig. 27a and b for|TQ| = 10 and Fig. 27b and c for
|TQ| = 5.

In the one-dimensional case, the results for all three ap-
proaches are almost the same for|TQ| = |T | = 10. Com-
pared to the single-key approaches, the MT-index causes a
3% (1%) increase in the number of I/O operations compared
to the H-tree (CH-index). In the case ofk = 2, the MT-index
has a performance advantage of up to 80% for small query
ranges. Very large query intervals, e.g.,dQ

d = 0.5 still yield
almost 50%.

For |TQ| = 5, the number of I/O operations yielded by
the CH-index is the same as for|TQ| = 10, whereas the H-
tree and the MT-index take advantage of the enhanced index
selectivity in this case.

6.2.4 Experiment 3: linearization and query performance

Although a complete description of the influence of the type
domain linearization on the query performance is a complex
issue, at least one experiment should provide some insights.
In general, there are two (not mutually exclusive) scenarios
in which the type scope of a query request cannot be mapped
to an interval of the type domain containing exactly the types
of the query scope.

– There is no optimal linearization in the definition of
Sect. 3 for the type hierarchy. In this case, there are
subhierarchies which do not correspond to minimal in-
tervals of the type domain.

– Even if an optimal linearization exists the type scope of
a query may be an arbitrary subset of the type hierarchy
rather than a subhierarchy. In this case, a corresponding
minimal interval on the type domain may still exist, how-

328

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s,

 b

Number of qualified types

H-tree
CH-index

MT-index (using hB-tree)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s,

 b

Number of qualified types

H-tree
CH-index

MT-index (using hB-tree)

(a) k = 1, d
Q

d
= 0.2 (20% range query) (b)k = 2, d

Q

d
= 0.2 (20% range query)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s,

 b

Number of qualified types

H-tree
CH-index

MT-index (using hB-tree)

0

4

8

12

16

20

24

28

32

36

40

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s,

 b

Number of qualified types

H-tree
CH-index

MT-index (using hB-tree)

(c) k = 1, dQ = 1 (point query) (d)k = 2, dQ = 1 (point query) Fig. 26a–d. Query performance: results of Ex-
periment 1

ever it cannot be guaranteed by the optimal linearization
as defined above.4

If any of these two cases applies, there are two possible
solutions for the query optimizer.

– The query request can be processed by a single scan of
the smallest interval of the type domain containing all
types of the query scope (and some types not qualified
by the query). In this case, some of the fetched data has
to be discarded due to their non-matching type.

– Alternatively, the query request can be processed by mul-
tiple scans referring to the minimal set of intervals such
that exactly all qualified types are included. In this case,
no data has to be discarded but there is a certain amount
of I/O overhead due to multiple tree traversals.

A few example evaluations should give an impression of
the performance figures yielded by the different processing
strategies. Using the example linearization from the previous
sections and two query type sets which do not correspond
to subhierarchies, the single scan strategy is compared to
the multiscan strategy. To put the results in perspective, also
the results for the CH-tree, the H-tree, and the MT-index
with optimal linearization are shown. For both experiments,

4 Obviously, a priori knowledge about the query profile may be used
in these cases, where the result of the linearization algorithm contains any
degrees of freedom. For example, if in the linearization result an arbitrary
permutation of a type subset is allowed, the final permutation for the type
domain can be chosen according to the query profile.

we usen = 350, 000, d = 50, 000, two indexed attributes
(k = 2), and a fully overlapping attribute configuration (nt =
|T | = 7).

In the first test setting, a query request qualifies the
typesStudent, AssociateProfessor, andAssistantProfes-
sor (|TQ| = 3). Using the single scan strategy, the minimal
interval including these three types contains five types.Fac-
ultyMember andTeachingAssistant are included in the in-
terval but not qualified by the query. With respect to the
multiscan strategy, the example yields a minimal set of two
intervals and therefore two index scans, one retrieving the
data scored forAssociateProfessor andAssistantProfes-
sor and the other one referring toStudent. The results are
shown in Fig. 28a.

In the second example, the typesFullProfessor, Asso-
ciateProfessor, FacultyMember, andStudent are queried
(|TQ| = 4). The smallest interval containing all these types
is [FullProfessor,Student]. Consequently, the single-scan
strategy affects six types. The multiscan strategy results in
three index scans, one forFullProfessor andAssociatePro-
fessor, one forFacultyMember and one forStudent. The
results are shown in Fig. 28b.

In the first evaluation run the multiscan strategy outper-
forms the single-scan strategy, irrespective of the size of the
query range. In this case, the overhead incurred by multiple
scans is more than outweighed by the I/O cost for the two
types not qualified by the query request. For practically rel-
evant query range sizes, both strategies perform better than
the H-tree. Even the more unfavorable single-scan strategy

329

0

250

500

750

1000

1250

1500

1750

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (using hB-tree)

(a) k = 1, |TQ| = |T | = 10 (b)k = 2, |TQ| = |T | = 10

0

250

500

750

1000

1250

1500

1750

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (using hB-tree)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (using hB-tree)

(c) k = 1, |TQ| = |T |
2 = 5 (d) k = 2, |TQ| = |T |

2 = 5 Fig. 27a–d. Query performance: results of Ex-
periment 2

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (optimal)
MT-index (multi-scan)

MT-index (single scan)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (optimal)
MT-index (multi-scan)

MT-index (single scan)

(a) (b) Fig. 28a,b.Query performance: results of Exper-
iment 3

yields better I/O performance up to a query range size of
about 60% of each queried attribute.

The results of the second experiment show a turn of
the tide in the case of an increasing number of necessary
scans for the multiscan strategy. Here, the increasing over-
head caused by the multiple scans can even dominate the
I/O cost of non-qualified types. Again, the H-tree is superior
only for very large query range sizes (> 70%). In both cases,
the CH-tree is more costly than any other alternative over
the full range of the experiments. An MT-index based on an
optimal linearization is less costly than any alternative.

6.2.5 Experiment 4: partial range queries

There is an inevitable degradation in the I/O performance of
anm-attribute search data structure if less thanm attributes
are queried. In what follows, two final evaluations shed some
light on this matter. In the context of partial range queries,
an MT-index withk = 2 is used to process query requests
referring to only one of the two indexed attributes. Similar
to previous evaluation experiments in one setting the size
of the queried type set is fixed (|T | = 10, |TQ| = 5) and
the size of the query range is varied, whereas in the second
setting, the size of the query range is fixed at 20% of the

330

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s,

 b

Number of qualified types

H-tree
CH-index

MT-index (using hB-tree)

0

250

500

750

1000

1250

1500

1750

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cc
es

se
d

in
de

x
no

de
s

Size of the query range in %

H-tree
CH-index

MT-index (using hB-tree)

(a) (b) Fig. 29a,b.Query performance: results of Exper-
iment 4

attribute domain (d
Q

d = 0.2) and the value of|TQ| is varied
between 1 and 10. The results are shown in Fig. 29.

Using the same parameters as in Experiments 1 an 2
above, the H-tree is the dominating structure in the context
of partial range queries, because only the H-tree compo-
nents supporting the queried attribute have to be scanned.
Although the same holds for the CH-tree, the MT-index
yields advantages for small queried subhierarchies.

7 Conclusions

The MT-index is described as an alternative to previous
single-key approaches, which are in most cases based on
B+-trees. The proposal relies on optimal type hierarchy lin-
earizations in such a way that each subhierarchy corresponds
to an interval in the respective type domain of the index.
We present an algorithm which computes all existing op-
timal linearizations for a given type hierarchy. Using this
algorithm, the practical design and implementation of an
MT-index by means of any existing multiattribute search
structure is shown to be straightforward. In this context, a
few design alternatives are outlined (i.e., leaf node directo-
ries and pre-splitting).

The performance evaluation for the MT-index includes
index size as well as exact match and range query perfor-
mance. The one-attribute setting is compared to the multiat-
tribute setting. In the latter case also, partial range queries are
considered. We compared our approach to a key-grouping
structure, i.e., the CH-index, and to a type-grouping struc-
ture, i.e., the H-tree. Based on the results, we can provide
the following rules of thumb:

– The size of an MT-index in case ofk = 1, i.e., a 2-
dimensional hB-tree, is slightly larger (about 5–8%, de-
pending on the attribute configuration) than the size of
the single-key tree approaches. Fork > 1, a sophisticated
k + 1-dimensional multiattribute search structure like the
hB-tree clearly outperforms any set ofk single-key trees.

– Exact match queries always favor key-grouping struc-
tures. Consequently, the CH-index is the clear leader
in this case. With respect to exact match queries, the
new proposal performs better than the H-tree. The dis-
advantage of the MT-index compared to the CH-index
decreases with increasing number of indexed attributes.

– Although range queries usually favor type-grouping
structures, the H-tree, despite a 3% gain, is unable to
clearly outperform the MT-index even fork = 1. The re-
sults illustrate the clear advantage of the new proposal if
more than one attribute (i.e.,k > 1) has to be supported
by the hierarchy index.

– In the case of partial range queries the H-tree is superior
to both the CH-index and the MT-index.

Summing up the performance evaluation, the main result is
that an MT-index based on a stable multiattribute search
structure is a practically viable alternative to specialized
single-key tree approaches even for the unfavorable case
of k = 1. This result is far less obvious than the fact that
an MT-index is the best choice fork > 1. From a practical
point of view, this result allows a recommendation of the
MT-index if range queries are the dominating pattern in the
query profile.

Abstracting from the technical details of index imple-
mentations, the MT-index can be seen as a mediator between
key-grouping and type-grouping approaches. Informally, a
symmetrical structure like the hB-tree does not enforce a par-
ticular preference for either key-grouping or type-grouping.
However, giving such a preference is possible (if necessary
in a particular application context, see the discussion of split-
ting alternatives in Sect. 5).

Work in progress deals with efficient heuristics for type
domain splitting. The idea is to control the degree of type-
grouping with respect to a particular query profile.

Acknowledgements.We would like to thank the reviewers for their com-
ments and suggestions which led to a considerable improvement of the
presentation.

References

1. Bentley J (1975) Multidimensional binary search trees used for asso-
ciative searching. Commun ACM 18(9):509–517

2. Bertino E (1991) An indexing technique for object-oriented databases.
In: Proceedings Seventh International Conference on Data Engineering,
Kobe, Japan. IEEE Computer Society Press, Piscataway, N.J., pp 160–
170

3. Bertino E, Ooi BC, Sacks-Davis R, Tan KL, Zobel J, Shidlovsky B,
Catania B (1997) Indexing Techniques for Advanced Database Sys-
tems. Advances in Database Systems. Kluwer, Dordrecht

331

4. Carey M, Schneider D (eds) (1995) Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, volume
24 of SIGMOD Record, San Jose, CA. ACM Press, New York

5. Chan CY, Goh CH, Ooi BC (1997) Indexing OODB instances based
on access proximity. In: ICDE’97 [10], pp 14–21

6. Evangelidis G, Lomet D, Salzberg B (1995) The hBΠ -tree: A modified
hB-tree supporting concurrency, recovery and node consolidation. In:
Dayal U, Gray PMD, Nishio S (eds) Proceedings of 21th International
Conference on Very Large Data Bases, Zürich, Switzerland. Morgan
Kaufmann, San Mateo, Calif., pp 551–561

7. Freeston M (1995) A general solution of the n-dimensional B-tree
problem. In: Carey, Schneider [4], pp 80–91

8. Gudes E (1996) A uniform indexing scheme for object-oriented
databases. In ICDE’96 [9], pp 238–246

9. Proceedings Twelfth International Conference on Data Engineering,
New Orleans, Louisiana, Mar. 1996. IEEE Computer Society Press,
Piscataway, N.J.

10. Proceedings Thirteenth International Conference on Data Engineering,
Birmingham, UK, Apr. 1997. IEEE Computer Society Press, Piscat-
away, N.J.

11. Kanellakis PC, Ramaswamy S, Vengroff DE, Vitter JS (19) Indexing
for data models with constraints and classes. In: Garcia-Molina H,
Jagadish H (eds) Proceedings of the Twelfth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Washington,
DC. ACM Press, New York, pp 233–243

12. Kilger C, Moerkotte G (1994) Indexing multiple sets. In: VLDB’94
[25], pp 180–191

13. Kim W, Kim KC, Dale A (1989) Indexing techniques for object-
oriented databases. In: Kim W, Lochovsky FH (eds) Object-Oriented
Concepts, Databases, and Applications. Addison-Wesley, Reading,
Mass., pp 371–394

14. Lomet DB, Salzberg B (1990) The hB-tree: A multiattribute indexing
method with good guaranteed performance. ACM Trans Database Syst
15(4):625–658

15. Low CC, Lu H, Ooi BC, Han J (1991) Efficient access methods in
deductive and object-oriented databases. In: Delobel C, Kifer M, Ma-
sunaga Y (eds) Deductive and Object-Oriented Databases. Proceedings
of the Second International Conference, DOOD, volume 566 of Lec-
ture Notes in Computer Science, Munich, Germany. Springer, Berlin
Heidelberg New York, pp 68–84

16. Low CC, Ooi BC, Lu H (1992) H–trees: A dynamic associative search
index for OODB. In: Stonebraker M (ed) Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, volume
21 of SIGMOD Record, San Diego, California. ACM Press, New York,
pp 134–143

17. Mueck TA, Polaschek ML (1996) Indexing type hierarchies with multi-
key structures. In: Connor RCH, Nettles S (eds) Proceedings of the 7th
International Workshop on Persistent Object Systems (POS 7). Morgan
Kaufmann, San Mateo, Calif., pp 184–193

18. Mueck TA, Polaschek ML (1997) Index Data Structures in Object-
Oriented Databases. Advances in Database Systems. Kluwer, Dor-
drecht

19. Mueck TA, Polaschek ML (1997) The multikey type index for persis-
tent object sets. In: ICDE’97 [10], pp 22–31

20. Ooi BC, Han J, Lu H, Tan KL (1996) Index nesting – an efficient
approach to indexing in object-oriented databases. VLDB J 5(3):215–
228

21. Ramaswamy S, Kanellakis PC (1996) OODB indexing by class-
division. In: Carey, Schneider [4], pp 139–150

22. Schauer M (1993) Adaptive Clusterbildung in Mehrattributsuchstruk-
turen. Dissertation, Universität Wien, in german.

23. Shidlovsky B, Bertino E (1996) A graph-theoretic approach to indexing
in object-oriented databases. In: ICDE’96 [9], pp 230–237

24. Sreenath B, Seshadri S (1994) The hcC-tree: An efficient index struc-
ture for object-oriented databases. In: VLDB’94 [25], pp 203–213

25. Proceedings Twentieth International Conference on Very Large
Databases, Santiago, Chile, Sept. 1994. Morgan Kaufmann, San Mateo,
Calif.

Appendix A
Linearization algorithm

D ← ∅
T ′ ← order(T ,≤)

1. begin order(S,≤)
2. if |S| < 3 then return S end
3. M ← max(S \D,≤)
4. L← ⋃

m∈M {(S≤m)}
5. D ← D ∪M
6. S′ ← S \⋃m∈M S≤m
7. while ∃A ∈ L do
8. L← L \ {A}
9. if ∃B ∈ L :

⋃
Ai ∩

⋃
Bj /= ∅ then

10. if A ◦ B is definedthen
11. L← L \ {B} ∪ {A ◦ B}
12. else fail
13. end
14. else
15. while ∃x ∈ max(

⋃
Ai \D,≤) :

|{Ai|Ai ∩ S≤x /= ∅}| > 1 do
16. if A ∗ S≤x is definedthen
17. A ← A ∗ S≤x
18. D ← D ∪ {x}
19. else fail
20. end
21. end
22. S′ ← S′ ∪ {(order(A1,≤), order(A2,≤), · · ·

· · · , order(A|A|,≤))}
23. end
24. end
25. return S′
26. end order

D andT ′ represent the set of marked types and final lin-
earization result, respectively.

332

Appendix B
Execution trace

The tables below provide snapshot information for selected
variables and expressions. In each table, the first column
refers to the line numbers of the algorithm. In particular,
the values in each table row correspond to the values of
the traced expressionsafter the execution of the referenced
line of code. Undefined expressions are denoted by “–”.
For notational convenience, the innermost set brackets are

omitted, list elements are separated by white spaces, e.g.,
{(ABCD EF) (G)} instead of{({ABCD} {EF})({G})}.
The initial call starts with the hierarchy

A

C D

B

G H

E

F

Call: order(ABCDEFGH)
D L S′ M

6 AB {(ACDGH)(BEFH)} ∅ AB

After the initialization steps,L contains the subhierarchies of
the maximal elements ofS in separate lists. In the following
illustrations, all processed types (i.e., types inD) are shaded.

D

HG

C

A

H

E

F

B

D L S′ A B
7 AB {(ACDGH)(BEFH)} ∅ (BEFH) –
8 AB {(ACDGH)} ∅ (BEFH) –
9 AB {(ACDGH)} ∅ (BEFH) (ACDGH)

11 AB {(BEF H ACDG)} ∅ (BEFH) (ACDGH)

After a first concatenation operation, the situation is as de-
picted in the figure (the dashed lines connect buddies in a
list). At this point, there is no further concatenation opera-
tion possible, so a refinement attempt is made for each list
in L.

C D

G H

A H

E

FH

B

D L S′ A
7 AB {(BEF H ACDG)} ∅ (BEF H ACDG)
8 AB ∅ ∅ (BEF H ACDG)

Refinement candidates are the maximal elements of
⋃
Ai\D

(see right-hand side figure), in this case only D and E
for ({BEF}{H}{ACDG}), since C is a leaf. The subhier-
archy of D is{DGH}. It has a non-empty intersection with
both, {H} and{ACDG}. So it is a possible operand for∗,

({BEF}{H}{ACDG})∗{DGH} yields ({BEF}{H}
{GH}{AC}).

C D

G H F

E

D L S′ A max (...) x S≤x
14 AB ∅ ∅ (BEF H ACDG) DE – –
15 AB ∅ ∅ (BEF H ACDG) DE D DGH
17 AB ∅ ∅ (BEF H DG AC) DE D DGH
18 ABD ∅ ∅ (BEF H DG AC) E D DGH

After refinement,A contains the sets{BEF}, {H}, {DG}
and {AC} (shown right-hand side, larger figure) which are
processed by subsequent invocations of the recursive func-
tion. The only non-trivial invocation is for{BEF}, the result
{B({EF})} is depicted in the smaller figure at the right-hand
side. After termination of all four recursive descents, the
resulting situation is given in the following table:

C

A

G

D H

E

F

B

G

D

H

F

B E

D L S′ A
22 ABDE ∅ {({B(EF)} H DG AC)} {({B(EF)} H DG AC)}
Result: {({B(EF)} H DG AC)}

