The VLDB Journal (1997) 6: 296-311 The VLDB Journal

© Springer-Verlag 1997

Structured document storage and refined declarative
and navigational access mechanisms in HyperStorM

Klemens Bohm, Karl Aberer, Erich J. Neuhold, Xiaoya Yang
GMD-IPSI, Dolivostrafle 15, D-64293 Darmstadt, Germafkhoehm, aberer, neuhold, yang®@darmstadt.gmd.de

Edited by Y.C. Tay. Received April 22, 1996 / Accepted March 16, 1997

Abstract. The combination of SGML and database technol-the past few years has been: which is the most expressive
ogy allows to refine both declarative and navigational accessguery language? However, the more expressive the query
mechanisms for structured document collection: with regardanguage, the more complex it is. In addition to having an
to declarative access, the user can formulate complex inforinterface allowing the formulation of complex queries, ease
mation needs without knowing a query language, the respemf use of the search mechanisms has a high priority for a lot
tive document type definition (DTD) or the underlying mod- of users. In this article, we describe mechanisms for declar-
elling. Navigational access is eased by hyperlink-renditionative access, so-callegliery templatesThey allow the user
mechanisms going beyond plain link-integrity checking. to search with a fairly high expressive power without having
With our approach, the database-internal representation db know a query language, the respective document type def-
documents is configurable. It allows for an efficient imple- inition (DTD), or the underlying modelling. Different query
mentation of operations, because DTD knowledge is notemplates can be made available for individual user groups.
needed for document structure recognition. We show how A query template is a document-type-specific query form
the number of method invocations and the cost of parsinghat is generated automatically from the corresponding DTD
can be significantly reduced. and an additional query template specification. With a query
template, only a limited set of element and attribute types
is made available for querying. Hence, the query template
can be seen as a view mechanism. The query template spec-
ification is administered by the database application. This
ensures consistency of the query template with the respec-
tive DTD. In consequence, only meaningful queries can be
generated from the user input.

With regard to query templates, we exploit the fact that
there is a DTD, i.e., a scheme that documents of a certain
type must conform to. On the contrary, if HTML documents
were to be administered, the following problems would be
With open systems, such as the World-Wide Web (WWW),in the way of having query templates and making proper use
and document exchange formats where markup can be placed them.
within the document at ease, notably HTML [HTM], there
neither is control over the structure of individual documents — No support for individual document typéélhile trying
nor over consistency of the document collection. With the to provide coverage for all kinds of documents, HTML

Key words: OODBMSs — SGML — Document query lan-
guages — Navigation

1 Introduction

1.1 Objective of this work

combination of SGML (Standard Generalized Markup Lan-
guage) [ISO86] and database technology, on the other hand,
one can specify the logical structure of documents, make
assumptions about their structure and ensure the consistency
of the document collection. This allows to refine both declar-
ative and navigational access mechanisms.

Declarative accessWith regard to declarative access to a
document collection, the prevailing question in literature in

* HyperStorM is an acronym for Hypermedia Document Storage and
Modelling

is highly generic. SGML, however, has been developed
to reflect the particularities of different application sce-
narios by using different document types. Queries can be
much more specific if the document type may be taken
into account.

Meta information is not available or may not be con-
sistent.With appropriate DTDs, any kind of metadata
might be seamlessly included into documents to cover
users’ information needs [KSS95]. With HTML 3.2, con-
sistency of metadata in different documents is not en-

1 Throughout this article, the terms ‘metadata’ and ‘metainformation’
are used interchangeably.

297

alliances, goose and duck pate de foie gras, truffles,. the Perisord (L ANGUAGE: FRENCH) has
"a fragrant soul" Sarlat with its mediewal authenticity, is its capital.

Fig. 1. Example for hyperlink rendition

sured. The HTML DTD does not contain any guidelines where the language of the document is made explicit in the
on how metainformation should be modelled. document header, i.e., a document with title ‘Perigord’ con-
— Difficult to consider documents’ internal structuréds tains <LANGUAGE>FRENCH</LANGUAGHfFdocument
opposed to SGML DTDs specified for a particular ap- ‘Perigord’ is referenced by another document, the respective
plication scenario, HTML allows to model documents’ hyperlink anchor in the layout version of the document may
logical structure only in a generic way. In consequencelook as in Fig. 1. This alleviates the expectations vs. ac-
search mechanisms are only a subset of the ones fdual content problem. In this example, if the reader does not
full-fledged SGML documents. speak French, he knows that he does not want to access the
document.
With hyperlink rendition, information on the document
Navigational accessAnother aspect of applying both directly referenced, but also on documents indirectly ref-
SGML and database technology is support for navigationerenced, may be taken into account. Information to be dis-
The following problems are addressed: played within the hyperlink is specified in the database query
language. To speed up the process of retrieving a document
— Navigation failure.Navigation to a document may fail from the database, HTML conversion results may be mate-
for a variety of reasons: links to other documents mayrialized in the database.
be outdated, i.e., the document referenced may have been |f we again compare the administration of HTML doc-
removed or moved to another location in the meantime.uments to our approach, we face similar problems as with
Navigation to a document referenced may not be posdeclarative access. Metainformation may not be available for
sible because the reader is not entitled to access it, odocument rendition, or one cannot tell which metainforma-
because the client is unable to present the (multimedia)ion has been made explicit within documents. Inconsistent
document, e.g., a viewer for the respective format mayrepresentation of metadata likewise is a problem.
not be available at the client site.
— Expectations vs. actual conterffrequently, the reader
has no meaningful information on the document refer-1.2 Database-internal representation of documents
enced by a hyperlink within the current document or
on the set of documents to be reached by following aan efficient database-internal representation of structured
hyperlink anchor. Experience shows that quite often ex-gocuments is a prerequisite to realize the functionality that
pectations awakened by the context of a link anchor arenas peen outlined so far. We advocate a hybrid database-
not matched when actually viewing the document. Ininternal representation of documents. Only “big” elements
other words, in order to find out more about the targetare represented by individual database objects. Different
of the link, there seems to be no alternative to bringing«small” elements, so-calleflat elementsare mapped to the
the document to the client site. _ same database object. The structured representation of doc-
— Lost in hyperspaceTraversing several hyperlinks may yments is advantageous to allow fine-grained modifications
have the effect that the reader looses orientation in theyf documents in the database and to reflect the semantics
document collection. Being “lost in hyperspace” [Con87] of hypermedia document components, whereas performance
stems from the fact that hypermedia objects, e.g., theyf certain basic operations, such as insertion of a document
WWW pages, are arranged in a non-linear way. Thejnto the database, is better with an unstructured representa-
reader may have to inspect several such objects to satisfijon [BAK95]. With regard to the mapping of flat elements
his information need. He may not be able to find all the tg database objects, there are design alternatives that are de-
relevant objects by navigation or to avoid the irrelevantscriped in this article.
ones. Flat elements are completely marked up in the database.

These problems are alleviated by our approach. WithTh|s allows a more efficient implementation of methods op-

erating on the document structure, as compared to parsing
WWW-based access to th_e document bas_e, a doggmgnt {Re document fragment (see Sect. 4). Another aspect is that
converted to HTML according to a conversion specification

. : e T . : elements can be unambiguously identified by means of a
before presentation. This specification is contained in a Styl?ogical object identifier. If, finally, methods are part of the

shede.';: ConfveLsmn ;c_allies plhace w_|trt1_|n t?e datte;bas(;a. Namelt&atabase, as is the case with an OODBMS, method invo-
?ﬁg Iollce):neong o%ptﬁ;[[n doizcmgggglgr:ggatg;?gtihsra?[i%f?en cations are relatively expensivdt is advantageous to take
y dep p this into account when implementing the methods.
lar, metadata on the document referenced, as well as docu-
ments indirectly referenced, may be used for link anchor ren- 3 our terminology is different from the one used in [Sto96]. Object-
dition. As a simple example, consider a document collectiororiented DBMSs in our terminology essentially correspond to object-
relational ones in [Sto96]. There is no counterpart in our terminology for

2 Throughout this article, a document containing the anchor of a link object-oriented DBMSs in that terminology, which basically are persistent
referencing another document will be calleferencing documepthe other object-oriented programming languages without sophisticated declarative
document will be referred to as thilncument referenced access mechanisms.

298

The database-internal representation of documents is— With our approach, a document is not necessarily repre-
configurable. The initial configuration is described by means sented by one file. Rather, the document may be phys-
of an SGML document, an instance of the so-caleger- ically fragmented in the database, and the fragments’
DTD. The configuration may be partially altered at runtime. logical structure can be recognized using, e.g., the tech-
Using SGML to describe the startup configuration has the niques described in [ACM93, ACM95]. The database-
following advantages: internal representation is configurable. One advantage is

that a finer granularity is possible with regard to con-

current write access to the document, using concurrency

control mechanisms provided by the DBMS.
— With our database-internal representation, the DTD is
not needed to recognize documents’ logical structure.
More specific techniques than parsing the document are
applied. The advantages will be pointed out in Sect. 4.
An element has an OID whose lifetime is independent
from the existence of a corresponding object in main
memory.

— The consistency of this specification is checked by means
of an SGML parser.

— To specify the initial configuration, the specification doc-
ument is inserted into the database in the same way nor-
mal documents are. No differentiation is necessary from
the user’s perspective.

— The DTD designer can specify the startup configuration _
using a mechanism he is familiar with.

— The DTD designer may use SGML tools to fulfill his
task.

— The mechanisms described in this article for querying

the document collection, notably query templates, arerelated work with regard to declarative accesghe follow-
also available for document types as documents. In othejhg issues are of interest with regard to work on declar-
words, the document type is explicitly available, in anal- ative access to document collections having originated in
ogy to database scheme information contained in a datghe database community [Mac91*®@, MMM96, QRS 95,
dictionary. B*94, ST94, 095].

The remainder of this article has the following structure: — With our approach, expressiveness of the query lan-
in the following section, related work is reviewed. Section 3 guage is achieved by using methods of the database
contains a brief review of SGML concepts and introduces scheme, together with OQL query mechanisms [Cat94].
some notions that are relevant in this context. In Sect. 4, we Compared to other approaches, the expressive power is
describe the database-internal representation of documents in higher, while, on the other hand, it is not necessary to
our framework. Section 5 describes how declarative access extend the query algebra. Our approach allows for full-
functionality can be extended by using SGML and database fledged information retrieval functionality (IR function-
technology. Section 6 focuses on navigational access. Sec- ality) [VAB96], which is different from search on a syn-
tion 7 concludes the paper. tactic level [SM93], as well as search on documents’

physical characteristics.
— With many of the above references, information with
2 Related work regard to documents’ database-internal representation is
incomplete or missing.
To the best of our knowledge, work cited above does
not contain any counterparts to query templates or the
hyperlink rendition mechanisms described in this article.

We have classified related work as follows: related work _
with regard to document modelling, related work with re-
gard to declarative access, and related work with regard to
navigation and HTML conversion.
In more detail, work described in [@4] is based on

OODBMS technology. They have extended the underlying
Related work with regard to document modellinig. or- query algebra to reflect notions such as the lengths of paths.
der to represent the documents’ logical structure using amBy using OQL that allows inclusion of methods into query
OODBMS, it seems feasible to carry out a 1:1 mapping fromstatements, and having an adequate set of methods as part
elements to database objects. Furthermore, there would b&f the database scheme, the same expressiveness can be ob-
database classes, so-callddment-type classesorrespond- tained without extending the query algebra. Iri9B], a data
ing to an element type from the DTD. However, if this log- type ‘structured text’ is introduced to be integrated into rela-
ical view is identical with the physical representation, thetional database systems and an extension of SQL is defined.
following problem will arise: the duration of certain basic To facilitate updates, the approach is to map SGML struc-
operations such as inserting documents into the database tures to tables, but conformance to the DTD remains to be
retrieving documents from the database is almost directlyensured. The PAT query algebra [ST94] lacks certain fea-
proportional to the number of database objects that are creures, such as the notion of position, querying according to
ated or retrieved, respectively. This may not be acceptablejocuments’ secondary structure, and aggregation. Further,
as others have observed, too [NBY95]. An alternative seemsnly elements can be retrieved. It is, however, independent
to be the approach described in [ACM93, ACM95]. They of the data model and will be dealt with in Sect. 5 again.
consider structured data whose physical representation is flatvhile in [0*95] a user interface for an SGML/HyTime doc-
in particular data within files. If the structure is needed for, ument database has been realized, work seems to have been
e.g., query evaluation or updates, the document is parsedentered around one particular document type.
and objects in main memory are generated. Our work dif- In [YA94], a coupling of a DBMS and a text search
fers from theirs in the following respects: engine is described. There, documents’ internal structure is

299

not modelled within the database. The text engine used there _
- agenda author=Aberer>

does not support the notion of vagueness. The need for IR" ¢, jer><language>English</language>

funCtlonallty, e.g., I’anklng, IS aCknOWledged n [SDAMKQS] <Subject>future research '[opics for the

Their objective is to build an integrated system providing department</subject>

both database and IR functionality. Details about documents’ <location>...<date>...

internal representation are not revealed. We, for our part, <invited>

have realized a loose coupling between the OODBMS VO- <name>Fischer</name><name>Chen</name>...

DAK [VML95] and the IR system INQUERY [CCHO2] o _yormos oo

make IR functionality available for database content. With a <item>brief review of present funding

loose coupling, we will be able to rather easily incorporate situation: in 1996/97 ...</item>

improved IR functionality whenever it becomes available. <item>problems with diploma thesis students:
An objective of others, e.g., [QRS5, MMM96], is to due to the fact ...<fitem>...

provide declarative access mechanisms for open-ended sygt?\?iamm@

tems where assumptions about the data’s structure cannot?

be made, notably the WWW. Even though WWW-related rig 2 sample SGML document of type ‘Agenda’

issues currently draw a lot of attention, the question how to

exploit consistency of the document collection in controlled

environments remains relevant. wise are expressive, and are identical with our declarative
access mechanisms.

Related work with regard to navigation and HTML conver-
sion. With Hyper-G [AKM95], a principal objective is to 3 Modelling metainformation with SGML
ensure hyperlink consistency. The idea is that there is a link
database. It contains the information which hyperlinks ex-The practical relevance of SGML has considerably increased
ist between documents. The advantage, as compared to tle the recent past. This is possibly due to the close connec-
current status of our work, is that there is no confinementtion between SGML and HTML, the format of WWW docu-
to the content of one database. This is reached by givingnents. Within SGML documents, the logical document com-
up some of the individual information servers’ autonomy. ponents, so-calledlementsare made explicit by means of
Hyper-G is not modular, but, rather, can be seen as “anmarkup. The document fragment from Fig. 2 is an example
other web”, as, for example, proprietary browsers have toof a marked-up SGML documentgitem> ', *‘ </item> ’
be used. In our context, a mere link database would not béentify (the start position/the end position of) an element of
sufficient, as arbitrary information on documents referencedypeitem . ‘<’ is the start tag open (STAGQusing SGML
can be requested. An unanswered question is whether peoplerminology, </’ is the end tag open (ETAGQpand >’ is
are willing to take into account the additional overhead ofthe tag close (TAGC)It is an important aspect of SGML
“a WWW without dangling references”. On the other hand, that markup may not be arbitrarily chosen and placed within
the need to ensure consistency of local document collecdocuments. Rather, for each document type, a DTD has to
tions clearly exists [$4]. Conversion of SGML documents be provided. It specifies which element types may occur
to HTML is the topic of [Fre]. The notion dbcation gram- in a document, and how elements may be arranged within
mar is introduced as a means to specify context-sensitivea document. A DTD is a grammar. Thigenda DTD is
transformation of element types. It seems that, there, coneontained in Fig. 3. Examples of element types from this
text sensitivity refers to documents’ hierarchical structure,DTD are header , programme , anditem . The regular
but not to other documents. The topic of [TEI94], similarly, expression specifying the admissible content of an element
is structured document handling in the Internet. They argueof the respective type is referred to esntent modelFor
that it is the SGML document that should be delivered to theinstance, (header, programme) ' is the content model
client to facilitate so-calledlocument post-processingriv- of agenda : an agenda element contains &eader el-
ially, our database server can also return the original SGMLement, followed by gprogramme element. The expres-
documents. If the DTD allows for it, hyperlink rendition, sion ‘“+(keyword) 'is an example of annclusion model
as outlined above, is still feasible. Annotation servers condt specifies that the structure within the brackets, in this
tain information on WWW documents that may be providedcase an element of typkeyword , may occur arbitrar-
by others. Instead of directly bringing the document to theily within an element of typeprogramme . For instance,
client, the document goes through the annotation server, anthe element<programme><item>brief review of
relevant information is added [RMW94]. present <keyword>funding</keyword>

DSSSL [ISO96] is an expressive language to specifysituation ..<[item> ...</programme>
document transformation. The standard specifies a structurectbnforms to the DTD from Fig. 3Exclusion modelsare
representation of documents; conversion is based on thatlso available to forbid such inclusions in a subtree of the
representation. The standard does not deal with the quesubdocument. If the element type definition itfm was
tion how to efficiently carry out such a conversion if docu- <!IELEMENT item (#PCDATA) -(keyword)> , the
ments are within a storage system, and if characteristics ohAbove sample element of typeogramme would not con-
documents referenced are taken into account. With our apform to the sample DTD any mor€DATAand(#PCDATA)
proach, characteristics of the documents referenced can tmre terminal element types comparable to the data type
reflected. Rendition mechanisms for hyperlink anchors like-STRING. Elements may be furnished with attributes. Again,

300

<IDOCTYPE agenda [
<IELEMENT agenda
<IATTLIST agenda
<IELEMENT header

(header, programme)>
author CDATA fIMPLIED>
(language?, (location|roomno),
date, invited)>
<IELEMENT programme (item)+ +(keyword)>
<IELEMENT (language|location|roomno|date|name
|keyword) (PCDATA)>

<IELEMENT invited (name)+>
<IELEMENT item ({PCDATA)>
>

Fig. 3. Sample DTD (document type ‘Agenda’)

— Informational elements are metadata.

— The markup of structural elements and non-structural el-
ements is metainformation. This is different from infor-
mational element types, where the elements themselves
are metainformation.

— Elements, normally structural elements, can be furnished
with attributes, as described above. The attribute values
are metainformation.

Furthermore, the DTD itself can be seen as metadata.
Namely, the different ways to represent metadata, as de-
scribed above, must be complemented with the type defini-

tion for meaningful interpretation.
agenda

header programme

AN VAN

language subject location date invited item

english || future research
topics...

Fig. 4. Sample document'’s hierarchical structure

Further SGML mechanismsThe SGML concepts that have
been described in this section are merely a subset of SGML.
It is the subset for which support is described in the follow-
ing. In our approach, SGML entities and marked sections
are resolved by the parser and do not occur any more within
the document in the database. Hence, the mapping of a doc-
ument to the corresponding database content is not loss-free.
Furthermore, notations and the SGML link mechanism are
not supported.

the attributes cannot be chosen freely, but must be contained
in the DTD.#IMPLIED means that a value does not have

to be assigned to the respective attribute. 4 The HyperStorM database application framework

to administer structured documents

s The structure of this section is as follows: the database-
Classifying element typeszlement types can be catego- internal representation of documents is described in the fol-

rized by the role of their instances within the documents, " o . e . f

[HHMO94]. This classification is important, as access pat-!0W|ng subsection; cr:)nflgurablhty m.echar:usms a][e desg:nbe?
terns, notably with regard to declarative access, are different’ Subsect. 4.2.In the last subsectlon, the transformation al-
for the individual categories gorithm from documents to their database-internal represen-

tation is presented.

— Structural element typedMarkup of such elements is
used to identify documents’ logical structure. Examples
from the sample DTD arprogramme or item .

— Non-structural element types\Non-structural elements
are individual words or short sequences of words withinThis subsection covers design decisions and issues with
structural elements’ content having a particular role, e.g.fegard to the database-internal representation of structured
element typekeyword in the Agenda DTD. In other documents within the database.

words, markup of non-structural element types is used to)))
make explicit the meaning of words within text. In most 1. Hybrid database-internal representation for documents:

4.1 Reflecting the SGML information model

cases, non-structural elements are not bound to struc-
tural element types, but may occur rather freely within
the text.

— Informational element typesnformational elements are
metainformation. While non-structural elements occur
within actual document text, informational elements do 2.
not occur within structural elements’ textual content.
Rather, they tend to be contained in a document header3:
Typically, informational element types that do not have
an internal structure could also be modeled as SGML
attributes, while non-structural element types cannot. An4-
example of an informational the element type is the el-
ement typdanguage from the DTD in Fig. 3.

Using this categorization of element types according to
their roles, we are now in the position to describe how
metainformation can be modelled with SGML.

some elements are represented by individual database
objects, while others, the flat ones, are not. This rep-
resentation is subject to configuration for the particular
document type, and the respective configuration mecha-
nisms will be described in the sequel.

Flat elements are completely marked up within the data-
base.

Elements have a logical OID whose life cycle is inde-
pendent of the existence of corresponding (C++)objects
in main memory.

The query language of our system is OQL, together with
methods from the database scheme. With methods as part
of the query language, expressiveness of the declarative
access mechanisms is naturally higher than in other ap-
proaches. Method invocations are costly with methods
being part of the database. This must be reflected with
their implementation.

agenda

T T

header <programme><item>brief review
of...</item>...</programme>...

<language>english</language>
<subject>future research topics...
</subject><location>...
</location>...<invited>...</invited>

Fig. 5. Possible physical representation of ‘Agenda’ document

To reflect documents’ internal structure, not only doc-
uments, but also document components are explicit within

original document:
<A>Sxxx<C>yyy

301

database-internal representation:
<A>xxx<C>yyy</C>

A *B
I

XXX Yyyy

the database. A differentiation between flat and non-flat eleFig. 6. Inferring the document structure from complete and incomplete
ments is made (cf. Sect. 1.2). Database objects correspongarkup

ing to flat elements ardlat objects The string represen-
tation of a flat object’'s elements is tHat string of the
database objectAs an example of documents’ database-
internal representation, consider the document from Fig. 2.
One out of many representations that are possible within the
database is given in Fig. 5. With that particular configura-
tion,language andsubject are examples of flat element
types. <language>English...</invited>" and ‘<programme>
<item>brief...</programme>" are examples of flat strings.

‘ <language>English... </invited>" is the flat string of thelan-
guage and thesubject element. The hybrid database-internal
representation facilitates modifications of document frag-
ments and better reflects the semantics of hypermedia docu-
ment components. It reduces the negative impact of a struc-
tured physical representation with regard to performance
[BAK95].

Structure recognition of flat element#s just explained, el-
ements in the database can either be flat or non-flat. While,
in SGML, it is allowed to omit markup if the document

structure can be unambiguously recognized by means of
the DTD, document fragments within the database are com-
pletely marked up. Markup that may have been omitted from
the original documents is added. Consequently, the docu-
ment structure can be recognized without the DTD (see the
top right fragment in Fig. 6 as an example, as opposed to the
top left one). Simple linear access operations are sufficien
The advantages of not using the DTD are the following.

A or B. In the first case, the fragment DTD must reflect
that ¢ may contain an element of ty@ as opposed to
the second case.

— Structure recognition is more efficient without the DTD:

if documents of different types are in the database, it is
not necessary to look up the respective type first.

— In a DTD-based approach, a flexible fragmentation of

documents in the database is not possible in practice.
As an example, consider the bottom left database ob-
ject in Fig. 5. The corresponding document fragment
‘ <language>...</invited>' does not have a root element.
In consequence, either a document fragment suitable for
parsing would have to be constructed firsthéader>
<language>...</invited> </header>" would be such a parse-
able fragment. However, this requires access to at least
one more database object, namely Heeder object. If

this object contained non-flat elements, further database-
access operations would be necessary. Alternatively,
concatenation of flat elements to build a flat object would
have to be forbidden, i.e., tHanguage element, the
subject element, etc. would be separate database ob-
jects. But this may lead to a large increase in the number
of database objects.

tObject identifier. Object identity is an important notion in

object-oriented modelings. The necessity of OIDs for both
flat and non-flat elements introduces a logical and a physi-
cal object level. The logical view remains that there be an

However, DTDs are not context-free due to inCIusionsobject corresponding to each element. On the physical level,

and exclusions. Hence, to construct the fragment DTD’howeV(_ar, this is not the case. A Iog_ical OID consists of
one would have to inspect the inclusion and exclusion® physical OID and the STAGO position within the corre-

models of the elements the current flat elements are Con§ponding flat string, i.e., the byte offset. If the respective

tained in. This requires a number of access operations t lement is a non-flat one, the offset is -1. The DBMS ha_s
database objects that are unnecessary in our approac een extended so that it can transparently support method in-

; - - vocation on objects identified by logical OIDs. With message
g:e,rgn example, consider the following clipping from a calls, the DBMS resolves logical OIDs and dispatches them

. to the physical objects. In the parsing approach described in
<!ELEMENT A (C)* +(G)> [ACM93, ACM95], object identifiers are available only as
<IELEMENT B (C)*> long as the corresponding structure in main memory exists.
<IELEMENT C (D?, E+)>

In order to construct a fragment DTD for an element ¢
of type C, in particular, the inclusion model of typ€, Classes and methods of the database scherhe. following
one must check if ¢ is contained in an element of typeclasses are part of the database scheme.

— If the DTD was used for structure recognition, it might
seem feasible to construct a fragment DTD on-the-fly.

302

ELEMENT - The physical database objects representing thdor texts containing more than 20-30 words, they do not
document structure are instances of this class, e.g., thevork for individual words or short sequences of words. In

nodes in Fig. 4.

consequence, search on the syntactic level makes sense for

ElementType - For each element type from a DTD, there is informational element types, i.e., metadata, while IR search

an instance of the class.

mechanisms should only be applied to structural element

DTD - An instance of this class corresponds to each DTDtypes, i.e., raw data.

currently supported.

Not only individual concepts, but also complex query

Document - For each document, there is a corresponding obterms in the IRS query language may be parameters of

ject.
The methods for elements include the following.

hasTextualContentRegex (r: REGEX): BOOL
hasAttrValueRegex (attrName: STRING, r: REGEX): BOOL
getIRSValue (g: STRING): REAL

isContainedIn (e: logicalOID): BOOL
getReferencedElements (attrName: STRING): {logicalOID}
getAttrValue (attrName: STRING): STRING

getSize (): REAL

getAll (elementTypeName: STRING): {logicalOID}
getFirst (elementTypeName: STRING): logicalOID
getElementText (): STRING

Instances oElementType have methodjetElements():
{logicalOID}.

Method hasTextualContentRegex returnsTRUE iff r is con-
tained in the target element’s textual content. Methawht-
trvalueRegex returnsTRUE iff the value of attributeattrName
containsr. getlRSvalue returns the belief value of the ele-
ment’s textual content with regard to IRS quegyas com-
puted by the underlying IRSsContainedin returnsTRUE iff
the target element is contained in the parameter element
If attribute attrName of the target element @fetReferencedEle-
ments iS Of typeIDREF(S) , the logical OIDs of the elements

methodgetiRsvValue. With INQUERY being the underlying
IRS, parameters such as ‘#and(HyTime, MHEG)’,
‘#not(Java)’, or ‘#uwlO(SGML, HTML) can be processed.
(The last expression specifies that ‘SGML’ and ‘HTML’
must occur within a window of 10 words.) In combination
with other search mechanisms, this gives rise to a powerful
search functionality.

The set of methods reflects our practical experience
and is now stable. MethodsasTextualContentRegex, hasAttr-
ValueRegex, getIRSValue, isContainedIn, getReferencedElements,
and getSize are necessary to formulate queries correspond-
ing to terms in the extended PAT language, and none of
these methods can be omitted without lowering expressive-
ness (cf. Sect. 5.2). Methagtall is an example of a method
that is needed for more efficient query evaluation, as com-
pared toisContainedin. getFirst and getAttrvalue go beyond the
expressiveness of the extended PAT language.

Example of method implementatioethod next identifies

the right sibling of the target element in the logical doc-
ument structure. In the sample document from Fig. 4, the
next element of thaubject element is thdocation element.
Method next makes use of methogktPositionOfETAGO. get-
PositionOfETAGO returns the (byte offset) position of the end
tag open which corresponds to the start tag whose (byte off-

referenced (within the same document) are returned. Otheiset) position is the method parameter. The method illustrates

wise, the empty set is returnegktAtirvalue returns the value
of attribute attrName. getAll returns all elements of typee-
mentTypeName that are contained in the target elemege:;
First returns the first element of typ&ementTypeName (in
pre-order) that is contained in the target elemgéttiement-
Text returns the target element’s textual contegetElements
returns the logical OIDs of all elements of the type.
With regard to methodsasTextualContentRegex and ge-

that, with our database-internal representation, operations on
documents’ logical structure are feasible without directly us-
ing knowledge on the document type. Furthermore, method
implementation is specific for our database-internal repre-
sentation of documents. For instance, it is a prerequisite that
a flat object must not contain any other object.

(1) next(): logicalOID {
@) IF (SELF is a flat element) {

tIRSValue, some comments are appropriate. Data admin<3)
istered by a storage system may be subject to different4)
paradigms. In the case of some element types, one wants {8)
search their instances with exact mechanisms, i.e., by mea
of pattern matching on the syntactic level such as regular
expression search. Such search mechanisms are in place for
element types such &JRNAMBr PART NQ In this case,
methodhasTextualContentRegex should be used. On the other
hand, the objective of IR search is to cover the user’s in-
formation need by going beyond the syntactic level. Resultsm
of IR queries are never precise and may differ from system
to system, as the content of a piece of text may be seen
differently by different systems. In the IR context, it is too
undifferentiated to merely say ‘The document is relevant.’(8)
or ‘The document is not relevant.’. Rather, relevance is ex{%
pressed by means of a belief value b such that ®;1].

The belief value is the probability that the document is rel-
evant with regard to the query, as computed by the system.

As a rule of thumb, IR mechanisms for text only work well (11)

p := position of SELF within flat string;
p := SELF -> getPositionOfETAGO (p);
f := flat string of SELF;
p :=f->> find (p, STAGO) //if the next element is
contained in the same flat
/ldatabase object, it begins after the end tag of the
target element
/I'find’ starts to search at byte offset identified by
the first parameter.
/1t returns the byte offset where the second param.
has been found, otherwise -1.
IF (p > -1) { /Inext element is contained in the same
flat
//database object, as its begin markup has
been found
compute logical OID from p;
RETURN logical OID just computed; }; };

convert the (physical) OID of the next database object to

logical OID;
[itrivial to identify next database object with
structured representation

RETURN logical OID just computed; };

In the database, tag delimiters, e.g., STAGO, TAGC, A€ CTYPE docName=AGENDA ..>

303

represented by special characters so that they cannot be mise| gy glemName=AGENDA ... contentModel=(HEADER

5% I

taken with symbols<’, * > within text, and search becomes

more efficient.

Improving method performancaVith OODBMSs, database
method invocation is costly. Knowledge of the physical rep-
resentation can be used to cut down the number of metho
invocations, and to reduce the parsing effort. In particular, it
is worthwhile to avoid recursiveness. Consider the following
implementation of methodetAll.

(1) getAll (E: ElementType): {logicalOID} {
@ r={}
?3) IF (SELF is a flat element) {
4) p := position of SELF within flat string;
(5) p end := SELF -> getPositionOfETAGO (p);
(6) f := flat string of SELF;
) WHILE ((p < p end) AND (p > -1)) {
/Imake sure that only elements within
/ltarget element are retrieved
p :=f->> find (p, concatenate (STAGO,
TypeName (E)))
IF (p > -1)

)
9

(20) IF ((iswithinBeginMarkup (p, f))
AND (E == type name of the element
whose begin markup includes position p)) {
/Imake sure that, e.g., AUTHORS is
not found instead of AUTHOR
(11) | := logical OID computed from p;
(12) r=ruf{lkh b}
(13) ELSE
(14) DO (children of SELF, element, e)
/literate over the children of SELF
(15) r:=ru(e-> getAl (E));
(16) IF (ElementType (SELF) == E)
a7 r:=ruU {SELF};
(18) RETURNT; };

On the contrary, a straightforward implementation would

be recursive for all elements (as opposed to the one above
that is only recursive for non-flat elements). Based on the

MMF DTD [S*94], we have conducted experiments to ver-
ify that the first version is more efficient. If all elements are

flat, and the root element is the target element of the origi-

nal method invocation, the first version is faster by a factor
of approximately 1000. Naturally, the difference becomes
smaller with fewer flat elements. If no elements are flat, the
performance of the two versions is nearly identical.

4.2 Configurability mechanisms

It is subject to configuration which elements are represented
by individual database objects and which ones are flat. The,

configuration mechanisms are described next.

With our database application, documents of arbitrary
type can be administered. Insertion of documents consist:
of the following steps:

1. The corresponding DTD is parsed. If the DTD is correct,
a parser for instances of the DTD is generated. Further
more, the DTD is (on a syntactical level) transformed to
an SGML document that conforms to a specific DTD, the
so-calledsuper-DTD The super-DTD is a DTD whose

PROGRAMME) ..>
<ATTRIBUTE attrName=AUTHOR attrKeyDecl=CDATA
attrkeyDef=IMPLIED ...>
</ELEM>

<ELEM elemName=HEADER ... contentModel
='(LANGUAGE ?,(LOCATION |
fooMNO), DATE , INVITED) ..></ELEM>

<ELEM elemName=PROGRAMME ...
ITEM *)' ..></ELEM>

contentModel="(ITEM ,

Fig. 7. Fragment of the super-DTD instance corresponding to ‘Agenda’
DTD

<IELEMENT ELEM
<IATTLIST ELEM

(ATTRIBUTE*)>

elemName NAME #REQUIRED
contentModel CDATA §IMPLIED ...
<IELEMENT ATTRIBUTE EMPTY>

<IATTLIST ATTRIBUTE attrName NAME

fREQUIRED ...> ...

>

Fig. 8. Fragment of the super-DTD

instances are DTDs. In the sequel, we will refer to any
DTD different from the super-DTD aapplication DTD

For instance, the DTD from Fig. 3 is an application DTD.
It corresponds to the super-DTD-instance in Fig. 7. (A
fragment of) the super-DTD itself is contained in Fig. 8.

. At this point, the super-DTD instance contains exactly
the information from the DTD. AttributelemName of
element typ&ELEM to give an example, contains the ele-
ment type name, attributntentModel contains the
content model as a string. Furthermore, the super-DTD
instances generated in Step 1 contain additional attributes
that, initially, are instantiated with a default value. These
attributes essentially contain information on the physical
representation of element types or attribute types. For
example, typeELEMhas an attributd=LAT: value NO
signifies that such elements are represented by individ-
ual database object¢ES on the other hand, stands for a
flat database-internal representation. By means of further
attributes, the index structures are specifie@limming
up, in this step, i.e., Step 2, the physical representation
of documents of a certain type is configured.

. The document generated in Step 2 is parsed by a super-

DTD parser. In addition to checking the document’s con-

formance to the DTD, the parser invokes database com-

mands that generate the database objects that represent
the document.

A database-internal bootstrap operation is invoked that,

given the document inserted in Step 3, generates the cor-

responding database classes, index tables etc.

Now, documents conforming to that application DTD

can be inserted into the database. The document parser

5,

_ 4 Index structures can be turned on or off at a later stage by means
of method invocations. The flat-/non-flat configuration, however, cannot
be modified any more. Such a reorganization of the database would be
extremely costly, and the need for such functionality has not yet arisen in
our context.

304

that has been generated in Step 1 not only checks con- 2. a occurs in the inclusion model of B, or

formance to the DTD, but also invokes database opera- 3. a occurs in the inclusion model of an element type
tions generating the corresponding database representa- C, and there is an element c of type C such that a is
tion, updates index tables, etc. indirectly contained in c.

It follows from items 1, 3, 4 from the definition (corre-
sponding to items 1, 2, 3, respectively) that A is con-
tained in B.

In summary, the physical representation of documents is
configurable, with element or attribute types being the gran-
ules of configurability. The dimensions of configurability are
orthogonal to each other and transparent to the applicationemma 2. If an element a of type A is contained in an el-
programmer. ement b of type B in some document of type D, then A is

contained in B with regard to D.

4.3 The transformation algorithm from documents’ logical _PfOOf- The |emm_a_immedi‘ately f_oll9ws from Lemma 1 and
structure to their physical representation item 2 in the definition of ‘contains’.

. . . In the transformation algorithm, the functiasFlat with
In the sequel, we give the transformation algorithm that genjgnatyrasriat (g: Element Type): BOOL is used. It returnsRUE

erates a document’s database-internal representation from ifs - is contained in an element type that has been marked
logical structure. We will prove that the output of the trans- o< fiat in the corresponding super-DTD instance. In the al-
formation algorithm has certain important characteristics. gorithm, the document is traversed recursively in a depth-
By definition, Element type B is directly contained in ele- fo¢ jike manner. If the type of the current element is not
ment type A with regard to DTD B B occurs in the content g4t 5 new database object is created and inserted into the
model of A in D. tree structure that is already there (lines 14-23). Otherwise,
the current element’s string representation is just appended
to the current database object, which is flat (lines 6-12).
The transformation algorithm is as follows:

Definition 1. Element type B is contained in element type A
with regard to DTD D if

1. B is directly contained in A with regard to D, or
2. there is an element type C such that B is contained in G1) transform (e: Element, lastElementWasFlat: BOOL, currentObj:

with regard to D, and C is contained in A with regard to OID, parentObj: OID,
D, or, root: BOOL): OID {
: ; ; ; (2) IF (Type (e) -> isFlat()) {
3.inD, A has an inclusion model that contains B, or) IF (NOT (lastElementwasFlat) {
4, ther_e is an element_ type CinD s_uch tha@ C h_as an in-, currentObj = ELEMENT -> new():
clusion model containing B, and A is contained in C with (5) insert currentObj as rightmost child of parentObj; };
regard to D. (6) IF (Type (e) is terminal element type)
Ile.g., CDATA, (#PCDATA)
The following lemma allows to derive information on (7) currentObj -> append (textualContent (e))
the document type from a document that conforms to the®) ELSE { _ _
underlying DTD. Due to the complex definition of contain- (ié) ’E() éu(rgﬁﬂg?:ri = :p;ir;?e(n?egl)nMarkup Q)
ment on the type_levgl, the Iemmg is not trivial. For instance, Jliterate over the children of e, e is loop var.
if an element a is directly contained in an element b, one 4y ¢ = transform (', TRUE, currentObj, parentObj,
cannot infer that the element type of a occurs in the con- FALSE):;
tent model of the element type of b (because of inclusions)(12) currentObj -> append (EndMarkup (e)); }; }

From another perspective, the lemma shows that Definition 113) ELSE { /icurrent element type is not flat
is meaningful. (14) currentObj := ELEMENT -> new();

(15) IF (NOT (root))

Lemma 1. If an element a of type A is directbontained in (16) insert currentObj as rightmost child of parentObj;
. 17) store ElementTypeName (e) with currentObyj;

an eIem.ent b of type B in some document of type D, then %18) store Attributes (e) with currentObj;

is contained in B with regard to D. (19) currentElementlsFlat := FALSE;

20 := NULL;
Proof. The proof is by induction on the depth of the docu- EZS CDO (children of e, element, &)

ment tree. /literate over the children of e
(22) { ¢ := transform (e’, currentElementisFlat, c,

— a is directly contained in b, and b is the root of the currentObj, FALSE);
document. (23) currentElementisFlat := isFlat (Type (€); }; }; };
In this case, for a to be directly contained in b, either
1. a occurs in the content model of B, or ELEMENT is the database class described before, while
2. a occurs in the inclusion model of B. Element is the type of SGML elements. The initial invoca-
In both cases, it follows directly from the definition that tion of transform is transform (root, TRUE, NULL, NULL, TRUE).
A is contained in B. The actual implementation of the algorithm is non-recursive.

— ais directly contained in b. Furthermore, ‘b contained in Namely, an SGML parser has been extended to control the

c. = B contained in C.". transformation that does not work recursively. Note that the
For a to be directly contained in b, database objects generated are untyped, i.e., they may either

1. a occurs in the content model of B, or contain flat element types or represent non-flat elements. We

305

say thatthe database object is flair the database object is Table 1. Knowledge necessary to use different query mechanisms

non-flat respectively. By definition, an object becomes a Modelling (Syntax of the) query language DTD

flat one or a non-flat one by means of the assignments in OQL y y y

lines (7), (9), (12) or in lines (17), (18), respectively. Thus, PAT n y y
n n n

the definition of flat and non-flat database objects is an al- 'emPiates
gorithmic one. From now on, this definition of flat database
objects replaces the previous one.

The implementation of methods reflecting the SGML se-
mantics such asgetAll is based on the following lemmas.

user groups, different mechanisms can be generated, closely
matching the user group’s needs. The description of these
mechanisms and how to configure them covers a large part
Lemma 3. After a type (i.e., either flat or non-flat) has been of this section. This query mechanism, though expressive,
assigned to a database object, the type does not change amyovides for a lower degree of expressiveness than others,
more in the course of the transformation algorithm. as we will show. Our conclusion is to let the user choose
between various, in our case three, query mechanisms dif-
fering with regard to expressiveness, but also with regard to
intuitiveness and user-friendliness. In addition to query tem-
$Iates, there are extensions of the PAT algebra and OQL,
Bgether with methods from the scheme. We will show that
the extended PAT algebra is more expressive than query tem-
lates, and that OQL together with a relevant set of methods
s more expressive than the extended PAT algebra. On the
Bther hand, however, in order to formulate queries with the
individual mechanisms, the user must have different levels
of knowledge, as indicated in Table 1. More precisely, ‘n’
The following lemma shows that transformation by in the second column does not include the language of reg-

means of the algorithm is sound (cf. our remark on the im-ular expressions and the underlying IRS, and ‘n" in the third
p|ementa‘[ion ofiext, and such know|edge has also been used)OIUmn_doeS not reflect that the user has to understand the
for the implementation ofeetall (lines (3)-(12))). semantics of element and attribute type names.

Proof. “=": Consider a flat database object. The assign-
ments making this object a non-flat one occur in lines (17),
(18). The object is generated immediately before (line (14))
In consequence, it cannot happen that a flat object is subje
to the assignments making it a non-flat one.

“«<". An object that is already non-flat cannot become
a flat one later. Namely, non-flat objects are generated i

not becomeurrentobj any more in the course of transforma-
tion after having specified that it is non-flat.

Lemma 4. A non-flat object is never contained in a flat one.

Proof. Suppose a non-flat object was contained in a flat one.5'1 Query templates

Then, there is a non-flat elementthat is directly contained

in flat element g This requires that either Query templates are automatically generated document-type-

specific query forms. They may contain widgets of different
1. ElementType (8 occurs in the content model of Ele- types. It is subject to configuration which widgets are part
mentType (g), or of a query template. The following widgets are part of the
2. there is an element type F s.t. ElementTypg ¢ecurs framework.
in the inclusion model of F, and there is an element e

s.t. ElementType Je= F and g is contained in e. — Entry field for element content search. The figure is an

example of such a widget, as seen in a WWW browser.

Case 1 cannot happen because ElementTypevauld have
to be a flat one. With regard to Case 2, it follows from
Lemma 2 that ElementType Aeis contained in F, and Ele-
mentType (¢) is contained in F. The last item from Defini-
tion 1 implies that ElementType {gis contained in Element-
Type (e). This, however, is a contradiction to the definition
of isFlat, because, in that case, ElementTypg (eould have
to be flat.

A variant of the transformation algorithm is used in the
context of document modification, i.e., in order to insert el-
ements into documents that are already in the database.

5 DTD-specific and generic declarative access
mechanisms

The user has to type in a list of regular expressions,
each of them separated by a blank space. The operation
corresponding to the widget takes all elements of the re-
spective type, in this cas®URNAMHTf AND is selected,

it returns all documents containing elements of the type
that contain all of the regular expressions. If OR is se-
lected, it returns all documents containing elements of
the type that contain one of the regular expressions.

SURNAME AND OR
| :

Entry field for IR search (information retrieval search).
An entry field for IR search actually consists of two
fields, as can be seen in the figure. The user must type
a concept to be searched for in the first entry field and a

threshold value t in the second one. It must hold that t
€ [0;1). The corresponding operation takes all elements
of the respective type. It returns all documents contain-
ing those elements that match the concept with a like-
lihood greater than the threshold value, as computed by

By using SGML and database technology, we have come
up with query mechanisms for a document collection char-
acterized by the following features: (1) Formulating ex-

pressive queries is possible without knowing a query lan-
guage, the DTD, the underlying data model. (2) For different

306

the underlying IRS. Instead of a concept, a query in the
language of the underlying IRS can also be typed in.

ARTICLE SW

— Entry field for attribute search. The corresponding op-
eration takes all elements of the corresponding type,
in this caseSECTION If AND is selected, it returns
all documents containing elements whose value for at-
tribute SECQUALcontains all of the regular expressions
that have been typed in. If OR is selected, it returns all
documents containing elements whose value for attribute
SECQUALcontains one of the regular expressions that
have been typed in.

SECTION / SECQUAL AND OR
| :

Entry field for structure search. The corresponding op-
eration takes all elements of the first type, in this case

[NO LINKS] —

If ‘- > <E>/<A>', e.g., - > HYPLINK/REFERENG

is selected, selection is based on all pairs of documents
(d1, db) such that ¢ matches the template entries in the
left column, and g matches the entries in the right col-
umn. The query returns all documents tthat contain

an element of type E; this element has attribute A with
value n, and n is the name o$.d

—=HYPLINE/REFERENC —i |

If ‘ <- <E>/<A>', e.g., ‘'<- HYPLINK/REFERENC,

is selected, selection is based on all pairs of documents
(d1, do) such that ¢ matches the template entries in the
left column, and ¢ matches the entries in the right col-
umn. The query returns all documents slch that d
contains an element of type E; this element has attribute
A with value n, and n is the name of d

«—HYPLINE/REFERENC —

SURNAMEFor all such elements that are contained in The menu for secondary structure search is also subject to

one of the second type, in this ca8&JTHORand con-
tains all of the regular expression that have been typed

configuration.

The distinction between regular expression search and IR

in, the corresponding document is returned, if AND hassearch has been reflected by means of methasixtual-
been selected. Analogously, with OR, only one regularContentRegex andgetiRSvalue in Sect. 4. Analogously, query

expression must be contained.

templates may contain both fields for element content search

and for IR search. As pointed out before, not only individ-

SURNAME IN AUTHOR AND OR
| :

ual concepts, but also complex query terms in the IRS query
language may be typed into entry fields for IR search. Con-
sequently, it is not necessary to provide an AND/OR toggle

for this widget type.

Entry field for search for physical characteristics. As op-
posed to the other atomic entry fields, these entry fields

are hardcoded. However, they can be turned on or off by>P€cifying query templatesthe DTD alone is not sufficient
means of the configuration mechanisms. At this point,&S & basis for automatic generation of query templates. Fre-

there is an entry field for document size allowing Speci_quently, one wants to make available only a restricted set of

fication of a lower and upper bound. of

types for declarative access. This corresponds to the notion
‘view’ in the context of conventional database systems.

)) . The motivation why views should be part of the framework
The overall structure of a query template is depicted injg a5 manifold as it is with view mechanisms in conven-

Fig. 9. The left column of widgets is for the document 0 {jonq) systems. In principle, we see two alternative ways of
be retrieved, the right column will be explained below. Re- specifying query templates.

sults corresponding to individual entry fields in a column
are combined using logical AND. Only those entry fields 4
are considered where something has been entered.

More complex queries can be formulated using the wid-
get for secondary structure search. Furthermore, one wants to
specify documents by means of the (link) relationships that
exist with other documents. In addition to those two columns
of widgets, there is a pulldown menu with the following op-
tions: [NO LINKS] , an element-type name/attribute-type
name pair followed by a right arrow, and an element-type
name/attribute-type name pair followed by a left arrow. The
semantics of the menu items is as follows:

— If [NO LINKS] is selected, the documents matching
the entries in the left column are retrieved. Entities in
the right column are ignored.

The super-DTD is extended so that its instances contain
the query template specification. Different ways of mod-
elling the specification are conceivable. For example,
there may be an additional element ty@&ERYFORM
with attributes of typd DREFS. These references point
to the different element and attribute types to be included
in the template. The type definition FUERYFORMay

be as follows:

<IELEMENT QUERYFORM

EMPTY> ..
<IATTLIST QUERYFORM
CONTENTSEARCH IDREFS
ATTRSEARCH IDREFS
IR SEARCH IDREFS

307

SURNAME AND OR SURNAME AND OR
I ERoth > v I > v
LANGUAGE S LANGQUAL AND OR LANGUAGE S LANGQUAL AND OR
B s o | [EeInglisti s o
<-HYPLINE/REFERENC |

SECTION f SECQUAL AND OR SECTION f SECQUAL AND OR
I > v I NEVY > v
ARTICLE SW ARTICLE W

Fig. 9. Query template generated from the MMF-DTD

2. Each query template has a specification contained in awhere the content contains regular expression
file. r. ATTR SELECTtakes a set of elements and returns those

where attributé contains regular expressionlR SEARCH

Yakes a set of elements and returns those matching concept

. i Y tis | tant t th Ve (or the IR queryc) with a probability greater than t, ac-
views over time. However, it is important to ensure the con—Coroling to the underlying IRSINCLUDS and INCL-IN

SiStenCY of the query template specification Wi.th the DTD'take two sets of elements; Band B and return the set of
Otherwise, queries could be generated, for which a SOlm'o%lements

cannot exist, and the user would not even notice it. But an ELINCLAN By = {e1€ By | Fes € By st e

operation which directly reads the specification from a file is contained in e5)

and checks for its consistency would be too time-consuming 2

with large DTDs. Hence, query template generation must Elc:)'jlfalzgfes }EZ ={ach|decbst a
2

consist of two steps: First, the specification is read from a
file, its consistency to the DTD is checked, and it is inserted REFERENCEREF-BY, ID-REFER, andID-REF-BY

into the database. Then, a database-internal, consistent vapke twto sets of elements,Bnd B and return the set of
sion of the specification can be accessed. We have realize%,emen S

the first alternative and are now implementing the second REFERENCESEEL A, E?) = {aa € B |. Jdez €
one. FE> s.t. e; has attribute A with value v, and v is name of

the document in which, is contained i

REF-BY(F1, A, Ey) = {61 € F; | dey, € Ep s.t. e
has attribute A with value v, and v is name of the document
wheree; is contained in

ID-REFER(E1, A, E;) = {e1 € E; | Jey € E s.t.

An extension of the PAT algebrahe PAT algebra, origi- 61_6 €2 a][e containe_dhin }he san;]e dOC‘%[)“efﬁ’hf;‘s an at-
nally described in [ST94], is a query language independenfrI ute of type ID with value V61 has attributeA o
of the underlying data model. In our extension of the PAT type IDREF(S) containing v}

algebra, query terms are generated by the grammar ID-REF-BY(' E1, A, Ep) ={e1 € En | 3ez € Ep s.t.
e1, e are contained in the same documeet,has an at-

tribute of type ID with value w, has attributeA of

With regard to item 2, as one may need different template

5.2 Other declarative access mechanisms
and a comparison of their expressive power

e -> <Element-type name> |

e UNION e] type IDREF(S) containing v}
e INTERSECT e| LB-SIZE takes a set of elements and returns those
gol?\';ENeTISELECT 0| whose size is greater than WB-SIZE returns those ele-

e, r T .
ATTR SELECT (e, A, 1) ments whose size is smaller than s. .
IR SEARCH (e, ¢, D) The extensmn_ss,'as.compared to the original algebr'a
e INCLUDS e| [ST94], are the distinction between search on a syntactic
e INCL-IN e level and IR search, the fact that documents’ secondary
REFERENCES (e, A, e)| structure has been taken into account, and the fact that doc-
REF-BY (e, A, e)| uments’ physical characteristics have been considered.
ID-REFER (e, A, e)|
ID-REF-BY (e, A, e)|
LB-SIZE (e, s)|
UB-SIZE (e, s)| OQL queries. The expressive power of OQL stems from
(e) the fact that methods from the database scheme can be used

within queries at liberty. The structure of an OQL query
The term<Element-type name > stands for the set is the same as with SQL. The select clause specifies what
of all elements of the respective typgNION INTERSECT, is to be selected. The from clause specifies which database
and DIFF are set operators with the usual semantics.classes, or, more generally, which sets the query refers to.
CONTENTSELECTtakes a set of elements and returns thoseThe where clause contains a condition that must be fulfilled

308

by the query result. All variables occurring in the query In the opposite direction, it is obvious that, e.g., the OQL
must be bound in the from clause. The reader is referred t@luUery

[Cat94] for more information on OQL.)
select p, p -> getFirst (CCHRNAME’)

from e in ElementType, p in e -> getElements()
. . . . where (e.name == 'AUTHOR’)
lllustrations. For illustration purposes, consider the query

template in Fig. 9. The template entries correspond to theannot be mapped to any extended PAT expression.
query “Select all documents containing an element of type
SURNAMBRvhose textual content contains ‘Roth’, and that For evaluation, both input to query temp|ates and ex-

are referenced by a document containing an element ofended PAT expressions are mapped to OQL expressions. -

type SECTION whose value of attributSECQUALcon- peclarative access mechanisms are also relevant in the fol-
tains NEWSand containing an element of typeANGUAGE |owing section.

whose value of attributtANGQUAIlcontains English " or
‘english '.". The corresponding extended PAT expression
is
REF-BY (MMF INCLUDS CONTENSELECT (SURNAME, 6 Hyperlink rendition mechanisms in HyperStorM
'Roth’),
REFERENC,

With WWW-based access to the database application, doc-
uments can be converted to HTML. Conversion is specified
by means of a stylesheet contained in a file.

HYPLINK INCL-IN (MMF INCLUDS ATTR SELECT
(SECTION, SECQUAL, 'NEWS))
INCLUDS ATTRSELECT (LANGUAGE, LANGQUAL,
'[Ee]nglish’))

The corresponding OQL expression is

Hyperlink rendition. Documents may contain references to
other documents. Usually, such references are made explicit
within the document with hypertext anchors. With our sys-
tem, rendition of anchors of links pointing to other docu-
ments in the database may depend on characteristics of the
documents referenced. As a special case of such rendition,
only anchors of sound links are converted to HTML anchors
to avoid some cases of navigation failure. The layout specifi-
cation specifies how link anchors are encoded in documents
of the respective type.

In Sect. 4, it has been described how the physical rep-
resentation of documents and document components can be
Lemma 5. The extended PAT language is more expressiveCOnfigureOI using the super-DTD. These mechanisms, how-
than query template entries. fever, are not use.d to specify document conversion for the

ollowing reasons:

select DO.name
from DO in Document, D1 in Document,
PO in DO.root -> getAll (SURNAME’),
P1 in D1.root -> getAll (SECTION’),
P2 in D1.root -> getAll (LANGUAGE),
P3 in D1.root -> getAll (HYPLINK’)
where PO -> hasTextualContentRegex ('Roth’) and
P1 -> hasAttrValue (SECQUAL’, 'NEWS’) and
P2 -> hasAttrValue (LANGQUAL', '[Ee]nglish’) and
P3 -> getAttrValue (REFERENC’) = DO.name

The following lemmas reflect the expressive power of
the different mechanisms.

Proof. The proof is by defining a mapping from query tem-
plate entries to expressions in the extended PAT language.
The full mapping is given in [Boeh97]. To illustrate the map- — An initial configuration must have been specified be-

ping, consider the widget for attribute search. Eebe the
respective element-type name, aAdbe the attribute-type
name. Withr, ... r ,, being the input to the respective
field, the corresponding expression<soot-element-

type > INCLUDS (ATTR SELECT (E, A, r 1) «

m ATTR SELECT (E, A, r ,)) withm € {UNION
INTERSECT}. In the opposite direction, it is obvious that,
e.g., the extended PAT expressi@nNCLUDS B INCLUDS C
cannot be mapped to any query template input.

Lemma 6. The extended PAT query language is less expres-
sive than OQL, together with the methods given in Sect. 4.

Proof. The proof is by defining a mapping of extended PAT —
expressions to OQL statements. The proof is recursive over
the structure of query algebra terms. Again, the full map-
ping is contained in [Boeh97]. As an example, ¢ebe the

OQL query corresponding to the PAT expressi&nThen

ATTR SELECT (e, A, 1) is mapped to

select p from p in Q where (p -> hasAttrValueRegex (‘<A>', '<r>"))

fore documents are inserted into the database. This does
not have to be the case for the conversion specification.
Furthermore, a higher degree of flexibility and ease of
modification is necessary with the conversion specifica-
tion, as compared to the configuration specification. It
is appropriate if the configuration is altered by means
of method invocations, but this is too complicated and
inflexible for the conversion specification.

From an organizational perspective, while the database-
internal configuration should be specified by the DTD
designer, this is not necessary for document rendition,
as readers’ individual preferences may be reflected.

The super-DTD has been designed to represent informa-
tion on individual (element or attribute) types. But the
super-DTD instance would become too big if informa-
tion from several stylesheets was included. There should
be no restrictions to the number of stylesheets.

309

Incorporating information on documents referenced into hy-It would be an unnecessary step to generate SGML from the
perlink anchors.With our system, information on docu- database content first and then transform the result to HTML.
ments directly or indirectly referenced can be used to rendeFurthermore, conversion on the client would be inefficient
the corresponding hyperlink anchor in the referencing docbecause of unnecessary communication over the network
ument in a very flexible way. The core idea is that, for to obtain information on the documents referenced. Besides
an element type whose instances are hyperlink anchors, ththat, and most importantly, materialized views are used to
stylesheet contains a database query. The query specifies thgoid executing queries during document conversion. Their
information to be included in the hyperlink anchor. For this consistency is ensured by the database system.
purpose, the full expressive power of OQL can be exploited.

In this context, there are two problems impeding why

OQL queries cannot just be written down and executed durl/Sing materialized viewslt is advantageous to material-
ing document conversion. ize the conversion result within the database. In principle,

an arbitrary number of different views on the same doc-
ment being the result of different conversion parameters
s conceivable. To cope with the requirement of material-
izing more than one view, but being restricted to a limited
number of materializations, we have implemented a simple
page replacement strategy (LRU). With our system, docu-
ments within the database may be modified. Then, mate-
rialized views have to be updated after the corresponding
ocuments have been altered. The problem is aggravated by
the fact that updates of individual documents cannot be seen
in isolation. Instead, documents that directly or indirectly
reference the modified document also have to be taken into
The solution to item 1 is as follows: the query is parsed.account. In this context, we assume that each document can
Then, the query result type is looked up. If the type is notreference any other document. Assertions that would allow
available for display, e.g., because the query result is a saestrictions of this assumption would be helpful, but can-
of database OIDs or a set of instances of bulk types, théot be made in the general case. With our system, a view
query in the stylesheet is ignored. The current version of thés updated when a document is accessed, if any document
system accepts only sets of strings. has been modified after the view’s last generation date. With
With regard to item 2, OQL queries within the stylesheet frequent updates, a conceivable refinement is to differentiate
may contain the symbolsSNCHORELEM and LINKATTR. Be- between modifications having an impact on conversion of
fore query evaluation, the symbeNCHORELEM is replaced referencing documents and modifications without such ef-
by an expression that can be interpreted by the query procesects. In this case, however, conversion specifications have
sor. In a nutshell, it is the logical OID of the anchor element.to be administered by the database.
Since the replacement is carried out within the database, it is
ensured that the new query is correct. Consider the following
example:

1. Query results must be of a type that can be displaye
within an HTML document.

2. Within such queries, one would like to refer to the par-
ticular hyperlink anchor. For example, one would like to
formulate the query “Select all elements of tyd THOR
within the document that is referenced by the hyperlink
whose anchor is currently being rendered.”. So far, ther
is no straightforward way to refer to the hyperlink whose
anchor is currently being rendered in a query.

7 Conclusions

select p -> getElementText() Qne _objective of this article was to point out how the com-
from d in Document, p in d.root -> getAll (CLANGUAGE’) bination of database technology and SGML can be exploited
where (d.name = (ANCHORELEM -> getAttrvalue (LINKATTR))) in order to ease access to the document collection, both
declaratively as well as by means of navigation. In order
to ease declarative access, a mechanism to express informa-
The query selects allANGUAGElements in the docu- tion needs has been designed that is expressive, while, at the
ment referenced (cf. Fig. 1). same time, neither knowledge of a query language nor the
Expanding instances of element types is meaningful fordocument type or the underlying modeling are needed to use
informational and non-structural element types. For instanceit. This so-called query template mechanism can be config-
one may want to display all instances of a non-structuralured to match the needs of different user groups. We exploit
element typeKEYWORID the referencing document. The the fact that SGML documents conform to a DTD. Such a
usefulness of such an expansion for structural element typeBTD is comparable to a database scheme in that both can
is limited, except when these element types are at the samge seen as integrity constraints on the data. HTML would
time informational, such as, say|TLE . not be very useful in this particular context due to its high
Summing up, the drawbacks pointed out in the intro- genericity. The HTML DTD does not impose any real con-
duction are alleviated as follows: checking for a link target straints on documents’ logical structure. The query template
before activating the anchor prevents navigation failure. Dis-mechanism, though expressive, is less expressive than other
playing metainformation alleviates the “expectations vs. acquery languages. Thus, in order to provide the user with a
tual Content” problem and is a measure against “getting losthoice of declarative access mechanisms, queries can also
in hyperspace”. be formulated using two other languages. These languages
With the functionality described so far, document con- have also been described, and their expressiveness has been
version should be part of the services offered by the databaseompared.

310

Navigational access is eased as follows: metainformation
on the documents can be exploited for hyperlink rendition.
Database technology is advantageous to speed up convePAK9]
sion, and to ensure consistency of conversion outputs that
have been materialized. The approach would not work WeII[C+94]
with HTML because, with previous versions of HTML, no
mechanisms are provided to model metainformation, and
with HTML 3.2 it cannot be ensured that metainformation is
modeled consistently. It is left to the author of the document€at94]
which metainformation is provided, and how he provides it.

With the description of documents’ database-internal
representation, we have covered several original features.
With our hybrid representation of documents, elements can
or cannot be represented by individual database objects. The
actual representation is subject to configuration. The initiallCon87]
configuration is specified by means of an SGML document.
To recognize the logical structure of physically unstructured
document components, it is not necessary to use the DTD
at this stage. We have an object-oriented modeling of strucfHHM94]
tured documents, together with methods that are the basis
for declarative access. Elements have a (logical) OID, even
though they do not have to be represented by an individual ™!
database object. With method implementation, it has beepgogg)
reflected that, with OODBMSs, method invocations are ex-
pensive.

In the future, we wish to evaluate the behavior of a real
user community. We will examine the expressive power of(KSS93]
guery templates and see whether new primitives are needed.

In previous work, we examined how to reflect the seman-

tics of HyTime architectural forms in the database and de{maco1]
vised with an implementation [BA94, BAK95]. The HyTime

link model is more sophisticated than the one that has beefMMM96]
considered so far. Arbitrary document portions can be ref-
erenced, independent of the structure that has been ma?ﬁsvgs]
explicit with SGML markup. It may be worthwhile to ex-

tend the reflections with regard to link conversion to the
HyTime model.

[CCH92]

[Fre]

[1S096]

[0*95]

References [ORS'95]

[ACM93] Abiteboul S, Cluet S, Milo T (1993) Querying and updating

the file. In: Agrawal R, Baker S, Bell D (eds.) Proceedings

of the International Conference on Very Large Data Bases,

VLDB Endowment, Dublin, Ireland, pp 73-84

Abiteboul S, Cluet S, Milo T (1995) A database interface [RMwW94]
for file update, In: Michael J. Carey, Donovan A. Schneider
(eds.) Proceedings ACM SIGMOD, ACM Press, New York,
pp 386-397

Andrews K, Kappe F, Maurer H (1995) The Hyper-G Net-
work Information System, J UCS 1(4):206-220

Blake GE, et al (1994) Text / Relational database manage-
ment systems: harmonizing SQL and SGML, In: Witold
Litwin, Tore Risch (eds.) Proceedings of the First Inter-

[ACMO5]

[AKMO5]
o [S*94]

national Conference on Applications of Databases, Lecture [SDAMK95]

Notes in Computer Science. Springer, Berlin Heidelberg

New York, pp 313-324

Bhm K (1997) Using object-oriented database technology [SM93]
for structured document storage (in German). PhD thesis,
Technical University of Darmstadt

Bohm K, Aberer K (1994) Storing HyTime documents in an
object-oriented database. In: Adam NR, Bhargava B, Yesha[St096]
Y (eds) Proceedings of the Third International Conference

[Boeh97]

[ST94]
[BA94]

on Information and Knowledge Management. ACM Press,
New York, pp 26-33

Bohm K, Aberer K, Klas W: Building a configurable
database application for structured documents. Multimedia
- Tools and Applications

Christophides V, et al (1994) From structured documents to
novel query facilities. In: Richard T. Snodgrass, Marianne
Winslett (eds.) Proceedings ACM SIGMOD, ACM Press,
New York

Cattell RGG (ed) (1994) The Object Database Standard:
ODMG-93. Morgan Kaufmann, san MAteo, Calif.

Callan JP, Croft WB, Hardig SM (1992) The INQUERY
Retrieval System, In: A. Min Tjoa, Isidro Ramos (eds.) Pro-
ceedings of the Third International Conference on Database
and Expert Systems Application. Springer, Berlin New York
Heidelberg, pp 78-83

Conklin J (1987) Hypertext: an introduction and survey,
IEEE Comput Mag:17-41

Freese ED, The Transformation of SGML Documents for
Presentation on the World Wide Web.
http://www.sil.org/sgml/freese.html

Haake A, Hiser C, Mhr W (1994) Milestone M1;
BERKOM Project:CLIP-ING; Workpackage 2: System Ar-
chitecture, GMD-IPSI

HyperText Markup Language (HTML). Available under
"http://www.w3.org/pub/WWW/MarkUp/”

Information Technology — Text and Office Systems — Stan-
dardized Generalized Markup Language (SGML) (1986)
Document Style Semantics and Specification Language
(DSSSL) (1996)

Kashyap V, Shah K, Sheth A (1995) Multimedia Database
Systems: Issues and Research Directions. (Chapter Metadata
for building the MultiMedia Patch Quilt). Springer, Berlin
New York Heidelberg

Macleod IA (1991) A query language for retrieving informa-
tion from hierarchic text structures, Comput J 34(3):254-264
Alberto O, Mendelzon GA, Mihaila G, Milo T (1997) Query-
ing the World Wide Web. International Journal on Digital
Libraries 1(1):54-67

Navarro G, Baeza-Yates R (1995) A language for queries on
structure and contents of textual databases, In: Edward A.
Fox, Peter Ingwersen, Raya Fidel (eds.) Proceedings of 18th
ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR'95), Seattle, Wa, pp 93-101

Ozsu MT, et al (1995) An object-oriented multimedia
database system for a news-on-demand application, Multi-
media Syst 3:182—-203

Quass D, Rajaraman A, Sagiv Y, Ullman JD, Widom J
(1995) Querying semistructured heterogeneous information.
In: Tok Wang Ling, Alberto O. Mendelzon, Laurent Vieille
(eds.) Proceedings of the Fourth International Conference
on Deductive and Object-Oriented Databases, Singapore, pp
319-344. Springer Verlag Berlin Heidelberg

Roscheisen M, Mogensen C, Winograd T (1994) Shared
Web annotations as a platform for third-party value-added
information providers: architecture, protocols, and usage ex-
amples. Technical Report STAN-CS-TR-97-1582, Stanford
University

Sillow K, et al (1994) MultiMedia Forum - an Interac-
tive Online Journal. In: dser C, Mbhr W, Quint V (eds)
Proceedings of Conference on Electronic Publishing. Wiley,
New York, pp 413-422

Sacks-Davis R, Arnold-Moore T, Kent A (1995) A stan-
dards based approach to combining information retrieval and
database functionality. Int J Inf Techn World Sci 1(1):1-16
Salton G, McGill M.J (1983) Introduction to Modern Infor-
mation Retrieval. First edition. McGraw-Hill, New York
Salminen A, Tompa FW (1994) PAT expressions: an algebra
for text search. Acta Linguist Hung 41(1):277-306
Stonebraker M (1996) Object-relational DBMSs, Morgan
Kaufmann, San Mateo, Calif.

[TEI94]

[VABY6]

Guidelines for Electronic Text Encoding and Interchange. [VML95]

1994.

http://etext.lib.virginia.edu/TEl. html

Volz M, Aberer K, Bohm K (1996) Applying a Flexible
OODBMS-IRS-Coupling to Structured Document Handling,
In: Proceedings of the 12th International Conference on Data
Engineering, New Orleans, pp 10-19,

[YA94]

311

VODAK V 4.0 User Manual (1995) Technical Report 910,
GMD-IPSI, St. Augustin, Germany

Yan TW, Annevelink J (1994) Integrating a structured text
retrieval system with an object-oriented database system, In:
Jorge B. Bocca, Matthias Jarke, Carlo Zaniolo (eds.) Pro-
ceedings of the International Conference on Very Large Data
Bases. VLDB Endowment, Santiago, Chile, pp 740-749

