
The VLDB Journal (1997) 6: 296–311 The VLDB Journal
c© Springer-Verlag 1997

Structured document storage and refined declarative
and navigational access mechanisms in HyperStorM?

Klemens Böhm, Karl Aberer, Erich J. Neuhold, Xiaoya Yang

GMD-IPSI, Dolivostraße 15, D-64293 Darmstadt, Germany;{kboehm, aberer, neuhold, yangx}@darmstadt.gmd.de

Edited by Y.C. Tay. Received April 22, 1996 / Accepted March 16, 1997

Abstract. The combination of SGML and database technol-
ogy allows to refine both declarative and navigational access
mechanisms for structured document collection: with regard
to declarative access, the user can formulate complex infor-
mation needs without knowing a query language, the respec-
tive document type definition (DTD) or the underlying mod-
elling. Navigational access is eased by hyperlink-rendition
mechanisms going beyond plain link-integrity checking.
With our approach, the database-internal representation of
documents is configurable. It allows for an efficient imple-
mentation of operations, because DTD knowledge is not
needed for document structure recognition. We show how
the number of method invocations and the cost of parsing
can be significantly reduced.

Key words: OODBMSs – SGML – Document query lan-
guages – Navigation

1 Introduction

1.1 Objective of this work

With open systems, such as the World-Wide Web (WWW),
and document exchange formats where markup can be placed
within the document at ease, notably HTML [HTM], there
neither is control over the structure of individual documents
nor over consistency of the document collection. With the
combination of SGML (Standard Generalized Markup Lan-
guage) [ISO86] and database technology, on the other hand,
one can specify the logical structure of documents, make
assumptions about their structure and ensure the consistency
of the document collection. This allows to refine both declar-
ative and navigational access mechanisms.

Declarative access.With regard to declarative access to a
document collection, the prevailing question in literature in

? HyperStorM is an acronym for Hypermedia Document Storage and
Modelling

the past few years has been: which is the most expressive
query language? However, the more expressive the query
language, the more complex it is. In addition to having an
interface allowing the formulation of complex queries, ease
of use of the search mechanisms has a high priority for a lot
of users. In this article, we describe mechanisms for declar-
ative access, so-calledquery templates. They allow the user
to search with a fairly high expressive power without having
to know a query language, the respective document type def-
inition (DTD), or the underlying modelling. Different query
templates can be made available for individual user groups.

A query template is a document-type-specific query form
that is generated automatically from the corresponding DTD
and an additional query template specification. With a query
template, only a limited set of element and attribute types
is made available for querying. Hence, the query template
can be seen as a view mechanism. The query template spec-
ification is administered by the database application. This
ensures consistency of the query template with the respec-
tive DTD. In consequence, only meaningful queries can be
generated from the user input.

With regard to query templates, we exploit the fact that
there is a DTD, i.e., a scheme that documents of a certain
type must conform to. On the contrary, if HTML documents
were to be administered, the following problems would be
in the way of having query templates and making proper use
of them.

– No support for individual document types.While trying
to provide coverage for all kinds of documents, HTML
is highly generic. SGML, however, has been developed
to reflect the particularities of different application sce-
narios by using different document types. Queries can be
much more specific if the document type may be taken
into account.

– Meta information is not available or may not be con-
sistent.With appropriate DTDs, any kind of metadata1

might be seamlessly included into documents to cover
users’ information needs [KSS95]. With HTML 3.2, con-
sistency of metadata in different documents is not en-

1 Throughout this article, the terms ‘metadata’ and ‘metainformation’
are used interchangeably.

297

Fig. 1. Example for hyperlink rendition

sured. The HTML DTD does not contain any guidelines
on how metainformation should be modelled.

– Difficult to consider documents’ internal structure.As
opposed to SGML DTDs specified for a particular ap-
plication scenario, HTML allows to model documents’
logical structure only in a generic way. In consequence,
search mechanisms are only a subset of the ones for
full-fledged SGML documents.

Navigational access.Another aspect of applying both
SGML and database technology is support for navigation.
The following problems are addressed:

– Navigation failure.Navigation to a document may fail
for a variety of reasons: links to other documents may
be outdated, i.e., the document referenced may have been
removed or moved to another location in the meantime.
Navigation to a document referenced may not be pos-
sible because the reader is not entitled to access it, or
because the client is unable to present the (multimedia)
document, e.g., a viewer for the respective format may
not be available at the client site.

– Expectations vs. actual content.Frequently, the reader
has no meaningful information on the document refer-
enced by a hyperlink within the current document or
on the set of documents to be reached by following a
hyperlink anchor. Experience shows that quite often ex-
pectations awakened by the context of a link anchor are
not matched when actually viewing the document. In
other words, in order to find out more about the target
of the link, there seems to be no alternative to bringing
the document to the client site.

– Lost in hyperspace.Traversing several hyperlinks may
have the effect that the reader looses orientation in the
document collection. Being “lost in hyperspace” [Con87]
stems from the fact that hypermedia objects, e.g., the
WWW pages, are arranged in a non-linear way. The
reader may have to inspect several such objects to satisfy
his information need. He may not be able to find all the
relevant objects by navigation or to avoid the irrelevant
ones.

These problems are alleviated by our approach. With
WWW-based access to the document base, a document is
converted to HTML according to a conversion specification
before presentation. This specification is contained in a style
sheet. Conversion takes place within the database. Namely,
rendition of a hyperlink anchor pointing to another document
may depend on that document’s characteristics.2 In particu-
lar, metadata on the document referenced, as well as docu-
ments indirectly referenced, may be used for link anchor ren-
dition. As a simple example, consider a document collection

2 Throughout this article, a document containing the anchor of a link
referencing another document will be calledreferencing document, the other
document will be referred to as thedocument referenced.

where the language of the document is made explicit in the
document header, i.e., a document with title ‘Perigord’ con-
tains ‘<LANGUAGE>FRENCH</LANGUAGE>’. If document
‘Perigord’ is referenced by another document, the respective
hyperlink anchor in the layout version of the document may
look as in Fig. 1. This alleviates the expectations vs. ac-
tual content problem. In this example, if the reader does not
speak French, he knows that he does not want to access the
document.

With hyperlink rendition, information on the document
directly referenced, but also on documents indirectly ref-
erenced, may be taken into account. Information to be dis-
played within the hyperlink is specified in the database query
language. To speed up the process of retrieving a document
from the database, HTML conversion results may be mate-
rialized in the database.

If we again compare the administration of HTML doc-
uments to our approach, we face similar problems as with
declarative access. Metainformation may not be available for
document rendition, or one cannot tell which metainforma-
tion has been made explicit within documents. Inconsistent
representation of metadata likewise is a problem.

1.2 Database-internal representation of documents

An efficient database-internal representation of structured
documents is a prerequisite to realize the functionality that
has been outlined so far. We advocate a hybrid database-
internal representation of documents. Only “big” elements
are represented by individual database objects. Different
“small” elements, so-calledflat elements, are mapped to the
same database object. The structured representation of doc-
uments is advantageous to allow fine-grained modifications
of documents in the database and to reflect the semantics
of hypermedia document components, whereas performance
of certain basic operations, such as insertion of a document
into the database, is better with an unstructured representa-
tion [BAK95]. With regard to the mapping of flat elements
to database objects, there are design alternatives that are de-
scribed in this article.

Flat elements are completely marked up in the database.
This allows a more efficient implementation of methods op-
erating on the document structure, as compared to parsing
the document fragment (see Sect. 4). Another aspect is that
elements can be unambiguously identified by means of a
logical object identifier. If, finally, methods are part of the
database, as is the case with an OODBMS, method invo-
cations are relatively expensive.3 It is advantageous to take
this into account when implementing the methods.

3 Our terminology is different from the one used in [Sto96]. Object-
oriented DBMSs in our terminology essentially correspond to object-
relational ones in [Sto96]. There is no counterpart in our terminology for
object-oriented DBMSs in that terminology, which basically are persistent
object-oriented programming languages without sophisticated declarative
access mechanisms.

298

The database-internal representation of documents is
configurable. The initial configuration is described by means
of an SGML document, an instance of the so-calledsuper-
DTD. The configuration may be partially altered at runtime.
Using SGML to describe the startup configuration has the
following advantages:

– The consistency of this specification is checked by means
of an SGML parser.

– To specify the initial configuration, the specification doc-
ument is inserted into the database in the same way nor-
mal documents are. No differentiation is necessary from
the user’s perspective.

– The DTD designer can specify the startup configuration
using a mechanism he is familiar with.

– The DTD designer may use SGML tools to fulfill his
task.

– The mechanisms described in this article for querying
the document collection, notably query templates, are
also available for document types as documents. In other
words, the document type is explicitly available, in anal-
ogy to database scheme information contained in a data
dictionary.

The remainder of this article has the following structure:
in the following section, related work is reviewed. Section 3
contains a brief review of SGML concepts and introduces
some notions that are relevant in this context. In Sect. 4, we
describe the database-internal representation of documents in
our framework. Section 5 describes how declarative access
functionality can be extended by using SGML and database
technology. Section 6 focuses on navigational access. Sec-
tion 7 concludes the paper.

2 Related work

We have classified related work as follows: related work
with regard to document modelling, related work with re-
gard to declarative access, and related work with regard to
navigation and HTML conversion.

Related work with regard to document modelling.In or-
der to represent the documents’ logical structure using an
OODBMS, it seems feasible to carry out a 1:1 mapping from
elements to database objects. Furthermore, there would be
database classes, so-calledelement-type classes, correspond-
ing to an element type from the DTD. However, if this log-
ical view is identical with the physical representation, the
following problem will arise: the duration of certain basic
operations such as inserting documents into the database or
retrieving documents from the database is almost directly
proportional to the number of database objects that are cre-
ated or retrieved, respectively. This may not be acceptable,
as others have observed, too [NBY95]. An alternative seems
to be the approach described in [ACM93, ACM95]. They
consider structured data whose physical representation is flat,
in particular data within files. If the structure is needed for,
e.g., query evaluation or updates, the document is parsed,
and objects in main memory are generated. Our work dif-
fers from theirs in the following respects:

– With our approach, a document is not necessarily repre-
sented by one file. Rather, the document may be phys-
ically fragmented in the database, and the fragments’
logical structure can be recognized using, e.g., the tech-
niques described in [ACM93, ACM95]. The database-
internal representation is configurable. One advantage is
that a finer granularity is possible with regard to con-
current write access to the document, using concurrency
control mechanisms provided by the DBMS.

– With our database-internal representation, the DTD is
not needed to recognize documents’ logical structure.
More specific techniques than parsing the document are
applied. The advantages will be pointed out in Sect. 4.

– An element has an OID whose lifetime is independent
from the existence of a corresponding object in main
memory.

Related work with regard to declarative access.The follow-
ing issues are of interest with regard to work on declar-
ative access to document collections having originated in
the database community [Mac91, C+94, MMM96, QRS+95,
B+94, ST94, O+95].

– With our approach, expressiveness of the query lan-
guage is achieved by using methods of the database
scheme, together with OQL query mechanisms [Cat94].
Compared to other approaches, the expressive power is
higher, while, on the other hand, it is not necessary to
extend the query algebra. Our approach allows for full-
fledged information retrieval functionality (IR function-
ality) [VAB96], which is different from search on a syn-
tactic level [SM93], as well as search on documents’
physical characteristics.

– With many of the above references, information with
regard to documents’ database-internal representation is
incomplete or missing.

– To the best of our knowledge, work cited above does
not contain any counterparts to query templates or the
hyperlink rendition mechanisms described in this article.

In more detail, work described in [C+94] is based on
OODBMS technology. They have extended the underlying
query algebra to reflect notions such as the lengths of paths.
By using OQL that allows inclusion of methods into query
statements, and having an adequate set of methods as part
of the database scheme, the same expressiveness can be ob-
tained without extending the query algebra. In [B+94], a data
type ‘structured text’ is introduced to be integrated into rela-
tional database systems and an extension of SQL is defined.
To facilitate updates, the approach is to map SGML struc-
tures to tables, but conformance to the DTD remains to be
ensured. The PAT query algebra [ST94] lacks certain fea-
tures, such as the notion of position, querying according to
documents’ secondary structure, and aggregation. Further,
only elements can be retrieved. It is, however, independent
of the data model and will be dealt with in Sect. 5 again.
While in [O+95] a user interface for an SGML/HyTime doc-
ument database has been realized, work seems to have been
centered around one particular document type.

In [YA94], a coupling of a DBMS and a text search
engine is described. There, documents’ internal structure is

299

not modelled within the database. The text engine used there
does not support the notion of vagueness. The need for IR
functionality, e.g., ranking, is acknowledged in [SDAMK95].
Their objective is to build an integrated system providing
both database and IR functionality. Details about documents’
internal representation are not revealed. We, for our part,
have realized a loose coupling between the OODBMS VO-
DAK [VML95] and the IR system INQUERY [CCH92] to
make IR functionality available for database content. With a
loose coupling, we will be able to rather easily incorporate
improved IR functionality whenever it becomes available.

An objective of others, e.g., [QRS+95, MMM96], is to
provide declarative access mechanisms for open-ended sys-
tems where assumptions about the data’s structure cannot
be made, notably the WWW. Even though WWW-related
issues currently draw a lot of attention, the question how to
exploit consistency of the document collection in controlled
environments remains relevant.

Related work with regard to navigation and HTML conver-
sion. With Hyper-G [AKM95], a principal objective is to
ensure hyperlink consistency. The idea is that there is a link
database. It contains the information which hyperlinks ex-
ist between documents. The advantage, as compared to the
current status of our work, is that there is no confinement
to the content of one database. This is reached by giving
up some of the individual information servers’ autonomy.
Hyper-G is not modular, but, rather, can be seen as “an-
other web”, as, for example, proprietary browsers have to
be used. In our context, a mere link database would not be
sufficient, as arbitrary information on documents referenced
can be requested. An unanswered question is whether people
are willing to take into account the additional overhead of
“a WWW without dangling references”. On the other hand,
the need to ensure consistency of local document collec-
tions clearly exists [S+94]. Conversion of SGML documents
to HTML is the topic of [Fre]. The notion oflocation gram-
mar is introduced as a means to specify context-sensitive
transformation of element types. It seems that, there, con-
text sensitivity refers to documents’ hierarchical structure,
but not to other documents. The topic of [TEI94], similarly,
is structured document handling in the Internet. They argue
that it is the SGML document that should be delivered to the
client to facilitate so-calleddocument post-processing. Triv-
ially, our database server can also return the original SGML
documents. If the DTD allows for it, hyperlink rendition,
as outlined above, is still feasible. Annotation servers con-
tain information on WWW documents that may be provided
by others. Instead of directly bringing the document to the
client, the document goes through the annotation server, and
relevant information is added [RMW94].

DSSSL [ISO96] is an expressive language to specify
document transformation. The standard specifies a structured
representation of documents; conversion is based on that
representation. The standard does not deal with the ques-
tion how to efficiently carry out such a conversion if docu-
ments are within a storage system, and if characteristics of
documents referenced are taken into account. With our ap-
proach, characteristics of the documents referenced can be
reflected. Rendition mechanisms for hyperlink anchors like-

<agenda author=Aberer>
<header><language>English</language>

<subject>future research topics for the
department</subject>

<location>...<date>...
<invited>

<name>Fischer</name><name>Chen</name>...
</invited></header>

<programme>
<item>brief review of present funding

situation: in 1996/97 ...</item>
<item>problems with diploma thesis students:

due to the fact ...</item>...
</programme>

<agenda>

Fig. 2. Sample SGML document of type ‘Agenda’

wise are expressive, and are identical with our declarative
access mechanisms.

3 Modelling metainformation with SGML

The practical relevance of SGML has considerably increased
in the recent past. This is possibly due to the close connec-
tion between SGML and HTML, the format of WWW docu-
ments. Within SGML documents, the logical document com-
ponents, so-calledelements, are made explicit by means of
markup. The document fragment from Fig. 2 is an example
of a marked-up SGML document. ‘<item> ’, ‘ </item> ’
identify (the start position/the end position of) an element of
type item . ‘<’ is the start tag open (STAGO), using SGML
terminology, ‘</ ’ is the end tag open (ETAGO), and ‘>’ is
the tag close (TAGC). It is an important aspect of SGML
that markup may not be arbitrarily chosen and placed within
documents. Rather, for each document type, a DTD has to
be provided. It specifies which element types may occur
in a document, and how elements may be arranged within
a document. A DTD is a grammar. TheAgenda DTD is
contained in Fig. 3. Examples of element types from this
DTD are header , programme , and item . The regular
expression specifying the admissible content of an element
of the respective type is referred to ascontent model. For
instance, ‘(header, programme) ’ is the content model
of agenda : an agenda element contains aheader el-
ement, followed by aprogramme element. The expres-
sion ‘+(keyword) ’ is an example of aninclusion model.
It specifies that the structure within the brackets, in this
case an element of typekeyword , may occur arbitrar-
ily within an element of typeprogramme . For instance,
the element ‘<programme><item>brief review of
present <keyword>funding</keyword>
situation ...</item> ...</programme> ’
conforms to the DTD from Fig. 3.Exclusion modelsare
also available to forbid such inclusions in a subtree of the
subdocument. If the element type definition ofitem was
<!ELEMENT item (]PCDATA) -(keyword)> , the
above sample element of typeprogramme would not con-
form to the sample DTD any more.CDATAand(#PCDATA)
are terminal element types comparable to the data type
STRING. Elements may be furnished with attributes. Again,

300

<!DOCTYPE agenda [
<!ELEMENT agenda (header, programme)>
<!ATTLIST agenda author CDATA]IMPLIED>
<!ELEMENT header (language?, (location|roomno),

date, invited)>
<!ELEMENT programme (item)+ +(keyword)>
<!ELEMENT (language|location|roomno|date|name

|keyword) (]PCDATA)>
<!ELEMENT invited (name)+>
<!ELEMENT item (]PCDATA)>
]>

Fig. 3. Sample DTD (document type ‘Agenda’)

agenda

header

language

programme

item ...

...

english

subject location

future research
topics...

...

brief review of......

date invited
...

Fig. 4. Sample document’s hierarchical structure

the attributes cannot be chosen freely, but must be contained
in the DTD. #IMPLIED means that a value does not have
to be assigned to the respective attribute.

Classifying element types.Element types can be catego-
rized by the role of their instances within the documents
[HHM94]. This classification is important, as access pat-
terns, notably with regard to declarative access, are different
for the individual categories.

– Structural element types.Markup of such elements is
used to identify documents’ logical structure. Examples
from the sample DTD areprogramme or item .

– Non-structural element types.Non-structural elements
are individual words or short sequences of words within
structural elements’ content having a particular role, e.g.,
element typekeyword in the Agenda DTD. In other
words, markup of non-structural element types is used to
make explicit the meaning of words within text. In most
cases, non-structural elements are not bound to struc-
tural element types, but may occur rather freely within
the text.

– Informational element types.Informational elements are
metainformation. While non-structural elements occur
within actual document text, informational elements do
not occur within structural elements’ textual content.
Rather, they tend to be contained in a document header.
Typically, informational element types that do not have
an internal structure could also be modeled as SGML
attributes, while non-structural element types cannot. An
example of an informational the element type is the el-
ement typelanguage from the DTD in Fig. 3.

Using this categorization of element types according to
their roles, we are now in the position to describe how
metainformation can be modelled with SGML.

– Informational elements are metadata.
– The markup of structural elements and non-structural el-

ements is metainformation. This is different from infor-
mational element types, where the elements themselves
are metainformation.

– Elements, normally structural elements, can be furnished
with attributes, as described above. The attribute values
are metainformation.

Furthermore, the DTD itself can be seen as metadata.
Namely, the different ways to represent metadata, as de-
scribed above, must be complemented with the type defini-
tion for meaningful interpretation.

Further SGML mechanisms.The SGML concepts that have
been described in this section are merely a subset of SGML.
It is the subset for which support is described in the follow-
ing. In our approach, SGML entities and marked sections
are resolved by the parser and do not occur any more within
the document in the database. Hence, the mapping of a doc-
ument to the corresponding database content is not loss-free.
Furthermore, notations and the SGML link mechanism are
not supported.

4 The HyperStorM database application framework
to administer structured documents

The structure of this section is as follows: the database-
internal representation of documents is described in the fol-
lowing subsection; configurability mechanisms are described
in Subsect. 4.2. In the last subsection, the transformation al-
gorithm from documents to their database-internal represen-
tation is presented.

4.1 Reflecting the SGML information model

This subsection covers design decisions and issues with
regard to the database-internal representation of structured
documents within the database.

1. Hybrid database-internal representation for documents:
some elements are represented by individual database
objects, while others, the flat ones, are not. This rep-
resentation is subject to configuration for the particular
document type, and the respective configuration mecha-
nisms will be described in the sequel.

2. Flat elements are completely marked up within the data-
base.

3. Elements have a logical OID whose life cycle is inde-
pendent of the existence of corresponding (C++)objects
in main memory.

4. The query language of our system is OQL, together with
methods from the database scheme. With methods as part
of the query language, expressiveness of the declarative
access mechanisms is naturally higher than in other ap-
proaches. Method invocations are costly with methods
being part of the database. This must be reflected with
their implementation.

301

agenda

header

<language>english</language>
<subject>future research topics...

</subject><location>...
</location>...<invited>...</invited>

<programme><item>brief review
of...</item>...</programme>...

Fig. 5. Possible physical representation of ‘Agenda’ document

To reflect documents’ internal structure, not only doc-
uments, but also document components are explicit within
the database. A differentiation between flat and non-flat ele-
ments is made (cf. Sect. 1.2). Database objects correspond-
ing to flat elements areflat objects. The string represen-
tation of a flat object’s elements is theflat string of the
database object. As an example of documents’ database-
internal representation, consider the document from Fig. 2.
One out of many representations that are possible within the
database is given in Fig. 5. With that particular configura-
tion, language andsubject are examples of flat element
types. ‘<language>English...</invited>’ and ‘<programme>
<item>brief...</programme>’ are examples of flat strings.
‘<language>English... </invited>’ is the flat string of thelan-
guage and thesubject element. The hybrid database-internal
representation facilitates modifications of document frag-
ments and better reflects the semantics of hypermedia docu-
ment components. It reduces the negative impact of a struc-
tured physical representation with regard to performance
[BAK95].

Structure recognition of flat elements.As just explained, el-
ements in the database can either be flat or non-flat. While,
in SGML, it is allowed to omit markup if the document
structure can be unambiguously recognized by means of
the DTD, document fragments within the database are com-
pletely marked up. Markup that may have been omitted from
the original documents is added. Consequently, the docu-
ment structure can be recognized without the DTD (see the
top right fragment in Fig. 6 as an example, as opposed to the
top left one). Simple linear access operations are sufficient.
The advantages of not using the DTD are the following.

– If the DTD was used for structure recognition, it might
seem feasible to construct a fragment DTD on-the-fly.
However, DTDs are not context-free due to inclusions
and exclusions. Hence, to construct the fragment DTD,
one would have to inspect the inclusion and exclusion
models of the elements the current flat elements are con-
tained in. This requires a number of access operations to
database objects that are unnecessary in our approach.
As an example, consider the following clipping from a
DTD.

<!ELEMENT A (C)* +(G)>
<!ELEMENT B (C)*>
<!ELEMENT C (D?, E+)>

In order to construct a fragment DTD for an element c
of type C, in particular, the inclusion model of typeC,
one must check if c is contained in an element of type

original document:
<A>xxx<C>yyy

database-internal representation:
<A>xxx<C>yyy</C>

A

B C

xxx yyy

B

Cxxx

yyy

A

Fig. 6. Inferring the document structure from complete and incomplete
markup

A or B. In the first case, the fragment DTD must reflect
that c may contain an element of typeG, as opposed to
the second case.

– Structure recognition is more efficient without the DTD:
if documents of different types are in the database, it is
not necessary to look up the respective type first.

– In a DTD-based approach, a flexible fragmentation of
documents in the database is not possible in practice.
As an example, consider the bottom left database ob-
ject in Fig. 5. The corresponding document fragment
‘<language>...</invited>’ does not have a root element.
In consequence, either a document fragment suitable for
parsing would have to be constructed first. ‘<header>
<language>...</invited></header>’ would be such a parse-
able fragment. However, this requires access to at least
one more database object, namely theheader object. If
this object contained non-flat elements, further database-
access operations would be necessary. Alternatively,
concatenation of flat elements to build a flat object would
have to be forbidden, i.e., thelanguage element, the
subject element, etc. would be separate database ob-
jects. But this may lead to a large increase in the number
of database objects.

Object identifier. Object identity is an important notion in
object-oriented modelings. The necessity of OIDs for both
flat and non-flat elements introduces a logical and a physi-
cal object level. The logical view remains that there be an
object corresponding to each element. On the physical level,
however, this is not the case. A logical OID consists of
a physical OID and the STAGO position within the corre-
sponding flat string, i.e., the byte offset. If the respective
element is a non-flat one, the offset is -1. The DBMS has
been extended so that it can transparently support method in-
vocation on objects identified by logical OIDs. With message
calls, the DBMS resolves logical OIDs and dispatches them
to the physical objects. In the parsing approach described in
[ACM93, ACM95], object identifiers are available only as
long as the corresponding structure in main memory exists.

Classes and methods of the database scheme.The following
classes are part of the database scheme.

302

ELEMENT - The physical database objects representing the
document structure are instances of this class, e.g., the
nodes in Fig. 4.

ElementType - For each element type from a DTD, there is
an instance of the class.

DTD - An instance of this class corresponds to each DTD
currently supported.

Document - For each document, there is a corresponding ob-
ject.

The methods for elements include the following.

hasTextualContentRegex (r: REGEX): BOOL
hasAttrValueRegex (attrName: STRING, r: REGEX): BOOL
getIRSValue (q: STRING): REAL
isContainedIn (e: logicalOID): BOOL
getReferencedElements (attrName: STRING): {logicalOID}
getAttrValue (attrName: STRING): STRING
getSize (): REAL

getAll (elementTypeName: STRING): {logicalOID}
getFirst (elementTypeName: STRING): logicalOID
getElementText (): STRING

Instances ofElementType have methodgetElements():
{logicalOID}.

MethodhasTextualContentRegex returnsTRUE iff r is con-
tained in the target element’s textual content. MethodhasAt-
trValueRegex returnsTRUE iff the value of attributeattrName
containsr. getIRSValue returns the belief value of the ele-
ment’s textual content with regard to IRS queryq, as com-
puted by the underlying IRS.isContainedIn returnsTRUE iff
the target element is contained in the parameter elemente.
If attributeattrName of the target element ofgetReferencedEle-
ments is of type IDREF(S) , the logical OIDs of the elements
referenced (within the same document) are returned. Other-
wise, the empty set is returned.getAttrValue returns the value
of attributeattrName. getAll returns all elements of typeele-
mentTypeName that are contained in the target element;get-
First returns the first element of typeelementTypeName (in
pre-order) that is contained in the target element.getElement-
Text returns the target element’s textual content.getElements
returns the logical OIDs of all elements of the type.

With regard to methodshasTextualContentRegex and ge-
tIRSValue, some comments are appropriate. Data admin-
istered by a storage system may be subject to different
paradigms. In the case of some element types, one wants to
search their instances with exact mechanisms, i.e., by means
of pattern matching on the syntactic level such as regular
expression search. Such search mechanisms are in place for
element types such asSURNAMEor PART NO. In this case,
methodhasTextualContentRegex should be used. On the other
hand, the objective of IR search is to cover the user’s in-
formation need by going beyond the syntactic level. Results
of IR queries are never precise and may differ from system
to system, as the content of a piece of text may be seen
differently by different systems. In the IR context, it is too
undifferentiated to merely say ‘The document is relevant.’
or ‘The document is not relevant.’. Rather, relevance is ex-
pressed by means of a belief value b such that b∈ [0;1].
The belief value is the probability that the document is rel-
evant with regard to the query, as computed by the system.
As a rule of thumb, IR mechanisms for text only work well

for texts containing more than 20–30 words, they do not
work for individual words or short sequences of words. In
consequence, search on the syntactic level makes sense for
informational element types, i.e., metadata, while IR search
mechanisms should only be applied to structural element
types, i.e., raw data.

Not only individual concepts, but also complex query
terms in the IRS query language may be parameters of
methodgetIRSValue. With INQUERY being the underlying
IRS, parameters such as ‘#and(HyTime, MHEG)’,
‘#not(Java)’, or ‘#uw10(SGML, HTML)’ can be processed.
(The last expression specifies that ‘SGML’ and ‘HTML’
must occur within a window of 10 words.) In combination
with other search mechanisms, this gives rise to a powerful
search functionality.

The set of methods reflects our practical experience
and is now stable. MethodshasTextualContentRegex, hasAttr-
ValueRegex, getIRSValue, isContainedIn, getReferencedElements,
and getSize are necessary to formulate queries correspond-
ing to terms in the extended PAT language, and none of
these methods can be omitted without lowering expressive-
ness (cf. Sect. 5.2). MethodgetAll is an example of a method
that is needed for more efficient query evaluation, as com-
pared toisContainedIn. getFirst andgetAttrValue go beyond the
expressiveness of the extended PAT language.

Example of method implementation.Method next identifies
the right sibling of the target element in the logical doc-
ument structure. In the sample document from Fig. 4, the
next element of thesubject element is thelocation element.
Method next makes use of methodgetPositionOfETAGO. get-
PositionOfETAGO returns the (byte offset) position of the end
tag open which corresponds to the start tag whose (byte off-
set) position is the method parameter. The method illustrates
that, with our database-internal representation, operations on
documents’ logical structure are feasible without directly us-
ing knowledge on the document type. Furthermore, method
implementation is specific for our database-internal repre-
sentation of documents. For instance, it is a prerequisite that
a flat object must not contain any other object.

(1) next(): logicalOID {
(2) IF (SELF is a flat element) {
(3) p := position of SELF within flat string;
(4) p := SELF -> getPositionOfETAGO (p);
(5) f := flat string of SELF;
(6) p := f ->> find (p, STAGO) //if the next element is

contained in the same flat
//database object, it begins after the end tag of the

target element
//‘find’ starts to search at byte offset identified by

the first parameter.
//It returns the byte offset where the second param.

has been found, otherwise -1.
(7) IF (p > -1) { //next element is contained in the same

flat
//database object, as its begin markup has

been found
(8) compute logical OID from p;
(9) RETURN logical OID just computed; }; };
(10) convert the (physical) OID of the next database object to

logical OID;
//trivial to identify next database object with

structured representation
(11) RETURN logical OID just computed; };

303

In the database, tag delimiters, e.g., STAGO, TAGC, are
represented by special characters so that they cannot be mis-
taken with symbols ‘<’, ‘>’ within text, and search becomes
more efficient.

Improving method performance.With OODBMSs, database
method invocation is costly. Knowledge of the physical rep-
resentation can be used to cut down the number of method
invocations, and to reduce the parsing effort. In particular, it
is worthwhile to avoid recursiveness. Consider the following
implementation of methodgetAll.

(1) getAll (E: ElementType): {logicalOID} {
(2) r := {};
(3) IF (SELF is a flat element) {
(4) p := position of SELF within flat string;
(5) p end := SELF -> getPositionOfETAGO (p);
(6) f := flat string of SELF;
(7) WHILE ((p < p end) AND (p > -1)) {

//make sure that only elements within
//target element are retrieved

(8) p := f ->> find (p, concatenate (STAGO,
TypeName (E)))

(9) IF (p > -1)
(10) IF ((isWithinBeginMarkup (p, f))

AND (E == type name of the element
whose begin markup includes position p)) {

//make sure that, e.g., AUTHORS is
not found instead of AUTHOR

(11) l := logical OID computed from p;
(12) r := r ∪ {l}; }; }; }
(13) ELSE
(14) DO (children of SELF, element, e)

//iterate over the children of SELF
(15) r := r ∪ (e -> getAll (E));
(16) IF (ElementType (SELF) == E)
(17) r := r ∪ {SELF};
(18) RETURN r; };

On the contrary, a straightforward implementation would
be recursive for all elements (as opposed to the one above
that is only recursive for non-flat elements). Based on the
MMF DTD [S+94], we have conducted experiments to ver-
ify that the first version is more efficient. If all elements are
flat, and the root element is the target element of the origi-
nal method invocation, the first version is faster by a factor
of approximately 1000. Naturally, the difference becomes
smaller with fewer flat elements. If no elements are flat, the
performance of the two versions is nearly identical.

4.2 Configurability mechanisms

It is subject to configuration which elements are represented
by individual database objects and which ones are flat. The
configuration mechanisms are described next.

With our database application, documents of arbitrary
type can be administered. Insertion of documents consists
of the following steps:

1. The corresponding DTD is parsed. If the DTD is correct,
a parser for instances of the DTD is generated. Further-
more, the DTD is (on a syntactical level) transformed to
an SGML document that conforms to a specific DTD, the
so-calledsuper-DTD. The super-DTD is a DTD whose

<DOCTYPE docName=AGENDA ...>
<ELEM elemName=AGENDA ... contentModel=’(HEADER ,

PROGRAMME)’ ...>
<ATTRIBUTE attrName=AUTHOR attrKeyDecl=CDATA

attrKeyDef=IMPLIED ...>
</ELEM>

<ELEM elemName=HEADER ... contentModel
=’(LANGUAGE ?,(LOCATION |

ROOMNO), DATE , INVITED)’ ...></ELEM>

<ELEM elemName=PROGRAMME ... contentModel=’(ITEM ,
ITEM *)’ ...></ELEM>

Fig. 7. Fragment of the super-DTD instance corresponding to ‘Agenda’
DTD

<!ELEMENT ELEM (ATTRIBUTE*)>
<!ATTLIST ELEM elemName NAME]REQUIRED

contentModel CDATA]IMPLIED ...>
<!ELEMENT ATTRIBUTE EMPTY>
<!ATTLIST ATTRIBUTE attrName NAME

]REQUIRED ...> ...

Fig. 8. Fragment of the super-DTD

instances are DTDs. In the sequel, we will refer to any
DTD different from the super-DTD asapplication DTD.
For instance, the DTD from Fig. 3 is an application DTD.
It corresponds to the super-DTD-instance in Fig. 7. (A
fragment of) the super-DTD itself is contained in Fig. 8.

2. At this point, the super-DTD instance contains exactly
the information from the DTD. AttributeelemName of
element typeELEM, to give an example, contains the ele-
ment type name, attributecontentModel contains the
content model as a string. Furthermore, the super-DTD
instances generated in Step 1 contain additional attributes
that, initially, are instantiated with a default value. These
attributes essentially contain information on the physical
representation of element types or attribute types. For
example, typeELEMhas an attributeFLAT: value NO
signifies that such elements are represented by individ-
ual database objects,YES, on the other hand, stands for a
flat database-internal representation. By means of further
attributes, the index structures are specified.4 Summing
up, in this step, i.e., Step 2, the physical representation
of documents of a certain type is configured.

3. The document generated in Step 2 is parsed by a super-
DTD parser. In addition to checking the document’s con-
formance to the DTD, the parser invokes database com-
mands that generate the database objects that represent
the document.

4. A database-internal bootstrap operation is invoked that,
given the document inserted in Step 3, generates the cor-
responding database classes, index tables etc.

5. Now, documents conforming to that application DTD
can be inserted into the database. The document parser

4 Index structures can be turned on or off at a later stage by means
of method invocations. The flat-/non-flat configuration, however, cannot
be modified any more. Such a reorganization of the database would be
extremely costly, and the need for such functionality has not yet arisen in
our context.

304

that has been generated in Step 1 not only checks con-
formance to the DTD, but also invokes database opera-
tions generating the corresponding database representa-
tion, updates index tables, etc.

In summary, the physical representation of documents is
configurable, with element or attribute types being the gran-
ules of configurability. The dimensions of configurability are
orthogonal to each other and transparent to the application
programmer.

4.3 The transformation algorithm from documents’ logical
structure to their physical representation

In the sequel, we give the transformation algorithm that gen-
erates a document’s database-internal representation from its
logical structure. We will prove that the output of the trans-
formation algorithm has certain important characteristics.

By definition,Element type B is directly contained in ele-
ment type A with regard to DTD Dif B occurs in the content
model of A in D.

Definition 1. Element type B is contained in element type A
with regard to DTD D if

1. B is directly contained in A with regard to D, or
2. there is an element type C such that B is contained in C

with regard to D, and C is contained in A with regard to
D, or,

3. in D, A has an inclusion model that contains B, or
4. there is an element type C in D such that C has an in-

clusion model containing B, and A is contained in C with
regard to D.

The following lemma allows to derive information on
the document type from a document that conforms to the
underlying DTD. Due to the complex definition of contain-
ment on the type level, the lemma is not trivial. For instance,
if an element a is directly contained in an element b, one
cannot infer that the element type of a occurs in the con-
tent model of the element type of b (because of inclusions).
From another perspective, the lemma shows that Definition 1
is meaningful.

Lemma 1. If an element a of type A is directlycontained in
an element b of type B in some document of type D, then A
is contained in B with regard to D.

Proof. The proof is by induction on the depth of the docu-
ment tree.

– a is directly contained in b, and b is the root of the
document.
In this case, for a to be directly contained in b, either
1. a occurs in the content model of B, or
2. a occurs in the inclusion model of B.
In both cases, it follows directly from the definition that
A is contained in B.

– a is directly contained in b. Furthermore, ‘b contained in
c. ⇒ B contained in C.’.
For a to be directly contained in b,
1. a occurs in the content model of B, or

2. a occurs in the inclusion model of B, or
3. a occurs in the inclusion model of an element type

C, and there is an element c of type C such that a is
indirectly contained in c.

It follows from items 1, 3, 4 from the definition (corre-
sponding to items 1, 2, 3, respectively) that A is con-
tained in B.

Lemma 2. If an element a of type A is contained in an el-
ement b of type B in some document of type D, then A is
contained in B with regard to D.

Proof. The lemma immediately follows from Lemma 1 and
item 2 in the definition of ‘contains’.

In the transformation algorithm, the functionisFlat with
signatureisFlat (E: Element Type): BOOL is used. It returnsTRUE
if E is contained in an element type that has been marked
as flat in the corresponding super-DTD instance. In the al-
gorithm, the document is traversed recursively in a depth-
first-like manner. If the type of the current element is not
flat, a new database object is created and inserted into the
tree structure that is already there (lines 14-23). Otherwise,
the current element’s string representation is just appended
to the current database object, which is flat (lines 6-12).

The transformation algorithm is as follows:

(1) transform (e: Element, lastElementWasFlat: BOOL, currentObj:
OID, parentObj: OID,
root: BOOL): OID {

(2) IF (Type (e) -> isFlat()) {
(3) IF (NOT (lastElementWasFlat)) {
(4) currentObj := ELEMENT -> new();
(5) insert currentObj as rightmost child of parentObj; };
(6) IF (Type (e) is terminal element type)

//e.g., CDATA, (#PCDATA)
(7) currentObj -> append (textualContent (e))
(8) ELSE {
(9) { currentObj -> append (BeginMarkup (e));
(10) DO (children of e, element, e’)

//iterate over the children of e, e’ is loop var.
(11) c := transform (e’, TRUE, currentObj, parentObj,

FALSE);
(12) currentObj -> append (EndMarkup (e)); }; }
(13) ELSE { //current element type is not flat
(14) currentObj := ELEMENT -> new();
(15) IF (NOT (root))
(16) insert currentObj as rightmost child of parentObj;
(17) store ElementTypeName (e) with currentObj;
(18) store Attributes (e) with currentObj;
(19) currentElementIsFlat := FALSE;
(20) c := NULL;
(21) DO (children of e, element, e’)

//iterate over the children of e
(22) { c := transform (e’, currentElementIsFlat, c,

currentObj, FALSE);
(23) currentElementIsFlat := isFlat (Type (e’)); }; }; };

ELEMENT is the database class described before, while
Element is the type of SGML elements. The initial invoca-
tion of transform is transform (root, TRUE, NULL, NULL, TRUE).
The actual implementation of the algorithm is non-recursive.
Namely, an SGML parser has been extended to control the
transformation that does not work recursively. Note that the
database objects generated are untyped, i.e., they may either
contain flat element types or represent non-flat elements. We

305

say thatthe database object is flator the database object is
non-flat, respectively. By definition, an object becomes a
flat one or a non-flat one by means of the assignments in
lines (7), (9), (12) or in lines (17), (18), respectively. Thus,
the definition of flat and non-flat database objects is an al-
gorithmic one. From now on, this definition of flat database
objects replaces the previous one.

The implementation of methods reflecting the SGML se-
mantics such asgetAll is based on the following lemmas.

Lemma 3. After a type (i.e., either flat or non-flat) has been
assigned to a database object, the type does not change any
more in the course of the transformation algorithm.

Proof. “⇒”: Consider a flat database object. The assign-
ments making this object a non-flat one occur in lines (17),
(18). The object is generated immediately before (line (14)).
In consequence, it cannot happen that a flat object is subject
to the assignments making it a non-flat one.

“⇐”: An object that is already non-flat cannot become
a flat one later. Namely, non-flat objects are generated in
line (14) only. It can easily be seen that such an object does
not becomecurrentObj any more in the course of transforma-
tion after having specified that it is non-flat.

The following lemma shows that transformation by
means of the algorithm is sound (cf. our remark on the im-
plementation ofnext, and such knowledge has also been used
for the implementation ofgetAll (lines (3)-(12))).

Lemma 4. A non-flat object is never contained in a flat one.

Proof. Suppose a non-flat object was contained in a flat one.
Then, there is a non-flat element e1 that is directly contained
in flat element e2. This requires that either

1. ElementType (e1) occurs in the content model of Ele-
mentType (e2), or

2. there is an element type F s.t. ElementType (e1) occurs
in the inclusion model of F, and there is an element e
s.t. ElementType (e) = F and e1 is contained in e.

Case 1 cannot happen because ElementType (e1) would have
to be a flat one. With regard to Case 2, it follows from
Lemma 2 that ElementType (e2) is contained in F, and Ele-
mentType (e1) is contained in F. The last item from Defini-
tion 1 implies that ElementType (e1) is contained in Element-
Type (e2). This, however, is a contradiction to the definition
of isFlat, because, in that case, ElementType (e1) would have
to be flat.

A variant of the transformation algorithm is used in the
context of document modification, i.e., in order to insert el-
ements into documents that are already in the database.

5 DTD-specific and generic declarative access
mechanisms

By using SGML and database technology, we have come
up with query mechanisms for a document collection char-
acterized by the following features: (1) Formulating ex-
pressive queries is possible without knowing a query lan-
guage, the DTD, the underlying data model. (2) For different

Table 1. Knowledge necessary to use different query mechanisms

Modelling (Syntax of the) query language DTD
OQL y y y
PAT n y y
Templates n n n

user groups, different mechanisms can be generated, closely
matching the user group’s needs. The description of these
mechanisms and how to configure them covers a large part
of this section. This query mechanism, though expressive,
provides for a lower degree of expressiveness than others,
as we will show. Our conclusion is to let the user choose
between various, in our case three, query mechanisms dif-
fering with regard to expressiveness, but also with regard to
intuitiveness and user-friendliness. In addition to query tem-
plates, there are extensions of the PAT algebra and OQL,
together with methods from the scheme. We will show that
the extended PAT algebra is more expressive than query tem-
plates, and that OQL together with a relevant set of methods
is more expressive than the extended PAT algebra. On the
other hand, however, in order to formulate queries with the
individual mechanisms, the user must have different levels
of knowledge, as indicated in Table 1. More precisely, ‘n’
in the second column does not include the language of reg-
ular expressions and the underlying IRS, and ‘n’ in the third
column does not reflect that the user has to understand the
semantics of element and attribute type names.

5.1 Query templates

Query templates are automatically generated document-type-
specific query forms. They may contain widgets of different
types. It is subject to configuration which widgets are part
of a query template. The following widgets are part of the
framework.

– Entry field for element content search. The figure is an
example of such a widget, as seen in a WWW browser.
The user has to type in a list of regular expressions,
each of them separated by a blank space. The operation
corresponding to the widget takes all elements of the re-
spective type, in this caseSURNAME. If AND is selected,
it returns all documents containing elements of the type
that contain all of the regular expressions. If OR is se-
lected, it returns all documents containing elements of
the type that contain one of the regular expressions.

– Entry field for IR search (information retrieval search).
An entry field for IR search actually consists of two
fields, as can be seen in the figure. The user must type
a concept to be searched for in the first entry field and a
threshold value t in the second one. It must hold that t
∈ [0;1). The corresponding operation takes all elements
of the respective type. It returns all documents contain-
ing those elements that match the concept with a like-
lihood greater than the threshold value, as computed by

306

the underlying IRS. Instead of a concept, a query in the
language of the underlying IRS can also be typed in.

– Entry field for attribute search. The corresponding op-
eration takes all elements of the corresponding type,
in this caseSECTION. If AND is selected, it returns
all documents containing elements whose value for at-
tribute SECQUALcontains all of the regular expressions
that have been typed in. If OR is selected, it returns all
documents containing elements whose value for attribute
SECQUALcontains one of the regular expressions that
have been typed in.

– Entry field for structure search. The corresponding op-
eration takes all elements of the first type, in this case
SURNAME. For all such elements that are contained in
one of the second type, in this caseAUTHOR, and con-
tains all of the regular expression that have been typed
in, the corresponding document is returned, if AND has
been selected. Analogously, with OR, only one regular
expression must be contained.

– Entry field for search for physical characteristics. As op-
posed to the other atomic entry fields, these entry fields
are hardcoded. However, they can be turned on or off by
means of the configuration mechanisms. At this point,
there is an entry field for document size allowing speci-
fication of a lower and upper bound.

The overall structure of a query template is depicted in
Fig. 9. The left column of widgets is for the document to
be retrieved, the right column will be explained below. Re-
sults corresponding to individual entry fields in a column
are combined using logical AND. Only those entry fields
are considered where something has been entered.

More complex queries can be formulated using the wid-
get for secondary structure search. Furthermore, one wants to
specify documents by means of the (link) relationships that
exist with other documents. In addition to those two columns
of widgets, there is a pulldown menu with the following op-
tions: [NO LINKS] , an element-type name/attribute-type
name pair followed by a right arrow, and an element-type
name/attribute-type name pair followed by a left arrow. The
semantics of the menu items is as follows:

– If [NO LINKS] is selected, the documents matching
the entries in the left column are retrieved. Entities in
the right column are ignored.

– If ‘- > <E>/<A>’, e.g., ‘- > HYPLINK/REFERENC’,
is selected, selection is based on all pairs of documents
(d1, d2) such that d1 matches the template entries in the
left column, and d2 matches the entries in the right col-
umn. The query returns all documents d1 that contain
an element of type E; this element has attribute A with
value n, and n is the name of d2.

– If ‘ <- <E>/<A>’, e.g., ‘<- HYPLINK/REFERENC’,
is selected, selection is based on all pairs of documents
(d1, d2) such that d1 matches the template entries in the
left column, and d2 matches the entries in the right col-
umn. The query returns all documents d1 such that d2
contains an element of type E; this element has attribute
A with value n, and n is the name of d1.

The menu for secondary structure search is also subject to
configuration.

The distinction between regular expression search and IR
search has been reflected by means of methodshasTextual-
ContentRegex andgetIRSValue in Sect. 4. Analogously, query
templates may contain both fields for element content search
and for IR search. As pointed out before, not only individ-
ual concepts, but also complex query terms in the IRS query
language may be typed into entry fields for IR search. Con-
sequently, it is not necessary to provide an AND/OR toggle
for this widget type.

Specifying query templates.The DTD alone is not sufficient
as a basis for automatic generation of query templates. Fre-
quently, one wants to make available only a restricted set of
types for declarative access. This corresponds to the notion
of ‘view’ in the context of conventional database systems.
The motivation why views should be part of the framework
is as manifold as it is with view mechanisms in conven-
tional systems. In principle, we see two alternative ways of
specifying query templates.

1. The super-DTD is extended so that its instances contain
the query template specification. Different ways of mod-
elling the specification are conceivable. For example,
there may be an additional element typeQUERYFORM
with attributes of typeIDREFS. These references point
to the different element and attribute types to be included
in the template. The type definition ofQUERYFORMmay
be as follows:

...
<!ELEMENT QUERYFORM EMPTY> ...
<!ATTLIST QUERYFORM ...

CONTENTSEARCH IDREFS
ATTRSEARCH IDREFS
IR SEARCH IDREFS

...>

307

Fig. 9. Query template generated from the MMF-DTD

2. Each query template has a specification contained in a
file.

With regard to item 2, as one may need different templates
for one document type, one may also want to freely add new
views over time. However, it is important to ensure the con-
sistency of the query template specification with the DTD.
Otherwise, queries could be generated, for which a solution
cannot exist, and the user would not even notice it. But an
operation which directly reads the specification from a file
and checks for its consistency would be too time-consuming
with large DTDs. Hence, query template generation must
consist of two steps: First, the specification is read from a
file, its consistency to the DTD is checked, and it is inserted
into the database. Then, a database-internal, consistent ver-
sion of the specification can be accessed. We have realized
the first alternative and are now implementing the second
one.

5.2 Other declarative access mechanisms
and a comparison of their expressive power

An extension of the PAT algebra.The PAT algebra, origi-
nally described in [ST94], is a query language independent
of the underlying data model. In our extension of the PAT
algebra, query terms are generated by the grammar

e - > <Element-type name> |
e UNION e|
e INTERSECT e|
e DIFF e|
CONTENTSELECT (e, r)|
ATTR SELECT (e, A, r)|
IR SEARCH (e, c, t)|
e INCLUDS e|
e INCL-IN e|
REFERENCES (e, A, e)|
REF-BY (e, A, e)|
ID-REFER (e, A, e)|
ID-REF-BY (e, A, e)|
LB-SIZE (e, s)|
UB-SIZE (e, s)|
(e)

The term<Element-type name > stands for the set
of all elements of the respective type.UNION, INTERSECT,
and DIFF are set operators with the usual semantics.
CONTENTSELECTtakes a set of elements and returns those

where the content contains regular expression
r . ATTR SELECTtakes a set of elements and returns those
where attributeA contains regular expressionr . IR SEARCH
takes a set of elements and returns those matching concept
c (or the IR queryc) with a probability greater than t, ac-
cording to the underlying IRS.INCLUDS and INCL-IN
take two sets of elements E1 and E2 and return the set of
elements

E1 INCL-IN E2 = {e1 ∈ E1 | ∃e2 ∈ E2 s.t. e1

is contained in e2}
E1 INCLUDSE2 = {e1 ∈ E1 | ∃e2 ∈ E2 s.t. e1

contains e2}
REFERENCES, REF-BY, ID-REFER, andID-REF-BY

take two sets of elements E1 and E2 and return the set of
elements

REFERENCES(E1, A , E2) = {e1 ∈ E1 | ∃e2 ∈
E2 s.t. e1 has attribute A with value v, and v is name of
the document in whiche2 is contained in}

REF-BY(E1, A , E2) = {e1 ∈ E1 | ∃e2 ∈ E2 s.t. e2
has attribute A with value v, and v is name of the document
wheree1 is contained in}

ID-REFER(E1, A , E2) = {e1 ∈ E1 | ∃e2 ∈ E2 s.t.
e1, e2 are contained in the same document,e2 has an at-
tribute of type ID with value v,e1 has attributeA of

type IDREF (S) containing v}
ID-REF-BY(E1, A , E2) = {e1 ∈ E1 | ∃e2 ∈ E2 s.t.

e1, e2 are contained in the same document,e1 has an at-
tribute of type ID with value v,e2 has attributeA of

type IDREF (S) containing v}
LB-SIZE takes a set of elements and returns those

whose size is greater than s,UB-SIZE returns those ele-
ments whose size is smaller than s.

The extensions, as compared to the original algebra
[ST94], are the distinction between search on a syntactic
level and IR search, the fact that documents’ secondary
structure has been taken into account, and the fact that doc-
uments’ physical characteristics have been considered.

OQL queries.The expressive power of OQL stems from
the fact that methods from the database scheme can be used
within queries at liberty. The structure of an OQL query
is the same as with SQL. The select clause specifies what
is to be selected. The from clause specifies which database
classes, or, more generally, which sets the query refers to.
The where clause contains a condition that must be fulfilled

308

by the query result. All variables occurring in the query
must be bound in the from clause. The reader is referred to
[Cat94] for more information on OQL.

Illustrations. For illustration purposes, consider the query
template in Fig. 9. The template entries correspond to the
query “Select all documents containing an element of type
SURNAMEwhose textual content contains ‘Roth’, and that
are referenced by a document containing an element of
type SECTION whose value of attributeSECQUALcon-
tains ‘NEWS’ and containing an element of typeLANGUAGE
whose value of attributeLANGQUALcontains ‘English ’ or
‘english ’.”. The corresponding extended PAT expression
is

REF-BY (MMF INCLUDS CONTENTSELECT (SURNAME,
’Roth’),

REFERENC,
HYPLINK INCL-IN (MMF INCLUDS ATTR SELECT

(SECTION, SECQUAL, ’NEWS’))
INCLUDS ATTRSELECT (LANGUAGE, LANGQUAL,

’[Ee]nglish’))

The corresponding OQL expression is

select D0.name
from D0 in Document, D1 in Document,

P0 in D0.root -> getAll (’SURNAME’),
P1 in D1.root -> getAll (’SECTION’),
P2 in D1.root -> getAll (’LANGUAGE’),
P3 in D1.root -> getAll (’HYPLINK’)

where P0 -> hasTextualContentRegex (’Roth’) and
P1 -> hasAttrValue (’SECQUAL’, ’NEWS’) and
P2 -> hasAttrValue (’LANGQUAL’, ’[Ee]nglish’) and
P3 -> getAttrValue (’REFERENC’) = D0.name

The following lemmas reflect the expressive power of
the different mechanisms.

Lemma 5. The extended PAT language is more expressive
than query template entries.

Proof. The proof is by defining a mapping from query tem-
plate entries to expressions in the extended PAT language.
The full mapping is given in [Boeh97]. To illustrate the map-
ping, consider the widget for attribute search. LetE be the
respective element-type name, andA be the attribute-type
name. Withr 1 ... r n being the input to the respective
field, the corresponding expression is<root-element-
type > INCLUDS (ATTR SELECT (E, A, r 1) π
... π ATTR SELECT (E, A, r n)) with π ∈ {UNION,
INTERSECT}. In the opposite direction, it is obvious that,
e.g., the extended PAT expressionA INCLUDS B INCLUDS C

cannot be mapped to any query template input.

Lemma 6. The extended PAT query language is less expres-
sive than OQL, together with the methods given in Sect. 4.

Proof. The proof is by defining a mapping of extended PAT
expressions to OQL statements. The proof is recursive over
the structure of query algebra terms. Again, the full map-
ping is contained in [Boeh97]. As an example, letQ be the
OQL query corresponding to the PAT expressione. Then
ATTR SELECT (e, A, r) is mapped to

select p from p in Q where (p -> hasAttrValueRegex (’<A>’, ’<r>’))

In the opposite direction, it is obvious that, e.g., the OQL
query

select p, p -> getFirst (’CHRNAME’)
from e in ElementType, p in e -> getElements()
where (e.name == ’AUTHOR’)

cannot be mapped to any extended PAT expression.

For evaluation, both input to query templates and ex-
tended PAT expressions are mapped to OQL expressions. -
Declarative access mechanisms are also relevant in the fol-
lowing section.

6 Hyperlink rendition mechanisms in HyperStorM

With WWW-based access to the database application, doc-
uments can be converted to HTML. Conversion is specified
by means of a stylesheet contained in a file.

Hyperlink rendition. Documents may contain references to
other documents. Usually, such references are made explicit
within the document with hypertext anchors. With our sys-
tem, rendition of anchors of links pointing to other docu-
ments in the database may depend on characteristics of the
documents referenced. As a special case of such rendition,
only anchors of sound links are converted to HTML anchors
to avoid some cases of navigation failure. The layout specifi-
cation specifies how link anchors are encoded in documents
of the respective type.

In Sect. 4, it has been described how the physical rep-
resentation of documents and document components can be
configured using the super-DTD. These mechanisms, how-
ever, are not used to specify document conversion for the
following reasons:

– An initial configuration must have been specified be-
fore documents are inserted into the database. This does
not have to be the case for the conversion specification.
Furthermore, a higher degree of flexibility and ease of
modification is necessary with the conversion specifica-
tion, as compared to the configuration specification. It
is appropriate if the configuration is altered by means
of method invocations, but this is too complicated and
inflexible for the conversion specification.

– From an organizational perspective, while the database-
internal configuration should be specified by the DTD
designer, this is not necessary for document rendition,
as readers’ individual preferences may be reflected.

– The super-DTD has been designed to represent informa-
tion on individual (element or attribute) types. But the
super-DTD instance would become too big if informa-
tion from several stylesheets was included. There should
be no restrictions to the number of stylesheets.

309

Incorporating information on documents referenced into hy-
perlink anchors.With our system, information on docu-
ments directly or indirectly referenced can be used to render
the corresponding hyperlink anchor in the referencing doc-
ument in a very flexible way. The core idea is that, for
an element type whose instances are hyperlink anchors, the
stylesheet contains a database query. The query specifies the
information to be included in the hyperlink anchor. For this
purpose, the full expressive power of OQL can be exploited.

In this context, there are two problems impeding why
OQL queries cannot just be written down and executed dur-
ing document conversion.

1. Query results must be of a type that can be displayed
within an HTML document.

2. Within such queries, one would like to refer to the par-
ticular hyperlink anchor. For example, one would like to
formulate the query “Select all elements of typeAUTHOR
within the document that is referenced by the hyperlink
whose anchor is currently being rendered.”. So far, there
is no straightforward way to refer to the hyperlink whose
anchor is currently being rendered in a query.

The solution to item 1 is as follows: the query is parsed.
Then, the query result type is looked up. If the type is not
available for display, e.g., because the query result is a set
of database OIDs or a set of instances of bulk types, the
query in the stylesheet is ignored. The current version of the
system accepts only sets of strings.

With regard to item 2, OQL queries within the stylesheet
may contain the symbolsANCHORELEM and LINKATTR. Be-
fore query evaluation, the symbolANCHORELEM is replaced
by an expression that can be interpreted by the query proces-
sor. In a nutshell, it is the logical OID of the anchor element.
Since the replacement is carried out within the database, it is
ensured that the new query is correct. Consider the following
example:

select p -> getElementText()
from d in Document, p in d.root -> getAll (’LANGUAGE’)
where (d.name = (ANCHORELEM -> getAttrValue (LINKATTR)))

The query selects allLANGUAGEelements in the docu-
ment referenced (cf. Fig. 1).

Expanding instances of element types is meaningful for
informational and non-structural element types. For instance,
one may want to display all instances of a non-structural
element typeKEYWORDin the referencing document. The
usefulness of such an expansion for structural element types
is limited, except when these element types are at the same
time informational, such as, say,TITLE .

Summing up, the drawbacks pointed out in the intro-
duction are alleviated as follows: checking for a link target
before activating the anchor prevents navigation failure. Dis-
playing metainformation alleviates the “expectations vs. ac-
tual Content” problem and is a measure against “getting lost
in hyperspace”.

With the functionality described so far, document con-
version should be part of the services offered by the database.

It would be an unnecessary step to generate SGML from the
database content first and then transform the result to HTML.
Furthermore, conversion on the client would be inefficient
because of unnecessary communication over the network
to obtain information on the documents referenced. Besides
that, and most importantly, materialized views are used to
avoid executing queries during document conversion. Their
consistency is ensured by the database system.

Using materialized views.It is advantageous to material-
ize the conversion result within the database. In principle,
an arbitrary number of different views on the same doc-
ument being the result of different conversion parameters
is conceivable. To cope with the requirement of material-
izing more than one view, but being restricted to a limited
number of materializations, we have implemented a simple
page replacement strategy (LRU). With our system, docu-
ments within the database may be modified. Then, mate-
rialized views have to be updated after the corresponding
documents have been altered. The problem is aggravated by
the fact that updates of individual documents cannot be seen
in isolation. Instead, documents that directly or indirectly
reference the modified document also have to be taken into
account. In this context, we assume that each document can
reference any other document. Assertions that would allow
restrictions of this assumption would be helpful, but can-
not be made in the general case. With our system, a view
is updated when a document is accessed, if any document
has been modified after the view’s last generation date. With
frequent updates, a conceivable refinement is to differentiate
between modifications having an impact on conversion of
referencing documents and modifications without such ef-
fects. In this case, however, conversion specifications have
to be administered by the database.

7 Conclusions

One objective of this article was to point out how the com-
bination of database technology and SGML can be exploited
in order to ease access to the document collection, both
declaratively as well as by means of navigation. In order
to ease declarative access, a mechanism to express informa-
tion needs has been designed that is expressive, while, at the
same time, neither knowledge of a query language nor the
document type or the underlying modeling are needed to use
it. This so-called query template mechanism can be config-
ured to match the needs of different user groups. We exploit
the fact that SGML documents conform to a DTD. Such a
DTD is comparable to a database scheme in that both can
be seen as integrity constraints on the data. HTML would
not be very useful in this particular context due to its high
genericity. The HTML DTD does not impose any real con-
straints on documents’ logical structure. The query template
mechanism, though expressive, is less expressive than other
query languages. Thus, in order to provide the user with a
choice of declarative access mechanisms, queries can also
be formulated using two other languages. These languages
have also been described, and their expressiveness has been
compared.

310

Navigational access is eased as follows: metainformation
on the documents can be exploited for hyperlink rendition.
Database technology is advantageous to speed up conver-
sion, and to ensure consistency of conversion outputs that
have been materialized. The approach would not work well
with HTML because, with previous versions of HTML, no
mechanisms are provided to model metainformation, and
with HTML 3.2 it cannot be ensured that metainformation is
modeled consistently. It is left to the author of the document
which metainformation is provided, and how he provides it.

With the description of documents’ database-internal
representation, we have covered several original features.
With our hybrid representation of documents, elements can
or cannot be represented by individual database objects. The
actual representation is subject to configuration. The initial
configuration is specified by means of an SGML document.
To recognize the logical structure of physically unstructured
document components, it is not necessary to use the DTD
at this stage. We have an object-oriented modeling of struc-
tured documents, together with methods that are the basis
for declarative access. Elements have a (logical) OID, even
though they do not have to be represented by an individual
database object. With method implementation, it has been
reflected that, with OODBMSs, method invocations are ex-
pensive.

In the future, we wish to evaluate the behavior of a real
user community. We will examine the expressive power of
query templates and see whether new primitives are needed.
In previous work, we examined how to reflect the seman-
tics of HyTime architectural forms in the database and de-
vised with an implementation [BA94, BAK95]. The HyTime
link model is more sophisticated than the one that has been
considered so far. Arbitrary document portions can be ref-
erenced, independent of the structure that has been made
explicit with SGML markup. It may be worthwhile to ex-
tend the reflections with regard to link conversion to the
HyTime model.

References

[ACM93] Abiteboul S, Cluet S, Milo T (1993) Querying and updating
the file. In: Agrawal R, Baker S, Bell D (eds.) Proceedings
of the International Conference on Very Large Data Bases,
VLDB Endowment, Dublin, Ireland, pp 73–84

[ACM95] Abiteboul S, Cluet S, Milo T (1995) A database interface
for file update, In: Michael J. Carey, Donovan A. Schneider
(eds.) Proceedings ACM SIGMOD, ACM Press, New York,
pp 386–397

[AKM95] Andrews K, Kappe F, Maurer H (1995) The Hyper-G Net-
work Information System, J UCS 1(4):206–220

[B+94] Blake GE, et al (1994) Text / Relational database manage-
ment systems: harmonizing SQL and SGML, In: Witold
Litwin, Tore Risch (eds.) Proceedings of the First Inter-
national Conference on Applications of Databases, Lecture
Notes in Computer Science. Springer, Berlin Heidelberg
New York, pp 313–324

[Boeh97] B̈ohm K (1997) Using object-oriented database technology
for structured document storage (in German). PhD thesis,
Technical University of Darmstadt

[BA94] Böhm K, Aberer K (1994) Storing HyTime documents in an
object-oriented database. In: Adam NR, Bhargava B, Yesha
Y (eds) Proceedings of the Third International Conference

on Information and Knowledge Management. ACM Press,
New York, pp 26–33

[BAK95] Böhm K, Aberer K, Klas W: Building a configurable
database application for structured documents. Multimedia
- Tools and Applications

[C+94] Christophides V, et al (1994) From structured documents to
novel query facilities. In: Richard T. Snodgrass, Marianne
Winslett (eds.) Proceedings ACM SIGMOD, ACM Press,
New York

[Cat94] Cattell RGG (ed) (1994) The Object Database Standard:
ODMG-93. Morgan Kaufmann, san MAteo, Calif.

[CCH92] Callan JP, Croft WB, Hardig SM (1992) The INQUERY
Retrieval System, In: A. Min Tjoa, Isidro Ramos (eds.) Pro-
ceedings of the Third International Conference on Database
and Expert Systems Application. Springer, Berlin New York
Heidelberg, pp 78–83

[Con87] Conklin J (1987) Hypertext: an introduction and survey,
IEEE Comput Mag:17–41

[Fre] Freese ED, The Transformation of SGML Documents for
Presentation on the World Wide Web.
http://www.sil.org/sgml/freese.html

[HHM94] Haake A, Ḧuser C, M̈ohr W (1994) Milestone M1;
BERKOM Project:CLIP-ING; Workpackage 2: System Ar-
chitecture, GMD-IPSI

[HTM] HyperText Markup Language (HTML). Available under
”http://www.w3.org/pub/WWW/MarkUp/”

[ISO86] Information Technology – Text and Office Systems – Stan-
dardized Generalized Markup Language (SGML) (1986)

[ISO96] Document Style Semantics and Specification Language
(DSSSL) (1996)

[KSS95] Kashyap V, Shah K, Sheth A (1995) Multimedia Database
Systems: Issues and Research Directions. (Chapter Metadata
for building the MultiMedia Patch Quilt). Springer, Berlin
New York Heidelberg

[Mac91] Macleod IA (1991) A query language for retrieving informa-
tion from hierarchic text structures, Comput J 34(3):254–264

[MMM96] Alberto O, Mendelzon GA, Mihaila G, Milo T (1997) Query-
ing the World Wide Web. International Journal on Digital
Libraries 1(1):54–67

[NBY95] Navarro G, Baeza-Yates R (1995) A language for queries on
structure and contents of textual databases, In: Edward A.
Fox, Peter Ingwersen, Raya Fidel (eds.) Proceedings of 18th
ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR’95), Seattle, Wa, pp 93–101

[O+95] Özsu MT, et al (1995) An object-oriented multimedia
database system for a news-on-demand application, Multi-
media Syst 3:182–203

[QRS+95] Quass D, Rajaraman A, Sagiv Y, Ullman JD, Widom J
(1995) Querying semistructured heterogeneous information.
In: Tok Wang Ling, Alberto O. Mendelzon, Laurent Vieille
(eds.) Proceedings of the Fourth International Conference
on Deductive and Object-Oriented Databases, Singapore, pp
319–344. Springer Verlag Berlin Heidelberg

[RMW94] Röscheisen M, Mogensen C, Winograd T (1994) Shared
Web annotations as a platform for third-party value-added
information providers: architecture, protocols, and usage ex-
amples. Technical Report STAN-CS-TR-97-1582, Stanford
University

[S+94] Süllow K, et al (1994) MultiMedia Forum - an Interac-
tive Online Journal. In: Ḧuser C, M̈ohr W, Quint V (eds)
Proceedings of Conference on Electronic Publishing. Wiley,
New York, pp 413–422

[SDAMK95] Sacks-Davis R, Arnold-Moore T, Kent A (1995) A stan-
dards based approach to combining information retrieval and
database functionality. Int J Inf Techn World Sci 1(1):1–16

[SM93] Salton G, McGill M.J (1983) Introduction to Modern Infor-
mation Retrieval. First edition. McGraw-Hill, New York

[ST94] Salminen A, Tompa FW (1994) PAT expressions: an algebra
for text search. Acta Linguist Hung 41(1):277–306

[Sto96] Stonebraker M (1996) Object-relational DBMSs, Morgan
Kaufmann, San Mateo, Calif.

311

[TEI94] Guidelines for Electronic Text Encoding and Interchange.
1994.
http://etext.lib.virginia.edu/TEI.html

[VAB96] Volz M, Aberer K, Böhm K (1996) Applying a Flexible
OODBMS-IRS-Coupling to Structured Document Handling,
In: Proceedings of the 12th International Conference on Data
Engineering, New Orleans, pp 10–19,

[VML95] VODAK V 4.0 User Manual (1995) Technical Report 910,
GMD-IPSI, St. Augustin, Germany

[YA94] Yan TW, Annevelink J (1994) Integrating a structured text
retrieval system with an object-oriented database system, In:
Jorge B. Bocca, Matthias Jarke, Carlo Zaniolo (eds.) Pro-
ceedings of the International Conference on Very Large Data
Bases. VLDB Endowment, Santiago, Chile, pp 740–749

