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Abstract. Client-server object-oriented database manage- Today, most commercial and experimental database sys-
ment systems differ significantly from traditional centralized tems operate in a client-server environment. Providing trans-
systems in terms of their architecture and the applicationsctional facilities in a storage manager for client-server
they target. In this paper, we present the client-server archiebject-oriented database management systems (OODBMSS)
tecture of the EOS storage manager and we describe the coraises many challenging issues because of the significant ar-
currency control and recovery mechanisms it employs. EO&hitectural differences between client-server and centralized
offers a semi-optimistic locking scheme based on the multi-systems and the differences in the applications targeted by
granularity two-version two-phase locking protocol. Under them. This paper presents a semi-optimistic two-phase (2PL)
this scheme, multiple concurrent readers are allowed to adocking protocol and a redo-only recovery scheme that are
cess a data item while it is being updated by a single writerbeing used in the EOS client-server object storage manager.
Recovery is based on write-ahead redo-only logging. LogWe discuss implementation as well as performance charac-
records are generated at the clients and they are shipped teristics of these protocols.
the server during normal execution and at transaction com- In traditional centralized database architectures and most
mit. Transaction rollback is fast because there are no updatesf today’s commercial client-server relational database sys-
that have to be undone, and recovery from system crashdems, queries and operations are shipped from client ma-
requires only one scan of the log for installing the changeshines to the server, which processes the requests and returns
made by transactions that committed before the crash. Wehe results. In contrast, most of the client-server OODBMSs
also present a preliminary performance evaluation of the imfollow a data-shipping approach, where clients operate on
plementation of the above mechanisms. the data items the server sends to them (e.g., Kim et al.
1990; Deux et al. 1991; Lamb et al. 1991; Franklin et al.
Key words: Client-server architecture, Object management1992a). Although there are several alternatives for the gran-
— Transaction management — Concurrency control — Lockingularity of the data items exchanged between the server and
— Recovery — Logging — Checkpoint the clients, virtually all client-server systems have adopted
the page-server model because of its simplicity and the
potential performance advantages over the other alterna-
tives (DeWitt et al. 1990). Under the page-server model, the
server and the clients interact with each other by exchanging
1 Introduction database pages.
In a data-shipping client-server system each client has a
The major components of any database storage system aggffer pool, also referred to adient cache where it places
the ones that provide support for concurrency control and rethe pages fetched from the server. The clients perform most
covery. Concurrency control guarantees correct execution obf the database modifications while the server keeps the sta-
transactions accessing the same database concurrently. Rgle copy of the database and the log. An important obser-
covery ensures that database consistency is preserved despjigion is that each client cache can be seen as an extension
transaction and process failures. To achieve these goals, & the server's cache and, thus, updated pages present in
storage system controls access to the database and perforjslient cache can be considered as being shadows of the
some bookkeeping activities such as locking and logginghages residing on the server. Hence, the two-version 2PL
during normal transaction execution. The database is checl@\/_sz) protocol (Bernstein et al. 1987) could be imple-
pointed periodically in order to reduce the amount of work mented easily with no additional overhead. Furthermore, if
that has to be done durlng restart after a crash. It is essefhe pages updated by a transaction running on a client are
tial that the concurrency control, logging, and checkpointingnever written to the database before the transaction commits,

activities of a storage manager interfere as little as possiblgnen there is no need to generate undo log records and the
with normal transaction execution.
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system is able to offer redo-only recovery. This is because EOS architecture overview
the database will never contain modifications that must be
rolled back when a transaction aborts or when the systenin this section, we present a brief overview of the facilities
restarts after a crash. provided by EOS and we describe the distributed architecture
EOS is a data-shipping client-server storage manageof EOS.
based on the page-server architecture with full support for
concurrency control and recovery. EOS has been prototyped
at AT&T Bell Laboratories as a vehicle for research into dis- 2.1 EOS facilities
tributed storage systems for database systems and specially
those that integrate programming languages and databas&sOS provides facilities for storing and manipulating persis-
EOS is the storage manager of ODE (Biliris et al. 1993),tent objects. File objects serve as a mechanism for grouping
an OODBMS that has been developed at AT&T. The ma-related objects. Files may contain other files. Every object,
jor characteristics of the transactional facilities provided byincluding file objects, is a member of exactly one file ob-
EOS are the following. ject and, thus, objects form a tree where internal nodes are
file objects and leaves are ordinary (non-file) objects. EOS
— The concurrency control mechanism combines the multi-databases are collections of files and ordinary objects. When
granularity locking protocol (Gray and Reuter 1993) a new database is created, a file object is automatically cre-
with the 2V-2PL protocol (MG-2V-2PL). The mini- ated that serves as the root file of all objects within this
mum locking granularity is a database page. For a giverdatabase. A database consists of sevstatage areas—
database page, there is always one committed version afNix files or disk raw partitions. A storage area is orga-
the page in the server buffer pool or on disk. A secondnized as a nhumber of fixed-sizxtentswhich are disk sec-
version of the page may temporarily reside in the cacheions of physically adjacent pageSegmentsare variable-
of a client which is executing a transaction that updatedsize sequences of physically adjacent disk pages taken from
the page. If the transaction commits, the modified copythe same extent. Each extent has a bitmap associated with
of the page is placed in the server buffer pool and itit. The allocation policy within storage areas is based on
becomes the committed version of the page. If the transthe binary buddy system (Biliris 1992a). This scheme im-
action aborts, the modified copy is discarded. In otherposes minimal I/O and CPU costs and it provides excellent
words, a dirty page is placed in the server buffer poolsupport for very large objects (Lehman and Lindsay 1989;
only if the transaction that modified it commits. This Biliris 1992b).
scheme allows many readers and one writer to access Objects are stored on pages, one after the other starting
the same page simultaneously without incurring addi-at one end of the page, and they are identified by system-
tional overhead to the client and server buffer managersgenerated unique object ids (OIDs). The OID consists of
— Recovery is based on write-ahead redo-only logging.the storage area number and the page number within the
Transactions do not generate undo log records, and tharea the object is stored in, plus a slot number. The slot
updates made by an active transaction are posted taumber is an index into an array of slots which grows from
the database only after the transaction commits. Conthe other end of the page toward the objects. Slots contain
sequently, transaction rollback is very efficient becausepointers to the objects on the page. In this scheme, objects
the updates performed by an aborted transaction do natan be rearranged within a page without affecting OIDs. In
have to be undone. In addition, system restart recovenaddition, the OID contains a number to approximate unique
requires only one scan of the log file in order to reapplyids when space is reused.
the updates made by committed transactions before the EOS objects are uninterpreted byte strings whose size
crash. Another important feature of the redo-only pro-can range from a few bytes to gigabytes. If an object cannot
tocol employed by EOS is that the number of pages dit within a single page, EOS stores the object in as many
transaction can update is not bounded by the size of theegments as necessary and a descriptor is placed in the slot-
client buffer pool. ted page; the descriptor points to the segments in which the
— Checkpoints are non-blocking; active transactions are alactual object is stored (Biliris 1992a). EOS provides trans-
lowed to continue their processing while a checkpoint isparent access to both small and large objects. Both kinds
taken. In particular, EOS employsfazzy checkpointing of objects can be accessed either via byte-range operations
algorithm (Bernstein et al. 1987; Franklin et al. 1992) such as read, write, append, insert bytes, etc., or directly in
that stores only state information on disk and avoids thethe client’s cache, without incurring any in-memory copying
synchronous writing of updated pages. cost. The byte-range operations are important for very large
objects, e.g., digital video and audio, because there may be
The remainder of the paper is organized as follows. Secmemory size constraints that would make it impractical to
tion 2 presents an overview of the EOS architecture. Secbuild, retrieve or update the whole object in one big step.
tion 3 analyzes the concurrency control and logging proto- EOS offers extensible hashing indexing facilities which
cols employed by EOS and discusses transaction operatiorsipport variable size keys and user-defined hash and com-
such as commit and abort. Recovery from server crashes arghrison functions. Other index structures can be built on
the checkpoint algorithm are presented in Sect. 4. Section fop of EOS by using page objects — objects that expand
contains the results from several performance experimentover the entire available space of a page. For example, B-
Related work is covered in Sect. 6 and, finally, we concludetrees have been built in this way and they are used in ODE
our presentation in Sect. 7. (Biliris et al. 1993). The EOS architecture has been designed
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records for the updated pages. These log records are sent to
the server during transaction execution and at commit time.
A least recently used (LRU) buffer replacement policy is
employed for both the client and server buffer pools.

An application starts a transaction by sendingtart
transactionmessage to the server. When the server receives
the message, it assigns a new transaction identifier and cre-
ates a new thread if there is no active one serving this appli-
cation. The application can commit or abort an active trans-
action by sending aommit transactioror abort transaction
message to the server, respectively. The server can unilat-
erally abort a transaction when the transaction is involved
in a deadlock cycle, or when the transaction exceeds the re-
sources allocated to it, or when an internal error is detected.

Lock Cache In this case, an abort message is sent to the transaction the
next time the transaction communicates with the server.

The current implementation of EOS does not support
inter-transaction caching (Wilkinson and Neimat 1990; Carey
et al. 1991; Wang and Rowe 1991; Franklin et al. 1992b)
of either pages or locks. Consequently, when a transaction
terminates (whether committing or rolling back), all pages
present in the application’s buffer pool are purged, and the
to be extensible. Users may define hook functions to be exetocks acquired by the transaction are released. In addition,
cuted when certain primitive events occur. This allows con-ng support for distributed transactions is provided. Although
trolled access to several entry points in the system withougpplications may connect to many EOS servers and access
compromising modularity. Finally, configuration files, which the databases stored with them, EOS does not provide sup-

can be edited by the users to tune the performance and cugort for the two-phase commit (2PC) protocol yet.
tomize EQOS, are provided.

Mngr Lock Cache

Mngr

Interface Interface

Fig. 1. The EOS client-server architecture
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3 Transaction management in EOS
2.2 The client-server architecture of EOS
EOS provides facilities to preserve the atomicity, isolation,

Figure 1 shows the architecture of the EOS client-serve@nd durability database properties while allowing the inter-
storage manager. The EOS server is the repository of théeaved execution of multiple concurrent transactions. Trans-
database and the log. It mediates concurrent accesses to tRétions in EOS arserializable (Bernstein et al. 1987), and
database and restores the database to a consistent state wi@@overy is based on logging. In the following sections, we
a transaction is aborted or when a client or server failure oc.deSCfibe in detail the transactional facilities offered by ECS.
curs. The server is implemented as a multi-threaded demon
process that waits passively for a client application to start
communication. For each client application there is a thread-1 Concurrency control
running on the server which acquires all the locks needed, . .
sends the requested pages to the application, receives Idgké most commercial database management systems and
records and updated pages, installs the updates made by" earch prototypes, EOS uses _Iogklpg for serializability.
committed transaction, and frees all the resources used by gaowever, EOS takes a semi-optimistic approach to lock-
aborted transaction. The communication between the serveéfd Py employing the 2V-2PL protocol. The 2V-2PL is also
and the client workstations is done by using TCP/IP connec€ouPled with multi-granularity locking (MG-2V-2PL) to re-
tions over UNIX sockets (Stevens 1990). To avoid blocking dUce the r_1umber of locks a transaction has to acquire during
/O operations, the server creates a disk process for eadf execution.
storage area accessed by client applications. The disk pro-
cesses access directly the server buffer pool, which is store
in shared memory, and communicate with the server thread
using semaphores, message queues and UNIX domain soc
ets (Kernighan and Pike 1984; Stevens 1990).

Client applications are linked with the EOS client li-

.1.1 Lock modes

E'OS supports three locking granularities: page-level, file-
level, and database-level. A file is locked by locking the
page containing the file object. A database is locked by

brary and perform all data and index manipulation during ocking the page containing the root file object mentioned in
normal transaction execution. Each application may consisg g pag 9 )
ect.2.1. A page, the smallest lock granule, can be locked

of many transactions but only one transaction at a time is ex; SO )

ecuted. Each application has its own buffer pool for cachingby a wransactio?” in the following modes.

the pages requested from the server. For transaction mamatention sharedI§ ). There is a file object on the page and
agement, each application has a lock cache, some transac- .7 intends to read an object belonging to the file.

tion information, and a logging subsystem that generates loghared §): .7~ wants to read an object stored on the page.
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Table 1. The lock compatibility table Table 2. The lock upgrade table
Lock compatibility table Lock upgrade table
Mode requested Existing mode Mode requested Existing mode
IS S IX X SIX IC C IS S IX X SIX IC C

IS Y Y Y Y Y Y N IS IS S IX X SIX

S Y Y Y Y Y N N S S S SIX X SIX - -
IX Y Y Y N Y Y N IX IX SIX IX X SIX - -
X Y Y N N N N N X X X X X X - -
SIX Y Y Y N Y N N SIX SIX SIX SIX X SIX -
IC Y N Y N N Y N IC - IC - IC - -
C N N N N N N N C - c - - -

Intention exclusivelK ): There is a file object on the page Mit phase and starts acquirig andC locks, or violation
and.7 intends to update an object belonging to the file. of the three convert rules mentioned above.

Shared intention exclusives(X): There is a file object on Transactions that are in the process of committing their
the page and eithe? read the file object and intends updates are blocked when there are active transactions that
to update an object in the file o7 updated an object read some of the updated pages. EOS enforces this constraint
belonging to the file and now wants to read the file ob-in order to generate serializable schedules. In addition, EOS

ject. blocks transactions attempting to read a page that has been
Exclusive ¥): .7~ wants to update an object stored on the updated by a transaction that is in the process of converting
page. its locks. In this way, committing update transactions are not

Intention commit [C): .7 had anIX or SIX lock on the  blocked indefinitely.
page and it is in the process of committing.

Commit ©): .7~ had anX lock on the page and it is in the
process of committing. 3.1.2 Deadlock detection

~ When atransaction accesses an object, the page contaify; every lock-based concurrency control algorithm, dead-
ing the object is locked in the appropriate mode. All locks |ocks may occur. The 2V-2PL protocol is more susceptible
acquired by a transaction are released when the transactiqg geadlocks than the strict 2PL locking protocol, for it does
terminates (by committing or aborting). Lock acquisition is ot prevent a transaction from reading a page that was up-
implicit when objects are accessed via the byte-range opefgated by another transaction, nor does it prevent a transaction
ations mentioned in Sect. 2.1. However, when a transactiogqm, updating a page that was read by another transaction.

obtains a direct pointer to an object in the page where thggnsequently, conflicts that may develop during the conver-
object resides, the transaction has to call the storage managgion of locks to commit locks may result in deadloéks.
to obtain an exclusive lock on the page before it updates the A deadlock cycle can be discovered either by using time-
object for the first time. , N _ _outs or by running a deadlock detection algorithm. Although
When a page is locked, the file containing this page isiimeouts offer a simple and inexpensive solution, they are
locked, too, in the corresponding intention mode. In addi-yery pessimistic and cannot distinguish between deadlocks
tion, when a file is locked in eithe$ or X mode, the pages and Jong waits. On the other hand, deadlock detection algo-
the flle_contams are not Iocke_d expll_(:ltly, unless the file is vithms require extra CPU cycles during the construction of
locked inS mode and a page in the file is updated. When aine waits-for graph (WFG). However, this additional CPU
transaction wants to commit, it converts its locks to commit gemand can be kept fairly low when an incremental approach

locks according to the following rules. is used for building the WFG.
CRL: IS andsS locks remain unchanged. Ina data-s_,hipping client-server architecture, ar_bitr_ary de-
CR2: IX andSIX locks are converted ttC locks. lays may be introduced because of the communication net-
CR3: X locks are converted t6 locks. work and the fact that most of the computation is performed

at the clients. Consequently, deadlock detection is better

Table 1 determines whether a lock request can be granteguited for this environment than timeouts, and this is the
or not. Each column corresponds to a lock that some transapproach EOS follows. EOS performs deadlock detection
action can acquire and each row corresponds to a lock rewhen a lock request has to be blocKeth particular, EOS
quested by some other transaction. A “Y” table entry indi- performs deadlock detection every time a lock request by
cates that the lock request can be granted and a “N” tabl@ome transaction is blocked by another transaction which is
entry indicates that the request has to be blocked. waiting for a lock request to be granted.

Table 2 is used for lock upgrades. A lock upgrade occurs ~ When a lock request is blocked, EOS visits the list of
when a transaction holds a lock in some mode and then exegranted lock requests for the same lock entry and checks
cutes an operation that requires a different mode for the samehether one of these requests belongs to a transaction that
lock. Each column indicates a lock mode that the transaction |

P EOS supports the 2PL protocol and applications may choose between
holds and e.aCh row indicates the |O(.:k. mo“d? requeSted by th5‘\/-2PL and 2PL depending on the expected workload. The choice of the
new operation. A table entry containing “-" corresponds t0 ocking protocol is done at server start up time and cannot be changed while
an erroneous case; either violation of the assumption that n@e server is running

more locks are acquired when the transaction enters its com- 2 A periodic deadlock detection scheme could also be used



213

is waiting for a lock to be granted. If this is the case, the 3.2.1 Whole-page redo-only logging
deadlock detection algorithm is invoked. Because each lock
request structure contains a direct pointer to the transactioROS writes to the log entire modified pages instead of in-
control block of the owner transaction, the above check isdividual log records for updated regions of the page. This
very efficient. approach has several advantages. It allows the allocation of
The EOS deadlock detection algorithm consists of twolarger client buffer pools since no separate space is required
steps. The first step tries to find deadlock cycles involvingfor generating log records. The overhead of performing up-
transactions that tried to upgrade their lock modes on thélates is low since the only required action at update time
same locked page. If no cycle is discovered during the firsiS to mark the page dirty. Whole-page logging may also re-
step, the second step dynamically constructs the WFG anéuce log space when several objects residing on the same
searches for cycles by following a variation of the depth firstpage are updated by the same transaction. This is in part due
traversal algorithm (Beeri and Obermarck 1981). to the fact that no undo log records are written and in part
In the current implementation, EOS evicts the transactiordue to the fact that only one log header is required. Trans-
whose lock request resulted in the formation of a deadlockaction rollback is very efficient since there are no undo log
cycle. An alternative approach, which we may adopt in therecords. Finally, when the redo-at-server approach is used,
future, is to avoid evicting a transaction that is in the procesgvhole-page logging avoids I/O related to posting committed
of committing, unless it is the only choice. A transaction updates to the database because the server does not have to
enters its committing phase at the time it starts convertingead a page from disk to update it.
its exclusive locks to commit locks (see Sect. 3.3.3). Nevertheless, a main disadvantage of whole-page log-
ging is that it wastes log space when a small part of a
page is modified. A better approach may be the page diffing
. scheme presented by White and DeWitt (1995). However,
3.2 Logging and recovery the page diffing approach may require disk I/O to apply the
log records to the database under the redo-at-server scheme

One factor that affected the design of the EOS recoveryemployed by EOS; a page that is not cached in the server
scheme is the way in which applications perform updatesbuffer pool has to be read from secondary storage before the
As we mentioned in Sect.2.1, applications can update at'Pdates present in a log record are applied to it. .
object by either calling a function provided by the EOS client ~ EOS allows logging to be done asynchronously during
library or by updating the object directly after obtaining a transaction execution so that at commit only a small (tun-
direct pointer to the object in the page where this objectable) number of log records have to be forced to the log.
resides. The latter approach allows applications to update alft Particular, when an object is accessed by an application
object at memory speeds with no extra overhead. HoweverfOr the first time, EOS allocates a handle for it and returns
this approach makes the detection of the portions of théhe handle to the application. The application may release an
object that have been updated much more difficult than thébject handle when the object is not needed anymore. Ev-
former approach. ery time the application communicates with the server, EOS
A second challenge we faced is the fact that EOS is dechecks whether there is an updated page in the client buffer
signed to handle both traditional and non-traditional databaséhat is not being accessed by the application —in which case
applications, including CAD, CASE, and GIS. While rela- all hgndles for the objects.re5|d|ng on this page are relea_sgd.
tional database systems usually update individual tuples onlyn this case, a log record is generated for this page and it is
once during an update operation and they generate a logent to the server together with the requie8ny remaining
record for each individual update, non-traditional databasd0d records are sent to the server at transaction commit.
applications typically work on several objects by repeatedly A conceptual view of a redo-only log is shown in Fig. 2.
traversing relationships between these objects and updatinj€ 10g contains three kinds of recordsteckpointrecords
some of them as well. Consequently, generating a log recoréidicating that a checkpoint has been takesmmitrecords
for each update would not be efficient, since an object mayndicating that a transaction has committeddo records
be updated multiple times by the same application. Groupingontaining the results of the updates performed by commit-
multiple updates in one log record is a better solution. ed transactions. EOS partitions thg log into two kinds of
Finally, since EOS is based on a client-server architecl0gs: aglobal log and a number ofrivate logs, as shown
ture in which updates are performed at each client, recovin Fig.3. Each private log is associated with one transac-
ery is different than the approach followed in centralizedtion only and contains all the log .records generated by .th|s
database systems, where both the updates and the generatfé@nsaction. The global log contains records that are either
of log records take place at the server. In EOS, log record§0mmit or checkpoint records. A commit record contains
are generated at client workstations and they are shipped e committed transaction’s id and the address of its private
the server, which maintains the log, during normal transacl0d. A checkpoint record contains the location of the commit
tion execution and at transaction commit. However, clients'ecord belonging to the first transaction that placed a com-
do not send to the server the updated pages at transactidit record and which had not finished posting its updates to
commit, as done in the Exodus client-server storage managéhe database while checkpointing was in progress. When a
(Franklin et al. 1992a). Instead, EOS employs tedo-at-  transaction aborts, its private log is simply discarded.
server approach; the server reads the IOQ records written s Actually, log records are being generated after a number of dirty pages

by committed transactions and applies their updates to théat are not being accessed by the application is reached. This number
database. corresponds to an EOS configuration parameter
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I Checkpoint Record D Commit Record D Update Record
Fig. 2. Conceptual view of a redo-only log
— - - Shadowing is a recovery technique in which updates are
Global Log File never performed on the current page contents. Instead, new

pages are allocated and written, while the pages whose con-
tents are being updated are retained as shadow copies until
the transaction that performed the updates commits. In case
of transaction rollback, the shadow pages are used to restore
the updates performed by the aborted transaction.

We chose the shadow technique for recovery of large ob-

m Checkpointrecord - Commitrecord - Private Log Flle jects in EOS because it is simple and efficient. Shadowing
does not require the generation of undo log records and, con-
Fig. 3. The physical structure of the EOS log file sequently, the redo-only logging scheme employed by EOS

for small object recovery does not require any modifications.
) o _ In addition, shadowing causes fewer I/O operations during
The private log could be kept in either the client or the yransaction rollback and system restart. During transaction
server machine. In the first approach, we would have to moveg|ihack, no I/0 is required for restoring the state of a large
the log records of committed transactions from the client togpject since the original state of the object is present in the
the server. Allowing those records to reside on the clientyatabase. During system restart, no I/O is required for redo-
machine is undesirable because client machlnes can connegly committed large object updates because all large object
to and disconnect from the network at any time. Thus, toypdates are applied directly to the database during normal
guarantee that the restart procedure will not skip any comyransaction execution.
mitted updates, the update log records must be m'oved tothe However, shadowing does not provide protection against
server machine as part of the transaction commit protocolmedia failures and some additional measures are necessary.
We abandoned this approach because of the double copyingne solution is to store the database in two disks and prop-
involved (_f|rst to client local disk and then to server's log), agate each update to both disks. Another solution is to use
and all private logs are stored on the server machine. logging and log all large object updates. Currently, EOS fol-
When a log record is written in the private log, the log |ows the second approach because duplexed disks are costly.
manager returns a key for the record — called) Sequence  Before the EOS server writes to disk a large object, it gener-
Number(LSN) —that can be used later to access that recordates a redo-only log record that is inserted in the in-memory
The LSN of a log record corresponds to the address of thyg puffer. Unlike the traditional WAL protocol, shadowing
record in the private log file. does not require the forcing of the in-memory log buffer
to disk. The log buffer, however, is forced to disk when it
overflows and at transaction commit.
3.2.2 Large object recovery It is worth mentioning that logging of large objects for
protection against media failures may degrade the perfor-
Similar to small objects, large objects must be recoverablemance of the system. This is especially true when large ob-
However, the recovery mechanism must not impose a highects are updated frequently and the sizes of the updated
overhead on large object operations. The large object recowbyte-ranges are large. For this reason, EOS allows logging
ery mechanism depends on the way large object data seder large objects to be turned off when media recovery is
ments operations are carried out. We examined two methodsot an issue.
for handling large object data segment operations; namely,
buffering and direct disk 1/0. We chose the latter technique
because buffering complicates buffer management and re3.3 Transaction execution
quires substantial amounts of contiguous buffer space for
objects whose size may be up to hundreds of megabytes amdl committed transaction”” goes through three phases, ac-
even gigabytes (e.g., an MPEG-compressed 100-min moviéve, committing, and write, which are shown in Fig.#.
requires about 1.125 GB of storage). is in theactive phasdrom the time it starts up until the time
We examined two main alternatives for recovery of largeit finishes normal execution and it is ready to commit. At
objects: logging and shadowing. Redo-only logging is em-this point,.7~ must convert all exclusive locks it acquired to
ployed by EOS for small object recovery. However, the commit locks and send the remaining of the log records to
redo-only logging approach cannot be used for large obits private log. During this processy is in the committing
ject recovery since large objects are written directly to disk.phase.7 is said to be committed when the log records are
Consequently, undo log records must be written to recoveivritten to stable storage and a commit log record is placed
the state of a large object that is updated by an aborteéh the global log. The last phase is the one whefe es-
transaction. These undo log records require extra disk I/Qablishes its updates in the server buffer pool; this phase is
for reading the previous image of the affected byte-rangecalledwrite phase A transaction can be aborted at any time
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A oY e where it is stored. The BMCB keeps various information
| | | | related to the page, e.g., the lock held .y, the relative
‘ ‘ ‘ ‘ order of 7 in the least recently used page list, whethér
started ready to commit committed ’

has been updated, etc. When a transaction wants to access
Fig. 4. The states a transaction can be in during its execution an ObJeCt on the page, ,'t calls the buffer manag_er and,passes
along the lock mode”# that needs to be acquired of.
The buffer manager executes the following algorithm.
during the active and the committing phases. Once the trans-

action has reached the write phase, its updates are guarantedd Scan the buffer pool to locate the BMCB of =#”. Depending on

whether the BMCB is found, execute one of the following steps.

to persist. )

P 2. The BMCB of & is not found.

a) Create a new BMCB for /°.
3.3.1 Active phase b) Allocate a frame in the buffer pool to place &°. If the buffer
pool is full, replace a page from the pool as follows:

During normal transaction processing, locks are acquired i. Find the least recently used page 4% Ry
from the server and database pages are cached in the appli- ii. If &7 ru has not been updated, free the frame and the
cation’s private buffer pool. When the private pool is full, BMCB associated with it.
pages are replaced to make_room for new ones. In the redo- iii. If 7% Ry isdirty, send 7% gy to the private log file, save
only logging approach used in EOS, a dirty page that has to the returned LSN in the BMCB of /7 gy, and free its
be replaced should never be written to its disk location in frame.
the da:;[abafse bEf(_)re thek transaﬁ“oln Com(;mtrs]' Th'ﬁ IS b(ejcause c) Request from the server page &° with lock %4 on & and
no undo information is kept in the log and, thus, the updates 1. on s file. Return.

could not be undone. Avoiding writing an uncommitted dirty 5
page to the database can be achieved in several ways.
A first alternative is to send uncommitted dirty pages

to the server. The server can place these pages either in a
shadow disk location or in its buffer pool. In the latter case,
shadow pages are written when the uncommitted modified
pages are replaced from the buffer pool. The shadow pages > _
replace the originals when the transaction commits and they ~© f " Was swapped out, make room in the buffer pool by re-

: _ _ _ . . i
are discarded when the transaction aborts — this approach is ~ P/acing a page as in step 2b above and request . from the
used inO, (Deux et al 1991) private log using the LSN stored in &”’s BMCB. Return.

. The BMCB of & is found.

a) If & is present in the buffer pool and no lock upgrade is
needed. Return.

b) If & is present in the buffer pool and the lock mode needs
to be upgraded, request from the server % -lock on & and
1% -lock on s file. Return.

A second alternative is to store uncommitted dirty pages
in a swap space. When a dirty page is replaced from th .
application’s private pool, it is placed in the swap space%'s'2 Transaction abort
and the buffer manager stores the location of the page in th
buffer control block (BMCB) associated with the page. If the
page is accessed again by the same transaction, the buff
manager fetches the page in the buffer pool by reading i ; P .

L ticular,.7~ sends amabort transactionmessage to the

from the swap space. A similar approach was proposed b ar ' .
Franklin et al. (1993) to increase the effectiveness of inter-I ervler, frﬁes various control structures used, and purges the
transaction caching. ocal cache.

We have chosen the second approach because under 2\{— \1Vhen th(a”sler\i/(err:elcémg(aj ahort tra?hsacnpnr‘?e?sa%?,
2PL anS lock does not conflict with aX lock and, conse- It releases all locks held by , purges the private log Tile

quently, a dirty page present in the server buffer pool coulaaSSOCiated with7”, and adds”7™ to the list of aborted trans-

be read by any transaction. Although we could have pre2¢ions:

vented this by devising special lock modes, we abandoned

this solution in favor of a simpler lock manager. Hence, EOS3 3.3 Transaction commit
stores the swapped-out dirty pages in a swap storage area> > : :

The swap storage area can be on the client or the serv : - . . o

machine, and it is specified in the EOS configuration fiIes?’R/h:jan ta transa_ct:tl_?rﬁl f'n'SthheS |tts active prlazebard Itis
As a special case, the private log of a transaction could pgeady to commit, it Tollows the Steps presented below.
used as. the swap spac_e for Uncomm'tted_L_’PdateS —thisis th?. Without waiting for a response send a convert locksmessage
default in our current implementation (Biliris and Panagos i, e server.

1993). When a dirty page is replaced from the application’s , ggnqg asynchronously to the private log all remaining log records.

private pool, EOS generates a_log reCOfP‘ containing the Page; send a commit transactiomessage to the server and wait for
and the LSN of the log record is stored in the BMCB of this ¢ acknowledgment.

page. The following paragraph describes the data structures

and algorithms used. While .7 is executing step 2 or waiting on step 3, the
Every page~ in the private cache of a transaction server may reply with arabort message. The reason for

has a BMCB associated with it, as well as a buffer framethe abort may be: (1)~ was involved in a deadlock that

$Vhen a transactior” aborts, no undo action needs to be
§rried out besides cleaning up possible object copies in the
ransaction private space and removing the private log. In
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materialized when the server was acquiring the commit lockon. The EOS checkpoint algorithm does not force any dirty
for .77, or (2) an internal error occurred while writing the pages to disk. Instead, EOS has a background process that

log records or flushing the private log. forces dirty pages to disk on a continuous basis. Formally,
On receiving theconvert locksmessage the server exe- the steps followed by the EOS checkpoint algorithm are the
cutes the following steps. following.
1. For each page locked by .7 do one of the following: 1. Compute the address, referred to as CommitLSNof the earliest
a) If the lock mode is IX or SIX, upgradeitto IC . commit record inserted in the global log by transactions that have
b) If the lock mode is X, upgrade it to C. started their write phase. If there are no transactions that have
2. Release all IS and Slocks. started their write phase, set CommitLSNto be the current end
3. Send a SUCCES3nessage to the application. of the global log.

2. Compute the minimum, referred to as DirtyLSN, of all RedoLSN
values present in the BMCBs of the dirty pages that are present
in the server buffer pool. If the server buffer pool does not contain
any dirty page, then set DirtyLSN to be the current end of the
global log.

3. Set RestartLoao be the minimum of the DirtyLSN and Com-

An application sends aommit transactionrmessage to
the server after it sends all log records generated by the
committing transaction to the server. When the server re-
ceives thecommit transactiormessage it follows the steps
described below.

1. Flush the private log to stable storage. MItLSN values computed above.
2. Insert a cOmmMitrecord in the global log and flush the global log. 4. Write in the global log a checkpoint record that contains the
3. Send a SUCCESSnessage to the application. RestartLoaomputed in the previous step.
4. Write Phase: Install the updates performed by the committed 5. Save the location of the checkpoint record in a place well known
transaction by scanning the transaction’s private log file. For each to the restart procedure.
log record corresponding to the after image of a page do the fol-

Note that the checkpoint algorithm visits the list of the
transactions that are in the write phase first and then it com-
putes the minimum of thRedoLSNvalues corresponding to
dirty pages. This is necessary in order to guarantee correct
restart recovery in the case where the server buffer pool does
not contain any dirty pages when the checkpointing process
starts and a transactidh finishes its write phase before the

If an error occurs while the server executes the first tW()”St of transactions that are in the write phase is examined. In
steps of the above algorithm, it aborts the transaction andhis case, if the server were to crash after the checkpoint was
replies with anabort message. taken, the updates made Bywould not have been redone
during restart.

lowing:
a) If the page is present in the server buffer pool, overwrite its
contents with the data part of the log record.
b) If the page is not present in the server buffer pool, make room
in the buffer pool and place the data part of the log record there.
5. Release all remaining locks (i.e., Cand IC locks).

4 Recovery from process crashes
4.2 Restart

When a client application crashes, the server aborts the trans-

action associated with this application, if any, and the serveSystem restart is done by scanning the global log file and
thread bound to the application is terminated. When thegredoing all the updates made by committed transactions in
server process crashes, the server restart procedure retur@sactly the same order as they were originally performed.
the database to a state that includes all the updates mad¥ter the database state is restored, a checkpoint is taken and
by committed transactions before the failure. To reduce thdéhe system is operational again. If the server process crashes
amount of work the recovery manager has to do during sysin the middle of the restart procedure, the next restart repeats
tem restart, the EOS server periodically takes checkpoints.the same steps again in an idempotent fashion. Formally, the

steps followed during restart recovery are the following.

4.1 Checkpoints 1. Get the RestartLoovalue stored in the last checkpoint record of
the global log. For each log record inserted in the global log after

During normal transaction execution, the server buffer pool  the RestartLoddo the following.

contains two kinds of pagesteananddirty. A page is clean a) If itis a checkpoint record, skip it.

when the disk version of the page is the same as the version b) If it is a commit record, redo all updates present in the pri-
of the page that is present in the server buffer pool. A page vate log corresponding to that record by executing the write
is considered dirty when its contents are not the same as phase of the server’s transaction commit algorithm presented
the disk version of the page. Since EOS employs a redo- in Sect. 3.3.3.

only recovery protocol, dirty pages contain only committed 2. Take a checkpoint.
updates. The server’s buffer manager tracks in the BMCB
of each dirty page the location of the commit log record,
referred to afRedoL SN that belongs to the last committed 5 Performance results
transaction that updated this page.
EOS employs duzzy checkpointlgorithm that takes In this section we present the results collected from three sets
checkpoints asynchronously, while other processing is goin@f experiments. The first set of experiments measures the
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Table 3. Database (DB) configuration Table 4. Performance of logging, transaction abort, and system restart
DB Objects Object size Objects Pages Database Execution time (s) Logging Abort Restart
name in DB (B) per page in DB name Logging on Logging off overhead time (s) time (s)
FewObj 6000 500 6 1000 FewObj 17.2 15.7 9% 1.0 1.3
MediumObj 30000 100 30 1000 MediumObj 18.9 17.3 9% 1.1 1.3
ManyObj 100000 20 100 1000 ManyObj  25.6 23.8 7% 1.7 1.3

Trans execution Trans execution

overhead of the logging and recovery components of EOS it logging ON it logging OFF

when only one transaction is active in the system. The sec-
ond set of experiments concentrates on a multi-client setting
and measures the overhead of logging during normal trans-
action processing. The third set of experiments compares the
performance of the 2V-2PL and 2PL locking algorithms. g
All experiments presented in this section were run onf?3
SPARCSstation 10s running SunOS 4.1.3 and having 32 MBZ
of main memory and 142 MB of swap space. The clientsg
and server processes were run on separate machines aﬁd1
they were connected by an Ethernet network. The database
was stored in a raw disk partition and the database page
size was 4KB. The log was stored in a regular UNIX file
andfsync() was used at transaction commit for flushing
any internal operating system buffers to disk. All times re-

ported were obtained by using tgettimeofday/() and Y Y N;

getrusage() UNIX system calls. ° FewObj MediumObj ManyObj

. Transaction Abort System restart

N
S

@

Fig. 5. EOS performance results

5.1 Logging, abort, and system restart
5.1.2 Results

In this section we present an initial study which measures the ] )
logging overhead, the time required to abort a transaction!n the first set of experiments we measured the overhead of

and the time spent when restarting the system after a crasM/fting the log records to the log, as it was observed by the
application process. In order to compute this overhead we
altered the EOS server to allow the writing of the log records
to be selectively turned on and off. The execution time for
a transaction includes the time to initialize all EOS internal
structures, to execute and to commit the transaction. If log-
Table 3 describes the three databases used for the expeging is on, the execution time also includes the generation,
ments we ran; this is a variation of the model presented byshipping and writing of log records, and the forcing of the
Franklin et al. (1992a) for measuring the performance of thdog to stable storage.

recovery components of client-server systems. Each database Table 4 indicates that the overhead of shipping log
consists of 1000 pages and the key difference among themecords to the server and forcing them to disk decreases as
is the number of objects they contain. The first databasethe number of objects accessed by the application program
called FewObj, consists of 6000 objects of size 500 B each. increases. As mentioned in Sect. 3.2.1, EOS employs whole-
The second database, callg@diumObj consists of 30,000 page logging. Since the number of pages that are updated is
objects of size 100 B each. The third database, cdllady-  the same in all three experiments, the number of log records
Obj, contains 100000 objects of size 20B each. Space ogenerated is also the same. Thus, the logging overhead is
pages was purposely left unused so that the total number akduced because the processing time of the application pro-
pages is the same for all three databases. gram increases.

We used only one kind of transaction for the experiments ~ The time to abort a transaction was measured by the same
performed, referred to ddpdate that sequentially scans the set of experiments that were run to measure the effect of
entire database and overwrites part of each encountered olhe logging subsystem during normal transaction processing.
ject. The server’'s cache was set to 16 MB so that the entir@his time, each transaction is aborted after it finishes normal
database was cached in main memory and the writing of logexecution and the shipping of all log records to the server.
records was the only I/O-related activity. The application’s The abort tests shown in Fig.5 indicate a slight increase
buffer pool was set to 8 MB. In this way the entire databasein the time needed to abort a transaction as the number of
fits in the private pool during transaction processing. How-updated objects increases. The time to abort a transaction
ever, the local pool is empty at the beginning of each run.corresponds to the time needed to release all the locks held
All the numbers presented in the forthcoming sections weréby the transaction plus the time needed to clean all data
obtained by running each transaction five times and takingstructures used by the transaction. The release of locks takes
the average of the last four runs. the same time for all three databases since page-level locking

5.1.1 Database and system model
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Table 5. Database configuration Table 6. Small database performance results
Database Number of Objects per Module size Total size Update one Update all
name modules module MB MB Active  Response Throughput Response Throughput
Small 5 10000 1.24 11.15 clients (s) (trans/min)  (s) (trans/min)
Large 5 100 000 6.20 55.75 1 3.32 18.07 11.56 05.19
2 3.83 31.33 11.89 10.09
3 471 38.22 12.86 14.00
is used by EOS and the same number of pages is accessed 5.83 41.17 14.53 16.52

Thus, the increase in the abort time is due to the the cleaning5 7.28 41.21 17.03 17.62

of the object-related data structures - one handle per accessed

object.
To measure the time needed to redo the updates pe;.r_un repeatedly so that the stea_dy-state performance of the
system could be observed. While the server pool was not

formed by a committed transaction, we turned off the check-

point activity and the server process was crashed immedif_Iushed between transactions, the client pool is empty at the

ately after the transaction committed. During restart, the enP€9inning of each transaction because EOS does not sup-
rt inter-transaction caching in the current implementation.

tire log was scanned and the updates made by the committ%o ; . !
transaction were re-done. The restart tests showed that t ach client was given 8 MB of buffer space and the server's
time needed to redo the committed updates is independent &G‘Che was set 0 16MB.

the number of objects updated. This is so because the num- The following two sections present the collected results.
ber of log records processed during restart was the same f {rst we present the results for the small database and then
all three databases used. The times showed in Table 4 indt*® analyze the results for the large database.

cate that EOS offers fast system restart compared to normal

processing time. 5.2.2 Small database

5.2 The performance of the whole-page redo-only logging This section presents the performance results collected for
the two traversal operations using the small database. Both
In this section, we present an initial study of the performancelraversal operations do not experience any paging because
of the Wh0|e_page redo_omy |ogg|ng a|gorithm emp|0yed byeaCh individual module is smaller than the client buffer p00|
EOS. In this study, we used two databases of different sizegnd all five modules are smaller than the server's cache.
and two different operation sets in order to measure transTable 6 contains the collected results. Figure 6 shows the

action response time and system throughput when sever&gsponse time and throughput versus the number of active
clients are active in the system. clients for both traversal operations.

Each update one traversal produces only one log page
since only one part object is updated and each part object
5.2.1 Database and system model is much smaller than the database page size. On the other
hand, each update all traversal produces the same number
A modified version of the OO1 benchmark (Cattell and of log pages as the number of pages updated, namely 278.
Skeen 1992) was used as the basis for measuring the perfarowever, Table 6 shows that the difference in response time
mance of the EOS logging component. We used two differenbetween the two traversal operations varies from 2.3-fold
database sizes in the study, referred tesamll and large. to 3.4-fold. This is because EOS writes log records asyn-
Table 5 shows the size characteristics of the two databaseshronously, during normal transaction execution. As a re-
Each database consists of five modules. Each module corsult, at transaction commit time only a small number of log
tains several part objects, each having size equal to 100 Bbages have to be sent to the server and written to the log.
Each part object is connected to exactly three other objects. Interestingly, the response time of the update one traver-
In order to be able to traverse all objects, one connectiorsal increases faster than the response time of the update all
is initially added to each object to connect the objects in atraversal as the number of active clients increases. For ex-
ring; the other two connections are added at random. Furample, when the number of clients increases from one to
thermore, one of the part objects serves as the root of thewo the response time of the update one traversal increases
object hierarchy and it is given a name so that it can beby 15%, while the response time of the update all traversal
retrieved later on from the database. increases by 2%. This is because whole-page logging is not
The experiments were performed using two differentvery effective when only a small region of a page is updated.
traversal operations, referred to apdate oneand update  Consequently, the overhead of writing log records to private
all. Both traversals retrieve the root part object of a mod-log files and the overhead of reading these records during the
ule and they visit all part objects in the module. While the transaction write phase affect more the update one traversal.
update all traversal updates all part objects it scans, the ud-og writes (reads) are more expensive because the amount
date one traversal updates only the very first part objectof data written to (read from) each private log file is small,
In order to avoid performance degradation due to lock con-and the cost of disk seeks is not amortized over the amount
flicts and deadlocks, each client accesses a different modulef data written to (read from) disk.
in the database. Thus, the number of clients in all exper- However, when a large nhumber of log records is gener-
iments was varied from 1 to 5. During each experiment,ated, the buffering of log records in main memory reduces
each traversal was run as a separate transaction, which wé#ise cost of log writes because disk seeks are amortized over
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Table 7. Large database performance results
the two traversal operations between 2.4 and 3.8 times, de-

Active 3222;?;’2 eThroughput ‘;223;"”;"‘2 Throughput spite the fact that the update all traversal generates 2778 log
clients  (s) trans/min  (s) trans/min pages. However, transaction response time increases dramat-
1 034.92 1.72 133.79 045 ically when two clients are active in the system. In particu-

2 100.03 1.20 307.24 0.39 lar, the update one traversal becomes 2.8 times slower and
i 1;‘8-22 1;2 232-23 8-;‘? the update all traversal becomes 2.3 times slower. This is
5 24017 105 57934 052 because there is a significant amount of paging going on

in the server’'s cache. Since each module consists of 2778
pages and the server’'s cache is set to 4000 pages, when two
. r more clients are active simultaneously, the server needs
time. Furthermore, because EOS prefetches log records du o perform cache replacement. After a r){umber of transac-
ng the transaction write phase, log reads are also less ®Yons are committed, the server's cache consists of pages
pensive. . "

The throughput results shown in Fig.6 are calculatedthat contain committed updates and each cache replacement

. : operation requires a disk /0.
from the response time results. While the throughput of the Although the throughput of the system drops when two

system almost doubles when the number of active CIIents<’:Iients are active, for three and four clients the throughput

increases from one to two, when more than two clients are .
creases for both traversals. However, after four clients the

active in the system the throughput increases with a muc}lénerver becomes a bottleneck and the update one traversal
slower rate. In particular, when the number of clients in- P

creases from four to five, the throughput increases by 60/(()joes not scale anymore. The server bottleneck is due to the

for the update all traversal. The increase for the update ongverhead gf th%.rand?rln seeks tdo tq_eh'log dl'JSk during thﬁ
traversal is marginal. Writing and reading of log records. This is because eac

transaction private log file corresponds to a UNIX file in the
current EOS implementation.

5.2.3 Large database

5.3 The performance of the 2V-2PL algorithm

This section presents the performance results collected for
experiments using the large database. Table 7 shows the coMhis section presents a comparative performance evaluation
lected results numerically and Fig. 7 illustrates the responsef the 2PL and the 2V-2PL protocols in the context of a
time and throughput versus the number of active clients forclient-server environment such as EOS. For each protocol,
both traversal operations. we measure the response times of transactions that read a

As in the small database case, the asynchronous sendumber of database objects which are updated concurrently
ing and writing of the log records during normal transactionby another transaction, as well as the response time of the
processing keeps the difference in response time betweempdater transaction.
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Table 8. Performance results for the reader and writer transactions 30 I I
Number of clients Response time (s)
2PL 2V-2PL
Total Readers Writers Reader Writer Reader Writer g
1 1 0 2.86 n/a 2.86 n/a &
1 0 1 n/a 11.56 nla 11.79 =
2 1 1 14.01 14.00 331 14.07 =
3 2 1 15.28 15.26 4.68 16.53 E
4 3 1 17.11 17.20 6.81 19.89 S
5 4 1 19.18 19.06 9.25 23.22 g 0F gl
14 g
5| CmTTT -
The small database described in Sect.5.2 was used as |
| |

the basis for comparing the performance of the 2V-2PL algo- ©
rithm against the performance of the 2PL algorithm. The ex- ﬁ,umbe, of Readeé
periments were performed using two different transactions
referred to asvriter andreader, that access exactly the same
database module. The writer corresponds toupdate all
traversal operation studied in Sect.5.2. The reader, on the
other hand, just visits all part objects in a module and looks
up two fields of each part object, without performing any
updates at all.

Because EOS supports both locking algorithms, no

change had to be made to the system for collecting the per.?ame' regardless_ of the number of readers _that are present
formance results. To avoid costs related to cache replacé[1 the system. This behavior was expected since under 2PL

ment, each transaction was given 8 MB of buffer space an&hared and exclusive locks are not compatible. Thus, a reader
the s’erver’s cache was set to 16 MB. During each experi-'s made to wait when it needs to access a page that is locked

ment, the reader and writer transactions were run repeated%y the writer and, similarly, the writer has to wait until all

Fig. 8. Reader and writer response times: 2V-2PL vs 2PL

at each client so that the steady-state performance of th € r_eaders that are accessing a page finish execution be-
system could be observed ore it can update any objects residing on that page. Con-

sequently, the aggregate execution and blocking times for
both the readers and the writer are similar.
5.3.1 Results In contrast, when the 2V-2PL protocol is in use, the
average response time of the readers is much lower than the
We first present results obtained when only one client isresponse time of both the writer and the reader transactions
interacting with the server. The goalof this experiment wasunder the 2PL protocol. Since the 2V-2PL protocol allows
to observe the response time of a transaction (including theeaders to access objects that are being updated by the writer,
overhead of the locking protocol) when there are no lockreaders are not blocked. However, the average response time
conflicts in the system. The first row of Table 8 shows theof the reader transactions increases as the number of readers
response time of the reader transaction when no other clierih the system increases. For example, the average reader
is active in the system. As we can see, the response timander 2V-2PL is about twice as fast as the reader under
of the reader transaction does not depend on the particul&2PL when four readers are interacting with the server; when
locking protocol employed. only one reader is active, the 2V-2PL reader is 4.2 times
The second row of Table 8 shows the response time ofaster that the 2PL reader. This is because a reader may
the writer transaction when no other client interacts withbe blocked when the writer is in the process of converting
the server. For the writer transaction, 2V-2PL is somewhaiits locks to commit locks. As the number of readers in the
slower compared to 2PL. This is because the 2V-2PL protosystem increases, the probability of a reader being blocked
col requires the client to send one extra message to the servduring the writer’s lock conversion process also increases.
to convert its exclusive locks to commit locks (this message Interestingly, the 2V-2PL writer is always slower than
corresponds to the first step of the algorithm presented irthe 2PL writer, due to a number of reasons. First, an extra
Sect. 3.3.3). In addition, while log records are being sent tamessage and a check are required by the 2V-2PL protocol,
the server, the client checks whether the server replied wittas mentioned in the beginning of this section. Second, since
an abort message so that to avoid sending unnecessarily tleach transaction is executed repeatedly by each client, there
remaining log records — recall that a transaction may bds always at least one active reader when the writer starts
aborted while it is in the process of converting its locks.  converting its locks and, thus, the writer is blocked. How-
We now turn our attention to the case where many clientever, the server thread that is responsible for this transac-
interact with the server and lock conflicts materialize. Undertion does not wait until the lock conversion is over. Instead,
this experiment, there is always one writer in the system andt checks whether the client sent any log records, since log
the number of reader transactions varies from one to four +ecords may be sent while the lock conversion is in progress.
so the total number of clients varies from two to five. Table 8 Finally, the conversion of locks to commit locks involves a
presents the results and Fig. 8 illustrates them. traversal of all lock entries belonging to the writer trans-
For the 2PL protocol, the average response time of theaction. For each lock entry, a number of expensive UNIX
readers and the response time of the writer are almost theemaphore operations are required for converting the lock.
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6 Related work (1991). This results in an increased volume of messages and
it is expensive. ARIES/CSA allow clients to take check-
There has been a considerable amount of research and exp@eints. Client checkpoints are stored in the global log file
imental work on client-server object stores. There are alsanaintained by the server. In contrast to EOS and ESM-CS,
several commercial systems that are based on the clienserver checkpointing in ARIES/CSA requires synchronous
server model but few details about the specifics have beenommunication with all the connected clients.
published. ObjectStore (Lamb et al. 1991) is a commercial OODB-
O, (Deux et al. 1991) employs an ARIES-based (Mo- MS based on a memory-mapped architecture. The strict two-
han et al. 1992) recovery protocol using shadowing to offerphase page-level locking is used together with multi-version
a redo-only logging scheme. The log is maintained by theconcurrency control. Similar to EOS, ObjectStore employs
server and only after-images of updates are logged. When a whole-page logging scheme and it uses the log for storing
page containing uncommitted updates is swapped out of thdirty pages belonging to active transactions. However, due to
client cache, a log record is generated first and then the paglie memory-mapped architecture, ObjectStore tends to gen-
is sent to the server. The page is placed in the server buffegrate all log records during transaction commit. In contrast
pool unless no space is available, in which case a shadow EOS, ObjectStore offers inter-transaction caching, nested
page is created. Placing a dirty page in the server buffer podransactions, full dumps, and continuous log archiving.
is not a problem inD, because & lock conflicts with an ORION-1SX (Garza and Kim 1988; Kim et al. 1990)
X lock (standard 2PL). Unlike),, EOS cannot place dirty uses both logical and physical locking. The logical lock-
pages in the server buffer pool because under 2V-2F_ a ing is applied on the class hierarchy, whereas the physical
lock is compatible with arX lock. Alternatively, EOS logs locking is used for transferring objects atomically. ORION-
the entire page and it does not have to keep track of thdSX uses an undo-only recovery protocol. Pages updated
shadow pages a3, does. by active transactions can be written in place on disk dur-
The Exodus client-server storage system ESM-CSng transaction execution. However, all pages updated by a
(Franklin et al. 1992a) employs an ARIES-based recoverytransaction are forced to disk at transaction commit. As a
approach, modified to work in a client-server environment,consequence, the performance of the system degrades, since
and uses the steal and no-force buffer management policiepages that are updated frequently are forced to disk very
Concurrency control is based on the strict 2PL algorithm,often.
and the minimum locking granularity is a database page. In POSTGRES (Stonebraker and Kemnitz 1991) follows a
contrast to EOS, ESM-CS applications send all pages moddifferent recovery scheme than most existing systems as-
ified by a transaction to the server at transaction commitsuming that stable memory is available. POSTGRES does
Aborting a transaction in ESM-CS requires the following not use the write-ahead logging approach, and updates al-
steps: (1) scanning of the log to locate the log records writterways create new versions. This approach offers a fast re-
by the transaction, (2) undoing the updates present in eactovery with no logging overhead and supports time travel.
log record, and (3) generating compensation log records. Ohlowever, POSTGRES requires special hardware and a sep-
the other hand, EOS does not have to scan the log, nor doesate process to store old versions in the historical database
it have to undo any updates. maintained by the system. The same recovery technigue is
ESM-CS requires three passes over the log during startfollowed by MNEME (Moss 1990) but without making use
up time; log records are written during undo, and dummyof stable memory.
log records are written in order for the conditional undo to ~ QuickStore (White and DeWitt 1994) is a memory-
work correctly. EOS requires only one pass over the log andnapped storage system for persistent C++ implemented on
it does not generate any log records during restart. Unlikedop of ESM-CS. Concurrency control uses the page-level
EOS, ESM-CS buffers large objects and uses logging forstrict 2PL protocol, and recovery uses the ESM-CS ARIES
their recovery. In addition, large object recovery is handledredo-undo protocol. White and DeWitt presented a study of
a page at a time, and the pages used to store a large objesgtveral recovery protocols (1995), including a redo-at-server
contain an LSN-like field. When a byte-range crossing pagescheme and whole-page logging. Similar to EOS, the redo-
boundaries is requested, pages have to be fetched individ@t-server studied by White and DeWitt (1995) sends only log
ally and stripped from their headers before being presentetecords to the server and not dirty pages. Unlike EOS, these
to the application. log records contain redo and undo information and they are
ARIES/CSA (Mohan and Narang 1994) is similar to the generated using the page diffing scheme. The drawback of
ESM-CS architecture. ARIES/CSA follows the traditional this approach is that the server may have to read a page
client-server recovery paradigm where clients send all theifrom disk before applying a log record. Consequently, per-
log records to the server as part of the commit processingformance degrades when the number of clients increases and
Unlike EOS and ESM-CS, transaction rollback is performedthe volume of log records generated per client is high.
by the clients in ARIES/CSA. Similar to EOS, ARIES/CSA Although the EOS whole-page logging scheme and the
clients do not send modified pages to the server at transactiomhole-page logging scheme presented by White and DeWitt
commit. Although ARIES/CSA employs a fine-granularity (1995) are similar, they differ in several ways. Unlike EOS,
locking protocol, clients are not allowed to update the sameéNhite and Dewitt’'s system places uncommitted dirty pages
page simultaneously. Instead, a client has to obtain an upn the server buffer pool. In contrast @, these pages are
date token before updating a page as well as a copy of thdiscarded when they have to be replaced before the transac-
page from the previous owner of the update token, as detion that updated them commits. Placing uncommitted dirty
scribed in the algorithms presented by Mohan and Narangages in the server buffer pool may affect system perfor-
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mance, especially when the server buffer pool experiencesxecution and the goal of offering fast transaction abort and
paging, because the buffer hit ratio becomes lower. Anothesystem restart times.

difference between the two schemes is that EOS installs the In addition, we have presented several performance stud-
updates of a committed transaction in the server buffer pooles of the EOS implementation of the concurrency control
immediately after the transaction is declared committed. Orand recovery protocols that we have described in the paper.
the other hand, White and DeWitt (1995) use a background-rom the results collected from these studies and from the
thread which periodically reads committed updates from thdimited number of published performance results for logging
log and installs them in the server buffer pool. and recovery systems, we concluded that the overhead for

Carey et al. (1991) studied the optimistic 2PL (O2PL) many cases was reasonable, despite the write-intensive na-
protocol was studied as part of a performance analysis ofure of the tests we ran. In addition, the performance study
several inter-transaction caching protocols for client-serveiof the 2V-2PL concurrency control method showed that the
systems. Although 2V-2PL is similar to O2PL, the two pro- concurrency level of the system increases considerably com-
tocols differ in several ways. First, transactions running un-pared with the performance of the strict 2PL. Finally, the
der O2PL do not request any locks from the server untilstudies raised several issues that have to be addressed in
they are ready to commit. Consequently, several transacerder to improve the performance of the system, including:
tions may be updating different copies of the same databassubstituting the expensive UNIX semaphores with a faster
page concurrently and, hence, a high number of deadlockgest-and-set utility, eliminating the overhead during the write
is possible. On the other hand, 2V-2PL prevents concurrenphase by batching reads from the transaction private log files
updates on the same database page by allowing only oneo that the number of random seeks is reduced, and batch-
transaction to acquire an exclusive lock on the page at ang log writes to transaction private log files to avoid 1/0
time. Second, all deadlock cycles under O2PL are discoveverhead due to random seeks.
ered only at transaction commit. 2V-2PL discovers deadlock EOS is used as the storage engine of the ODE OODBMS
cycles when they are formed, and it resolves them at tha(Biliris et al. 1993). The EOS facilities are also being used
time. Finally, a family of O2PL protocols supporting inter- in a major AT&T project that provides interactive TV capa-
transaction caching was presented in the work of Carey et abilities. This project requires efficient manipulation of multi-
(1991). EOS does not support inter-transaction caching at itsnedia objects in a client-server environment. EOS runs un-
current implementation. However, inter-transaction cachingder UNIX on SPARCstation, Solaris, IBM RS/6000, and SGI
of data can be supported in 2V-2PL by using the “check onarchitectures. EOS is written in C++ but it can also be used
access” scheme employed by the 2PL scheme presented loy programs written in C. Release 2.0 (Biliris and Panagos
Carey et al. (1991). 1993) is available free of charge to universities.

Ephemeral loggings a new logging approach that has We are currently working on issues related to inter-
been described and evaluated by Keen and Dally (1993). The#ansaction caching, providing support for multiple servers
description presented by Keen and Dally (1993) is based omnd distributed transaction as well as media recovery.

a redo-only recovery protocol which does not require check-
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