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Abstract. During the past few years our research efforts
have been inspired by two different needs. On one hand, the
number of non-expert users accessing databases is growing
apace. On the other, information systems will no longer be
characterized by a single centralized architecture, but rather
by several heterogeneous component systems.

In order to address such needs we have designed a new
query system with both user-oriented and multidatabase fea-
tures. The system’s main components are an adaptive visual
interface, providing the user with different and interchange-
able interaction modalities, and a “translation layer”, which
creates and offers to the user the illusion of a single homo-
geneous schema out of several heterogeneous components.
Both components are founded on a common ground, i.e.
a formally defined and semantically rich data model, the
Graph Model, and a minimal set of Graphical Primitives,
in terms of which general query operations may be visually
expressed. The Graph Model has a visual syntax, so that
graphical operations can be applied on its components with-
out unnecessary mappings, and an object-based semantics.

The aim of this paper is twofold. We first present an
overall view of the system architecture and then give a com-
prehensive description of the lower part of the system itself.
In particular, we show how schemata expressed in differ-
ent data models can be translated in terms of Graph Model,
possibly by exploiting reverse engineering techniques. More-
over, we show how mappings can be established between
well-known query languages and the Graphical Primitives.
Finally, we describe in detail how queries expressed by us-
ing the Graphical Primitives can be translated in terms of
relational expressions so to be processed by actual DBMSs.

1 Introduction

Recently, the database area has been proven to be particu-
larly fruitful for applying visual techniques specifically in
accessing stored data. One reason is that very often the
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database is queried by a casual user who is not necessar-
ily acquainted with languages such as SQL [Date 1987].
Visual Query Systems(VQSs) may be defined as query sys-
tems essentially based on the use of visual representations
to depict the domain of interest and express the related re-
quests. VQSs provide user-friendly query interfaces for ac-
cessing a database. They include both a language to express
the queries in a pictorial form (i.e., avisual query language,
VQL) and a variety of functions to facilitate man-machine
interaction. The VQSs are oriented to a wide spectrum of
users who have limited technical skills and generally ignore
the inner structure of the accessed database. In recent years,
many VQSs have been proposed in the literature, adopting
a range of different visual representations and interaction
strategies. However, the main part of any VQS is consti-
tuted by the VQL it is based on.

Various graphical VQSs have been proposed (a survey is
in [Batini et al. 1991]), but few of them are provided with a
formal definition (e.g., [Cruz Mendelzon Wood 1988; Nanni
1988; Angelaccio Catarci Santucci 1990; Consens Mendel-
zon 1990]). All these systems are mainly based on the idea
of proposing new visual representations for the classical,
non-visual database models, together with new interaction
mechanisms founded on the “direct manipulation” paradigm
[Shneiderman 1983]. For example, we can consider the al-
gebraic definition of relation in the relational model and
represent it by using either a hypergraph or a table; in the
same way we can represent the Relational Algebra operators
[Codd 1972] by some navigation in a diagram. VQSs have
been shown to be appropriate for querying a global infor-
mation system [Batini et al. 1991], because they typically
offer to the user a representation of the information that is
independent of the structure or the location of the actual
data. Nevertheless, existing VQSs generally do not adapt to
the various needs of different users. Neither do they interface
heterogeneous databases, a critical need of today information
systems (see, e.g., [Thomas et al. 1990; Sheth and Larson
1990; Elmagarmid Pu 1990]).

On the contrary, the main goal of our approach is to
allow different classes of users to access multiple, heteroge-
neous databases by means of an adaptive interface, offering
several interaction mechanisms. This led us to design and
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partially implement a query system with both user-oriented
and multidatabase features. One of the basic ideas of the
system is to give a precise semantics, in terms of changes of
database states, to a set of elementary graphical actions (such
as selection of nodes and drawing of edges), calledGraphi-
cal Primitives(GPs), in terms of which more complex visual
interaction mechanisms may be precisely defined. The GPs
are defined on the basis of a powerful data model, theGraph
Model (GM), having a visual syntax and an object-based se-
mantics.

On one hand, the GM is powerful enough to express
the semantics of most of the common data models, so it is
suitable as a unifying canonical model. A user can query
and examine results using a conceptually single database,
namely aGraph Model Database(GMDB). Then, her/his
query is translated into a set of queries which are executed
on the component databases, and the results of these are
combined to form a single result. The user is thus oblivious
to the existence of the underlying databases, and need not
be concerned with their specific storage formats or query
languages. On the other hand, the GPs can be used as basic
constituents of more complex visual interaction mechanisms
and different visual representations can be associated with
the GMDBs by simple syntactic mappings.

The work on the above query system has evolved during
several years, producing various partial results. This paper is
a comprehensive description of the lower part of the global
system. More precisely, we show how schemata expressed in
different data models can be translated in terms of GMDBs,
possibly by exploiting reverse engineering techniques. More-
over, we show how mappings can be established between
well-known query languages and the GPs, and vice versa.
Finally, we describe how queries expressed by using the
GPs can be transformed into relational expression so to be
processed by actual database management systems (DBMSs;
we concentrate on relational DBMSs, since they are widely
diffused in real applications). Other aspects of this research
are described elsewhere. In particular, the multiparadigmatic
user interface is presented in [Catarci Chang Santucci 1994]
and the GM foundations are in [Catarci Santucci Angelaccio
1993].

This paper is structured as follows: In Sect. 2 we describe
the system architecture. The basic notions on the GM are re-
called in Sect. 3. Section 4 gives the translations between
the GM and the relational, object-oriented, and semantic data
models. The query management and the result construction
are described in Sect. 5. Finally, the conclusions are pre-
sented in Sect. 6, and the directions in which this work will
proceed are summarized.

2 The overall system architecture

According to the main goals described in Sect. 1, we propose
a global system with the following basic features:

– A graph-based formalism (namely the GM) for represent-
ing and querying databases. This formalism is suitable
to give a precise semantics to complex visual represen-
tations and is general enough to formalize, in principle,
a database expressed in any of the most common data

models. The querying primitives of the formalism, al-
though constituted solely by two elementary graphical
actions, namely the selection of a node and the drawing
of an edge, are at least as expressive as the relational
algebra.

– An adaptive visual interface, built on the basis of the
above formalism, providing the user with different visual
representations and interaction mechanisms together with
the possibility of switching among them. All the different
visual representations allow one to express at least the
class of conjunctive queries.

– The definition of three suitable sets of translation algo-
rithms, one for translating a database expressed in any of
the most common data models into the internal system
model, one for translating a GM query in terms of the
query languages of the underlying data models and one
devoted to implement the consistent switching among
different visual representations during the query formu-
lation.

– The construction and the management of an effective
user model, which allows the system to provide the user
with the most appropriate visual representation according
to his or her skill and needs.

The architecture of the whole system is shown in Fig. 1.
The system consists of aVisual Interface Manager, a User
Model Manager, a GMDB & Query Manager, and one or
more DBMSs.

The Visual Interface Manager is capable of supporting
multiple representations (form-based, iconic, diagrammatic,
and hybrid) of the databases and the corresponding inter-
action modalities. In this way the user is provided with a
Multiparadigmatic Query Language that is based on a set
of visual query languages, each of them interacting with a
different visual representation of the GM and all sharing the
same expressive power. We briefly recall the features of the
representations the Visual Interfac e Manager interacts with.

Form-based representationsare the first attempt to pro-
vide the user with friendly interfaces for data manipulation;
they are usually proposed in the framework of the relational
model, where forms are actually tables. Their main char-
acteristic consists in visualizing prototypical forms where
queries are formulated by filling corresponding fields. In the
precursor systems adopting a form-based representation, like
QBE [Zloof 1977], only the intensional part of relations is
shown: the extensional part is filled by the user in order to
provide an example of the requested result. In more recent
proposals both the intensional and the extensional part of the
database coexist.

Diagrammatic representationsare those most used in ex-
isting systems. Typically, they represent with different vi-
sual elements the various types of concepts available in a
model. The correspondence between visual elements and re-
lated types of concepts demands aesthetic criteria for the
placement of visual elements and connections. For example,
hierarchical structures for generalization and object aggre-
gation dictate a vertical placement of the involved elements.
Diagrammatic representations adopt as typical query opera-
tors the selection of elements, the traversal on adjacent el-
ements and the creation of a bridge among disconnected
elements.
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Fig. 1. The system architecture

The iconic representationuses sets of icons to denote
both the objects of the database and the operations to be
performed on them. A query is expressed primarily by com-
bining icons. For example, icons may be vertically combined
to denote conjunction (logical AND) and horizontally com-
bined to denote disjunction (logical OR) [Chang 1990]. In
order to be effective, a proposed set of icons should be easily
understandable by most people. However, in many cases it is
difficult or even impossible to find a universally accepted set
of icons. As an alternative, icons could be user-defined to be
tailored to the particular needs of the user and to her/his own
mental representation of the tasks s/he wants to perform.

The hybrid representationsuse an arbitrary combination
of the above approaches, either offering to the user various
alternative representations of databases and queries, or com-
bining different visual structures into a single representation.
From an analysis of VQSs [Batini et al. 1991], it emerges
that several systems adopt more than one visual structure,
but often one of them is predominant. On the contrary, in
the proper hybrid VQSs, the different visual structures share
the same significance. Diagrams are often used to describe
the database schema, while icons are used either to repre-
sent specific prototypical objects or to indicate actions to be
performed. Forms are mainly used for displaying the query
result.

Based upon the user model provided by the User Model
Manager, the Visual Interface Manager selects the visual rep-
resentation most appropriate for the user. The User Model
Manager is responsible for collecting data and maintaining a
knowledge base of the user model components, namely the
class stereotype, the user signature, and the system model.
The Visual Interface Manager and the User Model Man-
ager are described in more detail in [Catarci Chang Santucci
1994] and [Catarci et al. 1993].

At the bottom of the figure, different databases structured
according to several data models are shown. Each database
is translated into a GMDB by the GMDB & Query Man-
ager, using the mappings described in Sect. 4. It is up to the
GMDB & Query Manager to manage such mappings and to
translate the visual queries into queries that can be executed
by the appropriate DBMS.

Figures 2 and 3 give more details about the GMDB &
Query Manager, showing its main components. Figure 2

Fig. 2. Conversion and integration of local schemata

describes the initial activity of the GMDB & Query Man-
ager, i.e., the conversion of the DBMS schemata into GMDB
schemata and the following integration.

Each of the merging schemata is expressed in terms of a
data model supported by a suitable DBMS. The GMDB &
Query Manager activates the needed translators to convert
the local schemata in terms of GMDB schemata. During this
phase, each translator interacts with an internal knowledge
base for two main objectives:

1. To document the choices adopted during the translation
activity

2. To find out additional information (if available) about
the schema it is translating

Once the set of GMDB schemata is available, the GM
schema integrator module provides for integrating them. The
first step in the integration of two schemata is to recognize
their similarities; these provide the starting point for the in-
tegration. However, the principal difficulty of schema in-
tegration is to discover and solve possible conflicts in the
schemata to be merged, i.e., different representations for the
same concepts.

Conflict analysisaims at detecting all the differences in
representing the same reality in the schemata. The main re-
search guidelines (see, for instance, [Navathe Gadgil 1982;
Batini Lenzerini 1984; Gottard Lockemann Neufeld 1992]
for specific methodologies and [Batini Lenzerini Navathe
1986] for a comparative survey), indicate several kinds of
schema differences detectable by conflict analysis, including:

1. Naming conflicts: Schemata incorporate names for en-
tities, attributes, and relationships. People from differ-
ent application areas of the same organization are used
to refer to the same data using their own different ter-
minology and names. This results in a proliferation of
names as well as a possible inconsistency among names
in the component schemata. The problematic relation-
ships among names are of two types:
– Homonyms: when the same name describes two dif-

ferent concepts, giving rise to inconsistency unless
detected.
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– Synonyms: when the same concept is described by
two or more names, giving rise to a proliferation of
names.

2. Domain conflicts: Insidious inconsistencies may exist in
the definition of the domain of concepts having the same
name in two different schemata. For instance, the entity
Studentcan include graduate and undergraduate students
in one of the two schemata, and undergraduate students
only in the other one.

3. Structural conflicts: These are conflicts that arise because
of a different choice of modeling constructs or integrity
constraints. Examples of conflicts are:
– Type inconsistencies: The same concept is repre-

sented by different modeling constructs in different
schemata (e.g., the use of city as an entity in one
schema and as an attribute in another one).

– Cardinality ratio conflicts: a group of concepts are
related among themselves with different cardinality
ratios in different schemata (e.g., Man and Woman
in the relationship ‘Marriage’ are 1:1 in one schema,
but m:n in another one, accounting for a marriage
history).

– Key conflicts: different keys are assigned to the same
concept in different schemata.

Because of the limited set of structural mechanisms of
the GM, the conflicts which arise are almost always name
conflicts, and the GM schema integrator keeps track of the
(eventual) renaming of concepts, documenting it in the in-
ternal knowledge base. Moreover, the knowledge base will
contain also pieces of information about the global schema
restructuring. This activity is performed by further analyz-
ing the global schema against the main goals of complete-
ness and minimality. Eventually, the internal knowledge base
documents the distribution of the data among the merging
schemata as well.

In Fig. 3 we show the modules of the GMDB & Query
Manager devoted to the query management.

Through the Visual Interface Manager the user interacts
with a view of the integrated GM schema and her/his actions
are translated in terms of GPs. Once the query is completed,
the user can ask for its computation. The Query Handler
module, through the analysis of the distribution informa-
tion produces a set of admissible views on the local GM
schemata. Each view is processed by the appropriate query
translator, resulting in a query expressed in terms of the un-
derlying DBMS. Each DBMS computes its partial query and
sends the result to the Query Handler that, in turn, merge
them, producing a unique result.

3 Graph Model and Graphical Primitives

In this section we recall from [Catarci Santucci Angelaccio
1993] the formal definition of the concepts underlying our
approach. We first introduce the syntax and the semantics
of the Graph Model in terms ofTyped Graphand Inter-
pretation, and then we define a suitable language for ex-
pressingConstraintson the elements of the Typed Graph.
Afterwards, we describe the GPs that allow for expressing
any query-oriented user interaction with a database in terms

Fig. 3. The Query Management

of two simple graphical operations: the selection of a node
and the drawing of a labeled edge.

3.1 The Graph Model

The GM allows us to define a GMDBD in terms of a triple
〈g, c,m〉, where g is a Typed Graph, c is a set (possibly
empty) of integrityConstraints, andm is the corresponding
Interpretation. The schema of a database, i.e., its intensional
part, is represented in the Graph Model by the Typed Graph
and the set of Constraints. The instances of a database, i.e.,
its extensional part, are represented by the notion of Inter-
pretation.

The intensional part of the database is expressed in
the Typed Graph in terms of classes and relations (called
roles). A class is an abstraction of a set of objects with
common characteristics, whereas a relation among classes
C1, . . . , Cn represents associations among objects of the
classesC1, . . . Cn. More formally, we define the Typed
Graph as follows.

Definition (Typed Graph)
A Typed Graphg is a 7-tuple:g = 〈N,E,L1,L2, f1, f2, f3〉
where:

– N = NC∪NR is the set of nodes, whereNC andNR are
mutually disjoint;NC is the set of so-called class-nodes,
andNR is the set of the so-called role-nodes. Moreover,
NC is partitioned intoNCp , the set of printable class-
nodes, andNCu , the set of unprintable class-nodes.

– E ⊆ N ×N is the set of edges.
– L1 is the set of node labels.
– L2 is the set of edge labels, including a special label
T 1.

– f1 is a total one-to-one function fromN to L1.
– f2 is a total function fromE to L2.
– f3 is a total function mapping each node to one value in
{unselected , selected , displayed }.

1 All edges are labeledT at the beginning of the interaction. Note that
such a label is for the purpose of the system and it is not displayed
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Observe that the labels inL1 are simply node names
(i.e., names of both classes and roles), whereas the edge la-
bels inL2 represent either set-oriented operations or boolean
expressions, and are used in the process of query formulation
(see next subsection).

The second component of a GMDB, namely the integrity
constraints, allows the designer to specify relevant condi-
tions on and meaningful properties of the classes and the
roles represented by the nodes in the Typed Graph. It is
worth noting that the user simply aiming at querying the
database does not need to be acquainted with the existence
of constraints. Instead, constraints are essential in specifying
the database schema, since they represent an important seg-
ment of the semantics of the application. In this paper we
are interested in two kinds of integrity constraints: theisa
constraints, and the cardinality constraints.

The isa constraints allows for representing subclass-
class relationships. More precisely, we can impose anisa
constraint on a Typed Graphg by simply enforcing that one
class-nodeC of g is isa-related to another class-nodeD
of g. As we will see in the definition of interpretation, this
means thatC represents a sub-class ofD in g.

Cardinality constraints allow for limiting the number
of participations of objects in relations. They come in two
forms, theatleast andatmost forms. The first form is
written asatleast(k, C,R), and is used to assert that ev-
ery object that is an instance of the class-nodeC is linked
to at leastk instances of the role-nodeR. The second form
is writtenatmost(k, C,R), and is used to assert that every
object that is an instance of the class-nodeC is linked to at
mostk instances of the role-nodeR.

The isa, atleast andatmost constructs are graphi-
cally represented in a Typed Graph as shown in Fig. 4a, i.e.,
an arrowhead edge for theisa relationships, and a pair of
numbers between brackets for the cardinality constructs.

Let us now turn our attention to the third component of
a GMDB, namely, the Interpretation. In defining the notion
of Interpretation, we use the following notations:

– AD{n1, . . . , nk} is the set of nodes adjacent to a given
set of nodes{n1, . . . , nk} minus{n1, . . . , nk}.

– D = Dp∪Du is a set of elementary objects.Dp is a set
of printable objects,Du is a set of unprintable objects.
Moreover, it holds thatDp ∩Du = ∅.

– U is a universe for a Typed Graphg, that is a set of
structured objects, defined as the smallest set containing
D and all the possible labeled tuples (of any arity) over
D , i.e. objects of the form〈l1 : t1, . . . , ln : tn〉, where
l1, . . . , ln and t1, . . . , tn are elements ofL1 and D ,
respectively.

Given a universeU , an Interpretation for a Typed Graph
g over U (or simply an Interpretation forg) is a function
mapping the printable class-nodes ofg to a subset of all
printable objects ofU , the unprintable class-nodes to a sub-
set of all unprintable objects ofU , and the role-nodes to a
subset of all labeled tuples ofU . In particular, given a role-
noden, its Interpretation is constituted by a set of labeled
tuples whose arity is equal to the number of class-nodes
which are adjacent ton, and each component is labeled with
the label of one adjacent class-node, and takes its values in

the corresponding Interpretation. Formally, an Interpretation
is defined as follows.

Definition (Interpretation)
Let g = 〈N,E,L1,L2, f1, f2, f3〉 be a Typed Graph. An
interpretation forg is a functionm : N → 2U mapping
each noden ∈ N to a subset ofU as follows:

– If n ∈ NCp
thenm(n) ⊆ Dp.

– If n ∈ NCu
thenm(n) ⊆ Du.

– If n ∈ NR and{n1, . . . , nh} = AD{n}∩NC , thenm(n)
is a set of tuples of the form〈f1(n1) : t1, . . . , f1(nh) :
th〉, wheref1(ni) ∈ L1 and ti ∈ m(ni) for i = 1..h.

Moreover, the interpretation is said to satisfy a set of con-
straintsc if the following conditions are satisfied:

– For every constraintCisaD in c (i.e., for every con-
straint enforcing thatC is a subclass ofD), we have
thatm(C) ⊆ m(D).

– For every constraintatleast(k, C,R) in c (i.e., for ev-
ery atleast cardinality constraint onC and R), the
number of labeled tuples inm(R) that contain elements
of m(C) in theC-component is greater than or equal to
k.

– For every constraintatmost(k, C,R) in c (i.e., for ev-
ery atmost cardinality constraints onC and R), the
number of labeled tuples inm(R) that contain elements
of m(C) in theC-component is less than or equal tok.

In the following, when we refer to a GMDBD =
〈g, c,m〉, we implicitly assume that the interpretationm sat-
isfies every constraint inc. We note that, given a Typed
Graph g and a set of constraintsc, there always exists at
least one Interpretation forg satisfying every constraint in
c. Indeed, it is easy to verify that the Interpretation mapping
each node to the empty set satisfies everyisa and every
cardinality constraint.

In the rest of the paper, we denote withAD′{n} the set
defined as follows:

– If n ∈ NC thenAD′{n} = AD{n} ∪i AD(ni) where
ni ∈ NCu

andnisa∗ni holds, whereisa∗ is the transi-
tive closure of theisa relation (note that ifn ∈ NCp

,
thenAD′{n} /= AD{n}).

– If n ∈ NR then AD′{n} = AD{n} ∪ {m ∈ NC |n∈
AD′{m}}.

In other words, ifn is a class-node, the setAD′{n} con-
tains both the nodes adjacent ton and the nodes adjacent to
its ancestors in theisa hierarchy; ifn is a role-nodeAD′{n}
contains both the nodes adjacent ton and the descendants
of such nodes.

An example of the use of the GM for the specification of
a database concerning persons, students, and cities, is shown
in Fig. 4. Figure 4a shows the Typed Graphg with the fol-
lowing constraints:Studentisa Person; atleast(1, P erson,
Age); atmost(1, P erson,Age); atleast(1, P erson,
Lives); atmost(1, P erson, Lives), i.e., a person has one
and only one age and lives in one and only one city. Fig-
ure 4b shows a possible Interpretationm for g.

Observe that the values stored in the unprintable nodes
play the role of object-identifier and they can be suitably
changed without affecting the information content of the
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schema. For instance, if we create a new GMDB, sayD2,
from the one in the above example, changing all occurrences
of the object identifierOI1, belonging to the classPerson,
into OI100, we can assert that the two GMDBs are equiv-
alent. Therefore we say that two GMDBs, sayD1 andD2,
belong to the same equivalence class if they share the same
Typed Graph and the Interpretation ofD2 is obtained by the
Interpretation ofD1 by applying an isomorphic function to
all the unprintable values of the Interpretation ofD1. In the
following we denote the equivalence class of a GMDBD1
asEQ(D1).

We end this section with a discussion on the main fea-
tures of the GM. The formal definition of the GM shows
that our formalism shares many features with other well-
known data models proposed in the literature. In particular,
the class-oriented nature of the model allows us to stress on
one hand several similarities with semantic modeling, and
on the other hand many important differences with record-
oriented data models (relational, hierarchical and network
data models). The intensional part of the database is indeed
expressed in the Typed Graph in terms of classes and re-
lations, in the tradition of conceptual semantic data models
[Hull King 1987], as well as frame-based knowledge repre-
sentation formalisms [Brachman Schmolze 1985]. The kind
of integrity constraints supported by the model is also tai-
lored to the class-oriented nature. ISA constraints are used
to represent theisa relation, which is one of the most rel-
evant semantic relations on classes. The importance of the
isa relation in representing knowledge is stressed in many
papers (see, for example, [Brachman 1993]), and stems from
the fact that it allows a modular approach to schema speci-
fication, based on the inheritance of properties. On the other
hand, cardinality constraints are important in establishing de-
pendencies along classes. For example, it is easy to see that
suitable forms of functional and existence dependencies be-
tween classes are indeed captured byatmost andatleast
constraints, respectively.

Although there are several similarities between the GM
and the Semantic Data Models, we can also single out some
distinguishing features of our formalism. We will discuss
this point by referring to three important class-oriented data
models.

The GM can be considered a variant of the extended
Entity-Relationship Model [Chen 1976; Ullman 1987], in
that class-nodes can be interpreted as entity types and role-
nodes as relationship types. Unlike the Entity-Relationship
Model, our formalism does not distinguish between at-
tributes and relationships in specifying properties of a class.
Indeed, we think that this distinction is not meaningful from
the user point of view. Instead, the important point for the
user is to have an effective and direct means to single out
logical links among classes (or entities), and this is accom-
plished in the GM by links relating class-nodes and role-
nodes.

There are several similarities between the GM and the
Functional Data Model [Shipman 1981]. Indeed, the Func-
tional Data Model has an easily understood visual represen-
tation, and is again based on the representation of classes and
links. However, representing complex associations among
classes is not an easy task when using the Functional Data
Model, whereas the GM provides the notion of role-nodes

Fig. 4a,b. A Graph Model DataBase.a A Typed Graphg and a set of
Constraintsc. b An example of Interpretation for〈g, c〉

for this purpose. We remind the reader that a role-node is in-
terpreted as a labeled tuple, and this directly reflects the fact
that its instances are associations among objects that are in-
stances of classes. Similar considerations hold in comparing
the GM with the Binary Data Model [Abrial 1974].

Finally, it is useful to briefly compare the GM to Object-
Oriented Database Models [Bancilhon 1988; Kim 1990;
Beeri 1990]. It is easy to see that the Typed Graph inherits
two characteristics of the object-oriented database approach.
First, a distinction is made between abstract and concrete
(also called printable) classes. The former represent sets of
objects denoted simply by object identifiers, whereas the lat-
ter represent sets of objects that are actually values of dis-
tinguished domains (integers, reals, characters, etc.). Second,
the isa relation is treated similarly in the two formalisms,
and the (possibly multiple) inheritance of properties is a cen-
tral notion of both models. Unlike the Object-Oriented Data
Models, though, the GM does not support a strong notion
of complex object. Indeed, record and set structures are not
explicitly modeled in our formalisms, but they are repre-
sented implicitly in role-nodes and inatmost cardinality
constraints. The choice of not modeling complex objects in
Typed Graph is mainly motivated by the fact that users are
typically not familiar with record and set structures, that are
instead much more oriented to computer science experts.

All the above observations point out that, although the
GM embeds many characteristics of well-known data mod-
els, its graphical and class-oriented nature represents a some-
what novel approach to data modeling, that is especially
suited to our goal of stressing both the user-oriented and the
multidatabase features of the presented query system.

3.2 Fundamental Graphical Primitives

In this section we recall the formal definition of the GPs. The
main idea is to express any query-oriented user interaction
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with a database in terms of two simple graphical operations:
the selection of a node and the drawing of a labeled edge.
The former is the simplest graphical operation available to
the user, and corresponds to switching the state of a node.
The latter is the linkage of two nodes by a labeled edge,
and corresponds to either restricting the node interpretations
according to the rules stated in the label or performing a set
operation on them. We show in the following that, by the
composition of these simple mechanisms, all the phases of
the query formulation may be accomplished.

We assume that several views of a database may be used
during query formulation. In order to build such views, we
introduce theDUPLICATE function.

The functionDUPLICATEk(D), whereD = 〈g, c,m〉
is a GMDB, results in a new GMDBDk = 〈gk, ck,mk〉
(the k-copy ofD) which is equal toD except for the node
labels (◦ denotes concatenation of two labels); in particular:
Nk = N .
Ek = E.
L k

1 = {k ◦ l|l ∈ L1}.
L k

2 = L2.
fk1 = {〈n, k ◦ f1(n)〉}.
fk2 = f2.
fk3 = f3.
ck = c.
mk is equal tom except for the labels of the tuple compo-
nents of the role-nodes:

mk(n) = {〈k ◦ l1 : t1, . . . , k ◦ lk : tk〉
|〈l1 : t1, . . . , lk : tk〉 ∈ m(n)} .

3.2.1 Selection of a node and drawing of an edge

In the rest of the paper we denote withD = 〈g, c,m〉
the database we operate on, and withD′ = 〈g′, c′,m′〉 the
database resulting from the application of a GP.

Selection of a noden in D : S (D,n)
S (D,n) = D′ such that:
g′ is equal tog except forf ′3(n) = succ(f3(n)).
c′ is equal toc.
m′ is equal tom.

Thesucc function is defined on the domain off3 as fol-
lows:succ(unselected ) = selected ; succ(selected )
= displayed ; succ(displayed ) = unselected .

The selection of a node is used to restrict the original
graphg to a subgraphg′.

Drawing of a labeled edge inD : E (D,F , n, q)
This primitive can only be applied when no edge betweenn
andq is in D. Its effect on the databaseD depends on the
label F , which may be a boolean expression, the symbol
“≡”, or a set-oriented operation.

Let n and q be role-nodes, and letF be a boolean
expression. The databaseD′ = E (D,F , n, q) is such that:
N ′ = N .
E′ = E ∪ {〈n, q〉}.
L ′

1 = L1.
L ′

2 = L2 ∪ {F }.
f ′1 = f1.
f ′2 = f2 ∪ {〈〈n, q〉,F 〉}.

f ′3 = f3.
c′ = c.
m′ = m.

D′ differs from D only for the presence of a new la-
beled edge and the associate label. During the building of
the result databaseD◦ (see Sect. 3.2.2) this will give rise to
a restriction of the final Interpretation.

Let n and q be unprintable class-nodes. The database
D′ = E (D, “ ≡ ” , n, q) is such that:
N ′ = N .
E′ = E ∪ {〈n, q〉}.
L ′

1 = L1.
L ′

2 = L2 ∪ {≡}.
f ′1 = f1.
f ′2 = f2 ∪ {〈〈n, q〉,≡〉}.
f ′3 = f3.
c′ = c.
m′ is equal tom except form′(x), wherex ∈ AD(q):

m′(x) = {〈l1 : v1, . . . , lk : vk, f1(n) : vk+1〉|〈l1 : v1, . . . ,

lk : vk, f1(q) : vk+1〉 ∈ m(x)} .

Note that this operation corresponds to renaming of a
tuple component in all the adjacents of a nodeq. It is use-
ful for handling queries involving more than once the same
node, each occurrence belonging to a different user view of
the database.

Finally, if F is a set operator, saysetop (union, differ-
ence, and intersection), thenn andq are class-nodes andD′
will contain both a new node and newisa constraints. More
precisely,D′ = E (D,F , n, q) is such that:
N ′
C = NC ∪ {s} (s is a new class-node).

E′ = E.
L ′

1 = L1 ∪ {ets}, whereets is a new label fors.
L ′

2 = L2.
f ′1 = f1 ∪ {〈s, ets〉}.
f ′2 = f2.
f ′3 = f3 ∪ 〈s, displayed 〉.
c′ is equal toc plus newisa constraints concerningn, q and
s, namely:
If F = ∪ thenc′ = c ∪ {nisas, qisas}.
If F = ∩ thenc′ = c ∪ {sisan, sisaq}.
If F = − thenc′ = c ∪ {sisan}.
m′ is equal tom except form′(s): m′(s) = m(n) setop m(q).

The above GPs constitute the minimal set of elementary
interactions. However, for the sake of simplicity, we add
a further operation, namely the change of label of an edge
linking a class-nodes to a role-nodeq. The change of an
edge label is denoted withC (D,F , s, q), whereF is a
propositional formula whose atoms are of the formαRβ,
whereR is a comparison operator;α and β are either the
s component of the tuples belonging to the Interpretation
of q (referred through the label ofq) or constants. During
the building of the result databaseD◦ (see Sect. 3.2.2) the
presence of labels different from the true valueT will give
rise to a restriction of the final interpretation. It can be shown
that the same result of the operation of changing a label can
be obtained by drawing a reflexive edge on the role-nodeq.
It follows that the label changing is not strictly necessary.
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3.2.2 Result database

We have seen in the previous subsection that the result of
applying a GP to a GMDB is again a GMDB. We now de-
scribe how to associate with such a GMDBD a new GMDB,
calledD◦, denoting the information content of the query per-
formed onD. Roughly speaking,D◦ is a GMDB composed
by a unique unprintable class-node linked, by means of bi-
nary role-nodes, to a set of printable nodes, corresponding to
the ones set todisplayed in D. The Interpretation of the
above binary role-nodes is computed in two logical steps: in
the first step all the selected role-nodes ofD are joined to-
gether giving the meaning of a fictitious n-ary role-node; in
the second step such a meaning is suitably projected on the
binary role-nodes ofD◦, taking into account the restrictions
specified in the labels of the edges drawn during the query
phase.

More formally, let D be a GMDB. Letr1, . . . , rk ∈
NR be the role-nodes ofD such thatf3(ri) = displayed
and there existsm ∈ AD(ri) with m ∈ NCp

and f3(m) =
displayed . Let m1, . . . ,mh ∈ NCp

the printable class-
nodes ofD such thatf3(mi) = displayed and there exists
r ∈ AD(mi) with r ∈ NR andf3(r) = displayed .

Let us denote withnew(Hi), whereHi ∈ {r1, . . . , rk,
m1, . . . ,mh} a function associating withHi one invented
node, such thatnew(Hi) /= new(Hj) for i /= j. Finally, let q
be a new node, and letetq be a new node label.

Let D◦ be the result database associated withD. The
Typed Graph ofD◦ is defined as follows:
N◦
R = {new(r1), .., new(rk)}.

N◦
Cu

= {q}.
N◦
Cp

= {new(m1), . . . , new(mh)}.
E◦ = {〈new(mi), new(rj)〉|〈mi, rj〉 ∈ E} ∪ {〈q, new(rj)〉

|rj ∈ {r1, . . . , rk}}.
L ◦

1 = {etq} ∪ {f1(ri)|ri ∈ {r1, . . . , rk}} ∪ {f1(mi)|mi

∈ {m1, . . . ,mh}}.
L ◦

2 = {T}.
f◦1 = {〈q, etq〉} ∪ {〈new(x), et〉|〈x, et〉 ∈ f1 and

x ∈ {r1, . . . , rk,m1, . . . ,mh}}.
f◦2 = {〈e, T 〉|e ∈ E◦}.
f◦3 = {〈x, unselected 〉|x ∈ N◦}.
c◦ = ∅.

In order to specifym◦, i.e., the Interpretation ofq, r1, . . . ,
rk, we need to introduce some useful functions and to char-
acterize some intermediate results (i.e.,RIS andRIS′).

Let HSN (x) be a function defined on a class-nodex
and returning a true value ifx is the highest selected node
in the isa hierarchy it belongs to (i.e., isx the highest se-
lected node?):HSN (x) = True iff f3(x) ∈ {selected ,
displayed } and there exists now ∈ NC such thatxisa∗w
andw ∈ {selected , displayed }.

Let TAD(y) (i.e., the set of true adjacents ofy) be a
function defined on a role-nodey and returning the subset of
AD′(y) satisfying theHSN condition:TAD(y) = {x|x ∈
AD′(y) andHSN (x)}.

LetRM (m(y)) (i.e., restrict the meaning ofy) be a func-
tion defined on the Interpretation of a role-nodey, which
results into an Interpretation ofy, restricted according to
the selected class-nodes in theisa hierarchies which are in
TAD(y). As a consequence, this function suitably changes
the labels of the tuples in the Interpretation ofy as well.

RM (m(y)) = {〈l′1 : v1, . . . , l
′
k : vk〉|〈l1 : v1, . . . , lk : vk〉

∈ m(y) and l′i : vi are such that

l′i = f1(TAD(y) ∩ {z ∈ NC |zisa∗f−1
1 (li)} and

vi ∈ m(f−1
1 (l′i))) .

Let RM ′(m(y)) be a function defined on the Interpreta-
tion of a role-nodey, which, in order to compute the Inter-
pretation ofD◦, concatenates the label ofy to the labels of
the tuples in the Interpretation ofy (◦ denotes concatenation
of two labels):

RM ′(m(y)) = {〈l′′1 : v1, . . . , l
′′
k : vk〉|〈l′1 : v1, . . . , l

′
k : vk〉

∈ RM (m(y)) and l′′i = f1(y) ◦ l′i} .
On the basis of the above functions we can define the

Interpretation ofD◦ as follows.
m◦(q) = {t1, . . . , ts}, where eachti is a new invented

unprintable value, ands is the cardinality of a setRIS that
can be interpreted as the extensional part of the user query,
and is defined as follows:

– If N◦
R = ∅ thenRIS = ∅.

– If |N◦
R| = 1 and|{k ∈ NR|f3(k) ∈ {selected ,

displayed }}| = 1 thenRIS = RM ′(m(k)), where
k ∈ NR andf3(k) ∈ {selected , displayed }.

– Otherwise,N◦
R = {r1, . . . , rk}, with k ≥ 1 andRIS =

inst(eval(n1, eval(n2, . . . , eval(nh−1, nh)))), where
{n1, . . . , nh} ≡ {m ∈ NR|f3(m) ∈ {selected ,
displayed }} and the functioninst extracts the set
of instances of a fictitious node computed byeval.

eval(n1, n2) returns a fictitious role-noden, whose ad-
jacents are the union of the adjacents ofn1 and n2, i.e.,
AD(n) = AD(n1) ∪ AD(n2), and whose Interpretation is a
set of tuples:

{〈l1 : v1, . . . , lk : vk, ”nc” ◦ lk+1 : vk+1, . . . ,
”nc” ◦ lh : vh, lh+1 : vh+1, . . . , lt : vt〉}
such that fori = k + 1 . . . h, f−1

1 (li) ∈ NCu and
〈l1 : v1, . . . , lk : vk, f1(n1) ◦ lk+1 : vk+1, . . . ,
f1(n1) ◦ lh : vh〉 ∈ RM ′(m(n1))
〈f1(n2) ◦ lk+1 : vk+1, . . . , f1(n2) ◦ lh : vh,
lh+1 : vh+1, . . . , lt : vt〉 ∈ RM ′(m(n2)) .

Note that, if the nodesn1 and n2 do not share tuple
components, the functioneval returns the cartesian product
of the interpretations ofn1 andn2.

Let us denote withRIS′ the set of tuples obtained by
restricting the set of tuples ofRIS to the ones satisfying
all the boolean expressionsF1, . . . ,Fn labeling the edges
of D, and by adding to the remaining tuples ofRIS a new
component, that is:

RIS′ is the set of tuples of the form〈l1 : v1, . . . , ly :
vy, f1(q) : vy+1〉 such thatvy+1 ∈ m◦(q), 〈l1 : v1, . . . , ly :
vy〉 ∈ RIS and satisfiesF1, . . . ,Fn, such that different
tuples have different values in they + 1-th component.

We finally obtain fromRIS′ the Interpretation of the
role-nodes inD◦:

m◦(ri) = {〈l : v, f1(q) : vy+1〉|〈l1 : v1, . . . , f1(ri) ◦ l : v, . . . ,

ly : vy, f1(q) : vy+1〉 ∈ RIS′} .
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3.3 Example

As we said in the introduction, the aim of the GPs is mainly
to provide a new approach to the VQLs formalization. We
think that such primitives have to be essentially used as a
formal basis for building more powerful and friendly visual
query operators, as we do in the Multiparadigmatic Query
Language. Nevertheless, the GPs may be directly used for
querying the GMDBs, as shown in the following example.

Referring to the GMDB in Fig. 4, we are interested in
retrieving the names of all the students whose age is greater
than 21 and living in NY. We assume that the GMDBD is
such that:

1. f3(n) = unselected for eachn ∈ N .
2. f2(〈n, q〉) = T for each〈n, q〉 ∈ E.
3. E ∩ (R×R) = ∅.

Assuming that the GPs are directly available to the user,
the sequence of operations s/he has to perform in order to
express the above query is the following:

– Switch toselected the state of the nodesStudent, Age,
Lives, City, C name, andInteger; switch todisplayed
the state of the nodesNameand String. These actions
produce the schema view in Fig. 5a.

– Change the label of the edge〈C name, String〉 into
C name.String =“NY”; change the label of the edge
〈Age, Integer〉 into Age.Integer > 21. The resulting
Typed Graph is shown in Fig. 5b.

The system evaluates the result database and displays the
corresponding GMDBD◦ (see Fig. 5c). The only individual
satisfying the conditions specified in the above phases is
OI1, having Name“Mary”, Age 22, andC name“NY”. A
new object, namelyOI20, is created forD◦. It constitutes
the interpretation of the nodeRESULT, with value “Mary”
for the relationshipName.

4 Database translation

Translating between models has been the subject of much
research since the mid-1970s. The work done in this area can
be divided into two classes, depending on the relative ex-
pressiveness of the models. The problem has been effectively
solved when the translation is to a less expressive model,
with well-defined transformations being defined to map con-
structs in one model to constructs in the other. For example,
transformation algorithms to convert an Entity-Relationship
schema to relational, hierarchical, and network schemata are
given in [Elmasri Navathe 1989].

The second class of translation is from a semantically
weaker to a semantically richer model. This is a much harder
task as it involves acquiring additional semantics about the
schema, apart from that which is expressed in the model.
Reverse engineering can be loosely defined as the process
of enriching a schema defined on a model with semantics
not expressible in this model, in order to translate it into
an equivalent schema defined on a more expressive model.
Although reverse engineering could be applied between any
pair of models, the literature typically concentrates on trans-
forming relational schemata into more expressive schemata.

Fig. 5a–c.An example of query formulation

This is due to a combination of the prevalence of relational
databases, and to its weak expressive power compared to
most other data models. Relational schemata tend to be the
most difficult to reverse engineer, and translation of other
models is usually comparatively trivial. For these reasons,
we also concentrate on the problems of adding semantics to
schemata defined on the relational model.

The generality of our approach allows the representa-
tion of a wide class of models, such as relational, semantic,
and object-oriented models, in terms of the GM constructs.
In this section we show how to map databases expressed
in several data models, namely relational, semantic, object-
oriented, into GMDBs. Our final goal is to produce an in-
tegrated schema of several heterogeneous databases. In or-
der to do this, the first step is to apply reverse engineering
techniques to semantically weaker data models, such as the
relational one, so as to obtain, as far as possible, seman-
tic equivalence between the different data models. Thus, we
propose, in Sect. 4.2, a methodology for obtaining a seman-
tically enriched GMDB starting from a relational database
and a set of constraints. Sections 4.3 and 4.4 define the
mappings between object-oriented and semantic databases
and GMDBs respectively.
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4.1 Relational model

The relational model [Codd 1970] is widely used in existing
DBMSs, since it is formal and offers a simple and uniform
data structure. The relational model represents data as a col-
lection of relations. Informally, each relation resembles a
table, and each row in the table represents a collection of
related data values. More formally, a relational database can
be defined as follows.

Let DN = {dn1, .., dnn} be a set ofdomain names, and
letD = {D1, .., Dn} be a family ofdomains, each composed
by a set ofvalues(we suppose to have finite domains); let
eval be a function,eval : DN → D, associating a domain
to each name; letA = {a1, . . . , am} be theset of attribute
names, and letdom : A→ D be a function which associates
a domaindom(a) to eacha ∈ A. Let RN = {rn1, . . . , rnk}
be a set ofrelation names, and letattr : RN → 2A be a
function which associates to eachrn ∈ RN a non empty
set attr(rn) of attributes, calledrelation schema, and let
inst be a function, which associates to eachrn ∈ RN a
finite set inst(rn), called relation instanceand composed
of tuples of the form〈a1 : v1, a2 : v2, . . . , ah : vh〉 where
{a1, . . . , ah} = attr(rn), vi ∈ dom(ai). A relation is a triple
r = 〈rn, attr(rn), inst(rn)〉, with rn ∈ RN . A relational
databaseDB = {r1, . . . , rk} is a set of relations with dif-
ferent names.

In [Catarci Santucci Angelaccio 1993] we introduced the
concept ofrelational GM database, which is a GMDB con-
strained to obey the relational model rules. In particular,
each role-node is forced to represent a function linking an
unprintable class-node to a printable class-node. This reflects
the structure of a relational schema, in which the unprintable
class-node corresponds to the relation name, the role-nodes
to its single-valued attributes, and the printable class-nodes
to attribute domains. No link is allowed between different
relations, so that unprintable class-nodes cannot be related
via a role-node. In the same paper, the mapping from rela-
tional databases to GMDBs as well as the reverse one were
introduced.

Roughly speaking, a correspondence is established be-
tween: (1) the family of domainsD and the set of interpre-
tations of the printable nodes ofg (i.e.,NCp

); (2) the setA of
attribute names and the set of labels of the role-nodes (i.e.,
NR) of g; (3) the attribute domains and the interpretation
of the printable nodes which are adjacent to the role-nodes
(note that each role-node has a single adjacent printable node
as said above); (4) the setRN of relation names and the set
of labels of unprintable nodes ing; (5) for eachrn, the set
of its attribute namesattr(rn) and the set of labels of the
role-nodes which are adjacent to the corresponding unprint-
able class-node; (6) the instance set of each relationrn and
the set of tuples obtained by joining the interpretations of the
role-nodes sharing the same tuple component coming from
the interpretation of the unprintable node corresponding to
rn; (7) each relationr and a triple whose first element is
an unprintable node label, the second element is the set of
labels corresponding to its adjacent role-nodes, the third el-
ement is the corresponding tuple set as defined above. In
Fig. 6 an example of mapping between relational databases
and GMDBs is drawn.

4.2 Relational model with constraints

One of the main criticisms of the relational model has been
its lack of expressiveness – a particular weakness is its power
to model entities. Rather than representing entities in a uni-
fied structure, this information is spread across several tables,
with the only connection between the tables being foreign
key linkages. When a relational database schema is con-
structed, much of the information about what the entities
are, how they are categorized, and how they relate to each
other is lost in the transformation. This “semantic gap” must
be bridged in some way – in the case of a user, this may
be by knowledge in her/his head of the meaning of the rela-
tions, or in the case of an application, by semantics actually
coded into the programs.

Why would it be necessary to reverse engineer a schema?
There are two possible scenarios. Firstly, if the system is
being migrated to a more expressive physical data model, it
will be necessary to translate the relational schema to one
containing more semantics. Secondly, if the system is to
become part of a heterogeneous DBMS, then the relational
schema must take part in a federated schema, which will be
built using a canonical data model, typically based on the
object-oriented paradigm.

The missing semantics must in both cases be provided
from some source. In many cases the paper-based semantic
data model which was used to construct the schema initially
will have been lost, or modifications will have been made
which are not reflected in the initial design. In this case,
reverse engineering must be applied. There is no formal or
well-accepted method to perform this task – the designer
must glean information from a variety of sources, which
include:

– Conversations with analysts familiar with the domain.
– The application programs accessing the database.
– The integrity constraints. These may be explicitly pro-

vided, or they may be inferred from an analysis of ap-
plication programs or user dialogue.

– Data mining techniques.
– Analyzing query patterns etc.

The process of reverse engineering is more of an art
than a science, and often some of the decisions made may be
incorrect. Clearly, the more information that is available, the
greater the likelihood that a correct schema will be arrived
at, but in any case, the process is an iterative one, which
will require constant feedback and verification from domain
experts.

4.2.1 Overview of reverse engineering techniques

Reverse engineering can be seen as a subset of the area of
schema translation. This has received much consideration
in the literature. [Tsichritzis Lochovsky 1982] presents the
various issues involved in translating between data models.
This approach, along with most others, concentrates of defin-
ing mappings between specific pairs of model. In [Kalman
1989], an approach is given which allows translations be-
tween any two data models, based on a denotational seman-
tics of data model equivalence.
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Fig. 6a,b. A relational database and the corresponding GMDB

Neither of these approaches focus how to translate be-
tween models of less semantic expressiveness to models of
greater expressiveness, which is the problem being addressed
in reverse engineering. An algorithm is given by [Navathe
et al. 1987] to convert a relational schema into an Entity
Category relationship, using keys to find the relationships
between relations. This work is extended in [Johanssen et
al. 1989] to eliminate certain anomalies and to consider in-
clusion dependencies, with the output being an Extended
Entity-Relationship (EER) model. In [Davis Arora 1987], a
methodology is given to translate between a relational model
and an entity-relationship model. Keys and name equalities
are used to obtain the structure of the model. Some weak-
nesses have been identified with this approach [Yan 1992],
specifically entity fragmentation caused by multivalued de-
pendencies, and assumptions are made about dangling keys
which may be incorrect. In [Briand et al. 1987], a minimum
cover of Functional Dependencies, Multivalued Dependen-
cies, and Join Dependencies are used to produce an EER
schema.

Translation of relational schemata to object-oriented sche-
mata is considered by [Castellanos Saltor 1991] and [Yan
1992]. The former is motivated by the need for semantic
enrichment to facilitate interoperability, and the constraints
used are inclusion dependencies and several other categories
of dependency. The class definitions created by this approach
are rather complicated, and may result in inefficient query
translations. An informal approach to translate from a re-
lational to an object-oriented schema is presented in [Yan
1992]. Key and inclusion constraints, along with user input
is used to extract the object-oriented semantics.

In the following section, we describe a methodology for
reverse engineering we will apply to relational databases in

order to obtain GMDBs. This methodology follows a se-
quence of formal steps in order to obtain a semantically
enriched GMDB starting from a relational database plus a
set of integrity constraints.

4.2.2 The mapping to the Graph Model

In this section, we consider how to represent an enriched
relational database as a GMDB. We first consider the steps
we must take in the process of semantically enriching the
relational schema. We must be able to identify

1. What are the main entities.
2. What are the relationships between these entities.
3. What are the multivalued attributes of the entities (these

need to be stored separately in the relational model).
4. What are the subclass/superclass relationships that hold

between the entities.

In order to answer these questions, it is necessary to have
knowledge of the integrity constraints that hold between the
attributes. The minimal set required is the complete set of
referential integrity constraints (foreign keys), although it
will also be useful to have available inclusion dependen-
cies, equality constraints, exclusion constraints, and domain
constraints.

Here, we expand the definition of the relational model
given in Sect. 4.1 to include the concepts of primary key
and foreign key. Theprimary keyof a relationr ∈ DB is
defined as follows. LetK be a subset ofattr(rn) such that
for any value ofinst(rn), the projection ofr on K has the
same number of tuples asinst(rn) and this property does
not hold for any proper subset ofK. The primary keyPKr

of r is arbitrarily chosen among the set of possibleK ’s. A
relation r contains aforeign keyFKr,s, of a relations, if
the projection ofr on FKr,s is contained in the projection
of r on PKr. If r and s coincide thenFKr,s must not be
the primary key.

In order to represent the relational model with constraints
in terms of the GM, we need first of all to introduce a set of
rules restricting the generality of our model, then to define
a precise mapping between the two.

If the relational schema is enriched, the constraints on
the links between the nodes given in Sect. 4.1 no longer ap-
ply. Links can be defined between unprintable class-nodes
in order to express relationships explicitly. Role-nodes need
not have a maximum of two edges, in order to allow rela-
tionships themselves to have attributes. Also the constraint
atmost(1, n, q) is removed so that multivalued attributes
can be represented.

In order to build a GMDB schema from a relational
database schemaDB, we follow the steps outlined above.
We note that in general there are two important categories of
relation – “entity relations”, which informally equate to the
backbone of the entity, and “relationship relations”, which
describe relationships between the entities. We refer to these
sets of relations asDBE andDBR respectively. Also we
say that an attributer.A is inclusion dependent on attribute
s.B (r ands not necessarily distinct) if there is an inclusion
dependencyr.A ⊇ s.B defined.



108

We denote withH the mapping from a relational
database to the corresponding database expressed in terms
of the GM. Furthermore, we denote withRelExp(n) the
relation resulting from applying the relational expression as-
sociated with the noden when defining its meaning. We
observe thatRelExp(n) involves only one relation, sayr,
and always contains the primary key ofr, so it follows that
PKRelExp(n) ≡ PKr. Moreover, ifRelExp(n) contains a
foreign key of a relations, it holds thatFKRelExp(n),s ≡
FKr,s.

If DB is any relational database,H (DB) = D =
〈g, c,m〉 is defined by the following steps.

Step 1: Identify entity relations
We can identify the main entity relations by adopting the
following rule: a relationr is a member of the set of entity
relationsDBE if there is no subset of the primary key which
is a foreign key or is inclusion dependent on any other at-
tribute in any other relation. For eachr ∈ DBE , we define
Tr(ΠPKr

(r)) as an isomorphic function which returns a new
value inD. The inverse functionTr−1 is defined as well.
Note thatTr works also on foreign keys ofr, i.e., it works
on anyFKx,r. Finally, for each entity relationr, we define
FKr as the union of all the foreign keysFKr,x in r (if
any).

Action: For each entity relationr, we perform the following
actions.

1. For eachdn ∈ DN and D = values(dn), there is a
corresponding noden ∈ NCp

such thatf1(n) = dni and
m(n) = D.

2. For each relationr ∈ DBE there is a corresponding
noden ∈ NCu

such thatf1(n) = r and its interpretation
coincides with the set of values generated by applying the
Tr function to the tuples belonging toinst(r) : m(n) =
{Tr(a)|a ∈ ΠPKr (r)}; moreover, for eacha ∈ attr(rn),
whose corresponding node ism (see 3), there is the edge
〈n,m〉 in E.

3. For eacha ∈ attr(rn)—FKr there is a corresponding
noden ∈ NR such thatf1(n) = a and there is an edge
〈n,m〉, wherem ∈ NCp

is the node corresponding to
dom(a). Moreover,m(n) = {〈a : x, b : y〉|〈T−1

r (x), y〉 ∈
ΠPKr∪a(r)}.

Step 2: Identify relationships
Relationships between entities are represented in relational
schemata by two means, depending on the cardinality con-
straints of the relationship.

Case 1: Relationship is 1:1 or 1:n
In the case of one-to-one or one-to-many relationships, a

relationship is represented through a foreign key embedded
in an entity relation. For the former, the foreign key can
exist in either of the relations, but in the latter, it must be
placed in the relation on the “many” side of the relationship.

Action: Let r ands be two entity relations such that a foreign
key inr is the primary key ofs, i.e. there existsFKr,s. Letn
andm ∈ NCu

be two nodes corresponding to relationsr and
s respectively. Define a new role-node,u ∈ NR. Let f1(u)
be a label descriptive of the relationship being defined by
the foreign key. LetE = E∪{〈n, u〉, 〈m,u〉}. The following
constraint holds:atmost(1, u, n).

The meaningm(n) = {〈a : x, b : y〉|〈T−1
r (x), T−1

s (y)〉 ∈
ΠPKr∪FKr,s (r)}.

Case 2: Many-to-many relationships
Many-to-many relationships are represented as relation-

ship relations. If a relationr represents a relationship, we
can partition its primary keyPKr into FKr,s1, FKr,s2, . . . ,
Fkr,sn , wheres1 . . . , sn are previously defined entity rela-
tions. If attr(rn)—PKr is not null, it represents attributes
of the relationship.

Action: Let n1, n2 . . . , nn ∈ NCu
, correspond to the en-

tity relations s1 . . . , sn respectively. Define a new role-
node, n, and let E = E ∪ {〈n1, n〉, 〈n2, n〉, . . . 〈nn, n〉}.
If attr(rn)—PKr /= ∅, then assume it is composed of at-
tributesa1 . . . al and there is a corresponding set of nodes
m1 . . .ml ⊆ NCp

such thatm(mi) = dom(ai). Let E =
E∪{〈nr, np〉}, for eachnp. The meaningm(n) = {〈f1(n1) :
x1, . . . , f1(nn) : xn, f1(m1) : v1, . . . , f1(ml) : vl〉|〈T−1

s1
(x1),

T−1
sn (xn), v1, . . . , vl〉 ∈ inst(rn)}.

Step 3: Include multivalued attributes
Multivalued attributes need to be stored in individual rela-
tions. These relations can be recognised by the formri(K),
where K, the primary key spans the entire relation, and
is of the form (PK,A), wherePK is the primary key of
another relation, sayrj , (the entity relation), andA is the
multivalued attribute. There will also be either an inclusion
dependency or an equality dependency between this and the
entity relation.

Action: Let np ∈ NCp
be a node such thatm(np) = dom(A),

andnr a new role-node. LetE = E ∪ {〈np, nr〉, 〈nc, nr〉},
wherenc is the unprintable class-node corresponding to the
relation rj , with the cardinality constraintatmost(m,nc,
nr), where m > 1. The meaningm(nr) = {〈f1(nc) :
x1, f1(np) : x2〉|〈T−1

rj (x1), x2〉 ∈ inst(ri)}.

Step 4: Construct class hierarchy
There are two alternative approaches to representing sub-
classes in relational database schemata. These represent a
trade-off between space usage and performance. A subclass
can either be defined in a separate relation to its superclass,
or alternatively the attributes pertaining specifically to a sub-
class can be defined as part of the schema of the entity re-
lation. The first approach is more efficient disk usage, but
performance will suffer as one or more joins will be required
to obtain all information pertaining to the entity. The second
approach results in a lot of null values, but queries can be
executed more efficiently. Also, the semantics of the schema
are clearer if a separate relation is used. We will consider
these cases separately, although both the representations may
be used in one relational schema.

Case 1: Subclass defined in a separate relation
Let r1 andr2 be two relations, such thatr1 is an entity

relation andr2 represents a subclass of this entity. In this
case, there is an inclusion dependencyK1 ⊇ K2, whereK1
andK2 are the primary keys of relationsr1 andr2.

Action. Define a noden ∈ NCu
, corresponding to the re-

lation r2. Follow through steps 1 to 3 for this relation, in
order to identify any associated relationships and multival-
ued attributes. Letn1 ∈ NCu be the node associated with
the relationr1. Define the following link:n2isan1.
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Case 2: Subclass embedded in entity relation
In order to identify the class hierarchy where subclasses

are embedded in the entity relations, it is not sufficient to
consider the relational schema and the constraints. Instead,
we must look for clues in the extension of the relation. If
sensible results are to be obtained from this process, we
should consider a “significant sample”, i.e., it should be of
adequate size to make valid inferences on the data, and it
should be representative of typical data.

We propose the following algorithm to identify the sub-
classes embedded in a relationr(A1 . . . An).

1. Let t1 . . . tp be a significant sample of tuples inr. Par-
tition these tuples into setsT1 . . . Tq where eachti ∈ Tj
has the same pattern of null/non-null values.

2. Build a matrixM with the horizontal axis corresponding
to the attributes ofr, and the vertical axis corresponding
to the Tis just formed. The entries in the matrix are
defined as follows: if the attributeAi in groupTj is not
null, M [i, j] = 1, elseM [i, j] = 0.

3. Partition the attributes according to groupsG1 . . . Gm

such that for anyA ∈ Gi, it has the same pattern of
entriesM [i, j], 1 ≤ j ≤ n.

4. For each pair of groupsGi andGj , show an ISA link
betweenGj andGi if for each attributeAj ∈ Gj sup-
ports a superset of the null values supported attributes
Ai ∈ Gi.

5. Eliminate transitive ISA links. The result is a class hier-
archy.

As this is a heuristical approach, it is necessary for a do-
main expert to verify both the input and output of each of the
phases of this algorithm. Once the classes have been identi-
fied and validated, the process of completing the GMDB is
as in case 1.

4.2.3 Example of transformation algorithm

To illustrate the process translating from a relational database
to a GMDB, let us consider an example of a simple domain.
The relational database schema, with primary keys under-
lined, is self-explanatory.

EMP = [E#, Name, Salary, Deptno]
DEPT = [D#, Name]
PROJ = [Pname, Budget]
WORKS-ON = [E#, Pname]
DEPT-LOCS = [D#, Location]
MGR = [E#, Office]

We have the following constraints:
EMP.DEPTNO is a foreign key of relationDEPT .
WORKS −ON.E# is a foreign key of relationEMP .
WORKS−ON.Pname is a foreign key of relationPROJ .
There is an equality constraint betweenDEPT.D# and
DEPT − LOCS.D#.
MGR.E# is inclusion dependent onEMP.E#.

The algorithm proceeds as follows:

Step 1: Three entity relations,EMP , DEPT , andPROJ
are identified.

Fig. 7. Typed Graph of the resultant GMDB

Step 2: Two relationships are defined: case 1 identifies a
relationship betweenEMP andDEPT , while case 2
identifies a many-to-many relationship betweenEMP
andPROJ .

Step 3: This identifiesDEPT−LOCS.Location as a mul-
tivalued attribute of the entity relationDEPT .

Step 4: Case 1 identifiesMGR as a subclass ofEMP .

The Typed Graph of the resultant GMDB is shown in
Fig. 7.

4.3 Object-oriented data models

Object-oriented data models are equipped with both power-
ful structural abstractions (e.g., generalization, classification,
aggregation) that satisfy the representation requirements of
the new kinds of applications (CAD, CAM, AI) and encap-
sulated procedures taking into account behavioral aspects.
Anyhow, it is generally accepted that encapsulation can be
violated in ad hoc query mode for permitting free asso-
ciative access to data (see, e.g., [Bancilhon Cluet Delobel
1990] for a discussion of this topic). For such a reason, in
this paper we focus only on structural features. No general
agreement exists on the definition of the object-oriented data
models. Anyhow we will concentrate on a number of con-
cepts which have been identified as the salient features of the
approach, e.g., object identity, encapsulation, class, and in-
heritance (see, e.g., [Bancilhon 1988; Kim 1990; Beeri 1990;
Cruz 1990]). Moreover, even though in most of the object-
oriented proposals the elementary domains are considered
as primitive classes(i.e., classes with no attributes) in the
following we will distinguish between classes and domains.

An object-oriented database(OODB) is a collection of
objects, classes, and elementary domains. Anobject of the
database corresponds to an object in the real world, and ex-
ists regardless of the value of its properties. In other words,
each object has anidentity, different from that of any other
object, that does not change throughout its lifetime. Each
object has a unique identifier, calledobject identifier(oid),
which distinguishes it from all the others. Every object en-
capsulates astructure, that is a set of relationships (called
attributesin the following) with both other objects and val-
ues in elementary domains, which may be one-to-one or
one-to-many. Objects that share the same set of attributes
may be grouped into aclass. Because no limitation exists
on the domain of attributes, i.e., an attribute domain can
range on another class, the definition of a class may result
in a nested structure. The relationship between an object and
its class is the well-knowninstance-ofrelationship . Classes
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may be related through a generalization relationship, usu-
ally called is-a relationship; a class may have any number
of subclasses and superclasses. A class inherits the attributes
of its superclasses (conflicts possibly caused by multiple in-
heritance are generally handled by the system) and may have
additional attributes. An object belongs to one class, as an
instanceof that class; furthermore, it is instance also of all
the superclasses of the class it belongs to.

Summarizing, letCN = {cn1, . . . , cnn} be the set of
class names,DN = {dn1, . . . , dnn} be the set of domain
names, and letD = {D1, . . . , Dn} be the family of do-
mains, each composed by a set ofvalues (we suppose to
have finite domains); letvalues be the function,values :
DN → D, associating a name to each domain;OID =
{oid1, . . . , oidk} be the set of object identifiers, andAN =
{an1, . . . , anp} be the set of attribute names. A classC is
a 4-tuple 〈cn, superclassescn, structurecn, instancescn〉,
wherecn ∈ CN is the class name,superclassescn is the
set of the names of the superclasses ofC, structurecn
is a set of pairs{〈an1, x1〉, . . . , 〈ankcn, xkcn〉} where for
each pair〈ani, xi〉 ani ∈ AN and eitherxi ∈ CN or
xi ∈ DN . Instancescn is a set made ofkcn sets of tuples
{inst1, . . . , instkcn}, one for each pair〈ani, xi〉 belonging
to structurecn. Each tuple belonging toinstj has the fol-
lowing structure:〈cn : oid, anj : y〉, where oid ∈ OID
and y belongs either toOID or to Dj depending on the
associatexj is a class name or a domain name. We make
the assumption that for all thekcn sets of tuples belonging
to the instances of the classC the sets ofoids correspond-
ing to the tuple component labeled withcn coincide, and it
is exactly the set of object identifiers of the classC itself.
In other words, we postulate that each attribute of a class
is characterized by at least one value. This is not a limita-
tion, since we can easily split a class not satisfying such a
property into a two level hierarchical structure, according to
the following rules. The root class is characterized by the
set of attributes that are always defined on all the instances
of the original class; each of the child classes owns only
one of the remaining attributes that, by definition, is always
defined on the instances of the subclass itself. For instance,
the classPerson, having attributesName, Age, Children, and
Ownedcars, is represented by the hierarchy rooted atPer-
son (with attributesNameandAge), having subclassesPer-
sonwith sons(with attributeChildren) andPersonwith car
(with attributeOwnedcars).

Since the GM is object-based itself, the mappingH
between object-oriented databases and GMDBs is almost
straightforward. Basically, the family of domainsD corre-
sponds to the set of interpretations of the printable nodes of
g (i.e., NCp

), and the names of such domains are given by
the labels of the elements ofNCp

. The setAN of attribute
names is equal to the set of labels of the role-nodes (i.e.,
NR) of g, and the meaning of such nodes corresponds to the
associated set of tuples in theinstances of the classes the
attributes belong to. The setCN of class names coincides
with the set of labels of unprintable nodes ing, while the
set of adjacent role-nodes is derived by thestructure of the
class. The meaning of an unprintable node coincides with the
set of the associated OIDs of the corresponding class. The
inverse mapping can be easily defined as well. Printable and
unprintable class-nodes correspond to domains and classes,

Fig. 8. An object-oriented database and the corresponding GMDB

while the set of role-nodes which are adjacent to a given un-
printable class-nodes can be translated in terms of the class
structure.

The example of mapping between an object-oriented
database and a GMDB in Fig. 8 further illustrates the similar-
ities between the two models. In Fig. 8a the object-oriented
schema classes are described using a very intuitive syntax,
while in Fig. 8b,c the corresponding Typed Graph and In-
terpretation are shown.

The object-oriented database contains pieces of informa-
tion about flights and airplanes, including the source and
destination airports of the flight and the name of the cap-
tain. In building the corresponding GMDB, the domains
Integer, Real, and String have been translated into corre-
spondent printable nodes; the class attributesWeight, Effi-
ciency, Location, A name, Tookoff, Landing, Captain, and
Namehave been translated in terms of suitable role nodes;
the classesAirplane, Sailplane, Airport, andPilot have been
translated into corresponding unprintable nodes. It is worth
noting that the links among classes in the GMDB are not
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oriented as they were in the original model: class attributes
ranging over other classes (e.g., the attributeTookoff of the
classAirplane, ranging over the classAirport) are translated
in terms of role-nodes linking both classes.

4.4 Semantic models

In this section we concentrate on semantic data models,
which share with object-oriented models the availability of
powerful structural abstractions. As two representative ex-
amples of this class we take the IFO model [Abiteboul Hull
1987; Hull King 1987], which is a mathematically defined
database model, developed as a theoretical framework for
studying the prominent semantic models, and the EER model
[Chen 1976; Ullman 1987].

4.4.1 The IFO model

A IFO database (IFODB) is a collection of object types,
functional relationships, andisa relationships. There are
three kinds of atomic object types, and two constructs for
recursively building more complex types. The three atomic
types are called: (1)printable, which corresponds to ob-
jects of predefined types (e.g., integer, string, boolean, etc.);
(2) abstract, which corresponds typically to objects in the
world that have no underlying structure (e.g., the typePer-
son); a domain made of abstract objects is associated to this
type; (3)free, which corresponds to entities obtained viaisa
relationships. The names associated with the object types are
calledtokens. The first of the two mechanisms for construct-
ing nonatomic types, calledassociation, corresponds to the
procedure of forming finite sets of objects of a given struc-
ture. The other mechanism is the well-known cartesian prod-
uct operator, calledaggregationin the following. Functional
relationships are represented by usingfragments. Fragments
are directed trees that may contain instances of all the differ-
ent kinds of object types as vertices and labeled edges repre-
senting functions. The final structural component of the IFO
model are theisa relationships. Anisa relationship from a
type SUB to a type SUPER indicates that each object asso-
ciated with SUB is associated with the type SUPER. This
implies that each function defined on the type SUPER is
automatically defined on the type SUB, i.e., it is inherited
by SUB. Two types ofisa are distinguished :specialization
and generalization. Specialization can be used for defining
possibleroles for members of a given type. In contrast, gen-
eralization represents situations where distinct, pre-existing
types are combined to form new virtual types.

More formally, atype is a directed treeR = (V,E) such
that: (1)V is the disjoint union of five sets:VP (printable
vertices),VA (abstract vertices),VAS (association vertices),
VAG (aggregation vertices), andVF (free vertices); (2) print-
able, abstract, and free vertices are leaves of the tree; (3) as-
sociation vertices have one child; (4) aggregation vertices
have one or more children, which are viewed as being or-
dered. The set ofobjects of type R, denoteddom(R), is
defined by:

1. If R is an atomic type, thendom(R) is a countably in-
finite set, made of atomic objects.

2. If the rootr of R is an association vertex, andR1 is the
child subtree ofR, thendom(R) = {{O1, . . . , Om}|m ≥
0, and for eachi, Oi is in dom(R1)}.

3. If the rootr of R is an aggregation vertex, andR1, . . . , Rn

are the ordered child subtrees ofr, then dom(R) =
{〈O1, . . . , On〉| for eachi, Oi is in dom(Ri)}.

An instanceof R, denotedinstances, is a finite subset
of dom(R). A fragmentis a directed treeR = (V,E) where:

1. E is the disjoint union of two setsEO (object edges)
andEF (functional edges).

2. (V,EO) is a forest of types.
3. The destination of each functional edge is the root of

some type ofR.
4. The source of each functional edge is either the root of

R or the child by an object edge of an association vertex,
which is the root of some type ofR, and not the root of
R.

Note that rule 4 allows one to model nested functions.
Let R be a fragment with rootr; a nested function of de-
green is represented by a path, namedfunctional path, of
the form:〈r, a1, r1, a2, r2, . . . , an−1, rn−1, rn〉, whereai are
association vertices and eachri is the child by an object edge
of the association vertexai. LetR be a fragment with rootr;
let f1 = 〈r, p1〉, . . . , fn = 〈r, pn〉, be the functional edges of
R with tail r; let RO be the type with rootr; and for eachk,
k = 1 . . . n, letRk be the maximal subtree ofR with rootpk.
An instance ofR is an ordered pairI = (J, F ) whereJ is an
instance ofRO, andF a function with domain{f1, . . . , fn}
such thatF (fk) is a partial function with domainJ such
that for eachO in J : a) F (fk(O)) is an object ofRk, if Rk

is a type, and b) otherwiseF (fk(O)) is an instance ofR′
k,

whereR′
k is the fragment obtained fromRk by removing its

association root. Adatabase schemais built starting from a
forest of fragments, linked byisa edges. An instance of a
schemaS is composed by an assignment of instances to all
the fragments ofS that satisfy certain conditions imposed
by the isa edges ofS.

Let us now define the mappingH between the IFO
databases and the GMDBs:H (IFODB) = D, whereD =
〈g,m, c〉 is a database expressed in terms of a Typed Graph
g, an Interpretationm, and a set of constraintsc. Since the
basic idea of the IFO model is in building complex objects
by recursively applying different type constructors, while
the GM type set is limited to class-nodes and role-nodes,
the mapping is quite complex and requires the generation
of new unprintable class-nodes and role-nodes. The nesting
of the IFO structures is expressed assigning an appropriate
interpretation to the new role-nodes.

In order to specify the mappingH , we make use of a
function T , defined on the instances of an IFO database.
Let x ∈ dom(R), if R is an atomic type, thenT (x) = x;
elseT (x) = new(x), wherenew is a function generating
a new unprintable value when applied to a generic instance.
The mappingH is specified as follows:

1. For each atomic typevi ∈ VP , there is a corresponding
nodeni ∈ NCp such thatf1(ni) is the name associated
with vi andm(ni) = instances(vi).
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2. For each atomic typevi ∈ VA ∪ VF , there is a corre-
sponding nodeni ∈ NCu such thatf1(ni) is the name
associated withvi andm(ni) = instances(vi).

3. For each complex typeR with root v ∈ VAS and child
subtypeR′ (either complex or atomic), there are two
nodesn ∈ NCu

, nj ∈ NR and an edge〈n, nj〉, corre-
sponding tov and such thatf1(n) is the name associ-
ated withv, and a recursively defined tree correspond-
ing to R′, whose rootn′ is linked tonj . The interpre-
tation of n coincides with a set of new values gener-
ated by applying thenew function to all the instances
of v: m(n) = {new(t), t ∈ instances(v)}; the inter-
pretation ofnj is a set of tuples of the form:〈f1(n) :
new(y), f1(n′) : T (x)〉, wherey ∈ instances(v) and
x ∈ instances(R′).

4. For each complex typeR with root v ∈ VAG, with
child subtypesR1, . . . , Rl, there are a noden ∈ NCu

,
such thatf1(n) is the name associated withv, a node
nj ∈ NR and the edge〈n, nj〉 corresponding to the
root v. Moreover, there arel recursively defined trees
corresponding to theRis whose rootsni are linked to
nj . The interpretation ofn coincides with a set of new
values generated by applying thenew function to all
the instances ofv: m(n) = {new(t), t ∈ instances(v)};
the interpretation ofnj is a set of tuples of the form:
〈f1(n) : new(y), f1(n1) : T (R1), . . . , f1(nl) : T (Rl)〉,
where y ∈ instances(v) and xi ∈ instances(Ri),
i = 1 . . . l.

5. For each functional edgee = 〈r0, x〉 with label l, where
x is either the root of a type or an association node,
there are: a noden ∈ NR with label l, one edge〈n1, n〉,
where n1 is the root of the tree corresponding to the
type with root r0, and one edge〈n2, n〉, wheren2 is
either the root of the tree corresponding to the type with
root x (if x is the root of a type) or is the unprintable
node associated with the association nodex (if x is an
association node). The interpretation ofn is a set of
tuples of the form:〈f1(n1) : T (x0), f1(n2) : T (x1)〉,
where〈x0, x1〉 ∈ F (l).

6. For eachisa edge i = 〈a, b〉 there is a corresponding
isa constraint betweenn′, which is the root of the tree
corresponding to the atomic type with roota, andn′′,
which is the root of the tree corresponding to the atomic
type with rootb.

Rule 1 (or rule 2) says that IFO printable (or abstract
and free) types are translated in terms of printable (or un-
printable) class-nodes. Rule 3 (or rule 4) says that each as-
sociation (or aggregation) node generates a new unprintable
class-node, whose interpretation contains an identifier for
each element belonging to the set of instances of the associ-
ation node (or aggregations). Note that, given the recursive
definition of IFO type instances, the definition of the node
interpretations in rules 3 and 4 is recursive too. In rule 5
each functional edge is translated into a role-node with two
outcoming edges, whose interpretation implements the un-
derlying instance function. Finally,isa edges are rendered
in isa constraints.

The mappingH ′ from any GMDB to the corresponding
IFO database (not detailed in the following), is easier than its

inverse which is described above, since the GM components
can be almost directly mapped into IFO constructs.

In Fig. 9 an example of mapping between an IFO
database and the corresponding GMDB is drawn. Figure 9a
shows the IFO schema of a database containing informa-
tion about trips and foreign languages which will be spoken
in each trip, guides and foreign languages they speak; Fig-
ure 9b contains the most relevant part of the corresponding
extension. In Fig. 9c,d the corresponding Typed Graph and
Interpretation are shown. Note that the association object
t langs, representing set of languages, has been translated
in terms of the unprintable class-nodet langs, containing
the identifiers of the sets of languages, and the role-node
R4, associating each set with the languages it contains. An
analogous translation has been applied tog langs.

4.4.2 The entity-relationship model

An Entity-Relationship database(ERDB) is a collection of
entity types, relationship types, and domains. Eachentity
is a “thing” in the real world, with an independent exis-
tence. Each entity has particular properties calledattributes,
that describe it. Each attribute is associated with adomain,
which specifies the set of values that may be assigned to that
attribute for each individual entity. Such entities define an
entity type. Each entity type is characterized by a name and
a list of attributes, forming theentity type schema, which is
shared by the individual entities of that type.

The set of individual entity instances at a particular mo-
ment in time is called anextensionof the entity type. In
many cases an entity type will have numerous additional
subgroupings of its entities, which are meaningful and need
to be represented explicitly. We call each of these subgroup-
ings asubclassof the entity type, and the entity type itself
is called thesuperclassfor each of these subclasses. We say
that an entity that is a member of a subclassinherits all the
properties of the entity as member of the superclass. Are-
lationship typeamongn entity types is a set of associations
among entities from these types. Each relationship instance
is an association of entities, where the association includes
exactly one entity from each participating entity type.

Summarizing, letEN = {en1, . . . , enn} be the set of
entity type names, AN = {an1, . . . , anp} be the set of at-
tribute names,DN = {dn1, . . . , dnm} be the set ofdo-
main names, RN = {rn1, . . . , rnn} be the set ofrelation-
ship type names, EID = {eid1, . . . , eidk} be the set of
entity identifiers, andD = {D1, . . . , Dm} be the family
of domains, each composed by a set ofvalues (we sup-
pose to have finite domains); letvalues be the function,
values : DN → D, associating a name to each domain; let
assign be the function,assign : EN → Powerset(EID),
associating a subset of the set of entity identifiers to each
entity type name, and letdom : AN → D be a function
associating a domain to eachan ∈ AN . An entity typeE
is a 4-ple〈en, superclassesen, structureen, instancesen〉,
whereen ∈ EN is the entity type name,superclassesen is
the set of the names of the superclasses ofE, structureen
is a set of attribute names{〈an1, . . . , anken〉} where each
ani ∈ AN ; instancesen is a set of sets of tuples, one
for each elemente ∈ assign(en). The set of tuples asso-
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Fig. 9a–d.The IFO database and the corresponding GMDB

ciated with e is {inst1, . . . , instken}, with one insti for
each pairani belonging tostructureen. Each tuple be-
longing to instj has the following structure:〈en : e, anj :
y〉, where y ∈ dom(anj). A relationship typeR is a 4-
ple 〈rn, structure1rn, structure2rn, instancesrn〉, where
rn ∈ RN is the relationship type name,structure1rn is a
set of entity type names{en1, . . . , enkrn}, with eacheni ∈
EN , structure2rn is a set of domain names{dn1, . . . ,
dnhrn}, with eachdni ∈ DN . instancesrn is a set of
tuples of the form:〈en1 : eid1, enkrn : eidkrn, dn1 :
d1, . . . , dnhrn : dhrn〉, whereen1, . . . , enkrn ∈ EN , eid1,
. . . , eidkrn ⊆ assign(en1) × assign(en2) × . . .×
assign(enkrn) dn1, . . . , dnhrn ∈ DN , d1, . . . , dhrn ⊆
values(dn1)× values(d2)× . . .× values(dnhrn); note that
structure2rn may be empty.

An Entity-Relationship GMdatabase is a GMDB that
satisfies the following constraint:
for each nodeni in NR such that|NCu

∩ AD(ni)| = 1 it
holds that|NCp

∩ AD(ni)| = 1 and|AD(ni)| = 2. In other
words, each role-node linked to only one unprintable class-
node has to be involved in exactly another link, in particular
with a printable class-node.

Let us define the mappingH between the ER model and
the GM: if ERDB is an ER database, thenH (ERDB) =
D, whereD = 〈g,m, c〉 is a database expressed in terms of a
Typed Graphg, an Interpretationm, and a set of constraints
c. The mappingH is specified as follows:

1. For eachdni ∈ DN , there is a corresponding nodeni ∈
NCp

such thatf1(ni) = dni andm(ni) = values(dni).
2. For eachani ∈ AN there is a corresponding node

ni ∈ NR such thatf1(ni) = ani and m(ni) = insti,
where insti is the set of tuples associated withani in
the structure of a classcn. Moreover, there is an edge
〈ni, nj〉 such thatnj ∈ NCp is as defined in 1) and
m(nj) = dom(anj).

3. For eacheni ∈ EN there is a corresponding node
ni ∈ NCu

such thatf1(ni) = eni and its interpretation
coincides with the set of entity identifiers of the cor-
responding entity type:m(ni) = assign(eni); for each
s ∈ structureeni there is the edge〈ni, f1(s)〉; moreover,
for eachx ∈ superclasseseni there is the constraint
niisax.

4. For eachrni ∈ RN there is a corresponding node
ni ∈ NR such thatf1(ni) = rni; there arek edges
〈ni, nj〉, nj ∈ NCu

, such that{f1(n1) . . . f1(nk)} =
structure1rni and h edges〈ni, nj〉, nj ∈ NCp

, such
that {f1(n1) . . . f1(nh} = structure2rni . Moreover,
m(ni) = instances(rni).

Rule 1 states that the family of domainsD corresponds
to the set of interpretations of the printable nodes ofg (i.e.,
NCp ), and the names of such domains are given by the la-
bels of the elements ofNCp

. Rule 2 states that the union
of the setsAN of attribute names andRN of relationship
type names is equal to the set of labels of the role-nodes
(i.e., NR) of g, and that in the first case the associated do-
mains correspond to the interpretation of the adjacent print-
able nodes (note that each role-node corresponding to an
attribute has a single adjacent printable node). In the second
case thestructure1rn (or structure2rn) of the relationship
type corresponds to the set of labels of the adjacent unprint-
able (or printable) class-nodes. Rule 3 states that the setEN
of entity type names coincides with the set of labels of un-
printable nodes ing, while the set of adjacent role-nodes
is derived by thestructure of the class. The meaning of
an unprintable node coincides with the set of EIDs of the
corresponding class.

In order to better clarify the above mapping we fur-
nish an example of translation for the ER schema shown
in Fig. 10a,b, representing information about network chess
games in progress where we use a very intuitive syntax for
characterizing the schema extension. The resulting GMDB
is shown in Fig. 10c. Note that, since the GM does not sup-
port reflexive role nodes, a new unprintable class node has
been introduced (Chess game).
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Fig. 10a–c.The chess game schema and the corresponding GMDB

5 Query management

The aim of this section is twofold. We first describe how
queries expressed in relational, object-oriented, and seman-
tic languages can be defined in terms of GPs; then, we show
how it is possible to translate a GP query in terms of a rela-
tional language, in order to be processed by the actual rela-
tional DBMSs. Here we concentrate on relational DBMSs,
since they are widely diffused in real applications. However,
the definition of the mappings with object-oriented and se-
mantic data models, as well as the inner structure of the GM
and the GPs, will permit easy extension of our approach
to the effective interfacing of object-oriented and semantic
DBMSs.

5.1 Expressing relational queries

In [Catarci Santucci Angelaccio 1993] we dealt with the ex-
pressive power of the GPs, proving that the class of queries
computed by the GPs contains the class of queries com-
putable by the Relational Algebra. In this section we give
an example of translating a relational query in terms of GPs.

Fig. 11. Expressing a relational query through the GPs

Referring to the example of Sect. 4.2.3, assume the relational
expression is as follows:

ΠAge(σName=C.name(PERSON × LIV ES))

It corresponds to the query: find out the age of the people
whose name is equal to the name of a city in which some
other person lives.

As we have shown in [Catarci Santucci Angelaccio
1993], the projection on some attributes corresponds to set to
displayed the nodes corresponding to the attributes; the
join (cartesian product plus selection) is rendered through
the drawing a new labeled edge. The GPs corresponding to
the above relational expression are shown in Fig. 11.

5.2 Expressing object-oriented queries

Comparing the expressive power of the GPs against an
object-oriented query language is not an easy task. In fact,
whereas the relational model is equipped with formally de-
fined query languages (relational algebra and calculus) that
constitute a well-known expressive power yardstick, object-
oriented proposals lack a widely accepted model of queries.
Indeed, several examples of different models of query lan-
guage for object oriented databases are available in the liter-
ature [Banerjee et al. 1988; Kim Kim Dale 1989; Kim 1989].
Another complication arises from the different choices avail-
able for determining the structure of the result of a query on
an object-oriented database. Indeed, the presence of class hi-
erarchies leads to two possible interpretations for the access
scope of a query, in particular, when the target classc of the
query is a superclass of other classes in the schema:

– The scope is the set of objects that are instances ofc,
either directly or indirectly throughisa relations.

– The scope is the set of objects that are instances ofc but
are not instances of any other subclass ofc.

In order for the result to be constituted by a set of objects
that are all characterized by a fixed number of attributes, we
have to either choose the second approach, or to follow the
first one, with the proviso that attributes of the subclasses
of c are not included in the result. In our work, we indeed
adopt the first approach with the above mentioned proviso.

In the following, in order to compare the expressive
power of the GPs against an object oriented query model,
we adopt the point of view of [Kim 1989], which we
now briefly recall. Object-oriented queries are classified into
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single-operand and multiple-operand. The former, which are
more strictly related to the object-oriented philosophy, con-
sist in querying a single class, and are essentially based on
the idea of extracting objects from a class by posing logi-
cal conditions on its attributes. The domain of the involved
attributes determines two possible kinds of conditions: sim-
ple predicate, in the case of elementary domain, or complex
predicate, if the attribute domain is a class. The structure of
a simple predicate is〈attribute− name, operator, value〉,
as usual. A complex predicate is a predicate on a contigu-
ous sequence of attributes belonging to the structure of the
class the attribute domain is based on. Note that a single-
operand query is more powerful than a single-relation query,
because it involves joins of several classes when we make
use of complex predicate. More precisely, an implicit join
is applied when we retrieve objects from the target class by
referring to another class as domain of an attribute of the
target class. The basic limitation of the implicit join is that
it statically determines the order in which the classes are
to be joined. In other words, it is not possible to formu-
late a query whose semantics requires implicit reversal of
an attribute-domain link specified between the classes.

We note that single-operand queries are not sufficient for
reaching the expressive power of relational algebra; indeed,
at least explicit joins of classes on user-specified attributes,
as well as set-operations between classes, must be added
to this purpose. At this aim, multiple-operand queries are
defined, i.e., explicit join and set-operations, extracting ob-
jects from two or more classes. Major problems arise in
the case of set-operations, where the operands are sets of
objects. The main difference between object-oriented and
relational databases is that in the first case the operands may
be heterogeneous sets of objects, while in the second they
are homogeneous sets of tuples. As a consequence, in the
object-oriented model the result of such queries is a set of
instances whose structure is not always clearly defined. Var-
ious strategies have been proposed in order to overcome
such a problem. In our opinion, set-operations would be al-
lowed only between classes that are descendants of the same
parent, thus having compatible types. On the other hand, set-
operations between classes having fully different types and
sets of objects may either be denied or give rise to classes
having a structure resulting from the union of the two orig-
inating structures, thus with a large number of fields often
containing null values. The introduction of such classes in
the database could originate several problems in subsequent
operations and introduce potential integrity violations. In the
more simple case of explicit join, the result is a set of in-
stances formed by concatenating the instances from the dif-
ferent joined classes.

In the following we make use of examples in order
to show how the GPs allows us to express object-oriented
queries. Note that we refer to the object-oriented database
in Fig. 8a and the corresponding GMDB in Fig. 8b,c. Let us
consider the query “Find the weight of all the sailplanes
whose efficiency is greater than 30 and whose landing
airport is NY.” This query falls in the class of single
operand queries, as defined above, and involves both a sim-
ple (i.e.,Sailplane.Efficiency > 30) and a complex (i.e.,
Sailplane.Landing.A name = “NY”) predicates. The cor-
responding query in the language shown in [Kim 1989] is:

selectSailplane(Efficiency > 30 andLanding.A name
=“NY”). In our approach such a query is expressed by
first selecting the nodesSailplane, Efficiency, Integer,
Landing, Airport, A name, String, and setting to dis-
played the nodesWeight andReal; then, changing the la-
bels of the edges〈Efficiency, Integer〉 and 〈A name,
String〉 into Efficiency.Integer > 30 and A name.
String =“NY”, respectively. It is worth noting the advan-
tage of handling in the same way both complex and simple
predicates.

As a more intricate case, consider the query: “List all
the airports on which an airplane is landing whose cap-
tain’s name is included in the airport name”. The corre-
sponding query, if reversible pointers are available, can be
expressed in the language shown in [Kim 1989] as: select
Airport(Landing.Captain. Name in A name); if the
model does not include such kind of pointers the query must
be expressed as follows: selectPilot(Name in Airplane.
Landing.A name) and we can access the desired result
(i.e., airport names) as an attribute ofPilot. Note that while
the semantics of the two queries is the same, the efficiency in
evaluating them is largely improved in the first case. In prin-
ciple, our approach does not suffer from this dichotomy, and
the query is easily optimizable according to the well-known
techniques of query optimisation (see, e.g., [Ullman 1987]).
The above query is expressed by first selecting the nodes
Airport, Pilot, Airplane, Captain, Landing, Name and
setting to displayed the nodesA name and String; then
drawing an edge between nodesName and A name la-
belled with Name.String in A name.String. Note that
the drawing of an edge corresponds to an explicit join, as
mentioned above.

5.3 Expressing semantic queries

In Sect. 4.4 we translated IFO and ER databases in terms of
GMDBs. An important feature of both the IFO and the ER
models is in having associated graphical query languages,
namely SNAP [Bryce Hull 1986], and QBD [Angelaccio
Catarci Santucci 1990]. We can exploit the existence of such
languages for showing not only how to express the queries of
a semantic query language in terms of our GPs, but also for
demonstrating that the GPs can be easily used to precisely
characterize the semantics of other grap hical languages.

5.3.1 Expressing SNAP queries

Since the syntax used in SNAP for representing IFO data
schemata is defined in terms of different graphical elements
(circles, diamonds, labels, edges, and connection rules), we
need to provide a mapping between the syntax of SNAP and
the syntax of the GM. Such a mapping, calleds, between
SNAP diagrams (SNAPD) and Typed Graphs is defined as
follows:

1. For each rectangler〈∈〉SNAPD with label lr, there is
a nodeni〈∈〉NCp

such thatf1(ni) = lr.
2. For each diamondrh〈∈〉SNAPD with label lh, there

is anode ni〈∈〉NCu such thatf1(ni) = lh.
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3. For each circlec〈∈〉SNAPD with label lc, there is a
nodeni〈∈〉NCu such thatf1(ni) = lc.

4. For each star circle2 sc ∈ SNAPD with label lsc, there
is a pair of linked nodes,ni ∈ NCu

andnj ∈ NR, such
that f1(ni) = lsc.

5. For each cross circle3 pc ∈ SNAPD with label lpc,
there is a pair of linked nodes,ni ∈ NCu

andnj ∈ NR,
such thatf1(ni) = lpc.

6. For each unarrowed edge〈x, y〉 ∈ SNAPD (x is parent
of y in a tree), there is an edge〈x′, y′〉 ∈ E such that
x′ ∈ s(x)4 andy′ ∈ s(y)5.

7. The set of arrowed edges belonging to a functional path
p of lengthn, is translated into a role-nodez andn + 1
edges of the form〈z,S (ri)〉, i = 0 . . . n, with ri defined
as above.

By using the mappingsH , defined in Sect. 4.4.1, ands
we show that the query language of SNAP can be formalized
in terms of several applications of GPs.

Queries in SNAP are expressed using query graphs,
which are formed by combining one or more query frag-
ments. Query fragments are constructed primarily from the
fragments of a schema; a query graph can contain any num-
ber of query fragments, possibly including duplicates. The
values that have to be associated with the query fragments
are specified using mainly two mechanisms:node restric-
tion, which permits users to associate a restriction directly
with a given node of a fragment, andcomparitor arcs, which
permit users to indicate that a certain relationship must hold
between values associated with different nodes. The same
comparitor arcs may also be used to compare abstract types,
sets with sets, and individuals with sets. In such a way
the label used on the comparitor arc is semantically over-
loaded. For instance, using an edge with label “inclusion”
between two association nodes results in comparing the ele-
ments of the sets underlying the association nodes (which are
sets themselves), verifying that the inclusion relation holds
among such elements. Finally, the shading of nodes in a
query graph indicates that only values associated with such
shaded nodes have to be displayed in the answer.

Summarizing, the graphical operations available in SNAP
are:

1. Selection of a tree representing a fragment.
2. Changing of a node label, which corresponds to node

restriction.
3. Shading of a node.
4. Drawing of a labeled edge.

Such operations, applied to an IFO databaseIFODB,
whose visual representation is a SNAP diagramSNAPD,
correspond to several applications of GPs on the database
D = 〈g, c,m〉 = H (IFODB) such thatg = s(SNAPD).
As a consequence, the semantics of such operations is im-
mediately defined in terms of the semantics of the GPs.

The correspondence is as follows:

2 Circles with an inscribed star are the representation for association
nodes

3 Circles with an inscribed cross are the representation for aggregation
nodes

4 s(x) produces a set of nodes andx′ is the role-node among them
5 If s(y) produces more than one node,y′ is the class-node

1. The selection of a treef is expressed as the selection
of the nodes (denoted withn(s(c1)) . . . n(s(ck))) that
are generated translating the tree componentsc1 . . . ck,
which are nodes, edges, functional paths:

s(H (IFODB), n(s(c1))) ◦. . . s(H (IFODB), n(s(ck))).

2. The change of the label of a rectanglec with a new label
F is expressed as the change of the label of the edge
linking s(c) to the (unique6) role-nodeq with a new label
F ′, which corresponds to the GP syntax:

C (H (IFODB),F ′, s(c), q).

3. The shading of a nodep corresponds to setting to
displayed the corresponding node in the GMDB:

s(H (IFODB), s(p)).

4. The drawing of a labeled edge (with labelF ) between
two elements,l1 andl2, may correspond either to a single
GP or to a sequence of applications of GPs, depending
on the elementsl1 and l2, namely:

– If l1 and l2, are two rectangles, the corresponding
GP is the drawing of an edge with a labelF ′,
which corresponds to drawing an edge between the
two (unique) role-nodesn1 andn2, linked with the
printable nodess(l1) ands(l2):
E (H (IFODB),F ′, n1, n2).

– If either l1 or l2, or both, are star circles, the operation
involves a comparison between sets, and cannot be
directly expressed by a single GP. Instead, a sequence
of GPs is necessary, which may be very complex,
depending on the comparison operator specified on
the edge. This is not surprising, since, as we said
before, in this case the edge label is semantically
overloaded, and there is a huge semantic distance
between such operations and the GPs. For the sake of
brevity, we do not give the detai this correspondence.

5.3.2 Expressing queries in QBD

QBD [Angelaccio Catarci Santucci 1990] is primarily a navi-
gational language on Entity-Relationship (ER) diagrams rep-
resenting conceptual schemata. The user first interacts with
the conceptual schema to understand its information content,
and extracts the subschema of interest containing the con-
cepts involved in the query, then, during the “navigation”
activity, he may express the query, defining all its proce-
dural characteristics. Initially s/he selects a central concept,
called main concept, that can be seen as the entry point of
the query, then s/he can choose between two kinds of prim-
itives for navigating in the schema. The first one allows the
user to follow paths of concepts, the other one is used for
comparing two concepts which are not directly connected to
each other. Conditions on attributes are expressed by means
of a window, where the list of the attributes is shown to-
gether with the elements involved in the comparison (i.e.,
constants, other attributes, etc.) and a set of icons suitable

6 Note that the uniqueness of such a role-node is a consequence of the
IFO definition of fragment, not a GM constraint
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to formulate conditions on the attributes. Conditions are ex-
pressed selecting the attributes and the icon corresponding
to the required operator.

Since the QBD syntax is defined in terms of various
graphical elements (rectangles, circles, diamonds, labels, and
edges), we also provide a mapping between the elements of
QBD diagrams (QBDD) and the representation structures of
Typed Graphs.

The mappings is defined as follows:

1. For each rectangler ∈ QBDD with label lr, there is a
nodeni ∈ NCu

such thatf1(ni) = lr.
2. For each diamondrh ∈ QBDD with label lh, there is

a nodeni ∈ NR such thatf1(ni) = lh.
3. For each circlec ∈ QBDD with label lc, there is a node

ni ∈ NR such thatf1(ni) = lc.
4. For each edge〈x, y〉 ∈ QBDD, there is an edge
〈x′, y′〉 ∈ E such thatx′ = s(x) andy′ = s(y).

By using the mappingsH (see Sect. 4.4.2) ands we
show that the query language QBD can be formalized in
terms of GPs.

Let Q(QBD) be the set of queries expressible by using
the graphical operations of QBD. Such graphical operations,
introduced above, are:

1. Selection of the first rectangle (main entity)
2. Selection of any path diamond-rectangle
3. Selection of two disconnected rectangles
4. Opening of a window containing the labels of the circles,

selection of some labels
5. Opening of a window containing the labels of the circles,

drawing of an edge between some label, with a new label
6. Selecting two isolate rectangles and selecting of an icon

representing a set operator

Such operations, applied to an ER database ERD, whose
visual representation is a QBD diagram QBDD, correspond
to several applications of GPs on a databaseD = 〈g, c,m〉
in the ER Graph Model, such thatD = H (ERD) and
g = s(QBD). As a consequence, the semantics of such op-
erations is immediately defined in terms of the semantics of
the GPs. The correspondence is as follows:

1. The selection of the first rectangler is expressed as: the
selection of the node with the same label; the selection
of all the nodes linked to it and corresponding to circles
(denoted withs(r1) . . . s(rk)):

S (H (ERD), s(r)) ◦ s(H (ERD), s(r1))
◦ . . . s(H (ERD), (rk)).

2. The selection of any path rhomb-rectangle (denoted with
rh− r) is the selection of the corresponding nodes:

S (H (ERD), s(r)) ◦ s(H (ERD), s(rh)).

3. The selection of two disconnected rectangles, sayr1, r2,
is the selection of the corresponding nodes:

S (H (ERD), s(r1)) ◦ s(H (ERD), s(r2)).

4. The opening of a window containing labels of circles and
the selection of some labels, saylc1 . . . lch, corresponds
to the selection on the Typed Graphg of the role-nodes
ni such that

f1(ni) = lci : S (H (ERD), n1) ◦ s(H (ERD), n2)
◦ . . . s(H (ERD), nh).

5. The opening of a window containing labels of circles,
say lc1 . . . lch, and the drawing of a labeled edge (with
label F ) between two of them,lc1, lc2, correspond to
the drawing of an edge, with the same labelF , between
the two role-nodesn1 andn2 such that:

f1(n1) = lc1 andf1(n2) = lc2 : E (H (ERD),F , n1, n2).

6. The selection of two isolate rectangles and the selection
of an icon representing a set operator, correspond to the
drawing of an edge, with a labelF equivalent to the
icon, between the two nodesn1 andn2 corresponding to
the rectangles:

E (H (ERD),F , s(r1), s(r2)).

As an example, let us consider the ER chess game
schema of Fig. 10a and assume that we are interested in
finding out the name of all the white players of a chess
game together with the name of the computer on which they
have an account. The corresponding ER query is expressed
through the selection of the diagram elements constituting
the path:

〈Computer,Account, Person, (white role), ChessGame〉,
asking for the inclusion in the final result of the attributes
Name andC name. Applying the above mapping rules, we
obtain the GPs shown in Fig. 12.

5.4 Generating relational expressions

We showed in the previous section that the last phase of the
query expression is devoted to the production of the query
result expressed through a new GMDB, namely the result
databaseD◦. In this section we see how to directly build a
relational algebra expression, representing the query result,
which can be processed by the underlying relational DBMS.
Moreover, we will prove that applying the inverse mapping
rules to such a relational expression we obtain a GMDB
belonging to the same equivalence class asD◦.

In Sect. 4.2 we introduced suitable relational algebra ex-
pressions in order to give the role-node interpretation, i.e.,
for eachr ∈ NR RelExp(r) returns the relational algebra
expression used in definingm(r). In this subsection we show
how to compose such relational algebra expressions in order
to express the query result.

Note that we can associate the notion ofRelExp to the
mapping from the relational model with no constraints to
the GM (see Sect. 4.1). In this case, applyingRelExp to a
role-node returns the label of the unprintable node adjacent
to it, i.e., the associated relation name. Under this condition,
the expression defined below computes a correct query.

Let D be an admissible GMDB7 possibly containing un-
selected, selected and displayed nodes, together with edges
with labels/= T .

7 Depending on the structure of the GMDB D, the result database may
have an empty set of role-nodes. In this case we say that Dis not admissible,
otherwise we say that Dis admissible(see [Catarci Santucci Angelaccio
1993], where the constraints a GMDB must satisfy in order to be admissible
are specified)
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Fig. 12. Translating an ER query into GPs

Let Nrs, Nrd ⊆ NR be the set of selected and displayed
role-nodes respectively. LetEf be the set of edges whose
label is/= T . In order to compute the query result we compute
the following relational algebra expression:

R = ΠP

(
σF

(
RelExp(n1) ./f1,2 RelExp(n2) . . .

./
fk−1,k RelExp(nK)

))
whereni ∈ NR, f3(ni) ∈ {selected , displayed } for
i = 1 . . .K, P, F , and the equi-join conditionsfi,i+1 are de-
fined as follows.

P is the set of thedisplayed role-nodes,P = Nrd;
F is the logical conjunction of the labels belonging to the
edges inEf ;
fi,i+1 is defined as follows:

1. If RelExp(ni) and RelExp(ni+1) share the same pri-
mary key, i.e.,AD(ni) ∩ NCu

= AD(ni+1) ∩ NCu
= n,

thenfi,i+1 is equal to

“PKRelExp(ni) = PKRelExp(ni+1)” .

2. If RelExp(ni) andRelExp(ni+1) share the same foreign
key, i.e.,AD(ni) ∩ AD(ni+1) = n ∈ NCu , thenfi,i+1 is
equal to

“FKRelExp(ni),RelExp(n) = PKRelExp(ni+1),RelExp(n)” .

3. If there exists a foreign key ofRelExp(ni) in
RelExp(ni+1), i.e.,AD(ni) ∩AD(ni+1) ∩NCu

= n and
|AD(ni+1) ∩NCu

| > 1, thenfi,i+1 is equal to

“FKRelExp(ni),RelExp(ni+1) = PKRelExp(ni+1)” .

4. If none of the three above cases holds thenfi,i+1 is equal
to ∅ and the operation performed is a cartesian product.

Theorem 1
LetD be an admissible GMDB obtained by applying a set of
GPs toD′ = H (DB) whereDB is an enriched relational
database. LetD◦ be the corresponding result database, and
let R be the relation computed by the above relational ex-
pression associated withD. Let D′′ = H (R) whereR is
the relational database composed by the single relationR.
ThenD′′ is equivalent toD◦, i.e.,D′′ ∈ EQ(D◦).

Proof (sketch)
The proof proceeds by comparing the relational expression
introduced in this section with theeval operator introduced
when defining the construction ofD◦ (see Sect. 3.2.2). In
fact, it is easy to show thateval operator computes either a
cartesian product or an equi-join on the unprintable values.
The former corresponds to case 4 of the above relational ex-
pression computation, the latter to one of the first three cases,
resulting in an equi-join on keys. The unprintable values of
D◦ are new invented values and the corresponding ones in
D′′ are generated by the mappingH . Therefore, the tuples
in D′′ can differ from the ones inD◦ only for the unprint-
able values and, consequently,D′′ andD◦ are in the same
equivalence class.

6 Summary and conclusions

This paper summarizes a consistent part of the work done
during the past 5 years with the main purpose of designing
a new VQS providing the user with a multiparadigmatic vi-
sual interface realizing an integrated access to heterogeneous
databases. Such a VQS has two main components: (1) the
user interface (described in [Catarci Chang Santucci 1994]),
which is able to automatically adapt to different users by of-
fering to them the most appropriate visual representation and
interaction modality on the basis of a user model describing
the user skill and needs; and (2) the interface to the different
DBMSs, which allows for expressing the diverse databases
in terms of a single model and eventually build an integrated
schema. Both components rely on a formal model, the Graph
Model (GM), having a graphical syntax and an object-based
semantics, which plays the role of both unifying model for
the heterogeneous components and intermediate visual rep-
resentation used for formalizing the different final represen-
tations presented to the user. The GM has associated a query
language composed by two Graphical Primitives (GPs): the
selection of a node and the drawing of an edge. Again, the
purpose of such primitives is twofold. They have the same
expressive power of the query languages associated with the
most common data models, and are a means for formalizing
more complex visual interactions, as provided in the user
interface.

The lower part of the system has been presented in this
paper. In particular, we discussed how databases expressed
in the most common data models can be translated in terms
of GMDBs, possibly by exploiting reverse engineering tech-
niques, and showed that the GPs are equivalent to well
known query languages. Finally, we described how queries
expressed by using the GPs can be translated in terms of
relational expressions so to be processed by one type of ac-
tual DBMSs. We concentrated on relational DBMSs, since
they are widely diffused in real applications. However, the
definition of the mappings with object-oriented and semantic
data models, as well as the inner structure of the GM and the
GPs, permits easy extension of our approach to effectively
interface object-oriented and semantic DBMSs.

As we said in the Introduction, our proposal differs from
others available in the literature mainly in the problems it
intends to solve. Perhaps, the works that are most similar
to the ours are [Mark 1989] and [Gyssens Paredaens Van
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Gucht 1990]. Both papers present specific VQSs, which are
intended to be directly utilized by the users. Our proposal
presents a more general environment, where various equiv-
alent user interfaces can be defined on the basis of the same
formalisms, and different databases can be dealt with in a
uniform way. Our proposal shares several similarities with
Mark’s approach both in the data model (except for the ar-
ity of relationships, which are only binary in Mark’s work,
while our role-nodes can be linked ton other nodes) and in
the way of computing the query result, while the process of
query formulation is deeply different in that keywords are
used instead of graphical operations. In [Gyssens Paredaens
Van Gucht 1990] a powerful object-oriented data model is
defined, called GOOD, provided with a graphical interface
and graphical interaction for all the typical database opera-
tions. Besides distinct motivations, this approach is different
from ours from a graphical point of view. In GOOD, a query
is specified by a pattern that is matched against the instances
graph, while our GPs work on the intensional level of the
database and their semantics is defined in terms of set op-
erations. Finally, the higher expressive power of the GOOD
query language is obtained by introducing methods which
are strictly related to the object-orientation paradigm and
are not expressible in terms of graphical operations.

Summarizing, this research has provided a strong and
formal basis for the development of an adaptive user in-
terface to heterogeneous databases. The work continues. In
particular, we are devising a more sophisticated schema in-
tegration technique. Starting from a set of GMDBs and a
knowledge base containing intra- and inter-schema knowl-
edge (expressed by using an extension of the Constraint Lan-
guage) we will be able to automatize several phases of the
schema integration. As for the multiparadigmatic interface,
which has been implemented, we are presently testing it
against real users.
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