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Abstract. During the past few years our research effortsdatabase is queried by a casual user who is not necessar-
have been inspired by two different needs. On one hand, thdy acquainted with languages such as SQL [Date 1987].
number of non-expert users accessing databases is growingsual Query System@/QSs) may be defined as query sys-
apace. On the other, information systems will no longer betems essentially based on the use of visual representations
characterized by a single centralized architecture, but ratheto depict the domain of interest and express the related re-
by several heterogeneous component systems. quests. VQSs provide user-friendly query interfaces for ac-
In order to address such needs we have designed a negessing a database. They include both a language to express
guery system with both user-oriented and multidatabase feahe queries in a pictorial form (i.e.,\asual query language
tures. The system’s main components are an adaptive visudQL) and a variety of functions to facilitate man-machine
interface, providing the user with different and interchange-interaction. The VQSs are oriented to a wide spectrum of
able interaction modalities, and a “translation layer”, which users who have limited technical skills and generally ignore
creates and offers to the user the illusion of a single homothe inner structure of the accessed database. In recent years,
geneous schema out of several heterogeneous componentsany VQSs have been proposed in the literature, adopting
Both components are founded on a common ground, i.ea range of different visual representations and interaction
a formally defined and semantically rich data model, thestrategies. However, the main part of any VQS is consti-
Graph Model, and a minimal set of Graphical Primitives, tuted by the VQL it is based on.
in terms of which general query operations may be visually  Various graphical VQSs have been proposed (a survey is
expressed. The Graph Model has a visual syntax, so thah [Batini et al. 1991]), but few of them are provided with a
graphical operations can be applied on its components withformal definition (e.g., [Cruz Mendelzon Wood 1988; Nanni
out unnecessary mappings, and an object-based semantic4.988; Angelaccio Catarci Santucci 1990; Consens Mendel-
The aim of this paper is twofold. We first present an zon 1990]). All these systems are mainly based on the idea
overall view of the system architecture and then give a com-of proposing new visual representations for the classical,
prehensive description of the lower part of the system itselfnon-visual database models, together with new interaction
In particular, we show how schemata expressed in differmechanisms founded on the “direct manipulation” paradigm
ent data models can be translated in terms of Graph Mode[Shneiderman 1983]. For example, we can consider the al-
possibly by exploiting reverse engineering techniques. Moregebraic definition of relation in the relational model and
over, we show how mappings can be established betweerepresent it by using either a hypergraph or a table; in the
well-known query languages and the Graphical Primitives.same way we can represent the Relational Algebra operators
Finally, we describe in detail how queries expressed by usfCodd 1972] by some navigation in a diagram. VQSs have
ing the Graphical Primitives can be translated in terms ofbeen shown to be appropriate for querying a global infor-
relational expressions so to be processed by actual DBMSsnation system [Batini et al. 1991], because they typically
offer to the user a representation of the information that is
independent of the structure or the location of the actual
data. Nevertheless, existing VQSs generally do not adapt to
the various needs of different users. Neither do they interface
1 Introduction heterogeneous databases, a critical need of today information
systems (see, e.g., [Thomas et al. 1990; Sheth and Larson

Recently, the database area has been proven to be partick990; Elmagarmid Pu 1990]). _
larly fruitful for applying visual techniques specifically in On the contrary, the main goal of our approach is to

accessing stored data. One reason is that very often trllow different classes of users to access multiple, heteroge-
neous databases by means of an adaptive interface, offering

* Research partially supported by the EC under the Esprit Project 639&everal interaction mechanisms. This led us to design and
VENUS.
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partially implement a query system with both user-oriented models. The querying primitives of the formalism, al-
and multidatabase features. One of the basic ideas of the though constituted solely by two elementary graphical
system is to give a precise semantics, in terms of changes of actions, namely the selection of a node and the drawing
database states, to a set of elementary graphical actions (such of an edge, are at least as expressive as the relational
as selection of nodes and drawing of edges), caeaphi- algebra.

cal Primitives(GPs), in terms of which more complex visual — An adaptive visual interface, built on the basis of the
interaction mechanisms may be precisely defined. The GPs above formalism, providing the user with different visual

are defined on the basis of a powerful data modelG@treph representations and interaction mechanisms together with
Model (GM), having a visual syntax and an object-based se- the possibility of switching among them. All the different
mantics. visual representations allow one to express at least the

On one hand, the GM is powerful enough to express class of conjunctive queries.
the semantics of most of the common data models, so it is— The definition of three suitable sets of translation algo-
suitable as a unifying canonical model. A user can query rithms, one for translating a database expressed in any of
and examine results using a conceptually single database, the most common data models into the internal system
namely aGraph Model Databas€ GMDB). Then, her/his model, one for translating a GM query in terms of the
query is translated into a set of queries which are executed query languages of the underlying data models and one
on the component databases, and the results of these are devoted to implement the consistent switching among
combined to form a single result. The user is thus oblivious different visual representations during the query formu-
to the existence of the underlying databases, and need not lation.
be concerned with their specific storage formats or query — The construction and the management of an effective
languages. On the other hand, the GPs can be used as basic user model, which allows the system to provide the user
constituents of more complex visual interaction mechanisms  with the most appropriate visual representation according
and different visual representations can be associated with to his or her skill and needs.
the GMDBs by simple syntactic mappings.
The work on the above query system has evolved during  The architecture of the whole system is shown in Fig. 1.
several years, producing various partial results. This paper i¥he system consists of \ésual Interface Managera User
a comprehensive description of the lower part of the globalModel Manager a GMDB & Query Manager and one or
system. More precisely, we show how schemata expressed imore DBMSs.
different data models can be translated in terms of GMDBs, The Visual Interface Manager is capable of supporting
possibly by exploiting reverse engineering techniques. Moremultiple representations (form-based, iconic, diagrammatic,
over, we show how mappings can be established betweeand hybrid) of the databases and the corresponding inter-
well-known query languages and the GPs, and vice versaaction modalities. In this way the user is provided with a
Finally, we describe how queries expressed by using theévultiparadigmatic Query Language that is based on a set
GPs can be transformed into relational expression so to bef visual query languages, each of them interacting with a
processed by actual database management systems (DBMS#fferent visual representation of the GM and all sharing the
we concentrate on relational DBMSs, since they are widelysame expressive power. We briefly recall the features of the
diffused in real applications). Other aspects of this researclepresentations the Visual Interfac e Manager interacts with.
are described elsewhere. In particular, the multiparadigmatic Form-based representatiorere the first attempt to pro-
user interface is presented in [Catarci Chang Santucci 1994lide the user with friendly interfaces for data manipulation;
and the GM foundations are in [Catarci Santucci Angelacciothey are usually proposed in the framework of the relational
1993]. model, where forms are actually tables. Their main char-
This paper is structured as follows: In Sect. 2 we describeacteristic consists in visualizing prototypical forms where
the system architecture. The basic notions on the GM are requeries are formulated by filling corresponding fields. In the
called in Sect. 3. Section 4 gives the translations betweemprecursor systems adopting a form-based representation, like
the GM and the relational, object-oriented, and semantic dat®BE [Zloof 1977], only the intensional part of relations is
models. The query management and the result constructioshown: the extensional part is filled by the user in order to
are described in Sect. 5. Finally, the conclusions are preprovide an example of the requested result. In more recent
sented in Sect. 6, and the directions in which this work will proposals both the intensional and the extensional part of the
proceed are summarized. database coexist.
Diagrammatic representatiorare those most used in ex-
isting systems. Typically, they represent with different vi-
2 The overall system architecture sual elements the various types of concepts available in a
model. The correspondence between visual elements and re-
According to the main goals described in Sect. 1, we proposéated types of concepts demands aesthetic criteria for the
a global system with the following basic features: placement of visual elements and connections. For example,
hierarchical structures for generalization and object aggre-
— A graph-based formalism (namely the GM) for represent-gation dictate a vertical placement of the involved elements.
ing and querying databases. This formalism is suitableDiagrammatic representations adopt as typical query opera-
to give a precise semantics to complex visual representors the selection of elements, the traversal on adjacent el-
tations and is general enough to formalize, in principle,ements and the creation of a bridge among disconnected
a database expressed in any of the most common datlements.
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Fig. 2. Conversion and integration of local schemata

The iconic representatiomses sets of icons to denote

both the objects of the database and the operations to b : - -
performed on them. A query is expressed primarily by Cc)m_gescrlbes the initial activity of the GMDB & Query Man-

bining icons. For example, icons may be vertically combined29¢" 1€, the conversion of the DBMS schemata into GMDB

to denote conjunction (logical AND) and horizontally com- schemata and the following integration.

: O . . Each of the merging schemata is expressed in terms of a
bined to denote disjunction (logical OR) [Chang 1990]. In data model supported by a suitable DBMS. The GMDB &

order to be effective, a proposed set of icons should be eaSiIguery Manager activates the needed translators to convert
understandable by most people. However, in many cases it e local schemata in terms of GMDB schemata. During this

difficult or even impossible to find a universally accepted set hase. each translator interacts with an internal knowledae
of icons. As an alternative, icons could be user-defined to b ! . S 9
ase for two main objectives:

tailored to the particular needs of the user and to her/his ow

mental representation of the tasks s/he wants to perform. 1 14 gocument the choices adopted during the translation
The hybrid representationsise an arbitrary combination activity

of the above approaches, either offering to the user various, 14 fing out additional information (if available) about
alternative representations of databases and queries, or COM- 1o schema it is translating
bining different visual structures into a single representation.
From an analysis of VQSs [Batini et al. 1991], it emerges  Once the set of GMDB schemata is available, the GM
that several systems adopt more than one visual structurgchema integrator module provides for integrating them. The
but often one of them is predominant. On the contrary, infirst step in the integration of two schemata is to recognize
the proper hybrid VQSs, the different visual structures shareheir similarities; these provide the starting point for the in-
the same significance. Diagrams are often used to describ@gration. However, the principal difficulty of schema in-
the database schema, while icons are used either to reprezgration is to discover and solve possible conflicts in the
sent specific prototypical objects or to indicate actions to beschemata to be merged, i.e., different representations for the
performed. Forms are mainly used for displaying the querysame concepts.
result. Conflict analysisaims at detecting all the differences in
Based upon the user model provided by the User Modetepresenting the same reality in the schemata. The main re-
Manager, the Visual Interface Manager selects the visual repsearch guidelines (see, for instance, [Navathe Gadgil 1982;
resentation most appropriate for the user. The User ModeBatini Lenzerini 1984; Gottard Lockemann Neufeld 1992]
Manager is responsible for collecting data and maintaining gor specific methodologies and [Batini Lenzerini Navathe
knowledge base of the user model components, namely thegge] for a comparative survey), indicate several kinds of

class stereotype, the user signature, and the system modekhema differences detectable by conflict analysis, including:
The Visual Interface Manager and the User Model Man-

ager are described in more detail in [Catarci Chang Santuccil. Naming conflicts Schemata incorporate names for en-

1994] and [Catarci et al. 1993].
At the bottom of the figure, different databases structured

according to several data models are shown. Each database

is translated into a GMDB by the GMDB & Query Man-
ager, using the mappings described in Sect. 4. It is up to the
GMDB & Query Manager to manage such mappings and to

translate the visual queries into queries that can be executed

by the appropriate DBMS.
Figures 2 and 3 give more details about the GMDB &
Query Manager, showing its main components. Figure 2

tities, attributes, and relationships. People from differ-
ent application areas of the same organization are used
to refer to the same data using their own different ter-
minology and names. This results in a proliferation of
names as well as a possible inconsistency among names
in the component schemata. The problematic relation-
ships among names are of two types:
— Homonyms: when the same name describes two dif-
ferent concepts, giving rise to inconsistency unless
detected.
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Admissible

— Synonyms: when the same concept is described by view of the GM
two or more names, giving rise to a proliferation of Integrated Schema. | pogult
names.
2. Domain conflicts Insidious inconsistencies may exist in
the definition of the domain of concepts having the samg ————
name in two different schemata. For instance, the entity Quory <
Studenttan include graduate and undergraduate students «——— I Handler <
in one of the two schemata, and undergraduate students / \
only in the other one. Admissiple  Admissible oM
3. Structural conflicts These are conflicts that arise because ‘Schoma1  Schgmal Schepad
of a different choice of modeling constructs or integrity T ¥ oo
constraints. Examples of conflicts are: query lquery w |query
. . . . transator translator | translator
— Type inconsistencies: The same concept is repre
sented by different modeling constructs in different v
schemata (e.g., the use of pity as an entity in one v v DEMSn
schema and as an attribute in another one). DBMS2
DBMS1

— Cardinality ratio conflicts: a group of concepts are
related among themselves with different cardinality Fig- 3- The Query Management
ratios in different schemata (e.g., Man and Woman

in the relationship ‘Marriage’ are 1:1 in one schema, ) ) i i
but m:n in another one, accounting for a marriageOf two simple graphical operations: the selection of a node
history). and the drawing of a labeled edge.

— Key conflicts: different keys are assigned to the same
concept in different schemata.

3.1 The Graph Model
Because of the limited set of structural mechanisms of

the GM, the conflicts which arise are almost always namerhe GM allows us to define a GMDB in terms of a triple
conflicts, and the GM schema integrator keeps track of the, . ;) where g is a Typed Graph ¢ is a set (possibly
(eventual) renaming of concepts, documenting it in the in-empty) of integrityConstraints andm is the corresponding
ternal knowledge base. Moreover, the knowledge base willnterpretation The schema of a database, i.e., its intensional
contain also pieces of information about the global schemayart, s represented in the Graph Model by the Typed Graph
restructuring. This activity is performed by further analyz- 34 the set of Constraints. The instances of a database, i.e.,
ing the global schema against the main goals of completes extensional part, are represented by the notion of Inter-
ness and minimality. Eventually, the internal knowledge basepretation.

schemata as well. the Typed Graph in terms of classes and relations (called
In Fig. 3 we show the modules of the GMDB & Query rples). A class is an abstraction of a set of objects with
Manager devoted to the query management. common characteristics, whereas a relation among classes

Through the Visual Interface Manager the user interacts, . ¢, represents associations among objects of the
with a view of the integrated GM schema and her/his actiong|assescy, ... C,. More formally, we define the Typed
are translated in terms of GPs. Once the query is completedgaph as follows.
the user can ask for its computation. The Query Handler
module, through the analysis of the distribution informa- Definition (Typed Graph)
tion produces a set of admissible views on the local GMA Typed Grapty is a 7-tupleyg = (N, E, %1, %5, f1, [2, [3)
schemata. Each view is processed by the appropriate quetyhere:
translator, resulting in a query expressed in terms of the un-
derlying DBMS. Each DBMS computes its partial query and
sends the result to the Query Handler that, in turn, merge
them, producing a unique result.

— N = NcUNpg is the set of nodes, wher8; and Ny are
mutually disjoint; N¢ is the set of so-called class-nodes,
and Ny, is the set of the so-called role-nodes. Moreover,
Nc is partitioned intoN¢,, the set of printable class-
nodes, andV¢,, the set of unprintable class-nodes.

— E C N x N is the set of edges.

— % is the set of node labels.

) ) , . . — % is the set of edge labels, including a special label
In this section we recall from [Catarci Santucci Angelaccio 71

1993] the formal definition of the concepts underlying our _ f1is a total one-to-one function fromv to ;.

approach. We first introduce the syntax and the semantics_ 1, is a total function fromF to %,.

of the Graph Model in terms ofyped Graphand Inter- — f5is a total function mapping each node to one value in
pretation, and then we define a suitable language for ex- {unselected , selected , displayed }.
pressingConstraintson the elements of the Typed Graph.

Afterwards, we describe the GPs that allow for expressing 1 all edges are labele@” at the beginning of the interaction. Note that
any query-oriented user interaction with a database in termsuch a label is for the purpose of the system and it is not displayed

3 Graph Model and Graphical Primitives
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Observe that the labels it¥; are simply node names the corresponding Interpretation. Formally, an Interpretation
(i.e., names of both classes and roles), whereas the edge I defined as follows.

bels in~, represent either set-oriented operations or boolearﬁ

X : . Definition (Interpretation)
expressions, and are used in the process of query formulatio et g = (N, E, %1, Lo, f1, [, f2) be a Typed Graph. An

(see next subsection). interpretation forg is a functionm : N 2% mapping
; ; q m . —
The second component of a GMDB, namely the |ntegr|tyeach nodey € N 1o a subset of7Z as follows:

constraints, allows the designer to specify relevant condi-
tions on and meaningful properties of the classes and the_ |f , ¢ N¢, thenm(n) C Z,.

roles represented by the nodes in the Typed Graph. It is— |f n ¢ Ne, thenm(n) C &,.

worth noting that the user simply aiming at querying the — If n, ¢ Ny and{na,...,n,} = AD{n}NN¢, thenm(n)
database does not need to be acquainted with the existence is a set of tuples of the formifi(ns) : ti,..., fi(ns) :

of constraints. Instead, constraints are essential in specifying ¢,), where fi(n;) € 41 andt; € m(n;) for i = 1..h.

the database schema, since they represent an important seg- ] o ] )

ment of the semantics of the application. In this paper weMVoreover, the interpretation is said to satisfy a set of con-

are interested in two kinds of integrity constraints: tae  Straintsc if the following conditions are satisfied:

constraints, and the cardinality constraints. — For every constrainCisaD in ¢ (i.e., for every con-
The 1sA constraints allows for representing subclass-  giaint enforcing that” is a subclass of), we have
class relationships. More precisely, we can imposasan thatm(C) € m(D). ’
constraint on a Typed Graphby simply enforcing that one  _ pq; every EonstrainATLEAST(k, C,R)in ¢ (i.e., for ev-
class-nodeC’ of g is 1sA-related to another class-node ery ATLEAST cardinality constraint orC' and R), the
of g. As we will see in the definition of interpretation, this number of labeled tuples im(R) that contain elements
means that’ represents a sub-class bfin g. of m(C) in the C-component is greater than or equal to
Cardinality constraints allow for limiting the number k.
of participations of objects in relations. They come in two _ gq, every constrainhTmosT(k, C, R) in c (i.e., for ev-
forms, theaTLEAST and ATmosT forms. The first form is ery aTMosT cardinality constraints orC and,R) the
written asaTLEAST(k, €, R), and is used to assert that ev-  nymper of labeled tuples im(R) that contain elements
ery object that is an instance of the class-nadés linked of m(C) in the C-component is less than or equalko

to at leastk instances of the role-nodR. The second form

is written ATmosT(k, C, R), and is used to assert that every  In the following, when we refer to a GMDBD =

object that is an instance of the class-n@dés linked to at (g, ¢, m), we implicitly assume that the interpretationsat-

mostk instances of the role-nodg. isfies every constraint ir. We note that, given a Typed
The 1SA, ATLEAST and ATMOST constructs are graphi- Graphg and a set of constraints there always exists at

cally represented in a Typed Graph as shown in Fig. 4a, i.eleast one Interpretation foy satisfying every constraint in

an arrowhead edge for thea relationships, and a pair of c. Indeed, it is easy to verify that the Interpretation mapping

numbers between brackets for the cardinality constructs. each node to the empty set satisfies every and every
Let us now turn our attention to the third component of cardinality constraint.

a GMDB, namely, the Interpretation. In defining the notion  In the rest of the paper, we denote wittD'{n} the set

of Interpretation, we use the following notations: defined as follows:

— If n € N¢ then AD'{n} = AD{n} U; AD(n;) where
n; € N¢, andnisa*n; holds, whereisa* is the transi-
tive closure of theisa relation (note that ifn € N¢,,

— AD{na,...,ni} is the set of nodes adjacent to a given
set of nodeqny,...,ni} minus{ny,...,ng}.

- Y = Z,0U%, is a set of elementary object¥;, is a set /
of printable objectsZ, is a set of unprintable objects. ':?e; éDJ\}{gih#efi{an} = AD{n} U {m € Ng|ne

Moreover, it holds thatZ, N &, = 0. AD'{

— %¢ is a universe for a Typed Graph that is a set of m}}
yp h

structured objects, defined as the smallest set containing In other words, ifn is a class-node, the sdtD’{n} con-

2 and all the possible labeled tuples (of any arity) overtains both the nodes adjacentritaand the nodes adjacent to

<, i.e. objects of the form{i; : t1,...,1, : tn), where its ancestors in thesa hierarchy; ifn is a role-noded D’ {n}

ly,...,1, and tq,...,t, are elements of£; and &, contains both the nodes adjacentrtand the descendants

respectively. of such nodes.

An example of the use of the GM for the specification of

Given a univers&/, an Interpretation for a Typed Graph a database concerning persons, students, and cities, is shown
g over 24 (or simply an Interpretation fog) is a function in Fig. 4. Figure 4a shows the Typed Graphvith the fol-
mapping the printable class-nodes @fto a subset of all lowing constraintsStudentsa Person ATLEAST(1, Person,
printable objects of/, the unprintable class-nodes to a sub- Age); ATMOST(1, Person, Age); ATLEAST(1, Person,
set of all unprintable objects of2, and the role-nodes to a Lives); ATMOST(1, Person, Lives), i.e., a person has one
subset of all labeled tuples @¥. In particular, given a role- and only one age and lives in one and only one city. Fig-
noden, its Interpretation is constituted by a set of labeled ure 4b shows a possible Interpretationfor g.
tuples whose arity is equal to the number of class-nodes Observe that the values stored in the unprintable nodes
which are adjacent ta, and each component is labeled with play the role of object-identifier and they can be suitably
the label of one adjacent class-node, and takes its values ichanged without affecting the information content of the
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schema. For instance, if we create a new GMDB, sgy 2 ERY

from the one in the above example, changing all occurrences e

of the object identifietOl1, belonging to the clasBerson Student
into OI100 we can assert that the two GMDBs are equiv-
alent. Therefore we say that two GMDBs, sBy and D,
belong to the same equivalence class if they share the same
Typed Graph and the Interpretation B} is obtained by the
Interpretation ofD; by applying an isomorphic function to
all the unprintable values of the Interpretation/of. In the
following we denote the equivalence class of a GMDB
asEQ(D,).

We end this section with a discussion on the main fea-
tures of the GM. The formal definition of the GM shows s -Toromon):
that our formalism shares many features with other well-| |G o6 o O
known data models proposed in the literature. In particular| ™=

m (String) = {a...z, I. .())*.

the CIaSS-Or'ented na‘[ure Of the model a”OWS us to Stress on m (Age) = {<Person:OI1,Integer:22>, <Person:OI2,Integer:21>, <Person:OI3,Integer: 19>,

<Person:Ol4,Integer:40>};

one hand several similarities with semantic modeling, ang  ®ame) = (<Person:0l1 Stsing Mury>0 ;Pm«mov String:John>,

<Person:OI3,String:Carl>, <] :0l4 Slnnb Lu.lly>)

on the other hand many important differences with record; p > Bt QPR ol
oriented data models (relational, hierarchical and network "‘<L“'°*’=‘§,§’;&’;§‘“".‘;§’,'4"5i‘y’f823"’“‘5""':0'Z‘Ci""o'5>'<“'“"":om‘c"yom)‘
data models). The intensional part of the database is indeed
expressed in the Typed Graph in terms of classes and resig. 4a,b. A Graph Model DataBasea A Typed Graphg and a set of
lations, in the tradition of conceptual semantic data model<onstraintsc. b An example of Interpretation fofg, c)
[Hull King 1987], as well as frame-based knowledge repre-
sentation formalisms [Brachman Schmolze 1985]. The kind
of integrity constraints supported by the model is also tai-for this purpose. We remind the reader that a role-node is in-
lored to the class-oriented nature. ISA constraints are useterpreted as a labeled tuple, and this directly reflects the fact
to represent thesa relation, which is one of the most rel- that its instances are associations among objects that are in-
evant semantic relations on classes. The importance of thetances of classes. Similar considerations hold in comparing
ISA relation in representing knowledge is stressed in manythe GM with the Binary Data Model [Abrial 1974].
papers (see, for example, [Brachman 1993]), and stems from Finally, it is useful to briefly compare the GM to Object-
the fact that it allows a modular approach to schema speciOriented Database Models [Bancilhon 1988; Kim 1990;
fication, based on the inheritance of properties. On the otheBeeri 1990]. It is easy to see that the Typed Graph inherits
hand, cardinality constraints are important in establishing detwo characteristics of the object-oriented database approach.
pendencies along classes. For example, it is easy to see thalrst, a distinction is made between abstract and concrete
suitable forms of functional and existence dependencies be@also called printable) classes. The former represent sets of
tween classes are indeed capturechbyiosT andATLEAST objects denoted simply by object identifiers, whereas the lat-
constraints, respectively. ter represent sets of objects that are actually values of dis-
Although there are several similarities between the GMtinguished domains (integers, reals, characters, etc.). Second,
and the Semantic Data Models, we can also single out soméhe 1sA relation is treated similarly in the two formalisms,
distinguishing features of our formalism. We will discuss and the (possibly multiple) inheritance of properties is a cen-
this point by referring to three important class-oriented dataral notion of both models. Unlike the Object-Oriented Data
models. Models, though, the GM does not support a strong notion
The GM can be considered a variant of the extendeddf complex object. Indeed, record and set structures are not
Entity-Relationship Model [Chen 1976; Ullman 1987], in explicitly modeled in our formalisms, but they are repre-
that class-nodes can be interpreted as entity types and roléented implicitly in role-nodes and inTmosT cardinality
nodes as relationship types. Unlike the Entity-Relationshipconstraints. The choice of not modeling complex objects in
Model, our formalism does not distinguish between at-Typed Graph is mainly motivated by the fact that users are
tributes and relationships in specifying properties of a classtypically not familiar with record and set structures, that are
Indeed, we think that this distinction is not meaningful from instead much more oriented to computer science experts.
the user point of view. Instead, the important point for the  All the above observations point out that, although the
user is to have an effective and direct means to single ou6M embeds many characteristics of well-known data mod-
logical links among classes (or entities), and this is accomels, its graphical and class-oriented nature represents a some-
plished in the GM by links relating class-nodes and role-what novel approach to data modeling, that is especially
nodes. suited to our goal of stressing both the user-oriented and the
There are several similarities between the GM and thenultidatabase features of the presented query system.
Functional Data Model [Shipman 1981]. Indeed, the Func-
tional Data Model has an easily understood visual represen-
tation, and is again based on the representation of classes aB® Fundamental Graphical Primitives
links. However, representing complex associations among
classes is not an easy task when using the Functional Data this section we recall the formal definition of the GPs. The
Model, whereas the GM provides the notion of role-nodesmain idea is to express any query-oriented user interaction
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with a database in terms of two simple graphical operations;f; = fs.

the selection of a node and the drawing of a labeled edge:’ = c.

The former is the simplest graphical operation available tom’ = m.

the user, and corresponds to switching the state of a node. D’ differs from D only for the presence of a new la-
The latter is the linkage of two nodes by a labeled edgebeled edge and the associate label. During the building of
and corresponds to either restricting the node interpretationthe result databasP® (see Sect. 3.2.2) this will give rise to
according to the rules stated in the label or performing a sea restriction of the final Interpretation.

operation on them. We show in the following that, by the
composition of these simple mechanisms, all the phases ab’ = & (D," =

the query formulation may be accomplished.

Let n and g be unprintable class-nodes. The database
", m,q) is such that:
N’'=N.

We assume that several views of a database may be usdd = E U {(n, ¢)}.
during query formulation. In order to build such views, we %] = 4.

introduce theDUPLICATE function.
The functionDU PLIC AT E*(D), whereD = (g, ¢, m)
is a GMDB, results in a new GMDBED* = (g*, % mF)

(the k-copy of D) which is equal toD except for the node

“= % U=}

f1=f1.
fr=2U{{(n,q), =)}
f3=fa

labels ¢ denotes concatenation of two labels); in particular: ¢’ =

Nk:N.

by =FE.
/J:—{kozue Ay
%{mkomm»
i

k—C

m’ is equal tom except form/(x), wherex € AD(q):

m/(m) = {<l;|_ T, . g g, fl(n) . Uk;+1>|<l1 ULy
U vk, f1(q) © vger) € m(2)} .

Note that this operation corresponds to renaming of a

m* is equal tom except for the labels of the tuple compo- tuple component in all the adjacents of a naddt is use-

nents of the role-nodes:

mk(n)={<k011:t1,...,kolk:tk>
‘<11:t1,...,lk:tk> Em(n)}

3.2.1 Selection of a node and drawing of an edge

In the rest of the paper we denote wifh = (g,c,m)
the database we operate on, and with= (¢’, ¢/, m’) the
database resulting from the application of a GP.

Selection of a node in D : . (D, n)
.S (D,n) = D' such that:
g’ is equal tog except for f4(n) = succ(f3(n)).
¢ is equal toc.
m' is equal tom.
The succ function is defined on the domain ¢% as fol-
lows: succ(unselected ) =selected ; succ(selected )
=displayed ; succ(displayed ) =unselected

The selection of a node is used to restrict the origina

graphg to a subgraphy’.
Drawing of a labeled edge i® : &< (D,.7 ,n, q)

ful for handling queries involving more than once the same
node, each occurrence belonging to a different user view of
the database.
Finally, if .77 is a set operator, saetop (union, differ-
ence, and intersection), thenandq are class-nodes and’
will contain both a new node and naga constraints. More
precisely,D’ = & (D,.7 ,n,q) is such that:
N{ = Nc U {s} (s is a new class-node).
E' =E.
S = %1 U {ets }, whereet, is a new label fors.
/ L.
fi= LU {(sets)}.
f2= fa
14 = f3U (s,displayed ).
¢ is equal toc plus newisa constraints concerning, ¢ and
s, hamely:
If 77 =Uthencd =cU {nisAs, gisAs}.
If .7 =nthencd =cU {sisan, siSAg}.
If 7 = — thend = cU {s1sAn}.
|m is equal tom except form/(s): m’(s) = m(n) setop m(q).
The above GPs constitute the minimal set of elementary
interactions. However, for the sake of simplicity, we add
a further operation, namely the change of label of an edge

This primitive can only be applied when no edge between linking a class-node to a role-nodeg. The change of an
andgq is in D. Its effect on the database depends on the edge label is denoted witlh (D,.7 , s, q), where.7 is a
label .7, which may be a boolean expression, the symbolpropositional formula whose atoms are of the fosnRg,

“=", or a set-oriented operation.

Let n and ¢ be role-nodes, and le7 be a boolean
expression. The databag¥ = #(D,.7 ,n, q) is such that:
N’ =N.

E'=EU{(n,q)}.
L = L.

L3 =L U{F }.
fi=fi.

5= f20{(tn,q),.7)}.

where R is a comparison operator; and 3 are either the

s component of the tuples belonging to the Interpretation
of ¢ (referred through the label af) or constants. During
the building of the result databade® (see Sect. 3.2.2) the
presence of labels different from the true valliewvill give

rise to a restriction of the final interpretation. It can be shown
that the same result of the operation of changing a label can
be obtained by drawing a reflexive edge on the role-npde

It follows that the label changing is not strictly necessary.
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3.2.2 Result database

We have seen in the previous subsection that the result oRM (m(y)) = {(I1 : v1, ..
applying a GP to a GMDB is again a GMDB. We now de-

scribe how to associate with such a GMBBa new GMDB,

calledD°, denoting the information content of the query per-

formed onD. Roughly speakingD° is a GMDB composed

Sl vt on, o T k)
€ m(y) andl; : v; are such that
I} = fi(TAD(y) N {z € Ng|z1sa™ f;1(1;)} and

v € m(f ).

by a unique unprintable class-node linked, by means of bi-

nary role-nodes, to a set of printable nodes, corresponding tqQ

the ones set tdisplayed in D. The Interpretation of the

Let RM'(m(y)) be a function defined on the Interpreta-
tion of a role-nodey, which, in order to compute the Inter-

above binary role-nodes is computed in two logical steps: inPrétation of D°, concatenates the label gfto the labels of

the first step all the selected role-nodesidfare joined to-

the tuples in the Interpretation gf(o denotes concatenation

gether giving the meaning of a fictitious n-ary role-node; in ©f two labels):

the second step such a meaning is suitably projected on thRM/(m(y)) = ({1} : vy,

binary role-nodes oD°, taking into account the restrictions

specified in the labels of the edges drawn during the query

phase.

More formally, let D be a GMDB. Letry,...,r, €
Ng be the role-nodes ab such thatfs(r;) = displayed
and there existsn € AD(r;) with m € N¢, and f3(m) =
displayed . Letmy,...,m, € N¢, the printable class-
nodes ofD such thatfs(m;) = displayed and there exists
r € AD(m;) with r € Nr and f5(r) = displayed

Let us denote withnew(H,), where H; € {r1,...,rg,
mi,...,mp} a function associating with; one invented
node, such thatew(H;) # new(H;) for i # j. Finally, letq
be a new node, and let, be a new node label.

Let D° be the result database associated withThe
Typed Graph ofD° is defined as follows:
Ny, = {new(ry), .., new(rg)}.

N¢, ={aq}-
N¢, = {new(ma), ..., new(ms)}.
E° = {{new(m;), new(r;))|(m;, r;) € E} U {{g, new(r;))
‘Tj S {7“17...,7“19}}.
L ={ety} U{falro)lri € {ro, . r b} U {fa(ma)Im;
‘ G{ml,...,mh}}
Ly ={T}.
f1 ={{g, etg) } U {{new(x), et)|(z, et) € f1 and
xe{ry,...,r5,m1,...,mp}}
f7 ={(e;T)|e € E°}.
Yz € N°}.

f5 = {(z,unselected
CO

In order to specifyn®, i.e., the Interpretation af, rq, . . .,

r,, we need to introduce some useful functions and to char

acterize some intermediate results (iRLS and RIS’).

Let HSN(x) be a function defined on a class-node
and returning a true value if is the highest selected node
in the 1sA hierarchy it belongs to (i.e., is the highest se-
lected node?)HSN(x) = True iff f3(x) € {selected
displayed } and there exists n@ € N¢ such thatrisa*w
andw € {selected ,displayed }.

Let TAD(y) (i.e., the set of true adjacents ¢j be a
function defined on a role-nodgeand returning the subset of
AD'(y) satisfying theH SN condition: TAD(y) = {z|z €
AD'(y) andHSN(z)}.

Let RM (m(y)) (i.e., restrict the meaning @f) be a func-
tion defined on the Interpretation of a role-noglewhich
results into an Interpretation qf, restricted according to
the selected class-nodes in tisa hierarchies which are in

TAD(y). As a consequence, this function suitably change

the labels of the tuples in the Interpretationyoés well.

S

ey g:’l}k>|<l&:1}1,...,l;€:’l)k>
€ RM(m(y)) andli = fa(y) o I3}

On the basis of the above functions we can define the
Interpretation ofD° as follows.

m°(q) = {t1,...,ts}, where each; is a new invented
unprintable value, and is the cardinality of a seRIS that
can be interpreted as the extensional part of the user query,
and is defined as follows:

— If N3, =0 thenRIS = 0.

— If |N3| =1 and|{k € Ng|fs(k) € {selected ,
displayed }}| = 1 then RIS = RM’(m(k)), where
k € Ngi and f3(k) € {selected ,displayed }.

— Otherwise,N3, = {r1,...,rx}, with £ > 1 andRIS =
inst(eval(ng, eval(ny, . .., eval(ny_1,n43)))), where
{ni,...,np} = {m € Ng|fs(m) € {selected |,
displayed }} and the functioninst extracts the set
of instances of a fictitious node computed dyal.

eval(ny, np) returns a fictitious role-node, whose ad-
jacents are the union of the adjacentsrqf and ny, i.e.,
AD(n) = AD(n1) U AD(ny), and whose Interpretation is a
set of tuples:

{<l1 T,y g U, TNCT O e T VA, - - -
"ne’” oly, : (Y lp+1 s Vh+1y++ Iy : ’Ut>}

such that fori =k +1...h, f; *(l;) € N, and
<l1 UL, .. ,lk L Vk, f]_(nl) olp+1 - Vk+1, - - -
fi(n1) ol 2 vp) € RM'(m(n1))

(f1(n2) o lp+1 T Vi1, -, f1(n2) o I vp,

Ip+1 s Upat, -y lg Ut> S RM'(m(ng)) .

Note that, if the nodes; and n, do not share tuple
components, the functioewal returns the cartesian product
of the interpretations of; andns.

Let us denote withRI.S’ the set of tuples obtained by
restricting the set of tuples aRIS to the ones satisfying
all the boolean expressionss, ... ,.7, labeling the edges
of D, and by adding to the remaining tuples B1S a new
component, that is:

RIS’ is the set of tuples of the forni; :
vy, f1(q) : vy+1) such thatvysr € m°(q), (lx @ v1,..., 0 ¢
vy) € RIS and satisfies7, . ..,.7,, such that different
tuples have different values in thet 1-th component.

We finally obtain fromRIS’ the Interpretation of the
role-nodes inD°:

m°(r;) = {({l v, f1(q) : vy+1)|{la t V1, . ..
Ly vy, f1(q) : vys1) € RIS},

Ul,...,ly .

7fl(ri)ol:vv"'7
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33 Example a (1,1) unselected

Person
[ selected
As we said in the introduction, the aim of the GPs is mainly |student displayed

to provide a new approach to the VQLs formalization. We
think that such primitives have to be essentially used as a
formal basis for building more powerful and friendly visual
query operators, as we do in the Multiparadigmatic Query
Language. Nevertheless, the GPs may be directly used fo
guerying the GMDBs, as shown in the following example.
Referring to the GMDB in Fig. 4, we are interested in
retrieving the names of all the students whose age is greater
than 21 and living in NY. We assume that the GMDBis b
such that: SR

Person
—
1. f3(n) = unselected for eachn € N. Student

2. fa((n,q)) =T for each(n,q) € E.
3. EN(Rx R)=10.

Assuming that the GPs are directly available to the user,
the sequence of operations s/he has to perform in order tg
express the above query is the following:

— Switch toselected the state of the nodestudentAge
Lives City, C name andInteger, switch todisplayed
the state of the nodeNameand String These actions
produce the schema view in Fig. 5a. RESULT

— Change the label of the edg€ name, String) into
C name.String ="NY”; change the label of the edge
(Age, Integer) into Age.Integer > 21. The resulting
Typed Graph is shown in Fig. 5b.

String

The system evaluates the result database and displays the
corresponding GMDBD® (see Fig. 5c). The only individual Zii?s,,u)@;(?n]o)o)
satisfying the conditions specified in the above phases ig_m®Name) = (<Person:0[20 String:Mary>);
Ol1, havingName“Mary”, Age 22, andC name“NY". A Fig. 5a—c.An example of query formulation
new object, namelDI20, is created forD°. It constitutes
the interpretation of the nodeESULT with value “Mary”

for the relationshipName

4 Database translation This is due to a combination of the prevalence of relational
databases, and to its weak expressive power compared to
Translating between models has been the subject of mucmost other data models. Relational schemata tend to be the
research since the mid-1970s. The work done in this area camost difficult to reverse engineer, and translation of other
be divided into two classes, depending on the relative exmodels is usually comparatively trivial. For these reasons,
pressiveness of the models. The problem has been effectivelye also concentrate on the problems of adding semantics to
solved when the translation is to a less expressive modekchemata defined on the relational model.
with well-defined transformations being defined to map con-  The generality of our approach allows the representa-
structs in one model to constructs in the other. For exampletion of a wide class of models, such as relational, semantic,
transformation algorithms to convert an Entity-Relationshipand object-oriented models, in terms of the GM constructs.
schema to relational, hierarchical, and network schemata ar this section we show how to map databases expressed
given in [ElImasri Navathe 1989]. in several data models, namely relational, semantic, object-
The second class of translation is from a semanticallyoriented, into GMDBs. Our final goal is to produce an in-
weaker to a semantically richer model. This is a much hardetegrated schema of several heterogeneous databases. In or-
task as it involves acquiring additional semantics about theder to do this, the first step is to apply reverse engineering
schema, apart from that which is expressed in the modeltechniques to semantically weaker data models, such as the
Reverse engineering can be loosely defined as the processlational one, so as to obtain, as far as possible, seman-
of enriching a schema defined on a model with semanticgic equivalence between the different data models. Thus, we
not expressible in this model, in order to translate it into propose, in Sect. 4.2, a methodology for obtaining a seman-
an equivalent schema defined on a more expressive modeically enriched GMDB starting from a relational database
Although reverse engineering could be applied between angnd a set of constraints. Sections 4.3 and 4.4 define the
pair of models, the literature typically concentrates on trans-mappings between object-oriented and semantic databases
forming relational schemata into more expressive schemataand GMDBs respectively.
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4.1 Relational model 4.2 Relational model with constraints

One of the main criticisms of the relational model has been

The relational model [Codd 1970] is widely used in existing its lack of expressivenss- a particular weakness is its power
DBMSs, since it is formal and offers a simple and uniform to model entities. Rather than representing entities in a uni-
data structure. The relational model represents data as a cdled structure, this information is spread across several tables,
lection of relations. Informally, each relation resembles awith the only connection between the tables being foreign
table, and each row in the table represents a collection okey linkages. When a relational database schema is con-
related data values. More formally, a relational database castructed, much of the information about what the entities
be defined as follows. are, how they are categorized, and how they relate to each

Let DN = {dna, ..,dn,} be a set oflomain namesand  other is lost in the transformation. This “semantic gap” must
let D = {Dy, .., D,,} be a family ofdomains each composed be bridged in some way — in the case of a user, this may
by a set ofvalues(we suppose to have finite domains); let be by knowledge in her/his head of the meaning of the rela-
eval be a functioneval : DN — D, associating a domain tions, or in the case of an application, by semantics actually
to each name; lefl = {as,...,a,} be theset of attribute  coded into the programs.
namesand letdom : A — D be a function which associates Why would it be necessary to reverse engineer a schema?
a domaindom(a) to eacha € A. Let RN ={rny,...,rng} There are two possible scenarios. Firstly, if the system is
be a set ofrelation namesand letattr : RN — 24 be a  being migrated to a more expressive physical data model, it
function which associates to eaeh € RN a non empty  will be necessary to translate the relational schema to one
set attr(rn) of attributes, calledelation schemaand let  containing more semantics. Secondly, if the system is to
inst be a function, which associates to eagh ¢ RN a become part of a heterogeneous DBMS, then the relational
finite setinst(rn), called relation instanceand composed schema must take part in a federated schema, which will be

of tuples of the form(a; : vi,az : va,...,an : vy) where  built using a canonical data model, typically based on the
{ai,...,an} = attr(rn),v; € dom(a;). A relation is a triple  object-oriented paradigm.

r = (rn, attr(rn), inst(rn)), with rn € RN. A relational The missing semantics must in both cases be provided
databaseDB = {r1,...,7;} is a set of relations with dif- from some source. In many cases the paper-based semantic
ferent names. data model which was used to construct the schema initially

In [Catarci Santucci Angelaccio 1993] we introduced thewill have been lost, or modifications will have been made
concept ofrelational GM databasewhich is a GMDB con-  which are not reflected in the initial design. In this case,
strained to obey the relational model rules. In particular,reverse engineering must be applied. There is no formal or
each role-node is forced to represent a function linking arwell-accepted method to perform this task — the designer
unprintable class-node to a printable class-node. This reflectsiust glean information from a variety of sources, which
the structure of a relational schema, in which the unprintablénclude:
fo s Sngle-valued alrbutes, and the prntable class. nodes. CONVersatons with analysts famiiar with the domin
to attribute domains. No Iink, is allowed between different The gppl|c_at|on programs accessing the datapa_se.
relations, so that unbrintable class-nodes cannot be related T.he Integrity constraints. These may be expllqltly pro-
via a rolé-node In the same paper, the mapping from rela- vided, or they may be inferred from an analysis of ap-

' ' plication programs or user dialogue.

tional databases to GMDBs as well as the reverse one were Data mining techniques.

introduced. :
Roughly speaking, a correspondence is established be- Analyzing query patterns etc.
tween: (1) the family of domain® and the set of interpre- The process of reverse engineering is more of an art

tations of the printable nodes gf(i.e., N¢, ); (2) the set4 of than a science, and often some of the decisions made may be
attribute names and the set of labels of the role-nodes (i.eincorrect. Clearly, the more information that is available, the
Ng) of g; (3) the attribute domains and the interpretation greater the likelihood that a correct schema will be arrived
of the printable nodes which are adjacent to the role-nodest, but in any case, the process is an iterative one, which
(note that each role-node has a single adjacent printable nodeill require constant feedback and verification from domain
as said above); (4) the s&N of relation names and the set experts.

of labels of unprintable nodes i1 (5) for eachrn, the set

of its attribute namesttr(rn) and the set of labels of the

role-nodes which are adjacent to the corresponding unprint4.2.1 Overview of reverse engineering techniques

able class-node; (6) the instance set of each relatioand

the set of tuples obtained by joining the interpretations of theReverse engineering can be seen as a subset of the area of
role-nodes sharing the same tuple component coming fronschema translation. This has received much consideration
the interpretation of the unprintable node corresponding tan the literature. [Tsichritzis Lochovsky 1982] presents the
rn; (7) each relation- and a triple whose first element is various issues involved in translating between data models.
an unprintable node label, the second element is the set dfhis approach, along with most others, concentrates of defin-
labels corresponding to its adjacent role-nodes, the third eling mappings between specific pairs of model. In [Kalman
ement is the corresponding tuple set as defined above. [8989], an approach is given which allows translations be-
Fig. 6 an example of mapping between relational databasesveen any two data models, based on a denotational seman-
and GMDBs is drawn. tics of data model equivalence.
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PERSON LIVES CITY order to obtain GMDBs. This methodology follows a se-
Age Name P.Name [ C.Name C_name quence of formal steps in order to obtain a semantically
22 }wﬁry I}Aify II‘\TI‘; NY enriched GMDB starting from a relational database plus a

ohn . . A
T o carl |Boston Boston set of integrity constraints.
40 Cecily Cecily Boston

Person Lives

City

4.2.2 The mapping to the Graph Model

In this section, we consider how to represent an enriched
e @ @ @ relational database as a GMDB. We first consider the steps

we must take in the process of semantically enriching the

relational schema. We must be able to identify

1. What are the main entities.

2. What are the relationships between these entities.
3. What are the multivalued attributes of the entities (these

b . )
T (Persom) = [OTT_OTZ- Ol OT: need to be stored separately in the relational model).
(City) = {OIS, O16}; . .
O e cout 010, 0110}; 4. k\)/Vhat are rt]he subclass/superclass relationships that hold
m (Integer) = Z; etween the entities.
(String) = {a..z}*;
:E(Agr::n)= {<Plcrsi;,n:O[l,Imeger:22>, <Person:OI2,Integer:21>, <Person:OI3,Integer: 19>, ) L.
<Person:Ol4,Integer:40>}; ) In order to answer these questions, it is necessary to have
m (Name) = {<Person:Ol1,String:Mary>, <Person:OI2,String:John>, . . .
e om0 String Carl=, <Person Ol4 Srin Ceclly> knowledge of the integrity constraints that hold between the
LING = {<Lives: wotring:Mary>, <Lives: wolring: n>, - P . .
= e Ol StingCart, <Lives:ON10 Sting Cocily attributes. The minimal set required is the complete set of
T T ST O R referential integrity constraints (foreign keys), although it
<Lives:0l9,String:Boston>,<Lives:0I10,String:Boston>}; W|” alSO be Useful tO have aVaiIable inclusion dependen_
Fig. 6a,b. A relational database and the corresponding GMDB cies, equality constraints, exclusion constraints, and domain

constraints.
Here, we expand the definition of the relational model

Neither of these approaches focus how to translate begiven in Sect. 4.1 to include the concepts of primary key
tween models of less semantic expressiveness to models ahd foreign key. Therimary keyof a relationr € DB is
greater expressiveness, which is the problem being addresseeéfined as follows. LeK be a subset ofittr(rn) such that
in reverse engineering. An algorithm is given by [Navathefor any value ofinst(rn), the projection ofr on K has the
et al. 1987] to convert a relational schema into an Entitysame number of tuples asst(rn) and this property does
Category relationship, using keys to find the relationshipsnot hold for any proper subset & . The primary keyP K.
between relations. This work is extended in [Johanssen edf r is arbitrarily chosen among the set of possibiés. A
al. 1989] to eliminate certain anomalies and to consider in+elationr contains aforeign keyF' K, ;, of a relations, if
clusion dependencies, with the output being an Extendedhe projection ofr on F K, s is contained in the projection
Entity-Relationship (EER) model. In [Davis Arora 1987], a of r on PK,. If r and s coincide thenF' K, ; must not be
methodology is given to translate between a relational modethe primary key.
and an entity-relationship model. Keys and name equalities In order to represent the relational model with constraints
are used to obtain the structure of the model. Some weakin terms of the GM, we need first of all to introduce a set of
nesses have been identified with this approach [Yan 1992}Jules restricting the generality of our model, then to define
specifically entity fragmentation caused by multivalued de-a precise mapping between the two.
pendencies, and assumptions are made about dangling keys If the relational schema is enriched, the constraints on
which may be incorrect. In [Briand et al. 1987], a minimum the links between the nodes given in Sect. 4.1 no longer ap-
cover of Functional Dependencies, Multivalued Dependenply. Links can be defined between unprintable class-nodes
cies, and Join Dependencies are used to produce an EER order to express relationships explicitly. Role-nodes need
schema. not have a maximum of two edges, in order to allow rela-

Translation of relational schemata to object-oriented schetionships themselves to have attributes. Also the constraint
mata is considered by [Castellanos Saltor 1991] and [YamTMOST(1, n, q) iS removed so that multivalued attributes
1992]. The former is motivated by the need for semanticcan be represented.
enrichment to facilitate interoperability, and the constraints In order to build a GMDB schema from a relational
used are inclusion dependencies and several other categoridatabase schem@B, we follow the steps outlined above.
of dependency. The class definitions created by this approaciWe note that in general there are two important categories of
are rather complicated, and may result in inefficient queryrelation — “entity relations”, which informally equate to the
translations. An informal approach to translate from a re-backbone of the entity, and “relationship relations”, which
lational to an object-oriented schema is presented in [Yardescribe relationships between the entities. We refer to these
1992]. Key and inclusion constraints, along with user inputsets of relations a® Br and DBy respectively. Also we
is used to extract the object-oriented semantics. say that an attribute. A is inclusion dependent on attribute

In the following section, we describe a methodology for s.B (r ands not necessarily distinct) if there is an inclusion
reverse engineering we will apply to relational databases irdependency. A O s.B defined.
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We denote with.77 the mapping from a relational The meaningn(n) = {(a : z,b : y)(T1(x), T (y)) €
database to the corresponding database expressed in terfis i, urk, ,(r)}.
of the GM. Furthermore, we denote witRel Fxp(n) the Case 2: Many-to-many relationships

relqtion res_ulting from applying the.reflatiqnal exprgssion a5~ Many-to-many relationships are represented as relation-
sociated with the node. when defining its meaning. We  gpin relations. If a relation represents a relationship, we

observe thatRelchp(n) invqlves only one r_elation, say, can partition its primary keyK, into FK, .., FK, .,
and always contains the primary keygfso it follows that e -z

PKReipapm) = PK,. Moreover, if Rel Exp(n) contains a
foreign key of a relatiors, it holds thatF K reigaopn),s =
FK,,.

If DB is any relational database7ZZ(DB) = D

Fk, ., wheres; ..., s, are previously defined entity rela-
tions. If attr(rn)—PK, is not null, it represents attributes
of the relationship.

Action: Let ny,ny...,n, € N¢,, correspond to the en-

(g,c,m) is defined by the following steps. tity relations s3...,s, respectively. Define a new role-
Step 1: Identi fity relat node,n, and let £ = E U {(n1,n), (n2,n),...(n.,n)}.
ep 1: Identify entity relations If attr(rn)—PK, # (), then assume it is composed of at-

We can identify the main entity relations by adopting the yipytesq; ... q; and there is a corresponding set of nodes
following rule: a relation is a member of the set of entity m; C Ne. such thatm(m;) = dom(ai). Let E =
...my € Ng, i :

relauonspBE if therg is no sybset of the primary key which EU{{n,,n,)}, for eachn,,. The meaningn(n) = {(f1(n1) :
is a foreign key or is inclusion dependent on any other at-, Fo(nn) © @, filma) @ 01 Fulmy) = ) (T Ha)
tribute in any other relation. For eaeche DBy, we define T*’i " nyr A t. O ’ s ’
T,(ITpk, (r)) as an isomorphic function which returns a new *s» (@n),v1,..., vr) € inst(rn)}.

value in D. The inverse functio'r—1 is defined as well. Step 3: Include multivalued attributes

Note thatT}, works also on foreign keys of, i.e., it works  Multivalued attributes need to be stored in individual rela-
on anyF K, ... Finally, for each entity relation, we define  tions. These relations can be recognised by the fo(d),

FK, as the union of all the foreign keyBK, ., in r (if where K, the primary key spans the entire relation, and
any). is of the form (PK, A), where PK is the primary key of
another relation, say;, (the entity relation), and is the
multivalued attribute. There will also be either an inclusion
dependency or an equality dependency between this and the
1. For eachdn € DN and D = wvalues(dn), there is a  entity relation.

corres_p%ndmg node € N, such thatfy(n) = dn; and  agtion: | etn, N¢, be anode such that(n,) = dom(A),
) Tg(n) ach relati DB there i ding 2nd7r anew role-node. LeE = £ U {(ny, ny), (e, nr) },
- For-each refation € £ Nere 1S a corresponding wheren,. is the unprintable class-node corresponding to the

noden € Nc, such thatfy(n) =r and its interpretation o 40 r;, with the cardinality constrainATMosT(m, n..,
coincides with the set of values generated by applying the

T, function to the tuples belonging tast(r) : m(n) = ZT)}\E\;?ir?xm)K?—%@T)hi >m:?2£%(f’“) = {{Ale)

{T,(a)|a € IIpk, (r)}; moreover, for each € attr(rn), LS = 227\ Sy AL 2 :

whose corresponding noderis (see 3), there is the edge Step 4: Construct class hierarchy

(n,m) in E. There are two alternative approaches to representing sub-
3. For eachu € attr(rn)—FK, there is a corresponding classes in relational database schemata. These represent a

noden € Ng such thatfi(n) = a and there is an edge trade-off between space usage and performance. A subclass

(n,m), wherem € N¢, is the node corresponding to can either be defined in a separate relation to its superclass,

dom(a). Moreover,m(n) = {{a : 2,b : y)|(T-(z), y) € or alternatively the attributes pertaining specifically to a sub-

Action: For each entity relation, we perform the following
actions.

Hpi. ua(r)}. class can be defined as part of the schema of the entity re-
" lation. The first approach is more efficient disk usage, but
Step 2: Identify relationships performance will suffer as one or more joins will be required

Relationships between entities are represented in relation&b obtain all information pertaining to the entity. The second

schemata by two means, depending on the cardinality conapproach results in a lot of null values, but queries can be

straints of the relationship. executed more efficiently. Also, the semantics of the schema

are clearer if a separate relation is used. We will consider

these cases separately, although both the representations may
e used in one relational schema.

Case 1: Relationship is 1:1 or 1:n

In the case of one-to-one or one-to-many relationships,
relationship is represented through a foreign key embedde
in an entity relation. For the former, the foreign key can Case 1: Subclass defined in a separate relation
exist in either of the relations, but in the latter, it must be  Letr; andr, be two relations, such thag is an entity

placed in the relation on the “many” side of the relationship.relation andr, represents a subclass of this entity. In this
case, there is an inclusion depender¢ty> K,, whereK;

Action: Let r ands be two entity relations such that a foreign and K, are the primary keys of relationg andr,.

key inr is the primary key 0%, i.e. there exist¢'K, ;. Letn i ] _
andm € N¢, be two nodes corresponding to relationand ~ Action. Define a noden € N¢,, corresponding to the re-

s respectively. Define a new role-node,c Ng. Let f1(u) lation rz..FoIIc.)w through steps 1to 3 for Fh|s relatlon,_ln
be a label descriptive of the relationship being defined byorder to identify any associated relationships and multival-
the foreign key. Let = EU{(n,u), (m,u)}. The following ued attnlbutes. Le_hl € N¢, be.the_node associated with
constraint holdsaTmosT(L, u, n). the relationr;. Define the following link:n,1san;.



109

Case 2: Subclass embedded in entity relation i,

In order to identify the class hierarchy where subclasses
are embedded in the entity relations, it is not sufficient to \ (L)
consider the relational schema and the constraints. Instead;"
we must look for clues in the extension of the relation. If @
sensible results are to be obtained from this process, we
should consider a “significant sample”, i.e., it should be of
adequate size to make valid inferences on the data, and
should be representative of typical data.

We propose the following algorithm to identify the sub- Fig. 7. Typed Graph of the resultant GMDB
classes embedded in a relatiofi; ... A,,).

String

1. Lett;...t, be a significant sample of tuples in Par-  Step 2: Two relationships are defined: case 1 identifies a
tition these tuples into sets, ... T, where eacht; € T} relationship betweed M P and DEPT, while case 2
has the same pattern of null/non-null values. identifies a many-to-many relationship betweEd/ P

2. Build a matrixM with the horizontal axis corresponding and PROJ.
to the attributes of-, and the vertical axis corresponding Step 3: This identifie® EPT — LOC'S.Location as a mul-
to the T;s just formed. The entries in the matrix are tivalued attribute of the entity relatiob E PT.
defined as follows: if the attributé; in groupT is not ~ Step 4: Case 1 identifie/ GR as a subclass af M P.
null, M[i, j] =1, elseM]i, j] = 0.

3. Partition the attributes according to groufs...G,,
such that for anyA € G,, it has the same pattern of
entriesM[i,j], 1 < j < n.

4. For each pair of group&,; and G, show an ISA link
betweenG; and G; if for each attributed; € G; sup-

ports a superset of the null values supported attributegypiect oriented data models are equipped with both power-

The Typed Graph of the resultant GMDB is shown in
Fig. 7.

4.3 Object-oriented data models

5 ‘éi € Gi. itive ISA links. Th it | hi ful structural abstractions (e.g., generalization, classification,
: arlcr;]];/nate transitive Inks. The resultis a class hier- 544regation) that satisfy the representation requirements of

the new kinds of applications (CAD, CAM, Al) and encap-

As this is a heuristical approach, it is necessary for a do-sulated procedures taking into account behavioral aspects.
main expert to verify both the input and output of each of theAnYhow, it is generally accepted that encapsulation can be
phases of this algorithm. Once the classes have been identjiolated in ad hoc query mode for permitting free asso-

fied and validated, the process of completing the GMDB isCiative access to data (see, e.g., [Bancilhon Cluet Delobel
as in case 1. 1990] for a discussion of this topic). For such a reason, in

this paper we focus only on structural features. No general
agreement exists on the definition of the object-oriented data
models. Anyhow we will concentrate on a number of con-
cepts which have been identified as the salient features of the
approach, e.g., object identity, encapsulation, class, and in-
To illustrate the process translating from a relational databasgeritance (see, e.g., [Bancilhon 1988; Kim 1990; Beeri 1990;
to a GMDB, let us consider an example of a simple domain.Cruz 1990]). Moreover, even though in most of the object-
The relational database schema, with primary keys undereriented proposals the elementary domains are considered
lined, is self-explanatory. as primitive classegi.e., classes with no attributes) in the
following we will distinguish between classes and domains.

4.2.3 Example of transformation algorithm

EMP - [E# Name, Salary, Deptno] An object-oriented databas@OODB) is a collection of
DEFT _ [D#% Name] objects, classes, and elementary domains.oBject of the
PROJ - [PnameBudget] database corresponds to an object in the real world, and ex-
WORKS-ON _ [E#, Pnarﬂg ists regardless of the value of its properties. In other words,
DEPT-LOCS - [D#, Lo_cat|0]1 each object has aidentity, different from that of any other
MGR = [E# Office] object, that does not change throughout its lifetime. Each
We have the following constraints: object has a unique identifier, calledbject identifier(oid),
EMP.DEPTNO is a foreign key of relatioDE PT. which distinguishes it from all the others. Every object en-
WORKS — ON.E# is a foreign key of relatioZM P. capsulates atructure that is a set of relationships (called

WORKS—ON.Pname is a foreign key of relatiod® RO J. attributesin the following) with both other objects and val-
There is an equality constraint betwednZ PT.D# and ~ Ues in elementary domains, which may be one-to-one or

DEPT — LOCS.D#. one-to-many. Objects that share the same set of attributes
MGR.E# is inclusion dependent oBM P.E#. may be grouped into alass Because no limitation exists
The algorithm proceeds as follows: on the domain of attributes, i.e., an attribute domain can

range on another class, the definition of a class may result
Step 1: Three entity relationg,M P, DEPT, and PROJ in a nested structure. The relationship between an object and
are identified. its class is the well-knowmstance-ofrelationship . Classes
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may be related through a generalization relationship, usu@

ally calledis-a relationship; a class may have any number
of subclasses and superclasses. A class inherits the attribut
of its superclasses (conflicts possibly caused by multiple in
heritance are generally handled by the system) and may hay
additional attributes. An object belongs to one class, as a
instanceof that class; furthermore, it is instance also of all
the superclasses of the class it belongs to.
Summarizing, letCN = {cns,...,cn,} be the set of

(CLASS Airplane [
Weight:Real(1:1);{<Airplane:OI1,Real:200>,<Airplane:OI2,Real:4000> };
Took_off: Airport;{ <Airplane:OI1,Airport:Ol4>,<Airplane:OI2,Airport: 04> } ;

2 $.anding: Airport; { <Airplane:OI1,Airport:Ol4>,<Airplane:OI2,Airport: 015> };

CLASS Sailplane [
Superclasses:Airplane;
eEfﬂciency:Inlegcr( 1:1);{<Sailplane:OI1,Integer:38>};

]
[ELASS Aiport [
A_name:String(1:1);{<Airport:014,String:Kennedy>,<Airport: OI5,String:Fiumicino>};
Location:String(1:1);{<Airport:0I4,String:N'Y>,<Airport: OI5,String:Rome> } ;

|
CLASS Pilot [
Name:String(1:1);{<Person:0I6,String:Steve>,<Person:0I7,String:lacocca>,

<Person:0I8,String:Mark>,<Person:0I9,String:Kim>};
Captain:Airplane; { <Person:0I6,Airplane:OI1>,<Person:OI7,Airplane:OI2>} ;
]

Took of £

class namespDN = {dna,...,dn,} be the set of domain
names, and leD = {Di,...,D,} be the family ofdo-
mains each composed by a set wvalues(we suppose to
have finite domains); letalues be the functionpalues :
DN — D, associating a name to each domain/D =
{oidy, ..., oid;} be the set of object identifiers, antV =
{ana,...,an,} be the set of attribute names. A claSsis
a 4-tuple (cn, superclasses.y, structure.,, instances.,),
wherecn € C'N is the class nameguperclasses., is the
set of the names of the superclasses(if structure,
is a set of pairs{(ani,x1),...,{aNken, Tken)t Where for
each pair{(an;,z;) an; € AN and eitherz; € CN or
x; € DN. Instances., is a set made okcn sets of tuples
{inst, ..., instgen t, One for each paifan;, z;) belonging
to structure.,. Each tuple belonging ténst; has the fol-
lowing structure:(cn : oid,an; : y), whereoid € OID
and y belongs either taDID or to D; depending on the
associater; is a class name or a domain name. We make
the assumption that for all thlecn sets of tuples belonging
to the instances of the clags the sets obids correspond-
ing to the tuple component labeled with coincide, and it
is exactly the set of object identifiers of the claSstself.
In other words, we postulate that each attribute of a class
is characterized by at least one value. This is not a limita-
tion, since we can easily split a class not satisfying such 3
property into a two level hierarchical structure, according to
the following rules. The root class is characterized by the
set of attributes that are always defined on all the instance
of the original class; each of the child classes owns onlyt
one of the remaining attributes that, by definition, is alwaysrig. 8. An object-oriented database and the corresponding GMDB
defined on the instances of the subclass itself. For instance,
the clas$erson having attributetName Age Children and
Ownedcars is represented by the hierarchy rootedPat-
son (with attributesNameand Age), having subclasseBer-
sonwith sons(with attribute Children) and Personwith car
(with attribute Ownedcars). The example of mapping between an object-oriented
Since the GM is object-based itself, the mappitg database and a GMDB in Fig. 8 further illustrates the similar-
between object-oriented databases and GMDBs is almosties between the two models. In Fig. 8a the object-oriented
straightforward. Basically, the family of domairi3 corre-  schema classes are described using a very intuitive syntax,
sponds to the set of interpretations of the printable nodes ofvhile in Fig. 8b,c the corresponding Typed Graph and In-
g (i.e., N¢,), and the names of such domains are given byterpretation are shown.
the labels of the elements &fc,. The setAN of attribute The object-oriented database contains pieces of informa-
names is equal to the set of labels of the role-nodes (i.etion about flights and airplanes, including the source and
Npr) of g, and the meaning of such nodes corresponds to theestination airports of the flight and the name of the cap-
associated set of tuples in thiestances of the classes the tain. In building the corresponding GMDB, the domains
attributes belong to. The sétN of class names coincides Integer, Real and String have been translated into corre-
with the set of labels of unprintable nodes gnwhile the  spondent printable nodes; the class attribiésght Effi-
set of adjacent role-nodes is derived by #ieucture of the  ciency Location A name Tookoff, Landing Captain and
class. The meaning of an unprintable node coincides with thé\amehave been translated in terms of suitable role nodes;
set of the associated OIDs of the corresponding class. Ththe classegirplane Sailplane Airport, andPilot have been
inverse mapping can be easily defined as well. Printable anttanslated into corresponding unprintable nodes. It is worth
unprintable class-nodes correspond to domains and classaspting that the links among classes in the GMDB are not

A irplane

.

Sailplane

Pilot

Airport

c

m (Pilot) = {OI6, OI7, OI8, OI9};

m (Airplane) = {OI1,012};

m (Sailplane) = {OI1};

m (Airport) = {OI4, OI5};

m (Integer) =Z;

m (Real) =R;

m (String) = {a...z}";

m(Name)={<Person:0I6,String:Steve>,<Person:017,String:lacocca>,
<Person:OI8,String:Mark>,<Person:0I9,String:Kim>} ;

m(A_name)={<Airport:0I4,String:Kennedy>,<Airport:OI5,String:Fiumicino> };

m (Weight) = {<Airplane:OI1,Real:200>,<Airplane:OI2,Real:4000> };

m(Took_off)={<Airplane:OIl,Airport:0I4>,<Airplane:O0I2,Airport:Ol4>};

m(Landing)={<Airplane:OI1,Airport:0I4>,<Airplane:OI2,Airport:OI5>};

m(Captain)={<Person:0I6,Airplane:OI1>,<Person:OI7,Airplane: 012> };

d

S)

while the set of role-nodes which are adjacent to a given un-
printable class-nodes can be translated in terms of the class
structure.
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oriented as they were in the original model: class attributes2. If the rootr of R is an association vertex, ari} is the

ranging over other classes (e.g., the attribldek off of the child subtree ofR, thendom(R) = {{O1,...,O0n}|m >
classAirplane, ranging over the clasairport) are translated 0, and for each, O; is in dom(R1)}.
in terms of role-nodes linking both classes. 3. Iftherootr of R is an aggregation vertex, aiiti, . .., R,

are the ordered child subtrees of then dom(R) =
{{Oy,...,0,)| for eachi, O; is in dom(Ri)}.
4.4 Semantic models
) ) ) An instanceof R, denotedinstances, is a finite subset
In this section we concentrate on semantic data modelsyf dom(R). A fragmentis a directed tre&? = (V, E) where:
which share with object-oriented models the availability of
powerful structural abstractions. As two representative eX-1.  is the disjoint union of two set&, (object edges
amples of this class we take the IFO model [Abiteboul Hull  anq E;. (functional edges
1987; Hull King 1987], which is a mathematically defined 2 (v, £,) is a forest of types.
database model, developed as a theoretical framework foB The destination of each functional edge is the root of
studying the prominent semantic models, and the EER model  some type ofR.

[Chen 1976; Ullman 1987]. 4. The source of each functional edge is either the root of
R or the child by an object edge of an association vertex,

hich is the root of some type @&, and not the root of
4.4.1 The IFO model V}\é en| yp

A IFQ databasg](FQDB) s a collecjtion O.f object types, Note that rule 4 allows one to model nested functions
functional relationships, andsa relationships. There are Let R be a fragment with root: a nested function of de- '
three kinds of atomic object types, and two constructs forgreen is repregented by a pat,h na ctional path of
recursively building more complex types. The three atomicthe form: (r, ay. 71, az, 12 y - 1 i 'llmrl> Wherea"are
types are callgad: (1printable, V.Vh'Ch corrgsponds to ob- association vertices and eacthis the child by an object edge
jects of predefln_ed types (e.g., integer, string, b_oolea_n, etC')of the association vertax;. Let R be a fragment with roat;
(2) abstract which correqunds typically to objects in the let f1 = (r,pl), ..., f = (r,pn), be the functional edges of
world that haye no underlying structure (e.g., thg tRee- .R with tail7 r; Iét R(; be the’ type with root; and for eachk
son); a domain made of abstract objects is associated to th|7'$é -1 n Iét Ry, be the maximal subtreeya}f with I‘OOtpk’
type; (3)”93 which correspond; to entities Obta'F‘ed 152 An inéfénée ofR is an ordered paif = (J, F') whereJ is aﬁ
relationships. The names associated with the object types atg iance ofR. andF a function with dc;mair{f fn)
calledtokens The first of the two mechanisms for construct- such thatF(]?k') is a partial function with dorﬁ:':l.ir.ai’such
ing nonatomic typgs, c.a!ledssouatlom.corresponqis to the that for eachO in J: a) F(f+(0)) is an object ofRy, if Ry
procedure of forming finite sets of objects of a given struc-is 5 type, and b) o.therwisE(f (0)) is an instancé ot/
ture. The other mechanism is the well-known cartesian prOdWhereR’,is the fragment obta;cned from by removing it’s
uct operator, calledggregationin the following. Functional k "

relationships are represented by usiranments Eragments association root. Alatabase schemia built starting from a
are directeF(JJI trees thpat ma contﬁ\in irrg?ances of aﬁ the diI"fer]for(aSt of fragments, linked bysa edges. An instance of a
y schemas is composed by an assignment of instances to all

ent kinds of object types as vertices and labeled edges repre- . . " :
senting functions. The final structural component of the IFOquet;ZiIgstrgs e‘;%g,] at satisfy certain conditions imposed

model are thasa relationships. Ansa relationship from a . e
type SUB to a type SUPER indicates that each object assodat;‘g;;g 2?1\3/ tﬂgflgiﬂggg/r?gp}gbngé)b:et\ge\?v?] etPeeDlliO

ciated with SUB is associated with the type SUPER. This<g’m70> is a database expressed in terms of a Typed Graph

T?é'ﬁ}sag?:ﬁ egg?nfeug(glr?rt]hgetﬁn?adSWBtheetyﬁe'sS'gEeEr'Tecljsg’ an Interpretationn, and a set of constraints Since the
b; UB Ing typés s are diﬁ%nguishéésﬁelci:an;atior: basic idea of the IFO model is in building complex objects
and generalization Specialization can be used for defining by recursively applying different type constructors, while

ossibleroles for members of a diven tvpe. In contrast. gen- the GM type set is limited to class-nodes and role-nodes,
POSSIDIe rsotag ype. 1r ' 9€N" he mapping is quite complex and requires the generation
eralization represents situations where distinct, pre-existin

types are combined to form new virtual types %f new unprintable class-nodes and role-nodes. The nesting
More formally, atypeis a directed trek = (V. £) such of the IFO structures is expressed assigning an appropriate

that: (1) V' is the disjoint union of five sets/p (printable 'ntelrr?rgrtgg??otzsgﬁifgemgorfagg%i;é we make use of a
vertices),Vs (abstract vertices)s (association vertices), ¢, ion 7 defined on the instances of an IFO database
Vac (aggregation vertices), arld- (free vertices); (2) print- Let o € ;1077’1 (R). if R is an atomic type. thew(z) < a: .
able, abstract, and free vertices are leaves of the tree; (3) ajse 7 (@) = nm’u(x) wherenew is a fur’lction generati,ng
sociation vertices have one child; (4) aggregation verticesa névv unprintable véllue when applied to a generic instance
have one or more children, which are viewed as being or- '

P i X
dered. The set obbjectsof type R, denoteddom(R), is The mapping7# is specified as follows:

defined by: 1. For each atomic type; € Vp, there is a corresponding
1. If R is an atomic type, thedom(R) is a countably in- noden; € N¢, such thatfi(n;) is the name associated
finite set, made of atomic objects. with v; andm(ni) = instances(v;).
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2. For each atomic type; € V4 U Vg, there is a corre- inverse which is described above, since the GM components
sponding nodey; € N¢, such thatfi(n;) is the name can be almost directly mapped into IFO constructs.
associated with; andm(n;) = instances(v;). In Fig. 9 an example of mapping between an IFO

3. For each complex typ& with rootv € V4 and child  database and the corresponding GMDB is drawn. Figure 9a
subtype R’ (either complex or atomic), there are two shows the IFO schema of a database containing informa-
nodesn € N¢,, n; € Nr and an edgén,n;), corre-  tion about trips and foreign languages which will be spoken
sponding tov and such thatf;(n) is the name associ- in each trip, guides and foreign languages they speak; Fig-
ated withv, and a recursively defined tree correspond-ure 9b contains the most relevant part of the corresponding
ing to R, whose rootr’ is linked ton;. The interpre-  extension. In Fig. 9c,d the corresponding Typed Graph and
tation of n coincides with a set of new values gener- Interpretation are shown. Note that the association object
ated by applying thewew function to all the instances ¢ langs, representing set of languages, has been translated
of v: m(n) = {new(t),t € instances(v)}; the inter- in terms of the unprintable class-nodéangs, containing

pretation ofn; is a set of tuples of the form{fi(n) : the identifiers of the sets of languages, and the role-node
new(y), f1(n’) : .7 (x)), wherey € instances(v) and R4, associating each set with the languages it contains. An
x € instances(R). analogous translation has been applied tangs.

4. For each complex typ& with root v € Vag, with
child subtypesRy,..., R;, there are a node € N¢,,
such thatf;(n) is the name associated with a node  4.4.2 The entity-relationship model
n; € Np and the edgen,n;) corresponding to the
root v. Moreover, there aré recursively defined trees An Entity-Relationship databagé& RDB) is a collection of
corresponding to the?;s whose roots:; are linked to  entity types, relationship types, and domains. Eactity
n;. The interpretation of: coincides with a set of new is a “thing” in the real world, with an independent exis-
values generated by applying thew function to all  tence. Each entity has particular properties caditidbutes
the instances ob: m(n) = {new(t),t € instances(v)}; that describe it. Each attribute is associated witthoenain
the interpretation ofq; is a set of tuples of the form: which specifies the set of values that may be assigned to that
(fi(n) : new(y), fi(n1) : .7 (Ra), ..., fa(n) 1 .7 (Ry)), attribute for each individual entity. Such entities define an
where y € instances(v) and x; € instances(R;),  entity type Each entity type is characterized by a name and
i=1...1 a list of attributes, forming thentity type schemawhich is

5. For each functional edge= (ro, z) with labell, where  shared by the individual entities of that type.
x is either the root of a type or an association node, The set of individual entity instances at a particular mo-
there are: a node € Ny with labell, one edgdni, n), ment in time is called arextensionof the entity type. In
where ny is the root of the tree corresponding to the many cases an entity type will have numerous additional
type with rootry, and one edgeén,,n), wheren; is subgroupings of its entities, which are meaningful and need
either the root of the tree corresponding to the type withto be represented explicitly. We call each of these subgroup-
root = (if = is the root of a type) or is the unprintable ings asubclassof the entity type, and the entity type itself
node associated with the association nedgf = is an s called thesuperclasfor each of these subclasses. We say
association node). The interpretation ofis a set of that an entity that is a member of a subclasserits all the
tuples of the form:(fi(n1) : .7 (xo), f1(n2) : 7 (1)), properties of the entity as member of the superclasge-A
where(zg, z1) € F(I). lationship typeamongn entity types is a set of associations

6. For eachisa edgei = (a,b) there is a corresponding among entities from these types. Each relationship instance
1SA constraint between’, which is the root of the tree is an association of entities, where the association includes

corresponding to the atomic type with roet and»”,  exactly one entity from each participating entity type.

which is the root of the tree corresponding to the atomic ~ Summarizing, lIetEN = {ens,...,en,} be the set of

type with rootb. entity type namesAN = {an1,...,an,} be the set of at-
tribute names,DN = {dns,...,dn,,} be the set ofdo-
main namesRN = {rna,...,rn,} be the set ofelation-

Rule 1 (or rule 2) says that IFO printable (or abstractship type namesEID = {eids,...,eid;} be the set of
and free) types are translated in terms of printable (or unentity identifiers, andD = {Ds,...,D,,} be the family
printable) class-nodes. Rule 3 (or rule 4) says that each a®f domains each composed by a set wélues (we sup-
sociation (or aggregation) node generates a new unprintablpose to have finite domains); letzlues be the function,
class-node, whose interpretation contains an identifier fowalues : DN — D, associating a name to each domain; let
each element belonging to the set of instances of the assodissign be the functionassign : EN — Powersetf/I D),
ation node (or aggregations). Note that, given the recursivassociating a subset of the set of entity identifiers to each
definition of IFO type instances, the definition of the node entity type name, and lefom : AN — D be a function
interpretations in rules 3 and 4 is recursive too. In rule 5associating a domain to eaaln € AN. An entity type E/
each functional edge is translated into a role-node with twas a 4-ple{en, superclassesen, structuree,, instancesen ),
outcoming edges, whose interpretation implements the unwhereen € EN is the entity type namesuperclasses,,, is
derlying instance function. FinallyisA edges are rendered the set of the names of the superclasse& pftructure,,
in ISA constraints. is a set of attribute nameSany, ..., ank.,)} Where each

The mapping7%’ from any GMDB to the corresponding an; € AN; instances., is a set of sets of tuples, one
IFO database (not detailed in the following), is easier than itfor each element € assign(en). The set of tuples asso-
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Instances (Trip) = {a, b, c}

Instances (t_name) = {Greece, China, France}

Instances (t_language) = {english, french, chinese, greek }

Instances (t_langs) = {{english, chinese}, {english, greek}, {french}}
tr_Ing(Greece)/t_language = {english, greek }
tr_Ing(China)/t_language = {english, chinese}
tr_Ing(France)/t_language = {french}

Instances (Guide) = {x, y, z}

Instances (g_name) = {John, Mary, Leslie}

Instances (g_language) = {english, dutch, french, greek}

Instances (g_langs) = { {english, dutch}, {english, greek, french}, {english, french}}
tr_Ing(John)/t_language = {english, greek, french}
tr_Ing(China)/t_language = {english, dutch}
tr_Ing(France)/t_language = {english, french}

g_langs|

9_
string

Guide
-

m (Trip) = {a, b, c};

m (Guide) = {x, y, z};

m (t_langs) = {OI1, OI2, OI3};

m (g_langs) = {OI4, OI5, OI6};

m (t_language) = {english, french, chinese, greek};

m (t_string) = {Greece, China, France};

m (g_language) = {english, dutch, french, greek};

m (g_string) = {John, Mary, Leslie};

m(R4)={<t_langs:OI1,t_language: english>,<t_langs:OlI1,t_language: chinese>,
<t_langs:OI2,t_language: english}>, <t_langs:012,t_language: greek }>,

<t_langs:OI3,t_language: french}>};

m (R3) = {<Trip:a, t_language: english>, <Trip:a, t_language: chinese>, <Trip:b, t_I
english>, <Trip:b, t_language: greek>, <Trip:c, t_language: french>};

m(t_name)={<Trip:a,t_string:China>,<Trip:b,t_string:Greece>, <Trip:c,t_string:France>};

m(R2) = {<g_langs:014,g_language: english>,<g_langs:0l4,g_language: dutch>,
<g_langs:0I5,g_language: english}>, <g_langs:OI5,g_language: greek }>,
<g_langs:015,g_language: french}>, <g_langs:0I6,g_language: french}>,
<g_langs:0l6,g_language: english}>};

m(R1) = {<Guide:x, g_language: english>, <Guide:x, g_language: dutch>, <Guide:y,
g_language: english>, <Guide:y, g_language: greek>, <Guide:y, g_language:
french>, <Guide:z, g_language: english>, <Guide:z, g_language: french>};
m(g_name)={<Guide:x,g_string:John>,<Guide:y,g_string:Mary>,
<Guide:z,g_string:Leslie>};

Fig. 9a—d.The IFO database and the corresponding GMDB

ciated with e is {insty,...,instgen}, With one inst; for
each pairan; belonging tostructure.,. Each tuple be-
longing toinst; has the following structureten : e, an; :
y), wherey € dom(an;). A relationship typeR is a 4-
ple (ry, structurel,,, structure2,,, instances,,), where
rn € RN is the relationship type nametructurel,., is a
set of entity type name&eny, . . ., engq, }, With eachen; €
EN, structure2., is a set of domain name&dny, ...,
dnprn}, with eachdn; € DN. instances,, is a set of
tuples of the form:{eny : eidy,engrn : eidgrn,dny
di,...,dnpey o dpen), Whereeng, ... eng., € EN, eidy,
o eldgr, € assign(eny) X assign(eny) X ... X
assign(engyn) dna,...,dnp.n, € DN, d1,....dpmm C
values(dni) X values(dz) X ... x values(dnp,,); note that
structure2,,, may be empty.
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An Entity-Relationship GMdatabase is a GMDB that
satisfies the following constraint:
for each noden; in Ny such that|Ng, N AD(n;)| = 1 it
holds that|N¢, N AD(n;)| = 1 and|AD(n;)| = 2. In other
words, each role-node linked to only one unprintable class-
node has to be involved in exactly another link, in particular
with a printable class-node.

Let us define the mapping? between the ER model and
the GM: if ERDB is an ER database, the®/(ERDB) =
D, whereD = (g, m, c) is a database expressed in terms of a
Typed Graphy, an Interpretationn, and a set of constraints
¢. The mapping7Z is specified as follows:

1. For eachin; € DN, there is a corresponding nodg €
Ng, such thatfi(n;) = dn; andm(n;) = values(dn;).

2. For eachan; € AN there is a corresponding node
n; € Ng such thatfi(n;) = an; and m(n;) = inst;,
whereinst; is the set of tuples associated with,; in
the structure of a class:. Moreover, there is an edge
(ni,nj) such thatn; € N¢, is as defined in 1) and
m(n;) = dom(an;).

3. For eachen; € EN there is a corresponding node
n; € N¢, such thatfi(n;) = en; and its interpretation
coincides with the set of entity identifiers of the cor-
responding entity typem(n;) = assign(en;); for each
s € structure.,, there is the edgén;, f1(s)); moreover,
for eachz € superclasses.,, there is the constraint
n;ISAx.

4. For eachrn; € RN there is a corresponding node
n; € Ng such thatfi(n;) = rn;; there arek edges
<TLZ',’/L]'>, n; € NCU, such that{fl(nl)...fl(nk)} =
structurel,,, and h edges(n;,n;), n; € N¢,, such
that {fi(n1)... falnp} = structure2,,,. Moreover,
m(n;) = instances(rn;).

Rule 1 states that the family of domairis corresponds
to the set of interpretations of the printable nodeg df.e.,
N¢,), and the names of such domains are given by the la-
bels of the elements aN¢, . Rule 2 states that the union
of the setsAN of attribute names an® N of relationship
type names is equal to the set of labels of the role-nodes
(i.e., Ngr) of g, and that in the first case the associated do-
mains correspond to the interpretation of the adjacent print-
able nodes (note that each role-node corresponding to an
attribute has a single adjacent printable node). In the second
case thestructurel,, (or structure2,.,) of the relationship
type corresponds to the set of labels of the adjacent unprint-
able (or printable) class-nodes. Rule 3 states that the 3et
of entity type names coincides with the set of labels of un-
printable nodes iry, while the set of adjacent role-nodes
is derived by thestructure of the class. The meaning of
an unprintable node coincides with the set of EIDs of the
corresponding class.

In order to better clarify the above mapping we fur-
nish an example of translation for the ER schema shown
in Fig. 10a,b, representing information about network chess
games in progress where we use a very intuitive syntax for
characterizing the schema extension. The resulting GMDB
is shown in Fig. 10c. Note that, since the GM does not sup-
port reflexive role nodes, a new unprintable class node has
been introducedGhess game
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a /\
host guest .
\O"/ Person Lives

o N N~ r— b _name
QaAme, use

Name
PERSON
black

M(COMPUTER)={ <Infokit>, <Assi>, <Athena>}

M(PERSON)={<John>, <Mary>, <Peter> <Carl>, <Cecily>, <Carol>}

M(PROGRAM)={ <InterChess>, <ChessG>, <CsG>}

M(ACCOUNT)={ <login:Infokit,has:John>,<login: Assi,PE,has:Mary> <login: Assi,has:Peter>, Integer
<login:Assi, has:Carl>,<login:Assi,has:Cecily> }

M(ON)={ <host:Infokit,guest:InterChess>, <host:Infokit,guest:ChessG>, <Computer:OAssi,Program:0CG>}

M(CHESSGAME)={ <white:John black:Peter,use:InterChess>, <white:Mary,black:Carl,use:ChessG>, F|g 11. Expressing a relational query through the GPs

<white:Carl,black:Cecily,use:InterChess> }
white

Chess
Computer Person game

City

Referring to the example of Sect. 4.2.3, assume the relational
expression is as follows:

HAge(O’Name:Cnam&PERSON X LIVES))

It corresponds to the query: find out the age of the people
whose name is equal to the name of a city in which some
other person lives.

As we have shown in [Catarci Santucci Angelaccio
1993], the projection on some attributes corresponds to set to
displayed the nodes corresponding to the attributes; the
join (cartesian product plus selection) is rendered through
the drawing a new labeled edge. The GPs corresponding to
the above relational expression are shown in Fig. 11.

M{COMPUTER)={<01>, <02>, <03>}
m(PERSON)={<04>, <05>, <06>,<07>, <08>, <09>}

M(PROGRAM)=( <0102, <Ol 1>, <012>} 5.2 Expressing object-oriented queries

M(CHESS GAME)={ <013>, <O14>, <015>}

M(ACCOUNT)={ <Computer:O1,Person:04>, <Computer:02,Person:05>, <Computer:02 Person:06>,

<Computer:02,Person:07>,<Computer:02.Person 08> Comparing the expressive power of the GPs against an

T 3o e 0% e st O o beneon O oo e o155} object-oriented query language is not an easy task. In fact,
LK) <Feonn O e 01 e Clos i n0n 0l | whereas the relational model is equipped with formally de-
STRINGI g Pt fined query languages (relational algebra and calculus) that

- constitute a well-known expressive power yardstick, object-

Fig. 10a—c.The chess game schema and the corresponding GMDB oriented proposals lack a widely accepted model of queries.

Indeed, several examples of different models of query lan-
guage for object oriented databases are available in the liter-
ature [Banerjee et al. 1988; Kim Kim Dale 1989; Kim 1989].
The aim of this section is twofold. We first describe how Another complication arises from the different choices avail-

queries expressed in relational, object-oriented, and semar@P!€ for determining the structure of the result of a query on
tic languages can be defined in terms of GPs; then, we sho@" objgct-orlented database_. Ind_eed, the presence of class hi-
how it is possible to translate a GP query in terms of a rela£rarchies leads to two possible interpretations for the access
tional language, in order to be processed by the actual relaScOPe of & query, in particular, when the target clasfsthe
tional DBMSs. Here we concentrate on relational DBMSs, dUery is a superclass of other classes in the schema:

since they are widely diffused in real applications. However, _ The scope is the set of objects that are instances of
the definition of the mappings with object-oriented and se-  gjther directly or indirectly throughsa relations.
mantic data models, as well as the inner structure of the GM _ The scope is the set of objects that are instancesbot

and the GPs, will permit easy extension of our approach  are not instances of any other subclasg.of
to the effective interfacing of object-oriented and semantic . ]
DBMSs. In order for the result to be constituted by a set of objects

that are all characterized by a fixed number of attributes, we

have to either choose the second approach, or to follow the
5.1 Expressing relational queries first one, with the proviso that attributes of the subclasses

of ¢ are not included in the result. In our work, we indeed
In [Catarci Santucci Angelaccio 1993] we dealt with the ex- adopt the first approach with the above mentioned proviso.
pressive power of the GPs, proving that the class of queries In the following, in order to compare the expressive
computed by the GPs contains the class of queries compower of the GPs against an object oriented query model,
putable by the Relational Algebra. In this section we givewe adopt the point of view of [Kim 1989], which we
an example of translating a relational query in terms of GPsnow briefly recall. Object-oriented queries are classified into

5 Query management
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single-operand and multiple-operand. The former, which areselectSailplane(E f ficiency > 30 andLanding.A name

more strictly related to the object-oriented philosophy, con-=“NY"). In our approach such a query is expressed by

sist in querying a single class, and are essentially based diirst selecting the nodeSailplane, E f ficiency, Integer,

the idea of extracting objects from a class by posing logi-Landing, Airport, A name, String, and setting to dis-

cal conditions on its attributes. The domain of the involvedplayed the node$l eight and Real; then, changing the la-

attributes determines two possible kinds of conditions: sim-bels of the edgesEf ficiency, Integer) and (A name,

ple predicate, in the case of elementary domain, or compleXtring) into Ef ficiency.Integer > 30 and A name.

predicate, if the attribute domain is a class. The structure ofString ="NY”, respectively. It is worth noting the advan-

a simple predicate igattribute — name, operator, value), tage of handling in the same way both complex and simple

as usual. A complex predicate is a predicate on a contigupredicates.

ous sequence of attributes belonging to the structure of the As a more intricate case, consider the query: “List all

class the attribute domain is based on. Note that a singlethe airports on which an airplane is landing whose cap-

operand query is more powerful than a single-relation querytain’s name is included in the airport name”. The corre-

because it involves joins of several classes when we maksponding query, if reversible pointers are available, can be

use of complex predicate. More precisely, an implicit join expressed in the language shown in [Kim 1989] as: select

is applied when we retrieve objects from the target class byAdirport(Landing.Captain. Name IN A name); if the

referring to another class as domain of an attribute of themodel does not include such kind of pointers the query must

target class. The basic limitation of the implicit join is that be expressed as follows: sele@tiot(Name IN Airplane.

it statically determines the order in which the classes arelanding.A name) and we can access the desired result

to be joined. In other words, it is not possible to formu- (i.e., airport names) as an attribute Bflot. Note that while

late a query whose semantics requires implicit reversal othe semantics of the two queries is the same, the efficiency in

an attribute-domain link specified between the classes.  evaluating them is largely improved in the first case. In prin-
We note that single-operand queries are not sufficient fociple, our approach does not suffer from this dichotomy, and

reaching the expressive power of relational algebra; indeedhe query is easily optimizable according to the well-known

at least explicit joins of classes on user-specified attributestechniques of query optimisation (see, e.g., [Ullman 1987]).

as well as set-operations between classes, must be addé@tie above query is expressed by first selecting the nodes

to this purpose. At this aim, multiple-operand queries areAirport, Pilot, Airplane, Captain, Landing, Name and

defined, i.e., explicit join and set-operations, extracting ob-setting to displayed the node$ name and String; then

jects from two or more classes. Major problems arise indrawing an edge between nod@&me and A name la-

the case of set-operations, where the operands are sets loélled with Name.String IN A name.String. Note that

objects. The main difference between object-oriented andhe drawing of an edge corresponds to an explicit join, as

relational databases is that in the first case the operands magentioned above.

be heterogeneous sets of objects, while in the second they

are homogeneous sets of tuples. As a consequence, in the

object-oriented model the result of such queries is a set 06.3 Expressing semantic queries

instances whose structure is not always clearly defined. Var-

ious strategies have been proposed in order to overcomg Sect. 4.4 we translated IFO and ER databases in terms of
such a problem. In our opinion, set-operations would be al-GMDBs. An important feature of both the IFO and the ER

lowed only between classes that are descendants of the samgdels is in having associated graphical query languages,
parent, thus having compatible types. On the other hand, sekamely SNAP [Bryce Hull 1986], and QBD [Angelaccio

operations between classes having fully different types an@atarci Santucci 1990]. We can exploit the existence of such
sets of objects may either be denied or give rise to classegnguages for showing not only how to express the queries of
having a structure resulting from the union of the two orig- 3 semantic query language in terms of our GPs, but also for
inating Stl’uctures, thus with a |al‘ge number of fields Oftendemonstraﬂng that the GPs can be eas"y used to precise'y

containing null values'. The introduction of such classes incharacterize the semantics of other grap hical languages.
the database could originate several problems in subsequent

operations and introduce potential integrity violations. In the
more simple case of explicit join, the result is a set of in-g 3 ¢ Expressing SNAP queries
stances formed by concatenating the instances from the dif-

ferent joined cIa;ses. . Since the syntax used in SNAP for representing IFO data
In the following we make use of examples in order

. . hem i fined in terms of different graphical elemen
to show how the GPs allows us to express object-orlenteiC emata is defined in terms of different graphical elements

gueries. Note that we refer to the object-oriented databas ircles, diamonds, labels, edges, and connection rules), we
in Fig. 8a and the corresponding GMDB in Fig. 8b,c. Let us eed to provide a mapping between the syntax of SNAP and

the syntax of the GM. Such a mapping, calledbetween

consider the query “Find the weight of all the sailplanes ; . .
whose efficiency is greater than 30 and whose Iandinqzsoll\lloAvl\Ts.ClIagramS (SNAPD) and Typed Graphs is defined as

airport is NY.” This query falls in the class of single

operand queries, as defined above, and involves both a simi. For each rectangle(e)SN AP D with labelir, there is
ple (i.e.,Sailplane.E f ficiency > 30) and a complex (i.e., a noden;(€) N¢, such thatfi(n;) = Ir.
Sailplane.Landing.A name = “NY”) predicates. The cor- 2. For each diamondh(c)SNAPD with label Ik, there
responding query in the language shown in [Kim 1989] is:  is anode n;{€)N¢, such thatfi(n;) = lh.
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3. For each circlex(€)SNAPD with label ic, there is a 1.
noden;(€)N¢, such thatfi(n;) = lc.

4. For each star circtesc € SN APD with labellsc, there
is a pair of linked nodesy; € N¢, andn; € Ny, such
that f1(n;) = lsc.

5. For each cross cirdepc € SNAPD with label Ipc,
there is a pair of linked nodes; € N¢, andn; € Ng, 2
such thatfi(n;) = Ipc.

6. For each unarrowed edde,y) € SNAPD (x is parent
of y in a tree), there is an edge’,y’) € E such that
2 € s(x)* andy’ € s(y)°.

7. The set of arrowed edges belonging to a functional path
p of lengthn, is translated into a role-nodeandn + 1
edges of the formz,.#(r;)), i = 0...n, with r; defined
as above.

By using the mappings#, defined in Sect. 4.4.1, and
we show that the query language of SNAP can be formalizedy
in terms of several applications of GPs.

Queries in SNAP are expressed using query graphs,
which are formed by combining one or more query frag-
ments. Query fragments are constructed primarily from the
fragments of a schema; a query graph can contain any num-
ber of query fragments, possibly including duplicates. The
values that have to be associated with the query fragments
are specified using mainly two mechanismside restric-
tion, which permits users to associate a restriction directly
with a given node of a fragment, asdmparitor arcs which
permit users to indicate that a certain relationship must hold
between values associated with different nodes. The same
comparitor arcs may also be used to compare abstract types,
sets with sets, and individuals with sets. In such a way
the label used on the comparitor arc is semantically over-
loaded. For instance, using an edge with label “inclusion”
between two association nodes results in comparing the ele-
ments of the sets underlying the association nodes (which are
sets themselves), verifying that the inclusion relation holds
among such elements. Finally, the shading of nodes in a
query graph indicates that only values associated with such
shaded nodes have to be displayed in the answer.

Summarizing, the graphical operations available in SNA
are:

The selection of a tre¢ is expressed as the selection
of the nodes (denoted with(s(c1))...n(s(ck))) that
are generated translating the tree components. ¢,
which are nodes, edges, functional paths:

s(F(IFODB),n(s(cy))) o...s(FZ(IFODB),n(s(ck))).

. The change of the label of a rectangleith a new label

7 is expressed as the change of the label of the edge
linking s(c) to the (uniqué) role-nodey with a new label
7', which corresponds to the GP syntax:

¢ (FH(IFODB), 7", 5(c), q).

3. The shading of a node corresponds to setting to

displayed
s(Z#(IFODB), s(p)).

The drawing of a labeled edge (with laheT) between
two elements]; andl,, may correspond either to a single
GP or to a sequence of applications of GPs, depending
on the elementg; andl,, namely:

— If I3 andl,, are two rectangles, the corresponding
GP is the drawing of an edge with a labef”,
which corresponds to drawing an edge between the
two (unique) role-nodes; andn,, linked with the
printable nodes(l;) and s(l2):

E(FEAFODB),. 7', n1,n).

— If eitheriy orl,, or both, are star circles, the operation
involves a comparison between sets, and cannot be
directly expressed by a single GP. Instead, a sequence
of GPs is necessary, which may be very complex,
depending on the comparison operator specified on
the edge. This is not surprising, since, as we said
before, in this case the edge label is semantically
overloaded, and there is a huge semantic distance
between such operations and the GPs. For the sake of
brevity, we do not give the detai this correspondence.

the corresponding node in the GMDB:

P5'3'2 Expressing queries in QBD

1. Selection of a tree representing a fragment.

QBD [Angelaccio Catarci Santucci 1990] is primarily a navi-
gational language on Entity-Relationship (ER) diagrams rep-

2. Changing of a node label, which corresponds to nodeesenting conceptual schemata. The user first interacts with

restriction.
3. Shading of a node.
4. Drawing of a labeled edge.

Such operations, applied to an IFO databas&®) D B,
whose visual representation is a SNAP diagraMi APD,

correspond to several applications of GPs on the databa

D ={g,c,m) = . FZ(IFODB) such thatgy = s(SNAPD).

As a consequence, the semantics of such operations is i
mediately defined in terms of the semantics of the GPs.

The correspondence is as follows:

m

the conceptual schema to understand its information content,
and extracts the subschema of interest containing the con-
cepts involved in the query, then, during the “navigation”
activity, he may express the query, defining all its proce-
dural characteristics. Initially s/he selects a central concept,
called main conceptthat can be seen as the entry point of

e guery, then s/he can choose between two kinds of prim-

itives for navigating in the schema. The first one allows the
user to follow paths of concepts, the other one is used for
comparing two concepts which are not directly connected to
each other. Conditions on attributes are expressed by means

2 Circles with an inscribed star are the representation for associationOf a window, where the list of the attributes is shown to-

nodes

gether with the elements involved in the comparison (i.e.,

3 Circles with an inscribed cross are the representation for aggregatioconstants, other attributes, etc.) and a set of icons suitable

nodes
4 s(z) produces a set of nodes andiis the role-node among them
5 If s(y) produces more than one nodg,is the class-node

6 Note that the uniqueness of such a role-node is a consequence of the
IFO definition of fragment, not a GM constraint
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to formulate conditions on the attributes. Conditions are ex-  f1(n:) =le; . /" (FZ(ERD), ny) o s(F(ERD), n2)
pressed selecting the attributes and the icon corresponding ©- - - S(Z(ERD),ny).

to the required operator. _ , 5. The opening of a window containing labels of circles,
Since the QBD syntax is defined in terms of various sayles .. .ley, and the drawing of a labeled edge (with

graphical elements (rectangles, circles, diamonds, labels, and label .7) between two of themicy, Ic,, correspond to

edges), we also provide a mapping between the elements of o drawing of an edge, with the same lali€|, between
QBD diagrams (QBDD) and the representation structures of  ha to role-nodesi; andn, such that:

Typed Graphs.

The mappings is defined as follows: fi(n1) =ler and fi(ng) = le2 : £(FZ(ERD),. 7, n1, na).
1. For each rectangle € QBDD with labelir, there is a 6. The selection of two isolate rectangles and the selection
noden; € N, such thatfy(n;) = Ir. of an icon representing a set operator, correspond to the
2. For each diamondh € QBDD with label Ik, there is drawing of an edge, with a labe¥ equivalent to the
a noden; € Ny such thatfi(n;) = lh. icon, between the two nodes andn, corresponding to
3. For each circle € QBDD with labellc, there is a node the rectangles:
n; € Ng such thatfi(n;) = lc. _ & (FZ(ERD), .7, s(r1), s(r2)).
4. For each edgdz,y) € QBDD, there is an edge ]
(z',y') € E such thatr’ = s(z) andy’ = s(y). As an example, let us consider the ER chess game

] ] schema of Fig. 10a and assume that we are interested in

By using the mappings’# (see Sect. 4.4.2) andwe finding out the name of all the white players of a chess
show that the query language QBD can be formalized ingame together with the name of the computer on which they
terms of GPs. have an account. The corresponding ER query is expressed

Let Q(QBD) be the set of queries expressible by usingthrough the selection of the diagram elements constituting
the graphical operations of QBD. Such graphical operationsihe path:

introduced above, are: )
(Computer, Account, Person, (white role), ChessGame),

1. Selection of the first rectangle (main entity) ) _ o i ]

2. Selection of any path diamond-rectangle asking for the inclusion in the final result of the attributes
3. Selection of two disconnected rectangles Name andC name. Applying the above mapping rules, we
4. Opening of a window containing the labels of the circles, 0Ptain the GPs shown in Fig. 12.

selection of some labels
. Opening of a window containing the labels of the circles,
drawing of an edge between some label, with a new labe
6. Selecting two isolate rectangles and selecting of an ico
representing a set operator

(&)

p-4 Generating relational expressions

r\]Ne showed in the previous section that the last phase of the
query expression is devoted to the production of the query

Such operations, applied to an ER database ERD, whoseesult expressed through a new GMDB, namely the result
visual representation is a QBD diagram QBDD, corresponddatabaseD®. In this section we see how to directly build a
to several applications of GPs on a database (g,c,m) relational algebra expression, representing the query result,
in the ER Graph Model, such thad = .7ZZ(EFRD) and  which can be processed by the underlying relational DBMS.
g = s(QBD). As a consequence, the semantics of such opMoreover, we will prove that applying the inverse mapping
erations is immediately defined in terms of the semantics ofules to such a relational expression we obtain a GMDB
the GPs. The correspondence is as follows: belonging to the same equivalence clas9ds

In Sect. 4.2 we introduced suitable relational algebra ex-
ressions in order to give the role-node interpretation, i.e.,
or eachr € Ny RelFExp(r) returns the relational algebra
expression used in defining(r). In this subsection we show
how to compose such relational algebra expressions in order

1. The selection of the first rectangtas expressed as: the
selection of the node with the same label; the selectio
of all the nodes linked to it and corresponding to circles
(denoted withs(r1) . . . s(rk)):

S (F(ERD), s(r)) o s(-:74(ERD), s(r1)) to express the query result.
o...s(F(ERD),(rt)). Note that we can associate the notionftfl Exp to the

. . ing f h lational | with i
2. The selection of any path rhomb-rectangle (denoted W'“}T]Zpgmg(sézmséé TBU?: z?hirgc():gtseeW;tpplr;%é:l%;;ril)n;s to

rh —r) is the selection of the corresponding nodes: 0 hode returns the label of the unprintable node adjacent

S (F(ERD), s(r)) o s(FZ(ERD), s(rp)). to it, i.e., the associated relation name. Under this condition,
_ _ the expression defined below computes a correct query.
3. The selection of two disconnected rectanglgs,rgayz, Let D be an admissible GMDBpossibly containing un-
is the selection of the corresponding nodes: selected, selected and displayed nodes, together with edges
S (FL(ERD), s(r1)) o s(FZ(ERD), s(r2)). with labels# T'.

. . . . 7 i
4. The opening of a window containing labels of circles and, = Pépending on the structure of the GMDB D, the result database may
have an empty set of role-nodes. In this case we say tlmhbt admissible

the selectlon_ of some labels, shy ... lcp, corresponds otherwise we say that s admissible(see [Catarci Santucci Angelaccio
to the selection on the Typed Graphof the role-nodes  1993), where the constraints a GMDB must satisfy in order to be admissible
n; such that are specified)
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/Program PrOOf (Sketch)
The proof proceeds by comparing the relational expression

introduced in this section with theval operator introduced
when defining the construction db° (see Sect. 3.2.2). In

fact, it is easy to show thatal operator computes either a
cOmpUCer pereon Chess C cartesian product or an equi-join on the unprintable values.
Fnane The former corresponds to case 4 of the above relational ex-
pression computation, the latter to one of the first three cases,
@ resulting in an equi-join on keys. The unprintable values of
@ D° are new invented values and the corresponding ones in

D" are generated by the mapping’. Therefore, the tuples
in D" can differ from the ones iD° only for the unprint-
able values and, consequently!” and D° are in the same
equivalence class.
Fig. 12. Translating an ER query into GPs

6 Summary and conclusions
Let N,s, N.q C Ng be the set of selected and displayed

role-nodes respectively. Lef; be the set of edges whose This paper summarizes a consistent part of the work done
label is# T'. In order to compute the query result we compute guring the past 5 years with the main purpose of designing
the following relational algebra expression: a new VQS providing the user with a multiparadigmatic vi-
sual interface realizing an integrated access to heterogeneous
databases. Such a VQS has two main components: (1) the
user interface (described in [Catarci Chang Santucci 1994]),

> R which is able to automatically adapt to different users by of-
Tr—ak f1€ xp(nK))) fering to them the most appropriate visual representation and
interaction modality on the basis of a user model describing
the user skill and needs; and (2) the interface to the different
DBMSs, which allows for expressing the diverse databases
in terms of a single model and eventually build an integrated

R=1IIp (O’F (RelEmp(nl) [f>1i RelExp(ny). ..

wheren; € Ng, fa(n;) € {selected ,displayed } for
i=1...K, P, F, and the equi-join conditiong; ;+; are de-
fined as follows.

P is the set of thadisplayed  role-nodes,P = N,.4; schema. Both components rely on a formal model, the Graph
F is the logical conjunction of the labels belonging to the Model (GM), having a graphical syntax and an object-based
edges inEy; semantics, which plays the role of both unifying model for
fi,i+1 is defined as follows: the heterogeneous components and intermediate visual rep-

. resentation used for formalizing the different final represen-
1. If RelExp(n;) and RelExp(ni+1) share the same pri- (ations presented to the user. The GM has associated a query
mary key, i.e.,AD(n;) N Ne, = AD(niv1) N No, =7, |anguage composed by two Graphical Primitives (GPs): the
then f; ;+1 is equal to selection of a node and the drawing of an edge. Again, the
purpose of such primitives is twofold. They have the same
) expressive power of the query languages associated with the
2. If Rel Exp(n;) and Rel Exp(ni+1) share the same foreign  most common data models, and are a means for formalizing
key, i.e.,AD(n;) N AD(ni+1) = n € Ne,, then fi 1 1S more complex visual interactions, as provided in the user
equal to interface.

The lower part of the system has been presented in this
paper. In particular, we discussed how databases expressed
3. If there exists a foreign key aRel Exp(n;) in in the most common data models can be translated in terms

RelExp(ni+i), i.e., AD(n;) N AD(n;+1) N Ne, =n and  of GMDBs, possibly by exploiting reverse engineering tech-

|AD(n;+1) N Ne, | > 1, thenf; ;11 is equal to niques, and showed that the GPs are equivalent to well
known query languages. Finally, we described how queries
expressed by using the GPs can be translated in terms of
4. If none of the three above cases holds tffign; is equal  relational expressions so to be processed by one type of ac-

to () and the operation performed is a cartesian producttual DBMSs. We concentrated on relational DBMSs, since
they are widely diffused in real applications. However, the
Theorem 1 definition of the mappings with object-oriented and semantic
Let D be an admissible GMDB obtained by applying a set of data models, as well as the inner structure of the GM and the
GPs toD' = . 9Z(DB) where DB is an enriched relational GPs, permits easy extension of our approach to effectively
database. LeD° be the corresponding result database, andnterface object-oriented and semantic DBMSs.
let R be the relation computed by the above relational ex- As we said in the Introduction, our proposal differs from
pression associated with. Let D" = .7 (R) where R is others available in the literature mainly in the problems it
the relational database composed by the single reldfion intends to solve. Perhaps, the works that are most similar
Then D" is equivalent taD°®, i.e., D" € EQ(D®). to the ours are [Mark 1989] and [Gyssens Paredaens Van

“PKRelE:cp(m) = PKRelEacp(nHl)”-

“ FKRelExp(n,J,RelEmp(n) = PKRelEzp(n,,ﬂ),RelEn:p(n)”-

‘ FKRelEmp(ni),RelEmp(7L7:+1) = PKRelEa:p(niﬂ)”'



Gucht 1990]. Both papers present specific VQSs, which are9.

intended to be directly utilized by the users. Our proposal
presents a more general environment, where various equiv-
alent user interfaces can be defined on the basis of the sa
formalisms, and different databases can be dealt with in g4
uniform way. Our proposal shares several similarities with

Mark’s approach both in the data model (except for the ar-12.

ity of relationships, which are only binary in Mark’s work,
while our role-nodes can be linked toother nodes) and in
the way of computing the query result, while the process of
query formulation is deeply different in that keywords are

used instead of graphical operations. In [Gyssens Paredaens,

Van Gucht 1990] a powerful object-oriented data model is
defined, called GOOD, provided with a graphical interface

and graphical interaction for all the typical database operal®:

tions. Besides distinct motivations, this approach is different
from ours from a graphical point of view. In GOOD, a query
is specified by a pattern that is matched against the instances
graph, while our GPs work on the intensional level of the

database and their semantics is defined in terms of set ogds.

erations. Finally, the higher expressive power of the GOOD
query language is obtained by introducing methods which
are strictly related to the object-orientation paradigm and, g
are not expressible in terms of graphical operations.

Summarizing, this research has provided a strong ando.

formal basis for the development of an adaptive user in-
terface to heterogeneous databases. The work continues. In

particular, we are devising a more sophisticated schema in2t

tegration technique. Starting from a set of GMDBs and a,,
knowledge base containing intra- and inter-schema knowl-

edge (expressed by using an extension of the Constraint Lares.

guage) we will be able to automatize several phases of the
schema integration. As for the multiparadigmatic interface,
which has been implemented, we are presently testing i
against real users.
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