
The VLDB Journal (1997) 6: 40–52 The VLDB Journal
c© Springer-Verlag 1997

Analysis of locking behavior in three real database systems

Vigyan Singhal1, Alan Jay Smith2

1 Cadence Berkeley Laboratories, Cadence Design Systems Inc., 1919 Addison St., Suite 303, Berkeley, CA 94704-1144, USA
2 Computer Science Division, EECS Department, University of California, Berkeley, CA 94720-1776, USA

Edited by H. Garcia-Molina. Received April 5, 1994 / Accepted November 1, 1995

Abstract. Concurrency control is essential to the correct
functioning of a database due to the need for correct, re-
producible results. For this reason, and because concurrency
control is a well-formulated problem, there has developed
an enormous body of literature studying the performance of
concurrency control algorithms. Most of this literature uses
either analytic modeling or random number-driven simula-
tion, and explicitly or implicitly makes certain assumptions
about the behavior of transactions and the patterns by which
they set and unset locks. Because of the difficulty of col-
lecting suitable measurements, there have been only a few
studies which use trace-driven simulation, and still less study
directed toward the characterization of concurrency control
behavior of real workloads. In this paper, we present a study
of three database workloads, all taken from IBM DB2 rela-
tional database systems running commercial applications in
a production environment. This study considers topics such
as frequency of locking and unlocking, deadlock and block-
ing, duration of locks, types of locks, correlations between
applications of lock types, two-phase versus non-two-phase
locking, when locks are held and released, etc. In each case,
we evaluate the behavior of the workload relative to the
assumptions commonly made in the research literature and
discuss the extent to which those assumptions may or may
not lead to erroneous conclusions.

Key words: Concurrency control – Workload characteriza-
tion – Trace-driven simulation

1 Introduction

Concurrency control is essential to the correct functioning
of a database due to the need for correct, reproducible re-
sults. For this reason, and because concurrency control is a
well-formulated problem, there has developed an enormous
body of literature studying the performance of concurrency
control algorithms. Most of this literature uses either an-
alytic modeling or random number-driven simulation, and
explicitly or implicitly makes certain assumptions about the
behavior of transactions and the pattern by which they set

and unset locks. Because of the difficulty of collecting suit-
able measurements, there have been only a few studies which
use trace-driven simulation, and we are aware of no studies
which have been principally directed at characterizing the
concurrency control behavior of real workloads.

There have been a few studies of database systems us-
ing traces. Some have addressed the issue of database buffer
management, e.g., Smith (1978), Rodriguez-Rosell (1976)
and Kearns and DeFazio (1989) studied IMS, Verkamp
(1985) studied a CODASYL system, and Hawthorn and
Stonebraker (1979) have analyzed reference behavior in IN-
GRES, a relational database system. These studies, however,
have not looked at the issue of concurrency control. Studying
concurrency control requires locking activity characteristics
(both lock and unlock events), and information about trans-
action boundaries.

There has also been one group of researchers (Yu et al.
1985, 1986, 1987, 1993) who have used locking traces from
database systems for concurrency control studies. However,
the thrust of their research has not been an extensive data
characterization, and they have provided limited characteri-
zation of the transaction workloads they have used. Our main
objective in this paper is to provide a more useful charac-
terization of the locking behavior and transaction lengths.

A large number of researchers have studied concurrency
control algorithms from a performance point of view. The
usual approach is to define a transaction model consisting
of four sub-models: database model, transaction model, user
model and system model. Given the model description, there
are two popular methods of analysis – through analytical
means or by stochastic simulations based on artificially con-
structed workload parameters (as opposed to trace-driven
simulations). It is well known that analytic modeling is lim-
ited in the range of behavior assumptions that can employed
if solutions are to be expected. Because of the absence of an
agreed-upon model of transaction locking behavior, or even
the availability of a variety of data and measurements, the
simulation studies also make many assumptions. We hope
to rectify this problem through this paper.

Section 2 will briefly discuss some of the concepts and
terminology we will need in this paper. In Sect. 3, we discuss
our traces, and how they were collected and analyzed. Sec-

41

tion 4 describes the generic concurrency control model and
describes the various assumptions which are present in most
studies. A detailed look at the database-related assumptions
is provided in Sect. 5, where we also consider their valid-
ity and the sensitivity of system performance to these as-
sumptions. Section 6 does the same for transaction behavior
assumptions.

2 Terminology and background

In this section, we define some terms used later in our anal-
ysis. Singhal and Smith (1994) provide a considerably more
detailed discussion of the terminology and methodology used
in concurrency control research, as well as additional anal-
ysis and modeling.

There are various alternatives to implementing concur-
rency control in databases – locking (with blocking, and with
restarts), optimistic concurrency control (OCC) and time-
stamping. In this paper we will use the termsLock and
Unlock because the traced systems use locking to provide
concurrency control. Our workloads, however, are equally
applicable to the other approaches – OCC and timestamp-
ing. For these options the first access to a data item can
be interpreted as a Lock request and the last access can be
interpreted as an Unlock request.

2.1 Two-phase locking versus non-two-phase locking

If we choose locking to implement concurrency control, an
important issue is two-phase locking (2PL). 2PL means that
transactions do not acquire new locks after they have re-
leased one or more other locks. 2PL is typically ensured
by releasing all locks only at the end of transactions. None
of the studies we are aware of have considered workloads
where transactions release locks before the end of each trans-
action. In real database systems, however, such as the ones
we have traced, locks may actually be released before the
end of a transaction to provide better performance. In our
traces, some Read locks are released shortly after they are
acquired [short durationlocks, in the terminology of Gray
and Reuter (1993)]; Write locks, however, are never released
before the end of the transaction. While, in general, this can
lead to non-serializable transaction behavior, we presume
that the access order to the data has some restrictions and
that these are sufficient to preserve serializability, or at least
to not affect the validity of the database.

2.2 Cursor locks

We use the termCursor locksto refer to the Read locks
which are unlocked before the end of transactions. We call
them Cursor locks because usually the purpose of these locks
is to guarantee the stability of the cursor pointer on the re-
lation while data is being accessed from the relation (Gray
and Reuter 1993, p. 397). These locks are held only while the
object is being accessed. The non-Cursor locks are simply
referred to asReador Write locks. Although Cursor locks
are typically held for a much shorter time than Read locks,

they can still have a significant effect on performance, since
the transaction acquiring the Cursor lock may have to wait
a long time for that lock, even though it then holds it for
only a short period.

2.3 Index locks

Index locks (used to provide fast access to data), such as
B-trees, also have to be locked to maintain transaction iso-
lation. Most concurrency control performance studies have
ignored the contention for Index locks, although some recent
studies have considered this issue specifically (Johnson and
Shasha 1993; Srinivasan and Carey 1991). We do not know
of any study which has considered the performance of both
index and data locking simultaneously. Because of the high
use of Index locks, they have the potential to cause signif-
icant performance problems. The fact that the systems we
measured use subpages as the granularity of Index locks (as
opposed to pages for data) suggests that index contention
may have been a problem in the past with some systems,
although this has not been documented. In this paper, locks
on index subpages and data pages are simply referred to as
Index locks and Data locks, respectively.

2.4 Locktimes and lockfractions

The locktime of a lock is the length of time that the lock
is held. All measured times in this paper are real (not vir-
tual) times on the traced database systems. The locktime
of a transaction is defined as the sum of the locktimes for
all the locks it acquires. Locktime is an important quantity
– it indicates how long a transaction may have to wait to
acquire a lock which conflicts with a lock already held by
another transaction. Note that the ratio of the locktime of a
transaction to the length of the transaction gives the average
number of locks held by the transaction during its lifetime.
Because Read and Write locks are released only at the the
end of the transaction, locktimes for Read and Write locks
should therefore be closely related to transaction length, un-
less most locks are acquired at the end of transactions. We
define lockfraction as the ratio of locktime to transaction
length. For Read and Write locks, the lockfraction also in-
dicates the fraction of the remaining lifetime when the lock
is acquired.

3 Description of traces

In this section, we describe our traces and the systems from
which they were collected.

The data analyzed in this paper have been collected
from three different commercial installations: Security Pa-
cific Bank (referred to asbank), Crowley Maritime Corp.
(transport) and an anonymous telecommunications company
(phone). The description of the relevant hardware and soft-
ware configurations of the three sites appears in Table 1.

Two of the traces,bank and transport have been traced
using the IBM DB2 GTF tracing facility (IBM Corpora-
tion 1987). The process of gathering these traces and a de-
tailed description of the traced events is presented by Viavant

42

Table 1. Description of the trace sites and the traces.Entries refers to the
total number of trace entries per traces (buffer manager and locking entries).
TPSrefers to transactions/second

Site (company)

Phone Bank Transport
(anonymous) (Security (Crowley

Pacific) Maritime)
Trace date 10/15/90 3/16/88 7/25/88
Hardware system (# of units)

CPU IBM 3090-600J IBM 3090-200 Hitachi/NAS XL80
(12) (2)

Disks IBM 3380/90 IBM 3380 IBM 3380
(35) (15) (20)

Software
OS MVS-XA 3.1 MVS-XA 2.1.7 MVS-XA 2.1

DB2 release Release 1 Release 3 Release 3
version 2.1 version 1.3 version 1.3

Trace
Size 216.91 MB 307.69 MB 567.58 MB
Time 30 min 1 h 15 min 3 h
Entries 8112768 830478 1834422
TPS 4.955 0.341 0.544

(1989). Thephonetrace has been gathered using a new and
much more efficient tracing package (Ted Messenger, IBM
Almaden Research Center, personal communication 1990),
discussed further below. The DB2 tracing facility is able to
activate tracing for any subset of 14 differentevent-classes,
for exampleSQL events, I/O events, andLock events. Each
event class causes trace records to be logged for a number
of different system events.

The traces studied are trace segments containing con-
tiguous trace information, without any breaks in the tracing
period, collected from multiprocessor shared-memory (cen-
tralized) systems. The database management system at all
three sites was DB2, IBM’s relational database manage-
ment system for IBM 3090 mainframes (Date and White
1993), running under the MVS operating system using 3380
disks. These specific configurations of the database system
might limit the generality of our observations. While the
three traces may not completely represent the entire spec-
trum of transaction-processing applications, our paper still
provides a good characterization of locking behavior in three
very different transaction-processing environments. To our
knowledge, no other work in the published literature covers
such a varied workload.

3.1 Locking entries

For our analysis, we used the Lock and Unlock entries from
the traces. Data pages are locked in one page (4 KB) units.
Indexes may be locked on a subpage partition; each index
page is a B-tree node. The number of partitions is user-
defined and variable per trace. We observed up to 16 par-
titions per page for some indexes in our traces. The DB2
systems we traced had all lock entries at the page or sub-
page level; for the next generation DB2 products, locks at a
finer level of granularity (record-level) have been proposed
(Mohan et al. 1992).

The DB2 traces contain three kinds of locks – Read,
Write and Update. Write locks conflict with each other and

with Read locks. Update locks guarantee the same seman-
tic consistency as Read locks; however, only Update locks
are allowed to be upgraded to Write locks. Update locks do
not conflict with Read locks, but conflict with each other
and with Write locks. The reason for having Update locks,
instead of directly upgrading Read locks, is to avoid possi-
ble future deadlocks at the cost of higher contention (Date
1987). The performance tradeoffs of Read locks versus Up-
date locks are not obvious and, to our knowledge, such trade-
offs have never been studied in the literature. Because of this
and since the functionality provided by Update locks is iden-
tical to Read locks, in this paper we have mapped all Update
locks to Read locks.

3.2 Transactions

Individual transactions in the trace are identified with a field
called theACE address, which identifies the address space of
the process. There are noBegin Transactionor End Trans-
action entries in the traces. We have, therefore, chosen the
time the first lock request is issued by a transaction as the
beginning of the transaction lifetime. There is, however, a
special Unlock entry which saysUnlock all locks, owned by
this ACE address. We use this to decide when a transaction
ends. Our definition of transaction boundaries is smaller than
the actual boundaries – we neglect the work done before the
first lock request and after the last unlock request. However,
we include all the work done while any locks were held.
Since we are interested in concurrency control contention,
this should be sufficient. Note that the actual system load
and the transaction lengths will be greater than what is re-
ported here. We refer to the number of active transactions
at any moment as the multiprogramming level (MPL) of the
system.

In this paper, we measure various characteristics of the
transactions. Using the method described above we have as-
sociated a transaction identifier with each trace entry. Then
we unraveled the trace to separate the entries belonging to
one transaction from the entries belonging to other inter-
leaved transactions. Most measurements in this paper have
been done from this pool of transactions. This pool is what
would be required, along with the ordering of transactions,
if we were to use our traces for a trace-driven concurrency
control model simulation.

Note that a transaction sometimes represents a smaller
unit of work than a job, since a user job may spawn a number
of transactions. A transaction is a complete unit of work,
however, in that it releases all locks it owns when it finishes.

3.3 Timestamps

In two of the traces,bank and transport, all trace entries
are tagged with a timestamp. In thephonetrace, the times-
tamps have been synthesized by linearly interpolating time
epochs from some entries which record timestamps. There
is a special trace entry which periodically records the time
(every 32 KB, or 1142 trace entries), and some of the trace
entries (likeCommitand a few others which we do not use
in our analyses) do have timestamps.

43

Since our objective is to characterize the transaction
workloads in real databases, we have removed lock-wait in-
tervals from the traces for all our analyses, except for Fig. 1
which plots the system activity for the traces. This is done
for a particular transaction by advancing the timestamps of
the transaction entries that follow the lock-wait by the du-
ration of the lock-wait interval. The motivation to exclude
existing lock-wait intervals is clear – we want to character-
ize the transaction workload that is loaded on the system,
and not how the traced DB2 system processed that work-
load. Lock-waits represent one instantiation (one particular
interleaving of transactions) of the workload; they are not
part of the inherent workload. In fact, lock-waits represent a
performance index, an output, of concurrency control stud-
ies.

We obtainedbank and transport traces using the GTF
tracing package, which imposes a substantial system over-
head [of the order of 100–200% is reported by Viavant
(1989)]. GTF logs an enormous amount of information per
trace entry, much of which (about 88% by volume) is not
used for our analysis. This overhead may affect us in two
ways. It may affect the validity of the durations of the trans-
actions. However, in this paper we are not interested in the
absolute time values. All time values must be considered rel-
ative to each other. We make the reasonable assumption that
all transactions are affected by the overhead equally. Another
side effect of the overhead is that the users’ behavior may
change due to this overhead. Although this may reflect on
the system MPL, we have no reason to believe that it affects
the mix of the transactions in the workload substantially.
The phonetrace has been logged using a very efficient new
tracing package which incurs an overhead of approximately
2–5% (T. Messenger, IBM Almaden Research Center, per-
sonal communication 1990). In fact, we have been told that
the users of the database system did not perceive any change
in the system performance. Clearly, this eliminates the pos-
sibility of the second side effect we just discussed. Note that
we also assume that all transactions are stretched equally
due to multiprogramming effects.

The timing information about the occurrence of lock re-
quests may also be perturbed due to database configurations,
load controller policy, and the second-order effects of data
contention on the number of active transactions and resource
contention. Therefore, in this paper, we are only interested in
studying time values relative to each other. This, of course,
assumes that perturbations on the time values are propor-
tional. Notice that we do not assume that the effects on
lock contention are also proportional; this is because, as we
stated in the beginning of this subsection, we have excluded
the lock-wait intervals from the transaction lengths. Thus,
we allow transactions with different locking requirements
but otherwise equal transaction lengths under an MPL to
have different total lengths under a different MPL, due to
different lock-wait lengths for the two transactions.

3.4 System activity in the traced systems

In this subsection, we present the level of system activity in
the database systems we traced. Figure 1 shows the transac-
tion MPL and the average number of transactions waiting on

T i m e (i n S e c o n d s)

phone

transport

Lock-Wait (Max. = 13)

Activated (Max. = 19)

Lock-Wait (Max. = 1)

Activated (Max. = 7)

0 500 1000 1500
0

5

10

15

20

N
u
m
b
e
r

o
f

X
a
c
t
s

0 5000 10000
0

3

2

3

4

5

4

3

2

3

40003000200010000
0

bank
Lock-Wait (Max. = 0)

Activated (Max. = 5)

Fig. 1. Transaction load for the traces. The number of transactions (Xacts)
denotes an average over a time-period. The time-period is 120 s, 15 s and
30 s, respectively, for the three traces.Lock-wait denotes the average num-
ber of transactions waiting because of lock conflicts

lock requests. The figure represents an average number of
transactions calculated using a continuous window of time
(2 min, 1 min and 30 s fortransport, bankandphone, respec-
tively). The window size has been chosen for each trace to
provide reasonable smoothing.

Because of the way we have defined transaction lifetimes
earlier in this section, Fig. 1 represents a lower level of ac-
tivity than the actual system – processes which do not lock
any items are not counted; also portions of transaction life-
times before the acquisition of first lock and after the release
of all locks, are not counted.

The figure shows a relatively low MPL for thetransport
and bank traces. One of the reasons for this might be that
the heavy overload of GTF tracing caused the transaction
load to be less than the usual load, due both to the scheduler
decreasing the MPL, and to users withdrawing from the sys-
tem due to unresponsiveness. Even though the MPL of the
traced system may be high, it does not mean that transaction
mix in the database system is not representative of the mix
under the regular load. These two traces also show a near-
zero level of lock contention. On the other hand, thephone
plot shows a significant degree of contention. This trace also
contained some transaction aborts because transactions had
deadlocked due to circular dependencies for locks. The high
degree of contention will affect the timing information about
the locking events in the transaction load. However, we are
only interested in time-values relative to each other. Also,
as explained in the previous section, we have removed the
lock-wait periods from the trace. One interesting observa-
tion from thephoneplot is the fact that the contention level

44

mimics the MPL very closely. This suggests that the system
is trying to maintain the number of active transactions (those
not blocked for locks) at a constant. This would suggest a
load control policy which is based solely on the number
of active transactions, and ignores the number of transac-
tions blocked for locks. We refer the reader to Monkeberg
and Weikum (1991) and Carey et al. (1990) for a detailed
discussion of load control policies.

4 Concurrency control modeling

In this section we describe the generic concurrency con-
trol model used in most concurrency control analyses, and
note also the various assumptions made in such modeling.
Most assumptions have two flavors – behavioral assumptions
(e.g., selection of exponential distributions) and assumptions
about parameter settings (e.g., the value of the mean for that
exponential distribution).

There are four main components of a concurrency control
model: the database model, the user model, the transaction
model and the system model.

4.1 Database model

The database model captures the characteristics of the data-
base, such as the database size, data distribution on multiple
nodes, data replication, and the access pattern. A relational
database, for example, is composed of several relations or
tables. Each of the relations might be stored in one or more
files. A relation is comprised of a set of tuples, such that
each of these tuples is defined over the same attributes.

In concurrency control modeling studies, typically, a
database is modeled as a collection of fixed sizedata items.
Data items are grouped intogranulesto form units of access
and concurrency control. With the exception of studies ana-
lyzing effects of granularity on concurrency control perfor-
mance (Carey and Stonebraker 1984; Ries and Stonebraker
1979), one granule usually comprises one data item, and is
the unit of I/O access or concurrency control. In most com-
mercial systems, granules are defined on a physical scale and
not on a logical scale; locks are usually per page and are not
related to the record sizes or the table sizes. In the context
of this paper, one lockable item or object can be interpreted
to be one granule.

Clearly the number of the data items is an important pa-
rameter because it directly affects the amount of contention.
The higher the number of granules, other parameters remain-
ing identical, the lower is the contention. However, as we
will see later, the number of lockable items in the database
has been frequently underestimated in order to obtain non-
negligible (and “interesting”) levels of contention in the sys-
tem.

The access pattern of the data items has often been mod-
eled as being uniform over the entire database. To model
non-uniform access some models have used an 80–20 or a
50–5 (Dan et al. 1994) access behavior. Ab–c access behav-
ior means thatb% of the accesses are uniformly distributed

over c% of the data items and the remaining accesses are
uniformly distributed over (100− c)% of the data1.

Although concurrency control performance for indexes
has been studied in isolation (Srinivasan and Carey 1991),
we do not know of a study that has analyzed the effects of
index and data locking in the same framework. Since index
pages have a B-tree structure, as opposed to the flat structure
of the data items, it is reasonable to expect different conflict
patterns for data and index locks.

Many, particularly early, studies have assumed that all
locks were Write locks to simplify the analyses. Even if
we model both Read and Write locks, we must be careful
to allow Read locks to conflict with other Read locks in
our model, in case a Write lock request is queued ahead
for the same object. Also, not only should we use a real-
istic Read/Write lock ratio, we must also ascertain if the
Read/Write ratio is dependent on how frequently an item
is locked. Clearly, if a more frequently accessed object is
Write-locked less frequently (but Read-locked much more
often) than another object, this page would be less of a fac-
tor in the overall contention. This sort of behavior may, for
example, be expected in the index root pages which are ac-
cessed much more often than the leaf pages.

Another aspect of modeling Read and Write locks is
Write-lock acquisition. The issue here is whether Write locks
are set on items to be updated when they are first read, or
whether such items are Read-locked and later the Read locks
are upgraded to Write. Agrawal et al. (1987) have studied
this assumption and concluded that there is a significant dif-
ference in performance between the two cases. Also, differ-
ent locking algorithms are affected to different degrees by
this assumption.

4.2 User model

The user model describes the arrival process of the user
transactions at the system. The arrival process is generally
modeled either as an open system (Carey and Stonebraker
1984) (invariably as an exponential inter-arrival distribution)
or as a closed system (Tay et al. 1985) where the users cir-
culate through the system and resubmit transactions after the
previous ones are executed. The users’ transactions may be
batch-type (non-interactive) or interactive. For a closed sys-
tem, an external think time (deterministic or variable) may
be modeled as the mean time between a transaction comple-
tion and the next submission from the same terminal. Open
system models are invariably modeled using a Poisson ar-
rival process. The transactions in our workloads come from
both batch-mode submissions and interactive transactions.
We do not have enough information in our traces to distin-
guish between the two.

4.3 Transaction model

For our purposes, a transaction can be characterized by a
string of concurrency control requests, CPU and I/O process-

1 Note that this is slightly different from theb–c access rule as proposed
by Knuth (1973), p. 397), which means thatb% of the accesses are over
c% of the data,b% of b% of accesses are overc% of c% of data, and so
on

45

ing requests and intra-transaction think times. The transac-
tion model defines how these various components combine
to form a transaction. The various parameters are the total
length of the transactions, order of the CPU, I/O, concur-
rency control and think time requests, total number of these
requests per transaction, duration between requests, portion
of database accessed by these requests, etc. A simple model
would be to have one class of transactions, each transaction
comprised of the same number of concurrency control re-
quests, identical duration between the requests without ex-
plicitly modeling CPU and I/O computation, and all data
items being equally likely to be accessed on any access.

The modeling of transaction lengths is very important.
While the mean of transaction lengths is an important pa-
rameter, the variation of the transaction lengths is also im-
portant, since it is well known in queueing systems that flow
times increase with service time variance as well as mean
(Kleinrock 1975).

4.4 System model

The system model captures the relevant characteristics of the
system design (both hardware and software), including the
physical resources (CPUs and disks), their performance pa-
rameters, and their associated schedules. The schedule refers
to the sequencing of CPU and I/O requests as well as the
amounts of service needed. The CPU and I/O time per log-
ical service are specified as model parameters. The mod-
els also include the CPU service discipline, the number of
CPUs for multiprocessors and the CPU configuration for
distributed systems. With the growing interest in distributed
database systems, varying the system model configuration
and studying its effects on concurrency control performance
has become a popular area of research (Wang and Rowe
1991; Carey and Livny 1988).

A few studies have not modeled the system resources at
all. They assume that the rate of processing for an individ-
ual transaction remains constant independent of the MPL.
This is equivalent to assuming infinite system resources. Al-
though this approach might appear to limit the applicability
of such studies to real systems, they do isolate the effects
of data contention from resource contention on the system
performance.

To the extent that the physical system configuration is
sufficient for the offered workload, the issue of the system
model is largely separable from modeling the transaction
workload. This paper addresses the latter issue, and we do
not consider the system model further here.

5 Modeling the database

In this section we will present the database-related charac-
teristics of our workloads, and how the trace characteristics
correlate with the assumptions in the literature. Specifically,
we will look at the access distribution of locks over the
database, the extent of index locking, the distribution of and
correlation between Read, Write and Cursor locks, Write
locks, and the importance of Cursor locks.

bank

phone

transport

Write

Read

Cursor

Cursor (on non-Root)
Write

Cursor
Read

s
k
c
o
l

f
o

n
o
i
t
c
a
r
F

1.0

0.8

0.6

0.4

0.2

0.80.60.40.20.0 1.00.80.60.40.2

0.2

0.4

0.6

0.8

1.0

Fraction of items

0.2

0.4

0.6

0.80.8

0.6

0.4

0.2

Cursor

Read

Write

Read

Write

Cursor

Data Locks Index Locks

0.8

0.6

0.4

0.2 0.2

0.4

0.6

0.8

Cursor

Write

Read Read

Cursor

Cursor (on non-Root)

Write

Fig. 2. Distribution of locks over the index and database items. The three
sets of plots are fortransport, phoneand bank, respectively. Root refers
to the root of B-tree indexes. Read and Write (and Cursor forphone) lock
distributions for non-Root index items are almost identical to the ones in
the figure because Root pages acquire these kinds of locks very rarely, as
seen in Table 2

5.1 Access distribution

The access distribution of locks has a significant impact on
the contention. A uniform distribution would equally dis-
tribute the contention equally over all items and would be
the best for system performance. With an increase in skew of
the distribution, the items locked more often tend to become
bottlenecks [similar to theconvoy phenomenonpresented by
Blasgen et al. (1979)]. The knowledge of the skew in real
database systems should be useful for future modeling stud-
ies; here, we present the actual pattern of distribution of
all locks over the data and index items in the database. In
Fig. 2, we show the skew in the distribution separately over
the index and data items [the data for this figure is provided
by Singhal and Smith (1994)]. Table 2 gives the complete
statistics about number of locks, type of locks and locktimes.

The three traces show differing amounts of skew.Trans-
port appears to have the highest skew andbank appears to
have the lowest. These plots indicate that the common 80–
20 and 50–5 estimates both appear to be reasonable. The
Root pages of the B-tree indexes form a significant portion
of the total Cursor locks fortransportandbank(even though
the number of Root items is insignificant compared to the
non-Root ones, as seen in Table 2); so in Fig. 2 we have
also shown the skew for Cursor non-Root items. The figure
shows that if we disregard the Root locks, the skew is much
lower.

46

Table 2. Distribution of Locks among various types of lockable items.Total itemsdenotes the total number of distinct items
in the trace; since some items are locked as more than one lock type, this total is less than the sum of item total for the three
lock types. Theupper percentagesin each box represent the ratio of the statistic to the sum of statistics in that column; the
lower percentagesare the horizontal percentages reflecting the contribution of one lock type among the three lock types.
L-time refers to locktime in seconds

Total Cursor locks Read locks Write locks
items Items Locks L-time Items Locks L-time Items Locks L-time

Transport
Data 37956 37291 541262 17235.5 780 29189 75522.1 416 1476 2511.1

73.9% 75.8% 80.1% 62.8% 53.0% 58.0% 64.3% 17.8% 27.8% 41.8%
100.0% 98.2% 94.6% 18.1% 2.1% 5.1% 79.3% 1.1% 0.3% 2.6%

Index 255 233 74772 990.1 12 126 147.8 21 59 22.4
Root 0.5% 0.5% 11.1% 3.6% 0.8% 0.3% 0.1% 0.9% 1.1% 0.4%

100.0% 91.4% 99.8% 85.3% 4.7% 0.2% 12.8% 9.2% 0.1% 1.9%
Index 13157 11644 59821 9211.0 680 21036 41783.0 1899 3783 3469.9
non-Root 25.6% 23.7% 8.9% 33.6% 46.2% 41.8% 35.6% 81.3% 71.1% 57.8%

100.0% 88.5% 70.7% 16.9% 5.2% 24.9% 76.7% 14.4% 4.5% 6.4%
Phone

Data 82859 82260 873599 16049.6 1367 4609 446.7 1413 9787 2266.2
20.2% 20.4% 38.6% 50.6% 30.6% 37.1% 34.0% 13.6% 31.1% 22.1%

100.0% 99.3% 98.4% 85.5% 1.7% 0.5% 2.4% 1.7% 1.1% 12.1%
Index 76 73 10493 7.9 2 4 0.9 7 16 2.9
Root 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0%

100.0% 96.1% 99.8% 67.5% 2.6% 0.0% 7.7% 9.2% 0.2% 24.8%
Index 327872 320966 1379964 15678.5 3093 7820 865.8 8956 21599 7968.5
non-Root 79.8% 79.6% 60.9% 49.4% 69.4% 62.9% 65.9% 86.3% 68.8% 77.9%

100.0% 97.9% 97.9% 64.0 0.9% 0.6% 3.5% 2.7% 1.5% 32.5%
Bank

Data 96009 95974 134052 10038.4 35 82 16362.1 32 63 139.3
60.9% 61.0% 42.0% 47.7% 26.9% 14.6% 66.2% 36.8% 34.1% 34.3%

100.0% 100.0% 99.9% 37.8% 0.0% 0.1% 61.7% 0.0% 0.0% 0.5%
Index 59 57 93088 1287.9 3 4 0.0 0 0 0.0
Root 0.0% 0.0% 29.2% 6.1% 2.3% 0.7% 0.0% 0.0% 0.0% 0.0%

100.0% 96.6% 93.4% 100.0% 5.1% 6.6% 0.0% 0.0% 0.0% 0.0%
Index 61500 61399 91858 9730.8 92 474 8365.2 55 122 266.4
non-Root 39.1% 39.0% 28.8% 46.2% 70.8% 84.6% 33.8% 63.2% 65.9% 65.7%

100.0% 99.8% 99.4% 53.1% 0.1% 0.5% 45.7% 0.1% 0.1% 1.2%

Table 2 provides data about the number of lockable items
in the database, and the distribution of the three lock types
over these items. It also shows the extent of index locking.
Judging from the number and locktimes of index locks in
this table, it would appear that index locking should indeed
be a part of concurrency control analyses.

5.2 Cursor locks

Cursor locks have not generally been modeled. This might be
because it makes analytical models too complex or it might
be because the use of these locks can lead to semantic incon-
sistency, since they allow non-two-phase locking and permit
non-serializable behavior. In commercial systems, however,
Cursor locks are indeed used, as is evident from Table 2. The
table shows that Cursor locks dominate the total number of
locks, accounting for greater than 96% of all locks in all
cases, with the single exception of Index non-Root locks in
transport, where they still account for more than 70% of the
total. One may argue that Cursor locks are locked for relative
insignificant amounts of times compared to other locks, and
hence they can cause little contention. Looking at the table,
this is clearly not the case, because the total of locktimes
of Cursor locks is not insignificant when compared to Read
and Write locktimes, even though the individual locktimes
for Cursor locks might be more than an order of magnitude

lower than that of Read and Write locks. It is important to
note that while a Cursor lock may be only held for a short
period of time, there may be a significant delay in obtaining
a Cursor lock, during which time the transaction waits.

5.3 Correlation between lock types

In this subsection we will study whether for a certain lock
item, the number of locks of one lock type is correlated
with the number of lock types of another type. For exam-
ple, a positive correlation between Cursor or Read locks
and Write locks would indicate that we can expect more
contention from Cursor-Write or Read-Write conflicts. The
system performance is sensitive to the correlation between
pairs of lock types; negative correlation is desirable for lower
contention.

In the studies that have assumed a uniform access dis-
tribution of locks over all items, the item identifier for each
lock request is chosen randomly and independently of any-
thing else from the set of all items. Likewise, independently
of the item, with a certain probability, the Lock request is a
Write request. Thus there is no correlation between Read and
Write locks. Studies which have modeled a non-uniformb–c
distribution have also chosen Write requests with a proba-
bility independent of anything else. Thus, pages more likely

47

to be Read-locked are also assumed to be more likely Write-
locked.

In real systems, for an arbitrary item, the number of locks
belonging to the three types may not be independent of one
another. There may be objects which will almost always be
read and rarely updated. On the other hand, for another set
of objects, Write locks for that object may far outnumber
the two other types.

To check whether there is any correlation between the
lock types we look at correlation between ranks of the lock
types; rank correlation is measured using the standard Spear-
man rank correlation test (Conover 1980). For each page
we have measured three quantities – number of times it is
Cursor-locked, Read-locked and Write-locked. In Table 3,
we show the measured correlation between all three pairs of
these quantities.

The null hypothesis we want to test is that each pair of
quantities is mutually independent versus the alternate hy-
pothesis that the two variables are either positively or nega-
tively correlated. We reject the null hypothesis at 0.05 level
of significance. Since a significant fraction of Cursor Index
locks belong to Root pages fortransportandbank, we have
also included the test for non-Root pages for these traces.
Note that even though the absolute correlation statistics are
low, they are very significant statistically because of the
very large number of objects. Statistical significance, how-
ever, does not imply that these low correlations significantly
affect simulation results from experiments which do not take
this correlation into account; using a contention model we
have shown (Singhal and Smith 1994) that this correlation
is significant enough to affect contention.

The statistic forCursor-Readcorrelation is not important
for contention as these two types of locks do not conflict. The
statistics for all index objects and non-Root index objects are
virtually the same, indicating that the large number of Cursor
locks for Root pages do not affect the overall correlation. The
table shows very significant positive correlations between
Read-Write locks for all sets of objects except data objects
for bank. This would indicate that Read-Write contention
would be higher than if we assumed independence. However,
since the correlation is much lower than one, there will be
less contention than the studies which use ab–c distribution
of data and choose Write locks using independent probability
values (implying a high positive rank correlation between
Read and Write locks). In the table, most Cursor-Write pairs
have a significant negative correlation, which makes Cursor-
Write contention less probable than for the independence
assumption.

5.4 Write-lock assumption

The “Write-lock” assumption addresses the issue of whether
Write locks are acquired directly or are upgraded from Read
locks. Some studies (e.g., Ryu and Thomasian 1990) have
assumed that Write locks are acquired directly. On the other
hand, Agrawal et al. (1987) have argued that assuming that
Write locks are acquired directly (which they call theno-lock
upgradesassumption) is incorrect, and that performance re-
sults are sensitive to this assumption. The no-lock upgrades
assumption leads to lower contention in both the blocking

version and the restart version of locking algorithms. In the
former, the assumptions prevents some deadlocks from hap-
pening; in the restart version, the transaction restarts which
are inevitable, restart sooner if the no-lock upgrades assump-
tion is made. However, the performance of the restart ver-
sion improves more than the performance of the blocking
version.

We compare the Write locks acquired directly with the
Write locks upgraded from Read locks in Table 4. The table
shows that most of the Write locks (approximately every
nine out of ten Write locks) are acquired directly and the
number of Write locks upgraded from Read locks is an or-
der of magnitude lower. This is contrary to the assumption
in some papers (e.g., Agrawal et al. 1987) that Write locks
are always upgraded from Read locks. As discussed in the
previous paragraph, our statistics would imply that studies
which model Write locks through upgrades not only under-
estimate the system performance but also relatively under-
estimate the performance of locking with restarts more than
that of locking with blocking.

6 Transaction behavior modeling

In this section, we study the modeling of transaction behav-
ior. The issues involved are modeling of transaction lengths,
locktimes and the distribution of the three kinds of locks and
transaction classes.

An issue that we will not address in this section is mod-
eling of resource processing. This refers to the breakdown
of resource requirements (e.g., CPU and I/O requests) dur-
ing a transaction lifetime, the sequence of these requests and
the distribution of processing requirements. As noted earlier,
this is outside the scope of this study and cannot be done
properly with the data we have available.

6.1 Transaction length

The length of transactions is a very important factor in the
analysis of database contention, since long transactions usu-
ally imply long lock-waits because Read and Write locks are
released only when transactions end. Further, even the distri-
bution of transaction lengths is important, since the system
performance is sensitive to the second and third moments
of transaction lengths (Thomasian 1993). This is because
short transactions can be blocked for long periods by long
transactions holding necessary locks.

The transaction length distribution affects the relative
performance of the various concurrency control schemes as
well as their absolute performance. In locking with restarts,
since transactions restart on all lock conflicts, the fact that
locktimes may be large for long transactions will have a less
negative effect on performance than locking with blocking.

Most concurrency control studies have used fixed-length
transactions. In Fig. 3, we characterize transaction lengths
for our traces [the data for the plot is provided by Sing-
hal and Smith (1994)]. Since a few researchers have used
exponential and gamma distributions to model transaction
lengths, we have also plotted both the exponential fits and

48

Table 3. Spearman test for checking independence between two different lock types

Lock type pair No. of objects Test statisticρ̂ .95 test quantile RejectH0 ?
Transport

Cursor-Read 37956 0.1884 0.0101 Yes
Data Cursor-Write 37956 0.2587 0.0101 Yes

Read-Write 37956 0.1662 0.0101 Yes
Cursor-Read 13412 –0.2094 0.0169 Yes

Index Cursor-Write 13412 -0.3192 0.0169 Yes
Read-Write 13412 0.2757 0.0169 Yes

Non-Root Cursor-Read 13157 –0.2078 0.0170 Yes
Index Cursor-Write 13157 –0.3185 0.0170 Yes

Read-Write 13157 0.2778 0.0170 Yes
Phone

Cursor-Read 82859 0.0053 0.0068 No
Data Cursor-Write 82859 –0.0033 0.0068 No

Read-Write 82859 0.3591 0.0068 Yes
Cursor-Read 327948 –0.0458 0.0034 Yes

Index Cursor-Write 327948 –0.1828 0.0034 Yes
Read-Write 327948 0.3291 0.0034 Yes

Bank
Cursor-Read 96009 –0.0110 0.0063 Yes

Data Cursor-Write 96009 –0.0201 0.0063 Yes
Read-Write 96009 –0.0003 0.0063 No
Cursor-Read 61559 –0.0502 0.0079 Yes

Index Cursor-Write 61559 –0.0269 0.0079 Yes
Read-Write 61559 0.1789 0.0079 Yes

Non-Root Cursor-Read 61500 –0.0501 0.0079 Yes
index Cursor-Write 61500 –0.0269 0.0079 Yes

Read-Write 61500 0.1818 0.0079 Yes

Table 4. Comparing Write locks acquired by upgrading Read locks to Write locks acquired
directly. The latter is referred to as the no-lock upgrades assumption.L-time refers to locktime
in seconds

Data locks Index locks
Trace Upgrade Write Direct Write Upgrade Write Direct Write

Locks L-time Locks L-time Locks L-time Locks L-time
Transport 48 178.67 1428 2332.45 377 1537.19 3465 1955.16

phone 1921 375.75 7866 1890.47 4023 1175.62 17592 6795.73
bank 0 0.00 63 139.28 14 1.36 108 265.03

the gamma distribution function2 fits. Both these fits3 have
been generated using the method ofMaximum Likelihood
(Larson 1982). Our analysis of the statistical goodness of
fit (Singhal and Smith 1994) shows that both fits are poor.
In particular, both exponential and gamma distribution fits
yield much lower figures for variance for all three traces
than is measured.

6.2 Locktimes

As we have defined in Sect. 2.4, locktimes denote the length
of time locks are held on the database items. For Cursor
locks, both start and end points need to be known; for Read
and Write locks, only start times are necessary, since both
are released only at the end of the transaction.

2 Gamma probability functions are a more general form of exponential
probability functions. The density function of a gamma random variableX

is defined asfX (x) = λnxn−1e−λx
Γ (n) , x > 0

3 The fits in Fig. 3 are not as poor as they appear to be – this is because
the plots use a log scale and the fits have been obtained before taking
the logarithms. It is possible to get exponential fits (by just horizontally
shifting the current fits) which will look much closer on this log scale, but
are actually much poorer fits, as it becomes evident if we look at those fits
on a linear scale plot

In the literature, locktimes have not been explicitly mod-
eled. In the static locking studies (Morris and Wong 1985),
all locks were acquired at the beginning of transactions and
thus the locktimes are identical to transaction lengths. How-
ever, many researchers have argued that static locking mod-
els are unrealistic because at the start of a transaction one
may not know which pages are going to be locked. We know
of no real database system which uses static locking. In most
later studies, dynamic locking has been assumed, and in al-
most all those studies, Read/Write locks have been uniformly
distributed over the entire transaction lengths.

There is no reason to believe that in real systems the
locking epochs are uniformly distributed. We examine this
distribution below.

6.2.1 Cursor locks

As we have discussed in Sect. 2.2, Cursor locks are very
common, especially in very long transactions where serial-
izability is traded off for higher performance. Even if Cursor
locktimes are short, however, they cannot be ignored because
of the possible waits to set cursor locks. It may, however,
be reasonable to model Cursor lock times as zero, i.e., they

49

0.2

0.4

0.6

0.8

1.0

0.1 10 10000.001 0.001 0.1 10 1000 0.001 10000.1 111

transport phone bankF
r
a
c
t
i
o
n

o
f

X
a
c
t
s

 Transaction length (in Seconds)

Gamma fit

Exponential fit

Gamma fit

Exponential fit

Gamma fit

Exponential fit

10

Trace Min. Max. Median Mean Std. dev. E(T 2) E(T 3) E(T 4)
Transport 0.000504 1525.37 0.110703 2.50572 32.19 1042.5 1.062× 106 1.341× 109

Phone 0.000214 1778.91 0.149048 1.04052 23.33 545.4 7.530× 105 1.218× 109

Bank 0.002182 2226.72 0.194977 4.47598 82.60 6842.8 1.364× 107 2.843× 1010

Fig. 3. Transaction length distribution. Thedotted linesshow the fitted exponential and gamma distribution to the actual distribution. The last three columns
in the table provide the 2nd, 3rd and the 4th moments of transaction lengths

are immediately unlocked after locking. We present the nec-
essary measurements of Cursor locks in this subsection.

In Fig. 4, we report the distribution of a statistically rep-
resentative sample of locktimes of Cursor locks [the data for
the plot is provided by Singhal and Smith (1994)]. The plot
shows that the locktimes for Cursor locks are more than an
order of magnitude lower than the transaction lengths. This
can also be observed from Table 2, where we see that the
ratio of Read and Write locktimes to the total locktimes is at
least an order of magnitude more than the ratio of number
of Read and Write locks to the number of all locks. It should
also be noted that for Cursor locks, a very small fraction of
the locktimes are abnormally high and these locktimes dis-
tort the mean and variance of Cursor locktime distributions.

We also tested for independence between transaction
length and Cursor locktimes using the Spearman rank cor-
relation test. Since Cursor locks are acquired only to keep
the Cursor pointer on the data stable while data is being ac-
cessed, we did not expect to see any dependence between
transaction length and Cursor locktimes. However, as shown
by the data (Singhal and Smith 1994) we found a significant
positive correlation between the transaction length and lock-
times for Cursor locks. This surprising observation could be
due to the possibility that longer transactions are executed
at lower priority.

If the long transactions do not lock a different set of
Cursor objects than the short transactions, the effect of these
significant correlations can be simulated in a model by pa-
rameterizing the distribution for Cursor locktime as a func-
tion of the length of the transaction that required it. How-
ever, if long transactions do lock a different set of Cursor
objects, the lockable items have to be divided among the
long and short transactions and the parameterization of Cur-
sor locktimes has to be based on whether the object is more
frequently locked by long transactions or short ones. This

bank

phone

transport

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.001 0.01 0.1 1 100.001 0.01 0.1 1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.00010.001 0.01 0.1 1 100.001 0.01 0.1 1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.001 0.01 0.1 1 100.001 0.01 0.1 1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Locktime (in Seconds)

F
r
a
c
t
i
o
n
o
f
L
o
c
k
s

Data Locks Index Locks

Fig. 4. Distribution of locktimes for Cursor locks. Thedotted linesare the
gamma distribution fits to the actual distribution

50

clearly requires more detailed database modeling – requir-
ing us to model individual objects and associating them with
long and short transactions. In real systems it is very rea-
sonable to expect that long transactions lock a different set
of Cursor objects than short transactions. Long transactions
generally have a very different nature than short transac-
tions – they access data in a sequential fashion, usually run
at a low priority, and are usually batch-submissions (T. Mes-
senger, private communication 1990). All this shows that it
may be very difficult to accurately model Cursor locktimes,
without resorting to using trace-driven simulations.

Since the locktimes for Cursor locks are much smaller
than the transaction lengths and the locktimes for Read/Write
locks, small errors in locktimes for Cursor locks should not
affect the concurrency control performance analyses to a sig-
nificant degree. In fact, as we discussed at the beginning of
this section, a reasonable approximation would be to model
Cursor locks with a locktime of zero – only the acquisi-
tion of Cursor locks is important. It would be interesting
to investigate this further by experimentally determining the
importance of accurate modeling of Cursor locktimes for the
final performance results, but we do not do so in this paper.

6.2.2 Read/Write locks

For reasons discussed above, we want to know the distri-
bution of locktimes for Read and Write locks. Since Read
and Write locks are held until the end of the transaction, we
want to test the assumption that these locks are uniformly
distributed over the transaction length.

For reasons discussed in Sect. 2.4, we will characterize
lockfractions instead of locktimes for Read and Write locks.
By definition, the values of lockfraction lie between zero and
one. Static locking is equivalent to assuming a lockfraction
of one for all locks. On the other hand, assuming that locks
are acquired uniformly over the transaction length means
that the lockfraction is uniformly distributed over the interval
[0, 1].

In Fig. 5 we plot the distribution of lockfraction for Read
and Write locks [the data for the plot appear in Singhal and
Smith (1994)]. We also distinguish between index and data
locks. Both the Read- and Write-lock acquisitions exhibit
considerable skew relative to the uniform distribution as-
sumption. This large variation in locktimes will cause more
contention than would be the case for a uniform distribu-
tion of locktime, so we can expect that a naive model which
assumes a uniform distribution to underestimate contention
due to Read-Write lock conflicts.

It is useful to check whether the lockfractions are related
to transaction lengths. Positive correlation between lockfrac-
tions and transaction lengths would indicate a high variance
for locktimes. The results are reported by Singhal and Smith
(1994): we observe a significant positive correlation in al-
most all cases for Cursor lockfractions; for Read and Write
lockfractions, the results vary widely from positive to neg-
ative. In the literature, static locking models have assumed
that all locks are acquired at the start of the transactions, im-
plying a lockfraction of exactly one. More realistic dynamic
locking models have assumed that locks are acquired uni-
formly over the transaction duration. This would again mean

A
l
l

Write
Read

Write

Read0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.80.60.40.20.80.60.40.2

Write
Write

Write

Write

Read

Read

Read

Read

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0
IndexData

F
r
a
c
t
i
o
n

o
f

L
o
c
k
s

0.2

0.4

0.6

0.8

1.0

L o c k t i m e
T r a n s a c t i o n L e n g t h

transport

phone

bank

Fig. 5. Distribution of locktimes for Read/Write locks. Thedotted linesare
the beta distribution fits to the actual distribution. Thedashed linerepresents
the line with slope one

that they have implicitly assumed that lockfractions are in-
dependent of transaction lengths. Given the wide swings be-
tween positive and negative correlations, assuming no corre-
lation is probably a reasonable assumption for most studies.

6.3 Transaction classes

Transaction classes refer to the different kinds of transac-
tion applications running on the system. Most studies have
used only one transaction class. One of the few studies that
use multiple transaction classes – a mix of short transac-
tions with random access and higher probability of Write
with long transactions doing sequential access with a smaller
probability of Write – is that conducted by Carey and Stone-
braker (1984). If real transaction behavior varies widely, it is
important for the models of many studies to realistically rep-
resent this variation, since most performance measures de-
crease with increased variance in the workload. This can be
done by incorporating multiple classes of transactions, each
class with significantly different behavior. Using a low vari-
ance workload also gives an unfair advantage to the block-
ing version of locking because there is a shorter bound on
the amount of lock-waits, due to low variance in transac-
tion lengths. Another reason for modeling multiple transac-
tion classes is that in the presence of multiple transaction
classes, only a subset of them may become the contention
bottleneck; modeling a single transaction class means that
when contention becomes the bottleneck, no transactions can
progress. We also refer the reader to the work of Thomasian
(1994), where it has been shown that the effect of multi-

51

ple transaction classes cannot be simulated using a single
transaction class.

The characterization for the transactions present in our
workload appears in a set of tables in Singhal and Smith
(1994). There are two classifications. The first is based on the
application plan names as given by the system; the second
classification is based on three factors: transaction length,
Read/Write nature of transactions and two-phase versus non-
two-phase transactions. These characterizations can be used
to guide a realistic selection of parameters for concurrency
control analysis.

6.3.1 Plan-based characterization

Each transaction in our traces has aplan nameattached to
it. This plan name refers to the application type of the trans-
action. We first classified the various transactions based on
their plan names. The quantities measured for the transac-
tions include transaction length, Write locktimes and Read
locktimes. For each plan type, and for both index and data
items, we tabulate the number of Read locks acquired, num-
ber of Write locks acquired, number of Read locks upgraded
to Write, number of locks unlocked and number of distinct
items locked. It is important to distinguish the Write locks di-
rectly acquired from the Write locks upgraded through Read
locks because, as discussed in Sect. 5.4, this distinction can
significantly impact simulation results.

Not surprisingly, we find very high variation between the
characteristics of the different applications. Average transac-
tion lengths vary a lot over different plans. An interesting
observation is the fact that, for most plans, the number of
locks acquired by transactions outnumbers the number of
distinct items locked. Since Read and Write locks cannot be
released before Commit, this fact can be attributed to Cursor
locks being acquired on the same items repeatedly.

6.3.2 Another transaction grouping

The plan-based characterization described above exhibits
high variability within many plans (i.e., groups). To get a
better characterization for modeling, we can group the trans-
actions on three mutually orthogonal axes:

1. Two-phaseness: since two-phaseness of transactions is
an important property, we use that as one of attributes
for our grouping.

2. Read-Write behavior: a large fraction of the transactions
do not acquire Write locks. These transactions may have
behavior dissimilar from the transactions that acquire
Write locks. Therefore, we distinguish between these two
classes of transactions.

3. Length of transactions: we have also divided the trans-
actions into classes based on their length.

In our previous publication (Singhal and Smith 1994),
we provide tables which characterize each of our workloads
based on the above three parameters. The statistics from
these tables provide the parameters which one could use to
realistically model a database model.

On the average, over all traces, Read transactions greatly
outnumber the Write transactions. Read transactions have a
greater variance of transaction lengths, number of locks and
locktimes. Two-phase transactions outnumber the non-two-
phase transactions. The non-two-phase transactions are much
longer and acquire many more locks (mostly Cursor) than
two-phase transactions.

7 Conclusion

In this paper we have looked at the locking behavior of
three real relational database systems running three different
kinds of real applications. We have used our traces to obtain
a comprehensive characterization of transaction workloads
in real commercial database systems. We believe that this
data will be valuable not only to the researchers who can
use it to create more accurate models, but also to database
designers who can use this information for a deeper under-
standing of real-world transaction workloads. It is important
to note, however, that our characterization does not necessar-
ily have predictive power; that is, we have measured various
parameters of the workload, but that does not allow us to be
confident that we can predict the values of parameters that
were not measured.

We have also looked at the various assumptions made
in the concurrency control performance analysis literature,
have measured their validity in the traces, and have analyzed
the sensitivity of predicted system performance to these as-
sumptions. A future direction of research would be to use
trace-driven simulation to analyze the sensitivity of the as-
sumptions more rigorously.

Acknowledgements.We would like to acknowledge Ted Messenger of IBM
Almaden Research Center and Hervé Touati of University of California at
Berkeley for their help in making the DB2 traces available to us. Also, we
thank Steve Luzmoor of Cray Research for helping us transfer some of the
traces to our machines. This research has been supported in part by the Na-
tional Science Foundation under grants MIP-9116578 and CCR-9117028,
by NASA under grant NCC 2-550, by the State of California under the
MICRO program, and by the International Business Machines Corporation,
Digital Equipment Corporation, Mitsubishi Electric Research Laboratories,
Sun Microsystems, Philips Laboratories/Signetics, Intel Corporation, and
Apple Computer Corporation.

References

1. Agrawal R, Carey MJ, Livny M (1987) Concurrency control perfor-
mance modeling: alternatives and implications. ACM Trans Database
Syst 12(4): 609–654

2. Blasgen M, Gray J, Mitoma M, Price T (1979) The convoy phe-
nomenon. Oper Syst Rev 13(2): 20–25

3. Carey MJ, Livny M (1988) Distributed concurrency control perfor-
mance: a study of algorithms, distribution and replication. In: Proc of
the 14th Intl. Conf. on Very Large Database Systems, Los Angeles,
California

4. Carey MJ, Stonebraker M (1984) The performance of concurrency
control algorithms for database management systems. In: Proc of the
10th Intl. Conf. on Very Large Database Systems, Singapore

5. Carey MJ, Krishnamurthy S, Livny M (1990) Load control for locking:
the “Half and Half” approach. In: Proc of the 9th ACM Symp. on
Principles of Database Systems, Nashville, Tennessee

6. Conover WJ (1980) Practical nonparametric statistics. Wiley, New
York

52

7. Dan A, Dias DM, Yu PS (1994) Buffer analysis for a data sharing
environment with skewed data access. IEEE Trans Knowl Data Eng
6(2): 331–337

8. Date CJ (1987) An introduction to database systems (vol. II). Addison-
Wesley, Reading, Mass

9. Date CJ, White CJ (1993) A guide to DB2: a user’s guide to the IBM
product IBM DATABASE 2 and its major companion products, 4th
edn. Addison-Wesley, Reading, Mass

10. Gray J, Reuter A (1993) Transaction processing: concepts and tech-
niques. Morgan Kaufmann, San Mateo, Calif

11. Hawthorn P, Stonebraker M (1979) Performance analysis of a relational
data base management system. In: Proc of the ACM SIGMOD Int Conf
on Management of Data, Boston, Mass

12. IBM Corporation IBM Database 2: system planning and administra-
tion guide (SC26-4085-3) (1987) IBM Corporation, White Plains, New
York, May

13. Johnson T, Shasha D (1993) The performance of current B-tree algo-
rithms. ACM Trans Database Syst 18(1): 51-101

14. Kearns JP, DeFazio S (1989) Diversity in database reference behavior.
Performance Eval Rev 17(1): 11–19

15. Kleinrock L (1975) Queueing systems (vols I, II) Wiley, New York
16. Knuth DE (1973) The art of computer programming (vol III). Addison-

Wesley, Reading, Mass
17. Larson HJ (1982) Introduction to probability theory and statistical in-

ference. Wiley, New York
18. Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P (1992)

ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollback using Write-Ahead locking. ACM Trans
Database Syst 17(1): 94–162

19. Monkeberg A, Weikum G (1991) Conflict-driven load control for the
avoidance of data-contention thrashing. In: Proc of the 7th Int Conf
on Data Engineering, Kobe, Japan

20. Morris RJT, Wong WS (1985) Performance analysis of locking and op-
timistic concurrency control algorithms. Performance Eval 5(2): 105–
118

21. Ries DR, Stonebraker MR (1979) Locking granularity revisited. ACM
Trans Database Syst 4(2): 210–227

22. Rodriguez-Rosell (J (1976) Empirical data reference behavior in data
base systems. IEEE Comput 9(11): 9–13

23. Ryu IK, Thomasian A (1990) Analysis of database performance with
dynamic locking. J ACM 37(3): 491–523

24. Singhal V, Smith AJ (1994) Characterization of contention in real
relational databases. (Technical report no UCB/CSD 94/801) Computer
Science Division, University of California, Berkeley, March

25. Smith AJ (1978) Sequentiality and prefetching in data base systems.
ACM Trans Database Syst 3(3): 223–247

26. Srinivasan V, Carey MJ (1991) Performance of B-Tree concurrency
control algorithms. In: Proc of the ACM SIGMOD Int Conf on Man-
agement of Data, Denver, Colorado

27. Tay YC, Goodman N, Suri R (1985) Locking performance in central-
ized databases. ACM Trans Database Syst 10(4): 415–462

28. Thomasian A (1993) Two-phase locking performance and its thrashing
behavior. ACM Trans Database Syst 18(4): 579–625

29. Thomasian A (1994) On a more realistic lock contention model and its
analysis. In: Proc of the 10th Int Conf on Data Engineering, Houston,
Texas

30. Verkamo AI (1985) Empirical results on locality in database referenc-
ing. In: Proc of the ACM SIGMETRICS Conf, Texas, Austin

31. Viavant S (1989) Collection, reduction and analysis of DB2 trace data.
In: MS Report, University of California, Berkeley, California, July

32. Wang Y, Rowe LA (1991) Cache consistency and concurrency control
in a client/server DBMS architecture. In: Proc of the ACM SIGMOD
Int Conf on Management of Data, Denver, Colorado

33. Yu PS, Dias DM, Robinson JT, Iyer BR, Cornell DW (1985) Modeling
of Centralized Concurrency Control in a Multi-System Environment.
In: Proc of the ACM SIGMETRICS Conf, Austin, Texas

34. Yu PS, Cornell DW, Dias DM, Thomasian A (1986) On coupling par-
titioned database systems. In: Proc of the 6th Ann Symp on Distributed
Computing, May

35. Yu PS, Dias DM, Robinson JT, Iyer BR, Cornell DW (1987) On cou-
pling multi-systems through data sharing. Proceedings of the IEEE
75(5): 573–587

36. Yu PS, Dias DM, Lavenberg SS (1993) On the analytical modeling of
database concurrency control. J ACM 40(4): 831–872

