The VLDB Journal (1997) 6: 26-39 The VLDB Journal
© Springer-Verlag 1997

Dictionary-based order-preserving string compressioh

Gennady Antoshenkov

Oracle Corporation, New England Development Center, 110 Spitbrook Road, Nashua, NH 03062, USA; e-mail: gantoshe@us.oracle.com

Edited by M.T. Ozsu. Received 1 February 1995 / Accepted 1 November 1995

Abstract. As no database exists without indexes, no index When applied to sorted indexes, order-preserving com-
implementation exists without order-preserving key com-pression increases B-tree nodes’ fanouts at all levels, yield-
pression, in particular, without prefix and tail compression.ing flatter B-trees, and hence gives better performance for
However, despite the great potentials of making indexes single key retrieval. Simultaneously, it reduces the overall
smaller and faster, application of general compression methindex size, improving performance of range or full index
ods to ordered data sets has advanced very little. This pascan. Even the simple forms of string prefix compression
per demonstrates that the fast dictionary-based methods cqmmoved to be beneficial in reducing index sizes (Bayer and
be applied to order-preserving compression almost with theéJnterauer 1977) and in speeding up quick sort algorithms
same freedom as in the general case. The proposed ne{Bayer and Lin 1989). The other order-specific task of com-
technology has the same speed and a compression rate orgyessing composite keys was stated and resolved (Blasgen
marginally lower than the traditional order-indifferent dic- et al. 1977) by inserting some control characters into the
tionary encoding. Procedures for encoding and generatingomposite string at regular intervals. The above methods,
the encode tables are described covering such order-relatdtbwever, do not capture frequent patterns within strings and
features as ordered data set restrictions, sensitivity and irhardly exhaust even half of the compression potentials of-
sensitivity to a character position, and one-symbol encodindered by more advanced techniques.

of each frequent trailing character sequence. The experimen-
tal results presented demonstrate five-folded compression og,
real-life data sets and twelve-folded compression on Wiscon
sin benchmark text fields.

Among general string compression methods, Huffman
coding (Huffman 1952) delivers the optimal translation of
a finite set of symbols into a target set of strings holding the
prefix property (no string in the set is a prefix of any other
string in this set). Huffman encoding is not order-preserving
except for the case of binary target strings covered by the
Hu-Tucker algorithm (Hu and Tucker 1971). A truly opti-
mal translation of a sequence of symbols into a binary string
representing some real interval contained in [0,1) is known
as arithmetic encoding (see description and the original ref-
erences of Bell et al. (1990), p.108. Arithmetic encoding
approaches entropy and is inherently order-preserving un-
less the order is sacrificed for some speed improvement.
Order-preserving string compression targets speed improve-
ments and space conservation of the most intensely use%
databased components: indexes and sort. Like any co
pression, order-preserving compression saves space and d

Key words: Indexing — Order-preserving key compression

1 Introduction

Both Hu-Tucker and arithmetic encoding translate one
mbol at a time and, because of this, are slow, especially
yrithmetic encoding. Moffat and Zobel (1992) have reported

. R ; hmetic compression being a factor of 40 slower than their
moves, but in addition, it enables the correct ordinal comparic P g

: £h d data it i th ; tionary approach. Faster compression is achieved by de-
ISon ofthe compressed data items, increéases the compansq@cting frequent substrings of a source string and translating

zpe_ed, andt_thus exte_nds the comtpress?n aSppllct?]tlon tg_ Nuch groups of characters into a corresponding symbol — this
exing, sorting, merging, aggregation, €tc. (ee the outlings known as dictionary compression. Dictionary methods, in-
of compression application to query processing in Graefecluding the most popular Lempel-Ziv compression (Ziv and
1993, Sect. 12.2.) Lempel 1978) are usually not capable of preserving the or-
* Note by Jim Gray, Editor in Chief: Gennady Antoshenkov passed awayder' One exception Is the case when a set of frequem source

after this article had been accepted for publication. Tamer Ozsu revised th~_§ubStrmgS holds the preflx property and also is a partition-

final article to satisfy the referee’s suggestions. | am sure Gennady wouldNg Of aset of all source sub.strings. AnOthe.r exception is_an
want us to thank Tamer for his extraordinary contribution to this paper ~ extension of the first one with common (zilch) symbols in

27

order to combine a number of less frequent substrings into aeal-life data sets and for Wisconsin benchmark (Gray 1993)
group and hence balance the frequencies (Zandi et al. 1993)ising our prototype implementation.

To see the extra difficulty involved in order-preserving Section 2 of this paper specifies the terms and scope of
compression, consider encoding the wotalsle their, and order-preserving encoding. Sections 3-5 present the encode
train, assuming that the patterna, the andtr frequently and decode procedures for position-dependent, position-in-
occur in some text source. Suppose we assign the syrfibolsdependent and flexible encodings, respectively. Section 6 ex-
for ta, 2 for t, 3 for the, and5 for tr. Then the translations ta- plores structural properties of compression-suitable encode
ble — 1ble, text—2ext, their—3ir, tiger—2iger, train—5ain vectors. Section 7 describes algorithms for optimal dictio-
compress multi-letter patterns into single symbols, but, unnary generation. In Sect. 8, blending techniques and their
fortunately, pu®iger in front of3ir and thus scramble the or- impact on compression are discussed. Section 9 presents ex-
der. Assigningd for t does not help because it reverdager perimental results, and Sect. 10 concludes the paper.
and 3ir. Similarly, we compromise the order if we assign
any single distinct symboK for th: that—Xat, their-3ir,
this—Xis. Observe that the cause of order scrambling is the string encoding
assignment of different symbols to pattern strings extending
each other: in our case patternsth, andthe cause order

ambiguity between words starting with, .. ., tg andti, .. ., A S i

tz as well as betweetha, ..., thd andthf, .., thz {?1’ b an}. A st(rjlng IS ?n ordered Cr}a'hmt’i)laiz s iy
A simple way to avoid such ambiguity is to include the ?hecleiriclf\tec:?asi'tjrin rawfr;r Z)nmersnorpesfriﬁ gla ‘?f*‘:’?)”‘(i) O'S

above extra patterns into a set of patterns to be encoded, i.€ 9 gs, Pty em) = Y

. substr(s,,l) is a substring of string starting from posi-
to assign a sequence of symbols to the pattern sequance SUDSLTLS, 1, . ;
... tg, tha, ..., thd, the thf, ..., thz ti, ..., tz. This string tion ¢ > 1 and stretching up té characters to the right,

set holds the prefix property, provides order-preserving enSubstr(s, i) = substr(s,i,len(s)). String v is a prefix of

coding, but does little for compression because 48 patterngar,!nbgJ 1; I::osgﬁct)ﬁw}gfliinc()%)‘) - v FO}?S;‘O?S'eﬂTep%nStgg?
other tharta, the, andtr occur infrequently and occupy 94% > 2 7 © P » COMPTeJio), 9

of symbol space. Zandi et al. (1993) improved this methodStr!ng b.e'”g. a pref|>§ of all strings i§'. String w extends
by assigning special (zilch) symbols to contiguous groupssmngv if v is a prefix ofw andy # w.
of infrequent patterndb, .. ., tg—Zi, tha, ..., thd—Zy, thf,

Alphabet A is a non-empty ordered set of characters=

..., thz—Z3, ti, ..., tq—Z4, ts, ... , tz—Zs and encoding Examples.Strings “ 7, “t", “th”, “the" are prefixes of the'.
t with Z; if t is followed byb, ..., g, andth with Z, if String ‘train” extends “ ", ..., “trai”, but not ‘train”.
th is followed bya, ..., d, etc. However, they still miss an String ‘th” is a common prefix of that' and “this’,

opportunity to assign a single symb6, for a continuous ~compref(“their”, “tiger”, “tee” }) = *t" . substr(“table”,
gap betweera andthd, etc., and reduce space for symbols 2) = substr(“table”, 2,5)="able” .
needed only to support order preservation. String comparison is defined to be equal for identical
In this paper, we state and resolve a general probstrings, greater for a string extending another string, and
lem of order-preserving dictionary compression, coveringotherwise according to comparison of the next character after
zilch encoding, string prefix compression, and compositea common prefix. To facilitate an SQL-style, “pad-character”
key compression as particular cases and improving eachomparison, we assume that all strings to be compared are
of them. This way, a full power of the order-indifferent extended to the right with a pad character to the common
dictionary compression becomes applicable to the orderlength L.
preserving case, including a high speed. We start with the Having a common string length in order-related data ma-
premise that each source substring to be encoded with apipulation and structures is important for sorting and index
individual symbol must be a prefix of an interval of some creation when keys are composed of multiple fields. Multi-
ordered partitioning of the source substrings into a finitefield keys in such cases can be simply defined as a string
number of intervals. The ordered mappings of symbols intoconcatenation of individual fields and be compressed, pro-
each possible partitioning intervals set, and then further intccessed, and stored as a single string. Later, it will become
a corresponding interval prefix, exhaust all order-preservingobvious that the concatenated strings can have the pad char-
dictionary mappings. acter sequences of individual fields compressed into a single
We then define a class of compression-suitable encodingeode for arbitrary common length, making pad-character
that do not suffer some obvious compression suboptimalistring manipulation as efficient as processing variable-length
ties and can be easily constructed from the set of frequerstrings.
substrings. For a given substring frequency distribution, we Let ST = {“a;,...a;,”} be a non-empty subset of
show how the balanced near-optimal encoding partitions carll strings with lengthZ, a;, drawn from alphabetd =
be produced and how a supplementary Hu-Tucker or arith{as,...,an}. Let T = {"b;,b;,..." } be a set of all strings
metic encoding can improve cases where dictionary encoden alphabetB = {b <i,...,by}. Encoding the source
ing alone does not provide the desired balancing. It happenset S© by the target strings fron¥" is a transformation
that the order-preserving dictionary mapping can also be apt = encode(s) providing a one-to-one mapping 6 into 7.
plied in place of Hu-Tucker or arithmetic encoding for trans- Decoding is done by a reverse transformationdecode(t).
lation of symbols into a target string set (Antoshenkov et al.We are interested in therder-preserving encodinghere for
1994), potentially exceeding Hu-Tucker’s compression rateany s, sz € ST, s1 < s, yields encode(s1) < encode(sy).
At the end, we present the experimental results obtained for We will explore a particular way of encoding where:

28

1. the source string is subdivided into several non-emptyor Hu-Tucker encodingd(, .. .,dx) is the ordered set of

substrings taken from a given string vec®r= (¢, . . ., strings from the target binary alphabet that holds the prefix
qK), property. For arithmetic encodingdy(...,dx) is the or-

2. each substring is replaced with a corresponding symboldered set of intervald; that constitute a partitioning of the
positioni of ¢; in vector@, interval [0, 1).

3. a sequence of symbols is translated into the target string Given a setC = {(E1,Q1, D1),...,(FL,Qr, D)} of
set T using Hu-Tucker, arithmetic, or other encoding encode/prefix/decode vectors with equal vector length in

methods, each triplet, one triplet for each equal-length trailing sub-
4. source-to-symbol and symbol-to-target translations arestring set, theencodetransformation ofS” into 7' is defined
both order-preserving. as follows:

Suppose a source-to-symbol translation is defined thalt-’roceduret
subdivides any non-empty source string into substripgs
..., g;, and produces the symbol chain,...,i,. Since 1. Takes € S” as a source string, s¢t=1,t="".
the first translated symbal takes its value from the set 2. In Ej, find [I;, r;] to which substr(s, j) belongs.
of integers 1..., K, the defined above translation also de- 3. Extendt usingd; from vectorD;.
fines a partitioning of all source strings info classes, one 4. Incrementj by len(g;).
per each value of the first translated symbol. Due to thes. If j < L, switch to step 2.
order-preserving translation property, this partitioning must 6. Returnt as the encoded string.
be a partitioning of source strings inf@ intervals follow-
ing each other in the string order. To avoid ambiguity of] .
the reverse mapping of the first symbol to the first substringThis encode procedure perfornisor fewer iterations be-
(which would make decoding impossible), the first substringcause all common prefixes in step 4 are non-empty strings
¢, must be a prefix of a common prefix of the interval corre- having greater than zero length. A sequentef j values
sponding toi;. When the source string subdivision involves With one value picked at the start of each iteration (step 2),
more than one substring, the described above partitioninglefines a subdivision of into the “source code” substrings.
and prefix rules must also be applied to the remaining trans-
lation of g;,, ..., ¢, intoiy,...,,, and so on. Example. We want to encode positive 8-digit binary num-
Partitioning into intervals and selection of interval pre- bers, assuming that numbers with a small amount of signifi-
fixes at each step of translation might depend on the charcant digits occur more often than those with many significant
acter position of the current substring in the source stringdigits.
and also on the values of already processed substrings. Fur- Using the encoding scheme in Table 1, the following
ther, we will consider only the character position dependencynumbers are decomposed and encoded like:
and independen_cy cases. With this_ very genergl def.inition 00000001 — Of , 0000030]|1] — 101|0][1] ,
of order-preserving dictionary encoding, the relationship be-
tween partition intervals and their common prefixes is fairly OLl1//1//0[0]|0[| 1} — 11010|1[|1[|O[[Of[O[]| -

i_ntric;ate and is a topic of our compression optimality inves- This scheme emulatésencoding (Elias 1975), widely used

tigation. for compressing sets of integers and for run-length bitmap
compression. Our encoding simply flips some leading bits in

.) the leading prefix compared toencoding and thus achieves

3 Position-dependent encoding order preservation, retaining the same compression rate as
in 6.

In this and the following two sections we introduce sev-

eral order-preserving encoding and decoding mechanismshereom 1. The encode transformation defined above is

These mechanisms are driven by sets of encode/decode Vegrger-preserving

tors which can be chosen with a great degree of freedom and

can compress or expand source data depending on vectorg

lecti H | deliveri d ’roof. Let s1, s, be different strings fronf’, s, < s,, and
selection. How to select vectors delivering good compres-; pa the piggest value in the sequer@subdividing string
sion is discussed in Sects. 6-8.

X) . s1 which satisfiesjy; < len(compref(s1, s) + 1) condition.

_For a source string sef”, we define trailing sub- xt the start of the iteratiog having:(jd, e)ncogiewill have
string setsSj = Usesrsubstr(s,j), 1 < j < L. Like o jgentical source codes processedsioand s, and thus
S*, eachS} is a non-empty set of equal-length strings, have identical partial strings built in both cases. Ay =
SE = SE. Let S be one of equal-length trailing substring j, iteration, the source codes fei and s, are different.
sets. LetE = ([l1,r1],---,[lx,rx]) be anencode vec- Moreover, thes; source code precedes thg source code
tor: an ordered partitioning of into K closed intervals, in the string order because the first differentiating character
h<m<...<lg <rg,lr; €S, compref(l;,r;) #“" of s; ands; at positionlen(compref(s1, s2) +1) belongs to
forl < i< K. Let@Q = (q1,---,q9x) Whereg; is a non- both these codes. It follows that symhbdbr a differentiating
empty prefix ofcompref(l;,r;) be anencode prefix vector source code of; is smaller than that 0§, and that partial
Let D =(ds,...,dk) be adecode vectowhered; contains stringst¢ built at j; iteration preserve the order. The rest
all information needed for encoding symbolinto a tar- of the translation does not change this order preservation,
get stringt using a given symbol-to-target encode method.making the theorem proof complete.

= encode(s)

29

Table 1. In this encoding scheme, the leading edge encode vector transforms leading zeros
followed by the most significantl’' into the target codes of the decode vectog. Other
trailing substring encodings are defined as an “identity” transformation. Longer source prefixes
produce shorter codes

qi = compref(li,r;) [Lis7i] i d;

@1 0000001 E; [00000001,00000001] 1 D; O
0000001 [00000010,00000011] 2 100
000001 [00000100,00000111] 3 101
00001 [00001000,00001111] 4 11000
0001 [00010000,00011111] 5 11001
001 [00100000,00111111] 6 11010
01 [01000000,01111111] 7 1101
1 [10000000,11111111] 8 1110000

Q 0 E, [0000000,0111111] 1 D, O
1 [1000000,1111111] 2 1

Qs O Eg [0,0] 1 Dg O
1 [1,1] 2 1

Now, lett be the target string that encodes a source stringany others’ € SL. ST holds the prefix property. Now we
s using the above sé&t of the encode/prefix/decode vectors. define theencode vectoon S~ exactly like we did forS~,

The decodetransformation of the seéf = encode(S*™) of all j.e., as the ordered partitioning = ([l1,74], [lx, 7))
sucht’s back into the source string sét" is described as of S into trailing string intervals, with the left/right interval
follows: ends belonging t6~ and a common prefix for each interval
being at least one character long. Similarly, we define a
Procedures = decode(t) singleQ as a set of non-empty prefixes of common prefixes

“n of intervals inE and a single decode vectdr.

1. Take an encoded strirtge 7', setj =1, s = "

2. In Dj, find d; used for production of. Note thatS” is a maximal subset o’ satisfying the

3. Appendg; from @, to the end ofs. prefix property. Partitioning€y” defined similarly for any

4. Reduce according tod;. other subset of% with prefix property have to be part of a

5. Incrementj by len(q;). set of all maximal partitioning® and, thereforeS” covers

6. If j < L, switch to step 2. the most general case. Also, here and in other encodings, we
7. Returns as the decoded source string. choose for partitioning only the intervals whose ends belong

to fully ordered trailing substring set@% in this case). If we
.. . lift this restriction and allow the partitioning interval ends to
In the decodeprocedure, decomposition 6f encode(s) is tgke arbitrary values preserving the partitioning property, we
done by iterating through the same sequence of source/targe Il not add 3 itioni o th tricted
code pairs as during encoding ©flndeed, the original sym- will not add any ne partitionings to the restricted case,
put merely extend the ways of representing the same set of

bol i is reconstructed in step 2 for each iteration because o Il partitions 2. Thi ol that h ‘s ch
reversibility of the symbol-to-target translation. Therefore, ad!! partiions L. This particular way that we chose IS charac-
terized by the equalityompref([l;,r;]) = compref(l;,r;),

corresponding source code intervgl, ;] must be the one ™ -~ . . 4 .

used in the corresponding iteration ehcode(s), making ~ SMPIfying explanations and“lmpk.ement.atu’?n as well.

the decode loop a stepwise process of the original string Also, using such unique “end-inclusive” partition repre-
sentation, a number of all possible partitionsGf contain-

restoration.
ing n strings can be easily established &2 Indeed, the
leftmost partition interval must have its left end coinciding
4 Position-independent encoding with the leftmost string inS“. Any of the remaining, — 1
strings in S might or might not be the left end of some
In the real world, ordered and to-be-ordered string setspartitioning interval, independent of oth&f strings. Since
have two types of frequently occurring patterns suitable forthe right partitioning interval ends can be always unambigu-
compression: (1) patterns specific to the character positiomusly determined given the set of all left interval ends, the
in a string, and (2) patterns related to individual charac-desirable degree of freedom can be expressed as the number
ters or correlated character sequences regardless of theif n — 1 independent binary trials, i.e., a8 2.
pOSitiOﬂ. Encoding of the second type needs a single en- |n order to app|y the previous]y defined encode pro-
code/prefix/decode vector triplet to be applied at any sourcgedure to the position-independent case, we first introduce
string position, and further, it needs a (single) set representthe notations that simplify string and interval comparisons.
ing all trailing substrings for the encode vector definition. Given a string;, notationlowpad(q) will stand forg padded
Let S} = Ui<;<1.S} be a set of all trailing substrings in to the right to lengthZ with the lowest alphabet charac-
ST, Let ST be a set of alk € S that are not extended by ter and, similarlyhighpad(q) will denote highest character

30

padding. Given a string interval, |], the notation|7, | will caa aa b ccaa bbb - tokens

stand for the closed intervaldwpad(l), highpad(r)], and 6 1 5 8 4 —symbols

|z] will stand for |z, z]. If s is a trailing substring inS%, o o _ .

there is at least one string i§i” havings as a prefix, and, Here, at the first iteration, intervitaa | is found to include
therefore,s is a prefix of some string from some interval ~ Lcaaaabecaabbb| delivering symbol 6. At the second itera-
[1;,ri] in E. It follows that the intersectionlf, ;] N [s] is toN, laa| is found to include the remaindetabecaabbb|

not empty becausg belongs to both intervals. delivering 1. Further|bbbbbbbbbbbbe, b] is found to include
To define theencodeprocedure, we us€ = {(E1, Q1, Dy), [becaabbb) delivering 5. Note that in the order-indifferent

o (BL,Qu. DY With Ey = ... = E, = E, Q1 = ... = compression, the inclusiofb| > [bccaabbb] would select

QrL =Q, D1 = ... = Dy = D of identical equal-length token ‘6" and eliminate the need for one of the two symbols

encode/prefix/decode vectors (of course, only one copy oB Or 5 qssigned to.the specific interval_s in_our case. Further,
each is used in implementation) and use the previously delccaa] is found to include| ccaabbb| delivering 8, and last,

fined encode(s) procedure with a modified step 2: | bbbbbbbbbbbbb | is found to be included in the remainder
_ . _ . [bbb|. Also note that token BbbbbbbbbbbLL” not only ex-
2. In Ej, find [l;, r;] intersecting| substr (s, 5)]. hausts the source string remainder but also contains ten ex-

tra bs which are ignored by the encoding procedure because
only a non-empty intersection of both intervals is required
in the new step 2.

To define thelecode procedure for encode/prefix/decode
vectors E, Q, D, we use the previously definatbcode(t)
procedure with a modified step 7:

If in step 2, the padded intervdlsubstr(s, j)| encloses
[1;,7:], then substr(s, 5) is a prefix of all strings inl}, r;]
and thus is a prefix okompref(l;,r;). In this case, if
qi(compref(l;,r;), then the current iteration advancgs
by len(q;) = len(compref(l;,r;)) > len(substr(s,j)) =
L—j+1, making;j greater tharl. and, hence, leading to the
procedure conclusion. Otherwise, df < compref(l;,r;), 7. Returnsubstr(s, 1, L) as the decoded string.

the procedure terminates according to Step 5. If, on the con-

trary, the above enclosure does not hold, then one end dflere a truncation of the final to the standard length is
interval [I;, ;] lies outside|substr(s, j)|, i.e., there exists needed because the source code at the last iteration can be
stringz 1« € ST,z € [l;,r;], and x ¢ |substr(s,j)]. Si- oversized (see the case [afubstr(s, j)] enclosing [;, ;] in
multaneously, there exists striggcommon to both of them: ~ Step 2 of theencode procedure).

y € Sty e[l;,r], andy € |substr(s,j)|. Indeed, if the
other end of intervall[, ;] belongs to|substr(s,j)|, we
pick it asy, otherwise [;,r;] encloses|substr(s,j)| and

we pick asy a string from$™ having substr(s, j) as a pre- pgsition-dependent encoding with different encode/prefix/
fix. This proves thatsubstr(s, j) extendscompref(li;7:) decode vectors required for each string position may not
and also extendsg;, requiring more iterations to complete necessarily reflect the most practical case because the fre-
encoding. quent patterns are usually bound to only a few particular
positions. Take accounts, license plates, and other forms of
. : identification in which strings are controlled by templates.
defined for all 13-character-long strings on alphaket There are perhaps a few positions designated to separators or

(a, b, c). It assumes that (ap” stands for blank and is used o : o i
as a single blank for word separation or as a trailing blankspecmc code letters and maybe a few areas filled with digits,

sequence, (b) the length of ali™*sequences is usually even or letters only, or a mixture of both, possibly enhanced with
9 « 9 quer y ' some commonly used printable characters. What is needed
sequences usually followe" sequences.

and (c) ‘a to cover these cases is a flexible mixture of several position-
_ dependent and position-independent encoding schemes.

qi = compref(li;re) - [li,ri] For each string position, 1 < j < L, let J; be a

subset of integers between 1 ahaontaining;. We want to

5 Flexible encoding

Example. The following position-independent encoding is

.

; * aa LGZJ define such encoding that the source codes picked at position
3 Z LZ l;ljgbbbbbbbbb j are taken from the encode prefix vector based on trailing
4% DbbbbbbbbbbbD {bébbbbbbbbbbb] a substrings starting at any positiérin J;, not just at position
i . ; N "
5 b [Bbbbbbbbbbbbe, b] g .F.or this, we flrstL redefines;” to be a set ofJ;-based
6 * caa | caal trailing substrings:S; = Uge, (UsesLSUbSt’I"(S,]f)). Then,
7 c L cab, cbec) as in position-independent encoding, we deflije as the
8 * ccaa |ccaal largest subset oﬂf with none of its strings extending the
9 ce Lccab, cc] other. We then redefing; as the ordered partitioning cﬁij

* marks frequent patterns. In these frequent patterns, conito intervals in which the ends belong g and in which

. . . common prefixes are at least one character long.
secutiveas occur even number of times (twice) and, when One cpan observe that the encode and degcode roce-
seen togethems always followcs P

dures described for position-independent encoding, also en-
code/decode strings frord” based on the code sét =
With this encode vector, stringetiaaabecaabbd” is parsed {(E1,Q1,D1),...,(EL,Qr,Dr)} where E;s are theJ;-
and translated into a chain of symbalas based redefinition of encode vectors, and encode, prefix, and

31

decode vectors are identical for every integer from a given @ abc abc abc
J;. When each/; contains only one integer, i.el; = {5}, v Zu edge Zﬂ edge Zbgcf gap
this “flexible” encoding becomes a position-dependent en-
coding. When/; =...=J,={1,2,...,L}, E1=... = Ef, = ab ab ab
@Q1=...=Qr,andDy =... Dy, the flexible encoding be- y: ad peak ad peak ad edge
comes a position-independent encoding. zi a ad acd
Further we will investigate properties of flexible encod- z: a. a- a-
ing useful for the task of compression. The results will y: ad peak ad peak ad edge
be equally applicable to the extreme cases of position- = 2@ ad acd
dependent and position-independent encoding. Fig. 1. Classification of extension patterns inteak/edge/gapypes

peak if y extendscompref(y,x)
andy extendscompref(y, z),

edge if a extendscompref(z,y)
6 Source code selection andy extendscompref(y, z)

or

z extendscompref(z,y)
andy extendscompref(y,),

if x extendscompref(x,y)

In this and the following two sections we will concentrate on gap
and z extendscompref(z,y).

properties and algorithms related to optimality of the source
side (i.e., a dictionary portion of) compression. Our first
observation is that the cases where prefigesire shorter Interval types for all extension patternsafy, z are depicted
than compref(l;, ;) deliver compression typically inferior in Fig. 1.

to those cases, whetg = compref(l;,r;). Indeed, except For the first (or last) interval i we will use the same
for some rare parsing patterns, substitution of longer see¢lassification assuming a phantom interval (or 1,) with
guences with the same number of symbols as for shorteempty strig “ " as its common prefix. The end intervals
sequences improves the compression factor. A possibility ofannot be gaps.

encoding prefixes shorter thammpref(l;,r;) might turn Note that the common prefix of edges and gaps is ex-
out to be useful in some future applications, but maximiza-tended byz or z and thus is not part of the underlying set
tion of compression rate calls for discarding these cases. SJL because of its prefix property. For gaps it means that
Our second observation is that if two different encoding INtérval I, must contain at least two strings, s, extending
schemes break all source strings into identical sequences, aSUCh thaly = compref(sy, s2), hence the charactess, az
scheme with fewer intervals in its encoding vector gives bet-Mmediately following prefixy in s, and s, must be dif-
ter compression. Letf, ;] and [li1, 7:+1] be two adjacent ferent. For example, the gap common prefi™in Fig. 1

intervals of an encode vectdt, = andy be common pre- must contain in its interval a string starting withbd” and
fixes of these intervals, and= compre f(z,y). According & string starting with &be”. In the case of binary alphabets,

to the common prefix definition, each of y either extends the encode vectors in compression-suitable encoding contain
or is equal toz. Supposer = y = z. When either of the ©ONIY Peaks.

two adjacent intervals is selected in step 2 of theode(s)

procedure, the same source codis used for encoding. If Theorem 2. If E is an encode vector of a compression-
E’ is the encode vector derived frof by substituting two suitable encoding, then the following properties hold.
intervals [;, 7;1, [Li+1, 7:+1] With one interval [;, r;+1], a se-])

lection of [l;, ;] of [l;+1, 7:+1] from E yields the same code A- A set of common prefixes of all peaksAns the largest

z picked as in the selection of;[r;+1] from E’. However, set of common prefixes éf intervals holding the prefix
vector E is one interval longer thaf’, causing inferiority property.
of E-based compression. B. For every pair of neighboring peaks,, I, (no other
i)]) peaks lie in between) with common prefixeg, a se-
Now we can definecompression-suitable encodiregs quence of intermediate intervals is composed of
encoding byl = {(Ex, D1), - ., (Er, D1)}, where (a) prefix 1. possible sequence of (right) edgés, ..., I. with

vectors_Ql, ...,Qp are implicit_ly derived fromFEy, ..., Ey, common prefixes,, . . ., ., = extending- extending
by setting allg;s to correspondingompre f(/;,r;) and (b) at ... extendingr,,, extendingcompref(x,y), followed
least one of the two intervals in each adjacent interval pair in by
all E;s has its common prefix extending the common prefix . possible gag/, with its common prefiy = compre f
of the interval pair. (z,y), followed by

There are three encode vector interval types in compres- 3. possible sequence of (left) eddgs. . . , I;, with com-
sion-suitable encoding distinguishable in the context of left mon prefixes, . .., 1, compref (x,y) extended by,
and right neighboring intervals. If intervals;, I, I, are extended by. . extended by, extended byj.
adjacent and have common prefixesy, z, interval I, is C. The first (last) peak is preceded with (followed by) a pos-
called: sible sequence of left (right) edges like in B(3) (B(1)).

N

32

Proof. Let y be a common prefix of some peak intervgl andS*jL C Ui<i<k SEINAE(g;), thenE; = (SEIN AE(q1),

in £, x and z be common prefixes of the peak’s left and ..., SEIN AE(qk)) is the compression-suitable encode vec-
right adjacent intervalg,, I,. Notice that becausgextends tor andQ); is a vector of common prefixes bf’s intervals.
compref(y,), y also extendsompref(y,s) for common

prefix s of all intervals inE to the left of/, and similarly for proof. First, we verify that if an arbitrary string; is picked
intervals to the right off,. Notice further that ify extends fom eachS ETNAE(q;) andz; € SE, thenzy < ... < zx
compre f(y, s) for strings, thens does not exteng because no|ds. Suppose that the ascending order does not hold for
if it did, y = compre f(y, s) would hold, which is incorrect. ;. =~ . " Then there must be an adjacent string pair
From the above, it follows thay is not extended by the ;,7is1 SUCh thatz; > w1, If ¢; is not extended by
common prefix of any mt_erval ir. This proves a set of gi+1, then all strings iSEIN AE(gi1) follow highpad(q:),
peaks inf to hold the prefix property. The largest setiof \hich contradicts:; > 2;+1. Otherwisegi+; is not extended
interval common prefixes, which holds the prefix property, . and all strings inSEIN AE(q;) preceddowpad(gi+1),

is obviously a set of all such common prefixes that are notyhich again contradicts; > z.1. This proves that intervals

extended by any-interval common prefix. Non-peak inter- g1 AF(qg;) do not intersect each other and are ordered
vals have their prefixes extended by either left, right, or bothj, the ascending string sequence.

adjacent interval common prefixes and, therefore, do not be- gjca the union ofSEIN AE(g;) contains S, vec-

long to the above set. This completes the proof of propert = '
A. From the propertyA, it follows that common prefixes of Hor Ej (SE.IN.AE(C]Q’L' - SEINAE(qc))_deffnes the
ordered partitioning ofS*. Further, fromg; = compref

all intervals between any two neighboring pedks I, do : ;
not belong to the largest set holding the prefix property, and(SE.INAE(qi)) It foIIows.that QJ'. Is the vector of common
refixes ofE; intervals. Finally, sinc&); contains only non-

therefore, each intermediate prefix is extended by some peak, W stri is th d ¢
and further, either,, or I, or both are the extending peaks. empty s rl_ngsEj IS the encode vector.
To verify that E; is compression-suitable, let us assume

Sequencing of intermediate edges and gaps describBd,in . ! :

2, 3is a straightforward derivation from the peak/edge/gapg]g [O]‘\)[ngte' th"’;]t so?er?QJacent interval [fﬁ[N _AE (q")_’

definition. The initial and concluding cases of prope@y (;+1) has both its common prefixeg = gis1 =

sequencing are proved similarly compref(q;, q+1)- In accordance wittb EIN AFE definition
: nd given thatg; is not extended byy;+1, all strings in

Having described the sequencing patterns of compressio . o
suitable encode vector, we now want to explore the reverse 1V AE(ai+1) should followhighpad(a;) = highpad(gi+a),
YVhICh is impossible. This completes the theorem proof.

task of determining what string vector can serve as a vecto
of common prefixes of some compression-suitable encode

vector. With the results stated in Theorem 3, it becomes possi-
Let S be a set of strings on alphahdtholding the pre- ble to use a string vectap; as a shorthand for any given

fix property, z,y, 2 be a sequence aofl strings,y # “". compression-suitable encode vecfoy. Even more impor-

By convention, €,y,“ "), (“" ,y,2)), (“”,y,“ ") will rep- tantly, one can easily pick a set of the most frequent sub-

resent shorter sequencesy), (v, z), (y). Fory in sequence Strings, add other substrings to fill the gaps between them
(z,y, z) we definestring-extending interval narrowed by ad- Producing@;, and reconstruct the encode vectoy from

jacent extensio EIN AE(x,y, z) or simply SEINAE(y) @ by applying SEIN AE(q;). This methodology is at the
for an implicit adjacent string context as follows. If heart of any manual construction of an encoding scheme

R (example follows) and it is also heavily used in the algo-
1. there exists the leftmost stringin S such that! > rithms that automatically produce vectals and Q;, like
lowpad(y) and, whenz is not extended byy, | > those presented in the next section.
highpad(x), and R
2. there exists the rightmost stringin S such thatr < Example. Suppose we want to compress a set of all four-
highpad(y) and, whenz is not extended byy, r < |etter strings on alphabet = (a,b, ¢, d) starting with ‘a”,

lowpad(z), and knowing that substringsiba”, “ abd”, “ ac”, “ adbb”, and sub-
3.1<, string “adb” followed by letters " and “d” occur often in

then SEINAE(y) = [l,7], otherwise SEINAE(y) is our source string set. Let us examine the neighborhoods of

said to be nonexistent. these frequent strings going in the ascending string order

and constructing prefix and encode vectors.

First, we discover that there is a gap in front afbd”
containing the lowest stringataa”. According to Theorem
3, “aaaa” must be part of the unio;<;< x SEIN AE(q;)
o of all selected prefixes, but it is not. Therefore, our set of
20 frequent prefixes must be extended with either of the infre-
guent prefixes ¢” or “aa”. SEINAE(*","aa”,"aba”) =

When it exists,SEINAE(y) is contained in|y| — this
follows from | > lowpad(y) and r < highpad(y). Also,
SEINAE(”,y,* ") is the largest interval [,] contained
in |y| with 1,7 € S. In addition, SEIN AE(z,y,z) can
only be smaller (more narrow) tha®EINAE(* "
if one of x, z extendsy.

L . “aaaa”, " aadd"] with compref(“aaaa”,"aadd”) = “aa”,
Theorem 3|_etSJ be the IargeSt subset of al}"baSEd trail- because éa” is not narrowed by its r|ght neighbora‘b(l”,
ing substrings o6’ holding the prefix property as defined in neither is it affected ¥ “ ” since “aa” extends “ ”. This

flexible encoding and); = (q1, - - ., gx) be a vector of non- makes %a” the right choice for constructing a good prefix
empty strings on the same alphabet. If for eacim @; there set. Note that by filling the leftmost gap we have, in fact,
existsSEIN AE(q;) such thaty; = compref(SEIN AE(q;)) created a peak.

33

Table 2. * marks the most frequent (initial) prefixes. Other (infrequent)

prefixes merely fil the gaps removing this valuable resource from usage by other system

components.
Q1 Ey i
peak a4 - [aaaa, aadd] 1 7 Toward optimal compression
peak* aba [abaa, abad] 2
b| - bba, abcd] 3 . . N .
gi‘gk * Zb‘q, {:bd; :bgd]] 4 Q_rder-preservmg dlct_lor)ary enco_dmg is _e.ssgntlally a repet-
peak * a ¢ [acaa, acdd] 5 |t!ve process of |den_t|fy|ng to which partitioning mteryal a
edge afl - [adaa, adba] 6 given trailing substring belongs. It amounts to a series of
peak* adbl [adbb, adbb] 7 character comparisons or character vector lookups that ad-
edge* adb [adbc, adbd] 8 vance very quickly along the source string. If for a given
edge ad [adca, addd] 9

trailing substring, there are two or more code prefixes in
vector @) that extend each other and also match the trailing
substring, the choice of a code prefix is determined unam-
Second, we discover a gap betweerbd” and “abd”. biguously because we do not match prefixes with substring,
Their common prefix &b” immediately gives us a correct fill but rather find the encode interval containing this substring
becauseSEIN AE(*aba”,"ab”,"abd”) = [* abba”," abed"] and then pick the corresponding common prefix. The order-
with compref(“abba”,*abcd”) = *ab”. This time we have indifferent dictionary methods, however, always face this
constructed a real gap narrowed from both sides by theimbiguity problem and either ignore it by “greedy” selec-
neighboring prefixes. tion of the longest matching prefix or optimize it by consid-
The next pair of frequent prefixesibd” and “ac” has ering the alternatives and choosing the one vyielding better
no gap between the adjacent ends of their extended intecompression for several encoding steps ahead. Our method
vals [“abd”| and |“ac”| and thus does not need a filling needs no such parsing optimization and thus, in this respect,
prefix. On the contrary, the next paia®” and “adbb” pre- remains fast and optimal at the same time.
fix has a gap with possible fillsa™ and “ad”. Similar to During parsing, once a partition is found, its symbol can
the first case, the longer prefixud”, becomes our choice be used for encoding as a target character, having the sym-
becauseSEINAE(“ac”,“ad”, " adbb”) = [" adaa”, " adba”) bol chain serve as a translated target string, hence avoid-
andcompref(“adaa”,“adba”) = “ ad’. The last pair, ‘adbb” ing the symbol-to-target translation phase. Such dictionary-
and “adb” is different from all the previous cases becauseonly encoding is very fast, but not necessarily the most
the first string extends the second. Absence of a gap betweetbompact method. We will discuss the tradeoffs between the
them is due to this extension, not to the fact that they are adeictionary-only and dictionary-and-target compression meth-
jacent like the pair ¢bd” and “ac”. Finally, the gap after the ods at the end of this section.
last frequent prefix ddb” has two potential fillers, 4" and To measure the dictionary-only compression rate, we
“ad”. Our choice, as usual, is the longest prefixd®, be- will use a frequency table containing pairs f) of all or
causeSEINAE(*adb”,“ad”," ") = [* adca”,"addd”] and randomly-selected source substrings and their frequencies of
compref(*adca”,"addd”) = “ad’. Note that ‘ad” is an appearance in an existing data set or the anticipated frequen-
edge. cies in a non-existing data set. The set of substrings in the
All frequent and newly added, infrequent prefixes arefrequency table can be assumed to hold the prefix property
summarized in Table 2. Note that in this example, only one(see the technology of reassigning the shorter string frequen-
infrequent edgedd” is produced to fill the gap between the cies in the next section). IV is the source alphabet sizE,
two frequent peaksdc’ and “adbb”. This is not possible is the length of the encode vectofy([r1], . . ., [lx,7x]), fi
with zilch encoding (Zandi et al. 1993), which requires two is the sum of frequencies of all table substrings belonging
prefixes ‘ad” and “adb” to fill the gap between these fre- to [l;,7;], and ¢; = comrpef(l;,r;), then the space con-
guent peaks. In general, zilch encoding is a particular case afumption of the to-be-encoded prefixgsaggregated for all
peak/edge/gap prefix vector where none of the gaps or edgesibstrings in the frequency table is Jay - Zf(len(qqz) £
are extended with more than one character by a neighborinpits, the corresponding space consumption of the encoded

peak or edge. symbols is log K - >_1 f; bits, and the compression factor
A much more vivid difference between our compressionis

and zilch compression can be observed on indexes contain- log, K - X 7,

ing many duplicate keys. If a 30-character country name 2 X 17 .

is part of a large composite index, then each of about 200 log, N - > 1 (len(a:) - f:)

country names can be encoded with a single symbol. Filling)) _

the gaps with our method would require another 201 infre- SiNceé for a given source alphabet and a given fre-
quent gap prefixes yielding a total of 401 symbols, whereagiuency table logN and Y_1 f; are constants, the task
zilch encoding would consume about 27 symbols on eact?f m|n|m|zmg the compression rate is the task of maxi-
side of each country name, yielding 11000 symbols. If amizing 21 (len(g:) - fi)/log, K. It is also clear that only
symbol space is limited to 401 symbols, the zilch methodcompression-suitable encode vectors should be considered.
will be able to encode onI)éL7 of all names and thus lose The following “greedy” algorithm builds an encode vector
up to 27 times in compression rate. With no limit, however, from the frequency table and is a close analogue of the tra-
zilch will consume on the order of 1 MB of main memory, ditional dictionary builder described by Bell et al. (1990,

34

p.214). As in any dictionary method, a wide usage of & trie
structure for a string set traverse is assumed.

Algorithm 1(greedy)
1. Sort strings in the frequency table. Eliminate strings

extended by other strings and distribute the ehmmateiloning’ calculateS EIN AE for all neighboring prefixes in-

string frequencies among the surviving strings (see blen
ing methods below). Represent the frequency table as
sorted trie.

. Define the initial encode vector as the partitioning inter-
vals surrounding each source alphabet character.

. Find the best local subdivision of each partitioning in-
terval using Routine A.

. Among all partitioning intervals, find the one in which
the best subdivision delivers the best compression.

. At some point, when a trend to a degrading compressio

rate is discovered or the encode vector length exceed

some limit, look at the partitioning history, pick the most
satisfactory encode vector, and terminate the algorithm
. Materialize the globally best interval subdivision and find
the fresh best local subdivitions of the two or three new-
built intervals, using Routine A.
7. Go to step 4.

Routine A(interval subdivision)

For a given compression-suitable encode vector and for
given interval in this vector, consider each subdivision of
this interval into either:

frequent prefix %ip”, we can subdivide $i” into two peaks,
“si0” and “sip”, producing a continuous sequence of peaks:
13 Sz‘nl!, 13 sio”, 13 s’ip"' and HSZ'T'”_

In all these cases, we insert a new prefix into the current
partitioning and check if extra prefixes have appeared around

he new one; if they have appeared, we add them to the parti-

golved, and, finally, calculateompref(SEINAE(...)) to
extend some unnecessarily short prefixes. For other cases,
which are not presented here, the procedure remains the
same.

With each new subdivision, the new intervals need a
fresh subdivision recalculation because new common pre-
fixes ¢; have new lengths and those are directly involved
in compression rate calculation. However, intervals become

rogressively smaller and, as in a quick sort, require

(K*log(K)) average frequency table tests afik?)
worse case tests. Unlike the traditional dictionary builders,
the greedy algorithm considers long strings simultaneously
with short strings, not all digrams followed by trigrams, etc.
This makes a “greedy” advancement closer to the optimal
gradient. It also avoids the traditional removal of the redun-
dant short strings from the dictionary.

The near-gradient advancement manifests a desire to
keep a partition weighien(q;) - f; balanced (i.e., about
equal) between the partitioning intervals. A smaller-than-
?hean partition weight would potentially benefit from the
interval merging and a higher-than-mean weight is a good
target for splitting. In the greedy algorithm, the under-

1. two intervals which, combined with the rest of the vector, weight/overweight avoidance is enforced by a local split to-
become a new compression-suitable partitioning or, ward the global gradient. The same balancing effect can also

2. three intervals which again yield a compression-suitabldoe achieved by a globally-equalized partitioning selection.
partitioning with the middle interval being a peak.

Among these subdivisions pick the one with the best”l90rithm 2 (equalizing)

compression (use frequency table for calculation) and store; gqt strings in the frequency table. Eliminate strings

useful knowledge about this subdivision along with the given
interval. (The above task can be performed with a single trie
traverse.)

The mechanics of subdivision are fairly simple.

1. Suppose peakhe” is already part of the current par-
titioning and ‘their” is the most frequent extension of it.
Then we replace a single peaih¢” with the three prefixes:
edge ‘the”, peak “their”, and edge the”. The correspond-
ing encode intervals will beSEINAE(" 7 ,“the”, “their”),
SEINAE(“the”,“their”,“the”), and SEIN AE(“their”,
“the”, “") or, if expressed directly, [theaaaa”, “ theigqzz"],
[“theiraa”, “theirzz"] and [“theisaa”, “thezzzz"]. (Here
we assume 7-character strings from the alphabe&t (. .,
“2").)

2. Suppose peaktheir” is part of the current partition-
ing, gap ‘th” immediately follows ‘their”, and extensions
of “the” to the right of “their” have high frequency. Then,
subdivision of gap th” caused by the introduction ofthe”
will include two prefixes: edgethe” and gap ‘th”. Similar
subdivision will take place if their” or “th” are the right
edges.

3. Having peak $in” followed by gap ‘“si” followed
by peak ‘sir” as part of the current partitioning and a new

1 Trie is a multiway tree with each path corresponding to a different
string

extended by other strings and distribute the eliminated

string frequencies among the surviving strings (see blend-

ing methods below). Represent the frequency table as a

sorted trie.

Pick some limit weight valud/ — a best guess for further

steps to deliver a reasonably long encode vector.

Find the longest compression-suitable encode vector con-

taining only peaks, gaps, and possibly one edge at each

end, each peak havinlgn(g;) - f; > W. (This can be
done with a single trie traverse.) For each peak, check the
frequency table strings along the gaps or end edges ad-
jacent to this peak going away from the peak, and find
the first split that creates a neighboring edge on each
peak side (if possible), havingn(q;) - f; > W. Con-
tinue checking and building such neighboring edges until
exhaustion. At this point a compression-suitable encode
vector is built with all peaks and edges, possibly exclud-
ing end edges, satisfying thien(q;) - f; > W condition.

4. Set new valuél” according to some strategy of exploring
different encode vector lengths and compression factors
with the goal of finding the most satisfactory encoding. If
there is no or too little room for encoding improvement,
pick the most satisfactory encode vector and terminate
the algorithm.

5. Go to step 3.

2.

3.

35

An illustration of the workings of this algorithm can be to assign huge buffers to hold the maximum length encoded
found in the example summarized in Table 2. strings. Index retrieval software components usually have

Equalizing algorithm follows the peak/edge/gap structuremany such buffers, making it impractical to allow the worst
of Theorem 2 and considers short prefixes after the longecase code expansion to be more than two-three times. Note
ones — an ideal sequence to proceed. It is simpler to implethat the traditional order-indifferent encodings either ignore
ment than the greedy algorithm because no priority queue fothe bad cases, because they are extremely rare, or desig-
the globally best interval needs to be maintained. The overnate one leading bit to indicate usage of encoded or original
weight interval avoidance is embedded in the long-to-shortstring, whichever is smaller. With the order-preserving en-
prefix processing sequence and the underweight avoidanamding, we can neither ignore nor select the shortest version
is rooted in enforcing the same limit’ across all purposely because we can correctly compare only source versions or
created peaks and edges. encoded versions, but not a mixture of both. So, the case of

Both encode vector building algorithms tend to balancelow frequency gaps allows only marginal improvement by
interval weightslen(g;) - f;. Recall for a moment that the the target arithmetic encoding.
space consumption of the to-be-encoded prgfaggregated Looking at the underweight case from another perspec-
for all frequency table substrings is lody - S"1 (len(q;) - tive, let us assume that our encode vector contains only peak
fi) bits. For substrings belonging to an individual interval prefixes occurring with the same frequency and low fre-
[1;,], this consumption amounts to Iod - len(g;) - fi bits quency gaps situated between peaks. If we ignore all gaps as
or len(g;) - f; source characters. The probability that the marginal contributors to the overall encoded length, then our

character to be consumed b¥a(fr1], - . ., [Ix, rx]) encoding peak-only encoding should be perfect. However, the num-
belongs to the prefiy; of interval [I;, ;] is ber of symbols used in the peak-gap encoding is twice the
I number of symbols used in the peak-only encoding. This
;= en(gi) - fi . adds exactly one extra bit to the symbol binary representa-

¥ (en(q) - 1) tion. For realistic encode table sizes ranging frothta 215,

) this extra bit comprises 7-10% overhead attributed to the
Since the average space ne}t{aded for one source character gq, frequency separation gaps that are needed almost ex-
coding is the entropy of- > " (p; - 10g,(p;)) bits and since clusively for order preservation. Since handling the discrep-

the smallest possible entropy is reached with= ... = px, ancies between substantial frequencies of peaks and gaps is
the most compact dictionary-only encoding hyintervals the problem common to all dictionary compressions, es-
is achieved with the perfect weight balankei(q1) - f1 = timate the overhead factor of order-preserving compression

... = len(gk) - fx. This proves that by balancing interval as roughly 10%.
weights the greedy and equah;mg algorlthm§ steer the en- Both overweight cases (1) and (2) are poorly handled
code vector search toward optimal compression. In s;everady

L . ; i . Hu-Tucker encoding for the same reason. Very high fre-
g%lsss’ however, a significant variance of weights is unaVo'd(quency peaks in (1) would especially benefit from arithmetic

supplement. There are real life indexes where one key value
1. Presence of source strings with a very high frequencyamounts to a half of all index key occurrences, e.g., NULL
creates peaks with non-restricted overweights. value of “male” in sex index. With the target arithmetic en-
2. Gap overweight, compared with the balance gbalcan coding, half of the keys can be reduced to three-five bits.
be up to a factor ofV (IV is a source alphabet size). On the other hand, in such cases, a single symbol of our
3. Gap underweight can be unlimited, e.g., when a few ordictionary-only encoding can encode a highly repetitive key,
no substrings are present between two frequent “peakWith no “stop” symbol as in arithmetic encoding, producing

strings. three-to-dozen bits of code. This brings us again to a rel-
4. There is also a noise-level variance of interval weightsatively low impact of the target encoding on what can be
with a two-fold order of deviation. achieved with the dictionary-only compression. The noise-

N . . . level frequency variance in (4) offers a saving of approxi-
Significant gap underwel_ght in case (3) requires a lo.ngmately one bit per symbol if a target encoding is used.
target code to balance the infrequency of such gap which,

most of the time, is surrounded by frequent peaks or edges, SUmmarizing the effect of a supplementary target encod-
It happens that the Hu-Tucker target encoding can hardiy"d on overall order-preserving dictionary-based compres-
assign one long code (for the gap) between two neighboring!on: We see it as relatively low. We are certainly talking
short non-gap codésArithmetic codes, on the other hand, aPout the improvement expressed as a percentage, often at
can easily produce interchanging long/short code chains. FJf'€ order of 10%, whereas our experimental results, pre-
very infrequent gaps (and there are usually many of them),

the best compression Is af:h'eved bY aSS|gmng very Iong tardamaging compression. A typical example of such combination is:
get codes to them. The pitfall here is that in such cases thegig

encoded string may become very long and we would have 0110

0111
2 Hu-Tucker codes are order-preserving binary Huffman codes. They 10 - short code for frequent peak
hold prefix property. Due to the prefix property, a long sequence for 11000 - long code for infrequent gap
infrequent gap can have a short sequence for only one neighboring 11001 - this code for frequent peak should
frequent peak. Worse than that, the other side of the long Huffman be short, but it is unavoidably long

code must decrease gradually to another short code, making it im- 1101
possible to continuously interchange long and short codes, and thus 111

36

sented in Sect. 9, show five-fold compression achieved by Assume that the encode vector is already built and string
applying the dictionary-only encodings to realistic data sets.s and its extensiors’ belong to the original frequency ta-
There still remains one more effectiveness parameter tdle. During execution of encode procedure, if the selected
assess: speed of the dictionary-only encoding. Dictionary ensource codey; is a prefix ofs, theng; is a prefix of alls
coding speed depends directly on the average source codtensions, and, for the sake of this encoding instance, the

size Zf(lfm(qz‘) 1)/ Zf f;. The longer the codes, the pattern of rgdistributing frqugncies fromQ its extensio.ns
faster it goes. But, ignoring the constajt™ f;, the sum Should notinfluence the decision gnselection done during

K . - . o a dictionary build. On the contrary, if in the same scenafio
21 (len(g:)- ;) is exactly what we maximize while building - gytendss and also stretches past the source string end, then
individual encode vectors. Therefore, optimization of COM- 4 piquity of pickingg; in step 2 of the position-independent
pression rate and speed coincide when producing each eRycqde procedure leaves room for a redistribution pattern to
code vector so that the speed optimization criterion needs tgyq ence; selection and build a better dictionary encoder.
be factored only into the process of the best encode vectofq |ast (ambiguous); encoded for a given source string is

selection. , to be truncated at the final step 7 of decoding and, therefore,
Comparing the speeds of order-preserving and orderye want to use a few;s as possible for the tail encoding

indifferent dictionary encode procedures is largely an imple-jn order to reduce the encode vector size. We achieve that
mentation-related issue. Here we only mention two conceptby redistributing strings frequency into its most frequent

ual-level differences: (1) order preservation requires up tOgxtension, causing maximum imbalance of the redistributed
twice as many symbols and thus needs up to one extra COMrequency table.

parison to detect one prefix, and (2) order-preserving encod-

ing needs no parsing optimization used in order-indifferenta|gorithm 3 (frequency table blending)

methods, thus avoiding a many-fold speed overhead.) . ,

Finally, one should note that neither greedy nor equaliz-1- In the setS of all frequency table strings, find string

ing algorithms deliver optimal encodings. Our experiments ~ Such that the seits| 1.5 of all extensions of in S'is not

with the equalizing algorithm demonstrated a five-fold com- ~ €MPpty and holds the prefix property. (Stringletection

pression rate on large realistic data sets and, at the same C&n be organized into a single trie traverse.j i not

time, exhibited a two-fold noise factor when varying the fo_und,/;ermlnate the algorithm. _

weight . Picking the best encodings from these variations < F/'”dS in |s] NS having the highest frequency, increase

produces a very significant shift toward the optimum, but $ frequency bys frequency, and delete stringfrom the

room for better algorithms still remains. Compared to the _ frequency table.

published results on similar datasets produced by known3: GO to step 1.

traditional methods, our compression rate falls close enough |f source strings contain variable-length text padded

to the average traditional algorithms rates to consider thevith blanks to the common length, the above blending

largest portion of the optimal order-preserving compressionwould accumulate frequencies of all-blank substrings into

already resolved. the longest one, giving it a huge weight. This makes the
greedy and equalizing algorithms deliver the following en-
code vector fragment (here stands for blank):

8 Blendin
g q; symbol
Blending is a redistribution of the assigned frequencies in .
X . I o . . edge 1—1
a string or string partition set aiming to either obliterate eak .
or substantiate some part of the set. In particular, gaps Oredge z+ 1

end edges containing no frequency table strings must be
substantiated with some non-zero frequencies if a chance dfi addition, our frequency table blending leads to the discov-
some string falling into the gap remains. This is a simpleery of a combination of typical word endings with trailing
(first order) version of traditional blending that redistributes blanks. For instance, substringsn§” and “ed” are most
a small portion of the original frequencies into some under-likely to be among the peaks and will be encoded with a
weighted partitions. Note that in read-only databases, suckingle symbol. Moreover, sequences of any frequent trailing
as archived data collections or data stored on CDs, gapsharacters like “*” or “” are detected and encoded with a
with zero frequencies can be fully eliminated by excluding single symbol, one per each individual character.
them from the set of trailing source substrings. By empty Comparing it with zilch encoding, symbal for peak
gap elimination, we can reduce the encode vector length uf...” is an analogue of the terminating symbol of Zandi et
to two times. al. (1993). But at this point the similarity ends. In addition
In the original frequency table, if several strings extendto a terminating symbol, zilch still has to assign explicit
string s, different encode partitions may include only a part symbols for one, two, etc., blanks on each side of the longest
of the extending strings, thus making application of the stringtrailing blank sequence. Zilch also produces similar chains
s frequency ambiguous. A simple way to resolve this ambi-of unnecessary symbols on each side of trailing “*",*
guity — the way that also simplifies the dictionary building “ing " and “ed . This causes a significant compression
algorithm — is to recursively redistribute a string frequencyrate suboptimality.
among string extensions and delete the string until no ex- Our method provides the same advantage of a single-
tensions are left in the string set of the frequency table. symbol encoding of frequent trailing patterns, compared to

37

other compression algorithms described by Blasgen et alinterval type: peak, edge, or gap. The encoding scheme size
(1993) and Antoshenkov et al. (1994). The secret here iglepends on implementation and may vary within a 10—-20%
that our encoding considers only strings of lendthpre- range.
determined for a given source dataset. This allows a trunca- At the high end, our method compresses 5MB into un-
tion of oversized trailing substrings, yielding a sufficiency der 1 MB of order-preserving code, yielding 5.422 compres-
of a single encoding symbol. All other algorithms deal with sion rate and using extra 183 KB main memory B to hold
variable-length strings and miss this opportunity because, inhe compression scheme. CPU time needed for compres-
their case, the stop rule must incorporate the source stringion/decompression is marginal compared to CPU cost of
length into the code itself. In our case, the string length isa single key insertion or retrieval. Compared to removing
stored elsewhere (in a coding scheme), so that we simplynly trailing blanks by the run-length order-preserving com-
need less information to encode. pression (Antoshenkov et al. 1994), which is currently part
Note that dealing with fixed-length strings does not re-of Oracle Rdb, and which yields 1.903 compression rate,
duce the generality of our method. We can always pick we deliver extra 2.85 compression. This compression, ap-
to be bigger than any realistic string length and use paddinglied to the same data stored along with data records, will
characters for any desirable comparison rules. We pad witlyield the same five-fold compression or almost three-fold
blanks for SQL comparison and pad with an artificial extracompression on top of the commonly used order-indifferent
character lower than the lowest alphabet character when amn-length compression of repeated characters.
extension of some string should compare high with the orig- If one wants to minimize the main memory area occu-
inal string. HugeL and special padding are easily handled pied by the compression scheme, one can pick the low-end

at implementation. scheme which takes only about 28 KB of main memory and
Frequency table blending is the only mechanism knownstill delivers a significant 3.388 compression factor, bringing
today for automatic trailing symbol selection. 5MB down to 1.5MB.

For our next experiment we chose a collection of elec-
tronic mail similar to that used for text compression bench-
9 Experimental results marks. We extracted 666 666 word occurrences, converted
them to uppercase, and padded them with blanks to the max-
To compare the efficiency of our compression with otherimum size of 15 letters. The compression characteristics for
known methods and to see what kind of encode tables arthis dataset are presented in Table 4.
actually built, we implemented a prototype software and Again, the equalizing algorithm manages to compress
ran several experiments on real-life data and on Wisconsimwvord occurrences put into a 15-character table attribute up
benchmark — widely used for comparing database perforto six times and to perform 2.668-fold extra compression on
mances. top of the order-preserving compression that removes trailing
In these experiments we used the dictionary-only ver-blanks. The traditional, order-indifferent compression meth-
sion of our order-preserving compression, i.e., we skippedds, as summarized for five different plain source texts by
the target encodings [such as Hu-Tucker, arithmetic, or theBell et al. (1990, Appendix B), have low compression rates
work of Antoshenkov et al. (1994)] and used binary symbolof 1.59-1.77 delivered by Huffman and some flavors of Ziv-
representations instead. Encode vectors and correspondirigmpel coding, and high compression rates of 3.02—3.56 de-
common prefixes were obtained using equalizing algorithmslivered by “prediction by partial match”, dynamic Markov,
We ran our experiments on a VAX 6500 (Digital Equipment and “WORD” compressions.
Corporation) machine during working hours with a normal Since order-indifferent compressions of texts do not
development workload (trying to be as close to a productioncount any padding blanks, we should compare our pad-
environment as possible). less 2.668 rate with the overall range of 1.59-3.56 produced
The first real life dataset we tried was a collection of by known order-indifferent methods. Our rate falls slightly
occurrences of global names present in all source moduleabove the traditional median of 2.575, and it would be fair
of one of the Oracle Rdb (Oracle Corporation) componentsto say that we achieved about the average rate of order-
There were 159554 occurrences of the names, which wéndifferent compressions. The fairness of this comparison
padded with blanks to the maximum length of 31 characterss only slightly compromised by two unavoidable factors:
in order to enforce SQL comparison rules. A name occur-order-indifferent compressions take advantage of frequent
rence dataset and an index built on it should be a backbonphrases stretching across word boundaries (this feature is de-
of any software development tool. In Table 3, a summary ofliberately excluded from the order-preserving setting) and,
compression characteristics for the global name occurrencen the other end, order-preserving compression algorithms
dataset is presented. do several passes through the source or its random sub-
We picked three encode vectors out of about one hunset (whereas order-indifferent compression normally is re-
dred vectors produced to exemplify compression characstricted to one pass).
teristics depending on different encode vector sizes. The As we have already mentioned in the previous sec-
size of the prefix vector expresses a number of frequention, there remains room for compression rate improvement,
text patterns and infrequent gap patterns (in B) to be rewhich, in the future, may bring the order-preserving com-
placed by symbols. So, the total amount of B needed tgression rate substantially closer to the best rates avail-
hold the encoding scheme is approximat®lymberOfin- able today. For database applications, however, we should
tervals*6+PrefixVectorSizeassuming 4-B pointers to prefix be looking at absolute rate six and count its relative im-
string starts, 1B to express a prefix length, and to specifyprovements compared to other compression methods used

38

Table 3. Compression of global name occurrences. Héfeight Wstands for a threshold
above which a peak or edge with a produRtefixLength*PrefixFrequencghould be in-
cluded in the vector of encode intervals. Also, Compression ratés a ratio SourceData-
Size/CompressedDataSiZtrailing blanks only)shows a rate of compression which encodes
only trailing blanks,Number of intervalds the encode vectoE length (i.e.,K), and Size of
prefix vectoris a total number of B occupied by prefixes in vect@r

Compression rate Compression rate NumbeFof Size of prefix = Weight?
(trailing blanks only) intervals vectap

5.422 1.903 9204 128125 96

4.675 1.903 5242 71178 160

3.388 1.903 1464 18925 512

Table 4. Compression of email word occurrencéSompression rateis the SourceData-
Size/CompressedDataSif&ailing blanks only is the compression which encodes only trailing
blanks,Number of intervalss the encode vectal length,Size of prefix vectads a total number
of B occupied by prefixes in vect@, W is the threshold foPrefixLength*PrefixFrequendyp

be included in the encode vectér

Compression rate ~ Compression rate NumbeFof Size of prefix ~ Weight?”
(trailing blanks only) intervals vectap

6.009 2.252 22752 197157 114

5.218 2.252 5147 40179 48

4.318 2.252 735 5142 384

in databases. Unfortunately, there are no database benchiso wins by excluding unused letter combinations from the
marks that incorporate the effect of data compression intasource string space. To utilize these potentials, we defined
its metrics. On the contrary, a typical database benchmarkncode/decode procedures for position-dependent, position-
attempts to avoid any compression impact. independent, and mixed cases, and also considered arbitrary
For example, Wisconsin benchmark defines the con+estrictions by dealing with any set &flong strings.
tent of its three text fields as picked from a set of strings Aiming at the optimal compression rate, we uncovered
“BXXXXXXKKKXXXXXKKKKXXXXXKK @ XXXXXXXKXXXXXXXXXOOBXXxxthe underlying structure of compression-suitable encoding
where character variables $, @, and # take their values fromas a set of peaks surrounded by edges and separated by
the alphabetA4, B, ..., V) and cover all possible permu- gaps [this structure yields better compression than zilch sym-
tations of those. When we ran our equalizing compressobols (Zandi et al. 1993)]. Then we explored probabilistic
against the set of these 10648 different strings, it took it(frequency-based) optimality and found that frequency bal-
2 min to discover the underlying pattern, create a 74-intervahncing in the encoder leads toward the optimal dictionary
encode vector, and compress the string set 11 886 times. Regelection and that the original frequency table disbalancing
call from Gray (1993) that in the benchmark relations therehelps to determine optimal trailing patterns. These findings
are three such text fields, comprising 75% of a relation spaceare incorporated in the dictionary building and frequency
With our compression automatically applied at creation ofblending algorithms. It turns out that encoding speed opti-
relations and indexes, we should look at 3—-4 times smallemization is closely related to optimization of the compres-
tables and some indexes shrunk many times compared tsion rate, hence the above algorithms resolve both tasks si-
the benchmark authors’ intention. In our view, future bench-multaneously.
marks should support compression measurements as an es- Order-preserving compression based on dictionary/arith-
sential database feature, instead of attempting to generat@etic pair matches similar order-indifferent compression, de-
uncompressable text. livering the identical compression rate with a limited number
of extra partitions. This suggests that in database systems,
many or all table fields can be compressed without losing
10 Conclusion the order, and then used without decompression for compar-
ison in select, sort, merge join, and index B-trees, improving
We demonstrated here that the full power of dictionary en-storage utilization and operational speed, provided that, for
coding can be applied to order-preserving string compresioin, fields from common domains share encode vectors.
sion. Common to all dictionary encodings, our encoding is
very fast, but, being cast for order preservation, our method
differs drastically from the traditional ones: no “learn while References
encode one long string” as in Lempel-Ziv, but rather search
for commonality in a Iarge number of short Strlng_s. For ex- 1. Antoshenkov G, Lomet D, Murray J (1994) Order-preserving key com-
ample, when compressing an ordered set of car license plate pression. DEC Cambridge Research Laboratory, Tech Rep, July

strings, one wins a great dea_l by qeteCting_ alll-digit and all- 2. Baer J, Lin Y (1989) Improving quicksort performance with codeword
letter position areas and working with them individually; one data structure. IEEE Trans Software Eng 15: 622—-631

. Bayer R, Unterauer K (1977) Prefix B-trees. ACM Trans Database Syst 9.
2:11-26

. Bell TC, Cleary JC, Witten IH (1990) Text Compression (Adv. Ref. 10.
series). Prentice-Hall, Englewood Cliffs, NJ

. Blasgen MW, Casey RG, Eswaran KP (1977) An encoding method forl1.
multifield sorting and indexing. Commun ACM 20:874-878

. Elias P (1975) Universal codeword sets and representations of the in-
tegers. IEEE Trans Inf Theory, 21: 194-203 12.
. Graefe G (1993) Query evaluation techniques for large databases. ACM
Comput Surv 25: 73-170

. Gray J (ed) (1993) The benchmark handbook for database and transt3.
action processing systems, 2nd edn. Morgan Kaufmann, San Mateo,
Calif

39

Hu TC, Tucker AC (1971) Optimal Computer Search Trees and
Variable-Length Alphabetical Codes. SIAM J Appl Math 21:514-532
Huffman DA (1952) A method for the construction of minimum-
redundancy codes. Proc IERE 40:1098-1101

Moffat A, Zobel J (1992) Coding for compression in full-text retrieval
systems. Proceedings of Data Compression Conference, Snowbird, UT,
pp 72-81

Zandi A, lyer B, Langdon G (1993) Sort order preserving data compres-
sion for extended alphabets. Proceedings of Data Compression Con-
ference, Snowbird, UT

Ziv J, Lempel A (1978) Compression of individual sequences via
variable-rate coding. IEEE Trans Inf Theory 24:530-536

