
The VLDB Journal (1997) 6: 26–39 The VLDB Journal
c© Springer-Verlag 1997

Dictionary-based order-preserving string compression?

Gennady Antoshenkov

Oracle Corporation, New England Development Center, 110 Spitbrook Road, Nashua, NH 03062, USA; e-mail: gantoshe@us.oracle.com

Edited by M.T. Ozsu. Received 1 February 1995 / Accepted 1 November 1995

Abstract. As no database exists without indexes, no index
implementation exists without order-preserving key com-
pression, in particular, without prefix and tail compression.
However, despite the great potentials of making indexes
smaller and faster, application of general compression meth-
ods to ordered data sets has advanced very little. This pa-
per demonstrates that the fast dictionary-based methods can
be applied to order-preserving compression almost with the
same freedom as in the general case. The proposed new
technology has the same speed and a compression rate only
marginally lower than the traditional order-indifferent dic-
tionary encoding. Procedures for encoding and generating
the encode tables are described covering such order-related
features as ordered data set restrictions, sensitivity and in-
sensitivity to a character position, and one-symbol encoding
of each frequent trailing character sequence. The experimen-
tal results presented demonstrate five-folded compression on
real-life data sets and twelve-folded compression on Wiscon-
sin benchmark text fields.

Key words: Indexing – Order-preserving key compression

1 Introduction

Order-preserving string compression targets speed improve-
ments and space conservation of the most intensely used
databased components: indexes and sort. Like any com-
pression, order-preserving compression saves space and data
moves, but in addition, it enables the correct ordinal compar-
ison of the compressed data items, increases the comparison
speed, and thus extends the compression application to in-
dexing, sorting, merging, aggregation, etc. (See the outline
of compression application to query processing in Graefe
1993, Sect. 12.2.)

? Note by Jim Gray, Editor in Chief: Gennady Antoshenkov passed away
after this article had been accepted for publication. Tamer Ozsu revised the
final article to satisfy the referee’s suggestions. I am sure Gennady would
want us to thank Tamer for his extraordinary contribution to this paper

When applied to sorted indexes, order-preserving com-
pression increases B-tree nodes’ fanouts at all levels, yield-
ing flatter B-trees, and hence gives better performance for
a single key retrieval. Simultaneously, it reduces the overall
index size, improving performance of range or full index
scan. Even the simple forms of string prefix compression
proved to be beneficial in reducing index sizes (Bayer and
Unterauer 1977) and in speeding up quick sort algorithms
(Bayer and Lin 1989). The other order-specific task of com-
pressing composite keys was stated and resolved (Blasgen
et al. 1977) by inserting some control characters into the
composite string at regular intervals. The above methods,
however, do not capture frequent patterns within strings and
hardly exhaust even half of the compression potentials of-
fered by more advanced techniques.

Among general string compression methods, Huffman
encoding (Huffman 1952) delivers the optimal translation of
a finite set of symbols into a target set of strings holding the
prefix property (no string in the set is a prefix of any other
string in this set). Huffman encoding is not order-preserving
except for the case of binary target strings covered by the
Hu-Tucker algorithm (Hu and Tucker 1971). A truly opti-
mal translation of a sequence of symbols into a binary string
representing some real interval contained in [0,1) is known
as arithmetic encoding (see description and the original ref-
erences of Bell et al. (1990), p. 108. Arithmetic encoding
approaches entropy and is inherently order-preserving un-
less the order is sacrificed for some speed improvement.

Both Hu-Tucker and arithmetic encoding translate one
symbol at a time and, because of this, are slow, especially
arithmetic encoding. Moffat and Zobel (1992) have reported
arithmetic compression being a factor of 40 slower than their
dictionary approach. Faster compression is achieved by de-
tecting frequent substrings of a source string and translating
such groups of characters into a corresponding symbol – this
is known as dictionary compression. Dictionary methods, in-
cluding the most popular Lempel-Ziv compression (Ziv and
Lempel 1978) are usually not capable of preserving the or-
der. One exception is the case when a set of frequent source
substrings holds the prefix property and also is a partition-
ing of a set of all source substrings. Another exception is an
extension of the first one with common (zilch) symbols in

27

order to combine a number of less frequent substrings into a
group and hence balance the frequencies (Zandi et al. 1993).

To see the extra difficulty involved in order-preserving
compression, consider encoding the wordstable, their, and
train, assuming that the patternsta, the, and tr frequently
occur in some text source. Suppose we assign the symbols1
for ta, 2 for t, 3 for the, and5 for tr. Then the translations ta-
ble→ 1ble, text→2ext, their→3ir, tiger→2iger, train→5ain
compress multi-letter patterns into single symbols, but, un-
fortunately, put2iger in front of3ir and thus scramble the or-
der. Assigning4 for t does not help because it reverses4iger
and 3ir. Similarly, we compromise the order if we assign
any single distinct symbolX for th: that→Xat, their→3ir,
this→Xis. Observe that the cause of order scrambling is the
assignment of different symbols to pattern strings extending
each other: in our case patterns,t, th, and the cause order
ambiguity between words starting withta, . . ., tg andti, . . .,
tz as well as betweentha, . . ., thd and thf, . . ., thz.

A simple way to avoid such ambiguity is to include the
above extra patterns into a set of patterns to be encoded, i.e.,
to assign a sequence of symbols to the pattern sequenceta,
. . ., tg, tha, . . ., thd, the, thf, . . ., thz, ti, . . ., tz. This string
set holds the prefix property, provides order-preserving en-
coding, but does little for compression because 48 patterns
other thanta, the, andtr occur infrequently and occupy 94%
of symbol space. Zandi et al. (1993) improved this method
by assigning special (zilch) symbols to contiguous groups
of infrequent patterns:tb, . . ., tg→Z1, tha, . . ., thd→Z2, thf,
. . . , thz→Z3, ti, . . ., tq→Z4, ts, . . . , tz→Z5 and encoding
t with Z1 if t is followed by b, . . ., g, and th with Z2 if
th is followed bya, . . ., d, etc. However, they still miss an
opportunity to assign a single symbolG1 for a continuous
gap betweenta and thd, etc., and reduce space for symbols
needed only to support order preservation.

In this paper, we state and resolve a general prob-
lem of order-preserving dictionary compression, covering
zilch encoding, string prefix compression, and composite
key compression as particular cases and improving each
of them. This way, a full power of the order-indifferent
dictionary compression becomes applicable to the order-
preserving case, including a high speed. We start with the
premise that each source substring to be encoded with an
individual symbol must be a prefix of an interval of some
ordered partitioning of the source substrings into a finite
number of intervals. The ordered mappings of symbols into
each possible partitioning intervals set, and then further into
a corresponding interval prefix, exhaust all order-preserving
dictionary mappings.

We then define a class of compression-suitable encodings
that do not suffer some obvious compression suboptimali-
ties and can be easily constructed from the set of frequent
substrings. For a given substring frequency distribution, we
show how the balanced near-optimal encoding partitions can
be produced and how a supplementary Hu-Tucker or arith-
metic encoding can improve cases where dictionary encod-
ing alone does not provide the desired balancing. It happens
that the order-preserving dictionary mapping can also be ap-
plied in place of Hu-Tucker or arithmetic encoding for trans-
lation of symbols into a target string set (Antoshenkov et al.
1994), potentially exceeding Hu-Tucker’s compression rate.
At the end, we present the experimental results obtained for

real-life data sets and for Wisconsin benchmark (Gray 1993)
using our prototype implementation.

Section 2 of this paper specifies the terms and scope of
order-preserving encoding. Sections 3–5 present the encode
and decode procedures for position-dependent, position-in-
dependent and flexible encodings, respectively. Section 6 ex-
plores structural properties of compression-suitable encode
vectors. Section 7 describes algorithms for optimal dictio-
nary generation. In Sect. 8, blending techniques and their
impact on compression are discussed. Section 9 presents ex-
perimental results, and Sect. 10 concludes the paper.

2 String encoding

AlphabetA is a non-empty ordered set of charactersA =
{a1, . . . , aN}. A string is an ordered chain “ai1ai2 . . . ail ”
of charactersaij drawn from some alphabet.len(s) is
the length of strings, for an empty stringlen(“ ”) = 0.
substr(s, i, l) is a substring of strings starting from posi-
tion i ≥ 1 and stretching up tol characters to the right,
substr(s, i) = substr(s, i, len(s)). String v is a prefix of
stringw if substr(w, l, len(v)) = v. For a non-empty string
set S, a common prefix ofS, compref (S), is the longest
string being a prefix of all strings inS. String w extends
string v if v is a prefix ofw andv /= w.

Examples.Strings “ ”, “t”, “ th”, “ the” are prefixes of “the”.
String “train” extends “ ”, . . ., “trai”, but not “train”.
String “th” is a common prefix of “that” and “this”,
compref({“their”, “tiger”, “tee” }) = “t” . substr(“table”,
2) = substr(“table”, 2,5)=“able” .

String comparison is defined to be equal for identical
strings, greater for a string extending another string, and
otherwise according to comparison of the next character after
a common prefix. To facilitate an SQL-style, “pad-character”
comparison, we assume that all strings to be compared are
extended to the right with a pad character to the common
lengthL.

Having a common string length in order-related data ma-
nipulation and structures is important for sorting and index
creation when keys are composed of multiple fields. Multi-
field keys in such cases can be simply defined as a string
concatenation of individual fields and be compressed, pro-
cessed, and stored as a single string. Later, it will become
obvious that the concatenated strings can have the pad char-
acter sequences of individual fields compressed into a single
code for arbitrary common lengthL, making pad-character
string manipulation as efficient as processing variable-length
strings.

Let SL = {“ai1 . . . aiL ”} be a non-empty subset of
all strings with lengthL, aij drawn from alphabetA =
{a1, . . . , aN}. Let T = {“bi1bi2 . . . ”} be a set of all strings
on alphabetB = {b <1, . . . , bM}. Encoding the source
set SL by the target strings fromT is a transformation
t = encode(s) providing a one-to-one mapping ofSL into T .
Decoding is done by a reverse transformations = decode(t).
We are interested in theorder-preserving encodingwhere for
any s1, s2 ∈ SL, s1 < s2 yields encode(s1) < encode(s2).

We will explore a particular way of encoding where:

28

1. the source string is subdivided into several non-empty
substrings taken from a given string vectorQ = (q1, . . .,
qK),

2. each substring is replaced with a corresponding symbol:
position i of qi in vectorQ,

3. a sequence of symbols is translated into the target string
set T using Hu-Tucker, arithmetic, or other encoding
methods,

4. source-to-symbol and symbol-to-target translations are
both order-preserving.

Suppose a source-to-symbol translation is defined that
subdivides any non-empty source string into substringsqi1,
. . ., qin and produces the symbol chaini1, . . . , in. Since
the first translated symboli1 takes its value from the set
of integers 1, . . . ,K, the defined above translation also de-
fines a partitioning of all source strings intoK classes, one
per each value of the first translated symbol. Due to the
order-preserving translation property, this partitioning must
be a partitioning of source strings intoK intervals follow-
ing each other in the string order. To avoid ambiguity of
the reverse mapping of the first symbol to the first substring
(which would make decoding impossible), the first substring
qi1 must be a prefix of a common prefix of the interval corre-
sponding toi1. When the source string subdivision involves
more than one substring, the described above partitioning
and prefix rules must also be applied to the remaining trans-
lation of qi2, . . . , qin into i2, . . . , in, and so on.

Partitioning into intervals and selection of interval pre-
fixes at each step of translation might depend on the char-
acter position of the current substring in the source string
and also on the values of already processed substrings. Fur-
ther, we will consider only the character position dependency
and independency cases. With this very general definition
of order-preserving dictionary encoding, the relationship be-
tween partition intervals and their common prefixes is fairly
intricate and is a topic of our compression optimality inves-
tigation.

3 Position-dependent encoding

In this and the following two sections we introduce sev-
eral order-preserving encoding and decoding mechanisms.
These mechanisms are driven by sets of encode/decode vec-
tors which can be chosen with a great degree of freedom and
can compress or expand source data depending on vectors’
selection. How to select vectors delivering good compres-
sion is discussed in Sects. 6–8.

For a source string setSL, we define trailing sub-
string setsSLj = ∪s∈SLsubstr(s, j), 1 ≤ j ≤ L. Like
SL, eachSLj is a non-empty set of equal-length strings,
SL1 = SL. Let S be one of equal-length trailing substring
sets. LetE = ([l1, r1], . . . , [lK , rK]) be an encode vec-
tor: an ordered partitioning ofS into K closed intervals,
l1 ≤ r1 < . . . < lK ≤ rK , li, ri ∈ S, compref (li, ri) /= “ ”
for l ≤ i ≤ K. Let Q = (q1, . . . , qK) where qi is a non-
empty prefix ofcompref (li, ri) be anencode prefix vector.
Let D = (d1, . . . , dK) be adecode vectorwheredi contains
all information needed for encoding symboli into a tar-
get stringt using a given symbol-to-target encode method.

For Hu-Tucker encoding, (di, . . . , dK) is the ordered set of
strings from the target binary alphabet that holds the prefix
property. For arithmetic encoding, (d1, . . . , dK) is the or-
dered set of intervalsdi that constitute a partitioning of the
interval [0, 1).

Given a setC = {(E1, Q1, D1), . . . , (EL, QL, DL)} of
encode/prefix/decode vectors with equal vector length in
each triplet, one triplet for each equal-length trailing sub-
string set, theencodetransformation ofSL into T is defined
as follows:

Proceduret = encode(s)

1. Takes ∈ SL as a source string, setj = 1, t = “ ”.
2. In Ej , find [li, ri] to which substr(s, j) belongs.
3. Extendt usingdi from vectorDj .
4. Incrementj by len(qi).
5. If j ≤ L, switch to step 2.
6. Returnt as the encoded string.

This encode procedure performsL or fewer iterations be-
cause all common prefixes in step 4 are non-empty strings
having greater than zero length. A sequenceG of j values
with one value picked at the start of each iteration (step 2),
defines a subdivision ofs into the “source code” substrings.

Example. We want to encode positive 8-digit binary num-
bers, assuming that numbers with a small amount of signifi-
cant digits occur more often than those with many significant
digits.

Using the encoding scheme in Table 1, the following
numbers are decomposed and encoded like:

00000001‖ → 0‖ , 000001‖0‖1‖ → 101‖0‖1‖ ,
01‖1‖1‖0‖0‖0‖1‖ → 11010‖1‖1‖0‖0‖0‖1‖ .

This scheme emulatesδ encoding (Elias 1975), widely used
for compressing sets of integers and for run-length bitmap
compression. Our encoding simply flips some leading bits in
the leading prefix compared toδ encoding and thus achieves
order preservation, retaining the same compression rate as
in δ.

Thereom 1. The encode transformation defined above is
order-preserving.

Proof. Let s1, s2 be different strings fromSL, s1 < s2, and
jd be the biggest value in the sequenceG subdividing string
s1 which satisfiesjd ≤ len(compref (s1, s2) + 1) condition.
At the start of the iteration havingj = jd, encodewill have
the identical source codes processed fors1 ands2 and thus
have identical partial stringst built in both cases. Atj =
jd iteration, the source codes fors1 and s2 are different.
Moreover, thes1 source code precedes thes2 source code
in the string order because the first differentiating character
of s1 ands2 at positionlen(compref (s1, s2) + 1) belongs to
both these codes. It follows that symboli for a differentiating
source code ofs1 is smaller than that ofs2 and that partial
strings t built at jd iteration preserve the order. The rest
of the translation does not change this order preservation,
making the theorem proof complete.

29

Table 1. In this encoding scheme, the leading edge encode vector transforms leading zeros
followed by the most significant ‘1’ into the target codes of the decode vectorD1. Other
trailing substring encodings are defined as an “identity” transformation. Longer source prefixes
produce shorter codes

qi = compref (li, ri) [li, ri] i di

Q1 0000001 E1 [00000001,00000001] 1 D1 0
0000001 [00000010,00000011] 2 100
000001 [00000100,00000111] 3 101
00001 [00001000,00001111] 4 11000
0001 [00010000,00011111] 5 11001
001 [00100000,00111111] 6 11010
01 [01000000,01111111] 7 1101
1 [10000000,11111111] 8 1110000

Q2 0 E2 [0000000,0111111] 1 D2 0
1 [1000000,1111111] 2 1

Q8 0 E8 [0,0] 1 D8 0
1 [1,1] 2 1

Now, lett be the target string that encodes a source string
s using the above setC of the encode/prefix/decode vectors.
The decodetransformation of the set̄T = encode(SL) of all
sucht’s back into the source string setSL is described as
follows:

Procedures = decode(t)

1. Take an encoded stringt ∈ T̄ , setj = 1, s = “ ”.
2. In Dj , find di used for production oft.
3. Appendqi from Qj to the end ofs.
4. Reducet according todi.
5. Incrementj by len(qi).
6. If j ≤ L, switch to step 2.
7. Returns as the decoded source string.

In the decodeprocedure, decomposition oft = encode(s) is
done by iterating through the same sequence of source/target
code pairs as during encoding ofs. Indeed, the original sym-
bol i is reconstructed in step 2 for each iteration because of
reversibility of the symbol-to-target translation. Therefore, a
corresponding source code interval [li, ri] must be the one
used in the corresponding iteration ofencode(s), making
the decode loop a stepwise process of the original strings
restoration.

4 Position-independent encoding

In the real world, ordered and to-be-ordered string sets
have two types of frequently occurring patterns suitable for
compression: (1) patterns specific to the character position
in a string, and (2) patterns related to individual charac-
ters or correlated character sequences regardless of their
position. Encoding of the second type needs a single en-
code/prefix/decode vector triplet to be applied at any source
string position, and further, it needs a (single) set represent-
ing all trailing substrings for the encode vector definition.

Let SL∗ = ∪1≤j≤LSLj be a set of all trailing substrings in
SL. Let SL be a set of alls ∈ SL∗ that are not extended by

any others′ ∈ SL∗ . ŜL holds the prefix property. Now we
define theencode vectoron ŜL exactly like we did forSLj ,
i.e., as the ordered partitioningE = ([l1, r1], . . . , [lK , rK])
of ŜL into trailing string intervals, with the left/right interval
ends belonging tôSL and a common prefix for each interval
being at least one character long. Similarly, we define a
singleQ as a set of non-empty prefixes of common prefixes
of intervals inE and a single decode vectorD.

Note thatŜL is a maximal subset ofSL∗ satisfying the
prefix property. PartitioningsE′ defined similarly for any
other subset ofSL∗ with prefix property have to be part of a
set of all maximal partitioningsE and, therefore,̂SL covers
the most general case. Also, here and in other encodings, we
choose for partitioning only the intervals whose ends belong
to fully ordered trailing substring sets (ŜL in this case). If we
lift this restriction and allow the partitioning interval ends to
take arbitrary values preserving the partitioning property, we
will not add any newŜL partitionings to the restricted case,
but merely extend the ways of representing the same set of
all partitionsE. This particular way that we chose is charac-
terized by the equalitycompref ([li, ri]) = compref (li, ri),
simplifying explanations and implementation as well.

Also, using such unique “end-inclusive” partition repre-
sentation, a number of all possible partitions ofŜL contain-
ing n strings can be easily established as 2n−1. Indeed, the
leftmost partition interval must have its left end coinciding
with the leftmost string inŜL. Any of the remainingn− 1
strings in ŜL might or might not be the left end of some
partitioning interval, independent of otherŜL strings. Since
the right partitioning interval ends can be always unambigu-
ously determined given the set of all left interval ends, the
desirable degree of freedom can be expressed as the number
of n− 1 independent binary trials, i.e., as 2n−1.

In order to apply the previously defined encode pro-
cedure to the position-independent case, we first introduce
the notations that simplify string and interval comparisons.
Given a stringq, notationlowpad(q) will stand forq padded
to the right to lengthL with the lowest alphabet charac-
ter and, similarly,highpad(q) will denote highest character

30

padding. Given a string interval [l, r], the notationbl, rc will
stand for the closed interval [lowpad(l), highpad(r)], and
bxc will stand for bx, xc. If s is a trailing substring inSL∗ ,
there is at least one string in̂SL havings as a prefix, and,
therefore,s is a prefix of some stringq from some interval
[li, ri] in E. It follows that the intersection [li, ri] ∩ bsc is
not empty becauseq belongs to both intervals.

To define theencodeprocedure, we useC = {(E1, Q1, D1),
. . ., (EL, QL, DL)} with E1 = . . . = EL = E, Q1 = . . . =
QL = Q, D1 = . . . = DL = D of identical equal-length
encode/prefix/decode vectors (of course, only one copy of
each is used in implementation) and use the previously de-
fined encode(s) procedure with a modified step 2:

2. In Ej , find [li, ri] intersectingbsubstr(s, j)c.
If in step 2, the padded intervalbsubstr(s, j)c encloses
[li, ri], then substr(s, j) is a prefix of all strings in [li, ri]
and thus is a prefix ofcompref (li, ri). In this case, if
qi(compref (li, ri), then the current iteration advancesj
by len(qi) = len(compref (li, ri)) ≥ len(substr(s, j)) =
L−j +1, makingj greater thanL and, hence, leading to the
procedure conclusion. Otherwise, ifqi < compref (li, ri),
the procedure terminates according to Step 5. If, on the con-
trary, the above enclosure does not hold, then one end of
interval [li, ri] lies outsidebsubstr(s, j)c, i.e., there exists
string x : x ∈ ŜL, x ∈ [li, ri], and x /∈ bsubstr(s, j)c. Si-
multaneously, there exists stringy common to both of them:
y ∈ ŜL, y ∈ [li, ri], and y ∈ bsubstr(s, j)c. Indeed, if the
other end of interval [li, ri] belongs tobsubstr(s, j)c, we
pick it as y, otherwise [li, ri] enclosesbsubstr(s, j)c and
we pick asy a string fromŜL havingsubstr(s, j) as a pre-
fix. This proves thatsubstr(s, j) extendscompref (li, ri)
and also extendsqi, requiring more iterations to complete
encoding.

Example. The following position-independent encoding is
defined for all 13-character-long strings on alphabetA =
(a, b, c). It assumes that (a) “b” stands for blank and is used
as a single blank for word separation or as a trailing blank
sequence, (b) the length of all “a” sequences is usually even,
and (c) “a” sequences usually follow “c” sequences.

i qi = compref (li, ri) [li, ri]

1 * aa baac
2 a bab, ac
3 b bb, bbbbbbbbbbbbac
4 * bbbbbbbbbbbbb bbbbbbbbbbbbbbc
5 b bbbbbbbbbbbbbc, bc
6 * caa bcaac
7 c bcab, cbccc
8 * ccaa bccaac
9 cc bccab, ccc

* marks frequent patterns. In these frequent patterns, con-
secutiveas occur even number of times (twice) and, when
seen together,as always followcs

With this encode vector, string “caaaabccaabbb” is parsed
and translated into a chain of symbolsi as

caa aa b ccaa bbb – tokens
6 1 5 8 4 – symbols

Here, at the first iteration, intervalbcaac is found to include
bcaaaabccaabbbc delivering symbol 6. At the second itera-
tion, baac is found to include the remainderbaabccaabbbc
delivering 1. Further,bbbbbbbbbbbbbc, bc is found to include
bbccaabbbc delivering 5. Note that in the order-indifferent
compression, the inclusionbbc ⊃ bbccaabbbc would select
token “b” and eliminate the need for one of the two symbols
3 or 5 assigned to the specific intervals in our case. Further,
bccaac is found to includebccaabbbc delivering 8, and last,
bbbbbbbbbbbbbbc is found to be included in the remainder
bbbbc. Also note that token “bbbbbbbbbbbbb” not only ex-
hausts the source string remainder but also contains ten ex-
tra bs which are ignored by the encoding procedure because
only a non-empty intersection of both intervals is required
in the new step 2.

To define thedecode procedure for encode/prefix/decode
vectorsE,Q,D, we use the previously defineddecode(t)
procedure with a modified step 7:

7. Returnsubstr(s, 1, L) as the decoded string.

Here a truncation of the finals to the standard lengthL is
needed because the source code at the last iteration can be
oversized (see the case ofbsubstr(s, j)c enclosing [li, ri] in
step 2 of theencode procedure).

5 Flexible encoding

Position-dependent encoding with different encode/prefix/
decode vectors required for each string position may not
necessarily reflect the most practical case because the fre-
quent patterns are usually bound to only a few particular
positions. Take accounts, license plates, and other forms of
identification in which strings are controlled by templates.
There are perhaps a few positions designated to separators or
specific code letters and maybe a few areas filled with digits,
or letters only, or a mixture of both, possibly enhanced with
some commonly used printable characters. What is needed
to cover these cases is a flexible mixture of several position-
dependent and position-independent encoding schemes.

For each string positionj, 1 ≤ j ≤ L, let Jj be a
subset of integers between 1 andL containingj. We want to
define such encoding that the source codes picked at position
j are taken from the encode prefix vector based on trailing
substrings starting at any positionk in Jj , not just at position
j. For this, we first redefineSLj to be a set ofJj-based
trailing substrings:SLj = ∪k∈Jj (∪s∈SLsubstr(s, k)). Then,

as in position-independent encoding, we defineŜLh as the
largest subset ofSLj with none of its strings extending the

other. We then redefineEj as the ordered partitioning of̂SLj
into intervals in which the ends belong tôSLj and in which
common prefixes are at least one character long.

One can observe that the encode and decode proce-
dures described for position-independent encoding, also en-
code/decode strings fromSL based on the code setC =
{(E1, Q1, D1), . . . , (EL, QL, DL)} where Ejs are theJj-
based redefinition of encode vectors, and encode, prefix, and

31

decode vectors are identical for every integer from a given
Jj . When eachJj contains only one integer, i.e.,Jj = {j},
this “flexible” encoding becomes a position-dependent en-
coding. WhenJ1 = . . . = JL = {1, 2, . . . , L},E1 = . . . = EL,
Q1 = . . . = QL, andD1 = . . . DL, the flexible encoding be-
comes a position-independent encoding.

Further we will investigate properties of flexible encod-
ing useful for the task of compression. The results will
be equally applicable to the extreme cases of position-
dependent and position-independent encoding.

6 Source code selection

In this and the following two sections we will concentrate on
properties and algorithms related to optimality of the source
side (i.e., a dictionary portion of) compression. Our first
observation is that the cases where prefixesqi are shorter
than compref (li, ri) deliver compression typically inferior
to those cases, whereqi = compref (li, ri). Indeed, except
for some rare parsing patterns, substitution of longer se-
quences with the same number of symbols as for shorter
sequences improves the compression factor. A possibility of
encoding prefixes shorter thancompref (li, ri) might turn
out to be useful in some future applications, but maximiza-
tion of compression rate calls for discarding these cases.

Our second observation is that if two different encoding
schemes break all source strings into identical sequences, a
scheme with fewer intervals in its encoding vector gives bet-
ter compression. Let [li, ri] and [li+1, ri+1] be two adjacent
intervals of an encode vectorE, x and y be common pre-
fixes of these intervals, andz = compref (x, y). According
to the common prefix definition, each ofx, y either extends
or is equal toz. Supposex = y = z. When either of the
two adjacent intervals is selected in step 2 of theencode(s)
procedure, the same source codez is used for encoding. If
E′ is the encode vector derived fromE by substituting two
intervals [li, ri], [li+1, ri+1] with one interval [li, ri+1], a se-
lection of [li, ri] or [li+1, ri+1] from E yields the same code
z picked as in the selection of [li, ri+1] from E′. However,
vectorE is one interval longer thanE′, causing inferiority
of E-based compression.

Now we can definecompression-suitable encodingas
encoding byC = {(E1, D1), . . . , (EL, DL)}, where (a) prefix
vectorsQ1, . . . , QL are implicitly derived fromE1, . . . , EL

by setting allqis to correspondingcompref (li, ri) and (b) at
least one of the two intervals in each adjacent interval pair in
all Ejs has its common prefix extending the common prefix
of the interval pair.

There are three encode vector interval types in compres-
sion-suitable encoding distinguishable in the context of left
and right neighboring intervals. If intervalsIx, Iy, Iz are
adjacent and have common prefixesx, y, z, interval Iy is
called:

x: a b c a b c a b c
y: a b| edge a b| edge a b|c gap
z: a a c a b f

x: a b a b a b
y: a c| peak a c| peak a c| edge
z: a a d a c d

x: a · a · a ·
y: a c| peak a c| peak a c| edge
z: a a d a c d

Fig. 1. Classification of extension patterns intopeak/edge/gaptypes

peak if y extendscompref (y, x)
andy extendscompref (y, z),

edge if x extendscompref (x, y)
andy extendscompref (y, z)
or
z extendscompref (z, y)
andy extendscompref (y, x),

gap if x extendscompref (x, y)
andz extendscompref (z, y).

Interval types for all extension patterns ofx, y, z are depicted
in Fig. 1.

For the first (or last) interval inE we will use the same
classification assuming a phantom intervalIx (or Iz) with
empty string “ ” as its common prefix. The end intervals
cannot be gaps.

Note that the common prefixy of edges and gaps is ex-
tended byx or z and thus is not part of the underlying set
ŜLj because of its prefix property. For gaps it means that
intervalIy must contain at least two stringss1, s2 extending
y such thaty = compref (s1, s2), hence the charactersa1, a2
immediately following prefixy in s1 and s2 must be dif-
ferent. For example, the gap common prefix “ab” in Fig. 1
must contain in its interval a string starting with “abd” and
a string starting with “abe”. In the case of binary alphabets,
the encode vectors in compression-suitable encoding contain
only peaks.

Theorem 2. If E is an encode vector of a compression-
suitable encoding, then the following properties hold.

A. A set of common prefixes of all peaks inE is the largest
set of common prefixes ofE intervals holding the prefix
property.

B. For every pair of neighboring peaksIx, Iy (no other
peaks lie in between) with common prefixesx, y, a se-
quence of intermediate intervals is composed of
1. possible sequence of (right) edgesIr1, . . . , Irm with

common prefixesr1, . . . , rm, x extendingr1 extending
. . . extendingrm extendingcompref (x, y), followed
by

2. possible gapIg with its common prefixg = compref
(x, y), followed by

3. possible sequence of (left) edgesIl1, . . . , Iln with com-
mon prefixesl1, . . . , ln compref (x, y) extended byl1
extended by. . . extended byln extended byy.

C. The first (last) peak is preceded with (followed by) a pos-
sible sequence of left (right) edges like in B(3) (B(1)).

32

Proof. Let y be a common prefix of some peak intervalIy
in E, x and z be common prefixes of the peak’s left and
right adjacent intervalsIx, Iz. Notice that becausey extends
compref (y, x), y also extendscompref (y, s) for common
prefixs of all intervals inE to the left ofIx and similarly for
intervals to the right ofIy. Notice further that ify extends
compref (y, s) for strings, thens does not extendy because
if it did, y = compref (y, s) would hold, which is incorrect.
From the above, it follows thaty is not extended by the
common prefix of any interval inE. This proves a set of
peaks inE to hold the prefix property. The largest set ofE-
interval common prefixes, which holds the prefix property,
is obviously a set of all such common prefixes that are not
extended by anyE-interval common prefix. Non-peak inter-
vals have their prefixes extended by either left, right, or both
adjacent interval common prefixes and, therefore, do not be-
long to the above set. This completes the proof of property
A. From the propertyA, it follows that common prefixes of
all intervals between any two neighboring peaksIx, Iy do
not belong to the largest set holding the prefix property, and,
therefore, each intermediate prefix is extended by some peak,
and further, eitherIx, or Iy, or both are the extending peaks.
Sequencing of intermediate edges and gaps described inB1,
2, 3 is a straightforward derivation from the peak/edge/gap
definition. The initial and concluding cases of propertyC
sequencing are proved similarly.

Having described the sequencing patterns of compression-
suitable encode vector, we now want to explore the reverse
task of determining what string vector can serve as a vector
of common prefixes of some compression-suitable encode
vector.

Let Ŝ be a set of strings on alphabetA holding the pre-
fix property, x, y, z be a sequence ofA strings, y /= “ ”.
By convention, (x, y, “ ”), (“ ” , y, z)), (“ ” , y, “ ”) will rep-
resent shorter sequences (x, y), (y, z), (y). Fory in sequence
(x, y, z) we definestring-extending interval narrowed by ad-
jacent extensionSEINAE(x, y, z) or simplySEINAE(y)
for an implicit adjacent string context as follows. If

1. there exists the leftmost stringl in Ŝ such thatl ≥
lowpad(y) and, whenx is not extended byy, l >
highpad(x), and

2. there exists the rightmost stringr in Ŝ such thatr ≤
highpad(y) and, whenz is not extended byy, r <
lowpad(z), and

3. l ≤ r,
then SEINAE(y) = [l, r], otherwiseSEINAE(y) is
said to be nonexistent.

When it exists,SEINAE(y) is contained inbyc – this
follows from l ≥ lowpad(y) and r ≤ highpad(y). Also,
SEINAE(“ ” , y, “ ”) is the largest interval [l, r] contained
in byc with l, r ∈ Ŝ. In addition,SEINAE(x, y, z) can
only be smaller (more narrow) thanSEINAE(“ ” , y, “ ”)
if one of x, z extendsy.

Theorem 3.LetŜLj be the largest subset of allJj-based trail-
ing substrings ofSL holding the prefix property as defined in
flexible encoding andQj = (q1, . . . , qK) be a vector of non-
empty strings on the same alphabet. If for eachqi in Qj there
existsSEINAE(qi) such thatqi = compref (SEINAE(qi))

andŜLj ⊂ ∪1≤i≤KSEINAE(qi), thenEj = (SEINAE(q1),
. . ., SEINAE(qK)) is the compression-suitable encode vec-
tor andQj is a vector of common prefixes ofEj ’s intervals.

Proof. First, we verify that if an arbitrary stringxi is picked
from eachSEINAE(qi) andxi ∈ ŜLj , thenx1 < . . . < xK
holds. Suppose that the ascending order does not hold for
x1, . . . , xK . Then there must be an adjacent string pair
xi, xi+1 such thatxi ≥ xi+1. If qi is not extended by
qi+1, then all strings inSEINAE(qi+1) follow highpad(qi),
which contradictsxi ≥ xi+1. Otherwise,qi+1 is not extended
by qi and all strings inSEINAE(qi) precedelowpad(qi+1),
which again contradictsxi ≥ xi+1. This proves that intervals
SEINAE(qi) do not intersect each other and are ordered
in the ascending string sequence.

Since the union ofSEINAE(qi) contains ŜLj , vec-
tor Ej = (SEINAE(q1), . . . , SEINAE(qK)) defines the
ordered partitioning ofŜLj . Further, fromqi = compref
(SEINAE(qi)) it follows thatQj is the vector of common
prefixes ofEj intervals. Finally, sinceQj contains only non-
empty strings,Ej is the encode vector.

To verify thatEj is compression-suitable, let us assume
the opposite, that some adjacent interval pairSEINAE(qi),
SEINAE(qi+1) has both its common prefixesqi = qi+1 =
compref (qi, qi+1). In accordance withSEINAE definition
and given thatqi is not extended byqi+1, all strings in
SEINAE(qi+1) should followhighpad(qi) = highpad(qi+1),
which is impossible. This completes the theorem proof.

With the results stated in Theorem 3, it becomes possi-
ble to use a string vectorQj as a shorthand for any given
compression-suitable encode vectorEj . Even more impor-
tantly, one can easily pick a set of the most frequent sub-
strings, add other substrings to fill the gaps between them
producingQj , and reconstruct the encode vectorEj from
Qj by applyingSEINAE(qi). This methodology is at the
heart of any manual construction of an encoding scheme
(example follows) and it is also heavily used in the algo-
rithms that automatically produce vectorsEj andQj , like
those presented in the next section.

Example. Suppose we want to compress a set of all four-
letter strings on alphabetA = (a, b, c, d) starting with “a”,
knowing that substrings “aba”, “ abd”, “ ac”, “ adbb”, and sub-
string “adb” followed by letters “c” and “d” occur often in
our source string set. Let us examine the neighborhoods of
these frequent strings going in the ascending string order
and constructing prefix and encode vectors.

First, we discover that there is a gap in front of “aba”
containing the lowest string “aaaa”. According to Theorem
3, “aaaa” must be part of the union∪1≤i≤KSEINAE(qi)
of all selected prefixes, but it is not. Therefore, our set of
frequent prefixes must be extended with either of the infre-
quent prefixes “a” or “ aa”. SEINAE(“ ” , “aa” , “aba”) =
[“ aaaa” , “aadd”] with compref (“aaaa” , “aadd”) = “ aa”,
because “aa” is not narrowed by its right neighbor “aba”,
neither is it affected by “ ” since “aa” extends “ ”. This
makes “aa” the right choice for constructing a good prefix
set. Note that by filling the leftmost gap we have, in fact,
created a peak.

33

Table 2. * marks the most frequent (initial) prefixes. Other (infrequent)
prefixes merely fill the gaps

Q1 E1 i

peak a a| · [aaaa, aadd] 1
peak * a b a| [abaa, abad] 2
gap a b| · [abba, abcd] 3
peak * a b d| [abda, abdd] 4
peak * a c| [acaa, acdd] 5
edge a d| · [adaa, adba] 6
peak * a d b b| [adbb, adbb] 7
edge * a d b| [adbc, adbd] 8
edge a d| [adca, addd] 9

Second, we discover a gap between “aba” and “abd”.
Their common prefix “ab” immediately gives us a correct fill
becauseSEINAE(“aba” , “ab” , “abd”) = [“ abba” , “abcd”]
with compref (“abba” , “abcd”) = “ ab”. This time we have
constructed a real gap narrowed from both sides by the
neighboring prefixes.

The next pair of frequent prefixes “abd” and “ac” has
no gap between the adjacent ends of their extended inter-
vals b“abd”c and b“ac”c and thus does not need a filling
prefix. On the contrary, the next pair “ac” and “adbb” pre-
fix has a gap with possible fills “a” and “ad”. Similar to
the first case, the longer prefix “ad”, becomes our choice
becauseSEINAE(“ac” , “ad” , “adbb”) = [“ adaa” , “adba”]
andcompref (“adaa” , “adba”) = “ ad”. The last pair, “adbb”
and “adb” is different from all the previous cases because
the first string extends the second. Absence of a gap between
them is due to this extension, not to the fact that they are ad-
jacent like the pair “abd” and “ac”. Finally, the gap after the
last frequent prefix “adb” has two potential fillers, “a” and
“ad”. Our choice, as usual, is the longest prefix, “ad”, be-
causeSEINAE(“adb” , “ad” , “ ”) = [“ adca” , “addd”] and
compref (“adca” , “addd”) = “ ad”. Note that “ad” is an
edge.

All frequent and newly added, infrequent prefixes are
summarized in Table 2. Note that in this example, only one
infrequent edge “ad” is produced to fill the gap between the
two frequent peaks “ac” and “adbb”. This is not possible
with zilch encoding (Zandi et al. 1993), which requires two
prefixes “ad” and “adb” to fill the gap between these fre-
quent peaks. In general, zilch encoding is a particular case of
peak/edge/gap prefix vector where none of the gaps or edges
are extended with more than one character by a neighboring
peak or edge.

A much more vivid difference between our compression
and zilch compression can be observed on indexes contain-
ing many duplicate keys. If a 30-character country name
is part of a large composite index, then each of about 200
country names can be encoded with a single symbol. Filling
the gaps with our method would require another 201 infre-
quent gap prefixes yielding a total of 401 symbols, whereas
zilch encoding would consume about 27 symbols on each
side of each country name, yielding 11 000 symbols. If a
symbol space is limited to 401 symbols, the zilch method
will be able to encode only1

27 of all names and thus lose
up to 27 times in compression rate. With no limit, however,
zilch will consume on the order of 1 MB of main memory,

removing this valuable resource from usage by other system
components.

7 Toward optimal compression

Order-preserving dictionary encoding is essentially a repet-
itive process of identifying to which partitioning interval a
given trailing substring belongs. It amounts to a series of
character comparisons or character vector lookups that ad-
vance very quickly along the source string. If for a given
trailing substring, there are two or more code prefixes in
vectorQ that extend each other and also match the trailing
substring, the choice of a code prefix is determined unam-
biguously because we do not match prefixes with substring,
but rather find the encode interval containing this substring
and then pick the corresponding common prefix. The order-
indifferent dictionary methods, however, always face this
ambiguity problem and either ignore it by “greedy” selec-
tion of the longest matching prefix or optimize it by consid-
ering the alternatives and choosing the one yielding better
compression for several encoding steps ahead. Our method
needs no such parsing optimization and thus, in this respect,
remains fast and optimal at the same time.

During parsing, once a partition is found, its symbol can
be used for encoding as a target character, having the sym-
bol chain serve as a translated target string, hence avoid-
ing the symbol-to-target translation phase. Such dictionary-
only encoding is very fast, but not necessarily the most
compact method. We will discuss the tradeoffs between the
dictionary-only and dictionary-and-target compression meth-
ods at the end of this section.

To measure the dictionary-only compression rate, we
will use a frequency table containing pairs (s, f) of all or
randomly-selected source substrings and their frequencies of
appearance in an existing data set or the anticipated frequen-
cies in a non-existing data set. The set of substrings in the
frequency table can be assumed to hold the prefix property
(see the technology of reassigning the shorter string frequen-
cies in the next section). IfN is the source alphabet size,K
is the length of the encode vector ([l1, r1], . . . , [lK , rK]), fi
is the sum of frequencies of all table substrings belonging
to [li, ri], and qi = comrpef (li, ri), then the space con-
sumption of the to-be-encoded prefixesqi aggregated for all
substrings in the frequency table is log2N ·∑K

1 (len(qi) ·fi)
bits, the corresponding space consumption of the encoded
symbols is log2K ·∑K

1 fi bits, and the compression factor
is

log2K ·∑K
1 fi

log2N ·∑K
1 (len(qi) · fi)

.

Since for a given source alphabet and a given fre-
quency table log2N and

∑K
1 fi are constants, the task

of minimizing the compression rate is the task of maxi-
mizing

∑K
1 (len(qi) · fi)/ log2K. It is also clear that only

compression-suitable encode vectors should be considered.
The following “greedy” algorithm builds an encode vector
from the frequency table and is a close analogue of the tra-
ditional dictionary builder described by Bell et al. (1990,

34

p. 214). As in any dictionary method, a wide usage of a trie1

structure for a string set traverse is assumed.

Algorithm 1(greedy)

1. Sort strings in the frequency table. Eliminate strings
extended by other strings and distribute the eliminated
string frequencies among the surviving strings (see blend-
ing methods below). Represent the frequency table as a
sorted trie.

2. Define the initial encode vector as the partitioning inter-
vals surrounding each source alphabet character.

3. Find the best local subdivision of each partitioning in-
terval using Routine A.

4. Among all partitioning intervals, find the one in which
the best subdivision delivers the best compression.

5. At some point, when a trend to a degrading compression
rate is discovered or the encode vector length exceeds
some limit, look at the partitioning history, pick the most
satisfactory encode vector, and terminate the algorithm.

6. Materialize the globally best interval subdivision and find
the fresh best local subdivitions of the two or three new-
built intervals, using Routine A.

7. Go to step 4.

Routine A(interval subdivision)

For a given compression-suitable encode vector and for a
given interval in this vector, consider each subdivision of
this interval into either:

1. two intervals which, combined with the rest of the vector,
become a new compression-suitable partitioning or,

2. three intervals which again yield a compression-suitable
partitioning with the middle interval being a peak.

Among these subdivisions pick the one with the best
compression (use frequency table for calculation) and store
useful knowledge about this subdivision along with the given
interval. (The above task can be performed with a single trie
traverse.)

The mechanics of subdivision are fairly simple.
1. Suppose peak “the” is already part of the current par-

titioning and “their” is the most frequent extension of it.
Then we replace a single peak “the” with the three prefixes:
edge “the”, peak “their”, and edge “the”. The correspond-
ing encode intervals will be:SEINAE(“ ” , “ the” , “ their”),
SEINAE(“ the” , “ their” , “ the”), and SEINAE(“ their”,
“ the”, “”) or, if expressed directly, [“theaaaa”, “ theiqzz”],
[“ theiraa”, “ theirzz”] and [“ theisaa”, “ thezzzz”]. (Here
we assume 7-character strings from the alphabet (“a”, . . .,
“z”).)

2. Suppose peak “their” is part of the current partition-
ing, gap “th” immediately follows “their”, and extensions
of “ the” to the right of “their” have high frequency. Then,
subdivision of gap “th” caused by the introduction of “the”
will include two prefixes: edge “the” and gap “th”. Similar
subdivision will take place if “their” or “ th” are the right
edges.

3. Having peak “sin” followed by gap “si” followed
by peak “sir” as part of the current partitioning and a new

1 Trie is a multiway tree with each path corresponding to a different
string

frequent prefix “sip”, we can subdivide “si” into two peaks,
“sio” and “sip”, producing a continuous sequence of peaks:
“sin”, “ sio”, “ sip”, and “sir”.

In all these cases, we insert a new prefix into the current
partitioning and check if extra prefixes have appeared around
the new one; if they have appeared, we add them to the parti-
tioning, calculateSEINAE for all neighboring prefixes in-
volved, and, finally, calculatecompref (SEINAE(. . .)) to
extend some unnecessarily short prefixes. For other cases,
which are not presented here, the procedure remains the
same.

With each new subdivision, the new intervals need a
fresh subdivision recalculation because new common pre-
fixes qi have new lengths and those are directly involved
in compression rate calculation. However, intervals become
progressively smaller and, as in a quick sort, require
O(K∗ log(K)) average frequency table tests andO(K2)
worse case tests. Unlike the traditional dictionary builders,
the greedy algorithm considers long strings simultaneously
with short strings, not all digrams followed by trigrams, etc.
This makes a “greedy” advancement closer to the optimal
gradient. It also avoids the traditional removal of the redun-
dant short strings from the dictionary.

The near-gradient advancement manifests a desire to
keep a partition weightlen(qi) · fi balanced (i.e., about
equal) between the partitioning intervals. A smaller-than-
mean partition weight would potentially benefit from the
interval merging and a higher-than-mean weight is a good
target for splitting. In the greedy algorithm, the under-
weight/overweight avoidance is enforced by a local split to-
ward the global gradient. The same balancing effect can also
be achieved by a globally-equalized partitioning selection.

Algorithm 2 (equalizing)

1. Sort strings in the frequency table. Eliminate strings
extended by other strings and distribute the eliminated
string frequencies among the surviving strings (see blend-
ing methods below). Represent the frequency table as a
sorted trie.

2. Pick some limit weight valueW – a best guess for further
steps to deliver a reasonably long encode vector.

3. Find the longest compression-suitable encode vector con-
taining only peaks, gaps, and possibly one edge at each
end, each peak havinglen(qi) · fi ≥ W . (This can be
done with a single trie traverse.) For each peak, check the
frequency table strings along the gaps or end edges ad-
jacent to this peak going away from the peak, and find
the first split that creates a neighboring edge on each
peak side (if possible), havinglen(qi) · fi ≥ W . Con-
tinue checking and building such neighboring edges until
exhaustion. At this point a compression-suitable encode
vector is built with all peaks and edges, possibly exclud-
ing end edges, satisfying thelen(qi) · fi ≥W condition.

4. Set new valueW according to some strategy of exploring
different encode vector lengths and compression factors
with the goal of finding the most satisfactory encoding. If
there is no or too little room for encoding improvement,
pick the most satisfactory encode vector and terminate
the algorithm.

5. Go to step 3.

35

An illustration of the workings of this algorithm can be
found in the example summarized in Table 2.

Equalizing algorithm follows the peak/edge/gap structure
of Theorem 2 and considers short prefixes after the longer
ones – an ideal sequence to proceed. It is simpler to imple-
ment than the greedy algorithm because no priority queue for
the globally best interval needs to be maintained. The over-
weight interval avoidance is embedded in the long-to-short
prefix processing sequence and the underweight avoidance
is rooted in enforcing the same limitW across all purposely
created peaks and edges.

Both encode vector building algorithms tend to balance
interval weightslen(qi) · fi. Recall for a moment that the
space consumption of the to-be-encoded prefixqi aggregated
for all frequency table substrings is log2N ·∑K

1 (len(qi) ·
fi) bits. For substrings belonging to an individual interval
[li, ri], this consumption amounts to log2N · len(qi) · fi bits
or len(qi) · fi source characters. The probability that the
character to be consumed by ([l1, r1], . . . , [lK , rK]) encoding
belongs to the prefixqi of interval [li, ri] is

pi =
len(qi) · fi∑K

1 (len(qi) · fi)
.

Since the average space needed for one source character en-
coding is the entropy of−∑K

1 (pi · log2(pi)) bits and since
the smallest possible entropy is reached withp1 = . . . = pK ,
the most compact dictionary-only encoding byK intervals
is achieved with the perfect weight balancelen(q1) · f1 =
. . . = len(qK) · fK . This proves that by balancing interval
weights the greedy and equalizing algorithms steer the en-
code vector search toward optimal compression. In several
cases, however, a significant variance of weights is unavoid-
able:

1. Presence of source strings with a very high frequency
creates peaks with non-restricted overweights.

2. Gap overweight, compared with the balance goalW , can
be up to a factor ofN (N is a source alphabet size).

3. Gap underweight can be unlimited, e.g., when a few or
no substrings are present between two frequent “peak”
strings.

4. There is also a noise-level variance of interval weights
with a two-fold order of deviation.

Significant gap underweight in case (3) requires a long
target code to balance the infrequency of such gap which,
most of the time, is surrounded by frequent peaks or edges.
It happens that the Hu-Tucker target encoding can hardly
assign one long code (for the gap) between two neighboring
short non-gap codes.2 Arithmetic codes, on the other hand,
can easily produce interchanging long/short code chains. For
very infrequent gaps (and there are usually many of them),
the best compression is achieved by assigning very long tar-
get codes to them. The pitfall here is that in such cases the
encoded string may become very long and we would have

2 Hu-Tucker codes are order-preserving binary Huffman codes. They
hold prefix property. Due to the prefix property, a long sequence for
infrequent gap can have a short sequence for only one neighboring
frequent peak. Worse than that, the other side of the long Huffman
code must decrease gradually to another short code, making it im-
possible to continuously interchange long and short codes, and thus

to assign huge buffers to hold the maximum length encoded
strings. Index retrieval software components usually have
many such buffers, making it impractical to allow the worst
case code expansion to be more than two-three times. Note
that the traditional order-indifferent encodings either ignore
the bad cases, because they are extremely rare, or desig-
nate one leading bit to indicate usage of encoded or original
string, whichever is smaller. With the order-preserving en-
coding, we can neither ignore nor select the shortest version
because we can correctly compare only source versions or
encoded versions, but not a mixture of both. So, the case of
low frequency gaps allows only marginal improvement by
the target arithmetic encoding.

Looking at the underweight case from another perspec-
tive, let us assume that our encode vector contains only peak
prefixes occurring with the same frequency and low fre-
quency gaps situated between peaks. If we ignore all gaps as
marginal contributors to the overall encoded length, then our
peak-only encoding should be perfect. However, the num-
ber of symbols used in the peak-gap encoding is twice the
number of symbols used in the peak-only encoding. This
adds exactly one extra bit to the symbol binary representa-
tion. For realistic encode table sizes ranging from 210 to 215,
this extra bit comprises 7–10% overhead attributed to the
low frequency separation gaps that are needed almost ex-
clusively for order preservation. Since handling the discrep-
ancies between substantial frequencies of peaks and gaps is
the problem common to all dictionary compressions,we es-
timate the overhead factor of order-preserving compression
as roughly 10%.

Both overweight cases (1) and (2) are poorly handled
by Hu-Tucker encoding for the same reason. Very high fre-
quency peaks in (1) would especially benefit from arithmetic
supplement. There are real life indexes where one key value
amounts to a half of all index key occurrences, e.g., NULL
value of “male” in sex index. With the target arithmetic en-
coding, half of the keys can be reduced to three-five bits.
On the other hand, in such cases, a single symbol of our
dictionary-only encoding can encode a highly repetitive key,
with no “stop” symbol as in arithmetic encoding, producing
three-to-dozen bits of code. This brings us again to a rel-
atively low impact of the target encoding on what can be
achieved with the dictionary-only compression. The noise-
level frequency variance in (4) offers a saving of approxi-
mately one bit per symbol if a target encoding is used.

Summarizing the effect of a supplementary target encod-
ing on overall order-preserving dictionary-based compres-
sion, we see it as relatively low. We are certainly talking
about the improvement expressed as a percentage, often at
the order of 10%, whereas our experimental results, pre-

damaging compression. A typical example of such combination is:
010
0110
0111
10 - short code for frequent peak
11000 - long code for infrequent gap
11001 - this code for frequent peak should

be short, but it is unavoidably long
1101
111

36

sented in Sect. 9, show five-fold compression achieved by
applying the dictionary-only encodings to realistic data sets.

There still remains one more effectiveness parameter to
assess: speed of the dictionary-only encoding. Dictionary en-
coding speed depends directly on the average source code
size
∑K

1 (len(qi) · fi)/
∑K

1 fi. The longer the codes, the
faster it goes. But, ignoring the constant

∑K
1 fi, the sum∑K

1 (len(qi)·fi) is exactly what we maximize while building
individual encode vectors. Therefore, optimization of com-
pression rate and speed coincide when producing each en-
code vector so that the speed optimization criterion needs to
be factored only into the process of the best encode vector
selection.

Comparing the speeds of order-preserving and order-
indifferent dictionary encode procedures is largely an imple-
mentation-related issue. Here we only mention two concept-
ual-level differences: (1) order preservation requires up to
twice as many symbols and thus needs up to one extra com-
parison to detect one prefix, and (2) order-preserving encod-
ing needs no parsing optimization used in order-indifferent
methods, thus avoiding a many-fold speed overhead.

Finally, one should note that neither greedy nor equaliz-
ing algorithms deliver optimal encodings. Our experiments
with the equalizing algorithm demonstrated a five-fold com-
pression rate on large realistic data sets and, at the same
time, exhibited a two-fold noise factor when varying the
weightW . Picking the best encodings from these variations
produces a very significant shift toward the optimum, but
room for better algorithms still remains. Compared to the
published results on similar datasets produced by known
traditional methods, our compression rate falls close enough
to the average traditional algorithms rates to consider the
largest portion of the optimal order-preserving compression
already resolved.

8 Blending

Blending is a redistribution of the assigned frequencies in
a string or string partition set aiming to either obliterate
or substantiate some part of the set. In particular, gaps or
end edges containing no frequency table strings must be
substantiated with some non-zero frequencies if a chance of
some string falling into the gap remains. This is a simple
(first order) version of traditional blending that redistributes
a small portion of the original frequencies into some under-
weighted partitions. Note that in read-only databases, such
as archived data collections or data stored on CDs, gaps
with zero frequencies can be fully eliminated by excluding
them from the set of trailing source substrings. By empty
gap elimination, we can reduce the encode vector length up
to two times.

In the original frequency table, if several strings extend
string s, different encode partitions may include only a part
of the extending strings, thus making application of the string
s frequency ambiguous. A simple way to resolve this ambi-
guity – the way that also simplifies the dictionary building
algorithm – is to recursively redistribute a string frequency
among string extensions and delete the string until no ex-
tensions are left in the string set of the frequency table.

Assume that the encode vector is already built and string
s and its extensions′ belong to the original frequency ta-
ble. During execution of encode procedure, if the selected
source codeqi is a prefix ofs, then qi is a prefix of alls
extensions, and, for the sake of this encoding instance, the
pattern of redistributing frequencies froms to its extensions
should not influence the decision onqi selection done during
a dictionary build. On the contrary, if in the same scenarioqi
extendss and also stretches past the source string end, then
ambiguity of pickingqi in step 2 of the position-independent
encode procedure leaves room for a redistribution pattern to
influenceqi selection and build a better dictionary encoder.
The last (ambiguous)qi encoded for a given source string is
to be truncated at the final step 7 of decoding and, therefore,
we want to use a fewqis as possible for the tail encoding
in order to reduce the encode vector size. We achieve that
by redistributing strings frequency into its most frequent
extension, causing maximum imbalance of the redistributed
frequency table.

Algorithm 3 (frequency table blending)

1. In the setS of all frequency table strings, find strings
such that the setbsc∩S of all extensions ofs in S is not
empty and holds the prefix property. (Strings detection
can be organized into a single trie traverse.) Ifs is not
found, terminate the algorithm.

2. Finds′ in bsc∩S having the highest frequency, increase
s′ frequency bys frequency, and delete strings from the
frequency table.

3. Go to step 1.

If source strings contain variable-length text padded
with blanks to the common lengthL, the above blending
would accumulate frequencies of all-blank substrings into
the longest one, giving it a huge weight. This makes the
greedy and equalizing algorithms deliver the following en-
code vector fragment (here stands for blank):

qi symbol

edge i− 1
peak . . . i
edge i + 1

In addition, our frequency table blending leads to the discov-
ery of a combination of typical word endings with trailing
blanks. For instance, substrings “ing” and “ed” are most
likely to be among the peaks and will be encoded with a
single symbol. Moreover, sequences of any frequent trailing
characters like “*” or “ ” are detected and encoded with a
single symbol, one per each individual character.

Comparing it with zilch encoding, symboli for peak
“ . . .” is an analogue of the terminating symbol of Zandi et
al. (1993). But at this point the similarity ends. In addition
to a terminating symbol, zilch still has to assign explicit
symbols for one, two, etc., blanks on each side of the longest
trailing blank sequence. Zilch also produces similar chains
of unnecessary symbols on each side of trailing “*”, “”,
“ ing ” and “ed ”. This causes a significant compression
rate suboptimality.

Our method provides the same advantage of a single-
symbol encoding of frequent trailing patterns, compared to

37

other compression algorithms described by Blasgen et al.
(1993) and Antoshenkov et al. (1994). The secret here is
that our encoding considers only strings of lengthL pre-
determined for a given source dataset. This allows a trunca-
tion of oversized trailing substrings, yielding a sufficiency
of a single encoding symbol. All other algorithms deal with
variable-length strings and miss this opportunity because, in
their case, the stop rule must incorporate the source string
length into the code itself. In our case, the string length is
stored elsewhere (in a coding scheme), so that we simply
need less information to encode.

Note that dealing with fixed-length strings does not re-
duce the generality of our method. We can always pickL
to be bigger than any realistic string length and use padding
characters for any desirable comparison rules. We pad with
blanks for SQL comparison and pad with an artificial extra
character lower than the lowest alphabet character when an
extension of some string should compare high with the orig-
inal string. HugeL and special padding are easily handled
at implementation.

Frequency table blending is the only mechanism known
today for automatic trailing symbol selection.

9 Experimental results

To compare the efficiency of our compression with other
known methods and to see what kind of encode tables are
actually built, we implemented a prototype software and
ran several experiments on real-life data and on Wisconsin
benchmark – widely used for comparing database perfor-
mances.

In these experiments we used the dictionary-only ver-
sion of our order-preserving compression, i.e., we skipped
the target encodings [such as Hu-Tucker, arithmetic, or the
work of Antoshenkov et al. (1994)] and used binary symbol
representations instead. Encode vectors and corresponding
common prefixes were obtained using equalizing algorithms.
We ran our experiments on a VAX 6500 (Digital Equipment
Corporation) machine during working hours with a normal
development workload (trying to be as close to a production
environment as possible).

The first real life dataset we tried was a collection of
occurrences of global names present in all source modules
of one of the Oracle Rdb (Oracle Corporation) components.
There were 159 554 occurrences of the names, which we
padded with blanks to the maximum length of 31 characters
in order to enforce SQL comparison rules. A name occur-
rence dataset and an index built on it should be a backbone
of any software development tool. In Table 3, a summary of
compression characteristics for the global name occurrence
dataset is presented.

We picked three encode vectors out of about one hun-
dred vectors produced to exemplify compression charac-
teristics depending on different encode vector sizes. The
size of the prefix vector expresses a number of frequent
text patterns and infrequent gap patterns (in B) to be re-
placed by symbols. So, the total amount of B needed to
hold the encoding scheme is approximatelyNumberOfIn-
tervals*6+PrefixVectorSize, assuming 4-B pointers to prefix
string starts, 1 B to express a prefix length, and to specify

interval type: peak, edge, or gap. The encoding scheme size
depends on implementation and may vary within a 10–20%
range.

At the high end, our method compresses 5 MB into un-
der 1 MB of order-preserving code, yielding 5.422 compres-
sion rate and using extra 183 KB main memory B to hold
the compression scheme. CPU time needed for compres-
sion/decompression is marginal compared to CPU cost of
a single key insertion or retrieval. Compared to removing
only trailing blanks by the run-length order-preserving com-
pression (Antoshenkov et al. 1994), which is currently part
of Oracle Rdb, and which yields 1.903 compression rate,
we deliver extra 2.85 compression. This compression, ap-
plied to the same data stored along with data records, will
yield the same five-fold compression or almost three-fold
compression on top of the commonly used order-indifferent
run-length compression of repeated characters.

If one wants to minimize the main memory area occu-
pied by the compression scheme, one can pick the low-end
scheme which takes only about 28 KB of main memory and
still delivers a significant 3.388 compression factor, bringing
5 MB down to 1.5 MB.

For our next experiment we chose a collection of elec-
tronic mail similar to that used for text compression bench-
marks. We extracted 666 666 word occurrences, converted
them to uppercase, and padded them with blanks to the max-
imum size of 15 letters. The compression characteristics for
this dataset are presented in Table 4.

Again, the equalizing algorithm manages to compress
word occurrences put into a 15-character table attribute up
to six times and to perform 2.668-fold extra compression on
top of the order-preserving compression that removes trailing
blanks. The traditional, order-indifferent compression meth-
ods, as summarized for five different plain source texts by
Bell et al. (1990, Appendix B), have low compression rates
of 1.59–1.77 delivered by Huffman and some flavors of Ziv-
Limpel coding, and high compression rates of 3.02–3.56 de-
livered by “prediction by partial match”, dynamic Markov,
and “WORD” compressions.

Since order-indifferent compressions of texts do not
count any padding blanks, we should compare our pad-
less 2.668 rate with the overall range of 1.59–3.56 produced
by known order-indifferent methods. Our rate falls slightly
above the traditional median of 2.575, and it would be fair
to say that we achieved about the average rate of order-
indifferent compressions. The fairness of this comparison
is only slightly compromised by two unavoidable factors:
order-indifferent compressions take advantage of frequent
phrases stretching across word boundaries (this feature is de-
liberately excluded from the order-preserving setting) and,
on the other end, order-preserving compression algorithms
do several passes through the source or its random sub-
set (whereas order-indifferent compression normally is re-
stricted to one pass).

As we have already mentioned in the previous sec-
tion, there remains room for compression rate improvement,
which, in the future, may bring the order-preserving com-
pression rate substantially closer to the best rates avail-
able today. For database applications, however, we should
be looking at absolute rate six and count its relative im-
provements compared to other compression methods used

38

Table 3. Compression of global name occurrences. HereWeight Wstands for a threshold
above which a peak or edge with a productPrefixLength*PrefixFrequencyshould be in-
cluded in the vector of encode intervalsE. Also, Compression rateis a ratio SourceData-
Size/CompressedDataSize, (trailing blanks only)shows a rate of compression which encodes
only trailing blanks,Number of intervalsis the encode vectorE length (i.e.,K), and Size of
prefix vectoris a total number of B occupied by prefixes in vectorQ

Compression rate Compression rate Number ofE Size of prefix WeightW
(trailing blanks only) intervals vectorQ

5.422 1.903 9204 128125 96
4.675 1.903 5242 71178 160
3.388 1.903 1464 18925 512

Table 4. Compression of email word occurrences.Compression rateis the SourceData-
Size/CompressedDataSize, (trailing blanks only) is the compression which encodes only trailing
blanks,Number of intervalsis the encode vectorE length,Size of prefix vectoris a total number
of B occupied by prefixes in vectorQ, W is the threshold forPrefixLength*PrefixFrequencyto
be included in the encode vectorE

Compression rate Compression rate Number ofE Size of prefix WeightW
(trailing blanks only) intervals vectorQ

6.009 2.252 22752 197157 114
5.218 2.252 5147 40179 48
4.318 2.252 735 5142 384

in databases. Unfortunately, there are no database bench-
marks that incorporate the effect of data compression into
its metrics. On the contrary, a typical database benchmark
attempts to avoid any compression impact.

For example, Wisconsin benchmark defines the con-
tent of its three text fields as picked from a set of strings
“$xxxxxxxxxxxxxxxxxxxxxxxxx@xxxxxxxxxxxxxxxxxxxxxxxx#”
where character variables $, @, and # take their values from
the alphabet (A, B, . . ., V) and cover all possible permu-
tations of those. When we ran our equalizing compressor
against the set of these 10 648 different strings, it took it
2 min to discover the underlying pattern, create a 74-interval
encode vector, and compress the string set 11 886 times. Re-
call from Gray (1993) that in the benchmark relations there
are three such text fields, comprising 75% of a relation space.
With our compression automatically applied at creation of
relations and indexes, we should look at 3–4 times smaller
tables and some indexes shrunk many times compared to
the benchmark authors’ intention. In our view, future bench-
marks should support compression measurements as an es-
sential database feature, instead of attempting to generate
uncompressable text.

10 Conclusion

We demonstrated here that the full power of dictionary en-
coding can be applied to order-preserving string compres-
sion. Common to all dictionary encodings, our encoding is
very fast, but, being cast for order preservation, our method
differs drastically from the traditional ones: no “learn while
encode one long string” as in Lempel-Ziv, but rather search
for commonality in a large number of short strings. For ex-
ample, when compressing an ordered set of car license plate
strings, one wins a great deal by detecting all-digit and all-
letter position areas and working with them individually; one

also wins by excluding unused letter combinations from the
source string space. To utilize these potentials, we defined
encode/decode procedures for position-dependent, position-
independent, and mixed cases, and also considered arbitrary
restrictions by dealing with any set ofL-long strings.

Aiming at the optimal compression rate, we uncovered
the underlying structure of compression-suitable encoding
as a set of peaks surrounded by edges and separated by
gaps [this structure yields better compression than zilch sym-
bols (Zandi et al. 1993)]. Then we explored probabilistic
(frequency-based) optimality and found that frequency bal-
ancing in the encoder leads toward the optimal dictionary
selection and that the original frequency table disbalancing
helps to determine optimal trailing patterns. These findings
are incorporated in the dictionary building and frequency
blending algorithms. It turns out that encoding speed opti-
mization is closely related to optimization of the compres-
sion rate, hence the above algorithms resolve both tasks si-
multaneously.

Order-preserving compression based on dictionary/arith-
metic pair matches similar order-indifferent compression, de-
livering the identical compression rate with a limited number
of extra partitions. This suggests that in database systems,
many or all table fields can be compressed without losing
the order, and then used without decompression for compar-
ison in select, sort, merge join, and index B-trees, improving
storage utilization and operational speed, provided that, for
join, fields from common domains share encode vectors.

References

1. Antoshenkov G, Lomet D, Murray J (1994) Order-preserving key com-
pression. DEC Cambridge Research Laboratory, Tech Rep, July

2. Baer J, Lin Y (1989) Improving quicksort performance with codeword
data structure. IEEE Trans Software Eng 15: 622–631

39

3. Bayer R, Unterauer K (1977) Prefix B-trees. ACM Trans Database Syst
2: 11–26

4. Bell TC, Cleary JC, Witten IH (1990) Text Compression (Adv. Ref.
series). Prentice-Hall, Englewood Cliffs, NJ

5. Blasgen MW, Casey RG, Eswaran KP (1977) An encoding method for
multifield sorting and indexing. Commun ACM 20:874–878

6. Elias P (1975) Universal codeword sets and representations of the in-
tegers. IEEE Trans Inf Theory, 21: 194–203

7. Graefe G (1993) Query evaluation techniques for large databases. ACM
Comput Surv 25: 73–170

8. Gray J (ed) (1993) The benchmark handbook for database and trans-
action processing systems, 2nd edn. Morgan Kaufmann, San Mateo,
Calif

9. Hu TC, Tucker AC (1971) Optimal Computer Search Trees and
Variable-Length Alphabetical Codes. SIAM J Appl Math 21:514–532

10. Huffman DA (1952) A method for the construction of minimum-
redundancy codes. Proc IERE 40:1098–1101

11. Moffat A, Zobel J (1992) Coding for compression in full-text retrieval
systems. Proceedings of Data Compression Conference, Snowbird, UT,
pp 72–81

12. Zandi A, Iyer B, Langdon G (1993) Sort order preserving data compres-
sion for extended alphabets. Proceedings of Data Compression Con-
ference, Snowbird, UT

13. Ziv J, Lempel A (1978) Compression of individual sequences via
variable-rate coding. IEEE Trans Inf Theory 24:530–536

