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Abstract. A method of analysing join algorithms based For example, if it takes 25 ms to locate the average disk
upon the time required to access, transfer and perform thpage and 5ms to transfer it from disk to memory, then read-
relevant CPU-based operations on a disk page is proposethg two consecutive pages takes 35 ms, whereas reading two
The costs of variations of several of the standard join al-random pages takes 60 ms. When the cost of a join operation
gorithms, including nested block, sort-merge, GRACE hashis calculated, the difference in this time should be taken into
and hybrid hash, are presented. For a given total buffer sizegccount.
the cost of these join algorithms depends on the parts of the The CPU cost of a join should be taken into account.
buffer allocated for each purpose. For example, when joinExperience with the Aditi deductive database (Vaghani et
ing two relations using the nested block join algorithm, theal. 1994) has shown that the disk access and transfer times
amount of buffer space allocated for the outer and inner recorrespond to 10-20% of the time taken to perform a join.
lations can significantly affect the cost of the join. Analysis Thus, the CPU time is an important factor when determining
of expected and experimental results of various join algo-the most efficient method to perform any given join.
rithms show that a combination of the optimal nested block  There have been a number of join algorithms described in
and optimal GRACE hash join algorithms usually provide the past, none of which are optimal under all circumstances.
the greatest cost benefit, unless the relation size is a smale provide analyses of some of the more common of these.
multiple of the memory size. Algorithms to quickly deter- The nested block (nested loop) algorithm and the sort-merge
mine a buffer allocation producing the minimal cost for eachalgorithm are the algorithms used in most current database
of these algorithms are presented. When the relation size isnplementations. The nested block algorithm is used when
a small multiple of the amount of main memory available a small relation is joined to another, and the sort-merge al-
(typically up to three to six times), the hybrid hash join al- gorithm is used for larger relations (Blasgen and Eswaran
gorithm is preferable. 1977). For a while it was believed that the sort-merge join
was the best possible algorithm (Merrett 1981); however,
Key words: Join algorithms — Minimisation — Optimal the description of join algorithms based on hashing (Kitsure-
buffer allocation gawa et al. 1983; DeWitt et al. 1984) indicated that this is
not necessarily true. DeWitt et al. compared the sort-merge,
simple hash, GRACE hash and hybrid hash join algorithms
and concluded that hybrid hash has the lowest cost. Some
researchers are still unsure. For example, Cheng et al. (1991)
1 Introduction claimed that when memory is large the sort-merge and hy-
brid hash join algorithms have similar disk 1/0 performance.

In the past, the analysis of join algorithms has primarily However, the hybrid hash algorithm is regarded as one of

consisted of counting the number of disk pages transferred€ Pest algorithms for performing the join. A survey of join
during the join operation, as this has been perceived as th@!90rithms appears in Mishra and Eich (1992).

dominant cost of the join algorithm. However, the difference  Each of the afore-mentioned articles typically uses the
between the time taken to locate a single disk page analymber of pages trfinsferred in its description of the cost of
transfer a single disk page is significant. The time takendisk operations. Th|§ assumes that thg cost of transferring a
to locate the page dominates. Hence, the difference betwed}imPer of consecutive pages at once is the same as transfer-

transferring two consecutive disk pages and two random disking them individually from random parts of the disk. Hag-
pages is quite significant. mann (1986) argued that, for current disk drive technology,

when a small number of pages is transferred, the cost of lo-
e-mail: * evan@cs.mu.oz.au cating the pages is much greater than the cost of transferring
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the number of disk accesses. When minimised, he showe8ect. 3 a generalisation of the two hash methods is described
that half the number of pages of the memory buffer shouldand we show how to maximise the buffer usage to reduce the
be devoted to each relation. Under the previous cost modehumber of disk seeks. Minimisation algorithms are described
the inner relation is provided with one page of memory, for some of the join algorithms in this section. In Sect.4 an
and the remaining memory is devoted to the outer relationanalysis of expected results is presented and in Sect.5 some
The original cost model is still widely used, for example, experimental results are reported. In Sect. 6 we discuss how
in Omiecinski (1991), Omiecinski and Lin (1992), Walton non-uniform data distributions may be handled, in Sect.7
et al. (1991) and Hua and Lee (1991). Our analysis is ave discuss multiple joins, in Sect.8 we discuss parallelism,
generalisation of these two cost models and allows the relaand in the final section we present our conclusions.
tive, or absolute, cost of each disk and CPU operation to be
specified.

Others have used a similar cost model to ours wher2 Join algorithms
evaluating their algorithms, for example, Pang et al. (1993).
However, they do not attempt to optimise the buffer usagein the following analyses of the nested block, sort-merge,
based on this information and often read a page at a tim&RACE hash and hybrid hash join algorithms we make a
from disk during each 1/O operation. Graefe (1993) notednumber of assumptions. In common with the articles men-
the importance of reading and writing clusters of pages. Hetioned previously, we assume that the distribution of records
stated that, for sorting, “the optimal cluster size and fan-into partitions is uniform for the join algorithms based on hash-
basically do not depend on the input size.” This implies thating. In Sect. 6 we describe a method which will work when
the cluster size should be a small multiple of the page sizethe data is not uniformly distributed.
In his example, a cluster size of 10 pages was optimal, while  We assume that a small amount of memory is available,
a cluster size of 7 pages produced a similar result to the opin addition to that provided for buffering the pages from disk.
timal cluster size. In Sect. 5, we show experimentally, usingFor example, we allow an algorithm to require a pointer or
the GRACE hash join algorithm, that a similar cluster sizetwo for each page of memory. This additional memory will
produces results which are not close to optimal. We believaypically be thousands of times smaller than the size of the
that a minimal buffer allocation should be calculated ratherpuffer.
than using a single ad hoc cluster size for all joins. The notation used in the analysis of the cost of each

In this article, we present algorithms to reduce the costalgorithm is given in Table 1. A join operation consists of
of performing a join by searching for an optimal buffer size. taking two relations,R1 and R,, and producing a result re-
We refer to a set of buffer sizes as a buffer allocation. Wherlation, Rz. We denote the number of pages of a relatiyn
we refer to a minimal buffer allocation we are referring to a asV,.. We assume, without loss of generality, that< V5.
local minima. However, when we use the word “optimal”, We denote the total number of pages in memory avail-
we are referring to the global minimum. In Sect.4.5 we able for performing the join a$. Each join operation di-
provide results in which, for all the tests we performed, thevides this memory up into different numbers of pages for
minimal buffer allocation was the optimal buffer allocation. performing different parts of the operation. For example,
However, we have no proof that this will always be the casethe nested block join requires part of the memory for each

The use of an extent-based file system, even under UNDOf the three relations. These are denofed B> and Bpg,
(McWoy and Kleiman 1991), will provide greater support and their sum is usually the total number of pages available
for our technique than standard file systems which do notB; + B, + Br = B. Similarly, the partitioning phase of the
guarantee that consecutive pages are even on the same phybrid hash algorithm divides the memory into blocks of
of the disk. Although standard file systems do typically try to pages for reading a relation int8;, and writing a number
cluster contiguous pages, extent-based file systems achieve of partitions out throughBp, while using some memory
this to a greater degree. We will show that simply using oneBy for a hash table to join the records.
of these file systems alone does not produce optimal results. We denote the time taken to perform an operatioas

Using our cost model, we will demonstrate that the costT,. Each operation is a part of one of the join algorithms,
of calculating a minimal buffer allocation and then perform- such as transferring a page from disk to memory, or parti-
ing the join using the GRACE hash join algorithm is signif- tioning the contents of a page. Table 1 contains the default
icantly superior to the standard version of the hybrid hashvalues used to calculate the results below. The disk times,
join algorithm. It is usually superior to the same operationsTy and7y, were based on a disk drive with 8 KB pages, an
using the hybrid hash join algorithm with a minimised buffer average seek time of 16 ms, and which rotates at 3600 RPM.
allocation when the amount of main memory not large. TheThe CPU times, and sorting constant, were based on the op-
hybrid hash join algorithm is generally regarded as havingerations which would be performed on a Sun SPARCstation
the lowest cost of all join algorithms when the relation sizes10/30.
are larger than the memory in which the join is to take place. ~ We denote the total cost of an operatioras C;. These
When the time taken to calculate the minimal buffer alloca-operations are the cost of a join algorithm, such as the cost
tion is taken into account this is not usually the case, unlesf the nested block algorithnd/\g, or a significant part of
the relation size is a small multiple of the size of main mem-a join algorithm, such as the cost of the partitioning phase
ory (typically up to three to six times). of the GRACE hash join algorithn€;pgtition-

In the next section we present four join algorithms, the  The cost of locating a page on disK, would typically
nested block, sort-merge, GRACE hash and hybrid hash albe the sum of the average seek time and the average latency
gorithms. Each join algorithm is described and analysed. Irtime. However, the maximum seek and latency times could
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Table 1. Significant notation used in cost formulae

1 Number of pages in relatioR;

Vs Number of pages in relatioR,

Vr Number of pages in result of joining relatiod and R,

B Number of pages available in memory for use in buffers

By Number of pages in memory for relatid®y

B Number of pages in memory for relatidr,

Br Number of pages in memory for result

By Number of pages in memory used for a hash table

By Number of pages in memory used for an input buffer

Bp Number of pages in memory used for each partition

P Number of partitions created on each pass

0 Number of passes during the partitioning phase

Tc Cost of constructing a hash table per page in place in memory  (0.015)
Ty Cost of joining a page with a hash table in memory (0.015)
Tk Cost of moving the disk head to a page on disk (0.0243)
Ty Cost of merging a page with another in the sort-merge algorithm (0.0025)
Tp Cost of partitioning a page in memory (0.0018)
Ts Cost of sorting a page in memory (0.013)
Tr Cost of transferring a page from disk to memory (0.00494)
ks Sorting constant (0.00144)

CNng  Cost of the nested block join algorithm
Cgpm  Cost of the sort-merge join algorithm
CgH Cost of the GRACE hash join algorithm
CHyH  Cost of the hybrid hash join algorithm

be used if desired, giving an upper bound on the cost of each Using Eq. 1, we can derive the cost of transferring a set

operation. of V, disk pages from disk to memory, or from memory to
We assume that the cost of a disk operation, transferringlisk, through a buffer of sizé,.. It is given by

a set ofV, disk pages from disk to memory, or from memory v

to disk, can be given by Co(Ve. By) = {Bﬂ Tw + V. Ty. @

x

Cp=Tg +V, Tp. (1) The cost in Eq. 2 is used in all the join costs given below.

The cost ofn disk operations, each transferrifig. disk
pages, is1C,,. We further assume that the disk head is re-2.1 Nested block
positioned between consecutive reads and writes.

Equation 1 appears to assume that the data is stored coifhe nested block join algorithm is a more efficient version
tiguously on disk. This is not the case when the size of theof the nested loop join algorithm. It is used in a paged disk
data file is large. Additional seeking may occur within the environment. The nested loop algorithm works by reading
file, providing that the chances of this occurring is the sameone record from one relation, the outer relation, and pass-
throughout the file. That is, if there areadditional seeks in ing over each record of the other relation, the inner relation,
V. pages, then there are 2dditional seeks in1Z, pages. If  joining the record of the outer relation with all the appropri-
this is the case, thefir can be composed of the time taken ate records of the inner relation. The next record from the
to transfer a page plus the average seeking cost betweesuter relation is then read and the whole of the inner relation
consecutive pages within the file. Although extra seeks mays again scanned, and so on.
be required, the time taken to do this is usually very small The nested block algorithm works by reading a block of
(smaller than the average seek time for the disk), due taecords from the outer relation and passing over each record
better storage allocation by the underlying file system. of the inner relation (also read in blocks), joining the records

Invalidating the assumption that the disk head is not re-of the outer relation with those of the inner relation. Histor-
positioned between reads and writes would result in a loweically, as much of the outer relation is read as possible on
cost, because the number of seeks (or the time taken by ea&ach occasion. If there afe pages in memoryB — 2 pages
one) would be reduced. Removing this assumption requireare usually allocated to the outer relation, one to the inner
knowledge of how the disk will be used by the join algorithm relation, and one to the result relation. In Hagmann’s analy-
and other processes which may be running on the machinais (Hagmann 1986) half the available memory is devoted to
As this is often not feasible, we use the average seek angdages from the inner relation, and half to the outer relation.
latency times as a basis for our calculations. The performance of this algorithm can be improved by

Equation 1 is a generalisation of the commonly usedrocking backwards and forwards across the inner relation.
cost model that each disk operation consists of transferrind@hat is, for the first block of the outer relation the inner
a single page. We can model this by settifig = 0,77 =1 relation is read forwards and for the second block of the outer
andV, = 1. Equation 1 also generalises the cost model thatelation the inner relation is read backwards. This eliminates
any number of pages can be transferred at the same coshe need for reading one set of blocks of the inner relation
This can be modelled by settirl, = 1 and7r = 0. from disk at the start of each pass, except the first, because
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the blocks will already be in memory. We use this versionare then read. This is repeated on both relations. This max-
of the algorithm in our analysis. imises the size of the sorted partitions without requiring each

We assume that the memory based part of the join igelation to be read more than once, during the sorting phase.
based on hashing. That is, a hash table is created from the During the merge phase, the partitions of each relation
pages of the outer relation, and the records of the inner relaare merged together joining the records from each relation.
tion are joined by hashing against this table to find recordsThe final pass simultaneously merges the partitions of each
to join with. relation and joins the two relations. During the merging

As described above, the total available mematyages, phase,Br pages are reserved for writing the output rela-
is divided into a set of pages for each relatidh, B, and  tion. As each partition requires at least one input page, a
Bg. The general constraints that must be satisfied are:  maximum of B — By partitions of both relations may be

reated prior to the merge phase, if the merging phase is to
e performed with a single pass over each partition.

During the sorting phase, the whole of the available
memory B is used to sort the relations. During the merging
phase, the available memory is divided into sets of pages for

; e each partition of each relation. We assume that these are the
B g%trfé( Crﬁggng:; aiitogée;ﬁgﬁiéé i?ﬁegrgfszﬁlg -1  same size for each partition of a relatid for the [Vi/B]
if Vi > 1. partitions of relationRy, e_mde for the [Vz/B} partitions of _
- relation R,. The constraints that these variables must satisfy
As described abové) < V5, therefore relatio?; isthe  are:

outer relation. It is read precisely oncB; pages at a time,

in [V1/B1] /O operations. Thus, relatioR, will be read

[V1/Bi1] times, B, pages at a time. Each pass over relation Some memor -
' - ; - y must be allocated to each partition and

OR\fére;(rf:?ég]tieO:rSt’ reade; — B, pages due to the rocking theresult:B; > 1, B, > 1andBr > 1if Vg > 1.

The cost of the nested block join algorithm is given by If the time taken to sort a page efrecords in memory
is given byTs = kxlgz and kg = kx, then the time taken
to sortn pages in memory is given by

— The sum of the three buffer areas must not be greate
than the available memony; + B, + B < B.

— The amount of memory allocated to relatidy should
not exceed the size of relatiaR;: 1 < B; < V4.

— The amount of memory allocated to relatidty should

— The sum of the buffer areas must not be greater than the
available memory{V1/B] B; + [V2/B] B, + B < B.

CReadRr; = Clio(V1, B1)
Ccreate = ViTc
CReadR; initial = Cl10(V2; B2)

CJoin initial = V217

T = knzlg(nz)
knx(lgn +I1gx)
n(kslgn+Ts).

CReadR, other = (“B/ﬂ — 1) Cijo(Va — Bz, By) Thus, the time taken to sof# pages can be given 4§ =
B(k‘s |g B+ Ts).
Vi ) - L
Coin other = (’VB:;-‘ B 1) VT, CThe cost of th;;ort(r;ner;)e join algorithm is given by
_ Sort Ry 110 = <“1/0WV1
Cwrite Ry = Cl10(Vr, Br) "
CNB = CReadR; * CCreate CSortR; CPU = [Bw B(kslg B +Ts)
*CReadR, initial + CJoin initial Csort R, 110 = 2C10(V2, B)
*CReadR, other Vs
C = B(kslgB+T.
*+CJoin othert Cwrite Ry Sortk, CPU [Bl (kslo ")
Wil | B V21 [ B
werge e (| 5| | 5, |*| ] ] ) 7
2.2 Sort-merge Merge Read™ B || By B || Bz
+(Vi+ Vo) Tr

The sort-merge join algorithm works in two phases. In the ~ = (Vs + Vo)T
first (sorting) phase, each relation is sorted on the join at- Merge CPU (V2 + Vo) T

tributes. In the second (merging) phase, a record is read from Cwrite Rr = Ci1o(Vr, Br)

each relation and they are joined if possible, otherwise the Cep = C +C

record with the smaller sort order is discarded and the next SM Sort 2y /0 Sortfy CPU

record read from that relation. In this way, each relation is *Csort R, 110 + CSort R, CPU

only read once after it has been sorted. +CMerge Read OMerge CPU
The variant of the sort-merge algorithm, whose cost we +Cns

present below, is similar to that used in the Aditi deductive Write Rp-

database system (Vaghani et al. 1994). Instead of completely This analysis assumes that, at mdst; B, partitions are
sorting each relation, each relation is divided into sorted parcreated during the sort phase. For large amounts of memory
titions, the size of which is the size of the memory buffer. this is likely to be true under normal circumstances, and is
This is performed by reading pages from a relation, sort- certainly enough to compare the sort-merge join algorithm
ing the pages, and writing the pages out. The rMgxiages  with the other join algorithms presented in this article.
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For example, consider a memory buffer of size 16 MB, — Some memory must be allocated to the result during the
ignoring the final output buffer. If we assume 8KB pages, merging phaseBr > 1 if Vg > 1.
this means that a maximum of 16 3®4= 2048 partitions
may be created which are to be merged together on the The cost of the GRACE hash join algorithm is given by
final pass, thus there are 1024 partitions for each relation.

Each partition will be 16 MB in size, thus the maximum i %1
size of each relation is 16 GB if only one sorting and one Cpart:ReadR; = ZPCI/O (’VPz—‘ ’Bf>
merging pass is permitted. A similar analysis shows that if =0
64 MB of memory is available, the maximum size of each & ; %1
relation is 256 GB. Thus, if a large amount of main memory CPart:Write Ry = Z P'Cyio ({Pl-‘ aBP)
is available, one sorting and merging pass is likely to be =1
sufficient. L 77
Cpart:Partition Ry = ZPl ’VP];-‘ Tp
=0
2.3 GRACE hash P Ve
Cpart:ReadR, = Y P'Clio GPZW ,Bz>
Like the sort-merge join algorithm, the GRACE hash join =0
algorithm (Kitsuregawa et al. 1983) works in two phases. In SN Va
the first (partitioning) phase, each relation is partitioned such Cpart:write R, = ZP Ciio GPZW ’BP)
that the partitions of one of the relations can be contained =1
within memory. It may take a number of passes over the re- = Vs
lations to achieve this. In the second (merging) phase, each  CPart:Partition R, = P [le Tp
partition of the outer relation is read into memory in turn, i=0

the corresponding partition of the inner relation is scanned o _ peC %1 B
and the appropriate records joined. The second phase ef- Merge:ReadR; ~ O\ | po| ™1
fectively consists of a number of invocations of the nested
block algorithm. CMerge:Create= P*
The patrtitioning is performed by hashing each record us- ge: o
ing the values of its join attributes and placing the recordC = pro B
in one of the output partitions. The output partition is de- ~Merge:ReadR; initial ~ WO\ | pp| 72
termined by the hash value. The same hash function is used SR
fOI’. each rela.tlc'm, guaranteeing that all the records of one re- CMerge:Join initial = P* Po T;
lation which join with any given record of the other relation

are in the corresponding partition of the other relation. I D{H i

In the cost formulae given below we assume that, during CMerge:ReadRz other = P’ B -1
the partitioning phase, records are read into a buffer of size !
B; and then distributed betweeR output buffers of size Vs
Bp. While we set the number of partitions createdo be <o ({p;ﬂ — B, BZ)
a single value, it could vary for each of thepasses. If a CrviT
large amount of main memory is available, one pass will bo! L = pr [PP“ 1
typically be enough. During the merging phase, the memory Merge:Join other B
buffer is divided in the same way as in the nested block join v
algorithm. The general constraints which must be satisfied X [Pﬂ T;
are:

CWri = C)jo(Vr, B
— The sum of the input and output buffer areas during the Write Ry = C110(V, Br)

partitioning phase must not be greater than the available CGH = CPart:Reade
memory:PBp + By < B. +CPart:Write R,
— Some memory must be allocated as an input alya> +C -
1. Part:Partition R
— Some memory must be allocated to each of the output +CPart:ReadR2

partitions: Bp > 1. +CD m vt n
— The sum of the three buffer areas during the merging Part:Write R,
phase must not be greater than the available memory: *+*Cpart:Partition R,
Bi+B;+Br < B. +*CMerge:ReadR
— The amount of memory allocated to relatidy during ge- !

the merging phase should not exceed the size of relation *CMerge:Create

Ri:1< By <V _ _ *CMerge:ReadR; initial
— The amount of memory allocated to relatiéty during +C e

the merging phase should not exceed the size of relation Merge:Join initial

Ry 1< B, < V. +CMerge:ReadR2 other
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150 4
+CMerge:Join other

+Cwrite Ry

Like the sort-merge join algorithm, this algorithm is
likely to only require one pass over each relation during the 100
partitioning phase. For example, consider the same memory |
buffer of size 16 MB used in the example in the previousy
section. One partitioning pass means that1. The largest ©
size of the outer relation will occur wheR = B — 1, thus
Vi = (B — 1)B;. If we assume that most of the 2048 pages
(16 MB) are allocated td3,, the size of the smaller relation,
relation Ry, will be just under 32 GB. The other relation may
be much larger. By a similar analysis, if 64 MB (8192 pages)
of memory is available, the maximum size of the smaller re- o++—7+——r——rrrrrrr—Tr—T o
lation will be just under 512 GB. In practice, a lower cost e o e e et
may be found by making two passes to partition the data HTeEr O pagesin u er x our_e” aton
when the relations are this large because partitioning rela'{:/'g'_ll'o(égsi/"f_”fe‘i tl"ogk Jon algorithm &%, and B vary. V1 = 100,
tions of this size in one pass requires tit = 1. This is TR PR ST
usually not optimal, as we discuss in Sect. 3.2.1.

—&— Nested block

be useful in practice, its running time must be short, relative
2.4 Hybrid hash to the time taken by the join. To determine how to find the
minimum, we have plotted the cost of the join verdgisin
The hybrid hash join algorithm (DeWitt et al. 1984; Shapiro Fig. 1. Similar graphs are produced for any value$nfl5,
1986) is very similar to the GRACE hash join algorithm. Vz and B in which the nested block join is used. In Fig. 1,
The primary difference is that the hybrid hash join algorithm the value of By is a constant so that the behaviour of the
reserves an area of memory to join records in during thecost variation may be easily observed. However, the shape
partitioning phase. Instead of hashing each record into onef the graph is the same By, is varied. The values df'x
of P partitions during the partitioning phase, each record isand 7 are based on the Wren 6 disk drive, dfid and T’y
hashed into one aP+1 partitions. During the partitioning of were based on the operations which may be performed on a
relation Ry, records which hash into the extra partition are SPARCstation 10/30 using an 8 KB page size. These values
not written out to disk, but are stored in a hash table in thewere shown in Table 1.
reserved area in memory. When relatift is partitioned, The minimum value ofCypg is likely to occur when
records which hash into the extra partition are joined withmemory is well utilised. Memory is better utilised when the
the records of relatiol?; which are stored in memory. The values of the variable®;, B, and By are such that; /B,
amount of memory reserved for this extra partition need notV,/B,, and Vr/Bpg are integers. That is, the size of the
be the same as the expected sizes of the other partitionbuffer allocated to a relation exactly divides the size of the
providing that the extra partition does not overflow during relation. This ensures that no pages in the buffer are wasted
one pass of relatioi;. as a relation is read in. For example, consider a relation of
The basis of the cost of the hybrid hash join algorithm issize 100 pages. Assume that the size of the buffer allocated
similar to the GRACE hash join algorithm, with the addition to this relation may be 10 or 11 pages. To read the relation
of the hash table in memory, which has si2g, during the  will take [100/10] = 10 or [100/11] = 10 read operations,
partition phase. The constraints and costs for the hybrid haskespectively. Clearly, the cost of the disk operations will be
algorithm are given in Appendix A. the same. However, if the relation is allocated 11 pages, 10
pages are not used during the final read operation. It is more
efficient for the relation to be allocated 10 pages and allow
3 Minimising costs the other page to be allocated to the other relation, or to the
result relation.
The equations in Sect. 2 describe the cost of each join algo- Our minimisation algorithm, shown in Fig. 2, works by
rithm. There are a number of methods which could be usedtepping down from the largest values Bf and B, until
to minimise these algorithms, including combinatorial andthe cost is greater than the minimum cost found by a certain
heuristic techniques. We now describe how we determine dactor,¢. It initially sets By = [V1/i], wherei is the smallest
minimal buffer allocation for the nested block algorithm and integer such thaB; < B — 2, and B, = [V2/j], wherej is
the join algorithms based on hashing. the smallest value such th&y + B, < B — 1. It setsByr =
B—B;— B, and calculates the cost, then incremegrasd re-
calculatesB,, Br and the cost. This process continues while
3.1 Nested block the cost is less thafimultiplied by the minimum cost found
for this value ofB;. The final cost is saved s incremented,
To minimise the cost of the nested block join algorithm we andB; is re-calculated. This process continues while the best
minimise C)yg in the presence of two variableB; and Bo. cost for each value of3; is less thany multiplied by the
We then seBr = B—B1—B,. For a minimisation method to minimum cost.
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function minimiseNB({1, V2, VRr)
mincost«— oco, By «— 0,1« 1
while B; #1 do
By — [Vi/i]
if B <B-2 /\31731 then
runcost— oo, B) < 0,j «— 1
while B, #1 do
By — [Va/j]
if Bp<B-B;—1 /\Bé?Bz then
Br <« B—DB1— B
cost« Cng(Va, V2, VR, B1, B2, Br)
Bé «— B>
if cost< runcost then
(B}, B3, By, runcost)— (B1, Bz, B, cost)
else ifcost> ¢ x runcost then

# find the largest integer (almost) dividifg
# a fixed value foB; is a “run”

# find the largest integer (almost) dividirig:

# saveB, to ensure we don't try it twice

# save run best

break # this cost is much worse, so end this run
end if
end if
j—j+1 # prepare for next value aB;
end while
B} — B # saveB; to ensure we don't try it twice

if runcost< mincost then
(5;, B}, By, minc_ost)«— (B}, B3, B}, runcost)
else ifruncost> 6 x mincost then

# save overall best

break # this cost is much worse, so end
end if
end if
i—i+1 # prepare for next value aB;
end while

return mincost, By, B3, By,
end function

Fig. 2. Function for minimising the cost of the nested block join algorithm

It can be shown that the worst case complexity of this

algorithm isO(B%?), assuming that; < aB, wherea is a - PBp -
small constant which is usually less than four. If this condi- ; :

tion does not hold, the nested block algorithm will perform Zr  Br 2P—1 Bp; i Br
worse than the other algorithms, such as the GRACE and . By L

hybrid hash joins, and should not be used. We describe how
the minimisation algorithm performs in Sect. 4. The results
show that the computation time required to find the minimal Fig. 3. Buffer structure of modified hash join algorithm during partitioning
buffer allocation is insignificant. In our tests, it always ran

in less than 0.05% of the execution time of the join.

tition in place using thePBp pages. Pages which are not
completely filled are moved to one of thé2-1 spare pages
based upon its partition number. On the next pass, the con-
tents of each spare page are added to each partition after
If the constraints on the hybrid hash join algorithm are re-partitioning but before the full pages are written out. Incom-
laxed so thaBB = 0 is permitted, and by removing the result pletely filled pages are again saved within the 2 1 spare
buffer By during the partitioning phase wheB;; = 0, the  pages. Thus, only complete pages are written out, except
hybrid hash join algorithm can be generalised to include theafter final read when all pages must be written.

GRACE hash join algorithm. Both of these algorithms, as de- The number of spare pages which are required is, at
scribed in Sect. 2, have separate input and output buffer areagost, 27 — 1.

during the partitioning phase. These two areas can be com-

3.2 A generalised hash join algorithm

bined without affecting the cost equatiot%; (Sect. 2.3)
andCHp (Appendix A) after altering the constraints on each
algorithm.

Figure 3 diagrammatically represents our scheme. A set
of 2P — 1 one page buffers is reserved along with g
and By pages. The remainin§g Bp pages are used as both
the input and output buffers during the partitioning phase.
A relation is read into thé® Bp pages, then it is partitioned
across thePBp + 2P — 1 pages. It effectively tries to par-

— Just before reading each set of pages from disk, at most
P pages can contain records. This is because each output
partition has only one partially filled page active at any
point in time.

All the other pages are considered empty, because pages
which were considered full have been just written out,
and so can be considered to be empty. Theref@rgpare
pages must be available in addition to the ones used for
buffering the relation after a read operation.
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— Any set of N pages can be partitioned in place info 300':

partitions usingV + P — 1 pages.

Each of the records must be moved into one offthear-

titions. This requires” output pages. However, records

are never added to one of the partitions faster than 200 ]
they are taken out of th& pages. Therefore, one of the ]
N pages can be used as an output partition, and at mo@e ] —+— GRACE hash
only P — 1 extra pages are required. O """ 120

The number of pages read from disk during each read oper- 100
ation is PBp. Combining the previous two points, we can
see that the number of spare pages which are required is
2P — 1.
As the number of pages transferred under this scheme is |
the same as the algorithms described in Sect. 2, the number 0T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
of seeks will be the same if the constraints BnBp, By, Number of pagesin buffer for smaller relation
By and Bi are modified appropriately. The cost functions _ . ]
of Sect. 2.3 and Appendix A are still valid. The constraints {9, % S5 of GRACE hash jom agorth asi and Bz vary.
and minimisation algorithm for the modified GRACE hash '~ '* oRT R S ' TEESP
algorithm are presented in the next section, and the con-
StraintS for the mOdIerd hyb“d haSh algorithm are discussed It can be Shown that the upper bound on the Comp'ex-

in Appendix A. ity of this minimisation algorithm i)(V5), assuming that at
most one partitioning pass is made over each relation. There-
fore, the size of the two relations is of the forvh = a.3?
3.2.1 Modified GRACE hash andVs = 3B?, wherea <  anda < 1. The performance of
this algorithm is discussed in Sect. 4. Like the nested block
The buffer arrangement of our modified GRACE hash join minimisation algorithm, the results show that the compu-
algorithm during the partitioning phase is the same as thatation time required to find the minimal buffer allocation
described in Fig. 3, ifBr and By are ignored. For the cost is insignificant. It is more expensive than the nested block
CgH to be valid, the constraints that change are: minimisation algorithm, but the running times of the joins
. for which it finds minimal buffer allocations are longer. In
- PBp+2P o 1< B instead ofPBp + B; < B. our tests, it always ran in less than 0.05% of the execution
— Br=PBp instead OfB] > 1. time of the join.

The other constraints remain valid.
We now consider the maximum practical size of the re-
lations under this scheme before two passes must be madeComputational results
over the data to partition it. If we assume a 16 MB buffer
area, an 8KB page size, and CPU times as given in Taln this section we provide examples of the expected per-
ble 1, the largest relation which will be partitioned in one formance of the join algorithms under the cost model de-
pass is around 15.9 GB in size. For relations larger than thisscribed in Sect. 2. We compare the nested block join algo-
it is better to make two passes over the relation in whichrithm, the GRACE hash join algorithm, and the hybrid hash
two pages are allocated to each output partition, than it igoin algorithm with the respective version of each algorithm
to make only one pass where each output partition is onljcommonly described in the literature. We then compare the
allocated one page. Note that this is similar to the capacityexpected performance of all four join algorithms described
of the sort-merge algorithm when only one pass is permittedin Sect. 2 on a variety of joins on relations of different sizes.
To minimise the cost of the modified GRACE hash join In Sect.5 we report on our experimental results.
algorithm, we must minimis€ gy in the presence of four In the remaining sections, when we refer to the optimised
variables,B1, By, P and p. We setBr = B — By — By, or minimised GRACE hash (hybrid hash) algorithm we mean
Bp = [(B - (2P — 1))/P] and B; = PBp. To determine  the modified GRACE hash (hybrid hash) algorithm described
how to find the minimum we have plotted the cost of the joinin Sect. 3.2.1 (Appendix B). When we refer to the standard
versusB; in Fig.4, in the same way that we did with the versions of both algorithms, we mean the original versions
nested block algorithm. The resulting graph is very similarof both algorithms with the original buffer allocations.
to the graphs produced using the nested block algorithm, as
shown in Fig. 1.
We use a minimisation algorithm for the GRACE hash 4.1 Nested block
join method similar to the one which minimises the nested
block join algorithm. The primary difference is that the value Using the buffer arrangement which results in a minimal
of By is derived from the value of” and the number of value ofCl\g is obviously desirable; determining it requires
passes. Instead of changify directly, the values o and  some computational cost. We would like to know whether
p are changed. The minimisation algorithm is presented inthe improvement in performance makes this additional cost
Fig. 5. worthwhile. To this end, we have plotted the cost of each
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function minimiseGH{1, V2, Vi, B)

(mincost BY, B3, By,) «— minimiseNB(/1, V2, Vg, B)
P"—0,p" 0
runcost— oo, p «+— 1
do

prevcost+— runcost

fori< 2 tol do

runcost«— oo

for P «— “/vl/i(Buﬂ to | B/3] do

By — [V1/iPP]
if By < B—2 then

(cost Bz, Bg) « minimiseBz(V1, V2, Vg, B, B1, P, p)

if cost< mincost then

(mincost runcost By, By, B},, P*, p*) « (cost cost By, Bz, Br, P, p)

else if cost< runcost then
runcost«— cost
else ifcost> 6 x runcost then
break
end if
end if
end for
end for
p—ptl
until prevcost< runcost
return mincost, By, By, By, P*, p*
end function

function minimiseBy(V1, V2, Vg, B, Bi, P, p)
mincost«— oo, B) — 0,11
while B}, #1 do
By — Wz/iP”W
if Bb<B—-B;—1 /\Bé?Bz then
Br—B—B,—B;
cost— CgH(V1, V2, VR, B1, B2, Br, P, p)
if cost< mincost then
(B3, B},, mincost)« (Bg, B, cost)
else if cost> §x mincost then
break
end if
B} — B>
end if
i—i+1
end while
return mincost, B3, B;z
end function

# find largest integer (almost) dividing relation size

# save best values

# this cost is much worse, so finish
# saveB; to ensure we don't try it twice

# prepare for next value aB»

Fig. 5. Functions for minimising the cost of the GRACE hash join algorithm

algorithm for a range of values &, for fixed values of,
Vgr and B. This is shown in Fig. 6.

If we assume a page size of 8 KB; = 100 000 approx-
imately corresponds to a 781 MB relatioliry = 10000 to
a 78 MB result relation, and3 = 4096 to 32 MB of main

in which By = B — 2, B, = Bg = 1. The “Nested block
(Hag)” line corresponds to the version proposed by Hagmann
(1986), in whichB; = B, = (B — 1)/2, Br = 1. Note that
while Hagmann'’s version is faster than the standard version
for larger relations, it is approximately twice as slow for

memory used during the join operation. Figure 6 is a rep-most of the smaller relations in whidB/2 < V3 < B. This
resentative comparison of the nested block algorithm for allis in marked contrast to the results Hagmann reported, and
values ofV5, Vi and B we tested. For example, a graph of is due entirely to our more realistic cost model.

identical shape is produced whéa = 1000,V = 100 and
B = 64.

Our results indicate that the shape of the graphs are gen-
eral and independent of values &, Vr and B. The stan-

The “Nested block (opt)” line corresponds to the minimal dard nested block algorithm increases its cost substantially
value of Cpg calculated using the minimisation algorithm each time the size oV} increases byB — 2. This is be-
in Fig.2. Table 2 shows a number of the minimal valuescause an additional pass over the second relation is required

for By, B, and By for various values of;. The “Nested

at each of these points. Similarly, Hagmann’s version in-

block (std)” line corresponds to the standard version of thecreases its cost as the size Wf increases by 8 — 1)/2,
nested block algorithm commonly described in the literature for the same reason. The minimal version continually ad-
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Table 2. Minimal buffer allocation ofB;1, B, and By, for the nested block
join algorithm whenV, = 100000 (781 MB),Vrg = 10000 (78 MB),
B = 4096 (32 MB).

15000 -]
Vi By B, Bgr
1 1 3226 869
2048 2048 1613 435
4000 4000 73 23
4096 2048 1852 196
8000 4000 79 17

8192 2731 1235 130
100000 4000 90 6 %000

100000 | = 0 T T T
PR 0 200 400 600

PREN Outer relation size (MB)

800009 Fig. 7. Cost of the GRACE hash join algorithm & varies.V; = 100 000

(781 MB), Vi = 10000 (78 MB),B = 4096 (32 MB)

10000 ! — GRACE hash (opt)
vt GRACE hash (std)

Cost (s)

Z 50000 ——— Nested block (opt)
g | LW e Nested block (std)
O — — — - Nested block (Hag)
40000 when V; = 100000 (781 MB) it takes 34% of the time
of the standard version. Like the nested block minimisation
20000 algorithm, the time taken by the GRACE hash minimisation
algorithm is small. This is discussed further in Sect. 4.5.
0 T T T
0 200 400 600 i . .
Outer refation size (MB) 4.3 Hybrid hash and simulated annealing
Fig. 6. Cost of the nested block join algorithm &3 varies.V, = 100 000 . . . . o
(781 MB), Vi = 10000 (78 MB),B = 4096 (32 MB) While using the buffer arrangement which results in a mini-

mal value ofCyy is desirable, determining it using a min-

imisation algorithm similar to the GRACE hash minimi-
justs the size of each of the buffels, B, and By for each  sation algorithm requires a huge computational cost, often
relation to minimise the need to perform additional passes.much longer than performing the join. To attempt to reduce
The results show that a significant improvement in per-this, we used simulated annealing (Aarts and Korst 1989) to
formance is gained by using the buffer arrangement whickfind a good buffer arrangement in a much shorter period of
results in the minimal value of\g. For example, when time. The parameters to the simulated annealing algorithm
V1 = 8000, the minimal version takes 46% of the time of were chosen so that it would terminate in around 10s, al-

the standard version and 51% of the time of Hagmann’s verthough all our tests times actually varied between 4s and
sion. When relatiorf?; can be contained within the memory 21 s, This is discussed further in Sects. 4.4 and 4.5.
buffer, an improvement is still achieved by selecting better  We have plotted the cost of each algorithm for a range
values forB, and Bg. In addition, the minimisation algo- of values ofV; for the same fixed values &, Vz andB as
rithm is very fast. This is discussed further in Sect.4.5.  the nested block and GRACE hash algorithms. The result of
this is shown in Fig. 8. The “Hybrid hash (opt)” line corre-
sponds to a good value @fy calculated using simulated
4.2 GRACE hash annealing. Simulated annealing does not guarantee to deter-
. L . ) mine the minimal value at each point. However, the shape
As with the nested block join algorithm, calculating the o the graph indicates that it performs well. The “Hybrid

minimal value of Cgy requires some computational cost. hash (std)” line corresponds to the standard version of the
We would like to know if the improvement in performance hybrid hash algorithm, in whiciB; = B — 2, B, = By =

which can be achieved makes calculating the minimal arg,=pB;=1,P= [(Vi— (B —2)/((B-2)—1)] +1 and
rangement worthwhile. By =B—P— By — Bp.

We have plotted the cost of each algorithm for a range of "~ Ag \with the nested block and GRACE hash join algo-
values ofV1 for the same fixed values 0%, Vr andB used  (ithms, the results show that a significant improvement in
in the previous section. The result of this is shown in Fig. 7-perf0rmance is gained by using the buffer arrangement pro-
The “GRACE hash (opt)” line corresponds to the minimal viding a good value ofCyy. For example, wheri; =
value of Cy calculated using the minimisation algorithm. 15000 (94 MB) the minimised version takes 34% of the
The "GRACE hash (std)” line corresponds to the standardime of the standard version, and wheh = 100000 (781
version of the GRACE hash algorithm, in whiéh = B—2, ) it takes 35% of the time of the standard version.
B,=Bgp=1,andP =B —1.

As with the nested block algorithm, the results show
that a significant improvement in performance is gained by4.4 Join Algorithm Comparison
using the buffer arrangement providing the minimal value of
CgH- For example, wheir; = 12000 (94 MB), the minimal ~ We have seen that using a more realistic cost model for deter-
version takes 30% of the time of the standard version, ananining memory buffer usage for the nested block, GRACE
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15000 —

10000 — Hybrid hash (opt)

rrrrrr Hybrid hash (std)

Cost (s)

5000 !

0 2&)0 4£)O 62)0

Outer relation size (MB)
Fig. 8. Cost of the hybrid hash join algorithm &4 varies.V, = 100 000
(781 MB), Vr = 10000 (78 MB),B = 4096 (32 MB)

—— Nested block (opt)
rrrrrr Sort-merge (opt)

— — — - GRACE hash (opt)
—-—-- Hybrid hash (opt)

T T T
0 200 400 600
Outer relation size (MB)

Fig. 9. Join algorithm comparison &g varies.V, = 100000 (781 MB),
Vkr =10000 (78 MB),B = 4096 (32 MB)

Table 3. Range of random values fdr, V5, Vg in pages

Variable Minimum Maximum
%1 97 (0.8 MB) 199627 (1560 MB)
Vo 11926 (93 MB) 399450 (3121 MB)
Vr 60 (0.5MB) 256119 (2001 MB)

may be contained within main memory, the nested block al-
gorithm performs the besFigures 9 and 10 show that this

is still the case under our cost model. Note that our defini-
tions of the GRACE and hybrid hash algorithms presented
in Sect. 2 reduce to the nested block algorithm when no par-
titioning passes are made over the data; hence the costs are
the same. As the size of the outer relation gets larger, the
other join algorithms all perform better than the nested block
algorithm.

The result that is different to that reported in the past us-
ing the standard cost model, such as by DeWitt et al. (1984),
is that, in generalthe GRACE hash algorithm performs as
well as the hybrid hash algorithm for large relations relative
to the size of main memarifhe size of a large relation is
defined to be some small multiple of the size of main mem-
ory (for example, three or ten times). When the relation size
is larger than the buffer size but still small, the hybrid hash
algorithm performs better than all the other algorithms. This
is because a large percentage of the relations may be joined
during the first pass over the data. Thus, the amount of data
which does not have to be written to disk, read back in, and
then joined, will be large enough to ensure that the cost of
the hybrid hash algorithm is significantly smaller than that
of the other methods.

Using the standard cost model, as reported in DeWitt
(1984), the sort-merge algorithm does not perform as well as
either hash-based algorithm, despite the fact that our version
of the sort-merge algorithm has a lower cost than the version

hash and hybrid hash join algorithms can result in a signifi-reported.

cant improvement in the performance of the join algorithm.

We now compare the four join algorithms, using the same _ _ _ S
example as above. The result of this is shown in Figs. 9.5 Join algorithm comparison: minimisation times
and 10. Figure 10 contains an enlarged version of part of

Fig. 9.

In the previous four sections, we have shown that the mini-

Using the standard cost model, others (including Blasger{“al versions of each of the aIgo'rithms will perform as well
and Eswaran 1977: DeWitt et al. 1984: DeWitt and Gerber®" better than the standard versions. Therefore, whether the

1985; Shapiro 1986) reported thahen the outer relation

15000

—— Nested block (opt)
rrrrrr Sort-merge (opt)

- — = GRACE hash (opt)
—-—-- Hybrid hash (opt)

10000

Cost (s)

T T T T 1
0 50 100 150 200 250
Outer relation size (MB)

Fig. 10. Join algorithm comparison &g, varies.V, = 100000 (781 MB),
Vr = 10000 (78 MB),B = 4096 (32 MB)

minimal versions are the best to use in practice will depend
on the time taken to find the minimal buffer allocation in
each case. The sum of the time taken to determine the min-
imal buffer allocation and then to execute the join, must be
faster than simply using the standard version of each algo-
rithm for this scheme to be worthwhile.

To determine the likely relative performance of each join
and minimisation algorithm, we generated 1000 random join
queries. For each query, the valuefivas randomly chosen
to be one of 128, 256, 512, 1024, 2048, 4096 or 8192. If we
assume pages are 8 KB, this tests main memory sizes from
1MB to 64 MB. The values of4, V> and Vi were chosen
randomly such that; < V5. The extreme values for these
variables are shown in Table 3.

For each of these queries, the minimisation algorithm for
the nested block and GRACE hash join algorithms were used
to determine the minimal values. Simulated annealing was
used for the extended version of the modified hybrid hash
algorithm which generalises both the hybrid hash and the
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Table 4. Number of minimal buffer allocations for each join algorithii.B, nested block;SM, sort-merge;
GH, GRACE hash;H H, hybrid hash

Memory  Total Number of minimal costs for each join algorithm

size number  Excluding minimisation time Including minimisation time

B ofjoins NB SM GH&HH GH HH NB SM GH&HH GH HH
128 139 0 0 6 127 6 0 0 0 136 3
256 136 0 0 2 131 3 0 0 0 133 3
512 131 0 0 2 124 5 0 0 0 127 4

1024 142 1 0 0 123 18 1 0 0 123 18

2048 132 4 0 0 94 34 4 0 0 100 28

4096 156 2 0 0 59 95 2 0 0 68 86

8192 164 5 0 0 6 153 5 0 0 7 152

GRACE hash algorithms. This was done so that the GRACEhybrid hash join algorithm, which encompasses both the hy-
and hybrid hash algorithms could be compared equally, andbrid hash join method and the GRACE hash join method,
to see if simulated annealing was, in fact, determining aneeds to be improved significantly before it will be gen-
minimal buffer allocation. An exhaustive search was alsoerally useful across all memory buffer sizes. The GRACE
performed for the sort-merge algorithm, and = 128 and  hash minimisation algorithm often performs better than the
B =256 for the nested block and GRACE hash algorithmshybrid hash join algorithm minimised using the simulated
to determine the optimal values. annealing algorithm, particularly for smaller buffer sizes.
The performance of the nested block and GRACE hash Interestingly, for 258 of the 988 join queries in which
minimisation algorithms was very good. The nested blockalgorithms other than the nested block algorithm produce
and GRACE hash minimisation algorithms always found thethe minimal cost, the hybrid hash algorithm minimised us-
optimal value for the buffer size® = 128 andB = 256, ing simulated annealing produced a minimal value such that
and always ran in less than 0.05% of the time to performBy = 0. That is, the GRACE hash method resulted in a
the join. The buffer allocation found for each of the 1000 lower cost than the traditional hybrid hash method in which
joins was different from the standard buffer allocation in all By > 1 is a constraint. Although the minimal hybrid hash
cases. While it is possible that the standard buffer allocatioralgorithm reduced to the GRACE hash algorithm, it is possi-
may be optimal for some joins, we believe that there areble for the simulated annealing algorithm to produce a differ-
very few joins for which this is the case. Thus, we believe ent buffer allocation. This was observed on 250 of the 258
that these minimisation algorithms should be used in practiceccasions. In all these cases we found that simulated an-
when executing joins, particularly given the improvementsnealing produced a buffer allocation with a higher cost. The
demonstrated in Sects. 4.1 and 4.2. difference in cost was usually small; often less than 0.1% of
The running time of the simulated annealing minimisa- the cost. However, differences up to 6.3% were observed. On
tion of the extended hybrid hash algorithm was also smallthe remaining 8 of the 258 occasions, the buffer allocation
It took up to 3% of the time it would take to both use sim- determined by the simulated annealing algorithm produced
ulated annealing to determine the buffer allocation and thendentical buffer allocations with the same cost as that of the
to perform the join. Unfortunately, simulated annealing did GRACE hash minimisation algorithm. This indicates that
not always find the minimal buffer allocation. We know this, although the simulated annealing algorithm produces good
because, for a number of the queries the cost of the hybridesults, particularly for smaller values ®f, there is scope
hash algorithm using the buffer allocations determined usindor developing a better algorithm for minimising the cost of
simulated annealing was higher than the cost of the buffethe hybrid hash join.
allocations found GRACE hash minimisation algorithm. As ~ The expected performance of the sort-merge algorithm
the simulated annealing algorithm was minimising a costreinforced the results shown in Fig.9. Due to the restricted
function which generalised the GRACE hash join method inversion of the sort-merge algorithm we examined, only a
addition to the hybrid hash join method, the minimal costlimited number of joins were appropriate. Of the 1000 joins,
should be less than, or equal to, that found by the GRACE343 were too big to sort the relations in one pass. In another
hash minimisation algorithm. 12 joins the nested block algorithm produced the minimal
Table 4 summarises the performance of each of the minvalue. The sort-merge algorithm had a higher cost than the
imisation algorithms. In theory, either the nested block or hy-GRACE hash algorithm for all the remaining joins. The mag-
brid hash join algorithms should provide the minimal buffer nitude of the additional cost varied between 24% and 153%
allocation for all joins. However, our results differ from this of the cost of the GRACE hash algorithm, with an average
expectation. We found that of the 1000 joins, the nestedf 52%. The primary advantage of the sort-merge algorithm
block join algorithm was the best algorithm to use in 12 of is that it avoids the problem of uneven partition sizes which
the joins based upon execution time alone, and was still thean affect the performance of the hash join algorithms. We
best in those 12 cases when the time taken to determine thaiscuss how this problem can be reduced for the hash join
minimal buffer allocation was also considered. The GRACEalgorithms in Sect. 6.
and hybrid hash algorithms determined minimal buffer allo-  In 294 of the 1000 join queries, the hybrid hash algo-
cations with the same cost for 10 queries, and differed for theithm minimised using simulated annealing performed the
remaining 978 queries. The results in Table 4 show that thdest. Table 5 summarises the improvement of the hybrid
simulated annealing minimisation algorithm for the extendedhash algorithm over the GRACE hash algorithm. Figure 4
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Table 5. Percentage improvement of hybrid hash over GRACE hash when . .
hybrid hash has a lower cost, including minimisation time system load. Thus, sets of relation and buffer sizes would

have to be stored for each different amount of memory avail-

Memory  Total ~ Percentage improvement able. This is likely to be impractical.

sulzzeéB jOII‘;S lz)/n(r)\4 Med(;a(;ls Mc(':;aGnl I\/lla;<0 The storage of only unique optimal buffer allocations
256 3 076 408 360 596 is also likely to be impractical. With four distinct variables
1024 18 011 146 381 15.39 of possible buffer allocations i©(B*). If the buffer size
2048 28  0.00 0.94 462 3142 can also vary, it clearly becomes impractical to store buffer
4096 86  0.02 127 381 2866 allocations for many values d8. An open problem remains
8192 152 0.11 368 1515 84.14

to determine how many buffer allocations to store and how
to efficiently derive an optimal allocation from them.

In conclusion, we have seen that a combination of the
shows that wheB < 2048, the GRACE hash minimisation nested block and GRACE hash join algorithms, and their re-
algorithm is much more likely to produce a better buffer spective minimisation algorithms, provide a significant im-
allocation than the hybrid hash minimisation algorithm. provement over the standard versions of all the join algo-

In Table 5 we can see that for large main memoriesrithms we have examined. In all the cases in which the op-
(B = 8192) and large relations it is desirable to use sim-timal buffer allocation was calculated, the minimal buffer
ulated annealing and the extended hybrid hash algorithmallocations produced by the nested block and GRACE hash
Conversely, when the amount of memory is smaller, we beminimisation algorithms were optimal. In addition, all the
lieve that the minimisation algorithm for the GRACE hash minimised versions of the GRACE hash join, hybrid hash
join algorithm should be used to determine the minimaljoin and sort-merge join provide a significant improvement
buffer allocation for any join. The results in Tables 4 and 5over the best of the standard versions of the algorithms,
do not contradict the results in Fig.9. The reason that thenamely the standard hybrid hash join. We believe that these
hybrid hash algorithm performs so much better for largerjoin algorithms should be implemented. To determine a good
memory sizes is that the range of sizes of the relations bebuffer allocation for the hybrid hash join method, the seeded
ing joined does not change, so the ratio of relation size tesimulated annealing algorithm should also be implemented.
main memory size decreases for larger main memory sizedzor smaller main memory sizes, it should only be used if the
Figure 9 shows that even when the outer relation is 20 timesize of the outer relation is less than a small multiple of the
greater than main memory, an improvement is possible, alsize of main memory (typically up to three to six times). For
beit small. This is reflected in the experiments shown inlarger main memories and large relations, it should always
Table 5. We found that the cost improvement of the hybridbe used if the size of the outer relation is larger than main
hash algorithm over the GRACE hash algorithm across allmemory because the minimisation cost will be insignificant
1000 joins was less than 2.2% in 50% of the cases, less thawhen compared to the running time of the join.

5.1% in 70% of the cases, and less than 30% in 90% of the
cases.

Instead of using a random starting point for the simu-4.6 Stability of minimal allocation:
lated annealing algorithm, we tried using the buffer alloca-varying seek and transfer times
tion produced by the GRACE hash minimisation algorithm
in a single simulated annealing trial. This method provedlt is important to know the effect of the seek and trans-
cost effective for 881 of the 1000 join queries. That is, thefer times, Tk and Ty, on the minimal buffer arrangement.
improvement in the cost was greater than the time taken fof hese times are used in the calculation of the cost of each
the single run of the simulated annealing algorithm (whichioin operation, and different hardware typically has different
was all less than 1s of CPU time) for 881 join queries, with values for each of these times. If a small variation in the
an average improvement of 8.6% across those 881 querieg€lationship between these values has a significant impact

Of the 881 join queries for which a lower cost was found, on the Stabl“ty of the minimal buffer arrangement then the
the cost determined was lower than that determined by th&haracteristics for each disk drive would have to be known.
simulated annealing algorithm described above for 807 off his would make the method of determining minimal buffer
the joins, and greater for the other 74. Thus we believe tha@fangements much less useful, and difficult to determine.
seeded simulated annealing is likely to be a better method Table 6 shows possible values fot in which each al-
to use than the normal simulated annealing algorithm withdorithm will be used whileV, Vg, B, Tc, T; andTp are
random starting points when minimisation time is significant. constant. Let(B, N) be the cost of the join algorithm us-

Another possible method of determining the optimal ing buffer arrangemens and N = T /Tr. To calculate
buffer allocation for the hybrid hash algorithm would be the cost ratio for a given value Gfx /T, N, we first find
a combination of storing pre-computed optimal buffer allo- the minimal buffer arrangement, for Ty /Tr = 5. We set
cations for various input and output relation sizes, in con-C; = C(B, N’). Now we find the minimal buffer arrange-
junction with a (small) search around that optimal buffer ment, By, for Tx /Tr = N'. We setC;, = C'(B;1, N') and the
allocation for given relation sizes. Storing all possible com-cost ratio is given byC4/C5.
binations of relation sizes is unlikely to be possible, unless Table 6 shows that the relationship betwégp and T
the sizes of potential relations is severely constrained. Addoes not have an enormous impact on the cost of the minimal
ditionally, in a multi-user system, the amount of memory buffer arrangement. We believe that the number of occasions
available as buffer space is likely to vary depending on then which an extremely accurate estimation of the relation-
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Table 7. Buffer size changes when the relationship betwé&gnand T
is varied, V> = 100000 (781 MB),Vr = 10000 (78 MB),B = 4096 (32
MB), Tk =5I, TC S TJ, Tp = TJ/8

CPU todisk ratio (Ta/Tr)
Fig. 11. Relative cost of minimal and standard buffer allocations when
the ratio Ty /Tr varies. Vg =10000 (78 MB),Tx =517, Tc =Ty,
Tp = TJ/S
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V1 =4093 (32 MB) Cost V7 =100000 (781 MB) Cost g
T;/Tr B1 B, Bgr Rato B, B, Bp P Ratio =
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2 2047 1852 197 1.00 3449 493 154 29 1.00 E
2.5 4093 2 1 1.00 3449 493 154 29 1.00 g Vi = V2 = 25000 (195 MB),
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4 4093 2 1 1.00 3226 646 224 31 1.00 E B = 4006 (32 MB)
5 4093 2 1 1.00 3226 646 224 31 100 ¢}k T b aose ozt

g
ship between the seek and transfer times is required will bg
relatively rare. This result also gives us confidence that the
impact of additional seeks within large data files will be very

small.

4.7 Stability of minimal allocation:
varying CPU and disk times

& Current technology

cegain

10 T T T T ]
0 1 2 3 4 5

CPU todisk ratio (Ta/Tr)

Fig. 12. Relative cost of minimal and standard buffer allocations when
the ratio Ty /Tr varies. Vg =10000 (78 MB),Tx = 5T, Tc =Ty,
Tp = TJ/B

Table 7 shows that the relationship betwé&enand 7'y

It is also important to know the effect of CPU times com- does not have an enormous impact on the cost of the minimal
pared with the disk seek and transfer times on the minimabuffer arrangement.

buffer arrangement. As with the relationship between seek

and transfer times, these times are used in the calculation of

the cost of each join operation. Not only does different hard-4.8 Benefits of minimal allocation;

ware have different values for each of these times, but the/arying CPU and disk times

operating system and software used also affect the values of

these times. If a small variation in the relationship betweenThe current trend in hardware technology is for CPU speeds
these values has a significant impact on the stability of thag increase at a rate greater than that of the disk drive tech-
minimal buffer arrangement, then the relationship betweemology (seek and transfer rates). As the cost of memory is

the values would have to be known. This would make thedecreasing, it is also likely that in the future more mem-
method of determining minimal buffer arrangements muchory will be available to be used for buffers. In the future,

less useful, and more difficult to determine.
Table 7 shows possible values for in which each al-
gorithm will be used whilé,, Vi and B are constant. The

will it be more or less beneficial to use the minimal buffer
allocation?
Figures 11 and 12 show how the ratio between the CPU

ratio of 7y and T is varied, while the other values are set time constants I, 7; and T») and disk time constants

so thatTy =51, Tc =T; andTp = TJ/8

(Tx andTr) affects the performance of the GRACE hash

We use a similar analysis to the previous section to derivgoin algorithm. The ratio of the cost of the standard buffer

the cost ratio. Let’(B, V) be the cost of the join algorithm
using buffer arrangemer® and N = T;/Tr. To calculate
the cost ratio for a given value @f; /Ty, N', we first find
the minimal buffer arrangemeng, for T'; /Tr = 3. We set
Cy, = C(B,N'). Now we find the minimal buffer arrange-
ment, By, for T;/Tr = N'. We setC, = C(B;, N') and the
cost ratio is given byC1/C5.

allocation to the minimal buffer allocation is compared for
a number of different buffer and relation sizes. These fig-
ures show that as the CPU speed gets faster, relative to the
disk seek and transfer speeds, the minimal buffer allocations
perform better than the standard buffer allocations.

In addition, Fig.11 demonstrates the effect of varying
the total buffer size. As the amount of memory available for
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Fig. 13. Time taken by the nested block and GRACE hash minimisa- imisation algorithms}/; = 500 000 (3906 MB)}>, = 1 000 000 (7813 MB),
tion algorithms. V4 = 500000 (3906 MB),V» = 1000000 (7813 MB),  Vjz = 100000 (781 MB)
Vg =100000 (781 MB)

buffers increases, the performance of the minimal allocation **7
over the standard allocation increases. Figure 12 demon-
strates the effect of varying the relation sizes. It shows that
smaller relations exhibit greater performance improvement |
than larger ones using the minimal buffer allocation. How-g
ever, the difference is not as great as the impact of using

different buffer sizes.

—— Hybrid hash (opt)

4.9 Minimisation performance as buffer sizes vary

In Sect. 4.5 we reported that the time taken by the minimi- %05 10 20 40 80 180 0 sho 120 2560
sation algorithms is very small compared with the running Memory size (MB)
time of the join. In Fig.13 we present the time taken to Fig. 15. Time taken by the simulated annealing algorithvi.= 500 000
minimise a typical join of two relations for a large number (3906 MB), V> = 1000000 (7813 MB)Vz = 100000 (781 MB)
of different buffer sizes, ranging from 64 pages (512 KB) to
32768 pages (256 MB). In Fig.14 we present the relative
time taken to minimise the join compared with the running and CPU operations for the nested block and GRACE hash
time of the join. Note that the scale of the axis denoting thejoin algorithms when provided with input files. They were
number of pages of memory is logarithmic. The results agaifimplemented on a Sun SPARCstation IPX running SunOS
show that the time taken by the minimisation algorithms are5.3 and relied on the UNIX file system for file management.
very small compared with the running time of the join algo- Thus, we had no control over the disk accesses required to
rithm. They also show that the running time of the GRACE retrieve the data.
hash minimisation algorithm is approximately linear in the ~ The SunOS file system (McVoy and Kleiman 1991) at-
amount of main memory available. tempts to keep consecutive pages together in cylinder groups
The time taken by the simulated annealing algorithm canwhenever possible, as well as buffering disk pages and read-
be controlled by its parameters. In Fig. 15 we present théng disk pages ahead. It also reads seven 8 KB pages at a
time taken to minimise the same join using simulated an-ime, so that reading one page at a time through a file does
nealing. Note that the time taken is longer than the GRACEnot result in a disk access for every read. To combat this we
hash minimisation algorithm. However, as the time takenset the page size to be 56 KB. The large page size is likely
does not increase significantly as more memory is made&o have the effect of moving the cost of the standard buffer
available, there will be a point at which it becomes more costallocation closer to the optimal buffer allocation because the
effective to use simulated annealing than the GRACE haslone page allocated to the inner relation is, in fact, seven
minimisation algorithm (in this case, approximately 1 GB of “normal” disk pages. This produces the same effect as the
main memory). clusters of Graefe (1993).
We varied the amount of memory reserved for the mem-
ory buffer between 100 and 310 of the 56 KB pages; thus
5 Experimental results the total of amount of memory used varied between 5.5
and 17 MB. To minimise the effect of the buffer cache, we
In order to validate our analysis and the results obtained irensured that the total amount of memory allocated to our
the previous section, we conducted a series of experimentgrogram was 17 MB, regardless of how much was used as
Programs were written which performed the appropriate 1/0the memory buffer. The system call mlock() was used to en-
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Table 8. Timing parameter values for experimental results 14 R
Parameter  Value (s) 60
Tk 0.0233
TT 0.0356 1 4 A A
Tp 0.00881 % w0l " . N
TC 0.00220 ;" + Experimental Nested Block
T, 0.00317 8 s . 3 A Calculated Nested Block
Table 9. Relation sizes (in 56 KB pages) for experimental results 207 .
Join algorithm Vi Vo Vr
join attribute 0 ——
54 3 2 6 8 10 12 14
Nested block 256 (14 MB) 512 (28MB) 1 1 9 808 Buffer size (MB)
GRACE hash 512 (28 MB) 1024 (56 NB1 3 33 — Fig. 16. Experimental cost and expected cost of performing nested block

join versus main memory buffer siz&; = 256 (14 MB), V2 = 512 (28
MB), Vi =9 (504 KB)

sure that this address space was fixed in physical memory,

and not swapped out, as our programs ran. -
The disk drive used was an Elite-2. The values for the 7
parameterd’x, Tr, Tp, T andT; were calculated using s ' . i .

initial diagnostic data provided by our program. We ensured “°-
that the UNIX buffer cache did not contain any of our data B
files as we collected the diagnostic data; therefore the costg *: . e e o
estimated using these parameters should not be greater than
the time taken by the join experiments. These values are > .
shown in Table 8.
In the following results, all times reported are that of
the total elapsed time of the algorithm. Thus, these results
were susceptible to any other activity on the machine. To 6 8 10 12 14
attempt to minimise and identify this, the experiments were Buffer size (MB)
performed when there was no other user active on the marig. 17.Experimental cost of performing minimal and standard nested block
chine and each join was performed ten times. However, weoin versus main memory buffer sizé; = 256 (14 MB),V> = 512 (28 MB),
did not remove network or other operating-system-related’z =1 (56KB)
activities from the machine.
The data files used in the experiments consisted of 184
byte records, similar to those of the Wisconsin benchmarkory which is used increases, is consistent with the expected
(Bitton 1983). Each record consisted of a unique identifiercost. We would anticipate that in an environment in which
attribute, six integer attributes and three string attributes othe buffer cache was not available, the difference between
length 52 bytes. The values of each of the integer attribute$he experimental and calculated costs would be much lower.
was chosen from a different domain, so that the result rela- Figure 17 compares the performance of the minimal and
tions would be different sizes, depending on which attributestandard versions of the nested block join algorithm. It is
was used for the join. All experiments were performed onclear that a substantial improvement in performance can be
the integer attributes. Table 9 shows the sizes of the relationgchieved, particularly for the intermediate buffer sizes. The
joined, and the size of the result relation for the attributeslargest buffer size was chosen such that the minimal buffer
which were involved in a join. allocation was the same as the standard buffer allocation.
Representative examples of the results of these experi-
ments are shown in Figs. 16-19. The points on the graphs R
denote the mean and standard deviation of time taken to . s N N
perform each join. Note that the times shown for the ex- %73
periments are thelapsedtimes, which are susceptible to
other activity on the machine. We would anticipate that in 170
a more highly controlled environment the variation in the'f « Experimental GRACE Hash
results would be much lower. ST RS 4 Caleulated GRACE Fiesh
Figure 16 shows the cost of the experiments for six buffer
sizes using the nested block join, and the expected cost cal-
culated using the values in Table 8. The experimental cost
is lower than the calculated cost. This is due to the presence
of the buffer cache and the limited disk space in which we 10 5 10 15
performed the experiments. These factors combine to result Buffer size (MB)
in the fact that it is difficult to experimentally determine Fig. 18. Experimental cost and expected cost of performing GRACE hash
the values of the constants with great accuracy. Howeverjpin versus main memory buffer siz&; = 512 (28 MB), V, = 1024 (56
the trend for the cost to decrease, as the amount of menMB). Vr =1 (56KB)
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220 ¥ ' ment over the standard version of the algorithm is achieved.
E L Across all the results, the average improvement varied from

at least 15% for the smallest amounts of available memory

L] to at least 30% for the larger amounts of available memory.
< Minimal G with Sammgot0 These results indicate that using a minimal buffer allo-

w1 ® Standerd GRACE Hash cation, instead of the standard one, can result in the im-
provements that we have earlier shown to be theoretically

160 ¥ possible. If the buffer cache had not been available, and the

memory used by the buffer cache had been used by the join

T ! algorithm, an even greater improvement would have been

5 10 15 realised. This is because the join algorithm can choose bet-

Buffer sze(MB) ter pages to keep in memory than the UNIX buffer cache
Fig. 19. Experimental cost of performing minimal and standard GRACE algorithm.
hash join versus main memory buffer sig. = 512 (28 MB),V, = 1024
(56 MB), Vg =1 (56 KB)

200

Cost (s)

140

6 Non-uniform data distributions

The outer file size was such th&i = 256, so the amount The problem of non-uniform data distributions is common
of memory chosen was such thBt = 258, soB; = 256, amongst all hash-based techniques. To address this problem
B, =1 and Br = 1. Therefore, the results of the minimal Nakayama et al. (1988) proposed an extension to the hy-
and standard algorithms were expected to be the same, whidbrid hash method, called the Dynamic Hybrid GRACE Hash
was the case. For the second smallest buffer size, the resulfsin method (DHGH). Their method dynamically determines
are again close. This is because the number of passes pethich partitions will be stored in memory and which will be
formed over the relations is different. The standard algorithmstored on disk. This depends upon the distribution of data.
performs two passes, witB; = 128, while the minimal al-  Kitsuregawa et al. (1989) provide an analysis of DHGH and
gorithm performs three passes, settiig = 86. Therefore, show the effect of varying partition sizes. They show that a
even though the minimal algorithm performs an additionallarge number of small partitions is the best method to handle
pass over the inner relation, its cost is still slightly lower non-uniform distributions. These small partitions are com-
than the standard algorithm. bined for the merging phase to minimise the join cost. As
Note that the file system and buffer cache reduces thevith almost all other analyses of join algorithms, they count
cost of the inefficient standard buffer allocation more thanthe number of disk pages transferred in their cost model.
it does for the more efficient minimal buffer allocation. For The DHGH assumes that there is one input page and all
example, a file system prefetching a disk page has a mucbther pages are for the partitions. As we have seen, this is
greater impact if one page is read at during each I/O opergenerally not optimal when disk page access time is taken
ation than if a large number of pages are read during eacinto account. Additionally, their method does not support
I/O operation. In an environment in which a buffer cache partitioning of the data in place, which has significant ben-
is not available, a minimal buffer allocation would show a efits for the extended GRACE and hybrid hash methods.
greater improvement over the standard buffer allocation. Our proposal is to use sampling. It has been shown to
Our experimental implementation of the GRACE hash produce good results for query optimisation (Lipton et al.
join algorithm is slightly extended from the version de- 1990; Haas and Swami 1992). In our method, a sample of
scribed in the previous sections. The minimal buffer allo- each relation is read. Each record is hashed into a range that
cation is determined initially prior to partitioning. However, is a number of times the size of the desired number of par-
during the merging phase, the minimal buffer allocation istitions. A table of the frequency of each of the hash values
determined for each partition of the relations. This helpsis constructed. Finally, each hash value is assigned to a par-
address the problem of unequal buffer sizes. tition such that the partitions of the relations are as close to
Figure 18 compares the cost of experiments for fiveequal size as possible. Each record in each relation is placed
buffer sizes using the GRACE hash join algorithm with the in the appropriate partition by looking up its assigned par-
expected cost calculated using the values in Table 8. In thisition based on its hash value. The additional overhead of
case the smallest buffer size creates eight partitions fronthis method, compared with the methods described in the
each of the input relations, the middle three buffer sizesprevious sections, is likely to be very small compared to the
create four partitions from each of the input relations, andrunning time of the algorithm. We call this method the Min-
the largest buffer size creates two partitions from each oimal GRACE Hash algorithm for Non-Uniform distributions
the input relations. The results are similar to that of the(MGHNU), and the original method the Minimal GRACE
nested block join algorithm in Fig. 16 in that the trend asHash Algorithm for Uniform distributions (MGHU). A sim-
the amount of available memory increases is consistent witllar extension can easily be made to the hybrid hash join
the expected cost, but the actual values of the constants usedgorithm.
do not accurately provide the exact cost. The MGHNU method assumes that the sample of the first
Figure 19 compares the performance of the minimal andelation is representative of the whole relation. This may be
standard versions of the GRACE hash join algorithm. It alsoachieved in two ways. A small sample of randomly chosen
contains results of a sampled version of the algorithm whichpages from the first relation may be read. This would effec-
is discussed in Sect. 6. The results show that a large improveively requireTx + T time for each page, so only a small
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2014 that, as described above, both methods determine the min-

imal buffer allocations after partitioning, thereby utilising
2004 § the best buffer allocation after partitioning even if the data
is non-uniform. Figure 20 shows that using the MGHNU

%lsoa « Minimal GH with No Sampling method does result in a clear reduction in the cost of per-
3 E } A Minimal GH with Sampling forming the join.
E 3
160 E g
! 7 Multiple joins
140 . : .
5 10 15 Many queries asked of database systems are composed of

Buffer size(M8) multiple join operations. There are a number of methods of

Fig_. 20. Experimental_ cost of performing MGHU and MGHNU versus implementing multiple joins, from writing temporary files to
gzgﬁ;’mory buffer sizely = 512 (28 MB),V2 = 1024 (S6 MB).Vk =3 gk at the end of each join, to performing each operation
in a pipeline. By appropriately extending our minimisation
algorithms, any of these methods could be used. Our pri-
number of pages should be read. The other way would be téhary result is independent of these implementations. That is,
read the first3; pages, as the GRACE hash algorithm would Whatever method is used, the query can be executed faster
normally do. As in DHGH, MGHNU will take more CPU by using a buffer allocation which takes into account all of
time due to the construction of the table and the groupingthe costs involved.
of partitions. Therefore, the MGHNU method will be a little The algorithms we have described can be used without
more expensive than the MGHU method when applied tochange if a query of multiple joins is implemented by writing
a uniform data distribution. However, the MGHNU method temporary relations to disk as the result of each join. Each of
would be much more efficient than the MGHU method for the minimisation algorithms take into accous, the buffer
non-uniform data distributions. Therefore, we believe thatsize of the result relation, through which the temporary rela-
the MGHNU method is the best method to use as a generéion is written to disk. If the size of the temporary relation,

method which tolerates non-uniform data distributions. ~ @s given byVg, is accurate, the results give us confidence
that a good buffer size will be chosen.

A method of implementing a query of multiple joins
6.1 Experimental results which can be more efficient is to buffer at least part of the
result in memory. This can easily be supported using our
As mentioned in Sect.5, Fig.19 contains the results for acost model. The cost functions need only be changed so that
sampled version of the GRACE hash join algorithm. This is,the number of writing operations for the result relation is
in fact, an implementation of MGHNU. We were expecting reduced by one, and the number of reading operations for
that for a relatively uniform distribution, it would result in the temporary relation in the next join is reduced by one. The
a higher cost than the MGHU method. minimisation algorithms must also be modified, increasing
Figure 19 shows that for a relatively uniform data distri- their complexity. If the number of variables becomes such
bution, the additional cost of sampling the relations prior tothat the minimisation is too slow, simulated annealing can
performing the join did result in a small increase in the costbe used to find a minimal buffer allocation, as we did for
of the join. The number of pages transferred during samplinghe hybrid hash join.
was less than 0.2% of the total number of pages transferred;
however, reading each page resulted in a disk head seek.
The additional cost of sampling was greater when less8 Parallel joins
main memory was available. A smaller amount of main
memory means that the first disk 1/0O operation during theln recent years, a large amount of research has taken place
partitioning of each relation will request fewer pages than ifinto parallel join algorithms, particularly join algorithms
a large amount of main memory was used. We expect thabased on hashing (Richardson et al. 1987; Schneider and
all of the pages which were sampled would be in the bufferDeWitt 1989; Shatdal and Naughton 1993; Walton et al.
cache prior to the first read of the partitioning phase. There1991). Many of these algorithms are based on existing hash
fore, the cost can be reduced by requesting as many of thegein algorithms, often the hybrid hash join algorithm. We
as possible. More will be requested if the amount of mainbelieve that our technique will be just as important in this
memory is larger, so we expect that the cost of samplingdomain as in the sequential case.
will be higher with a smaller main memory buffer, if there Parallel join algorithms incur network (or shared mem-
is a buffer cache available. ory) costs, in addition to the costs associated with the se-
In addition to the uniform distribution, we performed quential algorithms. Tuples for joining may come both from
experiments using relations in which the values of the atthe network and from a local disk. Network costs do not
tributes formed a Zipf distribution, as described, for exam-contain a “seek” factor, and in many algorithms individual
ple, in Knuth (1973). A representative example of the resultstuples are transferred across a network rather than pages.
is shown in Fig. 20. Thus, the network traffic will not have a significant impact
In Fig. 20 we compare the MGHU (“No Sampling”) and on the buffer sizes, and we believe that modified versions
MGHNU (“Sampling”) GRACE hash join algorithms. Note of our algorithms can be used to significantly improve the
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cost of disk accesses in parallel join algorithms, as they ddased methods of determining data distributions, such as in

for the sequential join algorithms. Sun et al. (1993), would be interesting. Other join optimisa-
tion schemes which have been proposed which use an older
cost model, such as in Harris and Ramamohanarao (1994),

9 Conclusion should be re-evaluated with the more accurate cost model.
Another issue is to improve on the minimisation algorithms

In this article, we have presented an analysis of four comfresented in this article; particularly to improve the speed

mon join algorithms — the nested block, sort-merge, GRACEand accuracy of the hybrid hash minimisation algorithm.

hash and hybrid hash join algorithms — based upon the time

required to access and transfer a page from disk and the

processing cost of the join. This is a generalisation of both ] . )

the commonly used method of counting the number of disk APpendix A: Hybrid hash constraints and cost

pages transferred and a proposed alternative of counting the

number of operations in which any number of disk pages

may be transferred as a single operation. We have show

that it is very important to consider both the disk seek and

transfer times and CPU times involved in the join algorithms

to achieve optimal performance.

We have presented cost-effective algorithms to quickly
find minimal buffer allocations for the nested block and

GRACE hash join algorithms and suggested a mechanis generality we assume that the hybrid hash join algorithm

for handling non-uniform data distributions. The time taken ; L :
by these minimisation algorithms is less than 0.05% of the"ay have multiple partitioning passes, although this was not

: . - ; the application for which it was originally intended (Shapiro
running time of the join operation. For all the buffer al- . .
locations which we verified, the minimal buffer allocation 1986). While we set the number of partitions createdo

: - _be a single value, it could vary for each of thepasses.
E(r)cr)]duced by the algorithms was the optimal buffer alloca Like the GRACE hash join algorithm, if a large amount of

We have reported experimental results which confirmmMain memory is available, one pass will usually be enough.

that the performance gains reported in this article can béjurmg the merging phase, t_he memory buffer is d|v!ded
achieved in practice. With the current disk and CPU tech-" exactly the same way as in the nested block a!gquthm.
nology, we expect performance gains in the order of tWOTherefore, the general constraints that must be satisfied are:
to three times when using the join algorithms with minimal
buffer allocations, rather than the standard join algorithms.
Even if a buffer cache is available on the system, substantial
improvements are possible, particularly for large relations in
which the GRACE or hybrid hash algorithms must be used.
In the future, as the relative speed of the CPU over the disks
increases, the use of minimal buffer allocations will become
more important.

Our modified version of the GRACE hash join algo-
rithm will usually perform better than the extended hybrid
hash join algorithm when the cost of calculating a minimal
buffer allocation is taken into account and the amount of
main memory is 32 MB or less, and the relations are larger
than several times the size of main memory. For large mem-
ory sizes, the simulated annealing algorithm for the extended
hybrid hash join algorithm is superior. This approach is fur-
ther improved by using the buffer allocation produced by the
GRACE hash minimisation algorithm as a starting point, in-
stead of a random starting point. This approach was cost
effective for 88% of the joins tested, resulting in an average
improvement of 8.6% across all the joins tested.

Even in an operating system environment in which
file system access is not directly under the control of the
database, there will be a decrease in the total cost, as a re
sult of a reduction in the number of system calls required to
read the data and the CPU time of memory-based parts of
the join algorithms.

Further work arising from this paper includes a compar- [

In this section, we describe the costs and constraints associ-
ated with the hybrid hash join algorithm which was described
in Sect. 2.4.

In the cost formulae below, we assume that, during the
partitioning phase, records are read into a buffer of size
Br and then distributed betweeR + 1 partitions: P out-

ut buffers of sizeBp, and a hash table of sizBy. For

— The sum of the input, output, result and hash table buffer
areas during the partitioning phase must not be greater
than the available memonPBp + By + By + B < B.

The result buffer area is required because result tuples
will be created as the second relation is partitioned.

— Some memory must be allocated as an input afya>
1.

— Some memory must be allocated to each of the output
partitions: Bp > 1.

— There must be multiple output partitions: > 1.

— Some memory must be allocated to the in-memory hash
table, and it need not be greater than the size of the outer
relation: 1< By < V4.

— The sum of the three buffer areas during the merging
phase must not be greater than the available memory:
B+ B>+ Bgr < B.

— The amount of memory allocated to relatiéfy during
the merging phase should not exceed the size of relation
Ri: 1< By <V

— The amount of memory allocated to relatié during
the merging phase should not exceed the size of relation
Ry 1< B, < Va.

— Some memory must be allocated to the result during the

" merging phaseBgr > 1 if Vz > 1.

The cost of the hybrid hash join algorithm is given by

ison of how other methods of handling data skew impact on Vi =

our scheme. For example, a comparison with non-sampling-
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*+*CMerge:Join initial
+*CMerge:ReadR, other
*+CMerge:Join other
*Crite Ry

Appendix B: Modified hybrid hash

The buffer arrangement of our modified hybrid hash join
algorithm is depicted in Fig. 3. For the casfyy to be valid,
the constraints are now that:

— PBp+2P —1+By+Bgr < Binstead ofPBp + By +
By + Br < B.
— By = PBp instead ofB; > 1.

The other constraints remain valid.

Our algorithm to minimise’y is similar to that which
minimises the GRACE hash join algorithm, except that, in-
stead of minimising the cost using three variables, it must
minimise using sevenB;, By, Br, P, Bp, By, p. We set
By = PBp. It takes significantly longer to produce a result
than any of the other minimisation algorithms. Additionally,
it is not feasible to perform an exhaustive search to deter-
mine whether it determines the minimal result or not. As a
consequence, we do not present it here.
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