
The VLDB Journal (1996) 5: 64–84 The VLDB Journal
c© Springer-Verlag 1996

Join algorithm costs revisited
Evan P. Harris∗, Kotagiri Ramamohanarao∗∗

Department of Computer Science, The University of Melbourne, Parkville VIC 3052, Australia

Edited by Masaru Kitsuregawa. Received April 26, 1993 / Revised March 3, 1994 / Accepted October 13, 1994

Abstract. A method of analysing join algorithms based
upon the time required to access, transfer and perform the
relevant CPU-based operations on a disk page is proposed.
The costs of variations of several of the standard join al-
gorithms, including nested block, sort-merge, GRACE hash
and hybrid hash, are presented. For a given total buffer size,
the cost of these join algorithms depends on the parts of the
buffer allocated for each purpose. For example, when join-
ing two relations using the nested block join algorithm, the
amount of buffer space allocated for the outer and inner re-
lations can significantly affect the cost of the join. Analysis
of expected and experimental results of various join algo-
rithms show that a combination of the optimal nested block
and optimal GRACE hash join algorithms usually provide
the greatest cost benefit, unless the relation size is a small
multiple of the memory size. Algorithms to quickly deter-
mine a buffer allocation producing the minimal cost for each
of these algorithms are presented. When the relation size is
a small multiple of the amount of main memory available
(typically up to three to six times), the hybrid hash join al-
gorithm is preferable.

Key words: Join algorithms – Minimisation – Optimal
buffer allocation

1 Introduction

In the past, the analysis of join algorithms has primarily
consisted of counting the number of disk pages transferred
during the join operation, as this has been perceived as the
dominant cost of the join algorithm. However, the difference
between the time taken to locate a single disk page and
transfer a single disk page is significant. The time taken
to locate the page dominates. Hence, the difference between
transferring two consecutive disk pages and two random disk
pages is quite significant.

e-mail: ∗ evan@cs.mu.oz.au
∗∗ rao@cs.mu.oz.au
Correspondence to:E.P. Harris

For example, if it takes 25 ms to locate the average disk
page and 5 ms to transfer it from disk to memory, then read-
ing two consecutive pages takes 35 ms, whereas reading two
random pages takes 60 ms. When the cost of a join operation
is calculated, the difference in this time should be taken into
account.

The CPU cost of a join should be taken into account.
Experience with the Aditi deductive database (Vaghani et
al. 1994) has shown that the disk access and transfer times
correspond to 10–20% of the time taken to perform a join.
Thus, the CPU time is an important factor when determining
the most efficient method to perform any given join.

There have been a number of join algorithms described in
the past, none of which are optimal under all circumstances.
We provide analyses of some of the more common of these.
The nested block (nested loop) algorithm and the sort-merge
algorithm are the algorithms used in most current database
implementations. The nested block algorithm is used when
a small relation is joined to another, and the sort-merge al-
gorithm is used for larger relations (Blasgen and Eswaran
1977). For a while it was believed that the sort-merge join
was the best possible algorithm (Merrett 1981); however,
the description of join algorithms based on hashing (Kitsure-
gawa et al. 1983; DeWitt et al. 1984) indicated that this is
not necessarily true. DeWitt et al. compared the sort-merge,
simple hash, GRACE hash and hybrid hash join algorithms
and concluded that hybrid hash has the lowest cost. Some
researchers are still unsure. For example, Cheng et al. (1991)
claimed that when memory is large the sort-merge and hy-
brid hash join algorithms have similar disk I/O performance.
However, the hybrid hash algorithm is regarded as one of
the best algorithms for performing the join. A survey of join
algorithms appears in Mishra and Eich (1992).

Each of the afore-mentioned articles typically uses the
number of pages transferred in its description of the cost of
disk operations. This assumes that the cost of transferring a
number of consecutive pages at once is the same as transfer-
ring them individually from random parts of the disk. Hag-
mann (1986) argued that, for current disk drive technology,
when a small number of pages is transferred, the cost of lo-
cating the pages is much greater than the cost of transferring
them. He analysed the nested loop algorithm counting only

65

the number of disk accesses. When minimised, he showed
that half the number of pages of the memory buffer should
be devoted to each relation. Under the previous cost model,
the inner relation is provided with one page of memory,
and the remaining memory is devoted to the outer relation.
The original cost model is still widely used, for example,
in Omiecinski (1991), Omiecinski and Lin (1992), Walton
et al. (1991) and Hua and Lee (1991). Our analysis is a
generalisation of these two cost models and allows the rela-
tive, or absolute, cost of each disk and CPU operation to be
specified.

Others have used a similar cost model to ours when
evaluating their algorithms, for example, Pang et al. (1993).
However, they do not attempt to optimise the buffer usage
based on this information and often read a page at a time
from disk during each I/O operation. Graefe (1993) noted
the importance of reading and writing clusters of pages. He
stated that, for sorting, “the optimal cluster size and fan-in
basically do not depend on the input size.” This implies that
the cluster size should be a small multiple of the page size.
In his example, a cluster size of 10 pages was optimal, while
a cluster size of 7 pages produced a similar result to the op-
timal cluster size. In Sect. 5, we show experimentally, using
the GRACE hash join algorithm, that a similar cluster size
produces results which are not close to optimal. We believe
that a minimal buffer allocation should be calculated rather
than using a single ad hoc cluster size for all joins.

In this article, we present algorithms to reduce the cost
of performing a join by searching for an optimal buffer size.
We refer to a set of buffer sizes as a buffer allocation. When
we refer to a minimal buffer allocation we are referring to a
local minima. However, when we use the word “optimal”,
we are referring to the global minimum. In Sect. 4.5 we
provide results in which, for all the tests we performed, the
minimal buffer allocation was the optimal buffer allocation.
However, we have no proof that this will always be the case.

The use of an extent-based file system, even under UNIX
(McVoy and Kleiman 1991), will provide greater support
for our technique than standard file systems which do not
guarantee that consecutive pages are even on the same part
of the disk. Although standard file systems do typically try to
cluster contiguous pages, extent-based file systems achieve
this to a greater degree. We will show that simply using one
of these file systems alone does not produce optimal results.

Using our cost model, we will demonstrate that the cost
of calculating a minimal buffer allocation and then perform-
ing the join using the GRACE hash join algorithm is signif-
icantly superior to the standard version of the hybrid hash
join algorithm. It is usually superior to the same operations
using the hybrid hash join algorithm with a minimised buffer
allocation when the amount of main memory not large. The
hybrid hash join algorithm is generally regarded as having
the lowest cost of all join algorithms when the relation sizes
are larger than the memory in which the join is to take place.
When the time taken to calculate the minimal buffer alloca-
tion is taken into account this is not usually the case, unless
the relation size is a small multiple of the size of main mem-
ory (typically up to three to six times).

In the next section we present four join algorithms, the
nested block, sort-merge, GRACE hash and hybrid hash al-
gorithms. Each join algorithm is described and analysed. In

Sect. 3 a generalisation of the two hash methods is described
and we show how to maximise the buffer usage to reduce the
number of disk seeks. Minimisation algorithms are described
for some of the join algorithms in this section. In Sect. 4 an
analysis of expected results is presented and in Sect. 5 some
experimental results are reported. In Sect. 6 we discuss how
non-uniform data distributions may be handled, in Sect. 7
we discuss multiple joins, in Sect. 8 we discuss parallelism,
and in the final section we present our conclusions.

2 Join algorithms

In the following analyses of the nested block, sort-merge,
GRACE hash and hybrid hash join algorithms we make a
number of assumptions. In common with the articles men-
tioned previously, we assume that the distribution of records
to partitions is uniform for the join algorithms based on hash-
ing. In Sect. 6 we describe a method which will work when
the data is not uniformly distributed.

We assume that a small amount of memory is available,
in addition to that provided for buffering the pages from disk.
For example, we allow an algorithm to require a pointer or
two for each page of memory. This additional memory will
typically be thousands of times smaller than the size of the
buffer.

The notation used in the analysis of the cost of each
algorithm is given in Table 1. A join operation consists of
taking two relations,R1 andR2, and producing a result re-
lation,RR. We denote the number of pages of a relationRr

asVr. We assume, without loss of generality, thatV1 ≤ V2.
We denote the total number of pages in memory avail-

able for performing the join asB. Each join operation di-
vides this memory up into different numbers of pages for
performing different parts of the operation. For example,
the nested block join requires part of the memory for each
of the three relations. These are denotedB1, B2 andBR,
and their sum is usually the total number of pages available
B1 + B2 + BR = B. Similarly, the partitioning phase of the
hybrid hash algorithm divides the memory into blocks of
pages for reading a relation intoBI , and writing a number
P of partitions out throughBP , while using some memory
BH for a hash table to join the records.

We denote the time taken to perform an operationx as
Tx. Each operation is a part of one of the join algorithms,
such as transferring a page from disk to memory, or parti-
tioning the contents of a page. Table 1 contains the default
values used to calculate the results below. The disk times,
TK andTT , were based on a disk drive with 8 KB pages, an
average seek time of 16 ms, and which rotates at 3600 RPM.
The CPU times, and sorting constant, were based on the op-
erations which would be performed on a Sun SPARCstation
10/30.

We denote the total cost of an operationx asCx. These
operations are the cost of a join algorithm, such as the cost
of the nested block algorithm,CNB, or a significant part of
a join algorithm, such as the cost of the partitioning phase
of the GRACE hash join algorithm,CPartition.

The cost of locating a page on disk,TK , would typically
be the sum of the average seek time and the average latency
time. However, the maximum seek and latency times could

66

Table 1. Significant notation used in cost formulae

V1 Number of pages in relationR1
V2 Number of pages in relationR2
VR Number of pages in result of joining relationsR1 andR2

B Number of pages available in memory for use in buffers
B1 Number of pages in memory for relationR1
B2 Number of pages in memory for relationR2
BR Number of pages in memory for result
BH Number of pages in memory used for a hash table
BI Number of pages in memory used for an input buffer
BP Number of pages in memory used for each partition
P Number of partitions created on each pass
ρ Number of passes during the partitioning phase
TC Cost of constructing a hash table per page in place in memory (0.015)
TJ Cost of joining a page with a hash table in memory (0.015)
TK Cost of moving the disk head to a page on disk (0.0243)
TM Cost of merging a page with another in the sort-merge algorithm (0.0025)
TP Cost of partitioning a page in memory (0.0018)
TS Cost of sorting a page in memory (0.013)
TT Cost of transferring a page from disk to memory (0.00494)
kS Sorting constant (0.00144)
CNB Cost of the nested block join algorithm
CSM Cost of the sort-merge join algorithm
CGH Cost of the GRACE hash join algorithm
CHH Cost of the hybrid hash join algorithm

be used if desired, giving an upper bound on the cost of each
operation.

We assume that the cost of a disk operation, transferring
a set ofVx disk pages from disk to memory, or from memory
to disk, can be given by

Cx = TK + VxTT . (1)

The cost ofn disk operations, each transferringVx disk
pages, isnCx. We further assume that the disk head is re-
positioned between consecutive reads and writes.

Equation 1 appears to assume that the data is stored con-
tiguously on disk. This is not the case when the size of the
data file is large. Additional seeking may occur within the
file, providing that the chances of this occurring is the same
throughout the file. That is, if there aren additional seeks in
Vx pages, then there are 2n additional seeks in 2Vx pages. If
this is the case, thenTT can be composed of the time taken
to transfer a page plus the average seeking cost between
consecutive pages within the file. Although extra seeks may
be required, the time taken to do this is usually very small
(smaller than the average seek time for the disk), due to
better storage allocation by the underlying file system.

Invalidating the assumption that the disk head is not re-
positioned between reads and writes would result in a lower
cost, because the number of seeks (or the time taken by each
one) would be reduced. Removing this assumption requires
knowledge of how the disk will be used by the join algorithm
and other processes which may be running on the machine.
As this is often not feasible, we use the average seek and
latency times as a basis for our calculations.

Equation 1 is a generalisation of the commonly used
cost model that each disk operation consists of transferring
a single page. We can model this by settingTK = 0, TT = 1
andVx = 1. Equation 1 also generalises the cost model that
any number of pages can be transferred at the same cost.
This can be modelled by settingTK = 1 andTT = 0.

Using Eq. 1, we can derive the cost of transferring a set
of Vx disk pages from disk to memory, or from memory to
disk, through a buffer of sizeBx. It is given by

CI/O(Vx, Bx) =

⌈
Vx
Bx

⌉
TK + VxTT . (2)

The cost in Eq. 2 is used in all the join costs given below.

2.1 Nested block

The nested block join algorithm is a more efficient version
of the nested loop join algorithm. It is used in a paged disk
environment. The nested loop algorithm works by reading
one record from one relation, the outer relation, and pass-
ing over each record of the other relation, the inner relation,
joining the record of the outer relation with all the appropri-
ate records of the inner relation. The next record from the
outer relation is then read and the whole of the inner relation
is again scanned, and so on.

The nested block algorithm works by reading a block of
records from the outer relation and passing over each record
of the inner relation (also read in blocks), joining the records
of the outer relation with those of the inner relation. Histor-
ically, as much of the outer relation is read as possible on
each occasion. If there areB pages in memory,B−2 pages
are usually allocated to the outer relation, one to the inner
relation, and one to the result relation. In Hagmann’s analy-
sis (Hagmann 1986) half the available memory is devoted to
pages from the inner relation, and half to the outer relation.

The performance of this algorithm can be improved by
rocking backwards and forwards across the inner relation.
That is, for the first block of the outer relation the inner
relation is read forwards and for the second block of the outer
relation the inner relation is read backwards. This eliminates
the need for reading one set of blocks of the inner relation
from disk at the start of each pass, except the first, because

67

the blocks will already be in memory. We use this version
of the algorithm in our analysis.

We assume that the memory based part of the join is
based on hashing. That is, a hash table is created from the
pages of the outer relation, and the records of the inner rela-
tion are joined by hashing against this table to find records
to join with.

As described above, the total available memory,B pages,
is divided into a set of pages for each relation,B1, B2 and
BR. The general constraints that must be satisfied are:

– The sum of the three buffer areas must not be greater
than the available memory:B1 +B2 +BR ≤ B.

– The amount of memory allocated to relationR1 should
not exceed the size of relationR1: 1 ≤ B1 ≤ V1.

– The amount of memory allocated to relationR2 should
not exceed the size of relationR2: 1 ≤ B2 ≤ V2.

– Some memory must be allocated to the result:BR ≥ 1
if VR ≥ 1.

As described above,V1 ≤ V2, therefore relationR1 is the
outer relation. It is read precisely once,B1 pages at a time,
in dV1/B1e I/O operations. Thus, relationR2 will be read
dV1/B1e times,B2 pages at a time. Each pass over relation
R2, except the first, readsV2 −B2 pages due to the rocking
over the relation.

The cost of the nested block join algorithm is given by

CReadR1
= CI/O(V1, B1)

CCreate = V1TC

CReadR2 initial = CI/O(V2, B2)

CJoin initial = V2TJ

CReadR2 other =

(⌈
V1

B1

⌉
− 1

)
CI/O(V2 −B2, B2)

CJoin other =

(⌈
V1

B1

⌉
− 1

)
V2TJ

CWriteRR
= CI/O(VR, BR)

CNB = CReadR1
+CCreate

+CReadR2 initial +CJoin initial
+CReadR2 other
+CJoin other+CWriteRR

.

2.2 Sort-merge

The sort-merge join algorithm works in two phases. In the
first (sorting) phase, each relation is sorted on the join at-
tributes. In the second (merging) phase, a record is read from
each relation and they are joined if possible, otherwise the
record with the smaller sort order is discarded and the next
record read from that relation. In this way, each relation is
only read once after it has been sorted.

The variant of the sort-merge algorithm, whose cost we
present below, is similar to that used in the Aditi deductive
database system (Vaghani et al. 1994). Instead of completely
sorting each relation, each relation is divided into sorted par-
titions, the size of which is the size of the memory buffer.
This is performed by readingB pages from a relation, sort-
ing the pages, and writing the pages out. The nextB pages

are then read. This is repeated on both relations. This max-
imises the size of the sorted partitions without requiring each
relation to be read more than once, during the sorting phase.

During the merge phase, the partitions of each relation
are merged together joining the records from each relation.
The final pass simultaneously merges the partitions of each
relation and joins the two relations. During the merging
phase,BR pages are reserved for writing the output rela-
tion. As each partition requires at least one input page, a
maximum ofB − BR partitions of both relations may be
created prior to the merge phase, if the merging phase is to
be performed with a single pass over each partition.

During the sorting phase, the whole of the available
memoryB is used to sort the relations. During the merging
phase, the available memory is divided into sets of pages for
each partition of each relation. We assume that these are the
same size for each partition of a relation,B1 for thedV1/Be
partitions of relationR1, andB2 for thedV2/Be partitions of
relationR2. The constraints that these variables must satisfy
are:

– The sum of the buffer areas must not be greater than the
available memory:dV1/BeB1 + dV2/BeB2 +BR ≤ B.

– Some memory must be allocated to each partition and
the result:B1 ≥ 1, B2 ≥ 1 andBR ≥ 1 if VR ≥ 1.

If the time taken to sort a page ofx records in memory
is given byTS = kx lgx andkS = kx, then the time taken
to sortn pages in memory is given by

T = knx lg(nx)

= knx(lgn + lgx)

= n(kS lgn + TS).

Thus, the time taken to sortB pages can be given byT =
B(kS lgB + TS).

The cost of the sort-merge join algorithm is given by

CSortR1 I/O = 2CI/O(V1, B)

CSortR1 CPU =

⌈
V1

B

⌉
B(kS lgB + TS)

CSortR2 I/O = 2CI/O(V2, B)

CSortR2 CPU =

⌈
V2

B

⌉
B(kS lgB + TS)

CMerge Read=

(⌈
V1

B

⌉⌈
B

B1

⌉
+

⌈
V2

B

⌉⌈
B

B2

⌉)
TK

+(V1 + V2)TT
CMerge CPU= (V1 + V2)TM

CWriteRR
= CI/O(VR, BR)

CSM = CSortR1 I/O +CSortR1 CPU
+CSortR2 I/O +CSortR2 CPU
+CMerge Read+CMerge CPU
+CWriteRR

.

This analysis assumes that, at most,B−BR partitions are
created during the sort phase. For large amounts of memory
this is likely to be true under normal circumstances, and is
certainly enough to compare the sort-merge join algorithm
with the other join algorithms presented in this article.

68

For example, consider a memory buffer of size 16 MB,
ignoring the final output buffer. If we assume 8 KB pages,
this means that a maximum of 16 384/8 = 2048 partitions
may be created which are to be merged together on the
final pass, thus there are 1024 partitions for each relation.
Each partition will be 16 MB in size, thus the maximum
size of each relation is 16 GB if only one sorting and one
merging pass is permitted. A similar analysis shows that if
64 MB of memory is available, the maximum size of each
relation is 256 GB. Thus, if a large amount of main memory
is available, one sorting and merging pass is likely to be
sufficient.

2.3 GRACE hash

Like the sort-merge join algorithm, the GRACE hash join
algorithm (Kitsuregawa et al. 1983) works in two phases. In
the first (partitioning) phase, each relation is partitioned such
that the partitions of one of the relations can be contained
within memory. It may take a number of passes over the re-
lations to achieve this. In the second (merging) phase, each
partition of the outer relation is read into memory in turn,
the corresponding partition of the inner relation is scanned
and the appropriate records joined. The second phase ef-
fectively consists of a number of invocations of the nested
block algorithm.

The partitioning is performed by hashing each record us-
ing the values of its join attributes and placing the record
in one of the output partitions. The output partition is de-
termined by the hash value. The same hash function is used
for each relation, guaranteeing that all the records of one re-
lation which join with any given record of the other relation
are in the corresponding partition of the other relation.

In the cost formulae given below we assume that, during
the partitioning phase, records are read into a buffer of size
BI and then distributed betweenP output buffers of size
BP . While we set the number of partitions createdP to be
a single value, it could vary for each of theρ passes. If a
large amount of main memory is available, one pass will
typically be enough. During the merging phase, the memory
buffer is divided in the same way as in the nested block join
algorithm. The general constraints which must be satisfied
are:

– The sum of the input and output buffer areas during the
partitioning phase must not be greater than the available
memory:PBP +BI ≤ B.

– Some memory must be allocated as an input area:BI ≥
1.

– Some memory must be allocated to each of the output
partitions:BP ≥ 1.

– The sum of the three buffer areas during the merging
phase must not be greater than the available memory:
B1 +B2 +BR ≤ B.

– The amount of memory allocated to relationR1 during
the merging phase should not exceed the size of relation
R1: 1 ≤ B1 ≤ V1.

– The amount of memory allocated to relationR2 during
the merging phase should not exceed the size of relation
R2: 1 ≤ B2 ≤ V2.

– Some memory must be allocated to the result during the
merging phase:BR ≥ 1 if VR ≥ 1.

The cost of the GRACE hash join algorithm is given by

CPart:ReadR1
=

ρ−1∑
i=0

P iCI/O

(⌈
V1

P i

⌉
, BI

)

CPart:WriteR1
=

ρ∑
i=1

P iCI/O

(⌈
V1

P i

⌉
, BP

)

CPart:Partition R1
=

ρ−1∑
i=0

P i

⌈
V1

P i

⌉
TP

CPart:ReadR2
=

ρ−1∑
i=0

P iCI/O

(⌈
V2

P i

⌉
, BI

)

CPart:WriteR2
=

ρ∑
i=1

P iCI/O

(⌈
V2

P i

⌉
, BP

)

CPart:Partition R2
=

ρ−1∑
i=0

P i

⌈
V2

P i

⌉
TP

CMerge:ReadR1
= P ρCI/O

(⌈
V1

P ρ

⌉
, B1

)
CMerge:Create= P ρ

⌈
V1

P ρ

⌉
TC

CMerge:ReadR2 initial = P ρCI/O

(⌈
V2

P ρ

⌉
, B2

)
CMerge:Join initial = P ρ

⌈
V2

P ρ

⌉
TJ

CMerge:ReadR2 other = P ρ

(⌈⌈
V1
Pρ

⌉
B1

⌉
− 1

)

×CI/O

(⌈
V2

P ρ

⌉
−B2, B2

)
CMerge:Join other= P ρ

(⌈⌈
V1
Pρ

⌉
B1

⌉
− 1

)

×
⌈
V2

P ρ

⌉
TJ

CWriteRR
= CI/O(VR, BR)

CGH = CPart:ReadR1

+CPart:WriteR1

+CPart:Partition R1

+CPart:ReadR2

+CPart:WriteR2

+CPart:Partition R2

+CMerge:ReadR1

+CMerge:Create
+CMerge:ReadR2 initial
+CMerge:Join initial
+CMerge:ReadR2 other

69

+CMerge:Join other
+CWriteRR

.

Like the sort-merge join algorithm, this algorithm is
likely to only require one pass over each relation during the
partitioning phase. For example, consider the same memory
buffer of size 16 MB used in the example in the previous
section. One partitioning pass means thatρ = 1. The largest
size of the outer relation will occur whenP = B − 1, thus
V1 = (B − 1)B1. If we assume that most of the 2048 pages
(16 MB) are allocated toB1, the size of the smaller relation,
relationR1, will be just under 32 GB. The other relation may
be much larger. By a similar analysis, if 64 MB (8192 pages)
of memory is available, the maximum size of the smaller re-
lation will be just under 512 GB. In practice, a lower cost
may be found by making two passes to partition the data
when the relations are this large because partitioning rela-
tions of this size in one pass requires thatBP = 1. This is
usually not optimal, as we discuss in Sect. 3.2.1.

2.4 Hybrid hash

The hybrid hash join algorithm (DeWitt et al. 1984; Shapiro
1986) is very similar to the GRACE hash join algorithm.
The primary difference is that the hybrid hash join algorithm
reserves an area of memory to join records in during the
partitioning phase. Instead of hashing each record into one
of P partitions during the partitioning phase, each record is
hashed into one ofP +1 partitions. During the partitioning of
relationR1, records which hash into the extra partition are
not written out to disk, but are stored in a hash table in the
reserved area in memory. When relationR2 is partitioned,
records which hash into the extra partition are joined with
the records of relationR1 which are stored in memory. The
amount of memory reserved for this extra partition need not
be the same as the expected sizes of the other partitions,
providing that the extra partition does not overflow during
one pass of relationR1.

The basis of the cost of the hybrid hash join algorithm is
similar to the GRACE hash join algorithm, with the addition
of the hash table in memory, which has sizeBH , during the
partition phase. The constraints and costs for the hybrid hash
algorithm are given in Appendix A.

3 Minimising costs

The equations in Sect. 2 describe the cost of each join algo-
rithm. There are a number of methods which could be used
to minimise these algorithms, including combinatorial and
heuristic techniques. We now describe how we determine a
minimal buffer allocation for the nested block algorithm and
the join algorithms based on hashing.

3.1 Nested block

To minimise the cost of the nested block join algorithm we
minimiseCNB in the presence of two variables,B1 andB2.
We then setBR = B−B1−B2. For a minimisation method to

14 18 22 26 30 34 38 42 46 50 54 58 62

Number of pages in buffer for outer relation

0

50

100

150

C
os

t
(s

)

Nested block
44

Fig. 1. Cost of nested block join algorithm asB1 andB2 vary. V1 = 100,
V2 = 1000,VR = BR = 1, B = 65

be useful in practice, its running time must be short, relative
to the time taken by the join. To determine how to find the
minimum, we have plotted the cost of the join versusB1 in
Fig. 1. Similar graphs are produced for any values ofV1, V2,
VR andB in which the nested block join is used. In Fig. 1,
the value ofBR is a constant so that the behaviour of the
cost variation may be easily observed. However, the shape
of the graph is the same ifBR is varied. The values ofTK
andTT are based on the Wren 6 disk drive, andTC andTJ
were based on the operations which may be performed on a
SPARCstation 10/30 using an 8 KB page size. These values
were shown in Table 1.

The minimum value ofCNB is likely to occur when
memory is well utilised. Memory is better utilised when the
values of the variablesB1, B2 andBR are such thatV1/B1,
V2/B2, and VR/BR are integers. That is, the size of the
buffer allocated to a relation exactly divides the size of the
relation. This ensures that no pages in the buffer are wasted
as a relation is read in. For example, consider a relation of
size 100 pages. Assume that the size of the buffer allocated
to this relation may be 10 or 11 pages. To read the relation
will take d100/10e = 10 or d100/11e = 10 read operations,
respectively. Clearly, the cost of the disk operations will be
the same. However, if the relation is allocated 11 pages, 10
pages are not used during the final read operation. It is more
efficient for the relation to be allocated 10 pages and allow
the other page to be allocated to the other relation, or to the
result relation.

Our minimisation algorithm, shown in Fig. 2, works by
stepping down from the largest values ofB1 andB2 until
the cost is greater than the minimum cost found by a certain
factor,δ. It initially setsB1 = dV1/ie, wherei is the smallest
integer such thatB1 ≤ B − 2, andB2 = dV2/je, wherej is
the smallest value such thatB1 +B2 ≤ B − 1. It setsBR =
B−B1−B2 and calculates the cost, then incrementsj and re-
calculatesB2, BR and the cost. This process continues while
the cost is less thanδ multiplied by the minimum cost found
for this value ofB1. The final cost is saved,i is incremented,
andB1 is re-calculated. This process continues while the best
cost for each value ofB1 is less thanδ multiplied by the
minimum cost.

70

function minimiseNB(V1, V2, VR)
mincost← ∞, B′

1 ← 0, i← 1
while B′

1 6= 1 do
B1 ← dV1/ie # find the largest integer (almost) dividingV1
if B1 ≤ B − 2 ∧B′

1 6= B1 then
runcost← ∞, B′

2 ← 0, j← 1 # a fixed value forB1 is a “run”
while B′

2 6= 1 do
B2 ← dV2/je # find the largest integer (almost) dividingV2
if B2 ≤ B −B1 − 1 ∧B′

2 6= B2 then
BR ← B −B1 −B2
cost← CNB(V1, V2, VR, B1, B2, BR)
B′

2 ← B2 # saveB2 to ensure we don’t try it twice
if cost< runcost then

(B+
1 , B

+
2 , B

+
R, runcost)← (B1, B2, BR, cost) # save run best

else if cost> δ× runcost then
break # this cost is much worse, so end this run

end if
end if
j ← j + 1 # prepare for next value ofB2

end while
B′

1 ← B1 # saveB1 to ensure we don’t try it twice
if runcost< mincost then

(B∗
1 , B

∗
2 , B

∗
R,mincost)← (B+

1 , B
+
2 , B

+
R, runcost) # save overall best

else if runcost> δ×mincost then
break # this cost is much worse, so end

end if
end if
i ← i + 1 # prepare for next value ofB1

end while
return mincost,B∗

1 , B∗
2 , B∗

R
end function

Fig. 2. Function for minimising the cost of the nested block join algorithm

It can be shown that the worst case complexity of this
algorithm isO(B3/2), assuming thatV1 ≤ αB, whereα is a
small constant which is usually less than four. If this condi-
tion does not hold, the nested block algorithm will perform
worse than the other algorithms, such as the GRACE and
hybrid hash joins, and should not be used. We describe how
the minimisation algorithm performs in Sect. 4. The results
show that the computation time required to find the minimal
buffer allocation is insignificant. In our tests, it always ran
in less than 0.05% of the execution time of the join.

3.2 A generalised hash join algorithm

If the constraints on the hybrid hash join algorithm are re-
laxed so thatBH = 0 is permitted, and by removing the result
buffer BR during the partitioning phase whenBH = 0, the
hybrid hash join algorithm can be generalised to include the
GRACE hash join algorithm. Both of these algorithms, as de-
scribed in Sect. 2, have separate input and output buffer areas
during the partitioning phase. These two areas can be com-
bined without affecting the cost equationsCGH (Sect. 2.3)
andCHH (Appendix A) after altering the constraints on each
algorithm.

Figure 3 diagrammatically represents our scheme. A set
of 2P − 1 one page buffers is reserved along with theBR

andBH pages. The remainingPBP pages are used as both
the input and output buffers during the partitioning phase.
A relation is read into thePBP pages, then it is partitioned
across thePBP + 2P − 1 pages. It effectively tries to par-

BR BH 2P − 1 BP · · · BP

PBP� -

BI� -

Fig. 3. Buffer structure of modified hash join algorithm during partitioning

tition in place using thePBP pages. Pages which are not
completely filled are moved to one of the 2P−1 spare pages
based upon its partition number. On the next pass, the con-
tents of each spare page are added to each partition after
partitioning but before the full pages are written out. Incom-
pletely filled pages are again saved within the 2P − 1 spare
pages. Thus, only complete pages are written out, except
after final read when all pages must be written.

The number of spare pages which are required is, at
most, 2P − 1.

– Just before reading each set of pages from disk, at most
P pages can contain records. This is because each output
partition has only one partially filled page active at any
point in time.
All the other pages are considered empty, because pages
which were considered full have been just written out,
and so can be considered to be empty. Therefore,P spare
pages must be available in addition to the ones used for
buffering the relation after a read operation.

71

– Any set ofN pages can be partitioned in place intoP
partitions usingN + P − 1 pages.
Each of the records must be moved into one of theP par-
titions. This requiresP output pages. However, records
are never added to one of theP partitions faster than
they are taken out of theN pages. Therefore, one of the
N pages can be used as an output partition, and at most
only P − 1 extra pages are required.

The number of pages read from disk during each read oper-
ation isPBP . Combining the previous two points, we can
see that the number of spare pages which are required is
2P − 1.

As the number of pages transferred under this scheme is
the same as the algorithms described in Sect. 2, the number
of seeks will be the same if the constraints onP , BP , BI ,
BH andBR are modified appropriately. The cost functions
of Sect. 2.3 and Appendix A are still valid. The constraints
and minimisation algorithm for the modified GRACE hash
algorithm are presented in the next section, and the con-
straints for the modified hybrid hash algorithm are discussed
in Appendix A.

3.2.1 Modified GRACE hash

The buffer arrangement of our modified GRACE hash join
algorithm during the partitioning phase is the same as that
described in Fig. 3, ifBR andBH are ignored. For the cost
CGH to be valid, the constraints that change are:

– PBP + 2P − 1 ≤ B instead ofPBP +BI ≤ B.
– BI = PBP instead ofBI ≥ 1.

The other constraints remain valid.
We now consider the maximum practical size of the re-

lations under this scheme before two passes must be made
over the data to partition it. If we assume a 16 MB buffer
area, an 8 KB page size, and CPU times as given in Ta-
ble 1, the largest relation which will be partitioned in one
pass is around 15.9 GB in size. For relations larger than this,
it is better to make two passes over the relation in which
two pages are allocated to each output partition, than it is
to make only one pass where each output partition is only
allocated one page. Note that this is similar to the capacity
of the sort-merge algorithm when only one pass is permitted.

To minimise the cost of the modified GRACE hash join
algorithm, we must minimiseCGH in the presence of four
variables,B1, B2, P and ρ. We setBR = B − B1 − B2,
BP = b(B − (2P − 1))/P c andBI = PBP . To determine
how to find the minimum we have plotted the cost of the join
versusB1 in Fig. 4, in the same way that we did with the
nested block algorithm. The resulting graph is very similar
to the graphs produced using the nested block algorithm, as
shown in Fig. 1.

We use a minimisation algorithm for the GRACE hash
join method similar to the one which minimises the nested
block join algorithm. The primary difference is that the value
of B1 is derived from the value ofP and the number of
passes. Instead of changingB1 directly, the values ofP and
ρ are changed. The minimisation algorithm is presented in
Fig. 5.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of pages in buffer for smaller relation

0

100

200

300

C
os

t
(s

)

GRACE hash
120

Fig. 4. Cost of GRACE hash join algorithm asB1 and B2 vary.
V1 = V2 = 1000,BR = VR = 1, B = 64,P = 10,BP = 5, ρ = 1

It can be shown that the upper bound on the complex-
ity of this minimisation algorithm isO(V2), assuming that at
most one partitioning pass is made over each relation. There-
fore, the size of the two relations is of the formV1 = αB2

andV2 = βB2, whereα ≤ β andα < 1. The performance of
this algorithm is discussed in Sect. 4. Like the nested block
minimisation algorithm, the results show that the compu-
tation time required to find the minimal buffer allocation
is insignificant. It is more expensive than the nested block
minimisation algorithm, but the running times of the joins
for which it finds minimal buffer allocations are longer. In
our tests, it always ran in less than 0.05% of the execution
time of the join.

4 Computational results

In this section we provide examples of the expected per-
formance of the join algorithms under the cost model de-
scribed in Sect. 2. We compare the nested block join algo-
rithm, the GRACE hash join algorithm, and the hybrid hash
join algorithm with the respective version of each algorithm
commonly described in the literature. We then compare the
expected performance of all four join algorithms described
in Sect. 2 on a variety of joins on relations of different sizes.
In Sect. 5 we report on our experimental results.

In the remaining sections, when we refer to the optimised
or minimised GRACE hash (hybrid hash) algorithm we mean
the modified GRACE hash (hybrid hash) algorithm described
in Sect. 3.2.1 (Appendix B). When we refer to the standard
versions of both algorithms, we mean the original versions
of both algorithms with the original buffer allocations.

4.1 Nested block

Using the buffer arrangement which results in a minimal
value ofCNB is obviously desirable; determining it requires
some computational cost. We would like to know whether
the improvement in performance makes this additional cost
worthwhile. To this end, we have plotted the cost of each

72

function minimiseGH(V1, V2, VR, B)
(mincost, B+

1 , B
+
2 , B

+
R) ← minimiseNB(V1, V2, VR, B)

P + ← 0, ρ+ ← 0
runcost← ∞, ρ← 1
do

prevcost← runcost
for i ← 2 to 1 do

runcost← ∞
for P ←

⌈
ρ
√
V1/i(B + 2)

⌉
to bB/3c do

B1 ← dV1/iP
ρe

if B1 ≤ B − 2 then
(cost, B2, BR) ← minimiseB2(V1, V2, VR, B, B1, P , ρ)
if cost< mincost then

(mincost, runcost, B+
1 , B

+
2 , B

+
R, P

+, ρ+)← (cost, cost, B1, B2, BR, P, ρ)
else if cost< runcost then

runcost← cost
else if cost> δ × runcost then

break
end if

end if
end for

end for
ρ← ρ + 1

until prevcost< runcost
return mincost,B+

1 , B
+
2 , B

+
R, P

+, ρ+

end function

function minimiseB2(V1, V2, VR, B, B1, P , ρ)
mincost← ∞, B′

2 ← 0, i← 1
while B′

2 6= 1 do

B2 ←
⌈

dV2/P
ρe

i

⌉
find largest integer (almost) dividing relation size

if B2 ≤ B −B1 − 1 ∧B′
2 6= B2 then

BR ← B −B1 −B2
cost← CGH(V1, V2, VR, B1, B2, BR, P, ρ)
if cost< mincost then

(B+
2 , B

+
R,mincost)← (B2, BR, cost) # save best values

else if cost> δ×mincost then
break # this cost is much worse, so finish

end if
B′

2 ← B2 # saveB2 to ensure we don’t try it twice
end if
i ← i + 1 # prepare for next value ofB2

end while
return mincost,B+

2 , B+
R

end function

Fig. 5. Functions for minimising the cost of the GRACE hash join algorithm

algorithm for a range of values ofV1 for fixed values ofV2,
VR andB. This is shown in Fig. 6.

If we assume a page size of 8 KB,V2 = 100 000 approx-
imately corresponds to a 781 MB relation,VR = 10 000 to
a 78 MB result relation, andB = 4096 to 32 MB of main
memory used during the join operation. Figure 6 is a rep-
resentative comparison of the nested block algorithm for all
values ofV2, VR andB we tested. For example, a graph of
identical shape is produced whenV2 = 1000,VR = 100 and
B = 64.

The “Nested block (opt)” line corresponds to the minimal
value ofCNB calculated using the minimisation algorithm
in Fig. 2. Table 2 shows a number of the minimal values
for B1, B2 andBR for various values ofV1. The “Nested
block (std)” line corresponds to the standard version of the
nested block algorithm commonly described in the literature,

in which B1 = B − 2, B2 = BR = 1. The “Nested block
(Hag)” line corresponds to the version proposed by Hagmann
(1986), in whichB1 = B2 = (B − 1)/2, BR = 1. Note that
while Hagmann’s version is faster than the standard version
for larger relations, it is approximately twice as slow for
most of the smaller relations in whichB/2 < V1 < B. This
is in marked contrast to the results Hagmann reported, and
is due entirely to our more realistic cost model.

Our results indicate that the shape of the graphs are gen-
eral and independent of values ofV2, VR andB. The stan-
dard nested block algorithm increases its cost substantially
each time the size ofV1 increases byB − 2. This is be-
cause an additional pass over the second relation is required
at each of these points. Similarly, Hagmann’s version in-
creases its cost as the size ofV1 increases by (B − 1)/2,
for the same reason. The minimal version continually ad-

73

Table 2. Minimal buffer allocation ofB1, B2 andBR for the nested block
join algorithm whenV2 = 100 000 (781 MB),VR = 10 000 (78 MB),
B = 4096 (32 MB).

V1 B1 B2 BR
1 1 3226 869

2048 2048 1613 435
4000 4000 73 23
4096 2048 1852 196
8000 4000 79 17
8192 2731 1235 130

100000 4000 90 6

0 200 400 600

Outer relation size (MB)

0

20000

40000

60000

80000

100000

C
os

t
(s

) Nested block (opt)
Nested block (std)
Nested block (Hag)

Fig. 6. Cost of the nested block join algorithm asV1 varies.V2 = 100 000
(781 MB), VR = 10 000 (78 MB),B = 4096 (32 MB)

justs the size of each of the buffersB1, B2 andBR for each
relation to minimise the need to perform additional passes.

The results show that a significant improvement in per-
formance is gained by using the buffer arrangement which
results in the minimal value ofCNB. For example, when
V1 = 8000, the minimal version takes 46% of the time of
the standard version and 51% of the time of Hagmann’s ver-
sion. When relationR1 can be contained within the memory
buffer, an improvement is still achieved by selecting better
values forB2 andBR. In addition, the minimisation algo-
rithm is very fast. This is discussed further in Sect. 4.5.

4.2 GRACE hash

As with the nested block join algorithm, calculating the
minimal value ofCGH requires some computational cost.
We would like to know if the improvement in performance
which can be achieved makes calculating the minimal ar-
rangement worthwhile.

We have plotted the cost of each algorithm for a range of
values ofV1 for the same fixed values ofV2, VR andB used
in the previous section. The result of this is shown in Fig. 7.
The “GRACE hash (opt)” line corresponds to the minimal
value ofCGH calculated using the minimisation algorithm.
The “GRACE hash (std)” line corresponds to the standard
version of the GRACE hash algorithm, in whichB1 = B−2,
B2 = BR = 1, andP = B − 1.

As with the nested block algorithm, the results show
that a significant improvement in performance is gained by
using the buffer arrangement providing the minimal value of
CGH. For example, whenV1 = 12 000 (94 MB), the minimal
version takes 30% of the time of the standard version, and

0 200 400 600

Outer relation size (MB)

0

5000

10000

15000

C
os

t
(s

)

GRACE hash (opt)
GRACE hash (std)

Fig. 7. Cost of the GRACE hash join algorithm asV1 varies.V2 = 100 000
(781 MB), VR = 10 000 (78 MB),B = 4096 (32 MB)

when V1 = 100 000 (781 MB) it takes 34% of the time
of the standard version. Like the nested block minimisation
algorithm, the time taken by the GRACE hash minimisation
algorithm is small. This is discussed further in Sect. 4.5.

4.3 Hybrid hash and simulated annealing

While using the buffer arrangement which results in a mini-
mal value ofCHH is desirable, determining it using a min-
imisation algorithm similar to the GRACE hash minimi-
sation algorithm requires a huge computational cost, often
much longer than performing the join. To attempt to reduce
this, we used simulated annealing (Aarts and Korst 1989) to
find a good buffer arrangement in a much shorter period of
time. The parameters to the simulated annealing algorithm
were chosen so that it would terminate in around 10 s, al-
though all our tests times actually varied between 4 s and
21 s. This is discussed further in Sects. 4.4 and 4.5.

We have plotted the cost of each algorithm for a range
of values ofV1 for the same fixed values ofV2, VR andB as
the nested block and GRACE hash algorithms. The result of
this is shown in Fig. 8. The “Hybrid hash (opt)” line corre-
sponds to a good value ofCHH calculated using simulated
annealing. Simulated annealing does not guarantee to deter-
mine the minimal value at each point. However, the shape
of the graph indicates that it performs well. The “Hybrid
hash (std)” line corresponds to the standard version of the
hybrid hash algorithm, in whichB1 = B − 2, B2 = BR =
BP = BI = 1, P = d(V1 − (B − 2))/((B − 2)− 1)e + 1 and
BH = B − P −BI −BR.

As with the nested block and GRACE hash join algo-
rithms, the results show that a significant improvement in
performance is gained by using the buffer arrangement pro-
viding a good value ofCHH. For example, whenV1 =
12 000 (94 MB) the minimised version takes 34% of the
time of the standard version, and whenV1 = 100 000 (781
MB) it takes 35% of the time of the standard version.

4.4 Join Algorithm Comparison

We have seen that using a more realistic cost model for deter-
mining memory buffer usage for the nested block, GRACE

74

0 200 400 600

Outer relation size (MB)

0

5000

10000

15000

C
os

t
(s

)

Hybrid hash (opt)
Hybrid hash (std)

Fig. 8. Cost of the hybrid hash join algorithm asV1 varies.V2 = 100 000
(781 MB), VR = 10 000 (78 MB),B = 4096 (32 MB)

0 200 400 600

Outer relation size (MB)

0

10000

20000

30000

40000

50000

C
os

t (
s) Nested block (opt)

Sort-merge (opt)
GRACE hash (opt)
Hybrid hash (opt)

Fig. 9. Join algorithm comparison asV1 varies.V2 = 100 000 (781 MB),
VR = 10 000 (78 MB),B = 4096 (32 MB)

hash and hybrid hash join algorithms can result in a signifi-
cant improvement in the performance of the join algorithm.
We now compare the four join algorithms, using the same
example as above. The result of this is shown in Figs. 9
and 10. Figure 10 contains an enlarged version of part of
Fig. 9.

Using the standard cost model, others (including Blasgen
and Eswaran 1977; DeWitt et al. 1984; DeWitt and Gerber
1985; Shapiro 1986) reported thatwhen the outer relation

0 50 100 150 200 250

Outer relation size (MB)

0

5000

10000

15000

C
os

t (
s) Nested block (opt)

Sort-merge (opt)
GRACE hash (opt)
Hybrid hash (opt)

Fig. 10. Join algorithm comparison asV1 varies.V2 = 100 000 (781 MB),
VR = 10 000 (78 MB),B = 4096 (32 MB)

Table 3. Range of random values forV1, V2, VR in pages

Variable Minimum Maximum
V1 97 (0.8 MB) 199 627 (1560 MB)
V2 11 926 (93 MB) 399 450 (3121 MB)
VR 60 (0.5 MB) 256 119 (2001 MB)

may be contained within main memory, the nested block al-
gorithm performs the best. Figures 9 and 10 show that this
is still the case under our cost model. Note that our defini-
tions of the GRACE and hybrid hash algorithms presented
in Sect. 2 reduce to the nested block algorithm when no par-
titioning passes are made over the data; hence the costs are
the same. As the size of the outer relation gets larger, the
other join algorithms all perform better than the nested block
algorithm.

The result that is different to that reported in the past us-
ing the standard cost model, such as by DeWitt et al. (1984),
is that, in general,the GRACE hash algorithm performs as
well as the hybrid hash algorithm for large relations relative
to the size of main memory. The size of a large relation is
defined to be some small multiple of the size of main mem-
ory (for example, three or ten times). When the relation size
is larger than the buffer size but still small, the hybrid hash
algorithm performs better than all the other algorithms. This
is because a large percentage of the relations may be joined
during the first pass over the data. Thus, the amount of data
which does not have to be written to disk, read back in, and
then joined, will be large enough to ensure that the cost of
the hybrid hash algorithm is significantly smaller than that
of the other methods.

Using the standard cost model, as reported in DeWitt
(1984), the sort-merge algorithm does not perform as well as
either hash-based algorithm, despite the fact that our version
of the sort-merge algorithm has a lower cost than the version
reported.

4.5 Join algorithm comparison: minimisation times

In the previous four sections, we have shown that the mini-
mal versions of each of the algorithms will perform as well
or better than the standard versions. Therefore, whether the
minimal versions are the best to use in practice will depend
on the time taken to find the minimal buffer allocation in
each case. The sum of the time taken to determine the min-
imal buffer allocation and then to execute the join, must be
faster than simply using the standard version of each algo-
rithm for this scheme to be worthwhile.

To determine the likely relative performance of each join
and minimisation algorithm, we generated 1000 random join
queries. For each query, the value ofB was randomly chosen
to be one of 128, 256, 512, 1024, 2048, 4096 or 8192. If we
assume pages are 8 KB, this tests main memory sizes from
1 MB to 64 MB. The values ofV1, V2 andVR were chosen
randomly such thatV1 ≤ V2. The extreme values for these
variables are shown in Table 3.

For each of these queries, the minimisation algorithm for
the nested block and GRACE hash join algorithms were used
to determine the minimal values. Simulated annealing was
used for the extended version of the modified hybrid hash
algorithm which generalises both the hybrid hash and the

75

Table 4. Number of minimal buffer allocations for each join algorithm.NB, nested block;SM , sort-merge;
GH, GRACE hash;HH, hybrid hash

Memory Total Number of minimal costs for each join algorithm
size number Excluding minimisation time Including minimisation time
B of joins NB SM GH & HH GH HH NB SM GH & HH GH HH

128 139 0 0 6 127 6 0 0 0 136 3
256 136 0 0 2 131 3 0 0 0 133 3
512 131 0 0 2 124 5 0 0 0 127 4

1024 142 1 0 0 123 18 1 0 0 123 18
2048 132 4 0 0 94 34 4 0 0 100 28
4096 156 2 0 0 59 95 2 0 0 68 86
8192 164 5 0 0 6 153 5 0 0 7 152

GRACE hash algorithms. This was done so that the GRACE
and hybrid hash algorithms could be compared equally, and
to see if simulated annealing was, in fact, determining a
minimal buffer allocation. An exhaustive search was also
performed for the sort-merge algorithm, and forB = 128 and
B = 256 for the nested block and GRACE hash algorithms
to determine the optimal values.

The performance of the nested block and GRACE hash
minimisation algorithms was very good. The nested block
and GRACE hash minimisation algorithms always found the
optimal value for the buffer sizesB = 128 andB = 256,
and always ran in less than 0.05% of the time to perform
the join. The buffer allocation found for each of the 1000
joins was different from the standard buffer allocation in all
cases. While it is possible that the standard buffer allocation
may be optimal for some joins, we believe that there are
very few joins for which this is the case. Thus, we believe
that these minimisation algorithms should be used in practice
when executing joins, particularly given the improvements
demonstrated in Sects. 4.1 and 4.2.

The running time of the simulated annealing minimisa-
tion of the extended hybrid hash algorithm was also small.
It took up to 3% of the time it would take to both use sim-
ulated annealing to determine the buffer allocation and then
to perform the join. Unfortunately, simulated annealing did
not always find the minimal buffer allocation. We know this,
because, for a number of the queries the cost of the hybrid
hash algorithm using the buffer allocations determined using
simulated annealing was higher than the cost of the buffer
allocations found GRACE hash minimisation algorithm. As
the simulated annealing algorithm was minimising a cost
function which generalised the GRACE hash join method in
addition to the hybrid hash join method, the minimal cost
should be less than, or equal to, that found by the GRACE
hash minimisation algorithm.

Table 4 summarises the performance of each of the min-
imisation algorithms. In theory, either the nested block or hy-
brid hash join algorithms should provide the minimal buffer
allocation for all joins. However, our results differ from this
expectation. We found that of the 1000 joins, the nested
block join algorithm was the best algorithm to use in 12 of
the joins based upon execution time alone, and was still the
best in those 12 cases when the time taken to determine the
minimal buffer allocation was also considered. The GRACE
and hybrid hash algorithms determined minimal buffer allo-
cations with the same cost for 10 queries, and differed for the
remaining 978 queries. The results in Table 4 show that the
simulated annealing minimisation algorithm for the extended

hybrid hash join algorithm, which encompasses both the hy-
brid hash join method and the GRACE hash join method,
needs to be improved significantly before it will be gen-
erally useful across all memory buffer sizes. The GRACE
hash minimisation algorithm often performs better than the
hybrid hash join algorithm minimised using the simulated
annealing algorithm, particularly for smaller buffer sizes.

Interestingly, for 258 of the 988 join queries in which
algorithms other than the nested block algorithm produce
the minimal cost, the hybrid hash algorithm minimised us-
ing simulated annealing produced a minimal value such that
BH = 0. That is, the GRACE hash method resulted in a
lower cost than the traditional hybrid hash method in which
BH > 1 is a constraint. Although the minimal hybrid hash
algorithm reduced to the GRACE hash algorithm, it is possi-
ble for the simulated annealing algorithm to produce a differ-
ent buffer allocation. This was observed on 250 of the 258
occasions. In all these cases we found that simulated an-
nealing produced a buffer allocation with a higher cost. The
difference in cost was usually small; often less than 0.1% of
the cost. However, differences up to 6.3% were observed. On
the remaining 8 of the 258 occasions, the buffer allocation
determined by the simulated annealing algorithm produced
identical buffer allocations with the same cost as that of the
GRACE hash minimisation algorithm. This indicates that
although the simulated annealing algorithm produces good
results, particularly for smaller values ofV1, there is scope
for developing a better algorithm for minimising the cost of
the hybrid hash join.

The expected performance of the sort-merge algorithm
reinforced the results shown in Fig. 9. Due to the restricted
version of the sort-merge algorithm we examined, only a
limited number of joins were appropriate. Of the 1000 joins,
343 were too big to sort the relations in one pass. In another
12 joins the nested block algorithm produced the minimal
value. The sort-merge algorithm had a higher cost than the
GRACE hash algorithm for all the remaining joins. The mag-
nitude of the additional cost varied between 24% and 153%
of the cost of the GRACE hash algorithm, with an average
of 52%. The primary advantage of the sort-merge algorithm
is that it avoids the problem of uneven partition sizes which
can affect the performance of the hash join algorithms. We
discuss how this problem can be reduced for the hash join
algorithms in Sect. 6.

In 294 of the 1000 join queries, the hybrid hash algo-
rithm minimised using simulated annealing performed the
best. Table 5 summarises the improvement of the hybrid
hash algorithm over the GRACE hash algorithm. Figure 4

76

Table 5. Percentage improvement of hybrid hash over GRACE hash when
hybrid hash has a lower cost, including minimisation time

Memory Total Percentage improvement
size,B joins Min Median Mean Max

128 3 0.04 0.08 0.61 1.70
256 3 0.76 4.08 3.60 5.96
512 4 2.10 5.67 8.01 20.38

1024 18 0.11 1.46 3.81 15.39
2048 28 0.00 0.94 4.62 31.42
4096 86 0.02 1.27 3.81 28.66
8192 152 0.11 3.68 15.15 84.14

shows that whenB ≤ 2048, the GRACE hash minimisation
algorithm is much more likely to produce a better buffer
allocation than the hybrid hash minimisation algorithm.

In Table 5 we can see that for large main memories
(B = 8192) and large relations it is desirable to use sim-
ulated annealing and the extended hybrid hash algorithm.
Conversely, when the amount of memory is smaller, we be-
lieve that the minimisation algorithm for the GRACE hash
join algorithm should be used to determine the minimal
buffer allocation for any join. The results in Tables 4 and 5
do not contradict the results in Fig. 9. The reason that the
hybrid hash algorithm performs so much better for larger
memory sizes is that the range of sizes of the relations be-
ing joined does not change, so the ratio of relation size to
main memory size decreases for larger main memory sizes.
Figure 9 shows that even when the outer relation is 20 times
greater than main memory, an improvement is possible, al-
beit small. This is reflected in the experiments shown in
Table 5. We found that the cost improvement of the hybrid
hash algorithm over the GRACE hash algorithm across all
1000 joins was less than 2.2% in 50% of the cases, less than
5.1% in 70% of the cases, and less than 30% in 90% of the
cases.

Instead of using a random starting point for the simu-
lated annealing algorithm, we tried using the buffer alloca-
tion produced by the GRACE hash minimisation algorithm
in a single simulated annealing trial. This method proved
cost effective for 881 of the 1000 join queries. That is, the
improvement in the cost was greater than the time taken for
the single run of the simulated annealing algorithm (which
was all less than 1 s of CPU time) for 881 join queries, with
an average improvement of 8.6% across those 881 queries.

Of the 881 join queries for which a lower cost was found,
the cost determined was lower than that determined by the
simulated annealing algorithm described above for 807 of
the joins, and greater for the other 74. Thus we believe that
seeded simulated annealing is likely to be a better method
to use than the normal simulated annealing algorithm with
random starting points when minimisation time is significant.

Another possible method of determining the optimal
buffer allocation for the hybrid hash algorithm would be
a combination of storing pre-computed optimal buffer allo-
cations for various input and output relation sizes, in con-
junction with a (small) search around that optimal buffer
allocation for given relation sizes. Storing all possible com-
binations of relation sizes is unlikely to be possible, unless
the sizes of potential relations is severely constrained. Ad-
ditionally, in a multi-user system, the amount of memory
available as buffer space is likely to vary depending on the

system load. Thus, sets of relation and buffer sizes would
have to be stored for each different amount of memory avail-
able. This is likely to be impractical.

The storage of only unique optimal buffer allocations
is also likely to be impractical. With four distinct variables
(B1, BR, BH and P , deriving B2 and BP), the number
of possible buffer allocations isO(B4). If the buffer size
can also vary, it clearly becomes impractical to store buffer
allocations for many values ofB. An open problem remains
to determine how many buffer allocations to store and how
to efficiently derive an optimal allocation from them.

In conclusion, we have seen that a combination of the
nested block and GRACE hash join algorithms, and their re-
spective minimisation algorithms, provide a significant im-
provement over the standard versions of all the join algo-
rithms we have examined. In all the cases in which the op-
timal buffer allocation was calculated, the minimal buffer
allocations produced by the nested block and GRACE hash
minimisation algorithms were optimal. In addition, all the
minimised versions of the GRACE hash join, hybrid hash
join and sort-merge join provide a significant improvement
over the best of the standard versions of the algorithms,
namely the standard hybrid hash join. We believe that these
join algorithms should be implemented. To determine a good
buffer allocation for the hybrid hash join method, the seeded
simulated annealing algorithm should also be implemented.
For smaller main memory sizes, it should only be used if the
size of the outer relation is less than a small multiple of the
size of main memory (typically up to three to six times). For
larger main memories and large relations, it should always
be used if the size of the outer relation is larger than main
memory because the minimisation cost will be insignificant
when compared to the running time of the join.

4.6 Stability of minimal allocation:
varying seek and transfer times

It is important to know the effect of the seek and trans-
fer times,TK andTT , on the minimal buffer arrangement.
These times are used in the calculation of the cost of each
join operation, and different hardware typically has different
values for each of these times. If a small variation in the
relationship between these values has a significant impact
on the stability of the minimal buffer arrangement then the
characteristics for each disk drive would have to be known.
This would make the method of determining minimal buffer
arrangements much less useful, and difficult to determine.

Table 6 shows possible values forV1 in which each al-
gorithm will be used whileV2, VR, B, TC , TJ andTP are
constant. LetC(B,N) be the cost of the join algorithm us-
ing buffer arrangementB and N = TK/TT . To calculate
the cost ratio for a given value ofTK/TT , N ′, we first find
the minimal buffer arrangement,B, for TK/TT = 5. We set
C1 = C(B,N ′). Now we find the minimal buffer arrange-
ment,B1, for TK/TT = N ′. We setC2 = C(B1, N

′) and the
cost ratio is given byC1/C2.

Table 6 shows that the relationship betweenTK andTT
does not have an enormous impact on the cost of the minimal
buffer arrangement. We believe that the number of occasions
in which an extremely accurate estimation of the relation-

77

Table 6. Buffer size changes as the relationship betweenTK and TT is
varied,V2 = 100 000 (781 MB),VR = 10 000 (78 MB),B = 4096 (32 MB),
TC = TJ = 3TT , TP = 0.4TT

Nested block GRACE hash
V1 = 4093 (32 MB) Cost V1 = 100 000 (781 MB) Cost

TK/TT B1 B2 BR ratio B1 B2 BR P Ratio
1 4093 2 1 1.00 3125 782 189 32 1.00
2 4093 2 1 1.00 3226 646 224 31 1.00
3 4093 2 1 1.00 3226 646 224 31 1.00
4 4093 2 1 1.00 3226 646 224 31 1.00
5 4093 2 1 1.00 3449 493 154 29 1.00
6 4093 2 1 1.00 3449 493 154 29 1.00
7 2047 1819 230 1.03 3449 493 154 29 1.00
8 2047 1819 230 1.10 3449 493 154 29 1.00

Table 7. Buffer size changes when the relationship betweenTJ and TT
is varied,V2 = 100 000 (781 MB),VR = 10 000 (78 MB),B = 4096 (32
MB), TK = 5TT , TC = TJ , TP = TJ/8

Nested block GRACE hash
V1 = 4093 (32 MB) Cost V1 = 100 000 (781 MB) Cost

TJ/TT B1 B2 BR Ratio B1 B2 BR P Ratio
1.5 2047 1852 197 1.10 3449 493 154 29 1.00
2 2047 1852 197 1.00 3449 493 154 29 1.00
2.5 4093 2 1 1.00 3449 493 154 29 1.00
3 4093 2 1 1.00 3449 493 154 29 1.00
4 4093 2 1 1.00 3226 646 224 31 1.00
5 4093 2 1 1.00 3226 646 224 31 1.00

ship between the seek and transfer times is required will be
relatively rare. This result also gives us confidence that the
impact of additional seeks within large data files will be very
small.

4.7 Stability of minimal allocation:
varying CPU and disk times

It is also important to know the effect of CPU times com-
pared with the disk seek and transfer times on the minimal
buffer arrangement. As with the relationship between seek
and transfer times, these times are used in the calculation of
the cost of each join operation. Not only does different hard-
ware have different values for each of these times, but the
operating system and software used also affect the values of
these times. If a small variation in the relationship between
these values has a significant impact on the stability of the
minimal buffer arrangement, then the relationship between
the values would have to be known. This would make the
method of determining minimal buffer arrangements much
less useful, and more difficult to determine.

Table 7 shows possible values forV1 in which each al-
gorithm will be used whileV2, VR andB are constant. The
ratio of TJ andTT is varied, while the other values are set
so thatTK = 5TT , TC = TJ andTP = TJ/8.

We use a similar analysis to the previous section to derive
the cost ratio. LetC(B,N) be the cost of the join algorithm
using buffer arrangementB andN = TJ/TT . To calculate
the cost ratio for a given value ofTJ/TT , N ′, we first find
the minimal buffer arrangement,B, for TJ/TT = 3. We set
C1 = C(B,N ′). Now we find the minimal buffer arrange-
ment,B1, for TJ/TT = N ′. We setC2 = C(B1, N

′) and the
cost ratio is given byC1/C2.

0 1 2 3 4 5

CPU to disk ratio (TJ / TT)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
er

fo
rm

an
ce

 g
ai

n
=

st
an

da
rd

 c
os

t
/ m

in
im

al
 c

os
t

V1 = V2 = 100000 (781 MB),
B = 1024 (8 MB)
V1 = V2 = 100000 (781 MB),
B = 4096 (32 MB)
V1 = V2 = 100000 (781 MB),
B = 16384 (128 MB)
Current technology

Fig. 11. Relative cost of minimal and standard buffer allocations when
the ratio TJ/TT varies. VR = 10 000 (78 MB),TK = 5TT , TC = TJ ,
TP = TJ/8

0 1 2 3 4 5

CPU to disk ratio (TJ / TT)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
er

fo
rm

an
ce

 g
ai

n
=

st
an

da
rd

 c
os

t
/ m

in
im

al
 c

os
t

V1 = V2 = 25000 (195 MB),
B = 4096 (32 MB)
V1 = V2 = 100000 (781 MB),
B = 4096 (32 MB)
V1 = V2 = 800000 (6250 MB),
B = 4096 (32 MB)
Current technology

Fig. 12. Relative cost of minimal and standard buffer allocations when
the ratio TJ/TT varies. VR = 10 000 (78 MB),TK = 5TT , TC = TJ ,
TP = TJ/8

Table 7 shows that the relationship betweenTJ andTT
does not have an enormous impact on the cost of the minimal
buffer arrangement.

4.8 Benefits of minimal allocation:
varying CPU and disk times

The current trend in hardware technology is for CPU speeds
to increase at a rate greater than that of the disk drive tech-
nology (seek and transfer rates). As the cost of memory is
decreasing, it is also likely that in the future more mem-
ory will be available to be used for buffers. In the future,
will it be more or less beneficial to use the minimal buffer
allocation?

Figures 11 and 12 show how the ratio between the CPU
time constants (TC , TJ and TP) and disk time constants
(TK andTT) affects the performance of the GRACE hash
join algorithm. The ratio of the cost of the standard buffer
allocation to the minimal buffer allocation is compared for
a number of different buffer and relation sizes. These fig-
ures show that as the CPU speed gets faster, relative to the
disk seek and transfer speeds, the minimal buffer allocations
perform better than the standard buffer allocations.

In addition, Fig. 11 demonstrates the effect of varying
the total buffer size. As the amount of memory available for

78

0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0

Memory size (MB)

0

2

4

6

8

10

T
im

e
(s

)

GRACE hash (opt)
Nested block (opt)

Fig. 13. Time taken by the nested block and GRACE hash minimisa-
tion algorithms.V1 = 500 000 (3906 MB),V2 = 1 000 000 (7813 MB),
VR = 100 000 (781 MB)

buffers increases, the performance of the minimal allocation
over the standard allocation increases. Figure 12 demon-
strates the effect of varying the relation sizes. It shows that
smaller relations exhibit greater performance improvement
than larger ones using the minimal buffer allocation. How-
ever, the difference is not as great as the impact of using
different buffer sizes.

4.9 Minimisation performance as buffer sizes vary

In Sect. 4.5 we reported that the time taken by the minimi-
sation algorithms is very small compared with the running
time of the join. In Fig. 13 we present the time taken to
minimise a typical join of two relations for a large number
of different buffer sizes, ranging from 64 pages (512 KB) to
32 768 pages (256 MB). In Fig. 14 we present the relative
time taken to minimise the join compared with the running
time of the join. Note that the scale of the axis denoting the
number of pages of memory is logarithmic. The results again
show that the time taken by the minimisation algorithms are
very small compared with the running time of the join algo-
rithm. They also show that the running time of the GRACE
hash minimisation algorithm is approximately linear in the
amount of main memory available.

The time taken by the simulated annealing algorithm can
be controlled by its parameters. In Fig. 15 we present the
time taken to minimise the same join using simulated an-
nealing. Note that the time taken is longer than the GRACE
hash minimisation algorithm. However, as the time taken
does not increase significantly as more memory is made
available, there will be a point at which it becomes more cost
effective to use simulated annealing than the GRACE hash
minimisation algorithm (in this case, approximately 1 GB of
main memory).

5 Experimental results

In order to validate our analysis and the results obtained in
the previous section, we conducted a series of experiments.
Programs were written which performed the appropriate I/O

0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0

Memory size (MB)

0.00001

0.00010

0.00100

0.01000

R
el

at
iv

e
m

in
im

is
at

io
n

ti
m

e
(%

)

GRACE hash (opt)
Nested block (opt)

Fig. 14. Relative time taken by the nested block and GRACE hash min-
imisation algorithms.V1 = 500 000 (3906 MB),V2 = 1 000 000 (7813 MB),
VR = 100 000 (781 MB)

0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0

Memory size (MB)

0

5

10

15

T
im

e
(s

)

Hybrid hash (opt)

Fig. 15. Time taken by the simulated annealing algorithm.V1 = 500 000
(3906 MB),V2 = 1 000 000 (7813 MB),VR = 100 000 (781 MB)

and CPU operations for the nested block and GRACE hash
join algorithms when provided with input files. They were
implemented on a Sun SPARCstation IPX running SunOS
5.3 and relied on the UNIX file system for file management.
Thus, we had no control over the disk accesses required to
retrieve the data.

The SunOS file system (McVoy and Kleiman 1991) at-
tempts to keep consecutive pages together in cylinder groups
whenever possible, as well as buffering disk pages and read-
ing disk pages ahead. It also reads seven 8 KB pages at a
time, so that reading one page at a time through a file does
not result in a disk access for every read. To combat this we
set the page size to be 56 KB. The large page size is likely
to have the effect of moving the cost of the standard buffer
allocation closer to the optimal buffer allocation because the
one page allocated to the inner relation is, in fact, seven
“normal” disk pages. This produces the same effect as the
clusters of Graefe (1993).

We varied the amount of memory reserved for the mem-
ory buffer between 100 and 310 of the 56 KB pages; thus
the total of amount of memory used varied between 5.5
and 17 MB. To minimise the effect of the buffer cache, we
ensured that the total amount of memory allocated to our
program was 17 MB, regardless of how much was used as
the memory buffer. The system call mlock() was used to en-

79

Table 8. Timing parameter values for experimental results

Parameter Value (s)
TK 0.0233
TT 0.0356
TP 0.00881
TC 0.00220
TJ 0.00317

Table 9. Relation sizes (in 56 KB pages) for experimental results

Join algorithm V1 V2 VR
join attribute

5 4 3 2
Nested block 256 (14 MB) 512 (28 MB) 1 1 9 808
GRACE hash 512 (28 MB) 1024 (56 MB) 1 3 33 —

sure that this address space was fixed in physical memory,
and not swapped out, as our programs ran.

The disk drive used was an Elite-2. The values for the
parametersTK , TT , TP , TC andTJ were calculated using
initial diagnostic data provided by our program. We ensured
that the UNIX buffer cache did not contain any of our data
files as we collected the diagnostic data; therefore the costs
estimated using these parameters should not be greater than
the time taken by the join experiments. These values are
shown in Table 8.

In the following results, all times reported are that of
the total elapsed time of the algorithm. Thus, these results
were susceptible to any other activity on the machine. To
attempt to minimise and identify this, the experiments were
performed when there was no other user active on the ma-
chine and each join was performed ten times. However, we
did not remove network or other operating-system-related
activities from the machine.

The data files used in the experiments consisted of 184
byte records, similar to those of the Wisconsin benchmark
(Bitton 1983). Each record consisted of a unique identifier
attribute, six integer attributes and three string attributes of
length 52 bytes. The values of each of the integer attributes
was chosen from a different domain, so that the result rela-
tions would be different sizes, depending on which attribute
was used for the join. All experiments were performed on
the integer attributes. Table 9 shows the sizes of the relations
joined, and the size of the result relation for the attributes
which were involved in a join.

Representative examples of the results of these experi-
ments are shown in Figs. 16–19. The points on the graphs
denote the mean and standard deviation of time taken to
perform each join. Note that the times shown for the ex-
periments are theelapsed times, which are susceptible to
other activity on the machine. We would anticipate that in
a more highly controlled environment the variation in the
results would be much lower.

Figure 16 shows the cost of the experiments for six buffer
sizes using the nested block join, and the expected cost cal-
culated using the values in Table 8. The experimental cost
is lower than the calculated cost. This is due to the presence
of the buffer cache and the limited disk space in which we
performed the experiments. These factors combine to result
in the fact that it is difficult to experimentally determine
the values of the constants with great accuracy. However,
the trend for the cost to decrease, as the amount of mem-

6 8 10 12 14

Buffer size (MB)

0

20

40

60

C
os

t
(s

)

Experimental Nested Block
Calculated Nested Block

Fig. 16. Experimental cost and expected cost of performing nested block
join versus main memory buffer size.V1 = 256 (14 MB), V2 = 512 (28
MB), VR = 9 (504 KB)

6 8 10 12 14

Buffer size (MB)

0

10

20

30

40

50

C
os

t
(s

)

Minimal Nested Block
Standard Nested Block

Fig. 17.Experimental cost of performing minimal and standard nested block
join versus main memory buffer size.V1 = 256 (14 MB),V2 = 512 (28 MB),
VR = 1 (56 KB)

ory which is used increases, is consistent with the expected
cost. We would anticipate that in an environment in which
the buffer cache was not available, the difference between
the experimental and calculated costs would be much lower.

Figure 17 compares the performance of the minimal and
standard versions of the nested block join algorithm. It is
clear that a substantial improvement in performance can be
achieved, particularly for the intermediate buffer sizes. The
largest buffer size was chosen such that the minimal buffer
allocation was the same as the standard buffer allocation.

5 10 15

Buffer size (MB)

140

150

160

170

180

C
os

t
(s

)

Experimental GRACE Hash
Calculated GRACE Hash

Fig. 18. Experimental cost and expected cost of performing GRACE hash
join versus main memory buffer size.V1 = 512 (28 MB),V2 = 1024 (56
MB), VR = 1 (56 KB)

80

5 10 15

Buffer size (MB)

140

160

180

200

220
C

os
t (

s) Minimal GH with No Sampling
Minimal GH with Sampling
Standard GRACE Hash

Fig. 19. Experimental cost of performing minimal and standard GRACE
hash join versus main memory buffer size.V1 = 512 (28 MB),V2 = 1024
(56 MB), VR = 1 (56 KB)

The outer file size was such thatV1 = 256, so the amount
of memory chosen was such thatB = 258, soB1 = 256,
B2 = 1 andBR = 1. Therefore, the results of the minimal
and standard algorithms were expected to be the same, which
was the case. For the second smallest buffer size, the results
are again close. This is because the number of passes per-
formed over the relations is different. The standard algorithm
performs two passes, withB1 = 128, while the minimal al-
gorithm performs three passes, settingB1 = 86. Therefore,
even though the minimal algorithm performs an additional
pass over the inner relation, its cost is still slightly lower
than the standard algorithm.

Note that the file system and buffer cache reduces the
cost of the inefficient standard buffer allocation more than
it does for the more efficient minimal buffer allocation. For
example, a file system prefetching a disk page has a much
greater impact if one page is read at during each I/O oper-
ation than if a large number of pages are read during each
I/O operation. In an environment in which a buffer cache
is not available, a minimal buffer allocation would show a
greater improvement over the standard buffer allocation.

Our experimental implementation of the GRACE hash
join algorithm is slightly extended from the version de-
scribed in the previous sections. The minimal buffer allo-
cation is determined initially prior to partitioning. However,
during the merging phase, the minimal buffer allocation is
determined for each partition of the relations. This helps
address the problem of unequal buffer sizes.

Figure 18 compares the cost of experiments for five
buffer sizes using the GRACE hash join algorithm with the
expected cost calculated using the values in Table 8. In this
case the smallest buffer size creates eight partitions from
each of the input relations, the middle three buffer sizes
create four partitions from each of the input relations, and
the largest buffer size creates two partitions from each of
the input relations. The results are similar to that of the
nested block join algorithm in Fig. 16 in that the trend as
the amount of available memory increases is consistent with
the expected cost, but the actual values of the constants used
do not accurately provide the exact cost.

Figure 19 compares the performance of the minimal and
standard versions of the GRACE hash join algorithm. It also
contains results of a sampled version of the algorithm which
is discussed in Sect. 6. The results show that a large improve-

ment over the standard version of the algorithm is achieved.
Across all the results, the average improvement varied from
at least 15% for the smallest amounts of available memory
to at least 30% for the larger amounts of available memory.

These results indicate that using a minimal buffer allo-
cation, instead of the standard one, can result in the im-
provements that we have earlier shown to be theoretically
possible. If the buffer cache had not been available, and the
memory used by the buffer cache had been used by the join
algorithm, an even greater improvement would have been
realised. This is because the join algorithm can choose bet-
ter pages to keep in memory than the UNIX buffer cache
algorithm.

6 Non-uniform data distributions

The problem of non-uniform data distributions is common
amongst all hash-based techniques. To address this problem
Nakayama et al. (1988) proposed an extension to the hy-
brid hash method, called the Dynamic Hybrid GRACE Hash
join method (DHGH). Their method dynamically determines
which partitions will be stored in memory and which will be
stored on disk. This depends upon the distribution of data.
Kitsuregawa et al. (1989) provide an analysis of DHGH and
show the effect of varying partition sizes. They show that a
large number of small partitions is the best method to handle
non-uniform distributions. These small partitions are com-
bined for the merging phase to minimise the join cost. As
with almost all other analyses of join algorithms, they count
the number of disk pages transferred in their cost model.

The DHGH assumes that there is one input page and all
other pages are for the partitions. As we have seen, this is
generally not optimal when disk page access time is taken
into account. Additionally, their method does not support
partitioning of the data in place, which has significant ben-
efits for the extended GRACE and hybrid hash methods.

Our proposal is to use sampling. It has been shown to
produce good results for query optimisation (Lipton et al.
1990; Haas and Swami 1992). In our method, a sample of
each relation is read. Each record is hashed into a range that
is a number of times the size of the desired number of par-
titions. A table of the frequency of each of the hash values
is constructed. Finally, each hash value is assigned to a par-
tition such that the partitions of the relations are as close to
equal size as possible. Each record in each relation is placed
in the appropriate partition by looking up its assigned par-
tition based on its hash value. The additional overhead of
this method, compared with the methods described in the
previous sections, is likely to be very small compared to the
running time of the algorithm. We call this method the Min-
imal GRACE Hash algorithm for Non-Uniform distributions
(MGHNU), and the original method the Minimal GRACE
Hash Algorithm for Uniform distributions (MGHU). A sim-
ilar extension can easily be made to the hybrid hash join
algorithm.

The MGHNU method assumes that the sample of the first
relation is representative of the whole relation. This may be
achieved in two ways. A small sample of randomly chosen
pages from the first relation may be read. This would effec-
tively requireTK + TT time for each page, so only a small

81

5 10 15

Buffer size (MB)

140

160

180

200

220

C
os

t (
s)

Minimal GH with No Sampling
Minimal GH with Sampling

Fig. 20. Experimental cost of performing MGHU and MGHNU versus
main memory buffer size.V1 = 512 (28 MB),V2 = 1024 (56 MB),VR = 3
(168 KB)

number of pages should be read. The other way would be to
read the firstBI pages, as the GRACE hash algorithm would
normally do. As in DHGH, MGHNU will take more CPU
time due to the construction of the table and the grouping
of partitions. Therefore, the MGHNU method will be a little
more expensive than the MGHU method when applied to
a uniform data distribution. However, the MGHNU method
would be much more efficient than the MGHU method for
non-uniform data distributions. Therefore, we believe that
the MGHNU method is the best method to use as a general
method which tolerates non-uniform data distributions.

6.1 Experimental results

As mentioned in Sect. 5, Fig. 19 contains the results for a
sampled version of the GRACE hash join algorithm. This is,
in fact, an implementation of MGHNU. We were expecting
that for a relatively uniform distribution, it would result in
a higher cost than the MGHU method.

Figure 19 shows that for a relatively uniform data distri-
bution, the additional cost of sampling the relations prior to
performing the join did result in a small increase in the cost
of the join. The number of pages transferred during sampling
was less than 0.2% of the total number of pages transferred;
however, reading each page resulted in a disk head seek.

The additional cost of sampling was greater when less
main memory was available. A smaller amount of main
memory means that the first disk I/O operation during the
partitioning of each relation will request fewer pages than if
a large amount of main memory was used. We expect that
all of the pages which were sampled would be in the buffer
cache prior to the first read of the partitioning phase. There-
fore, the cost can be reduced by requesting as many of these
as possible. More will be requested if the amount of main
memory is larger, so we expect that the cost of sampling
will be higher with a smaller main memory buffer, if there
is a buffer cache available.

In addition to the uniform distribution, we performed
experiments using relations in which the values of the at-
tributes formed a Zipf distribution, as described, for exam-
ple, in Knuth (1973). A representative example of the results
is shown in Fig. 20.

In Fig. 20 we compare the MGHU (“No Sampling”) and
MGHNU (“Sampling”) GRACE hash join algorithms. Note

that, as described above, both methods determine the min-
imal buffer allocations after partitioning, thereby utilising
the best buffer allocation after partitioning even if the data
is non-uniform. Figure 20 shows that using the MGHNU
method does result in a clear reduction in the cost of per-
forming the join.

7 Multiple joins

Many queries asked of database systems are composed of
multiple join operations. There are a number of methods of
implementing multiple joins, from writing temporary files to
disk at the end of each join, to performing each operation
in a pipeline. By appropriately extending our minimisation
algorithms, any of these methods could be used. Our pri-
mary result is independent of these implementations. That is,
whatever method is used, the query can be executed faster
by using a buffer allocation which takes into account all of
the costs involved.

The algorithms we have described can be used without
change if a query of multiple joins is implemented by writing
temporary relations to disk as the result of each join. Each of
the minimisation algorithms take into accountBR, the buffer
size of the result relation, through which the temporary rela-
tion is written to disk. If the size of the temporary relation,
as given byVR, is accurate, the results give us confidence
that a good buffer size will be chosen.

A method of implementing a query of multiple joins
which can be more efficient is to buffer at least part of the
result in memory. This can easily be supported using our
cost model. The cost functions need only be changed so that
the number of writing operations for the result relation is
reduced by one, and the number of reading operations for
the temporary relation in the next join is reduced by one. The
minimisation algorithms must also be modified, increasing
their complexity. If the number of variables becomes such
that the minimisation is too slow, simulated annealing can
be used to find a minimal buffer allocation, as we did for
the hybrid hash join.

8 Parallel joins

In recent years, a large amount of research has taken place
into parallel join algorithms, particularly join algorithms
based on hashing (Richardson et al. 1987; Schneider and
DeWitt 1989; Shatdal and Naughton 1993; Walton et al.
1991). Many of these algorithms are based on existing hash
join algorithms, often the hybrid hash join algorithm. We
believe that our technique will be just as important in this
domain as in the sequential case.

Parallel join algorithms incur network (or shared mem-
ory) costs, in addition to the costs associated with the se-
quential algorithms. Tuples for joining may come both from
the network and from a local disk. Network costs do not
contain a “seek” factor, and in many algorithms individual
tuples are transferred across a network rather than pages.
Thus, the network traffic will not have a significant impact
on the buffer sizes, and we believe that modified versions
of our algorithms can be used to significantly improve the

82

cost of disk accesses in parallel join algorithms, as they do
for the sequential join algorithms.

9 Conclusion

In this article, we have presented an analysis of four com-
mon join algorithms – the nested block, sort-merge, GRACE
hash and hybrid hash join algorithms – based upon the time
required to access and transfer a page from disk and the
processing cost of the join. This is a generalisation of both
the commonly used method of counting the number of disk
pages transferred and a proposed alternative of counting the
number of operations in which any number of disk pages
may be transferred as a single operation. We have shown
that it is very important to consider both the disk seek and
transfer times and CPU times involved in the join algorithms
to achieve optimal performance.

We have presented cost-effective algorithms to quickly
find minimal buffer allocations for the nested block and
GRACE hash join algorithms and suggested a mechanism
for handling non-uniform data distributions. The time taken
by these minimisation algorithms is less than 0.05% of the
running time of the join operation. For all the buffer al-
locations which we verified, the minimal buffer allocation
produced by the algorithms was the optimal buffer alloca-
tion.

We have reported experimental results which confirm
that the performance gains reported in this article can be
achieved in practice. With the current disk and CPU tech-
nology, we expect performance gains in the order of two
to three times when using the join algorithms with minimal
buffer allocations, rather than the standard join algorithms.
Even if a buffer cache is available on the system, substantial
improvements are possible, particularly for large relations in
which the GRACE or hybrid hash algorithms must be used.
In the future, as the relative speed of the CPU over the disks
increases, the use of minimal buffer allocations will become
more important.

Our modified version of the GRACE hash join algo-
rithm will usually perform better than the extended hybrid
hash join algorithm when the cost of calculating a minimal
buffer allocation is taken into account and the amount of
main memory is 32 MB or less, and the relations are larger
than several times the size of main memory. For large mem-
ory sizes, the simulated annealing algorithm for the extended
hybrid hash join algorithm is superior. This approach is fur-
ther improved by using the buffer allocation produced by the
GRACE hash minimisation algorithm as a starting point, in-
stead of a random starting point. This approach was cost
effective for 88% of the joins tested, resulting in an average
improvement of 8.6% across all the joins tested.

Even in an operating system environment in which
file system access is not directly under the control of the
database, there will be a decrease in the total cost, as a re-
sult of a reduction in the number of system calls required to
read the data and the CPU time of memory-based parts of
the join algorithms.

Further work arising from this paper includes a compar-
ison of how other methods of handling data skew impact on
our scheme. For example, a comparison with non-sampling-

based methods of determining data distributions, such as in
Sun et al. (1993), would be interesting. Other join optimisa-
tion schemes which have been proposed which use an older
cost model, such as in Harris and Ramamohanarao (1994),
should be re-evaluated with the more accurate cost model.
Another issue is to improve on the minimisation algorithms
presented in this article; particularly to improve the speed
and accuracy of the hybrid hash minimisation algorithm.

Appendix A: Hybrid hash constraints and cost

In this section, we describe the costs and constraints associ-
ated with the hybrid hash join algorithm which was described
in Sect. 2.4.

In the cost formulae below, we assume that, during the
partitioning phase, records are read into a buffer of size
BI and then distributed betweenP + 1 partitions:P out-
put buffers of sizeBP , and a hash table of sizeBH . For
generality we assume that the hybrid hash join algorithm
may have multiple partitioning passes, although this was not
the application for which it was originally intended (Shapiro
1986). While we set the number of partitions createdP to
be a single value, it could vary for each of theρ passes.
Like the GRACE hash join algorithm, if a large amount of
main memory is available, one pass will usually be enough.
During the merging phase, the memory buffer is divided
in exactly the same way as in the nested block algorithm.
Therefore, the general constraints that must be satisfied are:

– The sum of the input, output, result and hash table buffer
areas during the partitioning phase must not be greater
than the available memory:PBP +BI +BH +BR ≤ B.
The result buffer area is required because result tuples
will be created as the second relation is partitioned.

– Some memory must be allocated as an input area:BI ≥
1.

– Some memory must be allocated to each of the output
partitions:BP ≥ 1.

– There must be multiple output partitions:P > 1.
– Some memory must be allocated to the in-memory hash

table, and it need not be greater than the size of the outer
relation: 1≤ BH ≤ V1.

– The sum of the three buffer areas during the merging
phase must not be greater than the available memory:
B1 +B2 +BR ≤ B.

– The amount of memory allocated to relationR1 during
the merging phase should not exceed the size of relation
R1: 1 ≤ B1 ≤ V1.

– The amount of memory allocated to relationR2 during
the merging phase should not exceed the size of relation
R2: 1 ≤ B2 ≤ V2.

– Some memory must be allocated to the result during the
merging phase:BR ≥ 1 if VR ≥ 1.

The cost of the hybrid hash join algorithm is given by

V ′
1,i =

⌈
V1 −BH

∑i−1
j=0 P

j

P i

⌉

83

V ′
2,i =

⌈
V2(V1−BH

∑i−1

j=0
P j)

V1

⌉
P i

CPart:ReadR1

=
ρ−1∑
i=0

P iCI/O(V ′
1,i, BI)

CPart:WriteR1
=

ρ∑
i=1

P iCI/O(V ′
1,i, BP)

CPart:Partition R1
=

ρ−1∑
i=0

P iV ′
1,iTP

CPart:Create =
ρ−1∑
i=0

P iBHTC

CPart:ReadR2
=

ρ−1∑
i=0

P iCI/O(V ′
2,i, BI)

CPart:WriteR2
=

ρ∑
i=1

P iCI/O(V ′
2,i, BP)

CPart:Partition R2
=

ρ−1∑
i=0

P iV ′
2,iTP

CPart:Join =
ρ−1∑
i=0

P i

⌈
V2BH

V1

⌉
TJ

CMerge:ReadR1
= P ρCI/O(V ′

1,ρ, B1)

CMerge:Create= P ρV ′
1,ρTC

CMerge:ReadR2 initial = P ρCI/O(V ′
2,ρ, B2)

CMerge:Join initial = P ρV ′
2,ρTJ

CMerge:ReadR2 other = P ρ

(⌈
V ′

1,ρ

B1

⌉
− 1

)
×CI/O(V ′

2,ρ −B2, B2)

CMerge:Join other= P ρ

(⌈
V ′

1,ρ

B1

⌉
− 1

)
×V ′

2,ρTJ

CWriteRR
= CI/O(VR, BR)

CHH = CPart:ReadR1

+CPart:WriteR1

+CPart:Partition R1

+CPart:Create
+CPart:ReadR2

+CPart:WriteR2

+CPart:Partition R2

+CPart:Join
+CMerge:ReadR1

+CMerge:Create
+CMerge:ReadR2 initial

+CMerge:Join initial
+CMerge:ReadR2 other
+CMerge:Join other
+CWriteRR

.

Appendix B: Modified hybrid hash

The buffer arrangement of our modified hybrid hash join
algorithm is depicted in Fig. 3. For the costCHH to be valid,
the constraints are now that:

– PBP + 2P − 1 +BH +BR ≤ B instead ofPBP +BI +
BH +BR ≤ B.

– BI = PBP instead ofBI ≥ 1.

The other constraints remain valid.
Our algorithm to minimiseCHH is similar to that which

minimises the GRACE hash join algorithm, except that, in-
stead of minimising the cost using three variables, it must
minimise using seven:B1, B2, BR, P , BP , BH , ρ. We set
BI = PBP . It takes significantly longer to produce a result
than any of the other minimisation algorithms. Additionally,
it is not feasible to perform an exhaustive search to deter-
mine whether it determines the minimal result or not. As a
consequence, we do not present it here.

Acknowledgements.The authors would like to thank the anonymous ref-
erees for their comments which significantly improved this article. They
would also like to thank Zoltan Somogyi for his valuable comments. The
research in this paper was supported by the Australian Research Council,
the Collaborative Information Technology Research Institute, the Coopera-
tive Research Centre for Intelligent Decision Systems, and the Key Centre
for Knowledge Based Systems. The first author was also supported by an
APA scholarship.

References

Aarts E, Korst J (1989) Simulated annealing and Boltzmann machines.
Wiley, New York

Bitton D, DeWitt DJ, Turbyfill C (1983) Benchmarking database systems a
systematic approach. In: Schkolnick M, Thanos C (eds) Proceedings of
the Ninth International Conference on Very Large Databases, Florence,
pp. 8–19

Blasgen MW, Eswaran KP (1977) Storage and access in relational data
bases. IBM Syst J 16(4):363–373

Cheng J, Haderle D, Hedges R, Iyer BR, Messinger T, Mohan C, Wang, Y
(1991) An efficient hybrid join algorithm: a DB2 prototype. In: Pro-
ceedings of the Seventh International Conference on Data Engineering,
IEEE Computer Society Press,Kobe, Japan, pp. 171–180

DeWitt DJ, Gerber R (1985) Multiprocessor hash-based join algorithms. In:
Apers PMG, Wiederhold G (eds) Proceedings of the Eleventh Interna-
tional Conference on Very Large Databases, Stockholm, Sweden, pp.
151–164

DeWitt DJ, Katz RH, Olken F, Shapiro LD, Stonebraker MR, Wood D
(1984) Implementation techniques for main memory database systems.
In: Yormark B (ed) Proceedings of the 1984 ACM SIGMOD Inter-
national Conference on the Management of Data, Boston, Mass., pp.
1–8

Graefe G (1993) Query evaluation techniques for large databases. ACM
Computing Surv 25:73–170

Haas PJ, Swami AN (1992) Sequential sampling procedures for query size
estimation. In: Stonebraker, M. (ed) Proceedings of the 1992 ACM
SIGMOD International Conference on the Management of Data, San
Diego, Calif, pp. 341–350

84

Hagmann RB (1986) An observation on database buffering performance
metrics. In: Kambayashi Y (ed) Proceedings of the Twelfth Interna-
tional Conference on Very Large Data Bases, Kyoto, Japan, pp. 289–
293

Harris EP, Ramamohanarao K (1994) Using optimized multi-attribute hash
indexes for hash joins. In: Sacks-Davis R (ed) Proceedings of the
Fifth Australasian Database Conference, Global Publications Services,
Christchurch, New Zealand, pp. 92–111

Hua KA, Lee C (1991) Handling data skew in multiprocessor database
computers using partition tuning. In: Lohman GM, Sernadas A, Camps
R (eds) Proceedings of the Seventeenth International Conference on
Very Large Data Bases, Barcelona, Spain, pp. 525–535

Kitsuregawa M, Tanaka H, Moto-oka T (1983) Application of hash to data
base machine and its architecture. New Generation Comput 1:66–74

Kitsuregawa M, Nakayama M, Takagi M (1989) The effect of bucket size
tuning in the dynamic hybrid GRACE hash join method. In: Apers,
PMG, Wiederhold G (eds) Proceedings of the Fifteenth International
Conference on Very Large Data Bases, Amsterdam, pp. 257–266

Knuth DE (1973) Sorting and searching. (The art of computer programming,
vol. 3) Addison-Wesley, Reading, Mass.

Lipton RJ, Naughton JF, Schneider DA (1990) Practical selectivity esti-
mation through adaptive sampling. In: Garcia-Molina H, Jagadish HV
(eds), Proceedings of the 1990 ACM SIGMOD International Confer-
ence on the Management of Data, Atlantic City, NJ, pp. 1–11

McVoy LW, Kleiman SR (1991) Extent-like performance from a UNIX
file system. In: Proceedings of the USENIX 1991 Winter Conference,
Dallas, Texas, pp. 33–43

Merrett TH (1981) Why sort-merge gives the best implementation of the
natural join. SIGMOD Rec 13:39–51

Mishra P, Eich MH (1992) Join processing in relational databases. ACM
Computing Surv 24:63–113

Nakayama M, Kitsuregawa M, Takagi M (1988) Hash-partitioned join
method using dynamic destaging strategy. In: Bancilhon F, DeWitt DJ
(eds) Proceedings of the Fifteenth International Conference on Very
Large Data Bases, Los Angeles, Calif, pp. 468–478

Omiecinski E (1991) Performance analysis of a load balancing hash-join
algorithm for a shared memory multiprocessor. In: Lohman GM, Ser-
nadas A, Camps R. (eds) Proceedings of the Seventeenth International
Conference on Very Large Databases, Barcelona, pp. 375–385

Omiecinski E, Lin ET (1992) The adaptive-hash join algorithm for a hy-
percube multicomputer. IEEE Trans Parallel Distrib Syst 3:334–349

Pang H, Carey MJ, Livny M (1993) Partially preemptible hash joins. In:
Proceedings of the 1993 ACM SIGMOD International Conference on
the Management of Data, Washington, DC, pp. 59–68

Richardson JP, Lu H, Mikkilineni K (1987) Design and evaluation of paral-
lel pipelined join algorithms. In: Dayal U, Traiger I (eds) Proceedings
of the 1987 ACM SIGMOD International Conference on the Manage-
ment of Data, San Francisco, Calif, pp. 399–409

Schneider DA, DeWitt DJ (1989) A performance evaluation of four par-
allel join algorithms in a shared-nothing multiprocessor environment.
In: Clifford J, Lindsay B, Maier D. (eds) Proceedings of the 1989
ACM SIGMOD International Conference on the Management of Data,
Portland, Ore, pp. 110–121

Shapiro LD (1986) Join processing in database systems with large main
memories. ACM Trans Database Syst 11:239–264

Shatdal A, Naughton JF (1993) Using shared virtual memory for parallel
join processing. In: Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on the Management of Data, Washington, DC, pp.
119–128

Sun W, Ling Y, Rishe N, Deng Y (1993) An instant and accurate size
estimation method for joins and selection in a retrieval-intensive en-
vironment. In: Proceedings of the 1993 ACM SIGMOD International
Conference on the Management of Data, Washington, DC, pp. 79–88

Vaghani J, Ramamohanarao K, Kemp DB, Somogyi Z, Stuckey PJ, Leask
TS, Harland J (1994) The Aditi deductive database system. VLDB J,
3:245–288

Walton CB, Dale AG, Jenevein RM (1991) A taxonomy and performance
model of data skew effects in parallel joins. In: Lohman GM, Ser-
nadas A, Camps R. (eds) Proceedings of the Seventeenth International
Conference on Very Large Databases, Barcelona, pp. 537–548

Evan Harris (B.Sc.(Hons) is a Postdoctoral Research Fellow at The Uni-
versity of Melbourne (Ph.D.).

Kotagiri Ramamohanarao (Ph.D.) is a Professor at The University of

Melbourne.

