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Abstract. Active databases and real-time databases haveeadline first (EDF) and least slack first (LSF) are exam-
been important areas of research in the recent past. It hgsdes of policies that account for deadlines. The performance
been recognized that many benefits can be gained by intémplications of time cognizant priority assignment policies
grating real-time and active database technologies. Howevehave been studied in detail in soft real-time database sys-
not much work has been done in the area of transaction pratems (Abbott and Garcia Molina 1992; Huang et al. 1989).
cessing in real-time active databases. This paper deals witlihese studies have concluded that deadline-cognizant pri-
an important aspect of transaction processing in real-time acsrity assignments provide significantly higher performance
tive databases, namely the problem of assigning priorities tahan priority assignments that ignore deadlines. In this pa-
transactions. In these systems, time-constrained transactioper, our goal is to study and evaluate time-cognizant priority
trigger other transactions during their execution. We presenassignment policies in a real-time active database. A real-
three policies for assigning priorities to parent, immediatetime active database is a database system where transactions
and deferred transactions executing on a multiprocessor sy$tiave timing constraints such as deadlines, where transac-
tem and then evaluate the policies through simulation. Theions may trigger other transactions, and where data may
policies use different amounts of semantic information aboutbecome invalid with the passage of time. There are many
transactions to assign the priorities. The simulator has beeapplications, such as cooperative distributed navigation sys-
validated against the results of earlier published studies. Wéems and intelligent network services, where real-time ac-
conducted experiments in three settings: a task setting, @ve database technology is extremely useful (Purimetla et
main memory database setting and a disk-resident databasé 1993; Sivasankaran et al. 1993).
setting. Our results demonstrate that dynamically changing Before presenting a detailed description of the problem
the priorities of transactions, depending on their behaviorwe address in this paper, we give a brief introduction to
(triggering rules), yields a substantial improvement in theactive databases. The building block of an active database
number of triggering transactions that meet their deadline irsystem is the event-condition-action (ECA) rule. The seman-
all three settings. tics of the ECA rule is that, if the specified event occurs and
if the condition is true, then the specified action is to be ex-
ecuted. Some examples of events are bégiammit/abort
of a transaction, accessing a data item, or reaching a spe-
cific point in time. A condition is usually a predicate on
the database state. An action is the transaction that is exe-
cuted inreactionto a specificsituation which is a combi-
nation of events and conditions. The transaction that fires
the rules is called the triggering transaction, and the action
1 Introduction that is executed because of the rule firing is called the trig-
gered transaction. In this paper we refer to the transactions
Traditionally, in soft real-time database systems, a transacthat trigger other transactions astive transactions opar-
tion is considered a monolithic unit of work with a given enttransactions. An active transaction has a set of triggered
deadline. In these systems, priorities are assigned to thedeansactions that are executed either as part of the active
transactions and the transactions are scheduled based on thtsgansaction or separately, depending on the type otthe
priorities. The priority assignment usually takes into accountpling modebetween the parent and the triggered transac-
the deadlines of the transactions because the underlying ations (Dayal et al. 1990). There are three types of coupling
sumption is that the deadline reflects the urgency of com-

pleting the transaction. Scheduling policies such as earliest 2 The begin event may, in turn, have been caused by some external
environment event such as an obstacle identified by a sensor (Purimetla et
1 A shorter version of this paper appeared in PDIS 1994 al. 1993; Sivasankaran et al. 1993)
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modes:immediate deferredand independentThe transac- We discuss related work in Sect. 2. In Sect. 3, we explain
tions triggered in those modes are referred to as immediateyur transaction model. Section 4 gives a detailed explanation
deferred and independent transactions, respectively. Immesf the priority assignment policies. We discuss the simulator,
diate and deferred transactions are executed as part of ttexperiments and results in Sect. 5. We summarize our main
parent transaction, whereas independent transactions are eresults and discuss future work in Sect. 6.
ecuted independently. Since immediate and deferred transac-
tions are part of the parent transaction, we also refer to them
as subtransactions. In our model, an immediate transactiop Related work
is executed as soon as it is triggered and the parent transac-
tion is suspended until it completes. A deferred transactiorOver the past few years active databases and real-time
is executed after the parent completes execution, but befordatabases have become important areas of research. Exper-
it commits. In this paper, by a parent completing executionimental studies reported (Abbott and Garcia Molina 1992;
we mean that the parent has finished all its work but hasHuang et al. 1989, 1991a, 1991b; Son and Park 1994) are
not committed its results. Immediate and deferred transacvery comprehensive and cover most aspects of real-time
tions commit if and only if the parent commits. We do not transaction processing, but have not considered active work-
consider independent transactions in our study. loads (workloads that generate additional transactions dy-
Due to the rule firings, an active transaction dynamically namically) and have not addressed the problem of subtrans-
generates additional work. In order for the time-cognizantaction priority assignment. There have been both theoretical
scheduling policies to perform well, they should take into and experimental studies in active databases (Carey et al.
account the work that is dynamically generated. This aspect991; Dayal et al. 1988, 1990; McCarthy and Dayal 1989).
of the problem makes this scheduling problem different fromMost of the studies have concentrated on the specification
the classical hard real-time scheduling problem, where exeef ECA rules (Anon 1992). Experimental work on active
cution times are assumed to be known in advance (Klein etiatabases (Carey et al. 1991) has been performed in a non-
al. 1993; Lawler 1983; Xu and Parnas 1990). The priority-real-time setting. Experiments (Carey et al. 1991) show the
driven nature of real-time transaction processing gives rise tdmpact of transaction boundaries and data sharing on the per-
the question of how to assign priorities to the parent and tdformance of active databases. We address a different prob-
all triggered actions (Purimetla et al. 1993; Sivasankaran elem; that of assigning priorities to triggered transactions in
al. 1993). We believe that the strategy to assign priorities cameal-time active databases.
have a significant impact on the performance of the system, The relationship between real-time databases and active
as triggered actions must contend with ongoing transactiondlatabases was discussed briefly by Ramamritham (1993)
for resources. In this paper, we address the problem of aswvhere it was noted that a missing ingredient in active
signing priorities to triggering and triggered transactions. Wedatabases is the active pursuit of timely processing of ac-
introduce and evaluate three policies for assigning prioritiegions to do real-time processing. In short, past studies on
to immediateand deferredtransactions. real-time transaction processing have not dealt with active
Our main contributions are: workloads, and studies on active databases have not dealt
with real-time transactions.
The problem of assigning deadlines to the parallel and se-
— The development of two priority assignment policies thatrial subtasks of complex distributed tasks in a real-time sys-
account for the work dynamically generated by activetem has been studied (Kao and Garcia Molina 1993) through
transactions simulation. This work differs from the present work in two
— A comparison of the two priority assignment policies ways. First, in Kao and Garcia Molina (1993) the structures
with a baseline policy using a real-time active databaseof all of the complex tasks are assumed to be known in ad-
simulator in three settings, in a real-time task setting,vance. Second, the experimental system considered in Kao
a main memory database setting and a disk-residenand Garcia Molina (1993) is not a database system, nor does
database setting it include an active component. The system we consider for
— A demonstration that for mixed workloads consisting of our experiments is a real-time active database with unpre-
triggering and non-triggering transactions, priority as- dictable data accesses and rule firings.
signment policies that take into account the dynamic
work generated reduce the deadline miss ratio of the
triggering transactions significantly at the cost of a very 3 Transaction model
small increase in the deadline miss ratio of non-triggering
transactions when compared to the baseline policy In this section we describe the transaction model we have
— The identification of the trade-offs between the perfor- considered and the simplifying assumptions we have made to
mance of triggering and non-triggering transactions of-study priority assignment in a real-time active database. The
fered by the different policies, thereby enabling an imple-performance metric we use in our study is missed deadline
mentor to select from various policies depending on thepercentage (MDP), i.e., the percentage of transactions that
relative importance of the triggering and non-triggering miss their deadlines, which is a traditional metric used to
transactions in the system evaluate performance in real-time systems.
— The identification of differences and probable reasons for  Data in our system is modeled as objects that have meth-
the differences in the relative performance of the policiesods associated with them. A transaction in our system is a
in the three settings series of method executions on objects. We consider two
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Taer TaSE T = that of assigning priorities to subtransactiafig™, 3™,

2 def def . .
T ﬂ r'l T I—H’ Tf@f a.mo.ITzdef, and the problem of dynamically reassigning
C—-‘z ., 1, T, t, 1, ty  to t5, the priority of the parent transactiah durlng its lifetime. It .
/ ] | ] T | - should be noted that the deferred transactions can execute in
a) () dam parallel if operating on a multiprocessor or in a distributed
system.
Fig. 1. Life of a complex active transaction Later in this section, we describe three priority assign-

ment policies, PD, DIV and Si, for assigning priorities to
the parent, immediate and deferred subtransactions in an ac-

classes of transactions in the systemn-triggering (class ~ tive real-time database system. PD istaticbaseline policy

NT) andtriggering (classT). An NT transaction is a simple where the priority of the parent does not change with time.
transaction which does not cause any rules to firé.thans- DIV and SL aredynamicpolicies that change the priority
action, on the other hand, can trigger subtransactions upofif the parent, depending on the amount of dynamic work it
the occurrence of an event. We consider cletgansactions has generated. In all cases, the priorities are assigned to the
that trigger only immediate and deferred transactions. Atriggered transactions when they start execution and priori-
most one subtransaction is triggered upon the occurrence dfeS are not changed subsequently during their execution. It
an event. We do not consider cascading rule firings, i.e., irshould be noted that the three algorithms use increasingly
our model triggered transactions do not trigger further transimore knowledge (estimates) about the transactions in their
actions. We address onfyrm real-time systems where the assignment of priorities. PD is a pure EDF policy for both
valueof the transaction drops to zero once the deadline exiransactions and subtransactions and uses no other informa-
pires. We abort the transaction that misses its deadline, alongP" about transactions. DIV makes a simple adjustment to
with all its related subtransactions. In our current model, EDF where priorities (based on deadlines) are dynamically
only the object events, i.e., an execution of a method on aifhanged when new subtransactions are triggered. Our hy-
object, activate rules and cause the triggering of subtransadothesis is that very simple modifications will give signifi-
tions. Transaction and temporal events do not activate ruleant improvements. Note that DIV uses estimates of execu-
We make this assumption to simplify the experimentation,tion times of the parent transaction and .subyransacnons that
since the only effect of transaction and temporal events trigit has triggered. SL is an LSF policy that is slightly more so-
gering rules in our study would be to increase the numbePhisticated than DIV; it uses estimates of execution times of
of subtransactions triggered. This effect can be achieved b{he parent transaction and triggered subtransactions and es-

increasing the probability that an object event can trigger _imates regarding the subtrgn_sactions that might_be triggered
rule. in the future. Our hypothesis is that, when such information

is available, it can provide additional performance benefits.
Below we describe how the policies PD, DIV and SL as-
sign priorities to the parent transaction and the triggered sub-
transactions for two cases: when the triggered subtransaction
is of type immediate and when the triggered subtransaction
is of type deferred. Before describing the policies, we intro-

straints can trigger subtransactions. Traditionally, priority- 4,0 some attributes of a transaction and other related terms
driven scheduling has been used in real-time systems. HenCg,»+ \ve require in order to explain our priority assignment
the problem is how to assign a priority to a subtransactlorboncies_
given the priority of the parent transaction. Another problem
is that, as a transaction triggers subtransactions either in im-
mediate or deferred modes, the amount of work to be dong 1 attributes of a transaction
on behalf of the transaction before it commits also increases.
Consequently, the transaction is less likely to complete suct et us consider a transactidfi for which we define the
cessfully than another transaction with the same deadlingollowing attributes. Some attributes of the transaction may
which does not trigger any subtransactions, since it faceghange during the execution of the transaction and these
more contention for resources during its lifetime. attributes are subscripted withwheret is the time at which

To better illustrate the problem being addressed, we prothe attribute’s value is represented.
vide an example of the structure of a complex active transac&(T). the arrival time ofT"
tion executing on a uniprocessor. Figure 1 shows the life of "’}s(T): the start time off"
complex active transactidfi that triggers transactions in im- d(T).' the deadline of"
mediate and deferred modes. Transacficarrives at time, def'(T)_ the number of deferred transactions triagered
(a(T)) with t10 as its deadlined(T)) and is started at time % 7 the oot SO S 99
(s(T)). Deferred transactioris’*/ and T3/ are triggered at «(T): = priority _ .
timest; andt,, respectively. Immediate transactiofig ™ Th_e_ policies we hav_e developed_use estimates of certain
and Ti™™ are triggered at timess and t;, respectively. quantities associated with a transaction such as its length and

Fig. 1'shows that the transactiof§™™ and Tj™" execute execution time. The following are some of the estimates that
immediately whileT" is suspended. Finally, the figure shows W€ use in our policies. An example of how these estimates
tha_t’ oncsz the parderif completes ato, the deferred trans'_ 3 The name PD derives from Parent Deadline; DIV from DIViding the
actionsT; ¢/ and T, ¢/ execute. The problem we address is parent's effective slack; SL from adjusting the average case SLack

4 Priority assignment for triggered transaction

In real-time active databases, a transaction with time con
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are obtained can be found in Sect.5 where we describe th&,(7;™™) = d(T)

rameters for the experiments. : . C
parameters for the experiments 2.DIV: The parent’s estimated effective slack is divided

Xy(T):  the estimated remaining execution time 6@t equally among thecurrent immediate subtransaction trig-
tmet o , gered, the deferred subtransactions triggered prior to the
Cy(T):  the estimated completion time df at ime#;  riggering point (current time) and the parent. This quantity
Cy(T) =t + Xy(T) _ (obtained by dividing the parent's estimated effective slack)
Si(T):  the estimated slack df at timet; is added to the estimated completed time of the immediate
} Si(T) = d(T) - C(T) _ i . subtransaction to give the priority of the subtransaction. The
m™™(T): the estimated number of immediate transactiongyarent's deadline is also adjusted dynamically to reflect the
s tnggere_d byT" after timet ~ work that has been triggered dynamically (Eq. 2).
my ' (T): the estimated number of deferred transactions |et us consider a transactidhtriggering itsith immedi-
4 triggered byT" after time¢ ate transactiofi’™™ at timet. The estimated effective slack
X"""™(T): the estimated average execution time of an im-is calculated by subtracting the sum of estimated execution
mediate subtransaction triggered By times of deferred transactions that have been triggered until
Xdef(T): the estimated average execution time of a delime ¢ and estimated execution time of tiitn immediate

ferred subtransaction triggered By ':Ergniactlon from the parent’'s estimated slack as shown in

X;"9(T): the estimated average case remaining execution = _
time of T including its subtransactions at time P (T;™™) = C¢(T;™™)

X™9(T) = X,(T) + n (1) * X" (1) + nded (1 )
i = Xm0 - X )~ (X () 350 x, 12
| mi (1) * X“NT) + mimm(r) * X"(T) . 1)
SyU9(T):  the estimated average case slackohcluding nd (T) +2
its subtransactions at time . . .
ST = d(T) - t - X{9(T) Let us assum@;™™ finishes at timew > ¢. The parent’s

X(T) is the estimate (at timé) of the remaining time priority is reassigned at time as follows

it will take a transaction or subtransaction to execute. Thisp, (T) = P,(T) — (w — t)

guantity, when estimated at the start of a transaction or when o . . ) .

a subtransaction is triggered, is the estimated execution timg©r instance, in Fig. 1, fof 7" at the triggering points,

of that (sub)transaction. The estimated average case execli$ Priority is assigned as follows:

tion time of transactio’, X;"?(T") includes the execution

time left at timet for 7', execution times of all of the deferred p,_ (Tim™™) = Cy (T4™™)

transactiond” has triggered prior to timg and estimates of

execution times of the subtransactions which the transaction ~ Si(T') — (th (T + X (T) + X (T3 ))

T may trigger during its remaining lifetime. We believe that + 4

by analyzing the characteristics of a real-time database ap- o . ] -~

plication one might be able to obtain information such as thelhe priority of the parent transaction will be modified when

estimated execution time of transactions, the kind of actions/1”""" completes ate as follows:

they trigger and the triggering probability. o Piy(T) = Po(T) — (ts — ts) )

It should be noted that a lower value B5(7") indicates

higher priority. For instance, if there are two transactidhs The main idea behind this policy is that of giving higher

andTy, andP,(T1) < P.(T»), thenT; gets priority overT».  priorities to classT transactions, which have more work to

Also, in all the policies, the deadline of the subtransactiondo before completion. This should increase the likelihood of

is set to the parent’s deadline. For instance, if a transactiothe classT transactions meeting their deadlines. This policy

T triggers a subtransactidi*“? transaction at time, then only uses the estimates of execution times of subtransac-

cubr tions that have already been triggered. It does not use any

d(T°*") = d(T) knowledge about future triggering of transactions. The pri-
ority assigned to the subtransaction can be thought of as a
virtual deadline which is the sum of its estimated comple-

4.2 Priority assignment when immediate subtransactions  tjon time and some slack that it gets from the parent. This

are triggered virtual deadline is then used to schedule the subtransaction
using the EDF algorithm.

1. PD: Immediate subtransactions are assigned a priority 3. SL The average case slack["?(7T")] of the parent is

equal to the deadline of the parent. Further, the priority ofadjusted at each potential triggering point and used as the

the parent transaction which is based on its deadline does nariority for both the triggered and triggering transactions.

change with the triggering of subtransactions. This is a veryThe initial value of slack is assigned based on estimates of

simple baseline algorithm. All the actions done on behalf ofthe remaining execution time for a transaction and its sub-

a transaction get the same priority as the transaction itself aransactions. The slack is then adjusted at each object event

any point during its lifetime. Let us consider a transactionbased on whether the parent transaction triggers a subtrans-

T triggering itsith immediate transactio;™™ at time t. action or not. The triggered transactions are assigned the

Then same slack as the parent, i.e., they are executed at the same
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priority. Let us assume a transacti@hstarts at time, and

time ¢ is a potential triggering point wherg could trigger
its ith immediate transactiof;™. Initially the priority of Source T*—=— | DBManager
T (average case slack) at timgis set as follows:
Pyo(T) = S;(T) \o&/ e
Now at timet, if subtransactio?;™™ is triggered, the pri- s 7
ority is adjusted as follows: e /,'— ————— =~
av imm #‘ %
P(T)=d(T) —t — X{"U(T) — X (T;™™) Object Access Request .
immy — Transaction Object
Py (Tz ) =P (T) Manager % Manager
If a subtransaction is not triggered at timehen the slack — ~ "%;,q Q}qe&
adjustment is as follows: \ S 8, o L7
AN SO 4 O 7y
P(T) = d(T) — t — X™9(T) (3) RN N— /8
. N ; . PN Rule /Q,-
In Fig. 1, the priorities forI" and7;™"™ will be *69%; Manager // $
N /

Py(T) = d(T) — ts — X."/(T') — Xy, (Tlmmb) N Resource r/ 4'&
u
Manager

4.3 Priority assignment when deferred subtransactions

. Fig. 2. Simulator architecture
are triggered

The priority assignment for deferred transactions is very sim-
ilar to that of immediate transactions. Under the DIV and SL 3. SL protocol:

policies the priority of the parent changes when it triggers a m
deferred transaction. The deferred transaction is executed af- p (Tflef ) =d(T) —w— Z ( X, (T:ef))
ter the parent transaction finishes execution. Let us consider ! =1

a transactior?” that is triggering itsith deferred transaction
at timet. The priority assignment for the parent transaction

T under the three policies is: 5 Experimental Results

1. PD protocol:
We begin this section with a brief description BAD FEx

B(T) = d(T) (Real-time Active DatabaseEzperimental simulator) and
2. DIV protocol: its validation. We then discuss the experimental setup, along
def with the assumptions made in our experiments. We also
P(T) = P(T) — X, (T;") present a table of important parameters and their values.

Finally, we describe each set of experiments and an analysis
of the results. In the experiments, 95% confidence intervals
PUT) = d(T) —t — X*9(T) — X, (T{)) have been obtained whose widths are less th&g of the
point estimate for the MDP.

3. SL protocol:

For the SL protocol, if the transactidh does not trigger
a deferred transaction then the priority assignment is the
same as Eg. 3 in the last section. The following equation
illustrate the deadlines/slack assignments for the deferre
transactions. Let us assume that transacfiomas triggered
m deferred transactions before completing execution. In thédur performance model of an active real-time database was

following equations, we consider the assignment of priorityimplemented using the DeNet Simulation Language (Livny
for 79/, j < m, at timew, which is the time when the 1990).RADE=z is made up of five active modulesseurce

J A . . i i
deferred transactions start their execution (after the parerifansaction managerobject manager resource manager

.1 Simulation model

transaction completes execution). rule managey and a passive modulBB manager Fig.2
illustrates the architecture of the simulator. The following is
1. PD protocol: a detailed description of the modules:
def\ _ .. .
Py (Tj ) = d(T) — DB manager This is the passive module that models the
2. DIV protocol: data. The data is modeled as having a certain number of
object classes and each object class has a certain number
, O Su(M =30 (Xw (T,fef)> of instances. Each object class has a certain number of
P(T{0) = C, (TF) + methods defined which are used to access the object.
. ‘ m

Each object instance in the database is mapped to a page
4 Note that we update priorities only at object events or number of pages in secondary storage.
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— Source The source (transaction generator) generates th 7 T T T T T T T
incoming transactions into the system. One can view the
source as the application or the environment in which 6
the real-time active database is used. It generates tran:
actions with timing constraints with a specified arrival 51 IMW}ﬂ e
distribution. In our study we consider only aperiodic & INDj|2] &—

transaction streams with firm deadlines. ; 4r IND

c

3

a-

— Transaction managerThe transaction manager is re-
sponsible for scheduling and execution of the transac-g
tions it receives from the source. It executes the submit-=
ted transactions by requesting the object manager to ex
ecute the specific methods on specific objects. It handle
the various transaction events: begin, commit and abort [ ge—————g—"""--
It informs the rule manager of the transaction events.

— Object managerThe object manager is responsible for 3 35 4 45 5§
concurrency control and sending messages to the rul. Arrival Rate
manager when an object event occurs. The transactiopig. 3. validation of active part of simulator
manager sends requests to the object manager for access
to objects. If the request for an object can be satisfied, the
object manager sends tlobject grantedmessage back N :
to the transaction manager. If the request cannot be sag-2 Validation of the simulator
isfied it sends an abort message back to the transaction
manager. Conflict resolution in this module is based onExperiments were conducted to validate the simulator. The
priorities, where the lower priority conflicting transac- validation was accomplished in three steps.
tion waits or gets aborted depending on whether itis the 1. We validated thective part of the simulator against
requester or holder of locks. the results in Carey et al. (1991). The results are illustrated in

— Rule managerThe rule manager models the active work- Fig. 3. We mapped the model in Carey et al. (1991) onto ours
load in the system. The rule firings are modeled proba-as closely as possible. We were not able to obtain the exact
bilistically, i.e., a rule is fired with a certain probability. results because of the following differences in the two mod-
The rule manager checks to see if any rules are triggeredis. The buffer is explicitly modeled in Carey et al. (1991),
whenever it gets an event notice from the transactionvhereas we model our buffer using a paramétewrhich is
manager or the object manager. It models the conditiorthe probability that a page is resident in the buffeiis set
evaluation, and, finally, generates the transactions corto 0.9 for all the experiments in this validation. The expla-
responding to the actions of the rules triggered if theirnation of the parameters and the experiments can be found
conditions are satisfied and submits them to the transadn Carey et al. (1991). In Fig. 3, we observe that our results
tion manager. are within 10% of the original results.

— Resource managef he resource manager simulates the 2. We validated theeal-time part of the simulator by
CPUs, disks and the main memory buffer. The objecttrying to duplicate the results in Abbott and Garcia Molina
manager makes requests to the resource manager for tfi¢992). Under the NT (not tardy) overload management
necessary pages or for CPU time to execute the methpolicy, a transaction is aborted as soon as it becomes tardy.
ods. The transaction manager requests CPU time anWnder the AE &ll eligible) policy, a transaction is run until it
buffer space to load transactions from the resource manfinishes. The results are illustrated in Fig. 4. Again our results
ager. The CPU, disk, and memory resource schedulingvere very similar to previously published results. The slight
are priority driven. Our resource model is a multipro- performance improvement obtained by our policies in the
cessor, multidisk, shared-memory system. The incominghot tardycase can be explained by the fact that checking for
resource requests are queued in a common CPU queuardiness is done more often in our model.
or in a randomly selected disk queue depending on the 3. Finally, we validated our simulator against the results
kind of request. in Kao and Garcia Molina (1993), where policies for as-

signing deadlines to parallel and serial subtasks of complex

distributed tasks in a real-time system have been evaluated.

We do priority-driven preemptive scheduling. The sched-We do not present the result graph for this experiment to save
uling and conflict resolution decisions made in different space. There was an inherent difference in the two models

modules of the simulator are independent of each otherbecause the one in Kao and Garcia Molina (1993) is for a

No global scheduling decisions are made. For instance, thdistributed system, whereas ours is for a single site multipro-

scheduling decision made in the resource manager is indesessor system. The system in Kao and Garcia Molina (1993)
pendent of the one made in the transaction manager. Ovetas multiple servers with a queue for each server, whereas
load management in our study is based on mio¢ tardy  ours has multiple servers with a single queue. We experi-
policy, i.e., a transaction is aborted as soon as its deadlinmented withUD andDIV-1 policies mentioned in Kao and
expires. This corresponds to firm real-time transactions. This

policy assumes that finishing a transaction after its deadline 5 please note this is not the same as cléFswhich denotes the class

expires does not impart any value to the system. of non-triggering transactions

55 6 6.5 7
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100 T . T , Table 1. System parameters
Parameter Setting

80 | AE/FCFS/[1] <— - Nopu 6
g NT/%%:’F%T% g: ? Time taken to execute a method 1 unit
b3 NT/FCFS G-- Y Number of object instances 2000
X 60 |- - Overload management policy not tardy
2 fracr 0.15
o
©
a 40 |- -
2
¢ It should be noted that all other estimates discussed in Sect. 4

20 L i can be calculated from the above estimates.

The deadline of a transactidhis set using the following
é formula:
0 -
0 5 10 15 20 25 (D) =a(T)+ (1 +p)* Xar)(T)
Arrival Rate . . Lo . Lo

Fia. 4. Validation of real-i + of simulat wheref is a uniformly distributed random variable within a
1. & Validation of real-ime part of simuiator specified range. We consider three types of workloads: one

where the clas3 transactions trigger only immediate sub-

. . . ] transactions = 1), one where they trigger only deferred
Garcia Molina (1993) and our missed deadline percentagegansactions ¢ = 0), and one where they trigger both im-
were lower by no more than 5-10%. mediate and deferred subtransactions with equal probability

In our validations we did not perform the complete set (, = 0.5). We normalize the slacks for the three types of class
of experiments that are found in Carey et al. (1991), AbbottT transactions taking into account the fact that the deferred
and Garcia Molina (1992) or Kao and Garcia Molina (1993), transactions can be executed in parallel, and the immediate
but just certain baseline experiments. transactions are executed in sequence. Therefore, transac-

tions that trigger only immediate subtransactions get more
) slack than those that trigger deferred subtransactions.
5.3 Baseline parameters We use a parametdoad in our experiments which is

) ) ) very similar to the one in Kao and Garcia Molina (1993). In
In thl_s sectlon_ we descnbg the workload model and the caly der to defindoad we specify the arrival rates and service
culation of estimates required by DIV and SL. Let us assum&ges of clas§ andNT transactions. The arrivals of clags
a transactiori’ arrives at timelp and triggers a subtransac- 4nq clasNT transactions are generated according to Poisson
tion at timet;. Let U(¢, j) Qenot_e a umforml'y distributed in- processes with mean interarrival times ¢f\% and YAy
teger valued random variable in theb range]. The lengths,  time ynits, respectively. The arrival rates are calculated us-
L(‘Tb)' of a transactiori” and, L(1*"”), of a subtransaction ing the following two equations, where all other quantities
T (immediate or deferred) that might be triggered’By  except the arrival rates are assumed to be known. In the first
are given in number of method invocations as follows. equation, we define thiead to be the ratio of work gener-
L(T) =U(5,7), T €classT ated to the total processing capacity of the system. /et-1

=U(4,6), T € classNT and 1/ N7 denote _the average 'gotal execution time of class
cubr Vol ub . T and NT transactions, respectively, aid-py the num-
L(T**") =U(4,6), T € classT,T*"” subtransaction of’ ber of CPUs in the system. In the second equatjorucr
is the fraction ofload that is contributed by the clasb

Each method takes one unit of time to execute. At thetransactlons.

start of every method execution, a transactiotelonging B 2; + 21;;
to classT triggers a subtransaction with probability The load = cPU

probability that the triggered subtransaction is of type im- Ar

mediate isq and the probability that it is of type deferred fracy = wr
is 1— ¢. For any transactiofi’, we can compute the length 2}; + 21;;

of the transaction when it arrived (1) = L(T")) and ] )
hence, we know the remaining length of the transaction at From the above equations, for given valueslofd,
any timet. Let L,(T) denote the remaining length of trans- Jracr, 1/ur and ¥ punr, we can compute/Rr and YAy
actionT at timet. The estimates that we use in the priority Tables 1 and 2 show the system and transaction parameter

assignment policies are calculated as follows: settings, respectively, for our baseline experiments.

Xo(T)  =Ly(T)

m™M (1) = L(T) * p* q 5.4 Real-time tasks

m{/(T) = L(T)*px(1-q) , , _ o

Iy = I (psub In the first set of experiments we deal with real-time active
(1) = L( ) tasks executing in a multiprocessor environment. The pur-

x (T) = L(T*") pose of these experiments is to isolate and study the effect
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Table 2. Transaction parameters

Class Parameter Setting
classNT Length in methodsI{(T)) U(4,6)
Slack parameter) U(0.5,1.25)
classT Length of the parent in method&.(7°)) U(5,7)
Probability of triggering by object evenp) 0.8
qg=10 Length of the subtransactiod(1'5%)) U(4,6)
(all imm.) Slack parameter3( U(6.0,6.5)
qg=0.0 Length of the subtransactiod(1'5%)) U(4,6)
(all def.) Slack parametep) U(2.0,2.5)
qg=05 Length of the subtransactiod(1'5%)) U(4,6)
(both imm. and def.)  Slack paramete?)( U(4.0,4.5)
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Fig. 5. Only immediate/task model Fig. 6. Only deferred/task model

of scheduling on performance. We simulate a main memory
database system where there are no data conflicts, i.e., every _ . _
data access is a shared access. The experiments presen&d accompanied by a smaller increase in the MDP of class

here are: NT transactions. But, as the load increases, the difference
i o between the MDPs of DIV and SL for cla®éT transac-
— Load versus MDP for a fixed slack distribution tions reduces. When the load is 0.9, DIV performs better
— Average slack f(()] versus MDP for a fixed load than SL for classNT transactions. The first evidence for
— Analysis of trade-offs between DIV and SL for a fixed oyr hypothesis, that extra information like the estimates of
slack distribution and load execution time and accounting for the dynamic work gener-

In the following discussion we use slack to denote the averated improves the performance of triggering transactions, is
age slack parameter that is used to calculate the deadline (tf€€n here. This performance improvement, however, comes
initial slack) of the transaction belonging to that class. Note@t the cost of decreased performance of non-triggering trans-
that slack corresponds (53). We useestSlack® to denote ~ actions.

the remaining slack time that is estimated by the policies.  In Fig.6, we present the results for the case where all
the subtransactions triggered are executed in deferred mode

(¢ = 0). Again, SL and DIV decrease the MDP of clabs
5.4.1 Load versus MDP transactions over PD. In this case, SL provides substantially

better performance to cla3stransactions thaNT, whereas
The first set of performance results are presented in Figs. 5t1€ reverse is true for PD and DIV. SL performs better than

7, respectively. Figure 5 deals with the case where all th?!V @t higher loads for clasg. However, in the case of
subtransactions are triggered in immediate made {). We classNT transactions, DIV performs petter than SL. SL re-
observe from the graph that, when compared to PD, both thduces the MDP of clasg by 30% at high loads, compared
DIV and SL decrease the MDP of cla3stransactions at 0 DIV with a slight increase in the MDP of cla$éT. Es-
higher loads by as much as 10-15%, at the cost of a smafientially SL gives higher preference to classransactions
increase of around 4% in the MDP of clas§ transactions. ©VEr clasNT transactions than DIV. This difference in per-

DIV reduces the MDP of clasE by a greater amount than formance from the previous results in Fig. 5 can be explained
by the fact that deferred subtransactions can be executed in

6 estSlack at timet for a transactiorl” is S¢(T) parallel, on a multiprocessor system, whereas the immedi-
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ate subtransactions are executed sequentiaignce, SL
gives a very high preference to classtransactions when 20  TOTAUPD -— 4
deferred subtransactions are present. This explains the fa T%{‘k{_?s"( =
that SL keeps the MDP of class transactions nearly con-

stant, while the MDP of clasBIT transactions increases. It
also explains the fact that SL gives lower MDP for cldss
than the clasiT.

The results for the case where the triggered subtranss
actions execute either in deferred or immediate mode witt
equal probability ¢ = 0.5) are illustrated in Fig.7. The rel- =
ative performance behaviors of the three policies is similar
to those in the case where all subtransactions are of th
deferred type. However, the difference between the MDPs 0 3
of classT transactions for the three policies is lower than 62 03 04 05 06 07 08 09 1

. Load
the only deferred case because of the presence of immedi-
ate subtransactions. The qualitative performance of SL witH9- 9- Only deferred/task model/total
respect to the triggering and non-triggering transactions is
similar to that of the case where all the subtransactions are
of the immediate type. should be noted that the total MDP can be a biased perfor-

We observe from these results that, while the MDP ofmance measure (Pang et al. 1992). Total MDP will be low
classT transactions is reduced by the SL and DIV policies, for policies that favor short transactions which is clbEs
the MDP of the clasfNT transactions increases. This is de- transactions in our study. PD, by favoring cl&¥ transac-
sirable when clas3§ transactions are more valuable to the tions, gives a lower total MDP than both SL and DIV which
application than clashBIT transactions. In order to examine favor classT transactions.
the performance of the policies when transactions of both
classes have the same value, we evaluated the combined
MDP of all the transactions. Again, 85% of the workload 5 4.2 Average slack versus MDP
comes from classNT transactions. The results are illus-

trated in Figs. 8-10. We observe that PD always performs; js understandable that accounting for the dynamic work
best if we give equal value to both cla¥sand classNT  generated could result in better performance for cliss

transactions. DIV is the next best and SL is the worst. PDyansactions. However, the explanation of the difference in
works best here because DIV and SL are biased toward clagge performances of DIV and SL is not clear from the above

T transactions which require more CPU time than clSs  oyxperiments. One of the main differences between DIV and

transactions. Although DIV and SL reduce the MDP of classg) s that, while DIV always favors clas§ transactions,

T transactions, the overgll MDP increases in this case, Sinc&| depending on the slack parameters, could favor either

the majority of transactions belong to clals¥ (85%). It ¢jass. DIV changes (increases) the priority of clissans-
actions as it triggers other transactions, but keeps the priority

_ We disallow multiple |_mm_ed|ate subtransacnons_belng f_|red at the Same s \assNT unchanged. SL, on the other hand, modifies the
time. The parent transaction is suspended when an immediate transaction IS

executed. In effect, the immediate subtransactions are exesedeentially priority of both the classes as they are executing. Hence, it

as opposed to deferred subtransactions that are executed in parallel at tli}_% possible that depending on the slack parameters, Fhe rela-
end tive performance of DIV and SL could change. Experiments

15 |

ed Deadline % (MDP)
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Fig. 10. Immediate-deferred/task model/total Fig. 12. Only deferred/task model/vary cla3sslack
100 T I 1 1 i 1
Slack-class-NT = .5-1.25 Figure 12 shows the result of an experiment where class
T/PD -o— T transactions trigger only deferred subtransactions. The
80 |- NT/PD %-- - ) ; o
T T/DIV -8— MDP of the different transaction classes is given as a func-
=] N o tion of average slack time for cla3stransactions. The aver-
e 60 |- NT/SL -- i age slack of clas§ transactions is plotted along theaxis
e and the MDP is plotted along theaxis. SL performs better
2 than DIV for classT with low slack values and DIV starts
é 40 | - performing better than SL when the slacks are really high.
8 As mentioned earlier, very large slacks for classmplies
s largeestSlack for classT transactions and hence lower pri-
20 - . orities for classT relative to clas\NT transactions. Hence,
e S R o SL starts performing better for cladéT at high slack val-
0 . . . T . ues of classT as seen in Fig.12. We observe that under
3 4 5 6 7 s 9 10 SL, MDP for classT reaches a minimum and then slowly
Average Slack - Class T starts to increase. This is the slack value of claswhich
Fig. 11. Only immediate/task modelivary clagsslack performs the best for SL for a given slack value of class

NT. Other slack values to the left are too tight and values
to the right are too loose. The difference between the case

were conducted where we varied the slack of claggans-  Where classT transactions trigger only immediate transac-

actions, holding the slack of cladéT transactions constant {0ns and where they trigger only deferred transactions is
for a load of 0.9. Figure 11 shows the result of this experi-tat the MDP of clasg, where DIV starts performing bet-
ment where the clask transactions trigger only immediate ter than SL, is much higher in the first case. In other words,

subtransactions. The MDP of each transaction class is giveR!V Starts performing better than SL for clagdransactions
as a function of average slack of claBstransactions for that trigger only immediate subtransactionseiatively low

all three policies. The average slack of cldsis plotted on ~ Slack values, when compared to case where dasansac-

the z-axis and MDP is plotted on thg-axis. We observe tions trigger only deferred subtransactions. In all the cases
that when the slack of clasg is low, SL provides a lower ~S€€N SO far, we observe that PD does worse than DIV and

MDP for classT transactions than DIV, but performs worse SL for cIassT and does better than DIV and SL for class
for classNT. At higher slack values of clask, DIV starts N1 transactions.

performing better than SL for both classes. Figure 5 is an

instance of this latter behavior at different loads. Also, in-

creasing the slack of clagsmeans increase in thetSlack  5-4.3 Analysis of trade-offs between DIV and SL policies
(remaining slack time) of clask transactions which results

in relatively lower priorities for clasg transactions com- We observed in the previous experiments that DIV and SL
pared to clastNT transactions. This effect can be observedgive preference tal class transactions over the clas3
from the fact that SL starts performing better for cl&sE transactions. In this section we describe and evaluate two
at high slack values of clask as seen in Fig. 11. We also algorithms that provide the capability to trade off the MDPs
conducted experiments where we held the slack of class for classesT andNT. The algorithms are constructed from
constant, while varying the slack of claBEl. We do not DIV and SL in the following way. We introduce a parameter
present the graphs of these experiments, but it suffices ta. which controls the priority assignment in DIV and SL
say that the same kind of phenomenon was observed. policies. We call these parameterized policies ALPHA-DIV



29

80 I 1 ¥ 1 1 1 T 80 1 1 T 1 T 1 T T ]
ALPHA-SL -o— ALPHA-SL -—
ALPHA-DIV -¢--- ALPHA = 0.0 ALPHA-DIV -¢---
&= 75 4 T 70 | . i
[m]
g g
4 3
s 70 | i 3 60 |- -
3 F
& 65 |- _ 8 50 |- 4
i k=]
D
s 60 |- 9. i s 40 | -
- ALPHA =10 &
@ ) a ALPHA = 1.0
o 55 |- o i o 30 -
ALPHA =10
50 ] 1 1 1 ] 1 1 20 L 1 1 L 1 1 1 1 L
4 5 6 7 8 9 10 11 12 6 2 4 6 8 10 12 14 16 18 20
Class NT Missed Deadline % (MDF) Class NT Missed Deadline % (MDP)

Fig. 13. Only immediate/task model/trade-offs Fig. 15. Immediate-deferred/task model/trade-offs

L L AL;,HA_S'L +_' range for the immediate only case. It reduces the MDP of
60 | ALPHA-DIV -o--- | classT transactions by 15% with an increase of 4% in the
z ALPHA = 0.0 MDP of classNT transactions, compared to the ALPHA-SL
£ 50 N i protocol which achieves a lesser reduction at the cost of a
f 3% increase. The same experiment was run with the load
< %0 | i kept constant at 0.75. In this case, ALPHA-DIV reduced the
§ MDP of classT by a larger amount than that of ALPHA-SL
B a0 b SPHA= 10 ] and with a smaller increase in the MDP of cldssompared
2 : to ALPHA-SL. Hence, the ALPHA-DIV protocol performs
E 20 - i better than the ALPHA-SL protocol for the case where all
2 subtransactions are triggered in immediate mode.
o 10 b i However, when the workload consists only of deferred
transactions, the ALPHA-SL protocol reduces the MDP of
ol 1 pLPHA=10® | | classT transactions to a very negligible value with a rise in
6 8 10 12 14 16 18 20 22 24 the MDP of class\T transactions. ALPHA-DIV is not able
Class NT Missed Deadline % (MDF) to reduce the MDP of clas§ transactions so significantly.
Fig. 14. Only deferred/task model/trade-offs So if classT transactions have a higher value than class

NT transactions, then ALPHA-SL is the protocol of choice
in the deferred only case. ALPHA-SL consistently performs

and ALPHA-SL. It should be noted that the experiment is P€ttér than ALPHA-DIV for alla values and gives more
flexibility to trade off performance between the two classes.

conducted for a particular load and slack parameter values, X
The results for the case where 50% of the subtransactions are

ALPHA-DIV : Py(T) = o x PPTV(T) + (1 — o) + PPP(T) deferred and 50% immediate, are illustrated in Fig. 15. Here,

like in this previous case, ALPHA-SL gives more flexibility

to trade off performance between the two classes. In gen-

eral, where most subtransactions are deferred, ALPHA-SL

provides more flexibility to achieve a higher reduction in the

ALPHA-SL : P,(T) = a * PtSL(T) +(1— a)* PtPD(T) MDP of classT transactions with an increase in the MDP

) o ) _ of the clasSNT transactions than the ALPHA-DIV policy.
where P°” is the priority assigned to the transaction by the

SL protocol.

When a is zero both the policies reduce to PD. When 5.4.4 Summary of performance for the real-time task model
« is one they reduce to DIV and SL, respectively. For this
set of experiments the load was kept constant at 0.9. Wén summary, for a real-time task model, the dynamic pri-
studied the performance of the ALPHA-DIV and ALPHA- ority assignment policies DIV and SL reduce the MDP of
SL asa is varied from zero to one. The results are found inclassT transactions, while increasing the MDP of cl&¢6
Figs. 13-15 where the MDPs of clas9¥¥ and T transac- transactions. The choice between DIV and SL depends upon
tions are plotted. The points on the curves correspond to the slacks of the transactions and the load in the system.
values varied from O to 1 with an increment of 0.2. We alsoSL is a pure slack-based policy that performs well for a
plotted some points with intermediate valuesnofo clearly  certain class of transactions depending on the slack of that
distinguish between the different policies. We observe thatlass, its absolute value and its value relative to slack of
ALPHA-DIV works better than ALPHA-SL throughout the the other class. DIV always favors claBgransactions. We

where PPV is the priority assigned to the transacti@h
by the DIV protocol andP/’? is the deadline of the parent
transaction.



30

70 T T T T T 40 T T T T T
60 F T/PD o— 4 B .
NT/PD -o--
T T/DIv 85— T 30| T/PD o— -
a 50 |- NT/DIV =-- ‘ - a NT/PD -6--
= T/SL >— = TDIV &—
3 NT/SL -~ < 25 [~ NT/DIV =-- .
© 40 | 4 © T/SL >
2 £ o0 | NT/SL »--
B K 7
7] 30 - 8
Q
o ° 15 4
2 2
2 20 | . =
s b 10 4
10 . 5 .
_____ X"”’__‘—x
0 1 J———ﬂ—-—-*"“r':ﬁ—‘ dzzz i == 0 1
0.1 0.2 0.3 0.4 05 06 0.7 0.1 02 07
Load
Fig. 16. Only immediate/main memory DB/2000 objects Fig. 17. Only deferred/main memory DB/2000 objects
o 100 T T T T T
also looked at two policies, ALPHA-DIV and ALPHA-SL, TIPD o
that enable us to trade off performance between differen NT/PD ~o--
classes. Our hypothesis, that accounting for the work gen 8 &\ TOW = .
erated dynamically and using knowledge about transaction & Nygt o
will benefit the triggering transactions, is substantiated by§ 60 8L ===
the results in this section. 2 i 7
g
. 40 |- -
5.5 Main memory database 3
n
£
We now consider the effects that data contention can havi= 20 | i
on the behavior of the policies. Since we are changing jus
one parameter, any difference in the behavior is due to dat
contention. We introduce data contention by requiring every 0 i
data access to be an exclusive access. It should be noted tf 01 02 03 04 05 06 07

the way we calculate the estimates in this case is the same ) ) ) Hoad )
as in the real-time task case. The concurrency control alf'd- 18- Only immediate/main memory DB/S00 objects
gorithm we use is the high-priority (HP) algorithm (Abbott
and Garcia Molina 1992), modified to deal with subtrans-
actions. According to our concurrency control mechanismwas observed in the case with no data contention. Figure 16
all of the subtransactions triggered by a transaction (whetheshows the performance for varying loads at a fixed slack dis-
in deferred or immediate mode) are considered part of theribution. The relative performance of DIV and SL change
transaction and share the locks. Similarly, two subtransacwith the varying load for clas3 transactions, but for class
tions of the same parent transaction share the locks. Henc®&T transactions DIV performs better than SL.
in our model a parent transaction and its subtransactions rep- The level of data contention could affect the performance
resent a set of cooperating transactions to complete a singlef the priority assignment policies. In order to study the
task. All of the subtransactions and the parent transactiorffect of data contention we changed the number of objects
release the locks at their commit time which occurs after then the system. For a given load, reducing the number of
parent transaction and the deferred subtransactions have finbjects will amount to a higher data contention. Figures 18
ished. Deadlocks could occur between transactions in spitand 19 show the immediate and deferred cases of workload
of using the HP protocol, because of dynamically changingwhere the number of objects is 500. For the case where
priorities. Deadlocks are prevented by checking for dead-all the subtransactions are of type immediate, SL performs
locks each time a transaction waits for another transactiometter than DIV for clas§ . This is not the case when the
and aborting the transaction that causes the deadlock. It hasumber of objects is 2000.
been shown in previous studies that the choice of the trans- In the case where all the subtransactions are triggered in
action to be aborted to resolve a deadlock does not have imnmediate mode, for the main memory database (Fig. 16) the
significant impact on the performance (Huang et al. 1989). MDP of classNT keeps increasing for SL when compared
The results are illustrated in Figs. 16 and 17 for work-to DIV. This is not the case for the immediate only case
loads consisting of only immediate and only deferred sub-of the real-time task model (Fig.5). The difference between
transactions, respectively. In the case that all subtransactiortee two cases is that there is data contention in the main
are immediate, DIV and SL provide better performance tomemory case. Moreover, when the level of data contention
classT while providing worse performance to claB§ as is higher (Fig. 18) the difference between the MDPs of class
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60 T T T T T 5. In such a scenario, if> needs a data item locked by,
then Ty will abort Th, and Ty will be restarted with a very
80  T/PD -— - low slack (a high priority) and abort other transactions that
NI o are nearing their end. It is more likely that a transaction that
a0 | NT'{'IIJSIY ol R came earlier holds the lock on a data item that is required by
NT/SL --- a transaction that came later than vice versa. We conjecture

that this kind of a scenario occurs often under SL resulting
in a large number of concurrency control aborts.

In these experiments, as expected, the absolute MDP val-
20 - - ues are higher than the MDP values of the previous set of
experiments with no data contention; that is, more transac-
4 tions are aborted due to deadline misses. Due to data con-
flicts, more transactions experience waits or get aborted. This
shows the effect of data contention on the performance. One
07 last observation is that PD does better than SL for the im-

mediate only case at low loads with tight slacks for class

Fig. 19.Only deferred/main memory DB/500 objects transactions (not shown in graphs). This is due to the high
number of concurrency control aborts in the case of SL.

30 |- -

Missed Deadline % (MDP)

10

NT between DIV and SL increases. One could attribute thiss 5 1 Summary of performance in main memory databases
to the slacks being too tight. But that should affect DIV and

PD too. In our model, SL estimates the number of step

but does not take into account the blocking delays due tsl'he observations that DIV and SL perform better than PD

data contention. This could lead SL to underestimate th (?r CI;"\‘IS_’I_STl an(:] F;dD_ perr]forms be]tcter than DIV andd SIB for
time taken to execute the remaining steps (i.e., overestimat@aSSNT also hold in the case of main memory databases.
the estSlack) and miss the deadlines. But thetSlacks ut there is a difference in the performance between these

of all the transactions are being uniformly overestimated.WC cases mainly due to the high number of concurrency

If we assume that on an average all transactions under 80ntro| aborts of SL. At low loads, high concurrency control
g J borts lead SL to behave worse than PD for clagsansac-

equal amount of blocking delays, then SL can overestimaté . . : ;
estSlacks of transactions that have not been blocked un-tions that trigger only immediate subtransactions. The very

til a certain point in time, and the transaction can miss itshigh number of concurrency control aborts of SL for class

deadline. NT transactions causes SL to behave worse than_DIV for
We observed that the number of concurrency controlC/@SSNT. This problem can be solved by considering the

aborts in the case of SL, was two to three times the numbeMmount of work performed by a transaction before aborting

of aborts in PD or DIV. The number of aborts was highest'® and checking forfeasibility (i.e., if the transaction has

both for classT and clasNT transactions for SL. DIV had & €hance to complete before the deadline). Also, accounting

more aborts for clasSIT than PD and PD had more aborts for concurrency control delays in estimating the slack might

for classT. This is explicable because DIV favors claks help.

transactions over clasdT and PD favors clas®T over

classT. For SL, the high number of aborts for clasl§

was definitely affecting its performance for this class. Under5.6 Disk resident database

a policy like SL, the relative priority ordering between two

transactions can keep changing throughout the life of thesgne third scenario considered is one where the objects are
transactions depending on how many steps are executed gyt always in main memory, in which case it is necessary
these two transactions, whereas in a deadline based priofy retrieve them from the disk. In our simulator, we do not

ity scheme the relative ordering is fixed. When there is datgyplicitly manage the buffer. The database buffer is modeled

contention, the number of steps executed by transactions thgking a parametei, which is the probability that a page is
start around the same time can differ, which would affect theresident in the buffer. Hence, with a probability & the disk

estSlack of these transactions. Transactions that do not exsypsystem is accessed. In our calculation of estimates we
perience contention could end up with mer&Slack than  take the i/o time into account. The estimates are calculated
transactions that have experienced some data contention. 55 follows:
As an example, let us consider two transactiénandTs 4
that arrive at times 1 and 3, respectively. Let their lengths be'® : average time taken to do an i/o
five units each and deadlines be 121q)) and 14 ((72)),  X,(T) = L(T) * (1 + (1 — h) * °))
respectively. At time 5 let us say; has completed four imm(T) = L,(T) % p +
steps andl; has completed one step because it faced datd"t - pxq
contention. ThereforeXs(7y) is 1 and Xs(T3) is 4. Now — mi/(T) = Ly(T) « p = (1 — q)
estSlack of Ty at time 5 isS5(71), i.e., 12— 5—1 =6 and imm o sub io
the estSlack of T at ime 5 isSs(Ty), ie, 14-5-4=5. (T) = L)+ (1 (= ) = £79))
estSlack of T, at time 5 is less thanstSlack of Ty attime X' (T) = L(T**) % (1 + (1 — h) % t*°))
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Table 3. Setting for disk-resident databases 70 I T I T T .
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§ Fig. 21. Only deferred/disk-resident DB/2000 objects
@
£
20 | .
ot §oogog control aborts and restarts resulting in a lot of wasted re-
! L 1 ! 1 sources. This problem can be solved by considering the
0
6 8 10 12 14 16 18 amount of work performed by a transaction before abort-
Average Slack - Class T - . . o . . .
ing it, checking for feasibility (i.e., if the transaction has a
Fig. 20. Only immediate/disk-resident DB/2000 objects chance to complete before the deadline) when restarted and

giving higher priorities to transactions that are restarted.
We also experimented by varying the load of the system

It should be noted that all other estimates (see Sect. 4. hile maintaining fixed slack distributions. Here SL per-

can be derived from the above estimates. Table 3 show®'™S the best for both clast and classNT for both the

important parameter values that we used in our experiment$aSes where only immediate subtransactions are triggered
We experimented by varying the slack of clagsvhile and where only deferred subtransactions are triggered. In

maintaining the same slack distribution fST for a par- the case where all the subtransactions are triggered in de-

ticular load value (0.35). Figs. 20 and 21 show the result erred mode, SL reduces the MDP of both the classes almost
N : y half in overloaded situations.

of this experiment for the cases where all the subtransac-
tions are triggered in immediate mode and deferred mode,

respectively. The MDPs of the different transaction classes o )

are given as a function of average slack parameter for clase-6-1 Summary of performance in disk-resident database

T transactions. The results are similar to the real-time task

case for classT, i.e., the MDP of classT is reduced by In the disk-resident database case, DIV and SL perform bet-

DIV and SL policies. When the slack values are lower, SLter than PD for clas§. DIV performs the worst for class

performs better than DIV and at higher slack values DIV NT. SL performs as good or better than PD for clbSs At

performs better than SL. Also, as in the real-time task casdlgh loads, SL performs the best for both classeandNT.

there is a particular slack value of claBgrelative to class ~Since SL accounts for the i/o in its estimates for cla3s it

NT slack) where SL performs the best. But for cld$s tends to perform better than DIV consistently for this class.

SL performs at least as well as DIV. The reason is that SLOUr claim, that accounting for dynamic work generated and

accounts for i/o times in its calculation of slack for clags ~ Using the knowledge about the i/o requirements and trigger-

transactions. The lack of estimate for blocking delays dudng characteristics of transactions improves the performance,

to concurrency control could get subsumed by the i/o estiiS substantiated by the above results.

mate since the latter is so much larger. On the other hand,

DIV does not account for the i/o times in the case of class

NT transactions and hence does not perform as well as SL& Conclusion

One can think of i/o as the dynamic work that is generated

by the classNT transactions. Since SL takes into accountWe have studied the problem of assigning priorities to trig-

this dynamic work that is being generated by cl&EE, it gered transactions and reassigning priorities of triggering

performs better than DIV and PD for this class. transactions in a firm real-time active database. We intro-
One anomaly observed in the case where all the subduced a simple baseline policy PD and two other policies,

transactions are triggered in deferred mode (Fig. 21) is thatnamely DIV and SL, which assign priorities taking into con-

in spite of increasing the slack, the MDP of cldsdrans-  sideration the active work generated by a transaction. The

actions for PD does not decrease at high slack values (9.7olicies use different amounts of information about the trans-

11.25). This is because very high slacks result in long deadactions. PD uses the deadline to schedule the transactions,

lines (low priorities) that were causing a lot of concurrency DIV uses estimates of execution times of the parent transac-
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tion and subtransactions that it has triggered, and SL uses es- transactions, as can be seen by DIV and SL perform-

timates of execution times of the parent transaction, triggered ing better than PD in all three settings. This benefit

subtransactions and estimates about the subtransactions that comes at the cost of increased MDP for cl&$E.

might be triggered in the future. Using the extra information about i/o makes SL per-
The main conclusions are: form better than DIV and PD for clasdT in the

1. There are threkey parameters — load, slack parameter of disk-resident database setting.

2.

classT and slack parameter of claBd of the workload

— which determine the relative performances of the three ] ] o .
algorithms. — Experiment with variations of DIV and SL policies that

— For a real-time task case in all of the load/slack space use more information about a transaction; for instance,

Some of the extensions we want to address are:

form better than PD for clas§ and PD performs trigger, and the type of subtransactions it is going to
best for clasNT transactions. It might be possible  trigger, i.e., immediate or deferred, to see what advantage
for SL to perform better than PD for cladéT for is obtained by exploiting this information.

extremely low slack values. But it would be almost — Study variations of DIV and SL that will assign priorities
impossible for DIV to perform better than PD for at every scheduling instance, instead of at every object

classNT because both schedule cla¥3, depend- event. _

ing on the deadline, and DIV favors cla§s Hence, — Study the effect of errors in the knowledge about trans-
DIV can do only as well as PD for clag¢T. Simi- actions like L«(T), X¢(T)) andp on the performance of
larly, it is difficult to conceive cases where PD could ~ the DIV and SL policies. o _

do better than DIV for clas¥. — Evaluate algorithms that change the priority of triggered

— In a main memory database setting with data con- subtransactions during their execution. This will be par-
tention, concurrency control aborts could change the  ticularly useful to study systems where the triggered sub-
performance of the algorithms. For instance, at very ~ transactions can trigger further subtransactions.
low load values for the immediate only case, SL — Consider the concurrency control blocking delays in the
could do worse than PD for clags because of the estimate of slacks. _
high number of concurrency control aborts in the — Considerthe amount of work a transaction has completed

case of SL. Similarly, for the deferred only case, beforg aborting due to a concurrency cont'rol conflict.
DIV could do worse than PD for clask. SL per- — Consider the execution model for immediate subtrans-
forms consistently worse than DIV for clapsT at actions where the parent transaction is not suspended
low slack values because of the high number of con- during the execution of the immediate subtransaction.
currency control aborts and restarts of transactions — Consider different lock-sharing semantics between the
with very high priorities. triggering and triggered transactions and between trig-

— In a disk-resident database setting, DIV and SL per-  9gered transactions.
form better than PD for clas§. SL’'s performance
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