
The VLDB Journal (1996) 5: 19–34 The VLDB Journal
c© Springer-Verlag 1996

Priority assignment in real-time active databases1

Rajendran M. Sivasankaran, John A. Stankovic, Don Towsley, Bhaskar Purimetla, Krithi Ramamritham

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Edited by Henry F. Korth and Amit Sheth. Received November 1994 / Accepted March 20, 1995

Abstract. Active databases and real-time databases have
been important areas of research in the recent past. It has
been recognized that many benefits can be gained by inte-
grating real-time and active database technologies. However,
not much work has been done in the area of transaction pro-
cessing in real-time active databases. This paper deals with
an important aspect of transaction processing in real-time ac-
tive databases, namely the problem of assigning priorities to
transactions. In these systems, time-constrained transactions
trigger other transactions during their execution. We present
three policies for assigning priorities to parent, immediate
and deferred transactions executing on a multiprocessor sys-
tem and then evaluate the policies through simulation. The
policies use different amounts of semantic information about
transactions to assign the priorities. The simulator has been
validated against the results of earlier published studies. We
conducted experiments in three settings: a task setting, a
main memory database setting and a disk-resident database
setting. Our results demonstrate that dynamically changing
the priorities of transactions, depending on their behavior
(triggering rules), yields a substantial improvement in the
number of triggering transactions that meet their deadline in
all three settings.

Key words: Active databases – Coupling mode – Deadlines
– ECA – Priority assignment – Real-time databases

1 Introduction

Traditionally, in soft real-time database systems, a transac-
tion is considered a monolithic unit of work with a given
deadline. In these systems, priorities are assigned to these
transactions and the transactions are scheduled based on their
priorities. The priority assignment usually takes into account
the deadlines of the transactions because the underlying as-
sumption is that the deadline reflects the urgency of com-
pleting the transaction. Scheduling policies such as earliest

1 A shorter version of this paper appeared in PDIS 1994

deadline first (EDF) and least slack first (LSF) are exam-
ples of policies that account for deadlines. The performance
implications of time cognizant priority assignment policies
have been studied in detail in soft real-time database sys-
tems (Abbott and Garcia Molina 1992; Huang et al. 1989).
These studies have concluded that deadline-cognizant pri-
ority assignments provide significantly higher performance
than priority assignments that ignore deadlines. In this pa-
per, our goal is to study and evaluate time-cognizant priority
assignment policies in a real-time active database. A real-
time active database is a database system where transactions
have timing constraints such as deadlines, where transac-
tions may trigger other transactions, and where data may
become invalid with the passage of time. There are many
applications, such as cooperative distributed navigation sys-
tems and intelligent network services, where real-time ac-
tive database technology is extremely useful (Purimetla et
al. 1993; Sivasankaran et al. 1993).

Before presenting a detailed description of the problem
we address in this paper, we give a brief introduction to
active databases. The building block of an active database
system is the event-condition-action (ECA) rule. The seman-
tics of the ECA rule is that, if the specified event occurs and
if the condition is true, then the specified action is to be ex-
ecuted. Some examples of events are begin,2 commit/abort
of a transaction, accessing a data item, or reaching a spe-
cific point in time. A condition is usually a predicate on
the database state. An action is the transaction that is exe-
cuted in reaction to a specificsituation which is a combi-
nation of events and conditions. The transaction that fires
the rules is called the triggering transaction, and the action
that is executed because of the rule firing is called the trig-
gered transaction. In this paper we refer to the transactions
that trigger other transactions asactive transactions orpar-
ent transactions. An active transaction has a set of triggered
transactions that are executed either as part of the active
transaction or separately, depending on the type of thecou-
pling modebetween the parent and the triggered transac-
tions (Dayal et al. 1990). There are three types of coupling

2 The begin event may, in turn, have been caused by some external
environment event such as an obstacle identified by a sensor (Purimetla et
al. 1993; Sivasankaran et al. 1993)



20

modes:immediate, deferredand independent. The transac-
tions triggered in those modes are referred to as immediate,
deferred and independent transactions, respectively. Imme-
diate and deferred transactions are executed as part of the
parent transaction, whereas independent transactions are ex-
ecuted independently. Since immediate and deferred transac-
tions are part of the parent transaction, we also refer to them
as subtransactions. In our model, an immediate transaction
is executed as soon as it is triggered and the parent transac-
tion is suspended until it completes. A deferred transaction
is executed after the parent completes execution, but before
it commits. In this paper, by a parent completing execution
we mean that the parent has finished all its work but has
not committed its results. Immediate and deferred transac-
tions commit if and only if the parent commits. We do not
consider independent transactions in our study.

Due to the rule firings, an active transaction dynamically
generates additional work. In order for the time-cognizant
scheduling policies to perform well, they should take into
account the work that is dynamically generated. This aspect
of the problem makes this scheduling problem different from
the classical hard real-time scheduling problem, where exe-
cution times are assumed to be known in advance (Klein et
al. 1993; Lawler 1983; Xu and Parnas 1990). The priority-
driven nature of real-time transaction processing gives rise to
the question of how to assign priorities to the parent and to
all triggered actions (Purimetla et al. 1993; Sivasankaran et
al. 1993). We believe that the strategy to assign priorities can
have a significant impact on the performance of the system,
as triggered actions must contend with ongoing transactions
for resources. In this paper, we address the problem of as-
signing priorities to triggering and triggered transactions. We
introduce and evaluate three policies for assigning priorities
to immediateanddeferredtransactions.

Our main contributions are:

– The development of two priority assignment policies that
account for the work dynamically generated by active
transactions

– A comparison of the two priority assignment policies
with a baseline policy using a real-time active database
simulator in three settings, in a real-time task setting,
a main memory database setting and a disk-resident
database setting

– A demonstration that for mixed workloads consisting of
triggering and non-triggering transactions, priority as-
signment policies that take into account the dynamic
work generated reduce the deadline miss ratio of the
triggering transactions significantly at the cost of a very
small increase in the deadline miss ratio of non-triggering
transactions when compared to the baseline policy

– The identification of the trade-offs between the perfor-
mance of triggering and non-triggering transactions of-
fered by the different policies, thereby enabling an imple-
mentor to select from various policies depending on the
relative importance of the triggering and non-triggering
transactions in the system

– The identification of differences and probable reasons for
the differences in the relative performance of the policies
in the three settings

We discuss related work in Sect. 2. In Sect. 3, we explain
our transaction model. Section 4 gives a detailed explanation
of the priority assignment policies. We discuss the simulator,
experiments and results in Sect. 5. We summarize our main
results and discuss future work in Sect. 6.

2 Related work

Over the past few years active databases and real-time
databases have become important areas of research. Exper-
imental studies reported (Abbott and Garcia Molina 1992;
Huang et al. 1989, 1991a, 1991b; Son and Park 1994) are
very comprehensive and cover most aspects of real-time
transaction processing, but have not considered active work-
loads (workloads that generate additional transactions dy-
namically) and have not addressed the problem of subtrans-
action priority assignment. There have been both theoretical
and experimental studies in active databases (Carey et al.
1991; Dayal et al. 1988, 1990; McCarthy and Dayal 1989).
Most of the studies have concentrated on the specification
of ECA rules (Anon 1992). Experimental work on active
databases (Carey et al. 1991) has been performed in a non-
real-time setting. Experiments (Carey et al. 1991) show the
impact of transaction boundaries and data sharing on the per-
formance of active databases. We address a different prob-
lem; that of assigning priorities to triggered transactions in
real-time active databases.

The relationship between real-time databases and active
databases was discussed briefly by Ramamritham (1993)
where it was noted that a missing ingredient in active
databases is the active pursuit of timely processing of ac-
tions to do real-time processing. In short, past studies on
real-time transaction processing have not dealt with active
workloads, and studies on active databases have not dealt
with real-time transactions.

The problem of assigning deadlines to the parallel and se-
rial subtasks of complex distributed tasks in a real-time sys-
tem has been studied (Kao and Garcia Molina 1993) through
simulation. This work differs from the present work in two
ways. First, in Kao and Garcia Molina (1993) the structures
of all of the complex tasks are assumed to be known in ad-
vance. Second, the experimental system considered in Kao
and Garcia Molina (1993) is not a database system, nor does
it include an active component. The system we consider for
our experiments is a real-time active database with unpre-
dictable data accesses and rule firings.

3 Transaction model

In this section we describe the transaction model we have
considered and the simplifying assumptions we have made to
study priority assignment in a real-time active database. The
performance metric we use in our study is missed deadline
percentage (MDP), i.e., the percentage of transactions that
miss their deadlines, which is a traditional metric used to
evaluate performance in real-time systems.

Data in our system is modeled as objects that have meth-
ods associated with them. A transaction in our system is a
series of method executions on objects. We consider two



21

Fig. 1. Life of a complex active transaction

classes of transactions in the system:non-triggering (class
NT) andtriggering (classT). An NT transaction is a simple
transaction which does not cause any rules to fire. AT trans-
action, on the other hand, can trigger subtransactions upon
the occurrence of an event. We consider classT transactions
that trigger only immediate and deferred transactions. At
most one subtransaction is triggered upon the occurrence of
an event. We do not consider cascading rule firings, i.e., in
our model triggered transactions do not trigger further trans-
actions. We address onlyfirm real-timesystems where the
valueof the transaction drops to zero once the deadline ex-
pires. We abort the transaction that misses its deadline, along
with all its related subtransactions. In our current model,
only the object events, i.e., an execution of a method on an
object, activate rules and cause the triggering of subtransac-
tions. Transaction and temporal events do not activate rules.
We make this assumption to simplify the experimentation,
since the only effect of transaction and temporal events trig-
gering rules in our study would be to increase the number
of subtransactions triggered. This effect can be achieved by
increasing the probability that an object event can trigger a
rule.

4 Priority assignment for triggered transaction

In real-time active databases, a transaction with time con-
straints can trigger subtransactions. Traditionally, priority-
driven scheduling has been used in real-time systems. Hence,
the problem is how to assign a priority to a subtransaction
given the priority of the parent transaction. Another problem
is that, as a transaction triggers subtransactions either in im-
mediate or deferred modes, the amount of work to be done
on behalf of the transaction before it commits also increases.
Consequently, the transaction is less likely to complete suc-
cessfully than another transaction with the same deadline
which does not trigger any subtransactions, since it faces
more contention for resources during its lifetime.

To better illustrate the problem being addressed, we pro-
vide an example of the structure of a complex active transac-
tion executing on a uniprocessor. Figure 1 shows the life of a
complex active transactionT that triggers transactions in im-
mediate and deferred modes. TransactionT arrives at timet1
(a(T )) with t10 as its deadline (d(T )) and is started at timet2
(s(T )). Deferred transactionsT def

1 andT def
2 are triggered at

times t3 and t4, respectively. Immediate transactionsT imm
1

and T imm
2 are triggered at timest5 and t7, respectively.

Fig. 1 shows that the transactionsT imm
1 andT imm

2 execute
immediately whileT is suspended. Finally, the figure shows
that, once the parentT completes att9, the deferred trans-
actionsT def

1 andT def
2 execute. The problem we address is

that of assigning priorities to subtransactionsT imm
1 , T imm

2 ,
T def

1 andT def
2 , and the problem of dynamically reassigning

the priority of the parent transactionT during its lifetime. It
should be noted that the deferred transactions can execute in
parallel if operating on a multiprocessor or in a distributed
system.

Later in this section, we describe three priority assign-
ment policies, PD, DIV and SL3, for assigning priorities to
the parent, immediate and deferred subtransactions in an ac-
tive real-time database system. PD is astaticbaseline policy
where the priority of the parent does not change with time.
DIV and SL aredynamicpolicies that change the priority
of the parent, depending on the amount of dynamic work it
has generated. In all cases, the priorities are assigned to the
triggered transactions when they start execution and priori-
ties are not changed subsequently during their execution. It
should be noted that the three algorithms use increasingly
more knowledge (estimates) about the transactions in their
assignment of priorities. PD is a pure EDF policy for both
transactions and subtransactions and uses no other informa-
tion about transactions. DIV makes a simple adjustment to
EDF where priorities (based on deadlines) are dynamically
changed when new subtransactions are triggered. Our hy-
pothesis is that very simple modifications will give signifi-
cant improvements. Note that DIV uses estimates of execu-
tion times of the parent transaction and subtransactions that
it has triggered. SL is an LSF policy that is slightly more so-
phisticated than DIV; it uses estimates of execution times of
the parent transaction and triggered subtransactions and es-
timates regarding the subtransactions that might be triggered
in the future. Our hypothesis is that, when such information
is available, it can provide additional performance benefits.

Below we describe how the policies PD, DIV and SL as-
sign priorities to the parent transaction and the triggered sub-
transactions for two cases: when the triggered subtransaction
is of type immediate and when the triggered subtransaction
is of type deferred. Before describing the policies, we intro-
duce some attributes of a transaction and other related terms
that we require in order to explain our priority assignment
policies.

4.1 Attributes of a transaction

Let us consider a transactionT for which we define the
following attributes. Some attributes of the transaction may
change during the execution of the transaction and these
attributes are subscripted witht, wheret is the time at which
the attribute’s value is represented.

a(T ): the arrival time ofT
s(T ): the start time ofT
d(T ): the deadline ofT
n
def
t (T ): the number of deferred transactions triggered

Pt(T ): the priority ofT at time t

The policies we have developed use estimates of certain
quantities associated with a transaction such as its length and
execution time. The following are some of the estimates that
we use in our policies. An example of how these estimates

3 The name PD derives from Parent Deadline; DIV from DIViding the
parent’s effective slack; SL from adjusting the average case SLack



22

are obtained can be found in Sect. 5 where we describe the
parameters for the experiments.

Xt(T ): the estimated remaining execution time forT at
time t

Ct(T ): the estimated completion time ofT at time t;
Ct(T ) = t + Xt(T )

St(T ): the estimated slack ofT at time t;
St(T ) = d(T ) - Ct(T )

mimm
t (T ): the estimated number of immediate transactions

triggered byT after timet
mdef
t (T ): the estimated number of deferred transactions

triggered byT after timet

X
imm

(T ): the estimated average execution time of an im-
mediate subtransaction triggered byT

X
def

(T ): the estimated average execution time of a de-
ferred subtransaction triggered byT

Xavg
t (T ): the estimated average case remaining execution

time ofT including its subtransactions at timet:

Xavg
t (T ) = Xt(T ) + ndeft (T ) * X

def
(T ) +

mdef
t (T ) * X

def
(T ) + mimm

t (T ) * X
imm

(T )
Savgt (T ): the estimated average case slack ofT including

its subtransactions at timet:
Savgt (T ) = d(T ) - t - Xavg

t (T )

Xt(T ) is the estimate (at timet) of the remaining time
it will take a transaction or subtransaction to execute. This
quantity, when estimated at the start of a transaction or when
a subtransaction is triggered, is the estimated execution time
of that (sub)transaction. The estimated average case execu-
tion time of transactionT , Xavg

t (T ) includes the execution
time left at timet for T , execution times of all of the deferred
transactionsT has triggered prior to timet, and estimates of
execution times of the subtransactions which the transaction
T may trigger during its remaining lifetime. We believe that
by analyzing the characteristics of a real-time database ap-
plication one might be able to obtain information such as the
estimated execution time of transactions, the kind of actions
they trigger and the triggering probability.

It should be noted that a lower value ofPt(T ) indicates
higher priority. For instance, if there are two transactionsT1
andT2, andPt(T1) < Pt(T2), thenT1 gets priority overT2.
Also, in all the policies, the deadline of the subtransaction
is set to the parent’s deadline. For instance, if a transaction
T triggers a subtransactionT sub transaction at timet, then

d(T sub) = d(T )

4.2 Priority assignment when immediate subtransactions
are triggered

1. PD: Immediate subtransactions are assigned a priority
equal to the deadline of the parent. Further, the priority of
the parent transaction which is based on its deadline does not
change with the triggering of subtransactions. This is a very
simple baseline algorithm. All the actions done on behalf of
a transaction get the same priority as the transaction itself at
any point during its lifetime. Let us consider a transaction
T triggering its ith immediate transactionT imm

i at time t.
Then

Pt(T
imm
i ) = d(T )

2. DIV: The parent’s estimated effective slack is divided
equally among thecurrent immediate subtransaction trig-
gered, the deferred subtransactions triggered prior to the
triggering point (current time) and the parent. This quantity
(obtained by dividing the parent’s estimated effective slack)
is added to the estimated completed time of the immediate
subtransaction to give the priority of the subtransaction. The
parent’s deadline is also adjusted dynamically to reflect the
work that has been triggered dynamically (Eq. 2).

Let us consider a transactionT triggering itsith immedi-
ate transactionT imm

i at timet. The estimated effective slack
is calculated by subtracting the sum of estimated execution
times of deferred transactions that have been triggered until
time t and estimated execution time of theith immediate
transaction from the parent’s estimated slack as shown in
Eq. 1.

Pt
(
T imm
i

)
= Ct

(
T imm
i

)
+
St(T )−

(
Xt

(
T imm
i

)
+
∑ndeft (T )

j=1 Xt

(
T def
j

))
ndeft (T ) + 2

(1)

Let us assumeT imm
i finishes at timew > t. The parent’s

priority is reassigned at timew as follows

Pw(T ) = Pt(T )− (w − t)

For instance, in Fig. 1, forT imm
1 at the triggering pointt5,

its priority is assigned as follows:

Pt5

(
T imm

1

)
= Ct5

(
T imm

1

)
+
St5(T )−

(
Xt5

(
T imm

1

)
+Xt5

(
T def

1

)
+Xt5

(
T def

2

))
4

The priority of the parent transaction will be modified when
T imm

1 completes att6 as follows:

Pt6(T ) = Pt5(T )− (t6 − t5) (2)

The main idea behind this policy is that of giving higher
priorities to classT transactions, which have more work to
do before completion. This should increase the likelihood of
the classT transactions meeting their deadlines. This policy
only uses the estimates of execution times of subtransac-
tions that have already been triggered. It does not use any
knowledge about future triggering of transactions. The pri-
ority assigned to the subtransaction can be thought of as a
virtual deadline which is the sum of its estimated comple-
tion time and some slack that it gets from the parent. This
virtual deadline is then used to schedule the subtransaction
using the EDF algorithm.

3. SL: The average case slack [Savgt (T )] of the parent is
adjusted at each potential triggering point and used as the
priority for both the triggered and triggering transactions.
The initial value of slack is assigned based on estimates of
the remaining execution time for a transaction and its sub-
transactions. The slack is then adjusted at each object event
based on whether the parent transaction triggers a subtrans-
action or not. The triggered transactions are assigned the
same slack as the parent, i.e., they are executed at the same



23

priority. Let us assume a transactionT starts at timet0 and
time t is a potential triggering point whereT could trigger
its ith immediate transactionT imm

i . Initially the priority of
T (average case slack) at timet0 is set as follows:

Pt0(T ) = Savgt0
(T )

Now at timet, if subtransactionT imm
i is triggered, the pri-

ority is adjusted as follows:4

Pt(T ) = d(T )− t−Xavg
t (T )−Xt(T

imm
i )

Pt(T
imm
i ) = Pt(T )

If a subtransaction is not triggered at timet then the slack
adjustment is as follows:

Pt(T ) = d(T )− t−Xavg
t (T ) (3)

In Fig. 1, the priorities forT andT imm
1 will be

Pt5(T ) = d(T )− t5 −Xavg
t5

(T )−Xt5

(
T imm

1

)
4.3 Priority assignment when deferred subtransactions
are triggered

The priority assignment for deferred transactions is very sim-
ilar to that of immediate transactions. Under the DIV and SL
policies the priority of the parent changes when it triggers a
deferred transaction. The deferred transaction is executed af-
ter the parent transaction finishes execution. Let us consider
a transactionT that is triggering itsith deferred transaction
at timet. The priority assignment for the parent transaction
T under the three policies is:

1. PD protocol:

Pt(T ) = d(T )

2. DIV protocol:

Pt(T ) = Pt(T )−Xt

(
T def
i

)
3. SL protocol:

Pt(T ) = d(T )− t−Xavg
t (T )−Xt

(
T def
i

)
For the SL protocol, if the transactionT does not trigger

a deferred transaction then the priority assignment is the
same as Eq. 3 in the last section. The following equations
illustrate the deadlines/slack assignments for the deferred
transactions. Let us assume that transactionT has triggered
m deferred transactions before completing execution. In the
following equations, we consider the assignment of priority
for T def

j , j ≤ m, at timew, which is the time when the
deferred transactions start their execution (after the parent
transaction completes execution).

1. PD protocol:

Pw
(
T def
j

)
= d(T )

2. DIV protocol:

Pw(T def
j ) = Cw

(
T def
j

)
+
Sw(T )−∑m

k=1

(
Xw

(
T def
k

))
m

4 Note that we update priorities only at object events

Fig. 2. Simulator architecture

3. SL protocol:

Pw
(
T def
j

)
= d(T )− w −

m∑
k=1

(
Xw

(
T def
k

))

5 Experimental Results

We begin this section with a brief description ofRADEx
(Real-timeActive DatabaseExperimental simulator) and
its validation. We then discuss the experimental setup, along
with the assumptions made in our experiments. We also
present a table of important parameters and their values.
Finally, we describe each set of experiments and an analysis
of the results. In the experiments, 95% confidence intervals
have been obtained whose widths are less than±5% of the
point estimate for the MDP.

5.1 Simulation model

Our performance model of an active real-time database was
implemented using the DeNet Simulation Language (Livny
1990).RADEx is made up of five active modules –source,
transaction manager, object manager, resource manager,
rule manager, and a passive moduleDB manager. Fig. 2
illustrates the architecture of the simulator. The following is
a detailed description of the modules:

– DB manager: This is the passive module that models the
data. The data is modeled as having a certain number of
object classes and each object class has a certain number
of instances. Each object class has a certain number of
methods defined which are used to access the object.
Each object instance in the database is mapped to a page
or number of pages in secondary storage.



24

– Source: The source (transaction generator) generates the
incoming transactions into the system. One can view the
source as the application or the environment in which
the real-time active database is used. It generates trans-
actions with timing constraints with a specified arrival
distribution. In our study we consider only aperiodic
transaction streams with firm deadlines.

– Transaction manager: The transaction manager is re-
sponsible for scheduling and execution of the transac-
tions it receives from the source. It executes the submit-
ted transactions by requesting the object manager to ex-
ecute the specific methods on specific objects. It handles
the various transaction events: begin, commit and abort.
It informs the rule manager of the transaction events.

– Object manager: The object manager is responsible for
concurrency control and sending messages to the rule
manager when an object event occurs. The transaction
manager sends requests to the object manager for access
to objects. If the request for an object can be satisfied, the
object manager sends theobject grantedmessage back
to the transaction manager. If the request cannot be sat-
isfied it sends an abort message back to the transaction
manager. Conflict resolution in this module is based on
priorities, where the lower priority conflicting transac-
tion waits or gets aborted depending on whether it is the
requester or holder of locks.

– Rule manager: The rule manager models the active work-
load in the system. The rule firings are modeled proba-
bilistically, i.e., a rule is fired with a certain probability.
The rule manager checks to see if any rules are triggered
whenever it gets an event notice from the transaction
manager or the object manager. It models the condition
evaluation, and, finally, generates the transactions cor-
responding to the actions of the rules triggered if their
conditions are satisfied and submits them to the transac-
tion manager.

– Resource manager: The resource manager simulates the
CPUs, disks and the main memory buffer. The object
manager makes requests to the resource manager for the
necessary pages or for CPU time to execute the meth-
ods. The transaction manager requests CPU time and
buffer space to load transactions from the resource man-
ager. The CPU, disk, and memory resource scheduling
are priority driven. Our resource model is a multipro-
cessor, multidisk, shared-memory system. The incoming
resource requests are queued in a common CPU queue
or in a randomly selected disk queue depending on the
kind of request.

We do priority-driven preemptive scheduling. The sched-
uling and conflict resolution decisions made in different
modules of the simulator are independent of each other.
No global scheduling decisions are made. For instance, the
scheduling decision made in the resource manager is inde-
pendent of the one made in the transaction manager. Over-
load management in our study is based on thenot tardy
policy, i.e., a transaction is aborted as soon as its deadline
expires. This corresponds to firm real-time transactions. This
policy assumes that finishing a transaction after its deadline
expires does not impart any value to the system.

Fig. 3. Validation of active part of simulator

5.2 Validation of the simulator

Experiments were conducted to validate the simulator. The
validation was accomplished in three steps.

1. We validated theactive part of the simulator against
the results in Carey et al. (1991). The results are illustrated in
Fig. 3. We mapped the model in Carey et al. (1991) onto ours
as closely as possible. We were not able to obtain the exact
results because of the following differences in the two mod-
els. The buffer is explicitly modeled in Carey et al. (1991),
whereas we model our buffer using a parameterh, which is
the probability that a page is resident in the buffer.h is set
to 0.9 for all the experiments in this validation. The expla-
nation of the parameters and the experiments can be found
in Carey et al. (1991). In Fig. 3, we observe that our results
are within 10% of the original results.

2. We validated thereal-time part of the simulator by
trying to duplicate the results in Abbott and Garcia Molina
(1992). Under the NT5 (not tardy) overload management
policy, a transaction is aborted as soon as it becomes tardy.
Under the AE (all eligible) policy, a transaction is run until it
finishes. The results are illustrated in Fig. 4. Again our results
were very similar to previously published results. The slight
performance improvement obtained by our policies in the
not tardycase can be explained by the fact that checking for
tardiness is done more often in our model.

3. Finally, we validated our simulator against the results
in Kao and Garcia Molina (1993), where policies for as-
signing deadlines to parallel and serial subtasks of complex
distributed tasks in a real-time system have been evaluated.
We do not present the result graph for this experiment to save
space. There was an inherent difference in the two models
because the one in Kao and Garcia Molina (1993) is for a
distributed system, whereas ours is for a single site multipro-
cessor system. The system in Kao and Garcia Molina (1993)
has multiple servers with a queue for each server, whereas
ours has multiple servers with a single queue. We experi-
mented withUD andDIV-1 policies mentioned in Kao and

5 Please note this is not the same as classNT which denotes the class
of non-triggering transactions



25

Fig. 4. Validation of real-time part of simulator

Garcia Molina (1993) and our missed deadline percentages
were lower by no more than 5–10%.

In our validations we did not perform the complete set
of experiments that are found in Carey et al. (1991), Abbott
and Garcia Molina (1992) or Kao and Garcia Molina (1993),
but just certain baseline experiments.

5.3 Baseline parameters

In this section we describe the workload model and the cal-
culation of estimates required by DIV and SL. Let us assume
a transactionT arrives at timet0 and triggers a subtransac-
tion at timet1. LetU (i, j) denote a uniformly distributed in-
teger valued random variable in the range [i, j]. The lengths,
L(T ), of a transactionT and,L(T sub), of a subtransaction
T sub (immediate or deferred) that might be triggered byT
are given in number of method invocations as follows.

L(T ) = U (5, 7), T ∈ classT
= U (4, 6), T ∈ classNT

L(T sub) = U (4, 6), T ∈ classT, T sub subtransaction ofT

Each method takes one unit of time to execute. At the
start of every method execution, a transactionT belonging
to classT triggers a subtransaction with probabilityp. The
probability that the triggered subtransaction is of type im-
mediate isq and the probability that it is of type deferred
is 1− q. For any transactionT , we can compute the length
of the transaction when it arrives (La(T )(T ) ≡ L(T )) and
hence, we know the remaining length of the transaction at
any timet. Let Lt(T ) denote the remaining length of trans-
actionT at timet. The estimates that we use in the priority
assignment policies are calculated as follows:

Xt(T ) = Lt(T )
mimm
t (T ) = Lt(T ) ∗ p ∗ q

mdef
t (T ) = Lt(T ) ∗ p ∗ (1− q)

X
imm

(T ) = L(T sub)

X
def

(T ) = L(T sub)

Table 1. System parameters

Parameter Setting

NCPU 6
Time taken to execute a method 1 unit
Number of object instances 2000
Overload management policy not tardy
fracT 0.15

It should be noted that all other estimates discussed in Sect. 4
can be calculated from the above estimates.

The deadline of a transactionT is set using the following
formula:

d(T ) = a(T ) + (1 +β) ∗Xat(T )(T )

whereβ is a uniformly distributed random variable within a
specified range. We consider three types of workloads: one
where the classT transactions trigger only immediate sub-
transactions (q = 1), one where they trigger only deferred
transactions (q = 0), and one where they trigger both im-
mediate and deferred subtransactions with equal probability
(q = 0.5). We normalize the slacks for the three types of class
T transactions taking into account the fact that the deferred
transactions can be executed in parallel, and the immediate
transactions are executed in sequence. Therefore, transac-
tions that trigger only immediate subtransactions get more
slack than those that trigger deferred subtransactions.

We use a parameterload in our experiments which is
very similar to the one in Kao and Garcia Molina (1993). In
order to defineload we specify the arrival rates and service
rates of classT andNT transactions. The arrivals of classT
and classNT transactions are generated according to Poisson
processes with mean interarrival times of 1/λT and 1/λNT

time units, respectively. The arrival rates are calculated us-
ing the following two equations, where all other quantities
except the arrival rates are assumed to be known. In the first
equation, we define theload to be the ratio of work gener-
ated to the total processing capacity of the system. Let 1/µT
and 1/µNT denote the average total execution time of class
T and NT transactions, respectively, andNCPU the num-
ber of CPUs in the system. In the second equation,fracT
is the fraction of load that is contributed by the classT
transactions.

load =
λT
µT

+ λNT

µNT

NCPU

fracT =
λT
µT

λT
µT

+ λNT

µNT

From the above equations, for given values ofload,
fracT , 1/µT and 1/µNT , we can compute 1/λT and 1/λNT .
Tables 1 and 2 show the system and transaction parameter
settings, respectively, for our baseline experiments.

5.4 Real-time tasks

In the first set of experiments we deal with real-time active
tasks executing in a multiprocessor environment. The pur-
pose of these experiments is to isolate and study the effect



26

Table 2. Transaction parameters

Class Parameter Setting

classNT Length in methods (L(T )) U (4, 6)
Slack parameter (β) U (0.5, 1.25)

classT Length of the parent in methods (L(T )) U (5, 7)
Probability of triggering by object event (p) 0.8

q = 1.0 Length of the subtransaction (L(T sub)) U (4, 6)
(all imm.) Slack parameter (β) U (6.0, 6.5)
q = 0.0 Length of the subtransaction (L(T sub)) U (4, 6)
(all def.) Slack parameter (β) U (2.0, 2.5)
q = 0.5 Length of the subtransaction (L(T sub)) U (4, 6)
(both imm. and def.) Slack parameter (β) U (4.0, 4.5)

Fig. 5. Only immediate/task model

of scheduling on performance. We simulate a main memory
database system where there are no data conflicts, i.e., every
data access is a shared access. The experiments presented
here are:

– Load versus MDP for a fixed slack distribution
– Average slack [E(β)] versus MDP for a fixed load
– Analysis of trade-offs between DIV and SL for a fixed

slack distribution and load

In the following discussion we use slack to denote the aver-
age slack parameter that is used to calculate the deadline (the
initial slack) of the transaction belonging to that class. Note
that slack corresponds toE(β). We useestSlack6 to denote
the remaining slack time that is estimated by the policies.

5.4.1 Load versus MDP

The first set of performance results are presented in Figs. 5–
7, respectively. Figure 5 deals with the case where all the
subtransactions are triggered in immediate mode (q = 1). We
observe from the graph that, when compared to PD, both the
DIV and SL decrease the MDP of classT transactions at
higher loads by as much as 10–15%, at the cost of a small
increase of around 4% in the MDP of classNT transactions.
DIV reduces the MDP of classT by a greater amount than

6 estSlack at timet for a transactionT is St(T )

Fig. 6. Only deferred/task model

SL, accompanied by a smaller increase in the MDP of class
NT transactions. But, as the load increases, the difference
between the MDPs of DIV and SL for classNT transac-
tions reduces. When the load is 0.9, DIV performs better
than SL for classNT transactions. The first evidence for
our hypothesis, that extra information like the estimates of
execution time and accounting for the dynamic work gener-
ated improves the performance of triggering transactions, is
seen here. This performance improvement, however, comes
at the cost of decreased performance of non-triggering trans-
actions.

In Fig. 6, we present the results for the case where all
the subtransactions triggered are executed in deferred mode
(q = 0). Again, SL and DIV decrease the MDP of classT
transactions over PD. In this case, SL provides substantially
better performance to classT transactions thanNT, whereas
the reverse is true for PD and DIV. SL performs better than
DIV at higher loads for classT. However, in the case of
classNT transactions, DIV performs better than SL. SL re-
duces the MDP of classT by 30% at high loads, compared
to DIV with a slight increase in the MDP of classNT. Es-
sentially SL gives higher preference to classT transactions
over classNT transactions than DIV. This difference in per-
formance from the previous results in Fig. 5 can be explained
by the fact that deferred subtransactions can be executed in
parallel, on a multiprocessor system, whereas the immedi-



27

Fig. 7. Immediate-deferred/task model

ate subtransactions are executed sequentially7. Hence, SL
gives a very high preference to classT transactions when
deferred subtransactions are present. This explains the fact
that SL keeps the MDP of classT transactions nearly con-
stant, while the MDP of classNT transactions increases. It
also explains the fact that SL gives lower MDP for classT
than the classNT.

The results for the case where the triggered subtrans-
actions execute either in deferred or immediate mode with
equal probability (q = 0.5) are illustrated in Fig. 7. The rel-
ative performance behaviors of the three policies is similar
to those in the case where all subtransactions are of the
deferred type. However, the difference between the MDPs
of classT transactions for the three policies is lower than
the only deferred case because of the presence of immedi-
ate subtransactions. The qualitative performance of SL with
respect to the triggering and non-triggering transactions is
similar to that of the case where all the subtransactions are
of the immediate type.

We observe from these results that, while the MDP of
classT transactions is reduced by the SL and DIV policies,
the MDP of the classNT transactions increases. This is de-
sirable when classT transactions are more valuable to the
application than classNT transactions. In order to examine
the performance of the policies when transactions of both
classes have the same value, we evaluated the combined
MDP of all the transactions. Again, 85% of the workload
comes from classNT transactions. The results are illus-
trated in Figs. 8–10. We observe that PD always performs
best if we give equal value to both classT and classNT
transactions. DIV is the next best and SL is the worst. PD
works best here because DIV and SL are biased toward class
T transactions which require more CPU time than classNT
transactions. Although DIV and SL reduce the MDP of class
T transactions, the overall MDP increases in this case, since
the majority of transactions belong to classNT (85%). It

7 We disallow multiple immediate subtransactions being fired at the same
time. The parent transaction is suspended when an immediate transaction is
executed. In effect, the immediate subtransactions are executedsequentially,
as opposed to deferred subtransactions that are executed in parallel at the
end

Fig. 8. Only immediate/task model/total

Fig. 9. Only deferred/task model/total

should be noted that the total MDP can be a biased perfor-
mance measure (Pang et al. 1992). Total MDP will be low
for policies that favor short transactions which is classNT
transactions in our study. PD, by favoring classNT transac-
tions, gives a lower total MDP than both SL and DIV which
favor classT transactions.

5.4.2 Average slack versus MDP

It is understandable that accounting for the dynamic work
generated could result in better performance for classT
transactions. However, the explanation of the difference in
the performances of DIV and SL is not clear from the above
experiments. One of the main differences between DIV and
SL is that, while DIV always favors classT transactions,
SL, depending on the slack parameters, could favor either
class. DIV changes (increases) the priority of classT trans-
actions as it triggers other transactions, but keeps the priority
of classNT unchanged. SL, on the other hand, modifies the
priority of both the classes as they are executing. Hence, it
is possible that depending on the slack parameters, the rela-
tive performance of DIV and SL could change. Experiments



28

Fig. 10. Immediate-deferred/task model/total

Fig. 11. Only immediate/task model/vary classT slack

were conducted where we varied the slack of classT trans-
actions, holding the slack of classNT transactions constant
for a load of 0.9. Figure 11 shows the result of this experi-
ment where the classT transactions trigger only immediate
subtransactions. The MDP of each transaction class is given
as a function of average slack of classT transactions for
all three policies. The average slack of classT is plotted on
the x-axis and MDP is plotted on they-axis. We observe
that when the slack of classT is low, SL provides a lower
MDP for classT transactions than DIV, but performs worse
for classNT. At higher slack values of classT, DIV starts
performing better than SL for both classes. Figure 5 is an
instance of this latter behavior at different loads. Also, in-
creasing the slack of classT means increase in theestSlack
(remaining slack time) of classT transactions which results
in relatively lower priorities for classT transactions com-
pared to classNT transactions. This effect can be observed
from the fact that SL starts performing better for classNT
at high slack values of classT as seen in Fig. 11. We also
conducted experiments where we held the slack of classT
constant, while varying the slack of classNT. We do not
present the graphs of these experiments, but it suffices to
say that the same kind of phenomenon was observed.

Fig. 12. Only deferred/task model/vary classT slack

Figure 12 shows the result of an experiment where class
T transactions trigger only deferred subtransactions. The
MDP of the different transaction classes is given as a func-
tion of average slack time for classT transactions. The aver-
age slack of classT transactions is plotted along thex-axis
and the MDP is plotted along they-axis. SL performs better
than DIV for classT with low slack values and DIV starts
performing better than SL when the slacks are really high.
As mentioned earlier, very large slacks for classT implies
largeestSlack for classT transactions and hence lower pri-
orities for classT relative to classNT transactions. Hence,
SL starts performing better for classNT at high slack val-
ues of classT as seen in Fig. 12. We observe that under
SL, MDP for classT reaches a minimum and then slowly
starts to increase. This is the slack value of classT which
performs the best for SL for a given slack value of class
NT. Other slack values to the left are too tight and values
to the right are too loose. The difference between the case
where classT transactions trigger only immediate transac-
tions and where they trigger only deferred transactions is
that the MDP of classT, where DIV starts performing bet-
ter than SL, is much higher in the first case. In other words,
DIV starts performing better than SL for classT transactions
that trigger only immediate subtransactions atrelatively low
slack values, when compared to case where classT transac-
tions trigger only deferred subtransactions. In all the cases
seen so far, we observe that PD does worse than DIV and
SL for classT and does better than DIV and SL for class
NT transactions.

5.4.3 Analysis of trade-offs between DIV and SL policies

We observed in the previous experiments that DIV and SL
give preference toT class transactions over the classNT
transactions. In this section we describe and evaluate two
algorithms that provide the capability to trade off the MDPs
for classesT andNT. The algorithms are constructed from
DIV and SL in the following way. We introduce a parameter
α which controls the priority assignment in DIV and SL
policies. We call these parameterized policies ALPHA-DIV



29

Fig. 13. Only immediate/task model/trade-offs

Fig. 14. Only deferred/task model/trade-offs

and ALPHA-SL. It should be noted that the experiment is
conducted for a particular load and slack parameter values.

ALPHA-DIV : Pt(T ) = α ∗ PDIV
t (T ) + (1− α) ∗ PPD

t (T )

wherePDIV
t is the priority assigned to the transactionT

by the DIV protocol andPPD
t is the deadline of the parent

transaction.

ALPHA-SL : Pt(T ) = α ∗ PSL
t (T ) + (1− α) ∗ PPD

t (T )

wherePSL
t is the priority assigned to the transaction by the

SL protocol.
Whenα is zero both the policies reduce to PD. When

α is one they reduce to DIV and SL, respectively. For this
set of experiments the load was kept constant at 0.9. We
studied the performance of the ALPHA-DIV and ALPHA-
SL asα is varied from zero to one. The results are found in
Figs. 13–15 where the MDPs of classesNT and T transac-
tions are plotted. The points on the curves correspond toα
values varied from 0 to 1 with an increment of 0.2. We also
plotted some points with intermediate values ofα to clearly
distinguish between the different policies. We observe that
ALPHA-DIV works better than ALPHA-SL throughout the

Fig. 15. Immediate-deferred/task model/trade-offs

range for the immediate only case. It reduces the MDP of
classT transactions by 15% with an increase of 4% in the
MDP of classNT transactions, compared to the ALPHA-SL
protocol which achieves a lesser reduction at the cost of a
3% increase. The same experiment was run with the load
kept constant at 0.75. In this case, ALPHA-DIV reduced the
MDP of classT by a larger amount than that of ALPHA-SL
and with a smaller increase in the MDP of classT compared
to ALPHA-SL. Hence, the ALPHA-DIV protocol performs
better than the ALPHA-SL protocol for the case where all
subtransactions are triggered in immediate mode.

However, when the workload consists only of deferred
transactions, the ALPHA-SL protocol reduces the MDP of
classT transactions to a very negligible value with a rise in
the MDP of classNT transactions. ALPHA-DIV is not able
to reduce the MDP of classT transactions so significantly.
So if classT transactions have a higher value than class
NT transactions, then ALPHA-SL is the protocol of choice
in the deferred only case. ALPHA-SL consistently performs
better than ALPHA-DIV for allα values and gives more
flexibility to trade off performance between the two classes.
The results for the case where 50% of the subtransactions are
deferred and 50% immediate, are illustrated in Fig. 15. Here,
like in this previous case, ALPHA-SL gives more flexibility
to trade off performance between the two classes. In gen-
eral, where most subtransactions are deferred, ALPHA-SL
provides more flexibility to achieve a higher reduction in the
MDP of classT transactions with an increase in the MDP
of the classNT transactions than the ALPHA-DIV policy.

5.4.4 Summary of performance for the real-time task model

In summary, for a real-time task model, the dynamic pri-
ority assignment policies DIV and SL reduce the MDP of
classT transactions, while increasing the MDP of classNT
transactions. The choice between DIV and SL depends upon
the slacks of the transactions and the load in the system.
SL is a pure slack-based policy that performs well for a
certain class of transactions depending on the slack of that
class, its absolute value and its value relative to slack of
the other class. DIV always favors classT transactions. We



30

Fig. 16. Only immediate/main memory DB/2000 objects

also looked at two policies, ALPHA-DIV and ALPHA-SL,
that enable us to trade off performance between different
classes. Our hypothesis, that accounting for the work gen-
erated dynamically and using knowledge about transactions
will benefit the triggering transactions, is substantiated by
the results in this section.

5.5 Main memory database

We now consider the effects that data contention can have
on the behavior of the policies. Since we are changing just
one parameter, any difference in the behavior is due to data
contention. We introduce data contention by requiring every
data access to be an exclusive access. It should be noted that
the way we calculate the estimates in this case is the same
as in the real-time task case. The concurrency control al-
gorithm we use is the high-priority (HP) algorithm (Abbott
and Garcia Molina 1992), modified to deal with subtrans-
actions. According to our concurrency control mechanism,
all of the subtransactions triggered by a transaction (whether
in deferred or immediate mode) are considered part of the
transaction and share the locks. Similarly, two subtransac-
tions of the same parent transaction share the locks. Hence,
in our model a parent transaction and its subtransactions rep-
resent a set of cooperating transactions to complete a single
task. All of the subtransactions and the parent transaction
release the locks at their commit time which occurs after the
parent transaction and the deferred subtransactions have fin-
ished. Deadlocks could occur between transactions in spite
of using the HP protocol, because of dynamically changing
priorities. Deadlocks are prevented by checking for dead-
locks each time a transaction waits for another transaction
and aborting the transaction that causes the deadlock. It has
been shown in previous studies that the choice of the trans-
action to be aborted to resolve a deadlock does not have a
significant impact on the performance (Huang et al. 1989).

The results are illustrated in Figs. 16 and 17 for work-
loads consisting of only immediate and only deferred sub-
transactions, respectively. In the case that all subtransactions
are immediate, DIV and SL provide better performance to
classT while providing worse performance to classNT as

Fig. 17. Only deferred/main memory DB/2000 objects

Fig. 18. Only immediate/main memory DB/500 objects

was observed in the case with no data contention. Figure 16
shows the performance for varying loads at a fixed slack dis-
tribution. The relative performance of DIV and SL change
with the varying load for classT transactions, but for class
NT transactions DIV performs better than SL.

The level of data contention could affect the performance
of the priority assignment policies. In order to study the
effect of data contention we changed the number of objects
in the system. For a given load, reducing the number of
objects will amount to a higher data contention. Figures 18
and 19 show the immediate and deferred cases of workload
where the number of objects is 500. For the case where
all the subtransactions are of type immediate, SL performs
better than DIV for classT. This is not the case when the
number of objects is 2000.

In the case where all the subtransactions are triggered in
immediate mode, for the main memory database (Fig. 16) the
MDP of classNT keeps increasing for SL when compared
to DIV. This is not the case for the immediate only case
of the real-time task model (Fig. 5). The difference between
the two cases is that there is data contention in the main
memory case. Moreover, when the level of data contention
is higher (Fig. 18) the difference between the MDPs of class



31

Fig. 19. Only deferred/main memory DB/500 objects

NT between DIV and SL increases. One could attribute this
to the slacks being too tight. But that should affect DIV and
PD too. In our model, SL estimates the number of steps
but does not take into account the blocking delays due to
data contention. This could lead SL to underestimate the
time taken to execute the remaining steps (i.e., overestimate
the estSlack) and miss the deadlines. But theestSlacks
of all the transactions are being uniformly overestimated.
If we assume that on an average all transactions undergo
equal amount of blocking delays, then SL can overestimate
estSlacks of transactions that have not been blocked un-
til a certain point in time, and the transaction can miss its
deadline.

We observed that the number of concurrency control
aborts in the case of SL, was two to three times the number
of aborts in PD or DIV. The number of aborts was highest
both for classT and classNT transactions for SL. DIV had
more aborts for classNT than PD and PD had more aborts
for classT. This is explicable because DIV favors classT
transactions over classNT and PD favors classNT over
classT. For SL, the high number of aborts for classNT
was definitely affecting its performance for this class. Under
a policy like SL, the relative priority ordering between two
transactions can keep changing throughout the life of these
transactions depending on how many steps are executed by
these two transactions, whereas in a deadline based prior-
ity scheme the relative ordering is fixed. When there is data
contention, the number of steps executed by transactions that
start around the same time can differ, which would affect the
estSlack of these transactions. Transactions that do not ex-
perience contention could end up with moreestSlack than
transactions that have experienced some data contention.

As an example, let us consider two transactionsT1 andT2
that arrive at times 1 and 3, respectively. Let their lengths be
five units each and deadlines be 12 (d(T1)) and 14 (d(T2)),
respectively. At time 5 let us sayT1 has completed four
steps andT2 has completed one step because it faced data
contention. Therefore,X5(T1) is 1 andX5(T2) is 4. Now
estSlack of T1 at time 5 isS5(T1), i.e., 12− 5− 1 = 6 and
the estSlack of T2 at time 5 isS5(T2), i.e., 14− 5− 4 = 5.
estSlack of T2 at time 5 is less thanestSlack of T1 at time

5. In such a scenario, ifT2 needs a data item locked byT1,
thenT2 will abort T1, andT1 will be restarted with a very
low slack (a high priority) and abort other transactions that
are nearing their end. It is more likely that a transaction that
came earlier holds the lock on a data item that is required by
a transaction that came later than vice versa. We conjecture
that this kind of a scenario occurs often under SL resulting
in a large number of concurrency control aborts.

In these experiments, as expected, the absolute MDP val-
ues are higher than the MDP values of the previous set of
experiments with no data contention; that is, more transac-
tions are aborted due to deadline misses. Due to data con-
flicts, more transactions experience waits or get aborted. This
shows the effect of data contention on the performance. One
last observation is that PD does better than SL for the im-
mediate only case at low loads with tight slacks for classT
transactions (not shown in graphs). This is due to the high
number of concurrency control aborts in the case of SL.

5.5.1 Summary of performance in main memory databases

The observations that DIV and SL perform better than PD
for classT and PD performs better than DIV and SL for
classNT also hold in the case of main memory databases.
But there is a difference in the performance between these
two cases mainly due to the high number of concurrency
control aborts of SL. At low loads, high concurrency control
aborts lead SL to behave worse than PD for classT transac-
tions that trigger only immediate subtransactions. The very
high number of concurrency control aborts of SL for class
NT transactions causes SL to behave worse than DIV for
classNT. This problem can be solved by considering the
amount of work performed by a transaction before aborting
it, and checking forfeasibility (i.e., if the transaction has
a chance to complete before the deadline). Also, accounting
for concurrency control delays in estimating the slack might
help.

5.6 Disk resident database

The third scenario considered is one where the objects are
not always in main memory, in which case it is necessary
to retrieve them from the disk. In our simulator, we do not
explicitly manage the buffer. The database buffer is modeled
using a parameterh, which is the probability that a page is
resident in the buffer. Hence, with a probability 1−h the disk
subsystem is accessed. In our calculation of estimates we
take the i/o time into account. The estimates are calculated
as follows:

tio : average time taken to do an i/o

Xt(T ) = Lt(T ) ∗ (1 + ((1− h) ∗ tio))

mimm
t (T ) = Lt(T ) ∗ p ∗ q

mdef
t (T ) = Lt(T ) ∗ p ∗ (1− q)

X
imm

(T ) = L(T sub) ∗ (1 + ((1− h) ∗ tio))

X
def

(T ) = L(T sub) ∗ (1 + ((1− h) ∗ tio))



32

Table 3. Setting for disk-resident databases

Parameter Setting

NDisk (number of disks) 2
tio 30 units
h 0.9

Fig. 20. Only immediate/disk-resident DB/2000 objects

It should be noted that all other estimates (see Sect. 4.1)
can be derived from the above estimates. Table 3 shows
important parameter values that we used in our experiments.

We experimented by varying the slack of classT while
maintaining the same slack distribution forNT for a par-
ticular load value (0.35). Figs. 20 and 21 show the results
of this experiment for the cases where all the subtransac-
tions are triggered in immediate mode and deferred mode,
respectively. The MDPs of the different transaction classes
are given as a function of average slack parameter for class
T transactions. The results are similar to the real-time task
case for classT, i.e., the MDP of classT is reduced by
DIV and SL policies. When the slack values are lower, SL
performs better than DIV and at higher slack values DIV
performs better than SL. Also, as in the real-time task case
there is a particular slack value of classT (relative to class
NT slack) where SL performs the best. But for classNT
SL performs at least as well as DIV. The reason is that SL
accounts for i/o times in its calculation of slack for classNT
transactions. The lack of estimate for blocking delays due
to concurrency control could get subsumed by the i/o esti-
mate since the latter is so much larger. On the other hand,
DIV does not account for the i/o times in the case of class
NT transactions and hence does not perform as well as SL.
One can think of i/o as the dynamic work that is generated
by the classNT transactions. Since SL takes into account
this dynamic work that is being generated by classNT, it
performs better than DIV and PD for this class.

One anomaly observed in the case where all the sub-
transactions are triggered in deferred mode (Fig. 21) is that,
in spite of increasing the slack, the MDP of classT trans-
actions for PD does not decrease at high slack values (9.75,
11.25). This is because very high slacks result in long dead-
lines (low priorities) that were causing a lot of concurrency

Fig. 21. Only deferred/disk-resident DB/2000 objects

control aborts and restarts resulting in a lot of wasted re-
sources. This problem can be solved by considering the
amount of work performed by a transaction before abort-
ing it, checking for feasibility (i.e., if the transaction has a
chance to complete before the deadline) when restarted and
giving higher priorities to transactions that are restarted.

We also experimented by varying the load of the system
while maintaining fixed slack distributions. Here SL per-
forms the best for both classT and classNT for both the
cases where only immediate subtransactions are triggered
and where only deferred subtransactions are triggered. In
the case where all the subtransactions are triggered in de-
ferred mode, SL reduces the MDP of both the classes almost
by half in overloaded situations.

5.6.1 Summary of performance in disk-resident database

In the disk-resident database case, DIV and SL perform bet-
ter than PD for classT. DIV performs the worst for class
NT. SL performs as good or better than PD for classNT. At
high loads, SL performs the best for both classesT andNT.
Since SL accounts for the i/o in its estimates for classNT, it
tends to perform better than DIV consistently for this class.
Our claim, that accounting for dynamic work generated and
using the knowledge about the i/o requirements and trigger-
ing characteristics of transactions improves the performance,
is substantiated by the above results.

6 Conclusion

We have studied the problem of assigning priorities to trig-
gered transactions and reassigning priorities of triggering
transactions in a firm real-time active database. We intro-
duced a simple baseline policy PD and two other policies,
namely DIV and SL, which assign priorities taking into con-
sideration the active work generated by a transaction. The
policies use different amounts of information about the trans-
actions. PD uses the deadline to schedule the transactions,
DIV uses estimates of execution times of the parent transac-



33

tion and subtransactions that it has triggered, and SL uses es-
timates of execution times of the parent transaction, triggered
subtransactions and estimates about the subtransactions that
might be triggered in the future.

The main conclusions are:
1. There are threekey parameters – load, slack parameter of

classT and slack parameter of classNT of the workload
– which determine the relative performances of the three
algorithms.
– For a real-time task case in all of the load/slack space

that we have experimented with, DIV and SL per-
form better than PD for classT and PD performs
best for classNT transactions. It might be possible
for SL to perform better than PD for classNT for
extremely low slack values. But it would be almost
impossible for DIV to perform better than PD for
classNT because both schedule classNT, depend-
ing on the deadline, and DIV favors classT. Hence,
DIV can do only as well as PD for classNT. Simi-
larly, it is difficult to conceive cases where PD could
do better than DIV for classT.

– In a main memory database setting with data con-
tention, concurrency control aborts could change the
performance of the algorithms. For instance, at very
low load values for the immediate only case, SL
could do worse than PD for classT because of the
high number of concurrency control aborts in the
case of SL. Similarly, for the deferred only case,
DIV could do worse than PD for classT. SL per-
forms consistently worse than DIV for classNT at
low slack values because of the high number of con-
currency control aborts and restarts of transactions
with very high priorities.

– In a disk-resident database setting, DIV and SL per-
form better than PD for classT. SL’s performance
is comparable or better than that of PD for classNT.
This improvement in the performance of SL for class
NT is because of the fact that it accounts for the i/o
time in its calculation of estimates.

2. For classT the sources of unpredictability are trigger-
ing of other subtransactions, concurrency control delays
and i/o, and for classNT they are concurrency control
delays and i/o. In the real-time task model, SL and DIV
account for active work and hence perform better than
PD for classT. For classNT there is no unpredictability.
But, since SL and PD perform better for classT, they pe-
nalize classNT. DIV behaves qualitatively the same for
a main memory database setting as it does for real-time
task setting. But, due to the high number of concurrency
control aborts, SL performs relatively poorly for class
NT compared to the real-time task model. SL, in the
case of a disk-resident database, accounts for all sources
of unpredictability in its estimate ofestSlack for both
classT (triggering and i/o), and classNT (i/o) except
blocking delay, which might not be significant compared
to i/o. DIV accounts for the sources of unpredictability
as SL does for classT, but does not account for the i/o
for classNT. Hence, SL performs better than DIV for
classNT.
– Using the extra information such as estimates of ex-

ecution times enhances the performance of classT

transactions, as can be seen by DIV and SL perform-
ing better than PD in all three settings. This benefit
comes at the cost of increased MDP for classNT.
Using the extra information about i/o makes SL per-
form better than DIV and PD for classNT in the
disk-resident database setting.

Some of the extensions we want to address are:

– Experiment with variations of DIV and SL policies that
use more information about a transaction; for instance,
the exact number of subtransactions that it is going to
trigger, and the type of subtransactions it is going to
trigger, i.e., immediate or deferred, to see what advantage
is obtained by exploiting this information.

– Study variations of DIV and SL that will assign priorities
at every scheduling instance, instead of at every object
event.

– Study the effect of errors in the knowledge about trans-
actions likeLt(T ), Xt(T ) andp on the performance of
the DIV and SL policies.

– Evaluate algorithms that change the priority of triggered
subtransactions during their execution. This will be par-
ticularly useful to study systems where the triggered sub-
transactions can trigger further subtransactions.

– Consider the concurrency control blocking delays in the
estimate of slacks.

– Consider the amount of work a transaction has completed
before aborting due to a concurrency control conflict.

– Consider the execution model for immediate subtrans-
actions where the parent transaction is not suspended
during the execution of the immediate subtransaction.

– Consider different lock-sharing semantics between the
triggering and triggered transactions and between trig-
gered transactions.

Acknowledgement.This work was supported in part by NSF under grants
IRI-9114197 and IRI-9208920.

References

Abbott RK, Garcia-Molina H (1992) Scheduling real-time transactions: a
performance evaluation. ACM Trans Database Syst 17:513–560

Anon (1992) Special issue on active databases. Bulletin, Technical Com-
mittee on Data Engineering, vol. 15 (1–4), December

Carey MJ, Jauhari R, Livny M (1991) On transaction boundaries in active
databases: a performance perspective. IEEE Trans Knowl Data Eng
3:1–37

Dayal U, et al (1988) The HIPAC project: combining active databases and
timing constraints. SIGMOD Rec 17

Dayal U, Hsu M, Ladin R (1990) Organizing long-running activities with
triggers and transactions. ACM SIGMOD, Atlantic City, New Jersey

Huang J, Stankovic J, Towsley D, Ramamritham K (1989) Experimental
evaluation of real-time transaction processing. Proceedings of the Real-
Time Systems Symposium, December, pp 144–153

Huang J, Stankovic JA, Ramamritham K, Towsley D (1991) Experimental
evaluation of real-time optimistic concurrency control schemes. Pro-
ceedings of the 17th Conference on Very Large Databases, September,
Barcelona, Spain

Huang J, Stankovic JA, Ramamritham K, Towsley D (1991) On using
priority inheritance in real-time databases. Proceedings of the Real-
Time Systems Symposium, December, San Antonio, Texas

Kao B, Garcia-Molina H (1993) Subtask deadline assignment for complex
distributed soft real-time tasks. Technical Report STAN-CS-93-1491,
Stanford University



34

Klein MH, Ralya T, Pollak B, Obenza R, Harbour MG (1993) A practition-
ers handbook for real-time systems – Guide to rate monotonic analysis
for real-time systems. Kluwer Academic, Dordrecht

Lawler EL (1983) Recent results in theory of machine scheduling. In:
Bachem A et al (eds) Mathematical programming: the state of the
art. Springer, Berlin Heidelberg New York

Livny M (1990) DeNet users guide (vers 1.5), Department of Computer
Science, University of Wisconsin, Madison

McCarthy D, Dayal U (1989) The architecture of an active data base man-
agement system. ACM SIGMOD, Portland, Oregon

Pang H, Livny M, Carey MJ (1992) Transaction scheduling in multiclass
real-time database system. Proceedings of the IEEE Real-time Systems
Symposium, Phoenix, Arizona

Purimetla B, Sivasankaran RM, Stankovic J (1993) A study of distributed
real-time active database applications. IEEE Workshop on Parallel and
Distributed Real-time Systems, April, Newport Beach, California

Ramamritham K (1993) Real-time databases. Int J Distrib Parallel
Databases 1:199–226

Sivasankaran RM, Purimetla B, Stankovic J, Ramamritham K (1993),
Network services databases – A distributed active real-time database
(DARTDB) application. IEEE Workshop on Real-Time Applications,
May, New York, New York

Son SH, Park S (1994) Scheduling transactions for distributed time-critical
applications. In: Casavant TL, Singhal M (eds) Readings in Distributed
Computing Systems, IEEE Computer Society Press, New York

Xu J, Parnas DL (1990) Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Trans Software Eng 16:360–
369


