
VLDB Journal, 4, 675-701 (1995), Stanley Y.W. Su, Editor

QVLDB

675

Estimating Page Fetches for Index Scans with Finite
LRU Buffers

Arun Swami and K. Bernhard Schiefer

Received October 4, 1994; revised version received, February 13, 1995; accepted March
28, 1995.

Abstract. We describe an algorithm for estimating the number of page fetches for
a partial or complete scan of a B-tree index. The algorithm obtains estimates for
the number of page fetches for an index scan when given the number of tuples
selected and the number of LRU buffers currently available. The algorithm has
an initial phase that is performed exactly once before any estimates are calculated.
This initial phase, involving LRU buffer modeling, requires a scan of all the index
entries and calculates the number of page fetches for different buffer sizes. An
approximate empirical model is obtained from this data. Subsequently, an inex-
pensive estimation procedure is called by the query optimizer whenever it needs
an estimate of the page fetches for the index scan. This procedure utilizes the
empirical model obtained in the initial phase.

Key Words. Estimation, query optimization, index scan, LRU.

1. Introduction

In a relational database management system, the query optimizer determines the
query execution plan that will be used to retrieve the data requested. This plan
consists of a set of primitive operat ions (e.g., join); a sequence in which the operat ions
will be per formed (e.g., join order); specific methods of performing the operat ions
(e.g., sort-merge join); and access methods to obtain records f rom the base relations
(e.g., index scan). In a cost-based query optimizer, both estimates of I /O and C P U
resource consumpt ion are used to select the most efficient query execution plan.

In this article, we examine methods of estimating I/O requirements for full and
partial index scans that require data page access. We begin with Section 2, which

Arun Swami, Ph.D., is Technical Staffmember, Silicon Graphics Computer Systems, MS 8U-500, 2011 N.
Shoreline Blvd., Mountain View, CA 94043-1389, aruns@cs.stanford.edu, and K. Bernhard Schiefer, B.S., is
Staff Development Analyst, IBM Canada Laboratory, 895 Don Mills Road, North York, Ontario, Canada
M3ClW3, schiefer@vnet.ibm, com.

676

Table 1. Notation

Term

No. of pages in buffer pool

No. of pages in table

No. of records in table

No. of distinct values in index

No. of pages accessed in scan on index

No. of pages fetched in scan on index

Selectivity of start and stop conditions

Selectivity of index sargable predicates

Clustering factor

Notation

B
T
X
Z
A

o-

S

C or CR

provides an overview of the problem of estimating page fetches. In Section 3, we
survey known work on the index scan problem. We describe the new algorithm,
called EPFIS, in Section 4. We used the data from a customer database and synthetic
data to compare the error behavior of Algorithm EPFIS with other algorithms in
Section 5. We summarize the article in Section 6.

2. Background

A table may have one or more B-tree indexes defined on it. Predicates on the
index columns can be used to restrict the records that are retrieved. Index scans
with such predicates are called partial index scans as opposed to full index scans.
In a partial index scan, the optimizer estimates the selectivity (i.e., the fraction of
records that are expected to be retrieved in the index scan). Methods for estimating
the selectivity are well known (Mannino et al., 1988), and are not discussed here.

For an access plan involving an index scan, the optimizer estimates the number
of data page fetches. The number of page fetches from disk may depend on the
number of buffer pool slots available to hold the pages fetched. As in most relational
database systems, the buffer pool is assumed to be managed using the least recently
used (LRU) algorithm.

In Table 1, we list some of the notation that we use in this article. The number
of pages in a table is denoted by T . For a table scan, the number of page fetches
is exactly 27, because each page is accessed exactly once. Note that the number of
page fetches is independent of the value of the buffer pool size, which is denoted
b y B .

The number of data pages accessed during the scan of an index is denoted by
.,4. A data page is accessed if at least one record on the page is examined during
the scan. The value of ,,4 depends on the number of records retrieved in the index

VLDB Journal 4 (4) Swami: Estimating Page Fetches 677

scan and the placement of the retrieved records in the pages of the table. It does
not depend on 13. Finally, the number of data pages fetched while scanning the
index is denoted by .T'. The value of .T" depends on ,.4, and may depend on /3 , as
shown below.

The placement of the retrieved records in the pages of the table determines the
degree of clustering in the index. An index is called a clustered index if the records are
stored in the table in the order of the index column. When the records are retrieved
in the order of values of the index column, no page is accessed more than once.
Hence, .T" .~ A independent of /3 . If this is a partial scan, ,.4 < T '.- .T" < 7-.

An index is said to be unclustered if the records in the table are not stored
exactly in the order of the index column. When the records are retrieved in the
order of values of the index column, a page may be accessed more than once. The
page may be replaced in the buffer pool between two accesses to the page due to
other page fetches in the interim.

Clearly, one significant parameter that affects .T" is the value of /3. As /3
increases, the buffer may be able to compensate for any lack of order in the page
reference pattern. W h e n / 3 approaches ,.4, disorganization in the key sequence of
records becomes irrelevant. Similarly, as the buffer becomes smaller, even a slightly
unclustered index will have to redo many page fetches, since the accessed pages will
already have been discarded by some previous reference. In the worst case, each
new record will require an additional page fetch. Bounds can therefore be placed
on f " as follows: ,A, < .T" < .Af, where .A/denotes the number of records fetched.

Some indexes are greatly affected by even a small change in the size of the
buffer pool. The degree to which the changes occur depends on the amount of
disorganization that exists. If there are multiple records on a page, and the index is
highly unclustered, an index scan may result in multiple accesses to pages. Hence,
.T" can be large i f /3 is sufficiently small compared to ,A.

In Figure 1, we show how the number of page fetches for a full index scan varies
with the buffer size. The curves are shown for indexes over columns CMAC.BRAN,
CMAC. CEDT, INAEAPLD, INAP.MALD, and INARUWID in the Great-West
Life benchmark database (Steindel and Madison, 1987). These curves are called
full index scan page fetch (FPF) curves. /3 is expressed as a fraction of the number
of pages in the table 7-. F is expressed in multiples of T. For a full index scan,
the minimum value of .T" is T (in Figure 1, this would correspond to a value of 1).
We see that the value of .T" can be quite sensitive to the buffer s ize /3 available.

Hence, to choose a good access plan involving an index, it is crucial to accurately
estimate the number of page fetches F . The index scan may be a partial scan
or a full scan. In this article, we describe an algorithm called the Estimation of
Page Fetches in Index Scans (EPFIS). Algorithm EPFIS is given an estimate of the
number of records being retrieved by the index scan and the buffer s ize/3 available
for the index scan.

Let us discuss the problem of choosing an access method in more detail. We
wish to access a table, and retrieve either all the records or some subset of the

678

Figure 1. Data page fetches for a full index scan: Sensitivity to buffer
size

13

~- 12
q)
.u 11 (/)

e 10 JO

_o 8

= 7

~ 6
b .

= 5

~ 4

® 3

~ 2

1

0

! | I I I ! ! ! !

• .---. cmac.bran
~ * - - = cma.c.cedt

~-*-o~• ~ inap.apld
~ "o~ = ~ , inap.rnald
l= ~ t - - , inap.uwid

\ .
: \ \ . , . \

\

10 20 30 40 50 60 70 80 90 100
Buffer Size p (% of ~)

records in the table. If a subset is desired, one or more predicates are given that
determine the records to be retrieved. The retrieved records may be required to
be made available as ordered by some column value. If an access method does
not retrieve the records in the desired order, a sorting operation will have to be
performed that adds to the cost of the retrieval using that access method.

Let an index be defined on columns a and b, with a as the major column. Starting
and stopping conditions can be used to limit the range of the index scan. Examples
of starting conditions are a > 50 and a > 25. Examples of stopping conditions are
a < 75 and a < 100. Starting and stopping conditions can be combined (e.g., 40
< a AND a < 60. Let the selectivity of the starting and stopping conditions be
denoted by o- (i.e., the fraction of records satisfying the predicates).

We can have other predicates on the index columns that do not define a
contiguous range of values and, hence, do not restrict the range of the index that
needs to be scanned. We refer to these predicates as index sargable predicates. For
example, the predicate b = 5, where b is not the major column of the index, is
an index-sargable predicate. Let the selectivity of the index sargable predicates be
denoted by S.

An index on a table is said to be relevant if any of the following conditions are
satisfied:

VLDB Journal 4 (4) Swami: Estimating Page Fetches 679

1. One or more of the predicates can be used to form starting and/or stopping
conditions on the index.

2. Records retrieved using the index would be in the desired sort order.

A full index scan is not needed if the first condition is applicable. The optimizer
may have several access plans to choose from:

1. Perform a table scan, evaluate the predicates on all the records. If necessary,
sort the resulting set of records.

2. Use a partial scan on a relevant index I, and evaluate the unevaluated
predicates on the resulting set of records. If necessary, sort the resulting set
of records.

3. Use a full scan on a relevant index I to obtain the desired sort order, and
evaluate the predicates on the resulting set of records.

The number of basic access plans to be considered is the number of relevant indexes
plus one (for the table scan). We are assuming that there is no RID-list sort, union,
or intersection before the data records are fetched.

To choose between the different access plans, the optimizer has to determine
the costs of the different access plans. A major component of the cost of an access
plan is the number of page fetches from secondary storage (disk) that are required
under the plan. For an access plan involving an index scan, the optimizer has to
estimate the number of page fetches.

The number of records remaining after applying starting and stopping conditions
and index sargable predicates forms an upper bound on the number of pages fetched.
Using the independence assumption, the number of qualifying records is given by
N x o - x S.

3. Previous Work

Others have studied the estimation of page fetches when the records are selected at
random (with or without replacement) (Cardenas, 1975; Waters, 1976; Yao, 1977).
In addition to the random selection assumption, it usually is assumed that the
records are placed randomly on the pages. Attempts have been made to relax
these assumptions (Christodoulakis, 1984), but these models usually require that
some probability distributions on the data be assumed. Further, an infinite buffer
is usually assumed whereas, in practice, the finite size of the buffer can have a
large effect on the number of page fetches. Elsewhere (Vander Zanden, 1986),
the number of block accesses when attributes are correlated is estimated using an
occupancy model.

Mackert and Lohman (1989) considered the effect of finite buffers managed
using the LRU replacement policy. They proposed an algorithm (we label it as
Algorithm ML) for estimating page fetches for unclustered index scans. We also
study three other algorithms that are based on calculating a quantity called "cluster

680

ratio," which is an indication of how clustered the index is. These algorithms are
labeled DC, SD, and OT. 1 We describe these algorithms in more detail below.

The number of records in Table 1 is denoted by .A[. Let the index being scanned
have 27 distinct key values.

3.1 Algorithm ML

Mackert and Lohman (1989) developed an iterative formula to estimate the number
of page fetches to fetch x key values. The basic idea is to have a moving window of
a single buffer size, and to use it to extrapolate probabilistically to any buffer size.
Let R = JV" / 7-, and let D = H / 27. Then the number of pages fetched from
disk for retrieving all tuples that match x key values is estimated by:

7 - (1 - qX) if x < n

7- (1 - qn) + (x-- n)7"pq n i f n < x < Z

where

{ (1 - - ~) D i f D < R

q = (1 ~)R i f D > R

p = l - - q

n ~ m a x { j E { 0 , 1 , . . . , 2 . ' } [7 - (1 - - q j) < B} .

Approximations to this formula for easy computation were also derived. We em-
bodied the iterative formula in an algorithm we term Algorithm ML for use in the
experimental comparisons.

3.2 Algorithm DC

A cluster ratio CR is calculated as follows. A "cluster" counter CC is initialized
to zero. The index entries are scanned in key sequence order. CC is incremented
by one if the first page containing the records of the next key value is the same or
a higher page than the last page containing the records of the previous key value.
Then,

(1 , (- ~ - (0.4,51n (~ -)))) CR = min + min

and the number of page fetches is calculated as

0-(7- + (1 - CR)(N-- 7-))

1. These algorithms have been abstracted from the internal algorithms of existing database products.

VLDB Journal 4 (4) Swami: Estimating Page Fetches 681

3.3 Algorithm SD

A cluster ratio CR is calculated as follows. The index entries are scanned in
key sequence order. The number of page fetches with a buffer pool of one page
is obtained (denote this by J). Then,

N - - J
C R - -

N - T

which essentially measures the number of "jumps" from one page to another above
the minimum number of jumps needed (this is one measure of how the index is
unclustered). Let

U = 0. x S (7- (1 - (1 - 1/7-)T/z)

Here Cardenas's (1975) formula is used to estimate the number of pages fetched
for random location of tuples on pages.

min(U, 7-) if T < /3
V = U otherwise

The number of page fetches is calculated as

CR x T- x 0.+ (1 -- CR)V

where the weighting captures the intuition behind the cluster factor CR. If the
index is perfectly clustered (CR = 1), exactly 0-7- pages are fetched. Otherwise,
according to the degree of clustering, up to V pages may be fetched.

3.4 Algorithm OT

The index entries are scanned in key sequence order. The number of page fetches
with a buffer pool of three pages is obtained (denote this by J). The "cluster ratio"
CR is calculated as follows:

N - k T- -- J
C R - -

N

This is an alternative calculation of CR, using a slightly different definition of jumps.
Now the number of page fetches is calculated as

o-(7- + (1 -- C R) (N - - 7-))

If the index is perfectly clustered (CR = 1), exactly 0. 7- pages are fetched. Otherwise,
according to the degree of clustering, up to N pages may be fetched.

The very first attempts at modeling page fetches assumed that an index was
either perfectly clustered (.T" = 7-) or perfectly unclustered (.T" = .Af). Later

682

work (as described above) relied on obtaining and using a single statistic (cluster
factor) derived from the page fetch data. The use of a single statistic is based on
probabilistic models that are not often valid for real data. Based on the page fetch
data of the index, we obtain a function that maps from the number of records
touched and the buffer size to the number of pages fetched. Our model, which is
based on empirical data, enables us to predict page fetches much more accurately.

4. Algorithm EPFIS

Algorithm EPFIS has two components. The first component, Subprogram LRU-Fit,
is run as part of the statistics collection routines in the database. These routines
are called periodically to calculate some parameter values that can be stored in the
catalog. Some of these parameter values are then used by the second component,
Subprogram Est-IO, which is called by the optimizer during query compilation.
It provides an estimate of page fetches for an index scan. We describe the two
subprograms in more detail below.

4.1 Subprogram LRU-FiI

Subprogram LRU-Fit first determines the range of buffer pool sizes that need to
be modeled. It then obtains a table of Full index scan Page Fetch (FPF) data in the
range of interest. LRU-Fit approximates the FPF curve using some number of line
segments. Subprogram Est-IO uses the approximated FPF curve in the estimation
of page fetches.

Determining Modeling Range. We need to know the range of buffer pool sizes (/3)
that are likely to be encountered during optimization. The optimizer will need
accurate estimates of .T" for these values of /3. If desired, the range of /3 can
be specified by the database administrator (DBA). If the range is not specified,
LRU-Fit chooses the range o f / 3 values to model as follows. The minimum value
o f / 3 (denoted by/3min) is taken to be max (0.01 x 7 , /3sml) , where/3sml is the
smallest buffer pool size modeled. /3sml is chosen to avoid the large effects on
page fetches due to too small a buffer size. In our experiments, we set /3sml =
12. The maximum value of /3 (denoted by/3max) is taken to be '7", the size of the
table in pages.

Next, LRU-Fit determines the number of page fetches for a full index scan at
selected/3 values in the range determined above. These /3 values are denoted by
/31, /32, "" ", /3k, with /31 = /3min and /3k = /3max- The values /32, "" ", /3k-1
are equally spaced, and are obtained using the following heuristic formula: 2

/3)+1 = /3) "if- 2 X ~//3max -- /3min, 1 < i < k

2. Goetz Graefe suggests/31 =/3mi~(/3m~=/13mi~) ~1~ •

VLDB Journal 4 (4) Swami: Estimating Page Fetches 683

This allows an increased number of buffer size values to be modeled for larger ranges,
but the increase is slower than the increase in the range size. If the buffer pool
size falls outside of the range (/3mi n . . - /3max), extrapolation is used to generate
page fetch estimates.

Obtaining the FPF Data. A full scan of all the index entries produces the sequence
of page numbers as stored in the index. A scan of the index for index statistics
collection has exactly these characteristics. We can simulate a buffer pool of size 13,
and use the sequence of page accesses to determine the number of page fetches that
would result from a full index scan. To simultaneously perform this simulation for
a number of buffer pool sizes without maintaining that many buffer pools, the stack
property of the LRU algorithm (Mattson et al., 1970) is used to do the simulation
using a buffer pool of the largest size. The computational expense due to linear
search of the buffer pool is avoided by using hash tables of buffer pages. LRU-Fit
uses these techniques to generate the table of FPF data, consisting of (/3i, .T'i) pairs,
where .7/ is the number of page fetches for the full index scan corresponding to
buffer size /3.i. For examples of FPF curves, see Figure 1 in Section 2.

Let the number of page fetches for a buffer size of •min pages be denoted
by .T'mi n. In the single pass over the trace, LRU-Fit also determines the value of
.T'mi n. This value is used to calculate the value of the "clustering factor" (denoted
by C) as follows. Then,

N - -~'min C--
N - ' T

using a similar intuition as for Algorithm SD in Section 3. Here, C is a measure
of how "clustered" the index is and will be in the range [0, 1]. If C ,~ 0, the index
is very unclustered, and records are located at random on pages. The "degree" of
clustering tends to increase as C ~ 1.

Approximating the FPF Curve. We wish to use the FPF curve subsequently for es-
timation. To reduce the amount of data that needs to be stored, we approximate
the FPF curve. Any approximation method that permits sufficiently accurate ap-
proximation (e.g., polynomial curve fitting) could be used. We use the simple but
adequate method of approximating the FPF curve using line segments (see, for
example, Natarajan, 1991). The line segment information is captured by storing the
coordinates of the end-points of the line segments. This coordinate information
can be stored in a system catalog entry associated with the index for later use by
Est-IO.

Clearly, the larger the number of line segments, the more accurate the approx-
imation. However, for each additional line segment, an additional pair of values
needs to be stored in the catalog. If space usage in the catalog structure is of
concern, it is desirable to keep the minimum number of line segments that result
in acceptable errors in page fetch estimation. We performed a large number of
experiments on different indexes to study the sensitivity of the estimation errors

684

to the number of approximating line segments. The experiments show that the
estimation errors do not change very much when the number of line segments is
greater than five. Hence, we use six line segments to approximate the FPF curves.

4.2 Subprogram Est-IO

As discussed in Section 2, the optimizer often needs to choose between scanning
a table or scanning one of its relevant indexes. For a relevant index, the optimizer
determines the applicable predicates. Currently, the database administrator specifies
the buffer size available for the scan. To estimate the number of page fetches required
for the scan on an index, the optimizer calls subprogram Est-IO.

Subprogram Est-IO uses the approximation to the FPF curve obtained by LRU-
Fit. Let the number of page fetches resulting from a full scan on an index, given a
buffer size of J~, be denoted by PFB. Est-IO first determines which line segment
contains the mapping value for the value/3. It then uses the equation for the line
segment to calculate the corresponding number of page fetches. This is the value
of PFt~.

Subprogram Est-IO then scales down the value of PFt3 by o to obtain the
number of page fetches corresponding to the scan on the index (possibly restricted
by starting and stopping conditions). Thus, it estimates the number of page fetches
by o-× PF/~.

Correcting for Small Selectivity or. Experiments show that the above method tends to
significantly underestimate the number of page fetches when the following conditions
hold together:

1. The selectivity cr is small.
2. q~ = max (1,/3/7") is significantly greater than or.

3. The index is not very clustered. This is reflected by a value of C not close
to 1.

Underestimation occurs because we are scaling down from full scans to partial scans
using a linear scaling factor. Now, if o- is large enough, this is not a problem because
behavior in the large still holds. However, if o is small enough, the caching that
helps larger scans (when buffer size is large enough) does not take effect for the
partial scan. Hence, the number of page fetches is larger than the linear scaling
would predict.

An indicator variable u is used as follows: if q~ _~ 3 o', then u is 1, otherwise
it is 0. Then, a new estimate for the number of page fetches is given by

(~ T x P F n) + p x m i n (1 , q S / (6 c r)) x (1 - d) x (T x (1 - (1 - I I ' T) ~ ")) (1)

Here, we are using the heuristic correction term

min (1, q~/(6o)) x (1 - C) x (7- x (1 - (1 - 1 / T) ° N))

VLDB Journal 4 (4) Swami: Estimating Page Fetches 685

when dr < < 1/3 and dr < < B / T . The factor (7 -x (1 - (1 - 1/7-yrN)) is known in
the literature as Cardenas's formula. Cardenas (1975) derived the formula under
the assumption that the drN records are randomly selected from N records with
replacement. The more unclustered an index is, the more likely it is that a partial
index scan looks like a random selection. If the index is very clustered (i.e., C is
close to 1), the second factor (1 - C) will be small. Hence, the factor (1 - C)
is a measure of how unclustered the index is, and it is used to reduce Cardenas's
estimate. We observed that the term dr × PFB tends to underestimate page fetches
primarily when q~ is large compared to dr. We take this into account by using the
factor (1, q5/(6 dr)) to reduce the contribution of the second term.

Effect of Index Sargable Predicates. The index sargable predicates are applied to
the index column values inspected during the (partial) index scan. Those records
that qualify are then fetched. Hence, such predicates can have the effect of reducing
the number of pages fetched. We use a simple urn model to estimate the effect of
index sargable predicates. We first need to estimate the number of pages referenced
after applying the starting and stopping conditions.

If the index is highly clustered (C ,~, 1), the number of pages referenced is
close to (dr7"). If it is highly unclustered, the number of pages referenced is close
to (min (o- N, 7-)). Using a simple linear model, we estimate the number of pages
referenced after applying the starting and stopping conditions to be

Q = C o - T + (1 - C)min (7 - , drN)

We use k to denote the number of qualifying records after index sargable predicates
are applied.

k = ScrN

We can view the process as that of assigning k balls to Q urns that are initially
empty. Using Cardenas's formula, we get the expected number of non-empty urns
a s :

Q × (1 - (1 - l /Q) k)

The factor by which the number of pages referenced is reduced is

Q x (1 - (1 - 1 / Q) k) = (1 - (1 - 1 / Q) k)
Q

The number of page fetches is estimated to be reduced proportionately. Using
Equation 1, the estimated number of page fetches (.)t) taking index sargable
predicates into account is:

.T" = (1 - (i - i / Q) k) X ((G X PFB) + u X min(1, q~/(60)) X

(i - C) x (7- x (1-- (1--1/7-)~N)))

686

4.3 Complete Algorithm
Algorithm EPFIS consists of the following steps:

1. Determine the modeling range, if not specified by the database administrator.

2. At statistics collection time, use LRU buffer pool modeling on the sequence
of index page accesses to obtain the page fetches for different buffer pool
sizes in the modeling range.

3. Approximate the page fetch curve by a small number of line segments.

4. At query compilation time, use the line segment approximation to determine
the number of page fetches for a full index scan. The buffer size is specified
by the optimizer.

5. Scale down the full scan page fetches by the selectivity of the starting and
stopping conditions.

6. If necessary, use the heuristic correction described above.

7. Account for the effect of index sargable predicates on the number of page
fetches.

5. Experimental Evaluation of Estimation Algorithms

We performed a number of experiments using both actual customer data and synthetic
data to compare the accuracy of the estimates obtained by the algorithms described
in Section 3 and Algorithm EPFIS. A partial scan is described by specifying the
starting and stopping key values. Probability distributions were specified for partial
scans as follows.

A scan is said to be small if it accesses only a small range of the table. It is
said to be large otherwise. A small scan is modeled as follows. A random number,
say, r, is generated between 0 and 0.2. A starting key value (say, k l) is picked at
random so that at least rN records have key values > kl. The stopping key value
(say, k2) is found such that k2 > kl, and the number of records with key values in
the range [kl, k2] is > rN. Thus, we can generate a large number of small scans
for experiments by choosing appropriate random numbers. Similarly, a large scan
is modeled by generating the random number r to be between 0.2 and 1.

The algorithms do not exhibit uniform error behavior with respect to scan sizes.
Hence, a mixture of scans was used for comparing the algorithms. For each data
set, we generated 200 random scans. The chance of picking a small scan was equal
to that of picking a large scan.

We performed a number of other experiments where different mixes of scans
were used. We ran experiments involving only small scans, only large scans, and
only full scans. We also ran experiments where different ratios of small and large
scans were used. In all these experiments, the results were very similar to the results
presented in Sections 5.1 and 5.2. A general trend was that the algorithms other
than Algorithm EPFIS performed worse as the scan size was made larger.

For a given buffer size, we computed the error metric for an algorithm as
follows. For any scan i (1 < i < 200), let the estimate obtained by the algorithm

VLDB Journal 4 (4) Swami: Estimating Page Fetches 687

be denoted by el. Let the actual number of pages fetched be denoted by ai. Then,
the error metric is:

(ei--ai) / ~ ai
1<i<200 1<i<200

This error metric can be thought of as the relative error over the aggregate of all
the scans. We choose not to use the mean of the individual relative error values as
the error metric. The reason is that, for small scans, the relative error values can
be large, but the absolute error values are usually small. For the optimizer, it is the
absolute difference that is important. Thus, we need to compare the absolute error
values. The denominator in the error metric is identical for all the algorithms. The
denominator is a normalizing factor so that the error metric can be expressed as a
meaningful fraction.

We computed the errors (i.e., the values for the above error metric) for buffer
sizes in increments of 5% of the table size in pages CT). The smallest buffer size
checked was set to max (300, 0.057-), and the largest buffer size checked was 0.9'~-.
In the graphs we show later, the buffer size is expressed as a percentage of 'T on
the X-axis. The percentage error is shown on the Y-axis.

5.1 Customer Data

We compared the accuracy of the different estimation procedures on data from a
customer database, the Great-West Life database (Steindel and Madison, 1987).
We refer to this database as the GWL database. We selected eight columns
(labeled CMAC.BRAN, CMAC.CEDT, CAGD.CMAN, CAGD.POLN, INARAPLD,
INARMALD, INARUWID, and PLON.CLID) from four tables (labeled CMAC,
CAGD, INAt~ and PLON) in this database. All these columns had indexes defined
on them. The tables had differing number of records and records per page (see
Table 2). We selected columns showing a range of values with respect to column
cardinalities (number of distinct values) and degrees of clustering as measured by
the value of C (see Table 3).

In Figures 2 through 9, we show the error behavior of Algorithm EPFIS and
the algorithms described in Section 3. We see that Algorithm EPFIS exhibits much
less error in its estimates than the other algorithms. EPFIS dominates the other
algorithms for all the indexes. The maximum error for EPFIS never exceeds 20%.
In addition, EPFIS is very stable, exhibiting low errors over the entire range of
buffer sizes. Note that, in Figure 5, all the algorithms except for SD have essentially
identical errors. In some of the figures (e.g., Figure 8), Algorithm DC exhibits very
high errors, and has only a few data points shown.

The other algorithms perform much more poorly than EPFIS. The maximum
errors for the other algorithms are as follows: SD (1889.7%), OT (2046.2%), DC
(2876.4%), and ML (97.8%). We see that, except for Algorithm ML, in the worst
case, the error can be orders of magnitude higher than the error for Algorithm
EPFIS. Except for Algorithm ML, none of the other algorithms exhibit stability in
errors over the entire range of buffer sizes.

688

Table 2. GWL database tables

Table No. of Pages No. of Records/Page

CMAC

CAGD

INAP

PLON

774

1093

1945

4857

Table 3. GWL database columns

Column

CMAC.BRAN

CMAC.CEDT

CAGD.CMAN

CAGD.POLN

INAEAPLD

INAEMALD

INAP.UWID

PLON.CLID

Col Card

131

2829

6155

110074

729

517

60

437654

c(%)
43.3

64.6

35.3

99.6

79.4

64.3

90.8

23.6

20

104

76

123

5.2 Synthetic Data

We wish to compare the algorithms on a larger number of data sets. It is useful
to complement the customer data with synthetic data to test the algorithms with
patterns of clustering not necessarily present in the available customer data. We
generated data with differing degrees of clustering between the index entries and
data records as described below.

The data sets were characterized by the following parameters. The range of
values considered for each parameter is given in parentheses.

• number of records N(106)

• number of distinct values 27 (104)

• number of records per page T~ (20, 40, 80)

• generalized Zipf distribution of distinct values with parameter 0 (0, 0.86)

• window size parameter]C (0, 0.05, 0.10, 0.20, 0.50, 1)

Zipf-like distributions have often been observed when the distribution of column
values is skewed. Knuth (1973) described a generalized Zipf distribution with a
parameter 0 that can be used to model distributions such as the uniform distribution
(0 = 0) or the "80-20" distribution (0 = 0.86). We use this distribution and values
for 0 to model skew in the distribution of duplicates for distinct values.

VLDB Journal 4 (4) Swami: Estimating Page Fetches 689

F igu re 2. Er ro r behav io r for C M A C . B R A N

200 ~=--= sDEPFI 1
160 ~ OT

- tl #--, DC
o--..ML.

, , , h p ~ - . - ? - . - f - . - ~ , - . - 1 '
10 20 30 40 50 60 70 80 90

Buffer Size (% of Relation Size)

Figure 3. Error behavior for CMAC.CEDT

160

140

120

uJ

60

40

2O

0

i I 1 4 / 0 i i i i !

• --" EPFI~
"-- 'SD I
a-o OT I j l ~ ~
~o oc / ~ "
• -.ML / , f

I I I I - - . I - - I ~ ~ I ' I ~ I ' I ~ I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

690

Figure 4. Error behavior for CAGD.CMAN

100 ' ' ' . ~ / o - o ~

90 ~,..~,..LT°"O,o,.o,.
" / r ' , ' ,
70 ~.-A SD

nl-.a OT I I ~A \
.-- .DC / / ~ " ,

~" 60 o--e ML

W
°

20 •
/ %

i i _ l l w i i . . l l o ~ - -

0 I I i I I I ' t n

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 5. Error behavior for CAGD.POLN

60

50

4O

3o
U J

20

10

=--= EPFIS I
=--A SD J

OT
e--e DC
o,-~ ML

I I - I N - . I I - I I 4 , , , N . 4 = , N ~ ~ _ - - I 1 - . 1 1 - 1 1 - 1 1

| i I | i | I I I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation S=e)

VLDB Journal 4 (4) Swami: Estimating Page Fetches 691

Figure 6. Error behavior for INARAPLD

500

400

300

g
uJ 200

100

50

0

I ~ a I I I I I ! l

=--. EPFIS I /
• --, so /
N O T /
. - . oc /
o--o M L /

I I I I I I I t I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 7. Error behavior for INARMALD

600

500

A 400

300
u,I

200

100
50
0

I I I a I I i l I

=--= EPFI
SD

f I ~ -°°c I
/ I "-'ME I

, ~-,.-.-,.-.-,.-.-;-.-~---;-.-;-'-;

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

692

Figure 8. Error behavior for INARUWID

,500 I ~ 1 ! I I ! I ! I

~-. EPFIS~ I
• - ~ s o /
. -=OT / . / "
• - . DC / / '
"-" ~ / /

j _ -',,'~,4i~,,,6,,,,dz,,,,~,,,, A
, ,-~-.-.-.-.-:-.-:-.-;-.-;-'-;

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 9. Error behavior for PLON.CLID

140

120

100

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

VLDB Journal 4 (4) Swami: Estimating Page Fetches 693

Figure 10. Error behav io r for ~9 = O, KS = 0

901- ,= I " - ' s o I
I J I * - * ° T I

8 0 1 - ~ . Y I t - ' D ° I
ro L - " " ' . - t I "-'ML I

Ol-,-~-"T-'-7 , , , , , ,

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

To model the correlation between frequent values, we modify a scheme described
in Wolf et al. (1990). The distinct values are processed in the order of their values.
For each distinct value, its corresponding records are assigned to pages as follows. A
window of pages is available and the records are assigned randomly in this window
of pages. The smaller the window, the greater the degree of clustering. The window
size is given by [KS 7- 7 . Thus, we model degrees of clustering ranging from high
(KS = 0, 0.05) to low or none (KS = 0.5, 1).

When a page is full in the window, the next page not in the window is added
to the window. The initial window is [1, KS 7] . A small amount of noise in the
assignment is permitted as follows. A record is assigned outside the window with
a certain probability given by a noise factor. In our experiments, the noise factor
was set to 5% (i.e., 95% of the time the records are assigned within the window).

For brevity, we show only the experimental results for 7~. = 40 and KS = 0.05,
0.50, 1. The results for other values of these parameters are similar. The algorithms
are compared in terms of their estimation errors in Figures 10 through 21.

Each figure corresponds to one combination of distribution parameter (0 = 0,
0.86) and clustering parameter (/C = 0.05, 0.10, 0.20, 0.50, 1). In a few graphs,
algorithms OT and DC do not appear, for example, in Figure 11. This is because
the algorithms exhibit errors that exceed the maximum error shown in the graphs
(~ 100%).

694

Figure 11. Error behavior for 0 = 0, ~ = 0.05

I I I I I I I I I

100 ,.--m EPFIS~

90 ,.-.A SO /
• o.-.a OT /

80 -,~ ~ DC

70 ~"~"+'~'-,4. : : M L /

~ so w A"A.,A,.~
401 " " ~ " =

301 /:~'2,.,.,.,
20

,0 ,,.1t-"
0 ¢" , t I , , ,

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 12. Error behavior for 0 = 0, ~ = 0.10

I I I I I i I I l

100 - =--= EPFIS~
SD

g0 - ' ~a ~ OT /
- ~ ~, ~ /

70" 80 .,~..,~..+.,~ ' ' ML /

~. 60 ",

°

40- ~
~.,.&

'°o f"T , , , ,
10 20 30 40 50 60 70 80 90

Buffer Size (% of Relation Size)

VLDB Journal 4 (4) Swami: Estimating Page Fetches 695

Figure 13. Error behav io r for 0 = O,/C = 0.20

90 - + ' ~ I "-" so_ I

7O

5O

40

10

0 " i i , , , ~ I I I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

F igure 14. Error behav io r fo r 0 = O, K~ = 0.50

, 0 o ¸

90
I " / , . , ? x . I ~ o1" I
I 1 " , \ I ' - ' ~ I o

~ so
411

3O

10 . .r~. ,°~
iII.I~I ~I

0 I I I I I I ! I I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

696

Figure 15. Error behavior for ~ = O, ~ = 1.0

g

301-*\,. / / ~-* Oc I -I
I %.# I ~---~ML I I

,°r/, , . i 1
oI-.%-'-T-'-t:'T":-'-," " , - , , -I

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 16. Error behavior for ~ = 0.86, K~ = O

100

90

8O

A 70
so

411

10

L ~ I " - ' s o I
/ I =-"°T I

- # I ,-, oc I
"-.-.,.~ / I 0 , ML I
L ~ I I

~..-;-.-;-.-;- , , ," , - , ,

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

VLDB Journal 4 (4) Swami: Estimating Page Fetches 697

Figure 17. Error behav io r for 0 = 0.86, ~ = 0.05

9O

8O

70

g 6o
~ 5o w

40

3O

10

0

-~ .-~ o°c~ /

• A'~A.,.j.,....=-- m-u

• e = = I I I I I l

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

F igure 18. Error behav io r for 0 = 0.86, ~ = 0.10

100

9O

80

70

Z ~

40
3o
20
10
0

I
I I I I I I I I I

- [. q E~F,S I
- : k I ~ " SD /

~ I B . - = O T /

- ~ I . - . °° /
~.~ I ~'-~ ML /

i A,,.A.~A..A..~=.=
i ~ i ~ i i S i i ~ i . I Ak~&

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

698

Figure 19. Error behavior for # = 0.86, ~ = 0.20

100

90

80

70

60

50

40

30

20

10

0

'H I I I I I I I I I

• ~ I . - I EPFIS I
I A--A SD J

i~,.A..A

r I ~ i _ l l 4 , I ~ I ' I

i f I ' ' I " I ' ~ ' I ' p l ' l ' r ' '

" i I ' l " ° ~ i I i i i i |

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

Figure 20. Error behavior for ~ = 0.86,/C = 0.50

0ol- I I "o. \ I ~ . D C /

,01- //
 otlt \k.

01- -, , , , , , , , ,

10 20 30 40 50 60 70 80 90
Buffer Size (% of Relation Size)

VLDB Journal 4 (4) Swami: Estimating Page Fetches 699

Figure 21. Error behavior for 0 = 0 . 8 6 , / ~ = 1.0

100

90

80

70

g so

w

40

20

10

0

= i"1
*,~. ,a / I ~-'DO /

10 20 30 40 S0 60 70 80 90
Buffer Size (% of Relation Size)

We see that Algorithm EPFIS exhibits much less error in its estimates than
the other algorithms. For almost all the data sets, EPFIS dominates the other
algorithms. No other algorithm dominates EPFIS for even a single data set. The
maximum error for EPFIS is 48%. Also, EPFIS is very stable, exhibiting low errors
over the entire range of buffer sizes.

The other algorithms perform much worse than EPFIS. The maximum errors
for the other algorithms are as follows: SD (97.6%), OT (2453.1%), DC (1994.8%),
and ML (94.9%). We see that, except for Algorithms SD and ML, in the worst
case, the error can be orders of magnitude higher than the error for Algorithm
EPFIS. Except for Algorithms SD and ML, none of the other algorithms exhibit
stability in errors over the entire range of buffer sizes.

6. S u m m a r y

In this article, we describe a new algorithm called EPFIS for estimating the number
of page fetches for an index scan with a finite LRU buffer. Algorithm EPFIS
performs LRU simulations on the index entries once. The data gathered as a result
of these simulations is processed, summarized, and stored in the system catalogs.
Subsequently, given the number of buffer pages available and the number of records
being fetched, Algorithm EPFIS returns an estimate of the number of pages that

700

will be fetched using the summary data in the catalog. Previous work was based
on probabilistic models that are often not valid for real data. Our model, which is
based on empirical data, enables us to predict page fetches much more accurately.

We compared Algorithm EPFIS to a number of other algorithms that are
currently in use or have been proposed. Algorithm EPFIS dominates the other
algorithms, and exhibits good stability over the entire range of buffer sizes. The
other algorithms exhibit much higher errors, which can be orders of magnitude
higher than the error of EPFIS. Algorithm EPFIS is not difficult to implement.
During query optimization, the estimation procedure only involves computing a
simple formula. The LRU simulations can be performed once while statistics are
being gathered for other purposes. Hence, we believe that Algorithm EPFIS is the
algorithm of choice.

Future work should consider the impact of some or all of the following: indexes
with sorted RIDs for a given key value, use of multiple indexes, use of RID-
list operations, index ANDing and ORing, intra-query contention, and multi-user
contention.

Acknowledgments

This work was done when Arun Swami was at the IBM Almaden Research Center.
We thank Goetz Graefe, Guy Lohman, John Lumby, Sheila Richardson, and Lori
Strain for their comments.

References

Cardenas, A.E Analysis and performance of inverted database structures. Commu-
nications of the ACM, 18(5):253-263, 1975.

Christodoulakis, S. Estimating block selectivities. Information Systems, 9(1):69-79,
1984.

Knuth, D.E. The Art of Computer Programming, Vol 3: Sorting and Searching. Reading,
MA: Addison-Wesley, 1973.

Mackert, L.E and Lohman, G.M. Index scans using a finite LRU buffer: A validated
I/O model. ACM Transactions on Database Systems, 14(3):401-424, 1989.

Mannino, M.V., Chu, E, and Sager, T. Statistical profile estimation in database
systems. ACM Computing Surveys, 20(3):191-221, 1988.

Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, I.L. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

Natarajan, B.K. On piecewise linear approximations to curves. Hewlett-Packard
Laboratories Technical Report, HPL-91-36, 1991.

Steindel, G.C. and Madison, H.G. A benchmark comparison of DB2 and the
DBC/1012. CMG International Conference on Management and Performance Eval-
uation of Computer Systems, Orlando, FL, 1987.

VLDB Journal 4 (4) Swami: Estimating Page Fetches 701

Vander Zanden, B.T., Taylor, H.M., and Bitton, D. Estimating block accesses when
attributes are correlated. Proceedings of the Twelfth International Conference on
l,~ty Large Data Bases, Kyoto, Japan, 1986.

Waters, S.J. Hit Ratios. Computer Journal, 19:21-24, 1976.
Wolf, J., Dias, D., and Yu, E An effective algorithm for parallelizing sort merge joins

in the presence of data skew. Proceedings of the Secondlnternational Symposium
on Databases in Parallel and Distributed Systems, Dublin, Ireland, 1990.

Yao, S.B. Approximating block accesses in database organizations. Communications
oftheACM, 20(4):260--261, 1977.

