
VLDB Journal, 4, 603-627 (1995), Stanley Y.W. Su, Editor 603
QVLDB

AlphaSort: A Cache-Sensitive Parallel External Sort

Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and
Dave Lomet

Received September 8, 1994; revised version received, March 28, 1995; accepted March
28, 1995.

Abstract. A new sort algorithm, called AlphaSort, demonstrates that commodity
processors and disks can handle commercial batch workloads. Using commod-
ity processors, memory, and arrays of SCSI disks, AlphaSort runs the industry-
standard sort benchmark in seven seconds. This beats the best published record
on a 32-CPU 32-disk Hypercube by 8:1. On another benchmark, AlphaSort sorted
more than a gigabyte in one minute. AlphaSort is a cache-sensitive, memory-
intensive sort algorithm. We argue that modern architectures require algorithm
designers to re-examine their use of the memory hierarchy. AlphaSort uses clus-
tered data structures to get good cache locality, file striping to get high disk band-
width, QuickSort to generate runs, and replacement-selection to merge the runs.
It uses shared memory multiprocessors to break the sort into subsort chores. Be-
cause startup times are becoming a significant part of the total time, we propose
two new benchmarks: (1) MinuteSort: how much can you sort in one minute, and
(2) PennySort: how much can you sort for one penny.

Key Words. sort, cache, disk, memory, striping, parallel, Alpha, Dec 7000.

1. Introduction

In 1985, an in formal group of 25 da tabase exper ts f rom a dozen compan ie s and
univers i t ies def ined th ree basic benchmarks to measu re the t ransac t ion process ing

p e r f o r m a n c e of c o m p u t e r systems.

1. DebitCredit: A marke t -ba ske t of da tabase reads and writes, t e rmina l IO, and
t ransac t ion commits to measu re on- l ine t ransac t ion process ing p e r f o r m a n c e

Chris Nyberg, M.S., is President, Ordinal Technology Corp., 20 Crestview Dr., Orinda, CA 94563, ny-
berg@ordinal.corn, Tom Barclay, B.S., is Program Manager, Microsoft Corp., One Microsoft Way, Red-
mond, WA 98052, tbarclay@microsoft.corn, Zarka Cvetanovic, Ph.D., is Software Consultant Engineer, Dig-
ital Equipment Corp., 60 Codman Hill Rd, Boxborough, MA 01717, zarka@danger.enet.dec.com, Jim Gray,
Ph.D., is Senior Researcher, 310 Filbert St., San Francisco, CA 94133, gray@crl.com, David Lomet, Ph.D.,
is Senior Researcher, Microsoft Corp., One Microsoft Way, Redmond, WA 98052, lomet@microsoft.com.

604

.

.

(OLTP). This benchmark evolved to become the TPC-A transactions-per-
second and dollars-per-transaction-per-second metrics (Gray, 1991).

Scan: Copy one thousand 100-byte records from disk-to-disk with transaction
protection. This simple mini-batch transaction measures the ability of a file
system or database system to pump data through a user application.

Sort: A disk-to-disk sort of one million, 100-byte records. This has become
the standard test of batch and utility performance in the database community
(Bitton, 1981; Tsukerman, 1986; Weinberger, 1986; Beck et al., 1988; Bagusto
and Greipsland, 1989; Lorie and Young, 1989; Bagusto et al., 1990; Graefe,
1990; Gray, 1991; DeWitt et al., 1992; Graefe and Thakkar, 1992). Sort tests
the processor's, IO subsystem's, and operating system's ability to move data.

DebitCredit is a simple interactive transaction. Scan is a mini-batch transaction.
Sort is an IO-intensive batch transaction. Together they cover a broad spectrum of
basic commercial operations.

2. The Sort Benchmark and Prior Work on Sort

The Datamation article (Anon-et-al., 1985) defined the sort benchmark as:

• Input is a disk-resident file of one million 100-byte records.
• Records have 10-byte key fields and can't be compressed.
• The input record keys are in random order.
• The output file must be a permutation of the input file sorted in key ascending

order.

The performance metric is the elapsed time of the following seven steps:

(1) Launch the sort program.
(2) Open the input file and create the output file.
(3) Read the input file.
(4) Sort the records in key-ascending order.
(5) Write the output file.
(6) Close the files.
(7) Terminate the program.

The implementation may use all the "mean tricks" that are typical of oper-
ating systems utilities. It can access the files via low-level interfaces; it can use
undocumented interfaces; and it can use as many disks, processors, and as much
memory as it likes. Sort's price-performance metric normalizes variations in software
and hardware configuration. The basic idea is to compute the 5-year cost of the
hardware and software, and then prorate that cost for the elapsed time of the sort
(Anon-et-al., 1985; Gray, 1991). A one-minute sort on a machine with a 5-year cost
of one million dollars would cost 38 cents ($0.38).

VLDB Journal 4(4) Nyberg: AlphaSort 605

Table 1. Published sort performance on the Datamation 100 MB
benchmark in chronological order

System Seconds S/sort(*)

Tandem 3600 4.61

Beck 6000 1.92

Tsukerman +

Tandem 980 1.25 .2

Weinberger +

Cray 26 1.25 7.5

Kitsuregawa 320* 0.41 .2

Baugsto 180 0.23 .2

Graefe +
Sequent 83 0.27 .5

Baugsto 40 0.26 1

DeWitt +

Intel iPSC/2 58 0.37 1.0

DEC Alpha

AXP 7000 9.1 0.022 .4

DEC Alpha

AXP 4000 8.2 0.011 .2

DEC Alpha

AXP 7000 7 0.014 .5

Cost MS* CPUs Disks

2 2 2

.1 4 4

3 6

1 1

1+ 1

16 16

8 4

100 100

32 32

1 16

2 14

3 28

Reference

Tsukerman,

1986

Beck, 1988

Salzberg,

1990

Weingerger,

1986

Kitsuregawa,

1989

Baugsto,

1989

Graefe,

1992

Baugsto,

1989

Dewitt,

1992

Nyberg,

1993

Nyberg,

1993

Nyberg,

1993

Extrapolations marked by (*). Prices are estimated.

In 1985, as reported by Tsukerman, typical systems needed 15 minutes to
perform this sort benchmark (Bitton, 1981; Anon-et-al., 1985; Tsukerman, 1986).
As a super-computer response to Tsukerman's efforts, Weinberger (1986) of ATF
wrote a program to read a disk file into memory, sort it using replacement-selection
as records arrived, and then write the sorted data to a file. This code postulated
8-byte keys, a natural size for the Cray, and made some other simplifications. The
disks transferred at 8 MB/s, so you might guess that it took 12.5 seconds to read
and 12.5 seconds to write for a grand total of 25 seconds. However, there was
about one second of overhead in setup, file creation, and file access. The result, 26

606

Graph 1. Time and cost to sort 1M records

10

o ¢,2

.10

.01

The performance and price-performance trends of sorting are displayed in chronological
order. Until now, the Cray sort was the fastest, but the parallel sorts had the best price-
performance.

seconds, stood as the unofficial sort speed record for seven years. It is much faster
than the subsequently reported Hypercube and hardware sorters.

Since 1986, most sorting efforts have focused on multiprocessor sorting, using
either shared memory or partitioned-data designs. With an Intel Hypercube, DeWitt,
Naughton, and Schneider (1992) reported the fastest time: 58.3 seconds using 32
processors, 32 disks, and 224 MB of memory. Baugsto et al. (1990) mentioned a
40-second sort on a 100-processor, 100-disk system. These parallel systems stripe
the input and output data across all the disks (30 in the Hypercube case). They
read the disks in parallel, performing a preliminary sort of the data at each source,
and partition it into equal-sized parts. Each reader-sorter sends the partitions to
their respective target partitions. Each target partition processor merges the many
input streams into a sorted run that is stored on the local disk. The resulting
output file is striped across the 30 disks. The Hypercube sort was two times slower
than Weinberger's (1986) Cray sort, but it had better price-performance, since the
machine is about seven times cheaper.

Table 1 and Graph 1 show that, prior to AlphaSort, sophisticated hardware-
software combinations were slower than a brute-force, one-pass, memory-intensive
sort. Until now, a Cray Y-MP super-computer with a gigabyte of memory, a fast disk,
and fast processors was the clear winner. But, the Cray approach was expensive.

Weinberger's Cray-based sort used a fast processor, a fast-parallel-transfer disk,
and lots of fast memory. AlphaSort's approach is similar, but it uses commodity
products to achieve better price/performance. It uses fast microprocessors, corn-

VLDB Journal 4(4) Nyberg: AlphaSort 607

modity memory, and commodity disks. It uses file striping to exploit parallel disks,
and it breaks the sorting task into subtasks to utilize multiprocessors. Using these
techniques, AlphaSort beats the Cray Y-MP in two dimensions: it is about four
times faster, and about 100 times less expensive.

3. Optimizing for the Memory Hierarchy

Good external sort programs have always tried to minimize the wait for data transfers
between disk and main memory. While this optimization is well known, minimizing
the wait between processor caches and main memory is not as widely recognized.
AlphaSort has the traditional optimizations but, in addition, it gets a 4:1 processor-
speedup by minimizing cache misses. If all cache misses were eliminated, it could
get another 3:1 speedup.

AlphaSort is an instance of the new programming style dictated by modern
microprocessor architectures. These processors run the SPEC benchmark very well,
because most SPEC benchmarks fit in the cache of newer processors (Kaivalya, 1993).
Unfortunately, commercial workloads, like sort and TPC-A, do not conveniently fit
in cache (Cvetanovic and Bhandarkar, 1994). These commercial benchmarks stall
the processor by waiting for memory most of the time. Reducing cache misses has
replaced reducing instructions as the most important processor optimization.

The need for algorithms to consider cache behavior is not a transient phe-
nomenon. Processor speeds are projected to increase about 70% per year for many
years to come. This trend will widen the speed gap between memory and processor
caches. The caches will get larger, but memory speed will not keep pace with
processor speeds.

The Alpha AXP memory hierarchy is:
• Registers,

• On-chip instruction and data caches (I-cache and D-cache),
• Unified (program and data) CPU-board cache (B-cache),

• Main memory,
• Disks,
• Tape and other near-line and off-line storage (not used by AlphaSort).

To appreciate the issue, consider the whimsical analogy in Figure 1. The scale
on the left shows the number of clock ticks needed to get to various levels of the
memory hierarchy (measured in 5 ns. processor clock ticks). The scale on the right
is a more human scale, showing time based in human units (minutes). If your body
clock ticks in seconds, then divide the times by 60.

AlphaSort is designed to operate within the processor cache ("This Campus"
in Figure 1). It minimizes references to memory ("Sacramento" in Figure 1). It
performs disk IO asynchronously and in parallel---~phaSort rarely waits for disks
("Pluto" in Figure 1).

608

Figure 1. How far away is the data?

l 109 Tape/Optical ~ ° . m ~ ~ a cn Robot

10 6 Disk
O

C

.E
I-- 100 Memory

~, 10 On Board C ~ This Campus
Eo 2 On Chip Cache]his Room
O 1 Registers ~ y My Head

2,000 Years i

2 Years
.g

1.5hr ~

Z
10 min

1 min

A whimsical analogy between computer time and human time, as seen from San Francisco.
The scale on the left shows the number of processor cycles needed to get to various levels
of the memory hierarchy (measured in 5 ns. processor clock ticks). The scale on the right
is a more human scale, showing time based in human units (minutes).

Suppose that AlphaSort paid no attention to the cache, and that it randomly
accessed main memory at every instruction. Then the processor would run at
memory speed (about 2 million instructions per second), rather than the 200 million
instructions per second it is capable of, a 100:1 execution penalty. By paying careful
attention to cache behavior, AlphaSort is able to minimize cache misses, and run
at 72 million instructions per second.

This careful attention to cache memory accesses does not mean that we can
ignore traditional disk IO and sorting issues. Rather, once the traditional problems
are solved, one is faced with achieving speedups by optimizing the use of the memory
hierarchy.

4. Minimizing Cache-Miss Waits

AlphaSort uses the following techniques to optimize its use of the processor cache:

1. QuickSort input record groups as they arrive from disk. QuickSort has good
cache locality.

2. Rather than sort records, sort (key-prefix, pointer) pairs. This optimization
reduces data movement.

VLDB Journal 4 (4) Nyberg: AlphaSort 609

3. The runs generated by QuickSort are merged using a replacement-selection
tree. Because the merge tree is small, it has excellent cache behavior. The
record pointers emerging from the tree are used to copy records from input
buffers to output buffers. Records are only copied this one time. The copy
operation is memory intensive.

By comparison, OpenVMS sort uses a pure replacement-selection sort to gen-
erate runs (Knuth, 1973). Replacement-selection is best for a memory-constrained
environment. On average, replacement-selection generates runs that are twice as
large as available memory, while the QuickSort runs are typically less than half of
available memory. However, in a memory-rich environment, QuickSort is faster
because it is simpler, makes fewer exchanges on average, and has superior address
locality to exploit processor caching.

Dividing the records into groups allows QuickSorting to be overlapped with
file input. Increasing the number of groups allows for more overlap of input and
sorting--QuickSorting cannot commence until the first group is completely read in,
and output cannot commence until the last group is QuickSorted. But increasing
the number of groups also increases the burden of merging them during the output
phase. We observed that using 10 to 30 groups provided a good balance between
these two concerns.

The worst-case behavior of replacement-selection is very close to its average
behavior, while the worst-case behavior of QuickSort is terrible (N2), a strong
argument in favor of replacement-selection. Despite this risk, QuickSort is widely
used because, in practice, it has superior performance. Bitton (1981), Beck et al.
(1988), Baugsto et al. (1990), Graefe (1990), and DeWitt (1992) used QuickSort.
On the other hand, Tsukerman (1986) and Weinber~er (1986) used replacement-

, T1vl selection. IBM s DFsort and (apparently) Syncsort use replacement selection in
conjunction with a technique called offset-value coding (OVC). We are evaluating
OVC 1 .

We were reluctant to abandon replacement-selection sort, because it has stability
and it generates long runs. Our first approach was to improve replacement-selection
sort's cache locality. Standard replacement-selection sort has terrible cache behavior,
unless the tournament fits in cache. The cache thrashes on the bottom levels of the
tournament. If you think of the tournament as a tree, each replacement-selection
step traverses a path from a pseudo-random leaf of the tree to the root. The upper
parts of the tree may be cache resident, but the bulk of the tree is not (Figure 2).

We investigated a replacement-selection sort that clusters tournament nodes

1. Offset-value coding of sort keys is a generalization of key-prefix-pointer sorting. It lends itself to a tour-
nament sort (Conner, 1977; Baer and Lin, 1989). For binary data, offset value coding, like the keys of the
Datamation benchmark, will not beat AlphaSort's simpler key-prefix sort. A distributive sort that partitions
the key-pairs into 256 buckets based on the first byte of the key would eliminate eight of the 20 compares
needed for a 100 MB sort. Such a partition sort might beat AlphaSort's simple QuickSort.

610

Figure 2. Replacement-selection sort vs. QuickSort

°. .

. . . . ~.~_~.~

. ~ o , . % ° ~ o , .

The tournament tree of replacement-selection sort at left has bad cache behavior, unless
the entire tournament fits in cache. The diagram at left shows the memory references as a
winner is removed, and a new element is added to the tournament. Each traversal of the tree
has many cache misses at the leaves of the tree. By contrast, the QuickSort diagrammed
on the right fits entirely in the on-board cache, and partially in the on-chip cache.

so that most parent-child node pairs are contained in the same cache line (Figure
3). This technique reduces cache misses by a factor of two or three. Nevertheless,
replacement-selection sort is still less attractive than QuickSort because:

1. The cache behavior demonstrates less locality than QuickSorts. Even when
QuickSort runs did not fit entirely in cache, the average compare-exchange
time did not increase significantly.

2. Tournament sort is more CPU-intensive than QuickSort. Knuth (1973, p.
149) calculated a 2:1 ratio for the programs he wrote. We observed a 2.5:1
speed advantage for QuickSort over the best tournament sort we wrote.

The key to achieving high execution speeds on fast processors is to minimize
the number of references that cannot be serviced by the on-board cache (4MB in
the case of the DEC 7000 AXP). As mentioned before, QuickSort's memory access
patterns are sequential and, thus, have good cache behavior. But, even within the
QuickSort algorithm, there are opportunities to improve cache behavior.

We compared four types of QuickSorts, sorting a million 100-byte records in
main memory (no disk IO). Each record contained a random key, consisting of three
4-byte integers (a slight simplification of the Datamation benchmark). Each of the
different QuickSort experiments ended with an output phase where the records are
sent, one at a time, in sorted order to an output routine that verifies the correct
order and computes a checksum. The four types of QuickSorts were as follows:

VLDB Journal 4 (4) Nyberg: AlphaSort 611

Figure 3. Line-clustered tournament tree

i! iiiii ; , iiiii

~i'c~:he~line"... [~i i].cdche.~li ii~l'line.:.i<.i- I~" " ei-~t~e;-~.i-?i,

Within each 32-byte cache line are 3 key-prefix, record pointer pairs (8 bytes each). The
pointers internal to each cache line, while shown in the figure, are implicit. Each line also
includes a pointer to the parent prefix/pointer pair.

Pointer

[~] ~ I lO0-byte record]

A million-entry array of 4-byte record pointers is generated and QuickSorted. The
records must be referenced during the QuickSort to resolve each key comparison
(hence the wide pointer arrow), but only the pointers are moved. The records are
sent to the output routine by following the pointers in sorted order.

Key/Pointer

I 12 100-byte record]

A million-entry array of 12-byte keys and record pointers is generated and Quick-
Sorted. This is known as a detached key sort (Lorin, 1974). The pointers are not
dereferenced during the QuickSort phase, because the keys are included with the
pointers--hence, the narrow pointer arrow.

Traditionally, detached key sorts have been used for complex keys where the
cost of key extraction and conditioning is a significant part of the key comparison

612

Table 2. CPU times (seconds) for four types of QuickSorts sorting
one million records

Pointer

Key/Pointer

Key-Prefix/Pointer

Record

Generate Pointer Array QuickSort

0.08

1.07

0.84

12.74

4.02

3.32

20.47

Output I Total

3.52 16.34

3.41 8.50

3.41 7.57

2.49 22.96

cost (Tsukerman, 1986). Key conditioning extracts the sort key from each record,
transforms the result to allow efficient byte or word compares, and stores it with
the record as an added field. This often is done for keys that involve floating
point numbers, signed integers, or character strings with non-standard collating
sequences. Comparison operators then do byte-level or word compares on the
conditioned strings. Conditioned keys can be stored in the Key/Pointer array.

Key-Prefix/Pointer

h,~, 100-byte record I

A million-entry array of 4-byte key prefixes and record pointers is generated and
QuickSorted. The QuickSort loop checks for the case where the key prefixes are
equal and, if so, compares the keys in the records. If the key-prefixes are not equal,
the keys in the records do not need to be referenced--hence, the medium-width
pointer arrow.

Record

I lO0-byte record]

A million-record array of records is QuickSorted in place via exchanges of 100-byte
records.

The CPU times for these four QuickSorts on a 150 Mhz Alpha AXP machine
(in seconds) are given in Table 2 and Graph 2. The time needed to generate the
Pointer array is so small that it barely appears on the graph. The Key/Pointer and
Key-Prefix/Pointer arrays take significantly longer to generate because the key values
in the record array must be read. This amounts to one cache miss per record to
generate the Key-Prefix/Pointer array, and slightly more for the Key/Pointer array
since the 100-byte records are not aligned on cache line boundaries. The QuickSort
times for Key/Pointer and Key-Prefix/Pointer are relatively small because the record
array is not accessed during this step, whereas the Pointer QuickSort must access

VLDB Journal 4(4) Nyberg: AlphaSort 613

Graph 2. QuickSort CPU times (in seconds)

Pointer"

Key/Pointer"

Pref ix /Pointer"

Record"

I E] Gen Ptr • quickSort • Output

=

I I I I I
0 S 10 15 Z0 25

the record array to resolve key comparisons. The Record QuickSort must not only
reference the 100 MB record array, but modify it as well.

During the output phase, Pointer, Key/Pointer and Key-Prefix/Pointer all take
the same approximate time to reference the 100 MB record array in sorted order.
Since the records are referenced in a pseudo-random fashion, and are not aligned
on cache line boundaries, some of the data brought into the cache is not referenced
by the processor. This results in additional cache misses. The Record QuickSort
output phase takes less time, since the record array is accessed linearly, resulting in
the minimum number of cache misses. The linear access also reduces the number
of TLB misses.

The optimal QuickSort depends on the record and key lengths, and on the key
distributions. It also depends on the size of the data relative to the cache size, but
typically the data is much larger than the cache.

For long records, Key/Pointer or Key-Prefix/Pointer are the fastest. The risk of
using a key-prefix is that, depending on the distribution of key values, it may not
be a good discriminator of the key. In that case, the comparison must go to the
records, and Key-Prefix/Pointer sort degenerates to Pointer sort. Baer and Lin (1989)
made similar observations. They recommended that keys be prefix compressed into
codewords so that the codeword/pointer QuickSort would fit in cache. We did not
use codewords because they cannot be used to merge the record pointers.

If the record is short (i.e., less than 16 bytes), record sort has the best cache
behavior. It has no setup time, low storage overhead, and leaves the records in
sorted order. The last advantage is especially important for small records, because
the pointer-based sorts must access records in a pseudo-random fashion to produce
the sorted output stream.

To summarize, use record sort for small records. Otherwise, use a key-prefix
sort where the prefix is a good discriminator of the keys, and where the pointer
and prefix are cache line aligned. Key-prefix sort gives good cache behavior and,

614

for the Datamation benchmark, gives more than a 3:1 CPU speedup over record
sort.

For AlphaSort, we used a Key-Prefix QuickSort. It had lower memory require-
ments. It also exploited 64-bit loads and stores to manipulate Key-Prefix/Pointer
pairs. This sped up the inner loop of the QuickSort. AlphaSort's time to copy
records to output buffer was dominated by cache miss times, and could not be
reduced.

Once the key-prefix/pointer runs have been QuickSorted, AlphaSort uses a
tournament sort to merge the runs. In a one-pass sort, there are typically between
ten and 100 runs--the optimal run size balances the time lost waiting for the first
run plus time lost QuickSorting the last run, against the time to merge another run
during the second phase.

The merge results in a stream of in-order record pointers. The pointers are
used to gather (copy) the records into the output buffers. Since the records do not
fit in the board cache and are referenced in a pseudo-random fashion, the gathering
has terrible cache and TLB behavior. More time is spent gathering the records than
is consumed in creating, sorting, and merging the key-prefix/pointer pairs. When a
full buffer of output data is available, it is written to the output file.

5. Shared-Memory Multiprocessor Optimizations

DEC AXP systems may have up to six processors on a shared memory. When
running on a multiprocessor, AlphaSort creates a process to use each processor.
The first process is called the root, the other processes are called workers. The root
requests affinity to CPU zero, the i'th worker process requests affinity to the i'th
processor. Affinity minimizes the cache faults and invalidations that occur when a
single process migrates among multiple processors.

The root process creates a shared address space, opens the input files, creates
the output files, and performs all IO operations. The root initiates the worker
processes, and coordinates their activities. In its spare time, the root performs
sorting chores.

The workers start by requesting processor affinity and attaching to the address
space created by the root. When this is done, the workers sweep through the address
space touching pages. This causes the VMS operating system to allocate physical
pages for the shared virtual address space. VMS zeroes the allocated pages for
security reasons. Zeroing a 1 GB address space takes 12 CPU seconds, and this
chore has terrible cache behavior. The workers perform it in parallel while the root
opens and reads the input files.

The root process breaks up the sorting work into independent chores that can be
handled by the workers. Chores during the QuickSort phase consist of QuickSorting a
data run. Workers generate the arrays of key-prefix pointer pairs, and then QuickSort
them. During the merge phase, the root merges all the (key-prefix, pointer) pairs to
produce a sorted string of record pointers. Workers perform the memory-intensive

VLDB Journal 4(4) Nyberg: AlphaSort 615

chores of gathering records into output buffers, using the record pointer string as
a guide. The root writes the sorted record streams to disk.

6. Solving the Disk Bottleneck Problem

IO activity for a one-pass sort is purely sequential; sort reads the sequential input
file, and sequentially creates and writes the output file. The first step in making a
fast sort is to use a parallel file system to improve disk read-write bandwidth.

No matter how fast the processor, a 100MB external sort using a single 1993-
vintage SCSI disk takes about one minute of elapsed time. This one-minute barrier
is created by the 3 MB/s sequential transfer rate (bandwidth) of a single commodity
disk. We measured both the OpenVMS Sort utility and AlphaSort to take a little
under one minute when using one SCSI disk. Both sorts are disk-limited. A faster
processor or faster algorithm would not sort much faster because the disk reads at
about 4.5 MB/s, and writes at about 3.5 MB/s. Thus, it takes about 25 seconds to
read the 100 MB, and about 30 seconds to write the 100 MB answer file} Even on
mainframes, sort algorithms like Syncsort and DFsort are limited by this one-minute
barrier, unless disk or file striping is used.

Disk striping spreads the input and output file across many disks (Kim, 1986).
This allows parallel disk reads and writes to give the sum of the individual disk
bandwidths. We investigated both hardware and software approaches to striping.

The Genroco disk array controller allows up to eight disks to be configured as
a stripe set. The controller and two fast IPI drives offer a sequential read rate of
15 MB/s (measured). We used three such Genroco controllers, each with two fast
IPI disk drives, in some of the experiments reported below.

Software file striping spreads the data across commodity SCSI disks that cost
about $2,000 each, hold about 2 GB, read at about 5 MB/s, and write at about
3 MB/s. Eight such disks and their controllers are less expensive than a super-
computer disk, and are faster. We implemented a file striping system layered above
the OpenVMS file system. It allows an application to spread (stripe) a file across
an array of disks. A striped file is defined by a stripe-definition file, a normal file
whose name has the suffix, ".str." For every file in the stripe, the definition file
includes a line with the file name and number of file blocks per stride for the file.
Stripe opens or creates are performed with a call to S t r i p e 0 p e n () , which works
like a normal open/create, except that, if the specified file is a stripe definition file,
then all files in the stripe are opened or created.

The file striping code bandwidth growth is near-linear as the array grows to
nine controllers and thirty-six disks. Bottlenecks appear when a controller saturates;

2. SCSI-II discs support write cache enabled (WCE), which allows the controller to acknowledge a write
before the data is on disc. We did not enable WCE because commercial systems demand disk integrity. If
WCE were used, 20% fewer discs would be needed.

616

Figure 4. Three Disks Being Read in Parallel to Make Striped File

Each disk contributes a track of information to the stride. The reads proceed in parallel so
that one can read at the sum of the speeds of the individual disks.

but, with enough controllers, the bus, memory, and OS can handle the IO load.
Soft SCSI arrays are less expensive than a special disk array, and they have more

bandwidth than a single controller or port. File striping is more flexible than disk
striping, since the stripe width (number of disks) can be chosen on a file-by-file basis
rather than dedicating a set of disks to a fixed stripe set at system generation time.
Even with hardware disk arrays, one must stripe across arrays to get bandwidths
beyond the limit of a single array. So, software striping must be part of any solution.

Table 3 compares two arrays: (1) a large array of inexpensive disks and controllers,
and (2) a smaller array of high-performance disks and controllers. The many-slow
array has slightly better performance and price performance for the same storage
capacity. These are 1993 prices.

It might appear that striping has considerable overhead, since opening, creating,
or closing a single logical file translates into opening, creating, or closing many stripe
files. Striping does introduce overhead and delays. S t r ipe0pen() needs to call
the operating system once to open the descriptor, and then N times to open the N
file stripes. Fortunately, asynchronous operations allow the N steps to proceed in
parallel, so there is little increase in elapsed time. With 8-wide striping, the fixed
overhead for AlphaSort on a 200 Mhz processor is:

Load Sort and process parameters

Open stripe descriptor and eight input stripes

Create and open descriptor and eight output stripes

Close 18 input and output files and descriptors

Return to shell

.11

.02

.01

.01

.05

Total Overhead

This is a relatively small overhead.

.19 seconds

VLDB Journal 4(4) Nyberg: AlphaSort 617

Table 3. Two different disk arrays used in the benchmarks

drives

controllers

capacity

disk speed

(measured)

stripe read rate

stripe write rate

list price (1993),

includes cabinets

many-slow RAID few-fast RAID

36 RZ26

9 SCSI (kzmsa)

36 GB

1.8 MB/s

12 RZ28 -k- 6 Velocitor

4 SCSI -t- 3 IPI-Genroco

36 GB

SCSI: 4MB/s

IPI: 7 MB/s

64 MB/s

49 MB/s

85 kS

52 MB/s

39 MB/s

122 k$

To summarize, AlphaSort overcomes the IO bottleneck problem by striping data
across many disks to get sufficient IO bandwidth. Asynchronous (NoWait) operations
open the input files and create the output files in parallel. Triple buffering the
reads and writes keeps the disks transferring at their spiral read and write rates.
Striping eight ways provides a read bandwidth of 27 MB/s and a write bandwidth of
about 22 MB/s. This puts an 8-second limit on our sort speed. Later experiments
extended this to 36-way striping and 64 MB/s of bandwidth.

A key IO question is when to use a one-pass or two-pass sort. When should
the QuickSorted intermediate runs be stored on disk? A two-pass sort uses less
memory, but uses twice the disk bandwidth, since intermediate runs must be written
out to scratch disks during the input phase, and read back during the output phase.

Even for surprisingly large sorts, it is economical to perform the sort in one
pass. The question becomes: What is the relative price of those scratch disks and
their controllers versus the price of the memory needed to allow a one-pass sort?
Using 1993 prices for Alpha AXP, a disk and its controller costs about $2,400 (see
Table 3). Striping requires 16 such scratch disks dedicated for the entire sort, for
a total price of $36,000. A one-pass main memory sort uses a hundred megabytes
of RAM. At $100/MB, this totals $10,000. It is 360% more expensive to buy the
disks for a two-pass sort than to buy 100 MB of memory for the one-pass sort. The
computation for a 1 GB sort suggests that it would be 15% less expensive to buy
36 extra disks, than to buy the 1 GB of memory needed to do the 1 GB sort (see
Table 3).

Multi-gigabyte sorts should be done as two-pass sorts, but for data lengths
much smaller than that, one-pass sorts are more economical. In particular, the
Datamation sort benchmark should be done in one pass.

618

7. AlphaSort Measurements on Several Platforms

With these ideas in place, let's walk through the 9.11 second AlphaSort of one
million hundred-byte records on a uniprocessor. The input and output files are
striped across sixteen disk drives.

AlphaSort first opens and reads the descriptor file for the input stripe set.
Each of the 16 input stripe files is opened asynchronously with a 64 KB stride size.
The open call returns a descriptor indicating a 100 MB input file. Asynchronously,
AlphaSort requests OpenVMS to create the 100 MB striped output file, and to
extend the process address space by 110 MB. AlphaSort immediately begins reading
the 100 MB input file into memory using triple buffering.

It is now 140 milliseconds into the sort. As each stride-read completes, AlphaSort
issues the next read. AlphaSort is completely IO limited in this phase.

When the first one-MB stripe of records arrives in memory, AlphaSort extracts
the 8-byte (record address, key-prefix) pairs from each record. These pairs are
streamed into an array. When the array grows to 100,000 records, AlphaSort
QuickSorts it. This QuickSort is entirely cache resident. When it completes, the
processor waits for the next array to be built, so that it too can be QuickSorted.
The pipeline of steps (read-disk array-build then QuickSort) is disk bound at a data
rate of about 27 MB/s.

The read of the input file completes at the end of 3.87 seconds. AlphaSort
must then sort the last 100,000 record partition (about .12 seconds). During this
brief interval, there is no IO activity.

Now AlphaSort has ten sorted runs produced by the ten QuickSort steps. It is
now 4 seconds into the sort, and can start writing the output to the striped output
file. Meanwhile, it issues Close() on all stripes of the input file.

AlphaSort runs a tournament, scanning the ten QuickSorted runs of the (key-
prefix, pointer) pairs in sequential order, picking the minimum key-prefix among the
runs. If there is a tie, it examines the full keys in the records. The winning record
is copied to the output buffer. When a full stripe of output buffer is produced,
StripeWrite () is called to write the sorted records to the target stripe file in disk.
This merge-gather runs more slowly than the QuickSort step, because many cache
misses are incurred in gathering the records into the output buffers. It takes almost
four seconds of processor and memory time (the use of multiprocessors speeds this
merge step). This phase is also disk limited, taking 4.9 seconds.

When the tournament completes, 8.8 seconds have elapsed. AlphaSort is ready to
close the output files, and to return to the shell. Closing takes about 50 milliseconds.
AlphaSort then terminates for a total time of 9.1 seconds. Of this time, 0.3 seconds
were consumed loading the program and returning to the command interpreter. The
sort time was 8.8 seconds, but the benchmark definition requires that the startup
and shutdown time be included.

Some interesting statistics about AlphaSort are (see Figure 5):

• The CPU time is 7.9 seconds.

VLDB Journal 4(4) Nyberg: AlphaSort 619

Figure 5. Where the time goes: Clock ticks used by each
AlphaSort component

tiSS

This pie chart shows where the time is going on the DEC 10000 AXP 9-second sort. Even
though AlphaSort spends a great effort on efficient use of cache, the processor spends
most of its time waiting for memory. The vast majority of such waits are for data, and the
majority of the time is spent waiting for main memory. The low cost of VMS to launch the
sort program, open the files, and move 200 MB through the IO subsystem is impressive.
Not shown is the 4% of stalls due to branch mispredictions.

1.1 seconds is pure disk wait. Most of the disk wait is in startup and shutdown.

• 6.0 seconds of the CPU time is in the memory-to-memory sort.

• 1.9 seconds are used by OpenVMS AXP to: Load the sort program; allocate
and initialize a 100MB address space; open 17 files; create and open 17
output files and allocate 100MB of disk on 16 drives; close all these files;
and return to command interpreter and print a time stamp.

• Of the 7.9 seconds of CPU time, the processor is issuing instructions 29%
of the time. Most of the rest of the time it is waiting for a cache miss to
be serviced from main memory (56%). SPEC benchmarks have much better
cache-hit ratios because the program and data fit in cache. Database systems
executing the TPC-A benchmark have worse cache behavior, because they
have larger programs and so have more I-cache misses.

• The instruction mix is: Integer (51%), Load (15%), Branch (15%), Store
(12%), Float (0%), and PAL (9%), handling mostly address translation buffer
(DTB) misses. 8.4% of the processor time is spent dual issuing.

• The processor chip hardware monitor indicates that 29% of the clocks execute
instructions, 4% of the stall time is due to branch mispredictions, 11% is

620

Table 4. Performance and price/performance of 100MB datamation
sort benchmarks on Alpha AXP systems

System

7000 3x5ns

4000 2x6.25ns

7000 lx5ns

4000 lx6.25ns

3000 lx6.6ns

CPU

&clock cntrllrs disks

7 fast-SCSI

4 SCSI,3 IPI

6 fast-SCSl

4 fast-SCSl

5 SCSI

28 RZ26

12scsi + 6ipi

16 RZ74

12 RZ26

10 RZ26

(MB) time(s) totalS diskS S/sort

256 7.0 $312k $123k $0.014

256 8.2 $312k S 9 5 k $0.016

256 9.1 $247k S 6 5 k $0.014

384 11.3 $166k $48k $0.014

256 13.7 $97k $48k $0.009

(October 1993). The disk price column includes disk and controller prices.

I-stream misses (4% I-to-B, and 7% B-to-main), and 56% are D-stream
misses (12% D-to-B and 44% B-to-main).

• The time spent dual-issuing is 8%, compared to 21% spent on single-issues.
Over 40% of instructions are dual issued.

AlphaSort benchmarks on several AXP processors are summarized in Table 4.
All of these benchmarks set new performance and price/performance records. The
AXP-3000 is the price-performance leader. The DEC AXP 7000 is the performance
leader. As spectacular as they are, these numbers are improving. Software is making
major performance strides as it adapts to the Alpha AXP architecture. Hardware
prices are dropping rapidly.

To summarize, AlphaSort optimizes IO by using host-based file striping to exploit
fast but inexpensive disks and disk controllers. No expensive RAID controllers are
needed. It uses lots of RAM memory to achieve a one-pass sort. It improves the
cache hit ratio by QuickSorting (key-prefix, pointer) pairs if the records are large.
If multiprocessors are available, AlphaSort breaks the QuickSort and Merge jobs
into smaller chores that are executed by worker processors, while the root process
performs all IO.

8. Ideas for Reducing Cache Misses in General Programs

In spite of our success in reducing cache misses in an external sort, we do not
advocate attempting similar optimizations for all programs. In the general case the
program's instructions and data may effectively fit in the cache, and there is no
significant improvement to be made. For instance, most of the SPEC benchmark
programs fit in the board cache.

A program that doesn't fit in the cache will suffer from either instruction or
data cache misses. The most promising technique for reducing instruction cache

VLDB Journal 4(4) Nyberg: AlphaSort 621

Figure 6. Example of a line-list

[::3-- M

=Iii!!!!i!il

H =

Eiiii il i llilililil
Each line structure contains a pointer and up to 7 elements. The last line structure contains
only 2 elements. This is indicated by having its pointer point to the last element in the line,
rather than a subsequent line structure.

misses is to have the compiler cluster the frequently used basic blocks together
based on run-time statistics. With AlphaSort, instruction cache misses were not a
problem, due to the small main loop.

Reducing data cache misses can be an intractable problem if the data references
are made by a very large number of instructions. For instance, code to execute the
TPC-A benchmarks is usually characterized by a very large number of basic blocks
that do not loop. In this environment, it is very difficult to understand the data
access patterns, let alone modify them to reduce cache misses.

In contrast, sorting belongs to a class of programs that make a very large number
of data accesses from a small amount of looping code. In this environment, it is
feasible to control data accesses via algorithm or data structure modifications.

We have already discussed the clustering of tournament tree nodes together in
a cache line. Another data structure for reducing cache misses we call a line-list.
This is a variation of a link-list where each structure has the size of a cache line
(or multiple cache lines), and is aligned on a cache line boundary. It can make
sense to use this data structure in environments where items are always added to
the ends of lists, and removed from lists in a sequential fashion.

An example of line-list is given in Figure 6. If the elements being stored are 4
bytes in size, and the cache line size is 32 bytes, the size of each line-list structure
would be 32 bytes and could hold 7 4-byte elements. The last line-list structure
in a list might hold fewer than the maximum number of elements. This could
be indicated by having its pointer point to the last element in the line (this also
indicates the end of the line-list).

622

There are potential fragmentation problems with line-lists. Memory space could
be wasted if most line structures contain only a few elements. However this situation
would not occur if the number of line-lists is small compared to the number of
line structures. Line-lists could, in fact, improve memory utilization by reducing the
number of pointers per element. It makes sense to use a line-list if the data being
accessed is much bigger than the cache. Line-lists require slightly more instructions
than the traditional, single-item link-lists. If they save cache misses, this is a good
tradeoff.

Line-lists in memory are somewhat analogous to files on disks (although files
also have a hierarchical structure). Both ~re designed to reduce accesses to a
particular level of the memory hierarchy by reading blocks at time. Similarly, the
idea of clustering tournament nodes in cache lines is similar to B-trees (although
the former is designed to be static in structure while the latter is dynamic). There
may be other main memory data structures that can be adapted from disk data
structures to reduce cache misses. However, not every technique pertinent to disk
IO or virtual memory is necessarily pertinent to reducing data cache misses. Cache
misses are a much smaller penalty than a disk IO. Hence, one needs to be much
more cognizant of the number of additional instructions required to reduce data
cache misses. Disk IO penalties are so high that this tradeoff is rarely considered.

9. New Sort Metrics: MinuteSort and PennySort

The original Datamation benchmark has outlived its usefulness. When it was defined,
100 MB sorts were taking ten minutes to one hour. More recently, workers have
been reporting times near one minute. Now the mark is seven seconds. The
next significant step is 1 second. This will give undue weight to startup times.
Already, startup and shutdown is over 25% of the cost of the 7-second sort. So,
the Datamat ion Sort benchmark is a startup/shutdown benchmark rather than an
IO benchmark.

To maintain its role as an IO benchmark, the sort benchmark needs redefinition.
We propose the following:

MinuteSort:
• Sort as much as you can in one minute.

• The input file is resident on external storage (disk).

• The input consists of 100-byte records (incompressible).

• The first ten bytes of each record is a random key.

• The output file is a sorted permutation of the input.

• The input and output files must be readable by a program using conventional
tools (a database or a record manager.)

The elapsed time includes the time from calling the sort program to the time that
the program returns to the caller. This total time must be less than one minute. If

VLDB Journal 4(4) Nyberg: AlphaSort 623

Sort is an operating system utility, then it can be launched from the command shell.
If Sort is part of a database system, then it can be launched from the interactive
interface of the DBMS. MinuteSort has two metrics:

1. Size (bytes): the number of gigabytes you can sort in a minute of elapsed
time.

2. Price-performance (S/sorted GB): To get a price-performance metric, the
price is divided by the sort size (in gigabytes). The price of a minute is the
list price of the benchmark hardware and operating system divided by one
million.

This metric includes an Nlog(N) term (the number of comparisons), but in the
range of interest range (N > 23o), log(N) grows slowly compared to N. As N
increases by a factor of 1,000, log(N) increases by a factor of 1.33.

A three-processor DEC 7000 AXP sorted 1.08 GB in one minute. The 1993 price
of this system (36 disks, 1.25 GB of memory, 3 processors, and cabinets) is $512k.
So the 1.1 GB MinuteSort would cost 51 cents (= $512k/1M). The MinuteSort price-
performance metric is the cost over the size (.51/1.1) = $0.47/GB. Today, AlphaSort
on a DEC 7000 AXP has a 1.1 GB size and a $0.47/GB price/performance.

MinuteSort uses a rough 3-year price, and omits the price of high-level software
because: (1) this is a test of the machine's IO subsystem, and (2) most of the
winners will be "special" programs that are written just to win this benchmark.
Most university software is not for sale (see Table 1). There are 1.58 million
minutes in 3 years, so dividing the price by 1M gives a slight (30%) inflator for
software and maintenance. Depreciating over 3 years, rather than the 5-year span
adopted by the TPC, reflects the new pace of the computer business.

Minute sort is aimed at super-computers. It emphasizes speed rather than price
performance. It reports price as an afterthought. This suggests a dual benchmark that
is fixed-price, rather than fixed-time: PennySort. PennySort is just like MinuteSort,
except that it is limited to using one penny's worth of computing. Recall that each
minute of computer time costs about one millionth of the system list price. So
PennySort would allow a million dollar system to sort for 1/100 minute, while a
$10,000 system could sort for one minute. PCs could win the PennySort benchmark.

Penny Sort:

• Sort as much as you can for less than a penny.

• Otherwise, it has the same rules as MinuteSort.

PennySort reports two metrics:

1. Size (bytes): the number of gigabytes you can sort for a penny.

2. Elapsed Time: The elapsed time of the sort (reported in to the nearest
millisecond).

624

Given the cost formula, PennySort imposes the following time limit in minutes:

104

system list price ($)

MinuteSort and PennySort are an interesting contrast to the Datamation sort
benchmark. Datamation sort was fixed size (100 MB); thus, it did not scale with
technology. MinuteSort and PennySort scale with technology because they hold
end-user variables constant (time or price), and allow the problem size to vary.

Industrial-strength sorts will always be slower than programs designed to win the
benchmarks. There is a big difference between a program like AlphaSort, designed
to sort exactly the Datamation test data, and an industrial-strength sort that can
deal with many data types, complex sort keys, and many sorting options. AlphaSort
slowed down as it was productized in Rdb and in OSF/1 HyperSort.

This suggests that there be an additional distinction, a street-legal sort that
restricts entrants to sorts sold and supported by someone. Much as there is an
Indianapolis Formula-1 car race run by specially built cars, and a Daytona stock-car
race run by production cars, we propose that there be an Indy category and a
Daytona category for both MinuteSort and PennySort. This gives four benchmarks
in all:

Indy-MinuteSort: A Formula-1 sort where price is no object.
Daytona-MinuteSort: A stock sort where price is no object.
Indy-PennySort: A Formula-1 biggest-bang-for-the buck sort.
Daytona-PennySort: A stock sort giving the biggest-bang-for-the buck.

Super-computers will probably win the MinuteSort, and workstations will win the
PennySort trophies.

The past winners of the Datamation sort benchmark (Barclay, Baugsto, Cve-
tanovic, DeWitt, Gray, Naughton, Nyberg, Schneider, Tsukerman, and Weinberger)
have formed a committee to oversee the recognition of new sort benchmark results.
At each annual SIGMOD conference, starting in 1994, the committee will grant
trophies to the best MinuteSorts and PennySorts in the Daytona and Indy categories
(four trophies in all). You can enter the contest or poll its status by contacting one
of the committee members.

10. Summary and Conclusions

AlphaSort is a new algorithm that exploits the cache and IO architectures of
commodity processors and disks. It runs the standard sort benchmark in seven
seconds. That is four times better than the unpublished record on a Cray Y-MP,
and eight times faster than the 32-CPU 32-disk Hypercube record (Yamane and
Take, 1988; DeWitt et al., 1992). It can sort 1.1 GB per minute using multiprocessors.
This demonstrates that commodity microprocessors can perform batch transaction

VLDB Journal 4(4) Nyberg: AlphaSort 625

processing tasks. It also demonstrates speedup using multiple processors on a shared
memory.

The Alpha AXP processor can sort VERY fast, but the sort benchmark requires
reading 100 MB from disk, and writing 100 MB to disk (it is an IO benchmark).
The reason for including the Sort benchmark in the Datamation test suite was to
measure "how fast the real IO architecture is" (Anon-et-al., 1989).

By combining many fast, inexpensive SCSI disks, the Alpha AXP system can
read and write disk data at 64 MB/s. AlphaSort implements simple host-based
file striping to achieve this bandwidth. With this striping, one can balance the
processor, cache, and IO speed. The result is a breakthrough in both performance
and price-performance.

In part, AlphaSort's speed comes from efficient compares, but most of the CPU
speedup comes from efficient use of CPU cache. The elapsed-time speedup comes
from parallel IO performed by an application-level striped file system.

Our laboratory's focus is on parallel database systems. AlphaSort is part of
our work on loading, indexing, and searching terabyte databases. At a gigabyte-
per-minute, it takes more than 16 hours to sort a terabyte. We intend to use many
processors and many-many disks to handle such operations in minutes rather than
hours. A terabyte-per-minute parallel sort is our long-term goal (not a misprint!).
This will require hundreds of fast processors, gigabytes of memory, thousands of
disks, and a 20 GB interconnect. Thus, this goal is five or ten years off.

Acknowledgments

An abridged version of this article appeared in the ACM SIGMOD'94 Proceedings.
This work was sponsored by Digital Equipment Corporation.

A1 Avery encouraged us and helped us get access to equipment. Doug Hoeger
gave us advice on OpenVMS sort. Ken Bates provided the source code of a
file striping prototype he created five years ago. Dave Eiche, Ben Thomas, Rod
Widdowson, and Drew Mason gave us good advice on the OpenVMS AXP IO
system. Bill Noyce and Dick Sites gave us advice on AXP code sequences. Bruce
Fillgate, Richie Lary, and Fred Vasconcellos gave us advice and help on disks and
loaned us some RZ74 disks to do the tests. Steve Holmes and Paline Nist gave
us access to systems in their labs and helped us borrow hardware. Gary Lidington
and Scott Tincher helped get the excellent DEC 4000 AXP results. Joe Nordman
of Genroco provided us with fast IPI disks and controllers for the DEC 4000 AXP
tests. The referees for both versions of this article gave us many valuable suggestions
and comments.

References
Anon-et-al. A measure of transaction processing power. Datamation, 31(7):112-118,

1985. Also in: Stonebraker, M.J., ed. Readings in Database Systems. San Mateo,
CA: Morgan Kaufmann, 1989.

626

Baer, J.L. and Lin, Y.B. Improving Quicksort performance with codeword data
structure. IEEE Transactions on Software Engineering, 15(5):622-631, 1989.

Baugsto, B.A.W. and Greipsland, J.E Parallel sorting methods for large data volumes
on a hypercube database computer. Proceedings of the Sixth International Workshop
on Database Machines, DeauviUe, France, 1989.

Baugsto, B.A.W., Greipsland, J.E, and Kamerbeek, J. Sorting large data files on
POMA. Proceedings of CONPAR-9OVAPP W, Zurich, 1990.

Beck, M., Bitton, D., and Wilkenson, W.K. Sorting large files on a backend multi-
processor. IEEE Transactions on Computers, V, 37(7):769-778, 1988.

Bitton, D. Design, analysis and implementation of parallel external sorting algo-
rithms. Ph.D. Thesis, University of Wisconsin, Madison, WI, 1981.

Conner, W.M. Offset value coding. IBM Technical Disclosure Bulletin, 20(7):2832-
2837, 1977.

Cvetanovic, Z. and Bhandarkar, D. Characterization of Alpha AXP performance
using TP and SPEC workloads. Proceedings of the Twenty-First International Sym-
posium on Computer Architecture, Chicago, 1994.

DeWitt, D.J., Naughton, J.E, and Schneider, D.A. Parallel sorting on a shared-
nothing architecture using probabilistic splitting. Proceedings of the First Interna-
tional Conference on Parallel and Distributed Information Systems, Los Alamitos,
NM, 1992.

Graefe, G. Parallel external sorting in Volcano. University of Colorado Computer
Science Technical Report 459, June, 1990.

Graefe, G. and Thakkar, S.S. Tuning a parallel sort algorithm on a shared-memory
multiprocessor. Software Practice and Experience, 22(7):495, 1992.

Gray, J., ed. The Benchmark Handbook for Database and Transaction Processing Sys-
tems. San Mateo, CA: Morgan Kaufmann, 1991.

Kaivalya, D. The SPEC benchmark suite. In: The BenchmarkHandbookforDatabase
and Transaction Processing Systems, Second Edition. San Mateo, CA: Morgan
Kaufmann, 1993.

Kim, M.Y. Synchronized disk interleaving. IEEE TOCS, 35(11):978-988, 1986.
Kitsuregawa, M., Yang, W., and Fushimi, S. Evaluation of an 18-stage pipeline hard-

ware sorter. Proceedings of the Sixth International Workshop on Database Machines,
Deauville, France, 1989.

Knuth, D.E. Sorting andSearching, The Art of Computer Programming, Reading, MA:
Addison Wesley, 1973.

Lorie, R.A. and Young, H. C. A low communications sort algorithm for a parallel
database machine. Proceedings of the Fifteenth VLDB, Amsterdam, 1989.

Lorin, H. Sorting. Englewood Cliffs, NJ: Addison Wesley, 1974.
Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., Lomet, D. AlphaSort: A RISC

machine sort. Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Minneapolis, MN, 1994.

VLDB Journal 4 (4) Nyberg: AlphaSort 627

Salzberg, B., Tsukerman, A., Gray, J., Stewart, M., Uren, S., Vaughn, B. FastSort:
An external sort using parallel processing. Proceedings of SIGMOD, Atlantic City,
NJ, 1990.

Tsukerman, A. FastSort: An external sort using parallel processing. Tandem Systems
Review, 3(4):57-72, 1986.

Weinberger, EJ. Private communication, 1986.
Yamane, Y. and Take, R. Parallel partition sort for database machines. In: Kit-

suregawa, M. and Tanaka, H., eds. Database Machines and Knowledge Based
Machines. Boston: Kluwar Academic Publishers, 1988, pp. 117-130.

