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Abstract. A new sort algorithm, called AlphaSort, demonstrates that commodity 
processors and disks can handle commercial batch workloads. Using commod- 
ity processors, memory, and arrays of SCSI disks, AlphaSort runs the industry- 
standard sort benchmark in seven seconds. This beats the best published record 
on a 32-CPU 32-disk Hypercube by 8:1. On another benchmark, AlphaSort sorted 
more than a gigabyte in one minute. AlphaSort is a cache-sensitive, memory- 
intensive sort algorithm. We argue that modern architectures require algorithm 
designers to re-examine their use of the memory hierarchy. AlphaSort uses clus- 
tered data structures to get good cache locality, file striping to get high disk band- 
width, QuickSort to generate runs, and replacement-selection to merge the runs. 
It uses shared memory multiprocessors to break the sort into subsort chores. Be- 
cause startup times are becoming a significant part of the total time, we propose 
two new benchmarks: (1) MinuteSort: how much can you sort in one minute, and 
(2) PennySort: how much can you sort for one penny. 
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1. Introduction 

In 1985, an in formal  group of  25 da tabase  exper ts  f rom a dozen  compan ie s  and  
univers i t ies  def ined  th ree  basic benchmarks  to measu re  the  t ransac t ion  process ing  

p e r f o r m a n c e  of  c o m p u t e r  systems. 

1. DebitCredit: A marke t -ba ske t  of  da tabase  reads  and  writes,  t e rmina l  IO,  and  
t ransac t ion  commits  to measu re  on- l ine  t ransac t ion  process ing  p e r f o r m a n c e  
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(OLTP). This benchmark evolved to become the TPC-A transactions-per- 
second and dollars-per-transaction-per-second metrics (Gray, 1991). 

Scan: Copy one thousand 100-byte records from disk-to-disk with transaction 
protection. This simple mini-batch transaction measures the ability of a file 
system or database system to pump data through a user application. 

Sort: A disk-to-disk sort of one million, 100-byte records. This has become 
the standard test of batch and utility performance in the database community 
(Bitton, 1981; Tsukerman, 1986; Weinberger, 1986; Beck et al., 1988; Bagusto 
and Greipsland, 1989; Lorie and Young, 1989; Bagusto et al., 1990; Graefe, 
1990; Gray, 1991; DeWitt et al., 1992; Graefe and Thakkar, 1992). Sort tests 
the processor's, IO subsystem's, and operating system's ability to move data. 

DebitCredit is a simple interactive transaction. Scan is a mini-batch transaction. 
Sort is an IO-intensive batch transaction. Together they cover a broad spectrum of 
basic commercial operations. 

2. The Sort Benchmark and Prior Work on Sort 

The Datamation article (Anon-et-al., 1985) defined the sort benchmark as: 

• Input is a disk-resident file of one million 100-byte records. 
• Records have 10-byte key fields and can't be compressed. 
• The input record keys are in random order. 
• The output file must be a permutation of the input file sorted in key ascending 

order. 

The performance metric is the elapsed time of the following seven steps: 

(1) Launch the sort program. 
(2) Open the input file and create the output file. 
(3) Read the input file. 
(4) Sort the records in key-ascending order. 
(5) Write the output file. 
(6) Close the files. 
(7) Terminate the program. 

The implementation may use all the "mean tricks" that are typical of oper- 
ating systems utilities. It can access the files via low-level interfaces; it can use 
undocumented interfaces; and it can use as many disks, processors, and as much 
memory as it likes. Sort's price-performance metric normalizes variations in software 
and hardware configuration. The basic idea is to compute the 5-year cost of the 
hardware and software, and then prorate that cost for the elapsed time of the sort 
(Anon-et-al., 1985; Gray, 1991). A one-minute sort on a machine with a 5-year cost 
of one million dollars would cost 38 cents ($0.38). 
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Table 1. Published sort performance on the Datamation 100 MB 
benchmark in chronological order 

System Seconds S/sort(*) 

Tandem 3600 4.61 

Beck 6000 1.92 

Tsukerman + 

Tandem 980 1.25 .2 

Weinberger + 

Cray 26 1.25 7.5 

Kitsuregawa 320* 0.41 .2 

Baugsto 180 0.23 .2 

Graefe + 
Sequent 83 0.27 .5 

Baugsto 40 0.26 1 

DeWitt + 

Intel iPSC/2 58 0.37 1.0 

DEC Alpha 

AXP 7000 9.1 0.022 .4 

DEC Alpha 

AXP 4000 8.2 0.011 .2 

DEC Alpha 

AXP 7000 7 0.014 .5 

Cost MS* CPUs Disks 

2 2 2 

.1 4 4 

3 6 

1 1 

1+ 1 

16 16 

8 4 

100 100 

32 32 

1 16 

2 14 

3 28 

Reference 

Tsukerman, 

1986 

Beck, 1988 

Salzberg, 

1990 

Weingerger, 

1986 

Kitsuregawa, 

1989 

Baugsto, 

1989 

Graefe, 

1992 

Baugsto, 

1989 

Dewitt, 

1992 

Nyberg, 

1993 

Nyberg, 

1993 

Nyberg, 

1993 

Extrapolations marked by (*). Prices are estimated. 

In 1985, as reported by Tsukerman, typical systems needed 15 minutes to 
perform this sort benchmark (Bitton, 1981; Anon-et-al., 1985; Tsukerman, 1986). 
As a super-computer response to Tsukerman's efforts, Weinberger (1986) of ATF 
wrote a program to read a disk file into memory, sort it using replacement-selection 
as records arrived, and then write the sorted data to a file. This code postulated 
8-byte keys, a natural size for the Cray, and made some other simplifications. The 
disks transferred at 8 MB/s, so you might guess that it took 12.5 seconds to read 
and 12.5 seconds to write for a grand total of 25 seconds. However, there was 
about one second of overhead in setup, file creation, and file access. The result, 26 
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Graph 1. Time and cost to sort 1M records 
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The performance and price-performance trends of sorting are displayed in chronological 
order. Until now, the Cray sort was the fastest, but the parallel sorts had the best price- 
performance. 

seconds, stood as the unofficial sort speed record for seven years. It is much faster 
than the subsequently reported Hypercube and hardware sorters. 

Since 1986, most sorting efforts have focused on multiprocessor sorting, using 
either shared memory or partitioned-data designs. With an Intel Hypercube, DeWitt, 
Naughton, and Schneider (1992) reported the fastest time: 58.3 seconds using 32 
processors, 32 disks, and 224 MB of memory. Baugsto et al. (1990) mentioned a 
40-second sort on a 100-processor, 100-disk system. These parallel systems stripe 
the input and output data across all the disks (30 in the Hypercube case). They 
read the disks in parallel, performing a preliminary sort of the data at each source, 
and partition it into equal-sized parts. Each reader-sorter sends the partitions to 
their respective target partitions. Each target partition processor merges the many 
input streams into a sorted run that is stored on the local disk. The resulting 
output file is striped across the 30 disks. The Hypercube sort was two times slower 
than Weinberger's (1986) Cray sort, but it had better price-performance, since the 
machine is about seven times cheaper. 

Table 1 and Graph 1 show that, prior to AlphaSort, sophisticated hardware- 
software combinations were slower than a brute-force, one-pass, memory-intensive 
sort. Until now, a Cray Y-MP super-computer with a gigabyte of memory, a fast disk, 
and fast processors was the clear winner. But, the Cray approach was expensive. 

Weinberger's Cray-based sort used a fast processor, a fast-parallel-transfer disk, 
and lots of fast memory. AlphaSort's approach is similar, but it uses commodity 
products to achieve better price/performance. It uses fast microprocessors, corn- 
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modity memory, and commodity disks. It uses file striping to exploit parallel disks, 
and it breaks the sorting task into subtasks to utilize multiprocessors. Using these 
techniques, AlphaSort beats the Cray Y-MP in two dimensions: it is about four 
times faster, and about 100 times less expensive. 

3. Optimizing for the Memory Hierarchy 

Good external sort programs have always tried to minimize the wait for data transfers 
between disk and main memory. While this optimization is well known, minimizing 
the wait between processor caches and main memory is not as widely recognized. 
AlphaSort has the traditional optimizations but, in addition, it gets a 4:1 processor- 
speedup by minimizing cache misses. If all cache misses were eliminated, it could 
get another 3:1 speedup. 

AlphaSort is an instance of the new programming style dictated by modern 
microprocessor architectures. These processors run the SPEC benchmark very well, 
because most SPEC benchmarks fit in the cache of newer processors (Kaivalya, 1993). 
Unfortunately, commercial workloads, like sort and TPC-A, do not conveniently fit 
in cache (Cvetanovic and Bhandarkar, 1994). These commercial benchmarks stall 
the processor by waiting for memory most of the time. Reducing cache misses has 
replaced reducing instructions as the most important processor optimization. 

The need for algorithms to consider cache behavior is not a transient phe- 
nomenon. Processor speeds are projected to increase about 70% per year for many 
years to come. This trend will widen the speed gap between memory and processor 
caches. The caches will get larger, but memory speed will not keep pace with 
processor speeds. 

The Alpha AXP memory hierarchy is: 
• Registers, 

• On-chip instruction and data caches (I-cache and D-cache), 
• Unified (program and data) CPU-board cache (B-cache), 

• Main memory, 
• Disks, 
• Tape and other near-line and off-line storage (not used by AlphaSort). 

To appreciate the issue, consider the whimsical analogy in Figure 1. The scale 
on the left shows the number of clock ticks needed to get to various levels of the 
memory hierarchy (measured in 5 ns. processor clock ticks). The scale on the right 
is a more human scale, showing time based in human units (minutes). If your body 
clock ticks in seconds, then divide the times by 60. 

AlphaSort is designed to operate within the processor cache ("This Campus" 
in Figure 1). It minimizes references to memory ("Sacramento" in Figure 1). It 
performs disk IO asynchronously and in parallel---~phaSort rarely waits for disks 
("Pluto" in Figure 1). 
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Figure 1. How far away is the data? 
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A whimsical analogy between computer time and human time, as seen from San Francisco. 
The scale on the left shows the number of processor cycles needed to get to various levels 
of the memory hierarchy (measured in 5 ns. processor clock ticks). The scale on the right 
is a more human scale, showing time based in human units (minutes). 

Suppose that AlphaSort paid no attention to the cache, and that it randomly 
accessed main memory at every instruction. Then the processor would run at 
memory speed (about 2 million instructions per second), rather than the 200 million 
instructions per second it is capable of, a 100:1 execution penalty. By paying careful 
attention to cache behavior, AlphaSort is able to minimize cache misses, and run 
at 72 million instructions per second. 

This careful attention to cache memory accesses does not mean that we can 
ignore traditional disk IO and sorting issues. Rather, once the traditional problems 
are solved, one is faced with achieving speedups by optimizing the use of the memory 
hierarchy. 

4. Minimizing Cache-Miss Waits 

AlphaSort uses the following techniques to optimize its use of the processor cache: 

1. QuickSort input record groups as they arrive from disk. QuickSort has good 
cache locality. 

2. Rather than sort records, sort (key-prefix, pointer) pairs. This optimization 
reduces data movement. 
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3. The runs generated by QuickSort are merged using a replacement-selection 
tree. Because the merge tree is small, it has excellent cache behavior. The 
record pointers emerging from the tree are used to copy records from input 
buffers to output buffers. Records are only copied this one time. The copy 
operation is memory intensive. 

By comparison, OpenVMS sort uses a pure replacement-selection sort to gen- 
erate runs (Knuth, 1973). Replacement-selection is best for a memory-constrained 
environment. On average, replacement-selection generates runs that are twice as 
large as available memory, while the QuickSort runs are typically less than half of 
available memory. However, in a memory-rich environment, QuickSort is faster 
because it is simpler, makes fewer exchanges on average, and has superior address 
locality to exploit processor caching. 

Dividing the records into groups allows QuickSorting to be overlapped with 
file input. Increasing the number of groups allows for more overlap of input and 
sorting--QuickSorting cannot commence until the first group is completely read in, 
and output cannot commence until the last group is QuickSorted. But increasing 
the number of groups also increases the burden of merging them during the output 
phase. We observed that using 10 to 30 groups provided a good balance between 
these two concerns. 

The worst-case behavior of replacement-selection is very close to its average 
behavior, while the worst-case behavior of QuickSort is terrible (N2), a strong 
argument in favor of replacement-selection. Despite this risk, QuickSort is widely 
used because, in practice, it has superior performance. Bitton (1981), Beck et al. 
(1988), Baugsto et al. (1990), Graefe (1990), and DeWitt (1992) used QuickSort. 
On the other hand, Tsukerman (1986) and Weinber~er (1986) used replacement- 

, T1vl selection. IBM s DFsort and (apparently) Syncsort use replacement selection in 
conjunction with a technique called offset-value coding (OVC). We are evaluating 
OVC 1 . 

We were reluctant to abandon replacement-selection sort, because it has stability 
and it generates long runs. Our first approach was to improve replacement-selection 
sort's cache locality. Standard replacement-selection sort has terrible cache behavior, 
unless the tournament fits in cache. The cache thrashes on the bottom levels of the 
tournament. If you think of the tournament as a tree, each replacement-selection 
step traverses a path from a pseudo-random leaf of the tree to the root. The upper 
parts of the tree may be cache resident, but the bulk of the tree is not (Figure 2). 

We investigated a replacement-selection sort that clusters tournament nodes 

1. Offset-value coding of sort keys is a generalization of key-prefix-pointer sorting. It lends itself to a tour- 
nament sort (Conner, 1977; Baer and Lin, 1989). For binary data, offset value coding, like the keys of the 
Datamation benchmark, will not beat AlphaSort's simpler key-prefix sort. A distributive sort that partitions 
the key-pairs into 256 buckets based on the first byte of the key would eliminate eight of the 20 compares 
needed for a 100 MB sort. Such a partition sort might beat AlphaSort's simple QuickSort. 
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Figure 2. Replacement-selection sort vs. QuickSort 
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The tournament tree of replacement-selection sort at left has bad cache behavior, unless 
the entire tournament fits in cache. The diagram at left shows the memory references as a 
winner is removed, and a new element is added to the tournament. Each traversal of the tree 
has many cache misses at the leaves of the tree. By contrast, the QuickSort diagrammed 
on the right fits entirely in the on-board cache, and partially in the on-chip cache. 

so that most parent-child node pairs are contained in the same cache line (Figure 
3). This technique reduces cache misses by a factor of two or three. Nevertheless, 
replacement-selection sort is still less attractive than QuickSort because: 

1. The cache behavior demonstrates less locality than QuickSorts. Even when 
QuickSort runs did not fit entirely in cache, the average compare-exchange 
time did not increase significantly. 

2. Tournament sort is more CPU-intensive than QuickSort. Knuth (1973, p. 
149) calculated a 2:1 ratio for the programs he wrote. We observed a 2.5:1 
speed advantage for QuickSort over the best tournament sort we wrote. 

The key to achieving high execution speeds on fast processors is to minimize 
the number of references that cannot be serviced by the on-board cache (4MB in 
the case of the DEC 7000 AXP). As mentioned before, QuickSort's memory access 
patterns are sequential and, thus, have good cache behavior. But, even within the 
QuickSort algorithm, there are opportunities to improve cache behavior. 

We compared four types of QuickSorts, sorting a million 100-byte records in 
main memory (no disk IO). Each record contained a random key, consisting of three 
4-byte integers (a slight simplification of the Datamation benchmark). Each of the 
different QuickSort experiments ended with an output phase where the records are 
sent, one at a time, in sorted order to an output routine that verifies the correct 
order and computes a checksum. The four types of QuickSorts were as follows: 
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Figure 3. Line-clustered tournament tree 
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Within each 32-byte cache line are 3 key-prefix, record pointer pairs (8 bytes each). The 
pointers internal to each cache line, while shown in the figure, are implicit. Each line also 
includes a pointer to the parent prefix/pointer pair. 

Pointer 

[~] ~ I lO0-byte record ] 

A million-entry array of 4-byte record pointers is generated and QuickSorted. The 
records must be referenced during the QuickSort to resolve each key comparison 
(hence the wide pointer arrow), but only the pointers are moved. The records are 
sent to the output routine by following the pointers in sorted order. 

Key/Pointer 

I 12 100-byte record ] 

A million-entry array of 12-byte keys and record pointers is generated and Quick- 
Sorted. This is known as a detached key sort (Lorin, 1974). The pointers are not 
dereferenced during the QuickSort phase, because the keys are included with the 
pointers--hence, the narrow pointer arrow. 

Traditionally, detached key sorts have been used for complex keys where the 
cost of key extraction and conditioning is a significant part of the key comparison 
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Table 2. CPU times (seconds) for four types of QuickSorts sorting 
one million records 

Pointer 

Key/Pointer 

Key-Prefix/Pointer 

Record 

Generate Pointer Array QuickSort 

0.08 

1.07 

0.84 

12.74 

4.02 

3.32 

20.47 

Output I Total 

3.52 16.34 

3.41 8.50 

3.41 7.57 

2.49 22.96 

cost (Tsukerman, 1986). Key conditioning extracts the sort key from each record, 
transforms the result to allow efficient byte or word compares, and stores it with 
the record as an added field. This often is done for keys that involve floating 
point numbers, signed integers, or character strings with non-standard collating 
sequences. Comparison operators then do byte-level or word compares on the 
conditioned strings. Conditioned keys can be stored in the Key/Pointer array. 

Key-Prefix/Pointer 

h,~, 100-byte record I 

A million-entry array of 4-byte key prefixes and record pointers is generated and 
QuickSorted. The QuickSort loop checks for the case where the key prefixes are 
equal and, if so, compares the keys in the records. If the key-prefixes are not equal, 
the keys in the records do not need to be referenced--hence, the medium-width 
pointer arrow. 

Record 

I lO0-byte record ] 

A million-record array of records is QuickSorted in place via exchanges of 100-byte 
records. 

The CPU times for these four QuickSorts on a 150 Mhz Alpha AXP machine 
(in seconds) are given in Table 2 and Graph 2. The time needed to generate the 
Pointer array is so small that it barely appears on the graph. The Key/Pointer and 
Key-Prefix/Pointer arrays take significantly longer to generate because the key values 
in the record array must be read. This amounts to one cache miss per record to 
generate the Key-Prefix/Pointer array, and slightly more for the Key/Pointer array 
since the 100-byte records are not aligned on cache line boundaries. The QuickSort 
times for Key/Pointer and Key-Prefix/Pointer are relatively small because the record 
array is not accessed during this step, whereas the Pointer QuickSort must access 
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Graph 2. QuickSort CPU times (in seconds) 
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the record array to resolve key comparisons. The Record QuickSort must not only 
reference the 100 MB record array, but modify it as well. 

During the output phase, Pointer, Key/Pointer and Key-Prefix/Pointer all take 
the same approximate time to reference the 100 MB record array in sorted order. 
Since the records are referenced in a pseudo-random fashion, and are not aligned 
on cache line boundaries, some of the data brought into the cache is not referenced 
by the processor. This results in additional cache misses. The Record QuickSort 
output phase takes less time, since the record array is accessed linearly, resulting in 
the minimum number of cache misses. The linear access also reduces the number 
of TLB misses. 

The optimal QuickSort depends on the record and key lengths, and on the key 
distributions. It also depends on the size of the data relative to the cache size, but 
typically the data is much larger than the cache. 

For long records, Key/Pointer or Key-Prefix/Pointer are the fastest. The risk of 
using a key-prefix is that, depending on the distribution of key values, it may not 
be a good discriminator of the key. In that case, the comparison must go to the 
records, and Key-Prefix/Pointer sort degenerates to Pointer sort. Baer and Lin (1989) 
made similar observations. They recommended that keys be prefix compressed into 
codewords so that the codeword/pointer QuickSort would fit in cache. We did not 
use codewords because they cannot be used to merge the record pointers. 

If the record is short (i.e., less than 16 bytes), record sort has the best cache 
behavior. It has no setup time, low storage overhead, and leaves the records in 
sorted order. The last advantage is especially important for small records, because 
the pointer-based sorts must access records in a pseudo-random fashion to produce 
the sorted output stream. 

To summarize, use record sort for small records. Otherwise, use a key-prefix 
sort where the prefix is a good discriminator of the keys, and where the pointer 
and prefix are cache line aligned. Key-prefix sort gives good cache behavior and, 
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for the Datamation benchmark, gives more than a 3:1 CPU speedup over record 
sort. 

For AlphaSort, we used a Key-Prefix QuickSort. It had lower memory require- 
ments. It also exploited 64-bit loads and stores to manipulate Key-Prefix/Pointer 
pairs. This sped up the inner loop of the QuickSort. AlphaSort's time to copy 
records to output buffer was dominated by cache miss times, and could not be 
reduced. 

Once the key-prefix/pointer runs have been QuickSorted, AlphaSort uses a 
tournament sort to merge the runs. In a one-pass sort, there are typically between 
ten and 100 runs--the optimal run size balances the time lost waiting for the first 
run plus time lost QuickSorting the last run, against the time to merge another run 
during the second phase. 

The merge results in a stream of in-order record pointers. The pointers are 
used to gather (copy) the records into the output buffers. Since the records do not 
fit in the board cache and are referenced in a pseudo-random fashion, the gathering 
has terrible cache and TLB behavior. More time is spent gathering the records than 
is consumed in creating, sorting, and merging the key-prefix/pointer pairs. When a 
full buffer of output data is available, it is written to the output file. 

5. Shared-Memory Multiprocessor Optimizations 

DEC AXP systems may have up to six processors on a shared memory. When 
running on a multiprocessor, AlphaSort creates a process to use each processor. 
The first process is called the root, the other processes are called workers. The root 
requests affinity to CPU zero, the i'th worker process requests affinity to the i'th 
processor. Affinity minimizes the cache faults and invalidations that occur when a 
single process migrates among multiple processors. 

The root process creates a shared address space, opens the input files, creates 
the output files, and performs all IO operations. The root initiates the worker 
processes, and coordinates their activities. In its spare time, the root performs 
sorting chores. 

The workers start by requesting processor affinity and attaching to the address 
space created by the root. When this is done, the workers sweep through the address 
space touching pages. This causes the VMS operating system to allocate physical 
pages for the shared virtual address space. VMS zeroes the allocated pages for 
security reasons. Zeroing a 1 GB address space takes 12 CPU seconds, and this 
chore has terrible cache behavior. The workers perform it in parallel while the root 
opens and reads the input files. 

The root process breaks up the sorting work into independent chores that can be 
handled by the workers. Chores during the QuickSort phase consist of QuickSorting a 
data run. Workers generate the arrays of key-prefix pointer pairs, and then QuickSort 
them. During the merge phase, the root merges all the (key-prefix, pointer) pairs to 
produce a sorted string of record pointers. Workers perform the memory-intensive 
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chores of gathering records into output buffers, using the record pointer string as 
a guide. The root writes the sorted record streams to disk. 

6. Solving the Disk Bottleneck Problem 

IO activity for a one-pass sort is purely sequential; sort reads the sequential input 
file, and sequentially creates and writes the output file. The first step in making a 
fast sort is to use a parallel file system to improve disk read-write bandwidth. 

No matter  how fast the processor, a 100MB external sort using a single 1993- 
vintage SCSI disk takes about one minute of elapsed time. This one-minute barrier 
is created by the 3 MB/s sequential transfer rate (bandwidth) of a single commodity 
disk. We measured both the OpenVMS Sort utility and AlphaSort to take a little 
under one minute when using one SCSI disk. Both sorts are disk-limited. A faster 
processor or faster algorithm would not sort much faster because the disk reads at 
about 4.5 MB/s, and writes at about 3.5 MB/s. Thus, it takes about 25 seconds to 
read the 100 MB, and about 30 seconds to write the 100 MB answer file} Even on 
mainframes, sort algorithms like Syncsort and DFsort  are limited by this one-minute 
barrier, unless disk or file striping is used. 

Disk striping spreads the input and output file across many disks (Kim, 1986). 
This allows parallel disk reads and writes to give the sum of the individual disk 
bandwidths. We investigated both hardware and software approaches to striping. 

The Genroco disk array controller allows up to eight disks to be configured as 
a stripe set. The controller and two fast IPI drives offer a sequential read rate of 
15 MB/s (measured). We used three such Genroco controllers, each with two fast 
IPI disk drives, in some of the experiments reported below. 

Software file striping spreads the data across commodity SCSI disks that cost 
about $2,000 each, hold about 2 GB, read at about 5 MB/s, and write at about 
3 MB/s. Eight such disks and their controllers are less expensive than a super- 
computer  disk, and are faster. We implemented a file striping system layered above 
the OpenVMS file system. It allows an application to spread (stripe) a file across 
an array of disks. A striped file is defined by a stripe-definition file, a normal file 
whose name has the suffix, ".str." For every file in the stripe, the definition file 
includes a line with the file name and number of file blocks per stride for the file. 
Stripe opens or creates are performed with a call to S t r i p e 0 p e n ( ) ,  which works 
like a normal open/create, except that, if the specified file is a stripe definition file, 
then all files in the stripe are opened or created. 

The file striping code bandwidth growth is near-linear as the array grows to 
nine controllers and thirty-six disks. Bottlenecks appear  when a controller saturates; 

2. SCSI-II discs support write cache enabled (WCE), which allows the controller to acknowledge a write 
before the data is on disc. We did not enable WCE because commercial systems demand disk integrity. If 
WCE were used, 20% fewer discs would be needed. 
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Figure 4. Three Disks Being Read in Parallel to Make Striped File 

Each disk contributes a track of information to the stride. The reads proceed in parallel so 
that one can read at the sum of the speeds of the individual disks. 

but, with enough controllers, the bus, memory, and OS can handle the IO load. 
Soft SCSI arrays are less expensive than a special disk array, and they have more 

bandwidth than a single controller or port. File striping is more flexible than disk 
striping, since the stripe width (number of disks) can be chosen on a file-by-file basis 
rather than dedicating a set of disks to a fixed stripe set at system generation time. 
Even with hardware disk arrays, one must stripe across arrays to get bandwidths 
beyond the limit of a single array. So, software striping must be part of any solution. 

Table 3 compares two arrays: (1) a large array of inexpensive disks and controllers, 
and (2) a smaller array of high-performance disks and controllers. The many-slow 
array has slightly better performance and price performance for the same storage 
capacity. These are 1993 prices. 

It might appear that striping has considerable overhead, since opening, creating, 
or closing a single logical file translates into opening, creating, or closing many stripe 
files. Striping does introduce overhead and delays. S t r ipe0pen( )  needs to call 
the operating system once to open the descriptor, and then N times to open the N 
file stripes. Fortunately, asynchronous operations allow the N steps to proceed in 
parallel, so there is little increase in elapsed time. With 8-wide striping, the fixed 
overhead for AlphaSort on a 200 Mhz processor is: 

Load Sort and process parameters 

Open stripe descriptor and eight input stripes 

Create and open descriptor and eight output stripes 

Close 18 input and output files and descriptors 

Return to shell 

.11 

.02 

.01 

.01 

.05 

Total Overhead 

This is a relatively small overhead. 

.19 seconds 
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Table 3. Two different disk arrays used in the benchmarks 

drives 

controllers 

capacity 

disk speed 

(measured) 

stripe read rate 

stripe write rate 

list price (1993), 

includes cabinets 

many-slow RAID few-fast RAID 

36 RZ26 

9 SCSI (kzmsa) 

36 GB 

1.8 MB/s 

12 RZ28 -k- 6 Velocitor 

4 SCSI -t- 3 IPI-Genroco 

36 GB 

SCSI: 4MB/s 

IPI: 7 MB/s 

64 MB/s 

49 MB/s 

85 kS 

52 MB/s 

39 MB/s 

122 k$ 

To summarize, AlphaSort overcomes the IO bottleneck problem by striping data 
across many disks to get sufficient IO bandwidth. Asynchronous (NoWait) operations 
open the input files and create the output files in parallel. Triple buffering the 
reads and writes keeps the disks transferring at their spiral read and write rates. 
Striping eight ways provides a read bandwidth of 27 MB/s and a write bandwidth of 
about 22 MB/s. This puts an 8-second limit on our sort speed. Later experiments 
extended this to 36-way striping and 64 MB/s of bandwidth. 

A key IO question is when to use a one-pass or two-pass sort. When should 
the QuickSorted intermediate runs be stored on disk? A two-pass sort uses less 
memory, but uses twice the disk bandwidth, since intermediate runs must be written 
out to scratch disks during the input phase, and read back during the output phase. 

Even for surprisingly large sorts, it is economical to perform the sort in one 
pass. The question becomes: What is the relative price of those scratch disks and 
their controllers versus the price of the memory needed to allow a one-pass sort? 
Using 1993 prices for Alpha AXP, a disk and its controller costs about $2,400 (see 
Table 3). Striping requires 16 such scratch disks dedicated for the entire sort, for 
a total price of $36,000. A one-pass main memory sort uses a hundred megabytes 
of RAM. At $100/MB, this totals $10,000. It is 360% more expensive to buy the 
disks for a two-pass sort than to buy 100 MB of memory for the one-pass sort. The 
computation for a 1 GB sort suggests that it would be 15% less expensive to buy 
36 extra disks, than to buy the 1 GB of memory needed to do the 1 GB sort (see 
Table 3). 

Multi-gigabyte sorts should be done as two-pass sorts, but for data lengths 
much smaller than that, one-pass sorts are more economical. In particular, the 
Datamation sort benchmark should be done in one pass. 
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7. AlphaSort Measurements on Several Platforms 

With these ideas in place, let's walk through the 9.11 second AlphaSort of one 
million hundred-byte records on a uniprocessor. The input and output files are 
striped across sixteen disk drives. 

AlphaSort first opens and reads the descriptor file for the input stripe set. 
Each of the 16 input stripe files is opened asynchronously with a 64 KB stride size. 
The open call returns a descriptor indicating a 100 MB input file. Asynchronously, 
AlphaSort requests OpenVMS to create the 100 MB striped output file, and to 
extend the process address space by 110 MB. AlphaSort immediately begins reading 
the 100 MB input file into memory using triple buffering. 

It is now 140 milliseconds into the sort. As each stride-read completes, AlphaSort 
issues the next read. AlphaSort is completely IO limited in this phase. 

When the first one-MB stripe of records arrives in memory, AlphaSort extracts 
the 8-byte (record address, key-prefix) pairs from each record. These pairs are 
streamed into an array. When the array grows to 100,000 records, AlphaSort 
QuickSorts it. This QuickSort is entirely cache resident. When it completes, the 
processor waits for the next array to be built, so that it too can be QuickSorted. 
The pipeline of steps (read-disk array-build then QuickSort) is disk bound at a data 
rate of about 27 MB/s. 

The read of the input file completes at the end of 3.87 seconds. AlphaSort 
must then sort the last 100,000 record partition (about .12 seconds). During this 
brief interval, there is no IO activity. 

Now AlphaSort has ten sorted runs produced by the ten QuickSort steps. It is 
now 4 seconds into the sort, and can start writing the output to the striped output 
file. Meanwhile, it issues Close()  on all stripes of the input file. 

AlphaSort runs a tournament, scanning the ten QuickSorted runs of the (key- 
prefix, pointer) pairs in sequential order, picking the minimum key-prefix among the 
runs. If there is a tie, it examines the full keys in the records. The winning record 
is copied to the output buffer. When a full stripe of output buffer is produced, 
StripeWrite () is called to write the sorted records to the target stripe file in disk. 
This merge-gather runs more slowly than the QuickSort step, because many cache 
misses are incurred in gathering the records into the output buffers. It takes almost 
four seconds of processor and memory time (the use of multiprocessors speeds this 
merge step). This phase is also disk limited, taking 4.9 seconds. 

When the tournament completes, 8.8 seconds have elapsed. AlphaSort is ready to 
close the output files, and to return to the shell. Closing takes about 50 milliseconds. 
AlphaSort then terminates for a total time of 9.1 seconds. Of this time, 0.3 seconds 
were consumed loading the program and returning to the command interpreter. The 
sort time was 8.8 seconds, but the benchmark definition requires that the startup 
and shutdown time be included. 

Some interesting statistics about AlphaSort are (see Figure 5): 

• The CPU time is 7.9 seconds. 
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Figure 5. Where the time goes: Clock ticks used by each 
AlphaSort component 

tiSS 

This pie chart shows where the time is going on the DEC 10000 AXP 9-second sort. Even 
though AlphaSort spends a great effort on efficient use of cache, the processor spends 
most of its time waiting for memory. The vast majority of such waits are for data, and the 
majority of the time is spent waiting for main memory. The low cost of VMS to launch the 
sort program, open the files, and move 200 MB through the IO subsystem is impressive. 
Not shown is the 4% of stalls due to branch mispredictions. 

1.1 seconds is pure disk wait. Most of the disk wait is in startup and shutdown. 

• 6.0 seconds of the CPU time is in the memory-to-memory sort. 

• 1.9 seconds are used by OpenVMS AXP to: Load the sort program; allocate 
and initialize a 100MB address space; open 17 files; create and open 17 
output files and allocate 100MB of disk on 16 drives; close all these files; 
and return to command interpreter and print a time stamp. 

• Of the 7.9 seconds of CPU time, the processor is issuing instructions 29% 
of the time. Most of the rest of the time it is waiting for a cache miss to 
be serviced from main memory (56%). SPEC benchmarks have much better 
cache-hit ratios because the program and data fit in cache. Database systems 
executing the TPC-A benchmark have worse cache behavior, because they 
have larger programs and so have more I-cache misses. 

• The instruction mix is: Integer (51%), Load (15%), Branch (15%), Store 
(12%), Float (0%), and PAL (9%), handling mostly address translation buffer 
(DTB) misses. 8.4% of the processor time is spent dual issuing. 

• The processor chip hardware monitor indicates that 29% of the clocks execute 
instructions, 4% of the stall time is due to branch mispredictions, 11% is 
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Table 4. Performance and price/performance of 100MB datamation 
sort benchmarks on Alpha AXP systems 

System 

7000 3x5ns 

4000 2x6.25ns 

7000 lx5ns 

4000 lx6.25ns 

3000 lx6.6ns 

CPU 

&clock cntrllrs disks 

7 fast-SCSI 

4 SCSI,3 IPI 

6 fast-SCSl 

4 fast-SCSl 

5 SCSI 

28 RZ26 

12scsi + 6ipi 

16 RZ74 

12 RZ26 

10 RZ26 

(MB) time(s) totalS diskS S/sort 

256 7.0 $312k $123k $0.014 

256 8.2 $312k S 9 5 k  $0.016 

256 9.1 $247k S 6 5 k  $0.014 

384 11.3 $166k $48k $0.014 

256 13.7 $97k $48k $0.009 

(October 1993). The disk price column includes disk and controller prices. 

I-stream misses (4% I-to-B, and 7% B-to-main), and 56% are D-stream 
misses (12% D-to-B and 44% B-to-main). 

• The time spent dual-issuing is 8%, compared to 21% spent on single-issues. 
Over 40% of instructions are dual issued. 

AlphaSort benchmarks on several AXP processors are summarized in Table 4. 
All of these benchmarks set new performance and price/performance records. The 
AXP-3000 is the price-performance leader. The DEC AXP 7000 is the performance 
leader. As spectacular as they are, these numbers are improving. Software is making 
major performance strides as it adapts to the Alpha AXP architecture. Hardware 
prices are dropping rapidly. 

To summarize, AlphaSort optimizes IO by using host-based file striping to exploit 
fast but inexpensive disks and disk controllers. No expensive RAID controllers are 
needed. It uses lots of RAM memory to achieve a one-pass sort. It improves the 
cache hit ratio by QuickSorting (key-prefix, pointer) pairs if the records are large. 
If multiprocessors are available, AlphaSort breaks the QuickSort and Merge jobs 
into smaller chores that are executed by worker processors, while the root process 
performs all IO. 

8. Ideas for Reducing Cache Misses in General Programs 

In spite of our success in reducing cache misses in an external sort, we do not 
advocate attempting similar optimizations for all programs. In the general case the 
program's instructions and data may effectively fit in the cache, and there is no 
significant improvement to be made. For instance, most of the SPEC benchmark 
programs fit in the board cache. 

A program that doesn't fit in the cache will suffer from either instruction or 
data cache misses. The most promising technique for reducing instruction cache 
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Figure 6. Example of a line-list 
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Each line structure contains a pointer and up to 7 elements. The last line structure contains 
only 2 elements. This is indicated by having its pointer point to the last element in the line, 
rather than a subsequent line structure. 

misses is to have the compiler cluster the frequently used basic blocks together 
based on run-time statistics. With AlphaSort, instruction cache misses were not a 
problem, due to the small main loop. 

Reducing data cache misses can be an intractable problem if the data references 
are made by a very large number of instructions. For instance, code to execute the 
TPC-A benchmarks is usually characterized by a very large number of basic blocks 
that do not loop. In this environment, it is very difficult to understand the data 
access patterns, let alone modify them to reduce cache misses. 

In contrast, sorting belongs to a class of programs that make a very large number 
of data accesses from a small amount of looping code. In this environment, it is 
feasible to control data accesses via algorithm or data structure modifications. 

We have already discussed the clustering of tournament tree nodes together in 
a cache line. Another data structure for reducing cache misses we call a line-list. 
This is a variation of a link-list where each structure has the size of a cache line 
(or multiple cache lines), and is aligned on a cache line boundary. It can make 
sense to use this data structure in environments where items are always added to 
the ends of lists, and removed from lists in a sequential fashion. 

An example of line-list is given in Figure 6. If the elements being stored are 4 
bytes in size, and the cache line size is 32 bytes, the size of each line-list structure 
would be 32 bytes and could hold 7 4-byte elements. The last line-list structure 
in a list might hold fewer than the maximum number of elements. This could 
be indicated by having its pointer point to the last element in the line (this also 
indicates the end of the line-list). 
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There are potential fragmentation problems with line-lists. Memory space could 
be wasted if most line structures contain only a few elements. However  this situation 
would not occur if the number of line-lists is small compared to the number  of 
line structures. Line-lists could, in fact, improve memory utilization by reducing the 
number  of pointers per element. It makes sense to use a line-list if the data being 
accessed is much bigger than the cache. Line-lists require slightly more  instructions 
than the traditional, single-item link-lists. If  they save cache misses, this is a good 
tradeoff. 

Line-lists in memory are somewhat analogous to files on disks (although files 
also have a hierarchical structure). Both ~re designed to reduce accesses to a 
particular level of the memory hierarchy by reading blocks at time. Similarly, the 
idea of clustering tournament  nodes in cache lines is similar to B-trees (although 
the former  is designed to be static in structure while the latter is dynamic). There  
may be other main memory data structures that can be adapted from disk data 
structures to reduce cache misses. However, not every technique pertinent to disk 
IO or virtual memory is necessarily pertinent to reducing data cache misses. Cache 
misses are a much smaller penalty than a disk IO. Hence,  one needs to be much 
more cognizant of the number  of additional instructions required to reduce data 
cache misses. Disk IO penalties are so high that this tradeoff is rarely considered. 

9. New Sort Metrics: MinuteSort and PennySort 

The original Datamation benchmark has outlived its usefulness. When it was defined, 
100 MB sorts were taking ten minutes to one hour. More recently, workers have 
been reporting times near one minute. Now the mark is seven seconds. The 
next significant step is 1 second. This will give undue weight to startup times. 
Already, startup and shutdown is over 25% of the cost of the 7-second sort. So, 
the Datamat ion Sort benchmark is a startup/shutdown benchmark rather than an 
IO benchmark. 

To maintain its role as an IO benchmark, the sort benchmark needs redefinition. 
We propose the following: 

MinuteSort: 
• Sort as much as you can in one minute. 

• The input file is resident on external storage (disk). 

• The input consists of 100-byte records (incompressible). 

• The first ten bytes of each record is a random key. 

• The output file is a sorted permutation of the input. 

• The input and output files must be readable by a program using conventional 
tools (a database or a record manager.) 

The elapsed time includes the time from calling the sort program to the time that 
the program returns to the caller. This total time must be less than one minute. If  
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Sort is an operating system utility, then it can be launched from the command shell. 
If Sort is part of a database system, then it can be launched from the interactive 
interface of the DBMS. MinuteSort has two metrics: 

1. Size (bytes): the number of gigabytes you can sort in a minute of elapsed 
time. 

2. Price-performance (S/sorted GB): To get a price-performance metric, the 
price is divided by the sort size (in gigabytes). The price of a minute is the 
list price of the benchmark hardware and operating system divided by one 
million. 

This metric includes an Nlog(N) term (the number of comparisons), but in the 
range of interest range (N > 23o), log(N) grows slowly compared to N. As N 
increases by a factor of 1,000, log(N) increases by a factor of 1.33. 

A three-processor DEC 7000 AXP sorted 1.08 GB in one minute. The 1993 price 
of this system (36 disks, 1.25 GB of memory, 3 processors, and cabinets) is $512k. 
So the 1.1 GB MinuteSort would cost 51 cents (= $512k/1M). The MinuteSort price- 
performance metric is the cost over the size (.51/1.1) = $0.47/GB. Today, AlphaSort 
on a DEC 7000 AXP has a 1.1 GB size and a $0.47/GB price/performance. 

MinuteSort uses a rough 3-year price, and omits the price of high-level software 
because: (1) this is a test of the machine's IO subsystem, and (2) most of the 
winners will be "special" programs that are written just to win this benchmark. 
Most university software is not for sale (see Table 1). There are 1.58 million 
minutes in 3 years, so dividing the price by 1M gives a slight (30%) inflator for 
software and maintenance. Depreciating over 3 years, rather than the 5-year span 
adopted by the TPC, reflects the new pace of the computer business. 

Minute sort is aimed at super-computers. It emphasizes speed rather than price 
performance. It reports price as an afterthought. This suggests a dual benchmark that 
is fixed-price, rather than fixed-time: PennySort. PennySort is just like MinuteSort, 
except that it is limited to using one penny's worth of computing. Recall that each 
minute of computer time costs about one millionth of the system list price. So 
PennySort would allow a million dollar system to sort for 1/100 minute, while a 
$10,000 system could sort for one minute. PCs could win the PennySort benchmark. 

Penny Sort: 

• Sort as much as you can for less than a penny. 

• Otherwise, it has the same rules as MinuteSort. 

PennySort reports two metrics: 

1. Size (bytes): the number of gigabytes you can sort for a penny. 

2. Elapsed Time: The elapsed time of the sort (reported in to the nearest 
millisecond). 
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Given the cost formula, PennySort imposes the following time limit in minutes: 

104 

system list price ($) 

MinuteSort and PennySort are an interesting contrast to the Datamation sort 
benchmark. Datamation sort was fixed size (100 MB); thus, it did not scale with 
technology. MinuteSort and PennySort scale with technology because they hold 
end-user variables constant (time or price), and allow the problem size to vary. 

Industrial-strength sorts will always be slower than programs designed to win the 
benchmarks. There is a big difference between a program like AlphaSort, designed 
to sort exactly the Datamation test data, and an industrial-strength sort that can 
deal with many data types, complex sort keys, and many sorting options. AlphaSort 
slowed down as it was productized in Rdb and in OSF/1 HyperSort. 

This suggests that there be an additional distinction, a street-legal sort that 
restricts entrants to sorts sold and supported by someone. Much as there is an 
Indianapolis Formula-1 car race run by specially built cars, and a Daytona stock-car 
race run by production cars, we propose that there be an Indy category and a 
Daytona category for both MinuteSort and PennySort. This gives four benchmarks 
in all: 

Indy-MinuteSort: A Formula-1 sort where price is no object. 
Daytona-MinuteSort: A stock sort where price is no object. 
Indy-PennySort: A Formula-1 biggest-bang-for-the buck sort. 
Daytona-PennySort: A stock sort giving the biggest-bang-for-the buck. 

Super-computers will probably win the MinuteSort, and workstations will win the 
PennySort trophies. 

The past winners of the Datamation sort benchmark (Barclay, Baugsto, Cve- 
tanovic, DeWitt, Gray, Naughton, Nyberg, Schneider, Tsukerman, and Weinberger) 
have formed a committee to oversee the recognition of new sort benchmark results. 
At each annual SIGMOD conference, starting in 1994, the committee will grant 
trophies to the best MinuteSorts and PennySorts in the Daytona and Indy categories 
(four trophies in all). You can enter the contest or poll its status by contacting one 
of the committee members. 

10. Summary and Conclusions 

AlphaSort is a new algorithm that exploits the cache and IO architectures of 
commodity processors and disks. It runs the standard sort benchmark in seven 
seconds. That is four times better than the unpublished record on a Cray Y-MP, 
and eight times faster than the 32-CPU 32-disk Hypercube record (Yamane and 
Take, 1988; DeWitt et al., 1992). It can sort 1.1 GB per minute using multiprocessors. 
This demonstrates that commodity microprocessors can perform batch transaction 
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processing tasks. It also demonstrates speedup using multiple processors on a shared 
memory. 

The Alpha AXP processor can sort VERY fast, but the sort benchmark requires 
reading 100 MB from disk, and writing 100 MB to disk (it is an IO benchmark). 
The reason for including the Sort benchmark in the Datamation test suite was to 
measure "how fast the real IO architecture is" (Anon-et-al., 1989). 

By combining many fast, inexpensive SCSI disks, the Alpha AXP system can 
read and write disk data at 64 MB/s. AlphaSort implements simple host-based 
file striping to achieve this bandwidth. With this striping, one can balance the 
processor, cache, and IO speed. The result is a breakthrough in both performance 
and price-performance. 

In part, AlphaSort's speed comes from efficient compares, but most of the CPU 
speedup comes from efficient use of CPU cache. The elapsed-time speedup comes 
from parallel IO performed by an application-level striped file system. 

Our laboratory's focus is on parallel database systems. AlphaSort is part of 
our work on loading, indexing, and searching terabyte databases. At a gigabyte- 
per-minute, it takes more than 16 hours to sort a terabyte. We intend to use many 
processors and many-many disks to handle such operations in minutes rather than 
hours. A terabyte-per-minute parallel sort is our long-term goal (not a misprint!). 
This will require hundreds of fast processors, gigabytes of memory, thousands of 
disks, and a 20 GB interconnect. Thus, this goal is five or ten years off. 
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