
lZLDB Journal, 4, 519-567 (1995), Malcolm Atkinson, Editor 519
QVLDB

Adaptable Pointer Swizzling Strategies in Object Bases:

Design, Realization, and Quantitative Analysis

Alfons Kemper and Donald Kossmann

Received June, 1993; revised version received, April, 1994; accepted March, 1995.

Abstract. In this article, different techniques for 'pointer swizzling" are classified
and evaluated for optimizing the access to main-memory resident persistent ob-
jects. To speed up the access along inter-object references, the persistent pointers
in the form of unique object identifiers (OIDs) are transformed (swizzled) into
main-memory pointers (addresses). Pointer swizzling techniques can be divided
into two classes: (1) those that allow replacement of swizzled objects from the
buffer before the end of an application program, and (2) those that rule out the
displacement of swizzled objects. The first class (i.e., techniques that take "precau-
tions" for the replacement of swizzled objects) has not yet been thoroughly investi-
gated. Four different pointer swizzling techniques allowing object replacement are
investigated and compared with the performance of an object manager employing
no pointer swizzling. The extensive qualitative and quantitative evaluation--only
part of which could be presented in this article--demonstrate that there is no one
superior pointer swizzling strategy for all application profiles. Therefore, an adapt-
able object base run-time system is devised that employs the full range of pointer
swizzling strategies, depending on the application profile characteristics that are
determined by, for example, monitoring in combination with sampling, user spec-
ifications, and/or program analysis.

Key Words. Pointer swizzling, object-oriented database systems, performance
evaluation.

1. Introduction

Object-oriented database systems are emerging as the next generation database
technology, especially for advanced, so-called "non-standard" applications, such as
mechanical CAD/CAM, VLSI design, and software engineering. Despite their su-

Alfons Kemper, Ph.D., is a Professor of Computer Science at the University of Passau, D-94030 Passau,
Germany, kemper@db.fmi.uni-passau.de. Dr. Donald Kossmann, is Research Associate, Department of
Computer Science, University of Maryland, College Park, MD 20742, USA, kossmann@cs. UMD.EDU.

520

perior expressive power in comparison to the established relational systems, the
acceptance of the object-oriented systems will ultimately depend on their perfor-
mance. This is all the more true for the technical application domains where
database application programs tend to be particularly computation-intensive and, at
the same time, are highly performance-critical; for example, an interactive CAD
application.

In this article, a class of techniques was investigated for managing references
between main-memory resident persistent objects, which is commonly referred to
as "pointer swizzling." Pointer swizzling is a measure to optimize the access to
persistent objects in a main memory via such references. In object-oriented systems,
objects are referenced by their unique object identifier (OID). Each time an object
is referenced on the basis of its OID, the system has to locate the object in the
main memory by a table lookup, if it is already memory resident; otherwise, it must
be brought into the buffer. The basic idea of pointer swizzling is to materialize
the address of a main-memory resident persistent object to avoid the table lookup.
Thus, pointer swizzling converts database objects from an external (persistent) format
containing OIDs into an internal (main memory) format, replacing the OIDs by the
main-memory addresses of the referenced objects. This is, of course, particularly
important in computation-intensive applications--as experienced in, for example, the
CAD/CAM application domain.

In most of the systems that use pointer swizzling, the choice of a specific
swizzling strategy appears to have been strongly influenced by the characteristics of
the underlying object manager (e.g., the object lookup mechanism) and/or by the
characteristics of the programming language (e.g., pointer swizzling in EXODUS
version 1.0 is restricted to swizzling the value of local variables only; Schuh et
al., 1991). Moss (1992) was the first to abstract from system and/or object model
characteristics, and to undertake a systematic--though incomplete--classification of
pointer swizzling techniques. The work reported here can be seen as an augmentation
along a dimension that was not taken into account by Moss; the possibility that
swizzled objects can be replaced from the main-memory buffer. Moss only analyzed
techniques supporting so-called Load-Work-Save and Create-Work-Save application
scenarios without any object replacement before the Save phase of the program.

The Load-Work-Save application scenario without object replacement from the
main-memory buffers may be appropriate for certain application profiles that operate
on a restricted data volume. However, our experience in the engineering field--
particularly mechanical engineering--indicates that there are many applications that
operate on a large data volume. Consider, for example, a long design transaction
where the engineer typically browses through large volumes of data, in search of, say,
previously constructed similar design objects in between the actual design phases
which are restricted to smaller data volumes. It is very advantageous, of course, if
the object system can periodically adjust the active working set of swizzled objects
since, otherwise, the risk of flooding the main memory with obsolete objects would
be too great.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 521

Even if object replacement can be precluded for every single application, the
scenario investigated by Moss (1992) may not be acceptable for the entire workload
of a client machine. On the one hand, hot spots that are accessed by almost
any application can be observed; therefore, objects should be cached in a swizzled
form even after an application has been committed. On the other hand, many
objects are only relevant for only a few applications; the object manager should
have the opportunity to displace these from the shared main-memory buffers of a
multi-tasking client machine.

These observations indicate that object replacement is indeed a realistic demand
made on general purpose object managers. In this article, four alternative pointer
swizzling strategies are devised that "take precautions" (i.e., maintain control struc-
tures) for the replacement of swizzled objects. In the extensive qualitative and
quantitative analysis--only part of which could be shown in this article--these four
strategies are compared with an object manager that does not use pointer swizzling.
The analysis indicates that there is no o n e best alternative for all possible (yet
realistic) application profiles. Rather, each alternative has its pros and cons.

The observation that there is no one superior technique led to the design of an
object manager with adaptable pointer swizzling techniques for our experimental
object base system GOM (Generic Object Model; for details see Kemper and
Moerkotte, 1994). Depending on the application profile and the characteristics of
the object base, the most superior pointer swizzling approach can be chosen. In
addition, a method based on monitoring was developed that determines the most
efficient swizzling strategy.

The remainder of this article is organized as follows. In the next section, the
setting of the investigation is described. Then, in Section 3, the various pointer
swizzling strategies are classified. In Section 4, the architecture of the adaptable
object manager is presented. Section 5 defines a cost model, and Section 6 includes
performance experiments of our adaptable object manager. On the basis of the
cost model, Section 7 outlines how, in practice, the most efficient swizzling strategy
can be determined. The article is concluded in Section 8.

2. Architectures of Object Management Systems

In this section, the setting of the investigation is described. Besides pointer swizzling,
three crucial architectural decisions must be made when designing an object base
system (Winslett, 1993):

1. Whether to buffer only pages or to copy objects into an object cache (Kim
et al., 1988; Kemper and Kossmann, 1994);

2. Whether to use logical or physical object identifiers (Khoshafian and Copeland,
1986);

3. Whether to use an object, page, or file server (DeWitt et al., 1990).

522

Figure 1 depicts the client-server architecture (Roussopoulos and Delis, 1991)
of an object base system. Pointer swizzling is embodied in the object manager that
operates on every client. Given a reference to an object, the object manager carries
out lookups and updates of the object and the creation of new objects, during
which any I/O activity is carried out implicitly (i.e., transparently to an application).
The object manager also provides concurrency control and recovery. Examples of
object managers that provide this functionality are the EXODUS storage manager
(Carey et al., 1986), GemStone (Maier and Stein, 1987), ORION (Kim et al., 1988),
Mneme (Moss and Sinofsky, 1988; Moss, 1990), and 02 (Velez et al., 1989).

The benefits of pointer swizzling take effect when a resident object is accessed
(i.e., an 0b]ect is read or modified that is stored in the client's buffer pool). The
techniques described in this work do not influence the mechanism to locate and
fetch objects from the server and, therefore, no restrictions are imposed on the
implementation of object identity or the server. The techniques can be used equally
well with lOgiCal and physical OIDs or with an object, page, or file server.

In addition, pointer swizzling can be incorporated in an object manager that
only maintains a page buffer (e.g., that of CLIENT 1 in Figure 1), and in an object
manager that provides an object cache (e.g., that of CLIENT 2), again without
restricting the design choice. The performance experiments (Section 6), however,
indicate that pointer swizzling is usually more effective in a copy architecture because
such an architecture improves the locality of an application and reduces some of
the swizzling-specific overhead.

3. Pointer Swizzling Techniques

In this section, the approach to pointer swizzling is described. A variety of techniques
from the literattire and existing systems are discussed and a classification scheme
is given that, conceptually, allows the classification of any technique known to the
authors.

3.1 The Pointer Swizzling Method

When an application accesses an object, it passes a reference to the object manager.
in secondary storage, references are implemented as unique object identifiers (OIDs;
as discussed by Khoshafian and Copeland, 1986). To support large object bases,
OIDs are usually at least 64 bits long. In addition, an OID must uniquely identify
an object in a client/server system with several machines and several disks so that
"flat" virtual memory pointers cannot be used in most systems. On the basis of the
O'ID, the object base system can locate the object in secondary storage and load it
into the main-memory buffer allocated to an application.

If the object is already main-memory resident, the object manager has to locate
the object in the buffer pool. The resident object tabh; (ROT), in which all resident
objects ~tre registered, realizes the mapping from OIDs to main-memory addresses.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 523

Figure 1. Architecture of object base system

Ap~k~on
Proem

Page 9uffer

Communic~on
Sor~re

CLIENT 1
Piloe

Oqqx;t Cache

t t
Communk:don

S o f t m

CLIENT 2

Each time the object manager accesses a resident object on tlae basis of its OlD,
the ROT must be consulted. This is where pointer swizzling takes effect. Pointer
swizzling avoids consulting the ROT by materializing the main-memory address of
the resident objects and converting (swizzling) references into main-memory pointers.

In addition to bypassing the ROT, pointer swizzling can be exploited to narrow
references (Suzuki et al., 1995) large OIDs are converted into smaller main-memory
pointers. As a consequence, the buffer utilization is improved in some systems (e.g.,
as reported for the LOOM system by Kaehler and Krasner, 1983) and main-memory
pointers can be processed in one CPU cycle (Cockshott and Foulk, 1990).

In some systems, address translation is carried out on a per page basis. Rather
than maintaining a ROT, a page table records the main-memory address of every
resident page. A page table is usually much smaller than a ROT, since several
(small) objects that are accessed in the client are located in the same page. But
page tables can only be used efficiently for physical OIDs that contain the page
number and the offset of the object. For logical OIDs, it pays off to maintain a
ROT to avoid accessing a persistent object table to determine in which page a
resident object is located before in-memory address translation can be carried out.
It is even possible to have a logical segment, a collection of pages, as the unit of
address mapping if physical OIDs contain the segment number and the offset of the
object within the segment. However, the effect of pointer swizzling is basically the
same in any architecture. On the one hand, by means of pointer swizzling, resident
objects can be accessed more efficiently, since address translation is avoided. On

524

Table 1. Classification scheme

Classification of Pointer Swizzling Techniques

eager

direct

indirect

optimistic

lazy
i

no-swizzling

direct

indirect

optimistic

EDS

EIS

EOS

LDS

LIS

LOiS

NOS

the other hand, pointer swizzling induces an overhead by swizzling and unswizzling
references (i.e., converting swizzled references back to OIDs).

3.2 Classification of the Techniques

Pointer swizzling has been studied since the end of the Seventies. It was pioneered
in the implementation of PS-algol (Atkinson et al., 1983) and in the LOOM project
(Kaehler and Krasner, 1983). A large variety of techniques have already been
incorporated in existing systems since then. Moss (1992) was the first to undertake
a systematic classification and thorough analysis of pointer swizzling techniques.
However, Moss only investigated techniques that preclude object replacement (re-
ferred to as optimistic swizzling in the classification scheme). On the contrary, this
work is focused on techniques that provide the necessary control structures for
object replacement. In general, pointer swizzling techniques can be classified into
two dimensions depending on the following two criteria:

1. When is a reference swizzled?

2. What precautions must be taken for object replacement?

Table 1 summarizes the classification scheme.

3.2.1 Eagerand Lazy Swizzling. Eager swizzling guarantees that all references are
swizzled before they are read or dereferenced by an application. Eager swizzling,
therefore, is always carried out at object or page fault time, depending on the unit
of address mapping.

In our object base system GOM, which was used as a platform for this study,
the object is the unit of address mapping (unless an object is larger than a page,
in which case every page of the object is mapped individually; Section 3.4). An
object fault occurs when an object is accessed that is not registered in the ROT; it
should be noted that the object, however, can be main-memory resident, since the
page in which the object is located can be resident. When an object fault occurs,

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 525

eager swizzling "scans through" the object and swizzles all the references it finds
immediately.

Eager swizzling can also be carried out at the granularity of pages, segments, and
even the whole object base. Accordingly, pagewise-eager swizzling scans through a
page and swizzles all the references at page-fault time. Segmentwise-eager swizzling
scans through a segment and swizzles all the references after the segment has been
loaded. Some persistent stores that are tailored for specific applications (e.g., a
CAD workbench, and ones that do not offer the full functionality of a database
system), load the whole object base and swizzle all pointers at the beginning before
any other operation is executed.

Hosking and Moss (1993) argue that eagerness at the granularity of pages and
segments pays off if spatial locality is high, because intra-page and intra-segment
references can be swizzled particularly efficiently in their schemes. Their schemes,
however, preclude replacement in the buffer pool. In addition, such effects cannot
be exploited in an architecture that supports object caching. If the objects are small
(i.e., smaller than a page), eager swizzling is carried out at the granularity of objects
in this study to avoid swizzling references located in pages and objects that are
never accessed. Swizzling in the context of large objects is discussed in a separate
section.

Even at the fine granularity of objects, an eager approach swizzles references
unnecessarily. To minimize unnecessary swizzling of references, lazy swizzling only
swizzles on demand. References are only swizzled when they are first read by an
application. In fact, lazy swizzling carries out pointer swizzling at the finest granularity
conceivable: the reference. On the negative side, however, lazy swizzling must handle
two different representations of references at run time: swizzled and non-swizzled
references. Eager swizzling guarantees that all the references in the resident objects
that are registered in the ROT are swizzled. For lazy swizzling, software checks
that determine the state of a reference (swizzled or not swizzled) must be included
every time an object is accessed or the memory protection hardware must fault all
OIDs.

White and DeWitt (1992) distinguished between lazy swizzling upon discovery
and upon dereference. Lazy swizzling upon discovery swizzles a reference as soon as
it is read; for example, when a reference is copied from a field of an object into
a local variable, the system makes sure beforehand that the reference in the field
is swizzled and then copies the swizzled reference into the variable. On the other
hand, lazy swizzling upon dereference swizzles a reference when it is dereferenced.

Lazy swizzling upon discovery carries the danger of swizzling several (but usually
very few) references that are never dereferenced. However, in GOM as well as in
EXODUS, swizzling upon discovery is incorporated for all lazy swizzling techniques
because lazy swizzling upon dereference often fails to swizzle any inter-object
references since references are often copied into local variables before they are
dereferenced. A great deal of potential is lost, therefore, when using lazy swizzling
upon dereference.

526

Figure 2. Direct swizzling and an RRL

I I • I o . k A . * l o l

! 7 |

3.2.2 Direct, Indirect, and Optimistic Swizzling, Depending on whether it is possible
to swizzle a reference that refers to an object that is not main-memory resident, a
difference is made between direct and indirect swizzling. Direct swizzling requires
that the referenced object be resident. A directly swizzled reference contains the
main-memory address of the object it references, if an object is displaced from the
system buffer (i.e., is no longer resident), all the directly swizzled references that
refer to the displaced object need to be unswizzled. To unswizzle these references,
they are registered in a list called reverse reference list (RRL). Figure 2 illustrates this
scenario.

In the case of eager-direct swizzling, simply unswizzling the references is not
possible because eager swizzling guarantees that all references in the buffer are
swizzled. Instead, these references (i.e., their "home. objects") must be displaced,
too. This can result in a "snowball" effect. A snowball effect also can be observed
with eager-direct swizzling when an object is brought into the buffer. Non-resident
objects that are referenced by this object must be brought into the buffer, too,
leading to the preloading of the transitive closure. In Section 3.3, a method to
implement eager direct swizzling that avoids this snowball effect is discussed: rather
than preloading or displacing objects, the corresponding page frames are access-
protected. However, the snowball effect can also be controlled by adaptable pointer
swizzling as described in Section 4. In any case, preloading can be a desired effect
to overlap computation overhead for swizzling with I/O (Moss, 1992).

Maintaining an RRL can be costly, especially if the fan-in of an object is high. In
this context, the fan-in of an object is defined as the number of swizzled references
that refer to that object. Assuming that an attribute of an object is assigned a new
value, first of all, the RRL of the object that was referenced by the old value of
the attribute must be updated. Subsequently, the attribute must be registered in
the RRL of the object it now references.

An alternative to setting up an RRL for eve:ty resident object dynamically
could be to materialize the reverse references, and store them persistently in the

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 527

object base; such an approach was chosen in the design of the materialization of
functions (Kemper et al., 1994). In this case, reverse references would have to
be allocated dynamically only for transient structures (e.g., variables). However,
structural updates and object replacement would become even more expensive and
result in additional I/O activity.

Using a garbage collector to improve main-memory buffer utilization also may
allow direct swizzling without RRLs: if no more main memory is available, a routine
that works like a compacting garbage collector inspects all the main-memory buffers
and reclaims the main memory space that is occupied by unreachable objects. In
addition, objects that have not been used for a long time could be displaced, and
the swizzled references referring to these objects are found while inspecting the
buffers with very little additional cost.

Another way to implement direct swizzling without setting up RRLs was recently
devised by McAuliffe and Solomon (1995). A hash table, the so-called swizzle table,
is maintained with a maximum number of entries. In every entry, a single directly
swizzled reference is recorded. Thus, the total number of references that can be
swizzled directly at the same time is restricted by the maximum number of entries
in the swizzle table. If an object is evicted from the buffer pool, the swizzle table
is inspected, and all the directly swizzled references referring to the object are
unswizzled. In this approach, however, it is not clear how the maximum number
of entries in the swizzle table can be determined. In any case, simulation results
indicate that this way of implementing direct swizzling is not very attractive, even
given an optimum choice for the size of the swizzle table (McAuliffe and Solomon,
1995).

Indirect swizzling totally avoids the overhead of recording reverse references by
permitting the swizzling of references that refer to non-resident objects. To attain
indirect swizzling, a swizzled reference materializes the address of a descriptor (i.e., a
placeholder of the actual object). If the referenced object is resident, the descriptor
stores the main-memory address of the object; if not, the descriptor is marked
invalid. If an object is displaced, the swizzled references that refer to the object
need not be unswizzled; only the descriptor is marked invalid. Figure 3 illustrates
this scenario; the shading marks the left-hand descriptor as invalid.

To reclaim unused descriptors, every descriptor keeps a counter that counts the
number of indirectly swizzled references referring to the descriptor (i.e., the fan-in).
Maintaining a counter is much cheaper than maintaining an RRL when executing
updates, or when swizzling and unswizzling references. On the other hand, indirect
swizzling induces an additional overhead in comparison to direct swizzling when it
comes to simple object lookups. Indirect swizzling leads to an additional indirection,
due to the descriptor, and to a residency check, a check of whether the descriptor
is valid. For direct swizzling, it is guaranteed that every object referred to by a
swizzled reference is resident.

In some applications, it is sufficient to consider only load-work-save or create-work-
save sessions. Such applications access few objects that do not exhaust main memory

528

Figure 3. Scenario of indirect swizzling

I:'T' I I;°i ", I I :7, 1 I;°7.1

1°71

and swap space and, thus, object replacement can be precluded. If object replacement
is precluded, it is possible to swizzle references directly without maintaining RRLs.
We refer to such a technique as optimistic swizzling. Optimistic swizzling can be
found in PS-algol I (Atkinson et al., 1983; Cockshott et al., 1984), Moss' experimental
platform (Moss, 1992), and the run-time system of E (EPVM 2.0) (White and DeWitt,
1992).

3.3 Exploiting Virtual Memory Facilities

As stated in Section 3.2.2, a possible way to implement a persistent store is to exploit
the virtual memory facilities supported by hardware. In this section, this "hardware"
approach is discussed, and we explain why the implementation of pointer swizzling
using "software" only was chosen.

In the hardware approach, all the references in memory are implemented as
virtual addresses. Thus, pointers to persistent objects are dereferenced like pointers
to transient data (i.e., no interpretation overhead is necessary for residency checks
or to determine the state of a reference). Like object descriptors for indirect
swizzling, virtual memory allows direct pointers to be kept swizzled, and virtual
memory addresses referring to objects to be located in pages that are not resident
in physical main memory. Virtual memory provides access protection for pages that
can be exploited in the following way: when a reference referring to a non-resident
object is dereferenced, an exception is signaled, and the persistent object system
reads the corresponding page into the main-memory buffer pool.

The swizzling of pointers and the mapping of pages in virtual memory have
been described as a "wave front" (Wilson, 1991; Wilson and Kakkad, 1992). At the

1. Actually, different versions of PS-algol employed different kinds of pointer swizzling; among others the
lazy optimistic swizzling method was used.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 529

Figure 4. Wave front of swizzled and mapped pages in Texas persistent
store

virtual memory

page is mapped into VM
and access-protected

I I page is sw~zzled and
accessable

beginning, all the pages that are referred to by an entry pointer are mapped into
virtual memory and access-protected. These pages are not loaded, and no physical
main memory is allocated. Only when a page is accessed for the first time is it
loaded and the access protection is released. This is achieved by a trap to the object
base system, which is rather expensive. In the Texas persistent store (Singhal et
al., 1993), all pointers located in the page are swizzled simultaneously at page-fault
time. In Texas, pointers are stored as physical OIDs in persistent memory (i.e.,
they contain the page number and the offset of the object to which they refer). A
persistent pointer referring to an object located in a page that is already located in
virtual memory is translated into a virtual address by consulting Texas' page table,
which records the mapping of pages to their virtual memory addresses. If the page is
not registered in the page table (i.e., no pointers referring to objects located in that
page have been encountered before), the page is mapped into virtual memory and
access-protected first. Figure 4 illustrates this principle. When a page is accessed
for the first time, it is swizzled (i.e., all the pointers in the page are swizzled) and
its access protection is released thereby moving the inner wave front ahead. At the
same time, when pointers are swizzled, the outer wave front is moved ahead to map
new pages into virtual memory.

530

ObjectStore, a commercial object-oriented database system, apparently uses a
virtual memory mapping approach in a similar way (Lamb et al., 1991). Deviating
from Texas, the unit of address mapping is the segment, a collection of pages, rather
than an individual page. A persistent pointer contains the segment number and
the offset of the object within the segment. When a segment is accessed for the
first time, the whole segment (i.e., all the pages of the segment) is mapped into
virtual memory. ObjectStore thus reduces some of the computational overhead
involved in mapping pages into virtual memory, since mapping a whole segment at
once is cheaper than mapping every page individually. On the other hand, more
virtual memory is reserved by segments or parts of segments that are never accessed.
Pages, however, are also loaded and swizzled incre, mentally by ObjectStore in a
client/page-server architecture.

In the current implementation of Texas, all pointers are translated at page-fault
time from their persistent representation to virtual addresses. ObjectStore as well as
QuickStore, a persistent store (White and DeWitt, 1994), try to avoid this overhead
by storing swizzled pointers persistently in secondary storage. These systems try
to map a page (for ObjectStore, a whole segment) every time to the same virtual
address and, thus, pointers that refer to objects located in such pages need not be
translated. For large object bases, however, the probability can become quite high
that a page cannot be mapped to its predestined virtual memory address because
pointers that were previously encountered by different applications and refer to
different pages were swizzled to the same address.. In this case, these pointers
must be translated by ObjectStore and QuickStore, too. In any case, the validity of
every pointer located in a page must be checked when the page is accessed for the
first time. Only the Cricket database storage system (Shekita and Zwilling, 1991)
guarantees that pages always are mapped to the same address in virtual memory.
To this end, Cricket restricts the size of an object base to the size of the virtual
address space, a few gigabytes using today's conventional hardware. This is not
acceptable. The current trend towards 64-bit architectures, however, favors the
design of Cricket.

All the systems discussed in this section can be termed eager since they ascertain
that a pointer be swizzled before it is dereferenced. Vaughan and Dearie (1993)
proposed a hybrid scheme of eager and lazy swizzling; again, exploiting the virtual
memory's access protection facility to avoid software checks. In the first phase, at
page-fault time, all pointers are translated as in Texas. However, pointers to pages
that have not been mapped into virtual memory are only partially swizzled: rather
than mapping the page into virtual memory, a partially swizzled pointer is directed
to an entry in a page table that is access-protected. In the second phase, when a
partially swizzled pointer is dereferenced, an exception is signaled for referring to
the access-protected page table, the page is loaded and mapped into virtual memory,
and the pointer (together with others referring to the same page and registered by
a chaining mechanism) is fully swizzled (i.e., redirected to the virtual address of the
page). This approach to redirect pointers in a second phase is very similar to the

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 531

node marking scheme of Hosking and Moss (1991, 1993).
Vaughan and Dearle's (1993) approach is motivated by virtual address space

economy. Virtual address space is used only for pages that are really accessed.
Indeed, in a 32-bit architecture, the exhaustion of virtual memory can become a
problem for the virtual memory mapping schemes. In Texas, ObjectStore, and
QuickStore, an application must abort if no more pages can be mapped into virtual
memory. Wilson and Kakkad (1992) devised a mass invalidation algorithm to re-use
virtual address space. When virtual address space is exhausted, the mapping of all
pages to virtual addresses is given up and, thus, the whole virtual memory is reclaimed.
The mapping then incrementally builds up again. Vaughan and Dearie (1993) refined
this mass invalidation scheme, and proposed an incremental invalidation approach
in which fully swizzled pointers are converted back to partially swizzled. However,
as far as is known, none of these algorithms have been implemented and evaluated
yet.

In some fields, the "hardware" approach using virtual memory mapping is
attractive. Persistent objects are accessed in the same way as transient objects and,
thus, code initially implemented for transient applications often can be easily reused
for persistent applications. Furthermore, pointers are dereferenced as efficiently
as directly swizzled pointers in a "software-only" approach without the need to
maintain RRLs. The indirection induced by virtual memory addresses must be paid
for in any case. The use of a "software-only" approach, however, is preferred for
the following reasons:

1. None of the systems that currently use memory mapping fully support object
identity (White and DeWitt, 1994). GOM, however, supports "true" object
identity using logical OIDs. Logical OIDs are independent of the object's
storage position, which is very important when the object base is re-organized,
or when objects migrate from one site to another in a distributed environment.
Using logical OIDs, the object is the natural unit of address mapping, and
mapping individual objects is not supported by today's conventional hardware.
(The DAIS processor is an initial approach to the design of customized
hardware that supports object faulting; Russel et al., 1995.)

2. Using conventional operating systems such as Unix, explicit main-memory
buffer management is difficult in memory-mapped systems. It is possible to
let the operating system decide what pages to replace when main-memory
buffers are scarce; however, this is not always acceptable for database systems.
In particular, object caching that can improve buffer utilization dramatically
(Kemper and Kossmann, 1994) is not possible in a memory-mapped system.
Furthermore, the exhaustion of virtual memory need not be considered at
all in a "software" approach.

3. The cost per page fault often is high in a memory-mapped system (White
and DeWitt, 1994). Exception handling is very expensive in many operating
systems (e.g., Unix), and software checks and indirections usually are the
better alternative (Hosking and Moss, 1993). In addition, (pagewise) eager

532

swizzling does not always pay off: costs are induced to locate all the pointers,
and swizzling logical OIDs often requires I/O to access a persistent object
table that determines the page in which the object is located.

4. Tables that register the mappings of pages to virtual addresses must be
maintained in main memory. These tables can become very large since they
also record mappings of pages that are not main-memory resident.

In summary, the memory-mapping approach gives up control of important features
such as explicit buffer management, location independence, and "true" object identity.
On the other hand, the "software" approach to implement swizzling "holds on"
to the explicit control by the DBMS and, thus, gives, more flexibility that pays off
in a better performance. The "hardware" approach might become more attractive
with special-purpose hardware (e.g., as proposed for the MONADS system; Koch
and Rosenberg, 1990) and with more flexible operating systems; for example, the
Mach operating system allows the definition of an "external" (user-defined) paging
algorithm, as exploited in Eos (Gruber et al., 1992). Nevertheless, memory mapping
probably never will provide the same flexibility in the design of a system that can
be achieved by a software-only approach to implement pointer swizzling.

3.4 Swizzling in Large Objects

Large objects are encountered in many applications. A large object is defined as
an object whose size exceeds the size of a page. However, there are various types
of large objects (e.g., a satellite picture, represented as a matrix, the set of all the
citizens of Cairo [an index structure], or a very large tuple-structured object). One
of the strong points of object-oriented database systems is that they allow well-
tuned implementations of any data structure. Of course, in these implementations,
making use of pointer swizzling also is desirable. In this section, some of the
principal difficulties concerning pointer swizzling in the context of large objects are
addressed. An open architecture, which integrates tile implementations of various
type constructors (e.g., vectors, matrices, and sets), and which can easily be extended,
has been described (Bruns et al., 1992).

From the point of view of pointer swizzling, the following two questions arise
when considering large objects:

1. Only a small fraction of a large object is usually main-memory resident.
What is the main-memory address of a large object (i.e., what address is
materialized by pointer swizzling)? For example, what is the address of a

r a t h vector whose 3 and 1,066 elements are resident but are not stored in a
contiguous chunk?

2. How are indexes on pointer-valued fields dealt with when references are
swizzled?

Another thing that might have to be taken into account in accessing a large
object is that a large object can be stored on secondary memory in a compressed
format, and must be transformed before parts of it can be accessed in main memory.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 533

Figure 5. Directory of a list
Director

i ~401411421
. . o

I I I~1

Buffer P a p

D (2oo.280) I

. . °

I I I~ral

3.4.1 Large Object Descriptors. Some objects have the semantics of a large con-
tiguous chunk (e.g., long vectors). In secondary storage, such an object often is
implemented as a derivative form of a B-tree (Biliris, 1992). In main memory,
however, a different representation is appropriate that allows programs to reference
a part of the large object given the OID and the offset more easily (Carey et al.,
1986).

The fact that usually only a small fraction of a large object is main-memory
resident precludes direct (and optimistic) swizzling of references referring to a large
object in a "software" implementation of pointer swizzling. Thus, a descriptor for
the large object, called its directoly, must be maintained. Figure 5 depicts the
in-memoiy implementation of a large list whose size may vary dynamically in GOM
(Kotulla, 1992). Each time an element of a list is accessed, the directory of the list is
consulted. This is where swizzling takes effect. Using indirect swizzling, the address
of the directory is materialized. Conversely, under no-swizzling, the ROT must
be consulted before the large object can be accessed via the directory. However,
the savings obtained by swizzling are watered down by the relatively high cost of
accessing a large object via the directory.

In a "hardware" implementation (cf. Section 3.3), all pages of a large object
can be mapped at once into virtual memory to ascertain that the virtual memory
frames associated with the large object are contiguous. Alternatively, the pages of
a large object can be mapped incrementally using an additional page table as in the
MONADS architecture (Rosenberg et al., 1990). Either way, address arithmetic
easily can be carried out given the base address of the large object and the offset of
the chunk to be accessed. Nevertheless, precautions must be taken to implement
large objects. In QuickStore, for example, a special descriptor is maintained for a
large object to record which pages of the large object have been accessed.

3.4.2 Swizzling and Indexes. A reference can be a key of an index, for example, of
an indexed path expression in the Access Support Relations (Kemper and Moerkotte,

534

1992) or of an index of a large set. It does not make sense to swizzle these references
since they are never dereferenced. Furthermore, swizzling these references could
induce a complete reorganization of the index, for example, a B-tree (Bayer and
McCreight, 1972) or a hash table (Fagin et al., 19791). As a consequence, an index
cannot be consulted on the basis of a swizzled reference as key. Before a query
can be evaluated, the reference must be "translated" into its non-swizzled format
inducing a small additional overhead.

In Texas, a smart-pointer technique is used to implement indexes. The internal
pointers of an index are declared as smart pointers; they are not swizzled, but are
given the semantics of swizzled references (virtual addresses) by overloading their
operators. Edelson (1992) gave a good survey on the general use of smart pointers.

To summarize, large objects in general restrict the use of direct swizzling and,
in addition, indexes restrict the use of eager swizzliing. The most efficient use of
pointer swizzling, however, will always strongly depend on the implementation of
the data structure.

3.5 Catalogue of Existing Systems

Pointer swizzling is very effective for computation-intensive applications. Con-
sequently, some form of pointer swizzling is embodied in many of the existing
commercial systems and prototypes. In Table 2, some of the systems are classified
according to their swizzling facilities. Apart from an implementation of direct swiz-
zling that maintains RRLs (Section 3.2.2) every other swizzling technique can be
found there.

4. Adaptable Pointer Swizzling

The discussion of the pros and cons of the individual swizzling techniques (Section
3) demonstrates that there is no one best strategy for all situations. In particular,
the following observations can be made:

1. The performance of a specific swizzling technique depends strongly on the
profile of an application; for example, direct swizzling will be favorable in
applications with very high temporal locality, whereas no-swizzling should be
preferred in applications with very low locality.

2. Large objects sometimes restrict the use of pointer swizzling. These restric-
tions should have no influence on operations with small objects.

3. Descriptors and RRLs can consume a significant amount of main memory
(cf. Section 5.3). An adaptable object manager is able to control the storage
overhead by allowing swizzling only in cases of a high run-time speed-up to
storage overhead ratio.

These observations have led to the design of an adaptable object manager for the
object base system GOM. The adaptable object manager provides the flexibility to

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 535

Table 2. Classification of swizzling techniques in existing systems

Technique Used Sys tem Reference

(objectwise) eager indirect LOOM Kaehler and Krasner (1983)

PS-algol Atkinson et al. (1983),

lazy optimistic Cockshott et al. (1984)

EPVM 2.0 White and DeWitt (1992)

(objectwise) eager indirect ORION Kim et al. (1988)

no-swizzling 02 Bancilhon et al. (1988)

memory mapping, i.e.,

(page-/segment-wise)

eager direct in VM

ObjectStore

Texas

QuickStore

Eos

FLASK

Lamb et al. (1991)

Wilson and Kakkad (1992),

Singhal et al. (1993)

White and DeWitt (1994)

Gruber et al. (1992)

Munro et al. (1994)

adaptable swizzling GOM Kemper and Kossmann (1993)

choose the most effective swizzling techniques for every individual application. Spe-
cific performance experiments that justify adaptable pointer swizzling were reported
in Kemper and Kossmann (1993). How this adaptability can be achieved with as
little additional overhead as possible is discussed in this section.

4.1 Architecture of Adaptable Pointer Swizzling

In an adaptable object manager, a module for each of the swizzling techniques is
embodied. The idea is to divide statically (i.e., at compile-time) all the references an
application dereferences into disjoint granules. All references of the same granule
are swizzled uniformly (i.e., exactly one module operates on a specific granule).
Each time a reference is dereferenced, the corresponding swizzling module is called
accordingly. Figure 6 depicts this scenario schematically.

It is very important that the mapping of the references to the granules be static
for each application. This is the only way to avoid additional software checks every
time a reference is dereferenced. For example, if a program chooses to swizzle all
the references referring to objects of type Person eagerly and directly, the compiler
must know this to generate calls of the swizzling module EDS for accesses to Persons.

To specify the mapping from references to granules, additional code usually
must be generated for an application program. The mapping is discussed in detail
in Section 4.2, where four different granularities are proposed.

536

Figure 6. Granularities of adaptable pointer swizzling
A, pplication

Swizzling 3 Specification]
OM

Cache

l m
~2<~.;~:~,:;~ ~.;~+:~;, : , . ; . : : - : : - x :- :

I Communication Software I

Figure 7. Conflicts due to adaptable pointer swizzl ing

I i i l

id2 ki2

Processes in Shared Memor
(a) ('b)

idl

/
a

id2

~lient Process 1 Client Process 2

4.1.1 Conflicting Applications. If two applications conflict with each other (i.e.,
they swizzle some references differently), it is assumed that they run in isolated
buffers or are scheduled in such a way that they do not run in parallel. Figure 7
illustrates why, in general, it is impossible for two conflicting applications that run
in parallel to share any objects in the same buffer. Applications Appl and App2
traverse the a field of object idl and then operate on the b field of object id2. Both
applications assume that reference a is swizzled directly. However, Appl assumes
that reference b is swizzled, too, whereas App2 assumes that this reference is not
swizzled. Consequently, each application must keep its own copy of object id2 in
the desired representation. In addition, each application also must keep its own
copy of object idl because this object contains a pointer to object id2.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 537

4.1.2 Buffering Pages after Commit. When an application is finished, all the pages
remain in the client's buffer pool. This improves performance when several succes-
sive transactions use many of the same pages. However, using adaptable pointer
swizzling, the cached objects may not have the correct representation for subsequent
applications. For example, application Appl swizzles all references directly. After
Appl is terminated, application App2, which assumes that all references are swizzled
indirectly, is run. Consequently, the references must be reswizzled before they can
be dereferenced by application App2.

To overcome these difficulties, we propose a lazy reswizzling approach (i.e.,
references are reswizzled as soon as their "home objects" are accessed for the first
time by application App2). To realize lazy reswizzling, the objects are protected as
long as they have not been accessed. When application Appl is committed, a flag is
set in the entries of the ROT and, if existent, in the descriptor of every cached object,
indicating that the object is resident but not necessarily in the correct representation.
When the object is accessed for the first time, the object manager traps the object
and fixes its representation according to the specification of applicationApp2. Again,
an approach with software checks is preferred to access protections since exception
delivery is poor in many operating systems (e.g., SunOS).

Eager direct swizzling can again induce a snowball effect. As soon as an object
is accessed, the representations of all the objects that are referred to by this object
need to be investigated, because the object manager cannot trap if a directly swizzled
reference is dereferenced. This effect is coherent with the eager loading effect of
eager direct swizzling observed in Section 3.2.

4.2 Granularities of Pointer Swizzling

4.2.1 Application-Specific Swizzling. The "coarsest" way to realize adaptable
pointer swizzling is to swizzle all the pointers uniformly within one application.
This approach is called application-specific swizzling. The swizzling strategy to
follow is specified at the beginning of the execution of an application, thereby
activating the corresponding swizzling module. For example, application-specific
swizzling facilitates lazy direct swizzling for applications that traverse the object
base with high locality (left-hand side of Figure 8) and eager indirect swizzling for
different applications that carry out structural updates in addition (fight-hand side
of Figure 8).

4.2.2 Type-Specific Swizzling. Usually, an application invokes several operations
that access objects with varying profiles. In this scenario, application-specific swizzling
is not always the optimum solution, because it does not provide the flexibility to choose
different swizzling techniques for different references within the same application.
One possibility to achieve more flexibility is to swizzle in the type-specific mode (i.e.,
all the references that refer to objects of the same type are swizzled uniformly).

Figure 9 shows a typical situation from the OO1 benchmark (Cattell and Skeen,
1992). All the references that refer to Parts (i.e., those in the Connections) are swizzled

538

Figure 8. Scenario of application-specific swiizzling

OM

Tr--r" I

lie

Cache

I App 2: Updates I

OM

IIE, II

Cache

E
='="Jr" I

I--P==
i r

Client Process I Client Process 2

eagerly and indirectly, whereas all the other references are swizzled eagerly and
directly. This example does not emphasize that, within the same object, references
can be swizzled differently; for type-specific swizzling, the type of the referenced
object (and not the type of the "home object") determines how a reference is
swizzled.

This example illustrates how type-specific sw~:ling allows the use of eager
direct (and optimistic) swizzling, the most efficient technique for object lookups.
In application-specific mode, this technique usually must be precluded because it
induces a snowball effect when an object is loaded or .displaced from the buffer pool.
Type-specific swizzling stops this snowball effect when a Connection is reached.

Type-specific swizzling exploits strong typing in the programming interface of
the object base system (e.g., Kemper et al., 1991). Only in strongly typed languages
can the compiler determine the type of a reference and generate code accordingly.
Furthermore, the property of determining how the references that refer to objects
of a specific type are swizzled must be inherited by all subtypes; the refinement of
this property must be precluded.

To specify type-specific swizzling, the compiler generates a procedure for every
type. Each time an object is faulted, the corresponding procedure is called using
late binding, and swizzling is carried out accordingly. This approach is equivalent

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 539

Figure 9. Type-specific swizzling in the 001 benchmark

Part

from to \ from to \ from / to

Part I I Part

to the definition of type descriptors in Texas (Singhal et al., 1993) to locate pointers
for eager swizzling. In the following, the code of the procedures for the example
shown in Figure 9 is given.

proc fetch_conn(c:Conn)
begin

swizzle_INDIRECT(c, from);
swizzle_INDIRECT(c, to);

end

proc fetch_part(p:Part)
begin

swizzle_DIRECT(p, conn To);
end

Every Connection has a from and a to field that refer to a Part each, and are swizzled
eagerly and indirectly as soon as the Connection is brought into a main-memory
buffer.

In conclusion, type-specific swizzling better exploits the merits of the swizzling
techniques than application-specific swizzling. Calling a procedure using late binding
every time an object is faulted, however, induces an additional per-object overhead.

4.2.3 Context-Specific Swizzling. An even finer granularity can be achieved by the
so-called context-specific swizzling mode. Here, a reference is swizzled according to
the context in which it is stored. For example, Figure 10 shows a situation within

540

the OO1 benchmark in which the references in the to fields are swizzled eagerly,
whereas the references in the from fields are swizzled lazily.

Again, to specify context-specific swizzling, a procedure is generated for every
type that is called when an object is faulted and induces the same overhead as
for type-specific swizzling. Subsequently, the code is given for the Parts and the
Connections of the example shown in Figure 10. In the procedure fetch_conn only
the to field is swizzled indirectly. The from field remains untouched at this point,
as lazy swizzling is specified for the references in these fields.

proc fetch_conn(c:Conn)

begin

swizzle_INDIRECT(c, from);
end

proc fi',tch_part(p:Part)

begin

sw~zzle_DIRECT(p, conn To) ;

end

The finer granularity provided by context-specific swizzling must, in some cases, be
paid for by additional overhead. For example, consider the following assignment:

myConn.to := myConn.from;

If the to fields are swizzled directly and the from fields are swizzled indirectly,
the indirectly swizzled reference of myConn.from must be "translated" before it is
copied into myConn.to. Translations also must be carried out to evaluate Boolean
expressions such as myConn.from = yourConn.to. Following application as well as
type-specific swizzling, translations never are necessary.

So far, the focus has been on inter-object references. A specific class of context
is defined by variables. In our scheme, the identifier of each variable defines its own
context. Often a special treatment of variables is followed, for example, in the first
version of EXODUS (Schuh et al., 1991) or in Kossmann (1991). Incorporating
such a technique is a very obvious application of context-specific swizzling.

4.2.4 Reference-Specific Swizzling. The finest granularity conceivable is to swizzle
every reference individually. However, this approach is rarely promising. Due to
aliasing, the same reference can be converted several times when an application is
run. For example, in the OO1 benchmark a Part can be referenced by Connection_A
and Connection_B. Of course, this situation cannot be known at compile-time, and
the decision to swizzle the reference in the Part that is referred to by Connection_A
indirectly, and to swizzle the reference in the Part that is referred to by Connection.B
directly, results in a conflict that must be resolved at run-time at high cost.

Only in very obvious cases (e.g., the repetitive computation of a path expression
in a loop), can reference-specific swizzling be profitable. However, in these cases,
compile-time techniques (e.g., code motion; Morel and Renvoise, 1979) probably do
a much better job. Consequently, reference-specific swizzling was not investigated
any further.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 541

Figure 10. Context-specific swizzling in the 001 benchmark

Part

Conneclion I I ConneGfion

from to \ from to \ from J to

Part l I Pert

5. Performance Analysis

In this section, a cost model is described for application, type, and context-specific
swizzling. With the help of this cost model, the following two decisions can be made,
provided that the profile of an application and the characteristics of the object base
are known exactly: (1) in what granularity to swizzle, and (2) which techniques to
use. Section 7 outlines how to make the right swizzling decision in practice with
the help of this cost model.

On the basis of the cost model, best and worst case analyses are carried out.
In addition, the storage overhead of pointer swizzling is analyzed.

5.1 Cost Model for Application-Specific Swizzling

The cost of executing an application is determined by I/O activity and CPU time.
However, we are only interested in swizzling specific costs and, therefore, we
focus on the CPU time that is spent to access objects in main memory and to
convert references. For application-specific swizzling, these costs, depending on the
technique used (denoted st), can be summarized by Equation (1). This function is
an adaptation of the cost model used by Moss (1992). Table 3 describes the session
variables and Table 4 describes the SW, US, LO, and UP functions.

C (st) = m (st) * (SW (st,fi) -q- US (st,fi)) -Jr 1 * LO (st) "b u * UP (st,fi) (1)

542

Table 3. Session variables

Session variables

l Number of lookup operations performed.

u Number of update operations performed.

Average fan-in of an object; i.e., the number of

swizzled references that refer to an object.

m (st) Depends on whether eager or lazy swizzling is used.

Table 4. Cost functions

Cost functions

SW Cost to swizzle a reference.

US Cost to unswizzle a reference.

LO Cost to carry out a lookup.

UP Cost to carry out an update.

In addition to the swizzling technique used, SW, US, and UP depend on the fan-in of
an object. Unfortunately, it is not possible to determine the exact fan-in of an object.
Only an average fan-in fi can be determined, as a rule. Obviously, considering only
the average fan-in is a source of inaccuracy. Neverthe, less, the experiments reported
in Kemper and Kossmann (1993) showed that this approximation works very well
in almost every case.

5.1.1 Determining the Functions of the Cost ModeL Table 5 lists the costs to read
a field of an object containing an int (4 bytes) or a reference (8 bytes). 2 It could
be concluded that eager-direct swizzling has the potential of being 6.5 times more
efficient than no-swizzling. One investigator found lazy swizzling to be up to 10%
inferior to eager swizzling for pure lookups (Moss, 1992).

The tremendous gap we found between transient C (called TC) and eager direct
swizzling (also observed for the pointer swizzling techniques in White and DeWitt,
1992) is due to two factors: in the first place, the object manager is based on the
EXODUS storage manager, which provides user-descriptors that cause an additional
indirection; in the second place, each time an object is accessed, the object manager
sets a flag to carry out an LRU replacement policy. This procedure is omitted in
TC. The gap is even wider for lookups on fields that contain references. In TC,
pointers that are 4 bytes long are copied, whereas, in a persistent object manager,

2. See Section 6.1 for details of the benchmark environment.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 543

Table 5. Object Iookups in

Lookup

int

reference

See Table 1 for definitions.

TC EDS LDS EIS L ~ NOS

1.0 3.6 4.0 4.3 4.7 23.4

0.9 6.7 7.1 7.4 7.8 26.4

Table 6. Swizzling and unswizzling a reference in #s

s w + u s /i=o a = l l f i = 2] a = 3 .a=8
direct 85.1 59.2 63.0 67.8 85.0

indirect 62.2 33.6 33.6 33.6 33.6

See Table 4 for cost functions.

swizzled and non-swizzled references that are 8 bytes long are copied.
Table 6 lists the costs of swizzling and unswizzling a reference. For direct

swizzling, these costs depend on the fan-in, because the RRL of the referenced
object must be maintained. For fi = 0, the costs are particularly high because, in
this case, an RRL (or a descriptor) is allocated when the reference is swizzled, and
destroyed when the reference is unswizzled again. With increasing fan-in, the cost
to swizzle and unswizzle a reference directly grows proportionally, whereas the cost
to swizzle and unswizzle a reference indirectly is constant.

Similarly, the cost of direct swizzling grows linearly with increasing fan-in for an
operation that updates a field that contains a reference (Figure l la) , while the cost
for indirect swizzling is constant. The time to modify a field that contains an int is
shown in Figure 1lb. In this case, direct swizzling outperforms indirect swizzling
by approximately the same difference as for lookups, since no RRL needs to be
maintained.

The gap between TC and pointer swizzling is even greater for updates than for
lookups. This is due to the fact that the object manager must mark the updated
objects. This overhead, which is relatively expensive, is not induced under TC.

5.1.2 Best and Worst Case Analyses. Considering Equation (1) and the quantities
of the cost functions, Table 7 compares the techniques in the best cases. For example,
in an application that carries out lookups only, lazy direct swizzling outperforms
no-swizzling by a factor of 5.9 (equivalent to 83% savings). On the other hand, in an
application that dereferences every reference only once, swizzling is not worthwhile,
and no-swizzling outperforms lazy-direct swizzling by a factor of 6.8. Analyzing this
worst case of direct swizzling, it is assumed that fi = 25.

544

Figure 11. Object updates in #s
9 0 , | i | i | | i

88 ~ LDS -N-- J

! !
~ V | , | , , I I

1 2 8 4 5 6 ? 8 9
Fan-in

Update reference[
TC 1.3
EDS '

LDS

EZS 32.1

LIS 33.3
NOS 48.7

(a) (b)

hat

1.3
29.4
29.7
30.1
30.4
46.6

(a) for direct swizzling if a field that contains a reference is modified, and (b) if a field that
contains a reference or an int is modified.

Table 7. Swizzling and unswizzling a reference in #s

best/

worst NOS LIS EIS LDS EDS

NOS 1 2.9 oo 6.8 oo

LIS 5 1 o<) 5.1 oo

EIS 5.4 1.1 1 5.3 5.3

LDS 5.9 1.2 oo 1 oo

EDS 6.5 1.3 1.2 1.1 1

See Table 1 for definitions.

The cost of eager swizzling can become arbitrarily high (oo) when almost
every reference is swizzled unnecessarily (i.e., without being dereferenced). In our
comparison of eager-direct and eager-indirect swizzling, the fact that eager direct
swizzling can cause additional I/O activity is disregarded.

In realistic applications, these extremes will hardly ever be reached. However,
they underline the need to use pointer swizzling carefully in an adaptable system.

5.2 Cost Models for Type and Context-Specific Swizzling

For type-specific swizzling, Equation (1) is adapted m two ways. One, the costs
induced by every granule are summed up. Accordingly, Equation (1) is applied
to every type t, considering the type-specific parameters m t (Stt), lt, and ut, and

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 545

Table 8. Time in #s to Translate a Reference from Layout I1 to
L a y o u t 12

11/12 EDS LDS

EDS - -

LDS 2.3 / 21.1 -

EIS 2.8 2.8

LIS 2.8 / 21.1 2.8

NOS 20.7 -

EIS LIS NOS

2.8 2.8 2.8

2 .8/19.1 2 .8 /2 .3 2.8/2.3

- - 2.8

2 .3/19.1 - 2 .8 /2 .3

18.0 - -

the type-specific technique, stt. Two, the cost to call the type-specific procedure
for every object that is accessed must be considered. Here, o is defined as the
number of objects that are accessed by the application and FC as the cost to call
this procedure using late binding. Any swizzling that is carried out within the
type-specific procedure is encountered in the mt (stt) * SW (stt) terms.

C = o * FC q- ~ t E T mt (stt) * (SW(st t , f i) q-

US(s t t , f l)) -k-It * LO(st t) q-ut * UP(s t t , f i) (2)

Context-specific swizzling can induce an additional overhead caused by the
translations of references, referred to as function TL in Equation (3). This cost
depends on the number of translations and on the techniques involved; for example,
it is much cheaper to translate an indirectly swizzled reference into a non-swizzled
reference than the other way around. Furthermore, for context-specific swizzling,
more granules (referred to as C) must be considered.

C = TL q- o * FC q- ~ c ~ c me (stc) * (SW (stc, fi) q-

US (stc,fi)) + lc * LO (stc) d- uc * UP (stc,f i) (3)

5.2.1 Determining the Additional Cost Functions. In the benchmark environment
(Section 6.1), the overhead for late binding when calling the type-specific function,
referred to as FC in Equations (2) and (3), is 33.2 ps. Table 8 summarizes the
cost to translate a reference into a different layout. It is assumed that the object
referred to is resident and that a descriptor has been allocated. If two values are
given for translating references following lazy swizzling, the first value is the value
if the reference is swizzled; "-" means that no translation is necessary.

5.2.2 Best and Worst Case Analyses. It is always possible to specify context-specific
swizzling so that no translations are necessary. Consequently, the best and worst

546

case analyses of application vs. type and application vs. context-specific swizzling
coincide.

The worst case of type and context-specific swizzling is an application that
browses through a large number of objects, thereby acc, essing each object only once.
For such an application, no-swizzling is preferable for all references. Equation (4)
demonstrates how the speed-up of application-specific swizzling is computed for
this extreme case.

C (typ) _ o * FC + o * L O (NOS) _ 33.2 + 23.4 _ 2.42 (4)

C (appl) o * L O (NOS) 23.4

The best case of type and context-specific swizzling is an application that dereferences
some references with very high locality, and others only once. For such an application,
type and context-specific swizzling allow eager direct swizzling where it is profitable
and no-swizzling where it is not. On the other hand, if eager swizzling is not
profitable, application-specific swizzling faces a dilemma between no-swizzling and
lazy indirect swizzling, because too many references are swizzled unnecessarily, and
direct swizzling is outperformed because fi is too high.

Equation (5) computes the potential speed-up in the extreme case where only
a few objects are accessed, one reference is dereferenced l times, and m other
references are dereferenced once. Application-specific swizzling has a break-even
point between no-swizzling and lazy indirect swizzling for m = l * 18.7 / 43.5; at
this point, the speed-up of type and context-specific swizzling reaches its maximum.

C (appl)

c(p)
I * L O (NOS) q- m * L O (NOS)

o * F C -q- S W -k- US -b l * L O (EDS) "k- rn * L O (NOS)

l * LO(NOS) q-- l * 18.7,/43.5 • LO(NOS)

l---'+CX~
)

o * F C + S W + US --b I * LO(EDS) + l * 18.7/43.5 • LO(NOS)

L o (NOS) + 18.7/43.5 • LO (NOS)
LO (EDS) + 18.7/43.5 * LO (NOS)
2.45 (5)

5.3 Storage Overhead

As stated in Section 4, storage economy is one reason for using pointer swizzling
in an adaptable system. In principle, there are three sources of additional needs of
main memory due to pointer swizzling:

1. the descriptors induce a per object overhead:

o * S D

where SD denotes the size of one descriptor.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 547

2. every entry in an RRL induces a per reference overhead:

 ?01 10 • • SR

.

where SR denotes the size of one RRL entry. For running time efficiency,
blocks of 10 RRL entries always are allocated and, therefore, internal off-cuts
in the blocks must be accounted for as well.

pointer swizzling can result in a larger object code of the application program.

The amount of additional code is not significant since software checks are not
performed in-line, but coded in the object manager. In addition, the overhead for
the fetch functions for type and context-specific swizzling is negligible. On the other
hand, every RRL entry consumes SR = 12 bytes and a descriptor is SD = 24 bytes
long in the GOM object manager (Kossmann, 1991; Kotulla, 1992).

Considering the data structures of the OO1 benchmark (Cattell and Skeen,
1992), 43% of the main memory must be invested for each descriptor or RRL when
using eager indirect swizzling or eager direct swizzling, respectively. Here, it must
be kept in mind that the OO1 benchmark can be seen as the worst case for pointer
swizzling; the objects are very small and contain references with a high density.

If spatial locality is high and page-based buffering is used, the space overhead
of RRLs can be reduced significantly by maintaining reverse references pagewise:
rather than maintaining precise reverse references (from every object tO every
swizzled reference), page-based reverse references can be maintained. For example,
page B is registered in the RRL of page A if page B contains directly swizzled
references referring to objects located in page A; inter-object references within page
A need not be recorded at all. If page A is replaced in the main-memory buffer
pool, the object manager scans through page B to detect all the references that refer
to objects located in page A. In addition, the object manager checks the run-time
stack to unswizzle all local variables that refer to objects located in A. Thus, the
space overhead is reduced at the price of higher computation overhead to locate
the swizzled references.

Furthermore, RRLs may be swapped out to improve the main-memory buffer
utilization, since they rarely are used. On the other hand, descriptors are hot
spots, because a descriptor is involved every time an indirectly swizzled reference
is dereferenced. In addition, no compact representation of descriptors is possible.

6. Performance Experiments

In this section, the analytical results of Section 5 are confirmed with the help of the
OO1 benchmark (Cattell and Skeen, 1992). Diverse application profiles, as well as
various object base configurations and the influence of object caching and clustering,
are the focus of the present article. In a previous article (Kemper and Kossmann,

548

1993), we presented experiments that investigated specifically the break-even points
between the swizzling techniques and the influence of the fan-in.

6.1 The Benchmark Environment

6. 7.1 SoRvvaro and Hardware Used. The experiments were carried out on a Sun
SPARC station 1 plus with a 40 MB main memory under SunOS 4.1.3. If not stated
otherwise, the size of the buffer pool was restricted to 1,000 pages at 4096 bytes.
In addition, extra main memory was reserved to allocate RRLs and descriptors.
Every application had its own private stack and heap for transient data (e.g., local
variables).

Access to persistent data was effected by calls to the; GOM object manager. The
GOM object manager is based on Version 1.3 of the EXODUS storage manager
(Carey et al., 1986). As stated in Section 4, the GOM object manager permits
applications to use no-swizzling or one of the four swizzling techniques that take
precautions for object replacement. The GOM object manager facilitates application,
type, and context-specific swizzling.

To read or manipulate the state of an object, a reference to the object is passed
to the object manager. For no-swizzling, references are logical OIDs consisting of
8 bytes. Directly and indirectly swizzled references are; also 8 bytes long.

6.1.2 The 0 0 1 Benchmark. The benchmark used was derived from the OO1 (Sun)
benchmark (CatteU and Skeen, 1992). The data structures are defined as follows:

type Part is

[part-id: int;
type: string[lO];

x, y: int;
built: int]
connTo: {Connection}]

end type Part

type Connection is

[from: Part;

to: Part;

type: string[10];

length: int]
end type Ccmnection

Considering a 4-byte alignment, every Part was 36 bytes long and a Connection
consumed 32 bytes. If not stated otherwise, object bases consisting of 20,000 Parts
and 60,000 Connections were measured. In GOM, which maps logical OIDs to
physical addresses using a linear hash table with separators (Larson, 1988), such a
database consumed 8.9 MB.

The Parts and Connections were described as follows: part-ids were numbered
from 1 through 20,000 and, for every Part, three Connections existed whose from field
referred to that Part (CatteU and Skeen, 1992). To support Traversals, references
to these three Connections were materialized in a set that was referred to by the
connTo field of a Part. To obtain locality, the to fields of the Connections were
initialized so that 90% of the Connections connected a Part with a Part that was
within the 1% closest.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 549

The benchmark measured applications composed of the following operations:

Lookup: Selecting a random Part and reading its x; y, and type field, and calling a
null procedure.

Traversal: Finding all the Parts connected to a randomly selected Part, or to a Part
connected to it, and so on up to a certain depth (by default 7) and reading
the x, y, and type field of every Part and calling a null procedure, thereby
making use of the sets referred to by the connTo field of every part.

Reverse Traversal: Beginning at a randomly selected Part, finding all the Parts it
is connected to, and Parts these Parts are connected to, and so on. This
operation is far more complex than the Forward Traversal because, in every
iteration, the Connections whose to fields refer to the particular Part must
be selected from the set of all Connections; references to these Connections
are not materialized.

Update: Swap twice the values of the to fields of two randomly selected Connections.
Thus, modifications are carried out, but the state of the object base does not
change ultimately.

The creation of new objects was not measured. Although the implementation of this
operation usually depends on the swizzling technique used, there is no swizzling-
specific cost in creating an object. However, newly created objects usually are
initialized immediately. This initialization can be seen as a sequence of operations
that have the same profile as the Lookup and Update operations.

6.2 Lookups

The Lookup operation was measured on a 10,000 Parts and 30,000 Connections
object base (i.e., an object base in which all Parts and Connections fitted in the
main-memory buffers so that eager direct swizzling was a reasonable approach).
With increasing computation intensity, swizzling becomes more and more attractive
(i.e., the speed-up of swizzling against no-swizzling increases; Figure 12).

The maximum speed-up that can be achieved is about 4.5. In Section 5, the
maximum speed-up was calculated to be 6.5. However, here and in most realistic
applications, the results are diluted (e.g., by calls of the "random" function or by
I/O activity). The maximum possible (theoretic) speed-up, therefore, cannot be
achieved.

If very few Lookups are carried out, eager direct swizzling (EDS) is outperformed
dramatically by any other technique, because EDS loads the transitive closure of
a Part as soon as the Part is accessed and, thus, induces additional I/O. With an
increasing number of Lookups, more Parts are brought into the buffer anyway, and
EDS catches up and, finally, outperforms any other technique.

Only application-specific swizzling was considered for this experiment. The
profile was too homogeneous to exploit the merits of type and context-specific
swizzling.

550

Figure 12. Measuring the Lookup operation

j.

1 0 0 . 5 ' ' " " :

1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0

6.3 Traversals

The Traversals were carried out cold, warm, and hot on a 20,000 Parts, and 60,000
Connections object base. The cold Traversals are I/O bound. In this case, it did not
make much difference whether references were swizzled or not, because the running
time of the application was dominated by I/O activity rather than in-mem0ry object
lookups. Figure 13a shows the running time of every technique, 3 and Figure 13b
shows the savings obtained by the swizzling techniques as compared to no-swizzling. 4
Only eager indirect swizzling dropped behind due to the unnecessary swizzling of
referer~ces; it caught up with increasing depth, since with increasing depth, the effect
of cycles in the object graph became more apparent.

The warm Traversals were carried out in the following way: first, a Traversal was
carried out using no-swizzling and, then, the running time was measured to carry
out the same TraversaL using the alternative swizzling techniques. This experiment
investigated the behavior of the system when pages were buffered in the client after
commit of an application (Section 4.1); many objects were main-memory resident,
but they were not in the right representation. Again, the running time (Figure 13c)
and the comparison (Figure 13d) between the swizzling techniques and no-swizzling
were reported. Any pointer swizzling technique was outperformed by no-swizzling,
since the objects were not referenced often enough to make swizzling profitable.
The losses of the swizzling techniques were rather high, because the low I/O activ-
ity diluted the results. Here, also, context-specific swizzling (CTX) was investigated to

3. EDS had to be precluded because the size of the object base exceeded the size of the main-memory
buffers.

N O S - S W I Z Z 4. The savings are defined by the following ratio:
N O S

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 551

Figure 13. Measuring Traversals

lOOO

• 100

~1o
1

5 9

(~ ookl
| | i

NO6 -.e--
US --~--

6 7 8
OW,I

~) cold

:F.. / • " 1 il ""1.......-"
, ~ " • o . ° " ° ° °

j:
" o°°J L I ~ - 4 - - ' -
"3°1" ~ sis -.--.

.40 ~ ~l n n
5 6 77 8 9

DWm

100o

lOO

i lO

1

0.1

~=) ttQnll
| i i

EIS -e.-.
LOS -N-- ° o / CTX -,t--

I I I

0 7 0

~warm

o ' ' i ~

-lOO [I l i /
5 6 7 8 0

owe

(e) hoq

80
IO0

50:

~1 ~o

f i" 2O

° , ~ _ _ _ _ ~ _ I '° o

O.Ol -lO
5 0 0 9 7

OqNh

~) Ilot

i°i i
5 0 7 0

552

demonstrate how large the losses can become due to calls of the fetch_part and
fetch_connection procedures each time an object was loaded or the representation
of a resident object was altered the first time it was accessed.

To investigate computation-intensive applications, Figures 13e and Figure 13f
summarize the experimental results for hot Traversals. Here, a Traversal was exe-
cuted once, using a specific swizzling technique and, then, the running time was
measured to carry out the same Traversal again, using the same swizzling technique.
Consequently, many objects were main-memory resident and, in addition, in the
desired representation when the benchmark was executed.

Up to a depth of 9, swizzling outperforms no-swizzling dramatically. Beginning
from a depth of 9, so many objects are accessed that most of them are paged
out already within the warm-up run, and the same results are obtained as for cold
Traversals.

In this experiment, lazy direct swizzling suffered from two phenomena: (1) due
to paging, many references had to be unswizzled and swizzled again, because they
were dereferenced again subsequently; and (2) due to the recursion to realize a depth
first search, many local variables were involved, which led to large RRLs. Even using
type and context-specific swizzling, these drawbacks could not be compensated so
that application-specific eager indirect swizzling turned out to be the most effective
technique with up to 70% savings as compared to no-swizzling.

To demonstrate the effectiveness of type and context-specific swizzling, an
operation mix of Traversals and Lookups was measured. Beginning at a randomly
selected Part, the object base was traversed. With every iteration, the x~ y, and
type fields of the Part that was reached were read a number of times in addition.
In this experiment, the client was "warmed up" by carrying out a Traversal using
no-swizzling beforehand.

In this experiment, application-specific swizzling faced a dilemma. On the
one hand, no-swizzling should have been used to carry out the warm Traversal
efficiently; on the other hand, the additional Lookups provided enough locality to
justify direct swizzling of references referring to Parts. Type and context-specific
swizzling overcame this dilemma and outperformed application-specific swizzling by
savings of up to 16% (Figure 14).

6.4 Reverse Traversals

The major difference between Traversals and Reverse Traversals is that the Traversals
are supported by materializing the Connections that are traversed in every iteration
in the connTo fields of the Parts. On the other hand, Reverse Traversals must "find"
their way through the object graph. This makes a Reverse Traversal a much more
computation-intensive operation.

Reverse Traversals can be seen as iteratively performing a join of the set of
Connections on itself. We tried implementing this join with a nested-loop but the
running time was not acceptable, because not all the Connections fit in the main-
memory buffers. To improve locality, the set of all Connections was partitioned

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 553

Figure 14, Traversals in Combination with Lookups (warm)

3OO

28O

26O

,~, 240

18o

180

140

120
0

i i i g

NOS -*--, J
US -+--.

WP -m-.-

..lip . . . ollf . O ~ - - - - -

I I I I

200 400 600 800 1000
Addmonal LoOkul:s i ~ I~ut

l e , , ~ , ~ . .
14 L . ~ ' - -,o- 4 ' - - ~ - -I~-. , % / : c j ~ . ~ -

,2 I- , - -

'°1" /
8]-] ~ . .

" i'~ "'~"~ ~'"

o ! 7 - _ _

-2 ."
4 ~ I I I I

0 200 400 800 800 1000
/~lat~nal I.o0ka4~ per Plla

into several disjoint and equally-sized subsets so that every subset fitted in the
buffers. Then, iteratively a subset was loaded and as much as possible of the Reverse
Traversal was executed based on this subset. This approach reduced the number of
page faults dramatically and--as will be seen--provided enough locality to make
swizzling worthwhile. The approach is correct in the sense that it computes the
same number of Parts that are connected to a specific Part; however, it does not
meet the demand to follow a depth first search strategy.

To reduce the running time of the benchmark, the object base, as well as the
buffer pool were scaled down. Figure 15 summarizes the experimental results for
a 10,000 Parts and 30,000 Connections object, using a buffer pool of 500 pages.
With increasing depth, the running time increased exponentially. However, locality
increased as well, since each time a subset was loaded, it was operated upon more
intensively and, thus, swizzling became more attractive. With increasing depth,
context-specific swizzling became more attractive, too, as it had the opportunity to
exploit eager direct swizzling.

This experiment also makes clear that a tremendous number of swizzlings can
be afforded in such a computation-intensive application and, at the same time,
confirms that swizzling is still worthwhile. Again, lazy direct swizzling carries out
more swizzling due to unlucky object replacements. Eager indirect swizzling translates
many references unnecessarily. However, both techniques can compensate for this
by their more efficient object lookup mechanism, and consequently, all swizzling
techniques perform equally well.

6.5 Structural Updates

Table 9 contains the running time for the Update operation, and the trade-off
between swizzling and no-swizzling, if the buffers are hot (i.e., after a Traversal had

554

Figure 15. M e a s u r i n g Reverse Traversals

1 0 0 0 0 0

~ ' 10O0O

!,o.
100

| i , i | | , i

NOS -~-- S
US -4-- _ /
EIS -e-- .4,

I I I I I I I

2 3 4 5 6 7 8 9
oepm

35OOO0

3OOOOO

2 5 O O O O i -
15OOOO

1OO00O

5OO0O

| | i w i | |

LIS -D-.- ..-°"
EIS -I|-- " "

U)6 ~ - - ..B- e" "
CTX ~1-- .,"•

,B , G- - - - - - - tD" f

o.•°'° i
jD ° o~ o

• °• • %, o~ ~..,

I I I I I I I

2 3 4 5 6 7 8 9
Depth

!
~ i i | g w 5

70 ~ 4

60 3

1

. o

-1

0 I i I i I -2
3 4 5 6 7 8 9

Depth

C T X - 4 1 , - - ~ w
¢*

i
I r

..
¢oO"

I I I I I

4 5 6 7 8

been executed using the same swizzling technique). As expected, direct swizzling
causes tremendous overhead due to maintaining the RRLs, and indirect swizzling
outperforms no-swizzling by savings of more than 50%, since it avoids consulting the
ROT. The best performance, however, can be achieved by type and context-specific
swizzling, since these strategies allow the references referring to Connections to be
swizzled directly (thus providing fast accesses to the Connections), and not swizzling
the references that are redirected at all (thus avoiding any overhead for maintaining
RRLs or descriptors). The running time is reduced by 23% for this operation when
using type or context-specific swizzling compared to eager indirect swizzling, which
is the most efficient technique for application-specific swizzling.

Figure 16 summarizes the experiments for Updates in combination with Lookups.
With an increasing number of Updates, the savings of swizzling compared to no-
swizzling decreased because Updates are relatively more expensive than Lookups.
On the other hand, type-specific swizzling became more and more attractive than
eager indirect swizzling (the most efficient technique considering application-specific
swizzling), because it is able to make use of direct swizzling. Context-specific
swizzling outperformed type-specific swizzling because it could make use of eager
direct swizzling without risking swizzling references unnecessarily.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 555

Table 9. Running time in/zs and savings in % of pointer swizzling for
the Update operation (hot)

NOS LIS EIS LDS EDS ~ CTX

225 113 [49.8 96 [57.3]289 -28.4 [299 [-32.9 74 [67.1 [

See Table 1 for definitions.

Figure 16. Operation mix: Updates and Iookups (hot)

4 0 0 . . | |

--'3' 300 / LDS '~-- ~ EIS -O--. ~ " x ' ' ' ~ / ~ ~ 75

~ 200 ffrX -~-.

6o . ~ . ~ 2 ~'t~ :'~'~ 5o

O l I I I I

0 20 80 100 0 40 6O Updam p~

' ' ' EIS -B---
TYP -,I---

~,,, CTX -'@" -

"B.. " " L ° . ° ~ ' ~ 1 - - - , .4~ . .
,B. . . .19 111 .111..o..111....° I

. . . . "ID-.. . . iB.. . . . iD.. . . .B.. .

I I I I

20 40 60 8O 100
upaam ~l

6.6 The Influence of Locality on Pointer Swizzling

The most decisive parameter for any swizzling technique is the application's (temporal
and spatial) locality (i.e., the probability that an application accesses an object that
is already main-memory resident). The higher the locality, the higher the ratio l/m
in Equation (1), and the more profitable swizzling becomes.

Locality is determined not only by the operations an application executes; it is
also influenced by the state of the object base, and by other optimization techniques
(e.g., clustering). It also makes a difference whether the objects are copied from
the page buffer into an object cache.

6. 6.1 Varying Topological Locality. In the original definition of the OO1 benchmark,
90% of the Connections are randomly selected among the 1% of Parts that are
"closest." This parameter was scaled so that object bases also were investigated--in
which, for example, all (100%) or no (0%) Connections satisfied this demand. This
parameter is referred to as the topological locality of the OO1 object base.

In Figure 17, the savings over no-swizzling of the overall best and overall worst
swizzling strategies are presented when running Traversals and Reverse Traversals up

556

Figure 17. Varying topological locality
(a) Tmvemals (hot) (b) I:kwerse Tmversals (¢old)

7O , , , , 7 2 . , , , ,
8.,.iD °~

60 EIS -B--. ~ US ..+--
L[16 ~ :" ClrX ..*-- ~so

. 1 0 / I I I I 5 8 / I I I I
0 20 40 60 80 100 0 20 40 60 80 100

Topological locality [%] Tolx)looical l o f t y ~ q

to a depth of 7 against object bases with varying topological locality. With increasing
topological locality, the performance of pointer swi2:zling improves. The effect is
more striking for Traversals; it is only beginning at a topological locality of 80%
that pointer swizzling becomes worthwhile even for hot traversals. Reverse Traversals
are so computation-intensive that, in any case, no-swizzling is outperformed by any
swizzling technique.

6.6.2 Object Caching. Locality can be improved dramatically if objects are copied
from the page buffer pool into a separate object cache (Kim et al., 1988). In such
a copy architecture, most of the Parts and Connections that are accessed when a
Traversal is carried out can be cached. On the other hand, in an architecture that
buffers only pages, a lot of main memory is wasted with objects that never are
accessed, but are stored on the same page together with objects that are accessed.

To investigate the influence of object caching on]pointer swizzling, the Traversal
portion of the OO1 benchmark was run hot in a copy architecture (referred to as
OC) with a 2.46 MB object cache (equivalent to 600 pages) and a page buffer with
a capacity of 200 pages (0.82 MB). The results were; contrasted with a run of the
benchmark in an architecture that buffers 800 pages (PB) without copying objects.
Furthermore, to demonstrate how the benchmark scales against the size of the
objects and the number of objects, the Traversals were run against three different
object base configurations:

Configuration Number Parts Number Conns. Objects per Page Size of the DB

A 20,000 60,000 100 8.9 MB

B 100,000 300,000 100 36.3 MB

C 20,000 60,000 9 42.5 MB

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 557

Figure 18. Measuring hot Traversals in an object cache (OC) and in
a page buffer (PB)

(a)

2 5 0 0 0 ~

P 2 0 0 0 0 S 60
a &
g v 50
• 1 5 0 0 0 1
F n 40
a g
u 1 0 0 0 0 s 30 -

1 ¢ 20 -
¢ 5 0 0 0 o
• N 10 -

0
0 S 0

A B C [%] - 1 0

(b)

OC

!

PB

oC

m

PB

A B

0 c
m

PB

C

Figure 18a illustrates how, due to object caching, the number of page faults can
be decreased significantly. For example, for the object base configuration A, fewer
than half the faults occurred under the OC architecture. Figure 18b illustrates
how this affected the performance of pointer swizzling; the savings attained by the
best swizzling technique (in most cases this was application-specific lazy indirect
swizzling) compared to no-swizzling are depicted. In configurations A and B, most
of the objects could be cached in the copy architecture, and pointer swizzling was
up to 60% superior to no-swizzling. On the other hand, the page buffer did not
provide enough locality to make swizzling worthwhile. In configuration C, even the
copy architecture could not cache enough objects from the warm-up run to make
swizzling profitable.

6.6.3 Clustering. The same effect obtained by object caching can be achieved by
clustering. In Figure 19, type-based (Ty) clustering (i.e., storing all the Connections
in a segment, and all the Parts in a different segment) is contrasted to clustering a
Part together with the three Connections that originate in the Part on the same page
(referred to by PC). The Traversals were run cold up to depth 7 on the three object
base configurations described above. It became apparent that good clustering can
also make the difference between no-swizzling and swizzling.

7. Making the Right Choice

In Section 5, a cost model for determining the most profitable swizzling strategy
is described. This section details how, in practice, the variables of the cost model
can be derived so that the most profitable swizzling strategy may be determined.
Some of the ideas were borrowed from clustering in object bases (Gerlhof et al.,

558

Figure 19. Measuring cold Traversals in a Part.to-Connection (PC) and
in a Type.based (Ty) clustered object base

P 15000 a
g
• 10000
F
&
u 5000
1
t 0

(a) (b)

A B C

S

G
v PC

n 5
g
s 0
t
o

J - 5
0
$ - 1 0
[Y'] A B C

1993), where the same problem of combining characteristics of the object base and
the application's profile was addressed.

7.1 Monitoring the Variables of the Cost Model

The profile of an application can be determined by :monitoring. The application is
executed in the training mode, using no-swizzling. 5 Thus, variables o, l, u, and m (st)
are computed for every context (i.e., the smallest granularity) by adding up the
contribution of every object and reference.

Figure 20 illustrates this approach with the help of a swizzling graph (Figure
20b) and the trace of a Traversal with depth 1 (Figure 20a). The trace keeps a
record of every call of the object manager; for every access to an object, it records
the OID of the object, registers the attribute if the object is tuple-structured, and
records whether the object was read (r) or modified (w).

The swizzling graph is an adaptation of the clustering graph (Tsangaris and
Naughton, 1991). For every object (represented as a node), the number of times
that the object is faulted by the object manager is recorded (i.e., an object is accessed
without being currently registered in the ROT). For example, if two pages can be
buffered, no pages are cached beforehand and an LRU buffer replacement policy
is followed; object id4 is faulted three times and, therefore, assigned a weight of
3. In Figure 20b, pages are depicted as dotted boxes. To obtain realistic results,
the application should be trained in a cache in which other applications were run
beforehand.

5. It is also possible to carry out a trace-driven simulation (Dan et al., 1993).

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 559

Figure 20. Generating a swizzling graph (b) from an object trace (a)

id3

id4

±d7

idl

id4

id8

id2

2d4

id9

id3

connTo r

---- r

tO r

connTo r

t o r

connTo r
- - - - r

t o r

connTo r

i
ia3 :;$~

• % i

~unTo i

i I !

' ii
I
C /

[id7 !i:;i

i = I ~ ,
m

t

lab i!t~ ia9 :!t~i
Conn~eli~ 1 1 C~me~ 1

lrom to f rom to

| i
= m i~ ~ ;ii~ii i

i I = =
l connTo ¢onnTo I
, =
; . .d

(a) (b)

Every reference (depicted as an edge in the swizzling graph) is assigned 3
weights: l, u, and p. References that are stored in a set are assigned these three
weights collectively because in sets individual references cannot be distinguished;
u counts the number of times the reference is redirected (i.e., the number of w
records in the trace), l sums up the number of times a reference is dereferenced.
Here, a count is kept of the number of times that a reference is read and the
referenced object is accessed within the next 10 records of the trace; for example,
the connTo field of Part id3 is dereferenced only once, although it is read twice in
the trace shown in Figure 20a.

To determine the number of references per granule that are swizzled following
lazy swizzling upon discovery (m (lazy)),p computes for every reference the probability
that the reference is read when its "home object" is brought into the buffer pool
When an object is loaded, a flag is allocated for all the fields that contain a reference.
If a field is read, the corresponding flag is set. When the object is displaced from
the buffer pool, the flags are evaluated recomputing p for every reference•

The cumulative weights of the swizzling graph determine the variables of the
cost model. For the example given in Figure 20, o = 10, and the following values
apply:

560

from

to

connTo

{Conns}

I u p re(lazy) re(eager) I

0 0 0 0 3

3 0 1 3 3

1 0 1/4 1 4

3 0 1 3 3

Parts 3 0 1/2 3 6

Conns 3 0 1 3 3

{Conns} 1 0 1/4 1 4

CTX

TYPE

7 0 7/13 7 13 [APPL

is approximated by m (st)/o (e.g., 1.5 for Parts following eager swizzling). The
inaccuracy can be reduced by reference counting when monitoring the application;
for instance, executing the application in the training mode using lazy and eager
indirect swizzling and recording the counters kept :in the descriptors. For this
example, the conclusion was reached that no-swizzling in application-specific mode
is the most efficient strategy.

The variables can, of course, be computed "on-the-fly" when the application is
monitored. It is not necessary to store the weights of all the objects and all the
references. Consequently, the storage overhead is O ~,), g representing the number
of granules (e.g., attribute identifiers) recorded.

7.2 Reconsidering Eager Direct Swizzling

As stated in Section 3.2, eager direct swizzling can induce a snowball effect, and as
a result, cause additional I/O activity. This characteristic was not taken into account
in Section 7.1 (incremental loading was assumed in any case) and, therefore, for
some granules, the decision to swizzle eagerly and directly should be reconsidered.

To find automatically those granules that may be swizzled eagerly and directly
without possibly inducing additional I/O activity, the :Following greedy algorithm is
applied:

1. Sort all granules 6 that are supposed to be swizzled eagerly and directly in an
intention_list in decreasing order according to C (EDS) - C (LDS) for every
granule (i.e., placing first the granule that benefits most from eager direct
swizzling).

2. Assume for the following that all granules in the intention_list are swizzled
lazily.

6. In the application-specific mode, there is only one granule; the algorithm, nevertheless, is valid in the
same way.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 561

3. Consider the first granule of the intention_list. By means of simulation and
sampling of the object base, ascertain whether this granule can be swizzled
eagerly and directly without causing additional I/O. If so, swizzle this granule
eagerly and directly; otherwise, swizzle the granule lazily and directly. Take
this decision into account in all further calculations. Repeat this step with
the next granule from the intention_list and so on until it is empty.

The algorithm works well for type and context-specific swizzling and for the data
structures of the OO1 benchmark (Figure 9). However, it is restrictive since it
precludes eager direct swizzling as soon as the simulation discovers that a snowball
effect can occur. Consequently, eager direct swizzling is not always fully exploited.
The system should, therefore, also allow the user to specify what granules may be
swizzled eagerly and directly. The user can estimate best the risk of this technique
(i.e., flooding the memory with the transitive closure for a particular application).

7.3 Alternatives

7.3.1 Optimizing the Overall Throughput. If many short applications are run on
a client, it is profitable to optimize the overall throughput rather than optimizing
every single application in isolation. Here, it must be kept in mind that pages are
buffered hot after commit of an application (i.e., all references remain swizzled),
and reswizzling should be avoided (Section 4.1).

In this case, monitoring is not applied to a single application but to a snapshot of
all the activities on a client over a certain period (e.g., one day). Then, the swizzling
decision is carried out as described above, and the object manager in the client
is configured accordingly. Any conflicts between two applications are precluded,
as all the applications that run on the same client must follow the same swizzling
strategy.

7.3.2 Decapsulation Based Swizzling. The method of monitoring applications as
described in Section 7.1 faces several problems. First, training can be very costly; for
example, training a long design transaction that will run for months. Furthermore,
to achieve representative results, the application must be executed several times in
the training phase or a long period must be monitored. Second, the state of the
object base can change rapidly; as a consequence, the results obtained by training
can become outdated very soon.

To overcome these difficulties, the subject of current investigation is to find out
how decapsulation, a tool that carries out program analysis (Kossmann et al., 1993),
can be applied to making the right swizzling decision. Decapsulation was developed
in previous work on application profile dependent optimization (Gerlhof et al., 1992;
Kemper et al., 1992, 1994). By extracting all the reference chains (path expressions)
that are possibly traversed by an application, decapsulation characterizes the profile
independently from the state of the object base. In addition, the running time of
decapsulation is negligible (usually less than one second).

562

8. Conclusion

In this work, alternative pointer swizzling techniques for a persistent object manager
that facilitates object replacement during an application run were investigated. The
qualitative and quantitative analysis indicated that there is no one superior pointer
swizzling technique. Rather, they all have their distinctive pros and cons, depending
on the characteristics of the application profile. This led to the development of
an adaptable object manager that allows varying the pointer swizzling technique
employed according to the particular profile. Four different granularities were
devised: application, type, context, and reference-granules were devised within
which the pointer swizzling techniques can be varied. Thus, the object manager
provides flexible pointer swizzling along two dimensions: (1) it uses four swizzling
techniques (lazy direct/indirect, eager direct/indirect) and no-swizzling, and (2) it
allows adjusting the particular swizzling technique used within the four above-
mentioned granularities.

A technique based on monitoring the application profile in combination with
sampling the object base was outlined to determine the most appropriate swizzling
technique and adjustment granularity for a given application. In future work in this
area, we will concentrate on static program analysis in combination with sampling
the current state of the object base. As stated above, we intend to apply a program
analysis method called decapsulation.

Acknowledgements

This work was supported by the German Research Council (DFG), and it was carried
out while Donald Kossmann was a fellow in the "Graduiertenkolleg Informatik und
Technik" at the Technical University (RWTH) of Aachen. Axel Kotulla helped to
implement the swizzling strategies. Michael Steinbrunn and Andreas Zachmann
participated in the design of the classification scheme. We thank Paul Wilson and
Dan Weinreb for giving us details of Texas and ObjectStore, two anonymous referees
and especially Malcolm Atkinson for their substantial suggestions for the revision
of the paper. We are grateful to Judith Kossmann for improving the presentation
significantly.

References

Atkinson, M.P., Chisholm, K.J., Cockshott, E, and Marshall, R. Algorithms for a
persistent heap. Software--Practice and Experience, 13:259-271, 1983.

Bancilhon, E, Barbedette, G., Benzaken, V., Delobe][, C., Gamerman, S., L6cluse,
C., Pfeffer, E, Richard, P., and Velez, E The design and implementation of
02, an object-oriented database system. In: Dittrich, K.R., ed., Advances in
Object-Oriented Database Systems, Lecture Notes in Computer Science No.334, New
York: Springer-Verlag, 1988, pp. 1-22.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 563

Bayer, R. and McCreight, E.M. Organization and maintenance of large ordered
indices. Acta Informatica, 1(3):173-189, 1972.

Biliris, A. The performance of three database storage structures for managing large
objects. Proceedings of the ACM SIGMOD Conference on the Management of Data,
San Diego, CA, 1992.

Bruns, K., Kilger, C., Kossmann, D., Moerkotte, G., Walter, H.-D., and Zachmann,
A. Objekte in multiplen Reprfisentationen. Workshop on OODBMS of the German
"Gesellschaflfar Informatik, Frankfurt, Germany, 1992.

Carey, M., DeWitt, D., Richardson, J., and Shekita, E. Object and file management
in the EXODUS extensible database system. Proceedings of the Conference on
Very Large Data Bases, Kyoto, Japan, 1986.

Cattell, R. and Skeen, J. Object operations benchmark. ACM Transactions on Data-
base Systems, 17:1-31, 1992.

Cockshott, W.E, Atkinson, M.P., Chisholm, K.J., Bailey, EJ., and Morrison, R.
Persistent object management system. Software--Practice and Experience, 14:49-
71, 1984.

Cockshott, W.E and Foulk, EW. Implementing 128 bit persistent addresses on 80 × 86
processors. In: Rosenberg, J. and Keedy, J.L., eds. Security and Persistence,
Workshops in Computing, New York: Springer-Verlag, 1990, pp. 123-136.

Dan, A., Yu, E, and Chung, J.-Y. Database access characterization for buffer
hit prediction. Proceedings of the IEEE Conference on Data Engineering, Vienna,
Austria, 1993.

DeWitt, D.J., Futtersack, P., Maier, D., and Velez, E A study of three alternative
workstation server architectures for object-oriented database systems. Proceedings
of the Conference on Very Large Data Bases, Brisbane, Australia, 1990.

Edelson, D. Smart pointers: They're smart, but they're not pointers. Technical
Report UCSC-CRL-92-27, University of California, Santa Cruz, CA, 1992.

Fagin, R., Nievergelt, J., Pippenger, J., and Strong, H. Extendible hashing--A
fast access method for dynamic files. ACM Transactions on Database Systems,
4(3):315-344, 1979.

Gerlhof, C., Kemper, A., Kilger, C., and Moerkotte, G. Clustering in object bases.
Technical Report 6/92, Fakultfit ffir Informatik, Universit/it Karlsruhe, D-76050
Karlsruhe, 1992.

Gerlhof, C., Kemper, A., Kilger, C., and Moerkotte, G. Partition-based clustering in
object bases: From theory to practice. Proceedings of the International Conference
on the Foundations of Data Organization and Algorithms (FODO), Chicago, IL,
1993.

Gruber, O., Amsaleg, L., Dayn~s, L., and Valduriez, E Eos, an environment for
object-based systems. Proceedings of the Hawaii International Conference on System
Sciences, Hawaii, 1992.

Hosking, A.L. and Moss, J.E.B. Towards compile-time optimizations for persistence.
In: Dearie, A., Shaw, G.M., and Zdonik, S.B., eds. Implementing Persistent Object
Bases, San Mateo, CA: Morgan-Kaufmann, 1991.

564

Hosking, A.L. and Moss, J.E.B. Object fault handling for persistent programming lan-
guages: A performance evaluation. Proceedings of tJke ACM Conference on Object-
Oriented Programming Systems and Languages (OOPSLA), Washington, DC, 1993.

Kaehler, T. and Krasner, G. LOOM--large object-oriented memory for Smalltalk-
80 systems. In: Krasner, G., ed. Smalltalk-80: Bits of Histo~, Words of Advice.
Reading, MA: Addison Wesley, 1983.

Kemper, A., Kilger, C., and Moerkotte, G. Function materialization in object bases:
Design, implementation and assessment. IEEE 7~ansactions on Knowledge and
Data Engineering, 6(4):587-608, 1994.

Kemper, A. and Kossmann, D. Adaptable pointer swizzling strategies in object
bases. Proceedings of the IEEE Conference on Data ,Engineering, Vienna, 1993.

Kemper, A. and Kossmann, D. Dual-buffering strategies in object bases. Proceedings
of the Conference on ~ty Large Data Bases, Santiago, Chile, 1994.

Kemper, A. and Moerkotte, G. Access support relations: An indexing method for
object bases. Information Systems, 17(2):117-146, 1992.

Kemper, A. and Moerkotte, G. Object-Oriented Database Management: Applications
in Engineering and Computer Science. Englewood CJiffs, NJ: Prentice Hall, 1994.

Kemper, A., Moerkotte, G., and Steinbrunn, M. Optimizing Boolean expressions in
object bases. Proceedings of the Conference on ~ry Large Data Bases, Vancouver,
Canada, 1992.

Kemper, A., Moerkotte, G., Walter, H.-D., and Zachmann, A. GOM: A strongly
typed, persistent object model with polymorphism. Proc. der GI-Fachtagung
Datenbanken in Baro, Technik und Wissenschaft (BTW), Kaiserslautern. Springer-
Verlag, Informatik-Fachberichte Nr. 270, 1991.

Khoshafian, S.N. and Copeland, G.E Object identity. Proceedings oftheACMConfer-
ence on Object-Oriented Programming Systems and Languages (OOPSLA) , Portland,
OR, 1986.

Kim, W., Ballou, N., Chou, H.T., Garza, J.E, Woelk, D., and Banerjee, J. Integrating
an object-oriented programming system with a database system. Proceedings
of the ACM Conference on Object-Oriented Programming Systems and Languages
(OOPSLA), San Diego, CA, 1988.

Koch, D.M. and Rosenberg, J. A secure RISC-based architecture supporting data
persistence. In: Rosenberg, J. and Keedy, J.L., eds. Security and Persistence,
Workshops in Computing New York: Springer-Verlag, 1990. Also in: Proceedings
of the International Workshop on Computer Architectures to Support Security and
Persistence of Information, Bremen, Germany, 1990.

Kossmann, D. Entwurf und Implementierung von Laufzeitoptimierungsmaflnah-
men im GOM-Prototyp. Master's thesis, Universit/it Karlsruhe, Fakult/it for
Informatik, D-76050 Karlsruhe, 1991.

Kossmann, D., Steinbrunn, M., and Kemper, A. Decapsulation: Estimating execu-
tion profiles in object bases. Unpublished Manuscript, 1993.

VLDB Journal 4 (3) Kemper: Adaptable Pointer Swizzling Strategies 565

KotuUa, A. Neuentwuff und Leistungsbewertung des Laufzeitsystems im objekt-
orientierten Datenbanksystem GOM. Master's thesis, RWTH Aachen, Lehrstuhl
fiir Informatik III, D-52056 Aachen, 1992.

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. The ObjectStore database
system. Communications oftheACM, 34(10):50-63, 1991.

Larson, P.-A. Linear hashing with separators--A dynamic hashing scheme achieving
one-access retrieval. ACM Transactions on Database Systems, 13(3):366-388, 1988.

Maier, D. and Stein, J. Development and implementation of an object-oriented
DBMS. In: Shriver, B. and Wegner, P., eds. Research Directions in Object-Oriented
Programming, Cambridge, MA: MIT Press, 1987, pp. 355-392.

McAuliffe, M.L. and Solomon, M.H. A trace-based simulation of pointer swiz-
zling techniques. Proceedings of the IEEE Conference on Data Engineering, Taipei,
Taiwan, 1995.

Morel, E. and Renvoise, C. Global optimization by suppression of partial redun-
dancies. Communications oftheACM, 22(2):96-103, 1979.

Moss, J.E.B. Design of the Mneme persistent object store. ACM Transactions on
Office Information Systems, 8(2):103-139, 1990.

Moss, J.E.B. Working with persistent objects: To swizzle or not to swizzle. IEEE
Transactions on Software Engineering, 18(8):657-673, 1992.

Moss, J.E.B. and Sinofsky, S. Managing persistent data with Mneme: Designing
a reliable shared object interface. In: Dittrich, K.R., ed. Advances in Object-
Oriented Database Systems, Lecture Notes in Computer Science No.334, New York:
Springer-Verlag, 1988, pp. 298-316. (Proceedings of the Second International
Workshop on Object-Oriented Database Systems, Bad Mtinster, Germany).

Munro, D.S., Connor, R.C.H., Morrison, R., Scheuerl, S., and Stemple, D.W.
Concurrent shadow paging in the FLASK architecture. In: Atkinson, M., Maier,
D., and Benzaken, V., eds. Persistent Object Systems, Workshops in Computing, New
York: Springer-Verlag, 1994, pp. 16-42. (Proceedings of the Sixth International
Workshop on Persistent Object Systems, Tarascon, France, 1994).

Rosenberg, J., Henskens, EA., Brown, A.L., Morrison, R., and Munro, D. Stability
in a persistent store based on a large virtual memory. In: Rosenberg, J. and
Keedy, J.L., eds. Security and Persistence, Workshops in Computing, New York:
Springer-Verlag~ 1990, pp. 229-245. Proceedings of the International Workshop on
Computer Architectures to Support Security and Persistence of Information, Bremen,
Germany, 1990) .

Roussopoulos,/N. and Delis, A. Modem client-server DBMS architectures. ACM
SIGMOD Record, 20(3):52-61, 1991.

Russel, G., Shaw, P., and Cockshott, R DAIS: An object-addressed processor cache.
In: Atkinson, M., Maier, D., and Benzaken, V., eds. Persistent Object Systems,
Workshops in Computing, New York: Springer-Verlag, 1995, pp. 374-386. Pro-
ceedings of the Sixth International Workshop on Persistent Object Systems, Tarascon,
France, 1994).

566

Schuh, D., Carey, M., and DeWitt, D. Persistence in E revisited implementation
experiences. In: Dearle, A., Shaw, G.M., and Zdonik, S.B., eds., Implementing
Persistent Object Bases, San Mateo, CA: Morgan-Kaufmann, 1991, pp. 345-
359. (Proceedings of the Fourth International Workshop on Persistent Object Systems),
Martha's Vineyard, MA, 1990).

Shekita, E. and Zwilling, M. Cricket: A mapped, persistent object store. In:
Dearie, A., Shaw, G.M., and Zdonik, S.B., eds. Implementing Persistent Object
Bases, San Mateo, CA: Morgan-Kaufmann, 1991, 89-102. (Proceedings of the
Fourth International Workshop on Persistent Object Systems, Martha's Vineyard,
MA, 1990).

Singhal, V., Kakkad, S., and Wilson, P. Texas: An efficient, portable persistent store.
In: Albono, A. and Morrison, R., eds. Persistent Object Systems, Workshops in
Computing, New York: Springer-Verlag, 1993, 11-33. (Proceedings of the Fifth
International Workshop on Persistent Object Systems, San Miniato (Pisa), Italy,
1992).

Suzuki, S., Kitsuregawa, M., and Takagi, M. An efficient pointer swizzling method
for navigation intensive applications. In: Atkinson, M., Maier, D., and Benzaken,
V., eds., Persistent Object Systems, Workshops in Computing; New York: Springer-
Verlag, 1995, pp. 79-95. (Proceedings of the Sixth International Workshop on
Persistent Object Systems, Tarascon, France, 1994).

Tsangaris, M.M. and Naughton, J.E A stochastic approach for clustering in object
bases. Proceedings of the ACM SIGMOD Conference on the Management of Data,
Denver, CO, 1991.

Vaughan, E and Dearie, A. Supporting large persistent stores using conventional
hardware. In: Albono, A. and Morrison, R., eds. Persistent Object Systems,
Workshops in Computing, New York: Springer-Verlag, 34-53, 1993. (Proceedings
of the Fifth International Workshop on Persistent Object Systems, San Miniato (Pisa),
Italy, 1992).

Velez, E, Bernard, G., and Darnis, V. The 02 object manager: An overview.
Proceedings of the Conference on l,,Ety Large Data Bases, Amsterdam, 1989.

White, S.J. and DeWitt, D. OuickStore: A high performance mapped object store.
Proceedings of the ACM SIGMOD Conference on the Management of Data, Min-
neapolis, MN, 1994.

White, S.J. and DeWitt, D.J. A performance study of alternative object faulting
and pointer swizzling strategies. Proceedings of the Conference on l,~ty Large Data
Bases, Vancouver, B.C., 1992.

Wilson, P. Pointer swizzling at page fault time: Efficiently supporting huge address
spaces on standard hardware. Computer Architecture News, 19(4), 1991.

Wilson, P. and Kakkad, S. Pointer swizzling at page fault time: Efficiently support-
ing huge address spaces on standard hardware. Proceedings of the International
Workshop on Object Orientation in Operating Systems, Paris, 1992.

Winslett, M. Architecture and performance for object-oriented DBMSes. Tutorial
handouts for the Data Engineering Conference, Vienna, Austria, 1993.

