
VLDB Journal,4, 193-241 (1995), Georg Gottlob, Editor

QVLDB

193

Updating Knowledge Bases While Maintaining Their
Consistency

Ernest Teniente and Antoni Oliv6

Received March 10, 1993; revised version received, June 22, 1994; accepted September
14, 1994.

Abstract. When updating a knowledge base, several problems may arise. One of
the most important problems is that of integrity constraints satisfaction. The clas-
sic approach to this problem has been to develop methods for checking whether a
given update violates an integrity constraint. An alternative approach consists of
trying to repair integrity constraints violations by performing additional updates
that maintain knowledge base consistency. Another major problem in knowledge
base updating is that of view updating; which determines how an update request
should be translated into an update of the underlying base facts. We propose a new
method for updating knowledge bases while maintaining their consistency. Our
method can be used for both integrity constraints maintenance and view updat-
ing. It can also be combined with any integrity checking method for view updating
and integrity checking. The kind of updates handled by our method are: updates
of base facts, view updates, updates of deductive rules, and updates of integrity
constraints. Our method is based on events and transition rules, which explicitly
define the insertions and deletions induced by a knowledge base update. Using
these rules, an extension of the SLDNF procedure allows us to obtain all possible
minimal ways of updating a knowledge base without violating any integrity con-
straint.

Key Words. View updating, integrity checking, integrity maintenance.

1. Introduction

Knowledge bases generalize relational databases by including not only base facts
and integrity constraints, but also deductive rules. Using these rules, new facts
may be derived from facts explicitly stored. Among other components, knowledge
bases include an update processing system that provides the users with a uniform

Ernest Teniente, Ph.D., is Associate Professor, and Antoni Oliv6, Ph.D., is Professor, Universitat Polit~cnica
de Catalunya, Facultat d'Inform~tica, Pau Gargallo 5, E-08028 Barcelona-Catalonia.

194

interface in which they can request different kinds of updates (i.e., updates of base
facts, updates of derived facts, updates of deductiwr, rules, and updates of integrity
constraints).

Several problems may arise when updating a knowledge base (Abiteboul, 1988;
Kowalski, 1992). Perhaps the best-known problem is that of integrity constraints
checking. An integrity constraint is a condition that a knowledge base is required
to satisfy at any time. Integrity checking is the process of verifying that a given
base update (a set of insertions and/or deletions of base facts) satisfies the integrity
constraints. If some constraint is violated, then the update is rejected; otherwise the
update is accepted. Efficient integrity checking methods have been developed for
relational (Nicolas, 1982) and deductive databases (Bry et al., 1990; Oliv6, 1991).
The problem has also been studied for full, first-order logical databases (Gallaire
et al., 1984; Reiter, 1984).

An alternative way to deal with integrity constraints is integrity constraints main-
tenance, which is a process that also starts with a given base update and integrity
constraints except that, if some integrity constraint is violated, an attempt is made
to find a repair, that is, an additional set of insertions and/or deletions of base facts
to be added to the base update, such that the resulting base update satisfies all
integrity constraints. In general, there may be several repairs and the user must
select one of them. In some cases, no such repair exists, and the base update must
be rejected.

As a simple example, assume that in a relational database, a relation R has
been defined with a key attribute A. Suppose that a user requests the insertion of
a new tuple t l into R, having the same value for A as that of an existing tuple
t2. In integrity checking, the request would be rejected, because it violates the key
constraint, while in integrity maintenance the request would be "repaired." In this
case, a possible repair would be the deletion of t2.

Some integrity maintenance methods have been developed for relational data-
bases (Dayal and Bernstein, 1982), usually restricted to particular integrity constraints
(such as keys, functional dependencies, or subset constraints). Recently, some meth-
ods have been developed for deductive databases (Ceri and Widom, 1990; Moerkotte
and Lockemann, 1991; Ceri et al., 1992). The problem has also been studied for
logical databases (Fagin et al., 1983, 1986; G/irdenfors, 1988; Winslett, 1990).

Another well-known problem is that of updating derived facts (also known as view
updating). View updating is concerned with determining how a request to update
a view can be translated appropriately into correct updates of the underlying base
(stored) facts. In general, several translations may exist, and the user must select
one of them. This problem has attracted much research during the last years in
relational databases (Bancilhon and Spyratos, 1981; Cosmadakis and Papadimitriou,
1984; Masunaga, 1984; Keller, 1985, 1986; Date, 1986; Langerak, 1990; Larson and
Sheth, 1991) and in deductive databases (Tomasic, 1988; Bry, 1990; Decker, 1990;
Kakas and Mancarella, 1990; Guessoum and Lloyd, 1990, 1991; Torlone and Atzeni,
1991; Teniente and Oliv6, 1992; Atzeni and Torlone, 1992). It also has been studied

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 195

for logical databases (Fagin et al., 1983, 1986).
In principle, some translations corresponding to a given view update request

may not satisfy the integrity constraints. For this reason, view updating is usually
followed by an integrity checking process. The result of the combined process of
view updating and integrity checking is the subset of translations obtained by view
updating that would leave the knowledge base consistent. In some cases, no such
translation is found, and then the view update request is rejected.

However, it is also possible to combine view updating and integrity maintenance.
If a given translation does not satisfy some integrity constraint it is "repaired," thus
adding new insertions and/or deletions of base facts to the translation. The result of
the combined process is a set (possibly empty) of translations, that do not necessarily
correspond to a subset of the translations obtained by view updating alone.

In this article, we describe what we call the Events Method, which can be used
for integrity constraints maintenance, view updating, or their combination (Teniente,
1992). This method also can be combined with any integrity checking method for
view updating and integrity checking. We presented a simplified version of the
method for a particular case of view updating in deductive databases (Teniente and
Oliv6, 1992).

Our method is an application of an approach developed for the design of
information systems from deductive conceptual models (Oliv6, 1989). The knowledge
base is augmented with a set of rules, called transition and event rules, which explicitly
define insertions and deletions induced by an update. These rules are then used
for updating a knowledge base. The rules also have been used for developing a
new integrity checking method (Oliv6, 1991) and for condition monitoring in active
databases (Urpi and Oliv6, 1992; Urpi, 1993). Our method takes into account not
only classical updates of base facts and view updates, but also other kinds of updates,
such as insertions and deletions of deductive rules and integrity constraints.

This article is organized as follows: Section 2 reviews basic concepts of knowledge
bases. Section 3, which is based on Oliv6 (1991), reviews the event concept and the
procedure for automatically deriving transition and event rules. Section 4 discusses
the application of these rules to view updating. In Section 5, we present our method
for combining view updating with integrity maintenance and integrity checking. In
Section 6, we show correctness and completeness of our method. Section 7 extends
the types of updates by also considering insertion and deletion of deductive rules
and integrity constraints. Section 8 presents additional features of the method.
In Sections 9 and 10, we compare in detail our method with related literature in
view updating and in integrity constraints maintenance, respectively. In Section
11, we present our conclusions. We assume that the reader is familiar with logic
programming (Lloyd, 1987).

196

2. Basic Definitions and Notation

In this section, we briefly review some definitions of the basic concepts related to
first-order theories and knowledge bases (Gallaire et al., 1984; Lloyd, 1987; Ullman,
1988), and present our notation.

Throughout this article, we consider a first-order language with a universe of
constants, a set of variables, a set of predicate names, and without function symbols.
We will use names beginning with a capital letter for predicate symbols and constants
(with the exception that constants also are permitted to be numbers) and names
beginning with a lower case letter for variables.

A term is a variable symbol or a constant symbol (i.e., we restrict ourselves to
function-free terms). We assume that the possible wllues for the terms range over
finite domains. If P is an m-ary predicate symbol and q , ..., t m are terms, then
P (t l , ..., tin) is an atom. The atom is ground if every ti (i = 1, ..., m) is a constant.
A literal is defined as either an atom or a negated atom.

A fact is a formula of the form:

P (t l , ..., tin) +-

where P (tl , ..., tin) is a ground atom.

A deductive rule is a formula of the form:

P (t l , . . . , t m) ~ - - L 1 A . . . A L n wi th in ~ 0, n > 1

where P (t l , ..., tin) is an atom denoting the conclusion, and L1, ..., L n are literals
representing conditions. P (q , ..., tin) is called the head and L1A ... A L n the body
of the deductive rule. Variables in the conclusion or in the conditions are assumed
to be universally quantified over the whole formula. If a condition is an atom, then
it is a positive condition of the deductive rule. If a condition is a negated atom,
then it is a negative condition. The definition of a predicate P is the set of all rules
in the knowledge base that have P in their head. V~ assume that the terms in the
head are distinct variables.

A n integrity constraint is a formula that the knowledge base is required to satisfy.
We deal with constraints in denial form:

~-- L 1 A ... A L n with n > 1

where the Li are literals, and all variables are assumed to be universally quantified
over the whole formula. More general constraints can be transformed into this form
by first applying the range form transformation (Decker, 1989), and then using the
procedure described by Lloyd and Topor (1984).

For the sake of uniformity, we associate to each integrity constraint an incon-
sistency predicate Icn, with or without terms and, thus, they have the same form as
the deductive rules. We call them integrity rules. Then, we would rewrite the former
denial as I c l ~ L 1 A ... A Ln .

For example, the following integrity rule

Ic l (p,c) ~ - L i w ~ (p,c) /x-~ c i t y (c)

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 197

states that Persons can only live in known Ci t ies . If Lives(John,A) is a fact and
there is no corresponding City (A) fact, then Icl(John,A) will be true, and the
integrity constraint Icl will be violated.

A knowledge base K is a triple K = (F, DR, IC) where F is a set of facts, DR a
set of deductive rules, and IC a set of integrity constraints. The set F of facts is
called the extensional part of the knowledge base and the set DR of deductive rules
is called the intensional part.

We assume that knowledge base predicates are partitioned into base and derived
(view) predicates. A base predicate appears only in the extensional part and
(possibly) in the body of deductive rules. A derived predicate appears only in the
intensional part. Every knowledge base can be defined in this form (Bancilhon and
Ramakrishnan, 1986).

As usual, we require that the knowledge base before and after any updates is
allowed (Lloyd, 1987), that is, any variable that occurs in a deductive or integrity rule
has an occurrence in a positive condition of the rule. This ensures that all negative
conditions can be fully instantiated before they are evaluated by the negation as
failure rule.

3. Transition and Event Rules

In this section, we define the concept of event (a key concept in our method) and
describe the procedure for automatically deriving the transition and event rules for
a given knowledge base. These rules depend only on the deductive and integrity
rules, being independent from the base facts stored in the knowledge base and from
any particular update.

3.1 Events

Let K be a knowledge base, U an update and K ~ the updated knowledge base. We
say that U induces a transition from K (the old state) to K ~ (the new state). We
assume for the moment that U consists of an unspecified set of base facts to be
inserted and/or deleted.

Due to the deductive and integrity rules, U may induce other updates on some
derived or inconsistency predicates. Let P be one of such predicates in K, and let
P ~ denote the same predicate evaluated in K ~. Assuming that a fact P (C) holds
in K, where C is a vector of constants, two cases are possible:

la. P ~ (C) also holds in K ~ (both P (C) and P ~ (C) are true).
lb. P t (C) does not hold in K i (p (C) is true but P I(C) is false).

and assuming that P ~(C) holds in K ~, two cases are also possible:

2a. P(C) also holds in K (both P(C) and P I(C) are true).
2b. P(C) does not hold in K(P ~(C) is true but P(C) is false).

198

In case lb, we say that a deletion event occurs in the transition, and we denote
it by tiP (C). In case 2b, we say that an insertion event occurs in the transition, and
we denote it by ~P (C).

For example, if Works (employee, u n i t) is a derived predicate, LWorks (John,
Sa les) denotes an insertion event corresponding to predicate Works. Works (John,
Sales) is true after the update and it was false before.

Formally, we associate to each derived or inconsistency predicate P an insertion
event predicate t2 and a deletion event predieate ~P, defined as:

(1) V x(~e(x) ~ e '(x) A~e(x))
(2) V x(3P(x) ~ P(x) A ~ P '(x))

where x is a vector of variables. We then have the equivalencies (Urpf, 1993):

(3) V x (e '(x) ~ (e(x) A-~6e(x)) w e (x))
(4) V x (~ P '(x) ~ (~P(x) A~t.P(x)) A 3P(x))

If P is a derived predicate, then t2 and 6 P facts represent induced insertions
and induced deletions, respectively. If P is an inconsistency predicate, then t.P
facts represent violations of its integrity constraint. Notice that, for inconsistency
predicates, 3P facts cannot happen in any transition, since we assume that the
knowledge base is consistent before the update and, thus, P (x) is always false.

We also use definitions (1) and (2) above for base predicates. In this case, rP
and 3P facts represent insertions and deletions of base facts, respectively. We say
that an event (uP or 3P) is base (respectively derived) if P is base (respectively
derived).

3.2 Transition Rules

Consider a derived or inconsistency predicate P of [he knowledge base. Assume
that P consists of m rules, m _> 1. For our purposes, we rename predicate symbols
in the heads of the m rules by P1, ..., Pro, and we add the set of clauses:

(5) P(x) + - P i (x) i = 1.. . m

Example 1: Assume a knowledge base with the following rules:

P (x,y) +- R (x,y)

P (x,y) ~ R (x,z) A e (z,y)

T(x) ~ e(x,y) A~S(x)
They would be rewritten as:

P1 (x,y) ~-- R (x,y)

P2 (x,y) ~ R (x,z) A P (z,y)

e(x,y) ~ e l (x,y)
e(x,y) ~ e2(x,y)
T~ (x) ~ e(x,y) A~S(x)
T(x) +- T1 (x)

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 199

Consider one of the rules, Pi(x) ~ Li,1 A ...A Li, n. When this rule is to be
evaluated in the new state, its form is p~ (x) ~-- L ~,1 A ...A L ~,n, where L ~,r (r =
1 ... n) is obtained by replacing the predicate Q of Li,r by Q t. Then, if we replace
each literal in the body by its equivalent expression given in (3) or (4), we get a new
rule, called the transition rule, which defines the new state predicate P~ in terms of
old state predicates and events.

More precisely, if L ~,r is a positive literal Q ~,r (Xi,r), we apply (3) and replace
it with:

(Qi,r (xi,r) A~Sai,r (xi,r)) v~ai,r (Xi,r)
I t and if L i,r is a negative literal ~Qi,r (xi,r), we apply (4) and replace it with:

(~Qi,r (Xi,r) A-ncQi,r (xi,r)) v~ai,r (xi,r)

After distributing A over V, we get the set of transition rules for P~.

Example 2: Consider the rules given in Example 1. In the new state, they have the
form:

P~ (x,y) ~-- R'(x;y)
e~ (~y) ~ R'(x,z) A P'(z,y)
r~ (x) ~-- e'(x,y) A~S'(x)

Then, replacing the literals in the body by their equivalent expressions given by (3)
and (4) we get:

P~ (x,y) ~-- [(R(x,y) A--n6R(x,y)) V cR(x,y)]
P~ (x,y) ~ [(R(x,z) A~6R(x;z)) V cR(x,z)] A [(e(z,y) A~fP(z,y)) V cP(z,y)]
T] (x) ~ [(P(x,y) A~fe(x,y)) V ce(x,y)] A [(-~S(x) A~cS(x)) VfS(x)]

and, after distributing A over V, we get the following set of transition rules for P~,
P~, and T~:

P~,i (x,y) ~--
P~,2 (x,y)
P 2,1 (x,y) +--
P 2,2 (~Y) ~--
P2,3 (x,y) +--
P 2,4 (x,y) ~--

R (x,y) A-16R (x,y)
cR (x,y)
R(x,z) A-n6R(.~z) A e(z,y) A~6P(z,y)
R(x,z) A~6R(x,z) ALP(z,y)
~R(~z)A P(z,y) A=6P(z,y)
~R (~z)A~e (z,y)

T~, 1 (x)
T~,2 (x)
T~, 3 (x)
T~, 4 (x)

with:

~--P(x,y) A~P(x~y) A~S(x) A-~LS(x)
~-- P(x,y) A~6P(x,y) At~S(x)

LP(x,y)A~S(x) A ~ S (x)
"~-- cP(x,y)A~S (x)

200

P ~ (x) ~ P i,j (x)

P ~ (x) ~ P ~,j (x)
' Tt T~ (x) ~ ~,j (x)

j = 1,2

j = 1 , . . . , 4
j = 1, ..., 4

It will be easier to refer to the resulting expressions if we denote by:

' = Q : (x~,,~) O(L~,r)= (Qi,r (Xi,r) A~6Qi,r (xi,r)) if Li,r z,r
' = - 'Q ~,r (Xi,r) = (-nQi,r (Xi,r) A~tQi,r (Xi,r)) if L i,r

N(L~, r)= tQi,r(x/,r) i lLS, r = Q~,r(xi,r)

= ~Qi,r (Xi,r) if L ~,r = -'Qi,r (Xi,r)

Both O(L~,r) and N(L~,r) express conditions for which L~, r is true. O(L~,r)
corresponds to the case that L'i,~ holds because Li,. r was already true in the Old
state and has not been deleted, while N(L ' i,r) corresponds to the case that N(L ~,r)
holds because it is New, induced in the transition, .and it was false before. Note
that O(L~,~) ~ Li,r and N(L~,~) ~ ~Li,r.

With this notation, the equivalencies (3) and (4) become:

(6) Vx(P'(x) ~ O(P ' (x)) V N(P ' (x)))
(7) Vx(~P ' (x) ~ O (~ P ' (x)) V N (~ P ' (x)))

and applying them to each of the L ~,r (r = 1 ... n) literals we get:

(8) P~(x) ~ Arr=__~ [O(L~,r) V N(L' ~,~)]

After distributing A over V, we get an equivalent set of 2 ki transition rules
(where ki is the number of literals in the P~ rule), each of them with the general
form:

(9) P~,j(x) +- A~._Z~ [O(L~,j,r) IN(L~,j,r)] with j = 1 ... 2 ki

and
(10) P~(x) + - P ~ , j (x) j = 1... 2 ki

In rules (9), it will be useful to assume that the rule corresponding to j = 1 is:
(11) P~,i(X) +-- O(L~,i,1) A...A O(L~,l,n)

3.3 Insertion Event Rules

Let P be a derived or inconsistency predicate. Insertion predicates tP were defined
in (1) as:

Vx(LP(x) ~ P ' (x) A ~ e (x))

If there are m rules for predicate P, then Pl(x) ~ P~ (x) V...V PI m (x). Replacing
P ' (x) in (1) we obtain:

,P(x) + - P ~ (x) A~P(x) wi th i = 1... m

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 201

and again replacing P~ (x) with its equivalent definition given in (10) we get:

(12) ~P(x) ~-- P~,j(x) A l P (x) f o r / = 1 ... m a n d j = 1 ... 2 ki

and given that P(x) ~ e l (x) V...V Pm (x) we obtain:

(13) t.P(x) ~--P~,j (x) A~P i (x) A... A- 'Pro (x) fo r / = 1 ... m a n d j = 1 ... 2 ki

The rules in (13) are called the insertion event rules of predicate R These rules
allow us to deduce which t,P facts (induced insertions) happen in a transition in
terms of old state predicates and events. If P is an integrity constraint, ~P facts
correspond to violations of the integrity constraint P.

We can remove the rules from (13) that correspond to j = 1, and which have
the form shown in (11). These rules cannot produce ~P facts, since P~,i (x)
Pi (x). Therefore, we reduce the set (13) to:

(14) t.P(x) ~--P~,j (x) A~P1 (x) A... A-nPm(x) fo r / = 1 ... m a n d j = 2 ... 2 ki

On the other hand, there are three important simplifications that, when ap-
plicable, transform some of the rules in (14) into equivalent, but simplified rules,
which can be evaluated more efficiently.

The first is the consistency assumption simplification. It can be applied when P
is an inconsistency predicate. In this case, we can remove literals ~Pk (x) in (14),
since we will assume that the knowledge base is consistent before the update and,
thus, Pk (x) must be false, for all k and x.

To explain the other simplifications, we need to add some new terminology. Given
a rule Pi (x) ~ - - Li,1 /k.../k Li,n, we distinguish two parts in its body: the universal
and the existential part. The universal part, denoted U(Pi), is the conjunction of
the literals in the body whose variables are a subset of x. The existential part,
denoted E (Pi), is the conjunction of the literals in the body having some variable
which is not in x. We have Pi (x) ~ U(Pi) A E(Pi).

For example, in the rule:

T1 (x) ~-- P (x,y) A ~S (x)

we have:

U () = (x)
E(Ti) = P(x,y)

If E (Pi) is not empty, sometimes we will need an auxiliary predicate E..Pi
defined by the rule: E-Pi (x) +--- E (Pi).

In the above example, this predicate would be defined as:

E_T1 (x) ~-- e (x,y)

The other two simplifications can be applied when U(Pi) is not empty. We
call them the New and Old simplification. The New simplification can be applied to
rules in (14), for which the transition rule corresponding to P~,j (x) has some literal

N(Z~,j,h) in U(P~,j). In this case, we can remove the literal ~Pi (x), and the rule
becomes:

202

(15) tP(x) ~-- P~,j (x) /~-aP1 (x) A... A -aPi_ 1 (x) /~ -aPi+l (x) A... A -aP m (x)

We give the proof in Appendix A. The basic idea is that, if the rule P ~,j (x)

has a literal N(L~,j,h)in U(P~,j), then P~,j (x) are P~ facts, true in the new state,

but false in the old state and, therefore, P ~,j (x) ~ -aPi (x).
The Old simplification applies to rules in (14) for which the transition rule

corresponding to P~,j (x) has all literals in U(P~,j) of the form O (L ~,j,h). In such
a case, we can remove U(Pi) from Pi (x) ~ U(Pi) A E(Pi) and the rule becomes:

(16) rP (x)~--P~,j (x) A ~ P i (x)A... A-aPi_l (x)A~E_Pi (x)A-aPi+l (x)A... A ~Pm (x)

We also give the proof in Appendix A. The basic idea here is that if all literals
in U(P~,j) have the form O(L ~j,h), then U(P~,j) --~ U(Pi).

The following example illustrates the application of these simplifications.

Example 3: Consider predicate T as defined in Example 2. Applying (14), we get
the insertion event rules:

tT(x) ~ T~,j (x) A-aT1 (x) with j = 2 ... 4

Given that U(T~,2) has literal N(-aS ' (x)) = 5S(x), we can apply the New
simplification to the first rule, and we obtain:

LT(x) T ,2 (x)
where we have removed -aT1 (x) because 5S(x) ~ -1S(x) .--> ~T1 (x).

The same considerations apply to the rule corresponding to j = 4, and we
obtain:

tT(x) ~ T~, 4 (x)
!

The Old simplification can be used in the rule corresponding to T1, 3, since

U(T~,3) = -aS(x) A-atS(x) = O(~S(x)). We obtain:

Lr(x) +- r~, 3 (x) A-aE_T1 (x)
with: E_T1 (x) ~-- P (x,y)

3.4 Deletion Event Rules

Let P be a derived predicate. Deletion predicates 51' were defined in (2) as:

Vx(SP(x) ~ P(x) A-aP'(x))

If there are m rules for predicate P, we then have:

(17) 5P(x) ~ e i (x) A-aP'(x) f o r / = 1 ... m

and replacing Pl(x) by its equivalent definition Pl(x) ~ P~ (x) V.. .V P ~ (x), we
obtain:

(18) 5P(x) ~-- Pi (x) A-aPt(x) A... A ~P~m(x) for i = 1 ... rn

These rules can be transformed into a set of equivalent but simplified rules,
which can be evaluated more efficiently. Let k~ be the number of literals in U(Pi),

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 203

k~ be the number of literals in E (Pi), and let A/B denote A without B (true if
A =B), where A is a conjunction of literals, and B is a literal. Then, a rule in (18)
is equivalent to the following k~+ k~ rules:

(19) (~P(x) ~-- U(Pi)/Li,jA [Sai,j (xi,j) l ~ai,j (xi,j)] A E(Pi) Atx
for / = 1... m, j = 1 . . .k~

(20) 5P(x) ~ U(Pi) A E(Pi)/Li,jA [Sai,j (xi,j)[tai, j (xi,j)] A~E..P~ (x) A a
f o r i = 1 . . .m , j = 1... k~

! !
where ce =-- ~ e ~ (x) A... A ~Pi_ l (x) A~Pi+ 1 (x) A... A ~P'm (x), and where the
first option in [SQi,j (xi,j) [tQi,j (xi,j)] is taken if Li,j is positive, and the second
if Li,j is negative.

We prove the above transformation in Appendix A. The main idea is that
deletions of P are induced by deletions of positive literals (or insertions of negative
literals) in Pi. This explains why we get k~+ k~ rules.

This set of rules is called the deletion event rules for predicate P. They allow us
to deduce which 5P facts (induced deletions) happen in a transition in terms of old
state predicates and events.

Example 4. Again consider predicate T as defined in Example 2. Applying (19) and
(20), we get the deletion event rules:

6T(x) +- cS(x) A e(x,y)
6T(x) ~ ~S(x) At~P(x,y) A~E_T~ (x)

with:
E_T~, 1 (x) ~ e(x,y) A~tSe(a;y)

E_T~, 2 (x) ~ cP(x,y)
E_T~ (x) ~ E_T~,j (x) j = I, 2

Observe that the literal ~T~ (x) is not required in the body of the first rule
because ~S(x) ---+ S'(x) ---+ ~T~(x). In the second rule we can only remove
--~U(T~ (x)).

3.5 Augmented Knowledge Base

Let K be a knowledge base. The augmented knowledge base, denoted by A (K),
consists of K and the transition, insertion, and deletion event rules for K. In next
sections, we will discuss the important role of A Or/) in our method for updating
knowledge bases while maintaining their consistency. It is easy to show that if K is
allowed, then A (K) is also allowed.

204

4. View Updating

In this section, we present the Events Method for view updating in knowledge bases.
To simplify the presentation, the problem of integrity constraints satisfaction will
not be considered until Section 5. That is, we assume for the moment that the
knowledge base does not contain any integrity constraint.

4,1 Events Method

The view update problem is concerned with determining how a request to update a
view can be appropriately translated into updates of the underlying base facts. Two
basic approaches have been proposed to solve this problem. The first one suggests
treating views as abstract data types (Furtado and Casanova, 1985; Manchanda and
Warren, 1988), so that the definition of a view includes all permissible view updates
together with their translation.

The second approach is to define a general translation procedure (a translator;
Tomasic, 1988; Bry, 1990; Decker, 1990; Kakas and Mancarella, 1990; Guessoum
and Lloyd, 1990, 1991; Torlone and Atzeni, 1991; Teniente and Oliv6, 1992; Atzeni
and Torlone, 1992). Inputs to the translator are a view definition, a view update
request, and the current knowledge base; the output is a knowledge base update
that satisfies the request. The method that we propose in this article follows the
translator approach.

Usually, there are several possible ways of satisfying a view update request.
Our approach consists of generating all minimal translations for a given request.
A translation is minimal when there does not exist a subset of it, which is also a
translation. In general, several minimal translations may exist. The problem of how
to choose among them will not be addressed in this article (some comments on this
problem can be found in Kakas and Mancarella, 1990).

Moreover, we consider only translations that involve solely updates of the
extensional part of the knowledge base (i.e., insertions and deletions of ground
facts of base predicates). For this reason, translations that involve updates of the
intensional part of the knowledge base (e.g., deletion, insertion, or modification of
rules, insertion of ground facts of view predicates) are not considered here. Several
authors have argued the suitability of translating views in this way (e.g., Decker,
1990, Kakas and Mancarella, 1990).

For simplicity, we assume here that view update.,; are restricted to insertions and
deletions. Later on, in Section 8, we will explain how to deal with modifications.
In our method, an insertion (respectively, deletion) corresponds to an event t,P (C)
(respectively, ~P(C)), where Pt(C) is the fact that must hold (respectively, must
not hold) in the new state of the knowledge base.

A translation of an insertion t.P(C) (respectively, deletion ~P(C)), denoted
by T, defines a set of insertions and/or deletions of base facts such that PI(C) is
(respectively, is not) a logical consequence of the completion of the knowledge base
updated according to T. Due to the definition of the concept of event, we require

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 205

that if t.P (C) corresponds to an insertion (respectively, 6P (C) to a deletion), then
P (C) must not hold in the current knowledge base (respectively, P (C) must hold).

Our method is able to translate view update requests that consist of a set of
insertions and/or deletions. That is, we deal with multiple (more than one view
update request at the same time) and mixed (including insertions and deletions)
view update requests. Thus, a multiple and mixed request of the form: insert(P1)
and ... and insert(Pry) and delete (Q1) and ... and delete(Qm) will be denoted by
the conjunction: LP1 A ... A t.Pn A ~Q1 A ... A (~Qm. We note that the translations
that satisfy a request do not depend on the order of the literals in the conjunction.
Application of each translation leaves the knowledge base in a state that satisfies
the multiple and mixed request. Therefore, we would obtain the same translations
for the request {LP A~Q} as for {~Q ALP}.

Let K be a knowledge base, A (K) its augmented knowledge base, u a view
update request that consists of a conjunction of derived events, and T a translation
consisting of a set of base events. In our method, a translation T satisfies the request
u if, using SLDNF resolution (Lloyd, 1987), the goal {~--u} succeeds from input
set A (K) U T. The translation set T is obtained by having some failed SLDNF
derivation ofA (K) U {~--u} succeed. The possible ways in which a failed derivation
may succeed correspond to the different translations Ti that satisfy the request. If
no translation T is obtained, then the view update cannot be satisfied by changing
only the extensional part of the knowledge base.

4.2 Simplified Case

In this section, we describe the Events Method for a particular kind of knowledge
bases. More precisely, we assume that all variables appearing in the body of a
deductive rule appear also in its conclusion. That is, following the terminology
defined in Section 3, we consider that the knowledge base contains only rules that
do not have an existential part (E (Pi) = 0). For instance, the rule P (x) ~-- Q (x)
A R (x,y) A~S (y) does not satisfy this condition since E (P) = R (x,y) A~S (y).

Example 5: Let K be a knowledge base with the following base and view predicates
(adopted from Sadri and Kowalski, 1988):

Alien (x) x is registered as an alien.

Cr (x) x has a criminal record.

Cit (x) x is a citizen.

Rr (x) x has right of residence.

Assume that the current content of the knowledge base is the following:

E1 Cit (John)

DR.1 Rr(x) ~-- Alien (x) A ~ f r (x)

DR.2 Rr(x) ~-- Cit (x)

Transition, insertion, and deletion rules associated with this knowledge base are:

206

T.1 Rr~, 1 (x) ~--
T.2 Rr~, 2 (x) + -
T.3 Rr~, 3 (x) + -
T.4 RF~, 4 (X) 'e----

Alien (x) A~6Alien (x) A-~Cr (x) A-~cCr (x)
Alien (x) A~6Alien (x) A6Cr (x)

cAlien (x) A-~Cr (x) A~cCr (x)
cAlien (x) At~Cr (x)

T.5 Rr~, 1 (x) ~ Cit (x) A ~ C i t (x)
T.6 Rr~, 2 (x) ~ cCit (x)

T.7..10 Rr~ (x) ~--Rr~,j (x) j = 1 ... 4

T.11,12 Rr~ (x) ~-- Rr~,j (x) j = 1, 2

1.1..3 tRr (x) ~ Rr~,j (x) A~Rr2 (x) j = 2 4

1.4 LRr (x) ~ Rr~, 2 (x) A~.Rr 1 (x)

D.1 8Rr (x)

D.2 6Rr (x)

D.3 8Rr (x) ~--

t~Alien (x) A~Cr (x) AmRr~ (x)
Alien (x) AtCr (x) A~Rr~ (x)
t~Cit (x) A~Rr~ (x)

Let the view update request be the insertion of the derived fact Rr (Mary).
Translations that satisfy this request are obtained by having some failed SLDNF
derivation o fA (K) U {~-- err (Mary)} succeed. This is shown in Figure 1 (circled
labels at the left of a derivation are references to the rules of the method, defined
in Section 4.4). Steps 1 to 4 in the left derivation are SLDNF resolution steps. At
step 5, the selected literal is LAlien (Mary), which is a positive base event. To get a
successful derivation, we must include it in the input set, and use it as input clause.
Therefore, it is added to the translation set T. At step 6, the selected literal is ~LCr
(Mary). To get a successful derivation for this branch, cCr (Mary) must fail, which
implies that it must not belong to T. We use an auxiliary set C, which we call the
condition set, to check that the event LCr (Mary) will not be included in T during
the derivation process. Thus, in step 6, cCr (Mary) is included in C.

In general, a condition set C is a set of base events that cannot be included in
the translation T. Due to the opposite meaning of T and C, before including a base
event in T (respectively in C), we must check that it does not belong to the subset
of C (respectively of T) already determined. If it does, we get a contradiction for
the current branch and, then, no valid translation can be obtained from it. In the
above example, no contradiction is found when including base events in T or C.

Once we get the empty clause, the process finishes, and T gives the base events
that produce the desired effect. From this derivation we have T1 = { t.Alien(Mary)}.
Now the update request will be satisfied by updating the extensional part of the
knowledge base with these base events. In this case, the request is achieved by

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 207

Figure 1. Successful derivations of request +- eRr (Mary)
tRr (Mary)

(-- Rr'L3 (Mary) A ~ R r 2 ~ (M a ~ (L2) ~ fl'4)~''~''~''~'~'~

@ 2] (~-- P~2 (M'~) fails) @ 2 [(e" Rrl (~'Y) fails)

~-- Rr't, 3 (Mary) t - Rr"7. 2 (Mary)

® ® ,1 0,
~-- tAlien(Mary) ̂ --~ CrfMary) ̂ ~ tCtr(Mary) t - tCit(Marvl

tAlienfMary) ̂ --~ tCr(Mary) [l

® ' I TI = {tAlien(Mary)] T2 ffi {tCit(MalT)}
|

-,,.CrClvlary)

® ' I
tl

T 1 = { tAlien(Mary) }

inserting the fact that Mary is registered as an alien.
In a similar way, the right derivation reaches the goal ~ cCit (Mary), that can

be succeeded by including cCit (Mary) in the input set (step 4). Another possible
translation that satisfies the request is T2={cCit(Mary)}.

Selecting clauses 1.1 and 1.3 in step 1 of Figure 1, we get failed derivations that
cannot be succeeded (these derivations are not shown in the tree above). The first
(I.1) would require Alien(Mary), which does not hold, while the second (1.3) would
require deleting Cr(Mary), which is not possible. Thus, no other translation can be
obtained from them.

Example 6: Consider the knowledge base defined in Example 5, and assume that
we want to delete the view fact that John has right of residence. All possible
translations that satisfy this request are obtained by having a failed derivation of
A (K) U {+--- tSRr (John)} succeed. One of these derivations is shown in Figure 2.
Step 1 is an SLDNF resolution step. At step 2, the selected base event 6Cit (John)
is included in T. After this step, we get the goal ~ ~Rr~ (John). This derivation
will succeed if we ensure that the subsidiary tree rooted at +--- Rr~ (John) fails
finitely. Part of this subsidiary tree is shown in Figure 3.

In Figure 3, steps 1, 2 and 3 are SLDNF resolution steps. After these steps,
we get the goal +--- cAlien (John) A~cCr (John). All possible ways in which this
goal can fail must be taken into account (i.e., obtain all the possible translations

208

Figure 2. Successful derivation of request ~ ~Rr (John)

~- 8Rr (John)

8Cit(John) ^ ~ Rr~ (John)

Q 2 I T={SCit(Jolm)}

~.- --1 Rr~ (John~

® '1
n

Figure 3. Part of subsidiary tree of ~- Rr'l(John)
T= { 8Cit (John)}

Rr' l (John)

® ,[.9,
t-- Rr'l, 3 (John)

<-- tAlien(John) A --, Cr (John~ ̂ ~ t C r (John)

Q 3 [(<-- Cr0ohn) fails)
<-- tAlien(John) ^ ~tCr(John)

T t = { 8Cit (John) }

Tz= { 8 Cit (John), t Cr (John) }

that could make this goal fail). In this case, we have two options: to add t.Alien
(John) to the condition set C or to include tCr (John) in the translation set T.

Selecting clauses T.7, T.8, and T.10 in the first step of Figure 3, we get failed
derivations that do not lead to any other solution (these derivations are not shown in
the example). Then, in the initial derivation of Figure 2, we get the empty clause, and
the derivation is finished, obtaining two different translations: Tl={6Cit (John)}
and T2={6C/t (John), tCr (John)}. Notice that T2 is not a minimal translation,
because it has a subset, T1, which is itself a translation. Because we are interested
in only minimal translations, T2 would be refused.

4.3 General Case

In the previous section, we described the Events Method in the particular case where
all variables appearing in the body of a deductive rule appear also in its conclusion.
This simplification allows us to consider that the condition set C contains only base

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 209

events and, therefore, the procedure for verifying that all conditions are satisfied is
restricted to checking whether a base event belongs to the condition set.

In the general case, when local variables appear in the definition of view
predicates, the condition set C Will contain not only base events, but also some of
the goals reached in the subsidiary derivations. For this reason, the process for
verifying conditions must be modified. Now, before adding a base event to the
translation set T, we have to guarantee that it is consistent with the content of the
condition set C already determined. This is done by ensuring, for each condition
Ci C C, that the tree rooted at Ci fails finitely. Notice that this procedure may
cause the inclusion of new elements in T and/or in C.

Another important difference is that, in the general case, a non-ground base
event may be selected during the derivations. Before including it in the translation
set T, it must be fully instantiated. This can be done either by asking the user
or by assigning default values. To obtain all translations, all possible instantiations
must be taken into account. Note that, as we consider finite domains, the number
of translations that satisfy an update request is always finite. We illustrate these
extensions with an example.

Example 7." Let K be a knowledge base containing the following predicates:

Pract (x,y) x practices y.
Sport (x) x is a sport.
Athlete (x) x is an athlete.

The current content of the knowledge base is:

E1 Pract (Sue,Chess)

E2 Pract (Sue,Tennis)

E3 Sport (Tennis)
DR.1 Athlete (x) * - Pract (x,y) A Sport (y)

Transition and event rules associated with this knowledge base are:

T.1 Athlete],l(x)

T.2 Athlete],2(x)

T.3 Athlete ~,3(x)

T.4 Athlete ~,4(x)

T.5..8 Athlete i (x)

+- Pract(x,y) A~6Pract(x,y) A Sport(y) A~6Sport(y)

Pract(x,y) A~6Pract(x,y) ALSport(y)

tcPract(x,y) A Sport(y) A~6Sport(y)

LPract(x,y) At, Sport(y)

Athlete ~,j(x) j = 1 ... 4

1.1..3 LAthlete (x) ~-- Athlete],j (x) A-nAthlete (x) j = 2 ... 4

D.1 6Athlete (x) ~ Pract(x;y) At~Sport (y) A~Athle te] (x)
D.2 ~Athlete (x) +- 6Pract(x,y) A Sport (y) A~Athlete ~ (x)

210

Figure 4. Successful derivation of request 4- 6 Athlete(Sue) A
~ Athlete(Paul)

~- 8Athlete(Sue~ A tAthlete(Paul)

®
~---SPract(Sue,y) A Sport(y~ A ~ Athlete~ (Sue) A tAthlete(Paul~

~--~Pract(Sue.Teqpis) A ~ Athlete~ (Sue)A tAthlete(Paul)

Q 3 I T= {SPract(Sue'Tennis)}

~ Athlete' 1 (Sue)A tAthlete(Paul)
C = { , (- tPract (Sue,y)^ tSpor t (y) ,

Q 4 <--t Pract(Sue,Tennis)^~ ~port(Tennis),
<--- --.1 aPract(Sue,Chess)AtSport(Chess)}

<--- tp, thlete(Paul)

~ Athlete1,4 (Paul) A ~ Athlete(Paul/
Q 6 [{ ~-- Athlete&Paul) fails }

<--- Athlete'L4 (Paul)

~ tPract(Paul.y~ A tSport(y)

@ s l y = ch~
T= {..., tN:act(Paul,Chess)}

t-- tSt~ort(Chess)

[1
T= { 8Praet(Sue,Tennls), tPract(Paul,Chess),

tSport(Chess), 8Pract(Sue,Chess) }

Now, let the request be the deletion of Athlete(Sue) and the insertion of Ath-
lete(Paul). Translations that satisfy this request are obtained by having a failed
SLDNF derivation of A(K) U { ~ ~Athlete(Sue) AcAthlete(Paul)} succeed. One
of these derivations is shown in Figure 4. Steps 1 to 7 correspond to steps al-
ready described in previous examples. Subsidiary derivation associated to the literal
~Athlete ~ (Sue) (step 4) is not shown in Figure 4, but it implies the inclusion of three
conditions: ~-- t~Pract(Suey) ALSport(y), +- ~Pract(Sue,Tennis) A~6Sport(Tennis)
and ~-- ~6Pract(Sue,Chess) ALSport(Chess) into C'.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 211

Figure 5. Ensuring satisfaction of condition set

T = { 8Pract(Sue, Tennis), tPract(Paul, Chess), tSport(Chess) }

• -- ~SPract(Sue,Chess) A tSoortt~'~ess)

Q 1 I tSP°tt(Chess)'T

@ 2 I
fails

T= { 8Pract(Sue,Tennis), tPract0PauI,Chess),
tSport(Chess), ~Pract(Sue,Chess) }

. ~ <- l~J~tl f,l ~.~.R~.~g~.~

Q I [T= {..~ 8Pract(Sue,Chess)}
O

After step 7 we get the goal ~ LPract(Pauly) ALSport0,). This goal can be
succeeded if we instantiate the variable y to some value Y, for which cPract(Paul,Y)
and cSport(Y) are true. This can be done by asking the user or by assigning default
values. In this case, we assume that the value given is "Chess." Thus, in step 8 the
event cPract(Paul,Chess) is included in the translation set T.

At step 9, the selected literal cSport(Chess) must be added to T. However, we
have to verify that this inclusion satisfies C = {+-- LPract(Suey) ALSport(y), ~--
LPract(Sue,Tennis) A~3Sport(Tennis), +- ~tSPract(Sue,Chess) AtSport(Chess)).
This verification is performed by ensuring that, for each condition Ci of C, the
SLDNF search space ofA (K) U Ti fails finitely, where Ti is the subset of T already
determined. In some cases, this may cause the addition of new elements to T and/or
to C.

In Figure 5, we show the necessity of adding new base events to T to maintain
satisfaction of the condition +- ~tSPract(Sue,Chess) AtSport(Chess). Consistency
of the other conditions is not affected by the inclusion of ~Sport(Chess) into T. Step
1 is an SLDNF resolution step. At step 2, the selected literal is ~tSPract(Sue,Chess).
This derivation will fail if it is possible to succeed the subsidiary tree associated to
the negation of this literal. This derivation is shown in the right part of Figure 5,
and it causes the inclusion of tSPract(Sue,Chess) in the translation set T.

We get the empty clause in the initial derivation of Figure 4 and, hence, the trans-
lation process finishes, obtaining the translation T= {tSPract(Sue,Tennis),,Pract(Paul,
Chess),tSport(Chess)fPract(Sue,Chess)}. Notice that the addition of ~Sport(Chess)
to T in step 9 of Figure 4 is contradictory with the deletion of the view fact Ath-
lete(Sue). The existence of the condition set C allows us to detect this contradiction
(through the violation of condition +- ~3Pract(Sue,Chess) A~Sport(Chess)), and to
perform necessary repair actions (which motivates the inclusion of tSPract(Sue,Chess)

212

in T).
Selecting rule D.2 in step 1 of Figure 4, we would obtain another translation

T2 = {t~Sport(Tennis),LPract(Paul,Chess),LSport(Chess), 6Pract(Sue,Chess)}. This
derivation is not shown in Figure 4.

4.4 Formalization of Events Method

In this section, we give a formal definition of our method for obtaining all minimal
translations that satisfy a view update request. We will formalize it for the general
case of knowledge bases, where the only condition that deductive rules must satisfy
is allowedness.

As shown in previous examples, the Events Method is an interleaving of two
activities: (1) satisfying an update request by including base events in the translation
set, and (2) checking if the view updates induced by these base events are contradictory
with the requested update. These two activities are]performed during constructive
and consistency derivations, respectively, as defined below.

Let u be an update request. In our method, T will be a translation of u if there
is a constructive derivation from (+-- u 0 0) to ([] T C). Base events contained
in the translation set T correspond to the updates (insertions and/or deletions) of
base facts that must be performed on the extensional part of the knowledge base
to satisfy the view update request. To obtain all possible translations that satisfy an
update request u, we have to consider all possible constructive derivations. We will
see in Section 6 that, when no such derivation exists, the requested update cannot
be satisfied by changing only the extensional part.

Predicates appearing in A (K) may be (we include examples from the previous
section):

• old base predicates (from the old state of the knowledge base): Pract,Sport

• old derived predicates (from the old state of the knowledge base): Athlete

• base events: 6Pract, t2ract, 6Sport, LSport

• derived events: ~Athlete, cAthlete

• new predicates (from the new state of the knowledge base): Athlete~,
Athlete 1,3

The rules applied in constructive and consistency derivations depend on the
type of the selected literal. In Figure 6, we summarize which rule is applied in each
case.

Constructive Derivation. A constructive derivation from (G1 T1 C1) to (Gn Tn Cn)
via a safe computation rule R (Lloyd, 1987) is a sequence:

(G1 T1 C1), (G2 T2 C2)... (Gn Tn Cn)
such that for each i > 1, Gi has the form *-- L1 A ...A Lk, R(Gi) = Lj and (Gi+i
Ti+l Ci+1) is obtained according to one of the following rules:

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 213

Figure 6. Rules applied in derivation

Constructive
Old base predicate

Old derived predicate

Base event

Derived event

New predicate

Consistency
Old base predicate

Old derived predicate

Base event

Derived event

New predicate

Positive

A1

A2,A3,A4

A1

Positive

B1,B2

B3,B4,B5,B6

B1,B2

Negative

A5

A6

A7

Negative

B7,B8

B9,B10,Bll

B12,B13

A1. If Lj is positive, it is not a base event and S is the resolvent of some clause
in A(K) with Gi on the selected literal Lj, then Gi+i=S, Ti+l=Ti, and
Ci+l =Ci.

A2. If Lj is a ground positive base event, and Lj C Ti, then Gi+l =Gi/Lj,
Ti+l=Ti, and Ci+l=Ci.

A3. If Lj is a ground positive base event ~P (respectively, 5P), Lj ~ Ti, P does
not hold (respectively, P holds) in the current knowledge base, and there
is a consistency derivation from (Ci TiU {Lj} Ci) to ({} T' Ct), then
Gi+i =Gi/Lj, Ti+i =T t, and Ci+l =C t.

If Ci=O, then Gi+i=Gi/Lj, Ti+l=TiO {Lj}, and Ci+l=Ci .
A4. If Lj is a non-ground positive base event, o is a substitution such that:

(a) If Lj is a non-ground positive base event LP, then a is a substitution
of variables of P such that P a does not hold in the current knowledge
base.

(b) If Lj is a non-ground positive base event 5P, then cr is a substitution
of variables of P such that Pa holds in the current knowledge base.

and there is a consistency derivation from (Ci TiU{Ljo} Ci) to ({} T' C'),
then Gi+i =Gio-/Ljo , Ti+i =T t, and Ci+i =C ~.

If C/=fl, then Gi+i=Gi/Lj, Ti+l =TiU {Ljt7}, and Ci+l =Ci.
A5. If Lj is a base or derived predicate, negative and old and, using SLDNF

resolution, the goal 6-- ~Lj fails finitely, then Gi+i=Gi/Lj, Ti+ 1 =Ti, and
Ci+l =Ci.

214

A6. If Lj is a ground-negative base event, and -nLj ~ Ti, then Gi+l=Gi/gj,
Ti+l=Ti, and Ci+l = CiU {~-- ~Lj}.

A7. If Lj is a negative, new, or derived event predicate, and there is a consistency
derivation from ({+- ~L j } Ti Ci) to ({} T' C '), then G i + l =GilL j, Ti+ i = T',
and Ci+l =C I.

Rules A1, A2, and A5 are SLDNF resolution steps where A (K) or T act as input
set.

In rule A3, the selected base event is included in the translation set Ti, to get
a successful derivation for the current branch, provided that we can ensure that
this will not violate the consistency of any condition in Ci. Note that if Ci=~,
consistency derivations must not be performed because there is no co~ndition to
satisfy.

In rule A4, a non-fully-ground positive base event is selected, and we have to
instantiate it (substeps (a) and (b)). In (a), this is done either by assigning default
values or by asking the user. In (b), there will be as many alternatives as facts of
the knowledge base can be unified with P. Once the base event is fully instantiated,
we proceed in the same way as in rule A3.

In rule A6, selected base events are added to the condition set to ensure that
they will not be included in the translation set afte~vards. In rule A7, we achieve
the next goal if we can ensure consistency for the selected literal.

Consistency Derivation. A consistency derivation from (F1 T1 C1) to (Fn Tn Cn) via
a safe computation rule R is a sequence:

(El rx C1), (V2 T2 C2), ..., (Fn rn Cn)
such that for each i > 1, Fi has the form HiU F~, where Hi=+ - L1 A ...A Lk and,
for some j=l...k, (Fi+i Ti+l Ci+1) is obtained according to one of the following
rules:

B1. IfLj is positive, it is not a base event; S ~ is the set of all resolvents of clauses
inA (K) with Hi on the literal Lj and [] ~S ' , then Fi+l=S'U F~, Ti+l=Ti,
and Ci+l =Ci.

B2. If Lj is positive, it is not a base event, and there is no input clause in A Or/)
that can be unified with Lj, then Fi+l =F~, 7'/+1 =Ti, and Ci+l =Ci.

B3. If Lj is a ground positive base event, Lj C Ti and k > l , then Fi+i=Hi/LjU
F~, Ti+l=Ti, and C i + l = C i .

B4. I fLj is a ground positive base event and Lj ~_ Ti, then Fi+I=F~, Ti+l =Ti,
and Ci+l = CiU {Hi}.

B5. If Lj is a non-ground positive base event, S ~ is the set of all resolvents
of clauses in Ti with Hi on the literal Lj and []~S ~, then Fi+i=S~U F~,
Ti+l=Ti, and Ci+i=CiU {Hi}.

B6. If Lj is a non-ground positive base event, and no input clause in Ti can be
unified with Lj, then Fi+i=F~, Ti+l =Ti, and Ci+l=CitA {Hi}.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 215

B8.

B9.

B10.

B l l .

B12.

B7. If Lj is a base or derived predicate, negative and old, k > 1 and using SLDNF
resolution as the goal +- -nLj fails finitely, then Fi+l =Hi/LjU F~, Ti+l =Ti,
and Ci+l=Ci.
If Lj is a base or derived predicate, negative and old, and there is an SLDNF
refutation o f A (K) U {+- -~Lj}, then F i+ i=F~, Ti+l=Ti, and Ci+l=Ci.
If Lj is a ground negative base event and ~Lj C Ti, then Fi+ l =F~, Ti+ l = Ti,
and Ci+l =Ci.
IfLj is a ground negative base event, Lj qt Ti, and k>l, then Fi+l =Hi/LjU
F~, Ti+l = Ti, and Ci+ l=Ci.
If Lj is a ground negative base event, --nLj ~ Ti, and there is a constructive
derivation from ({+-- -~Lj} Ti Ci) to ([] T' C'), then Fi+I=F~, Ti+l =T ' ,
and Ci+i=C I.
If L j is a negative, new, or derived event, predicate, k > 1, and there is a con-
sistency derivation from ({+- -~Lj} Ti Ci) to ({} T' C'), t henFi+ l =Hi/LjU
F~, Ti+l=r I, and Ci+l=C t.

B13. IfLj is a negative, new, or derived event, predicate, and there is a constructive
derivation from ({+- -,Lj} Ti Ci) to ([] T' C'), then Fi+l =F~, Ti+i=T',
and Ci+l =C I.

Rules B1, B2, B3, B7, B8, B9, and B10 are SLDNF resolution steps where A (K)
or T act as input set.

In rules B4 and B6, the current branch is dropped from the consistency derivation
because the subset of T already determined ensures failure for it. Moreover, the
current goal Hi must be included in the condition set Ci to guarantee that later
additions to T~ will not make this branch succeed.

In rule B5, the selected literal can be unified with one or more base events in
T. We must then verify that each resulting branch fails.

In rule B l l , the current branch is dropped if there is a constructive derivation
for the negation of the selected literal. In rules B13 and B12, the current branch may
be dropped, depending on whether there is a constructive or consistency derivation
for the negation of the selected literal.

Consistency derivations do not rely on the particular order in which selection
rule R selects literals since, in general, all possible ways in which a conjunction

L1 A ...A Lk can fail should be explored. Each one may lead to a different
translation.

Our method obtains all minimal translations that satisfy a given update request
(Section 6). However, as we have seen in Example 6, in some cases we may also
obtain translations that are a superset of the minimal ones. These translations are
then refused because they do not satisfy our criterion of minimality.

216

5. Integrity Constraints Satisfaction

There is a close relationship between updating a knowledge base and integrity
constraints satisfaction because, in general, consistency of a knowledge base can
only be violated when performing an update. Translations of a view update request
correspond to base updates. Then, some translations could be invalidated because
they violate an integrity constraint. On the other hand, any mechanism that restores
consistency needs to solve the view update problem when derived predicates may
appear in some integrity constraint. For these reasons, it becomes necessary to
combine view updating and integrity constraints satisfaction.

As we mentioned in the introduction, this combination can be performed in two
different ways. The first possibility consists of combining view updating and integrity
constraints maintenance. In this case, new insertions and/or deletions of base facts
are added to the view update translations that violate some integrity constraints to
restore knowledge base consistency. Then, we obtain translations that satisfy the
view update request and all the integrity constraints of the knowledge base. The
result of the combined process is a set (possibly empty) of translations that do not
necessarily correspond to a subset of the translations obtained by view updating
alone (Section 5.1).

The second possibility consists of combining view updating and integrity checking.
In this case, we would first obtain all possible translations that satisfy a view update,
and then check whether they satisfy the integrity constraints. The result of the
combined process is the subset of translations obtained by view updating that would
leave the knowledge base consistent (Section 5.2).

5.1 Integrity Constraints Maintenance

In the Events Method, a translation T corresponding to an update request u violates
an integrity constraint lcn if T includes some base events such that some fact Llcn
becomes true in the transition from the old state to the new state of the knowledge
base. Therefore, if we are only interested in those translations that do not violate
Icn, we only have to use {+-- u A~Llcn} as root goal.

In general, if there are n integrity constraints, we define the auxiliary predicate
LIc as: clc +- clcl(xl), ..., ~Ic +- Llcn(xn), (where x i , i = l ... n, is a vector of
terms), and use the goal {+-- u A ~ I c } to obtain all the translations that satisfy u
while maintaining knowledge base consistency.

In our method, T will be one of these translations if there is a constructive
derivation (as formally defined in Section 4.4) from ({~-- u A-uric} 0 0) to ([] TC).
During this derivation, the literal -~Ic will be selec, ted. Because it corresponds to
a negative derived event predicate (Constructive Derivation Rule 7), the next step
of the constructive derivation will be reached if there is a consistency derivation
from ({ ~ tJc} T' C') to ({ } T C), where T' and C' are the subsets of T and C,
which are already determined when the literal -~1C is selected. The existence of
this consistency derivation guarantees that no integrity constraint will be violated.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 217

In this way, integrity maintenance is included as a part of the existing consistency
derivation.

Example 8." Consider again the knowledge base defined in Example 7, and assume
that it also contains the following facts and integrity constraint (which states that
Ron must practice Swimming or Climbing):

24 Pract (Ron,Swimming)

25 Sport (Swimming)

26 Sport(Climbing)

IC.1 Icl ~ ~Pract(Ron,Swimming) A~Pract(Ron,Climbing)

Transition and event rules associated with the inconsistency predicate are:

T.9 Icl ~,1

T.10 Icl ~, 2

T.11 Icl ~, 3

T.12 Icl ~,4

1.4..6 tIcl

+- ~Pract(Ron,Swimming) A~cPract(Ron,Swimming)

A ~Pract(Ron,Climbing) A-l~Pract(Ron,Climbing)

+-- ~Pract(Ron,Swimming) A~t2ract(Ron,Swimming)

AtSPract(Ron,Climbing)

~-- tSPract(Ron,Swimming) A~Pract(Ron,Climbing)

A ~ LPract(Ron,Climbing)

~-- tSPract(Ron,Swimming) AtSPract(Ron,Climbing)

+- Icl ~,j j = 2...4

Now, assume that we want to delete the derived fact that Ron is an athlete
following the integrity maintenance approach. A translation Twill satisfy this request
if there is a constructive derivation from ({~--- /SAthlete(Ron) A~Llc} ~ ~) to ([]
T C). Part of this derivation is shown in Figure 7.

Steps 1 and 2 are SLDNF resolution steps. At step 3, the selected literal
6Pract(Ron,Swimming) is included in the translation set T. At step 4, there is a
consistency derivation associated with the goal +--Athlete ~ (Ron). This derivation is
not shown in Figure 7, but it implies the inclusion of two conditions: ~ t, Pract(Ron#)
At~Sport(y), ~-- ~Pract(Ron,y) ASport(y) A~tSSport(y) into the condition set C. At
step 5, the next goal is reached because there is a consistency derivation associated
to ~-- LIc. Part of this derivation is shown in Figure 8. Steps 1 to 5 are SLDNF
resolution steps. At step 6, this branch can be removed because there is a constructive
derivation for the negation of the selected literal. This derivation is shown in the
right part of Figure 8. At step 1 of this constructive derivation, cPract(Ron,Climbing)
is included in T. Note that this inclusion is necessary to not violate Icl. Moreover,
we have to verify that this inclusion satisfies C = {~-- t~Pract(Ron#) At~Sport(y),
~-- ~Pract(Ron#) A Spor@) A~6Sport(y)}. In this case, the event tSSport(Climbing)
must be included in T to maintain consistency of the second condition (this is done
in a way similar to Figure 5).

218

Figure 7, Constructive derivation of ~ ~ Atlhlete(Ron)/~-~L Ic

8AthletefRon) ^ ..-,tic

® ,1o ,
¢- 8Pract(Ron,y) ^ Sport/y) ^ ~Athlete' t (Ron) ^ ~t lc

8Pract(Ron,Swimmina) ^ -,Athlete' I (Ron) A ~ t l c

Q 3 I T" lSPmct(R°n.Swimmlnl0}

~ Athlete' I (Ron)^ -,tic
I C ~ {¢-tPract(Ron,y) ̂ tSport(y).

• Q 4 ¢.-tPraet(ltotl,,y) ^ Sport(y) ^--~ 8Sport(y))

~t l c

® '1
[1

T= { 8Praet(Ron,Swimmlng), tPract(Ron,Climbing), ¢~Sport(Climblng) }

Selecting clauses 1.4 and 1.6 at step 2 of the previous consistency derivation,
we get failed derivations that do not modify the translation nor the condition sets
(these derivations are not shown in Figure 8).

Then, in the initial derivation of Figure 7, we get the empty clause and the
derivation is finished obtaining T = {~Pract(Ron,Swimming), •Pract(Ron,Climbing),
6Sport(Climbing)}, which satisfies the view update request, and maintains knowledge
base consistency. Selecting the clause D.1 at step l of Figure 7, we obtain another
solution T2 = {6Sport(Swimming)}.

As we have shown in the previous example, integrity constraints maintenance
is incorporated into the translation process in our method. Thus, in a single step,
we obtain translations that satisfy the view update request and all the integrity
constraints.

It might seem that view updating and integrity maintenance also could be
performed in two separate steps. In the first step, vce would obtain the translations
that satisfy the view update request and, in the second step, integrity constraints
would be maintained. This approach, however, does not work since the result of
view updating is not only a set of translations, but also a set of conditions that must
be false during the transition. If one does not take into account this latter set, the
resulting translations might be incorrect.

As an example, consider again the same knowledge base and update request
as in Example 8. In the first step, we would translate the view update request
into base updates as explained in Section 4, obtaining two translations: T1 =

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 219

Figure 8. Consistency derivation of ~lc
T = { 8Pract(Ron,Swimming) }

~-tIc

®'1
t-- t|cl

4- 8Pract(Ron.Swimmin~/A ~Pract(Ron,Climbing)A ~tPract(Ron,Climbing)

4 [8Pract(Ron,Swimming) E T

4-- ~PractfRon.Climbin~) A ~tPract(Ron,Climbing)

5 [(4-Pract(Ron,Climbing) fails)

~-- ~tPract(Ron.Climbine) ~ 4- tPracffRon.Climbing)

11 ..~ n

T= { 8Pract(Ron,Swimming), tPract(Ron,Climbing), 8Sport(Cllmblng) }

{/~Pract(Ron,Swimming)} and T2 = {t~Sport(Swimming)}. In the second step,
we would repair the translations that do not satisfy some integrity constraint by
adding new insertions and/or deletions of base facts to them. In this example, we
would finally obtain T1 = {6Pract(Ron,Swimming), t~Pract(Ron,Climbing)), and T2
= {t~Sport(Swimming)}. Notice that T1 does not satisfy the original view update
request and, then, it is not a valid solution. It lacks ~Sport(Climbing), which can
only be discovered if one takes into account that the condition ~-- t.Pract(Ron,y)
A Sport(y) A~6Sport(y) must fail.

Integrity maintenance may also be applied when considering base updates, that
is, insertions and/or deletions of base facts. In this case, additional updates for
restoring knowledge base consistency might be necessary. These additional updates
can be obtained in the Events Method in the same way as defined above.

5.2 Integrity Constraints Checking

Our method also can be used for combining view updating and integrity checking.
In this case, we should first obtain all minimal translations that satisfy the update
request (by applying the procedure defined in Section 4.4) and, afterwards, we
would reject the solutions that violate some integrity constraint. This second step
could be performed by applying the method presented by Oliv6 (1991) (which is
also based on the concept of event) or any other method for integrity constraints

220

checking.

As it has been pointed out recently (Ceri and Widom, 1990; Moerkotte and
Lockemann, 1991), this approach may not be satisfactory because rejecting the
translations that violate some integrity constraint may leave the user at a loss to
the potential causes of the integrity violation and, hence, with few clues as to the
needed changes to the transaction. Moreover, we see another important advantage
of the integrity maintenance approach over integrJity checking because, in some
cases, translations that would not be obtained in the latter approach are found in
integrity maintenance.

As an example, consider again the same knowledge base and view update
request as before. In the first step, we would translate the view update request into
base updates, obtaining two translations: T1 = {6Pract(Ron,Swimming)} and T2 =
{6Sport(Swimming)}. In the second step, we must check if the obtained translations
satisfy the integrity constraints. It is not difficult to .see that translation T1 violates
l c l because, if it were applied, Ron would not practice Swimming or Climbing. Thus,
this translation would be rejected and the only solution T2 = {6Sport(Swimming)}
would be obtained following the integrity constraints checking approach.

To finish this section, we would like to point out that transition integrity constraints
can also be maintained in our method. These constraints involve two consecutive
knowledge base states. That is, they are constraints that knowledge base transitions
must satisfy. A typical example could be a constraint stating that salaries can not
decrease (see Oliv6, 1991 for the details of transition and event rules in this case).

6. Soundness and Completeness of Events Method

We have proved that the Events Method is sound and complete for all cases when
SLDNF resolution is sound and complete. In Appendix B we see that, up to now, it
has been proved that SLDNF resolution is complete when A (K) is allowed, A (K) U
T is call-consistent, andA (K) U T U {~-- u} is even. The corresponding properties
on K are that K is allowed and stratified (or call-consistent).

In this section, we present the main theorems for soundness and completeness
of the Events Method. The technical proofs are omitted from this article due to
lack of space, and can be found in Teniente and Oliv6 (1994).

6.1 Soundness

The Events Method is sound in the sense that, given a knowledge base K and its
associated augmented knowledge base A (K), if the method obtains a translation
T for an update request u, then the application of T to K (i.e., inserting and/or
deleting the base facts included in T) leaves the knowledge base in a state K ~ such
that u holds in K ~. Soundness of the Events Met:hod is based on the following
Lemma:

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 221

Lemma 1: Let K be a knowledge base, A (K) the augmented knowledge base, u an
update request, and T a translation obtained by the Events Method. Then, there
is an SLDNF refutation ofA (K) U T U {~---- u}.

As can be seen, the lemma relates the constructive derivation ({~--- u) 13 13) to
([] TC) of our method to an SLDNF refutation ofA(K) U T U {~--- uj t. Given
that SLDNF resolution has been proven sound (Clark, 1978), then the following
theorem follows:

Theorem I (Soundness of the Events Method): Let K be a knowledge base, A (K)
the augmented knowledge base, and u an update request such that u is not a logical
consequence of comp(A (K)). Let T be a translation obtained by the Events Method.
Then, u is a logical consequence of comp(A (K) U T).

6.2 Completeness

The above relationship between a constructive derivation of our method and an
SLDNF refutation also exists in the reverse direction. This is stated in the following
theorem:

Theorem 2: Let K be a knowledge base, A (K) the augmented knowledge base, u
an update request, and T a minimal set of base events such that, using SLDNF
resolution, a refutation ofA (K) O T U {~--- u} is given. Then, there is a constructive
derivation from ({~--- u} 13 13) to ([] TC).

Therefore, for all cases when SLDNF-resolution is complete, we have the following
completeness result for our method:

Theorem 3 (Completeness of the Events Method): Let K be a knowledge base, A (K)
the augmented knowledge base, u an update request, and T a minimal translation.
Suppose that SLDNF resolution is complete for A (K) O T and for goal {~---- u}.
Then, there is a constructive derivation from (~---- u 13 13) to ([] TC) for any translation
T that satisfies that u is a logical consequence of comp(A (K) U T).

From theorems of soundness and completeness, we can deduce two important
conclusions. Let u be an update request. Soundness of the Events Method ensures
that if there is a constructive derivation from (~--- u 13 13) to ([] TC), then the knowledge
base updated according to T satisfies the request. Furthermore, completeness of
the Events Method ensures that if the constructive derivation rooted at the view
update fails finitely, then the request cannot be satisfied by changing only the
extensional part of the knowledge base. In Appendix B we review the cases for
which completeness results of SLDNF-resolution have been proven.

7. Other Kinds of Updates

In the previous sections, we faced the problem of view updating, and discussed how
it could be combined with integrity checking and integrity maintenance. We also

222

showed how to apply integrity maintenance when considering updates of base facts.
However, knowledge bases allow other kinds of updates (i.e., updates of deductive
or integrity rules), which also may violate knowledge base consistency.

The main goal of this section is to present an extension of the Events Method
for maintaining knowledge base consistency when updating deductive or integrity
rules. In general, there are several ways for maintaining integrity constraints. Our
approach consists of generating all possible minimal solutions.

7.1 Insertions or Deletions of Deductive Rules

We consider first the case of inserting a new deductive rule:

e (x) ~-- g 1 (x) A.,. A Ln (x)

Due to this deductive rule, the updated knowledge: base is likely to contain some
new (implicit) P facts which might violate some integrity constraint. Such violations
can also be detected and repaired in our method. What needs to be done is
determining which cP facts are produced in the transition from the old state of the
knowledge base to the new, updated state. Once known, integrity constraints can
be maintained as usual.

If P is a new predicate in the knowledge base, the insertion events produced
by the update are given by tP(x) ~-- Pl(x). As indicated in Section 3, transforming
P~(x) into its equivalent set of rules, we get the insertion event rules that give the
tiP facts produced during the transition. Note that, in this particular case, we would
not need to maintain consistency since, P being new, no integrity constraint can
be violated. However, when this kind of update occurs as part of a larger update
request, it may be necessary to maintain it.

If P is an existing predicate, we first rename P in the conclusion of the deductive
rule by Pk, with:

k = 1 if P is a base predicate

k = m + l if P is a derived predicate with m rules

Then, LP facts produced by the update are given by : cP(x) ~ P~ (x) A-nP(x), and
transforming P~ (x) into its equivalent set of transition rules we get the insertion
event rules that give the tP facts produced during the transition.

Once this transformation has been done, we can apply the Events Method in
the usual way. Let u be an insertion of a deductive rule. T will be a solution if
there is a constructive derivation from ({~-- -uric} 0 O) to ([] TC). If T = 0, then
the deductive rule can be inserted into the knowledge base without performing any
additional update. In any case, if some translation is obtained, the new rules are
accepted, the knowledge base updated and the transition and event rules modified
accordingly. If no solution T is obtained, then it is not possible to insert the
deductive rule without violating any integrity constraint by considering only repairs
on the extensional part of the knowledge base.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 223

In the case of deleting an existing deductive rule we would proceed in a similar
way, but now deriving the deletion event rules that give the input deletion events
produced by the update. The following example illustrates our approach.

Example 9: Let K be a knowledge base with the following predicates and integrity
constraints:

Grant (x) x has a grant

Cont (x) x has a contract with some company

Assig (x,y) employee x is assigned to department y

Dept (y) y is a department

Unemp (x) x is unemployed

Works (x) x works

Icl (x) It is not possible for any x to work and be unemployed at the same time.

The current content of the knowledge base and relevant transition and event rules
are:

F.1

E2

E3

DR.1

IC.1

T.1

1.1

1.2

Grant(John)

Unemp(John)

Assig(Mary, Sales)

Works(x) ~-- Cont(x)

Icl(x) ~-- Works(x) A Unemp(x)

Ic~,3(x) ~ LWorks(x) A Unemp(x) A~6Unemp(x)

Hcl(x) ~ Icl ~,3(x)
Hcl ~ ~Icl(x)

Let the update be the insertion of the deductive rule:

Works(x) ~-- Grant(x)

where Grant is a base predicate. Works is an existing derived predicate with one
rule (m = 1). Then, we must first rename the predicate in the conclusion of the
new rule by Works2. The transition rules associated with this predicate are:

T.2 Works~,l(X) ~ Grant(x) A~t~Grant(x)

T.3 Works~,2(x) ~-- ~arant(x)

The new insertion event rules are:

1.3 ~Works(x) ~-- Works~,l(x) A~Works(x)

1.4 ~Works(x) ~-- Works~,2(x) A~Works(x)

Note that the insertion of this deductive rule violates integrity constraint Icl.
Some updates of the base facts must be performed to maintain knowledge base
consistency. T will be a solution if, with these new rules, there is a constructive
derivation from ({~-- -~Ic} 0 O) to ([] r c) . This derivation is shown in Figure 9.

224

Figure 9. Constructive derivation of ~-- - ~ Ic

(- ~ t l c II
[1

Figure 10. Consistency derivation of ~- ~ Ic

1,2,3 [(I.2, I.1, T.1)

tWorks(x~ A Unemp(x) A ---, 8 U n e m p (x)
I

4,5 I (I.3,T.2)
I

Grant(x) A --,8 Grant(x) A ~ Works(x) A U n e m p (x) A ~ S U n e m p (x)

6 I (F.1)

• --18Grant(John) A --,Works(John) A UnemD(John)A .--I 8 U n e m p (J o h n)

7, 8 (J-Works(John) fails, F.2)

--18Grant(John) A ~ 8Unernp(John)

T 1 = { ~ r a n t (J o h n) } T 2 = { 8Unemp(John) }

The empty clause is reached because there is a consistency derivation associated
to ~ ~1c. Part of this derivation is shown in Figure 10. To save space, we sometimes
group two or more steps into a single one, as in 1.2, 1.1 and T.1. Steps 1 to 8
are SLDNF resolution steps. After this step, all possible ways in which the goal

-~6Grant(John) A~t~Unemp(John) can fail must be studied. In this case, we will
obtain two solutions: T1 = {t~Grant(John)} and 7'2 = {t~Unemp(John)}. Notice
that both solutions maintain knowledge base consistency when inserting the rule
Works(x) ~ Grant(x).

7.2 Insertions or Deletions of Integrity Constraints

We deal with insertions of integrity constraints as with insertions of deductive rules for
new predicates (see previous section). The deletion of an integrity constraint cannot
violate knowledge base consistency and, therefore, there is no need to maintain

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 225

it in this case. As an example, consider the same knowledge base of Example 9,
and assume that its current content is exactly the same. Let the update request be
the insertion of the integrity constraint: Ic2(x,y) ~-- Assig(x,y) A~Dept(y). In our
method, T will be a solution if, considering the transition and event rules associated
with Ic2, there is a constructive derivation from ({~--- ~clc} 0 0) to ([] TC). In
this case, our method obtains two different solutions: T1 = {t~Assig(Mary, Sales)}
and T2 = {cDept(Sales)}.

7.3 Transactions With Multiple Updates

When a transaction consists of several kinds of updates (i.e., view updates, updates
of base facts, deductive and/or integrity rules), we first determine the input events
produced by each update, and then apply the integrity maintenance approach
(Sections 5.1, 7.1, and 7.2). If there is some translation, the knowledge base is
updated and the transition and event rules are modified.

8. Additional Features

8.1 Modification Requests

To simplify the presentation, we considered that our method could only deal with
insertions and deletions of base and view facts. However, we can also handle
modification requests, which are requests for replacing the value of some attribute
in a base or view fact by a new, different value.

Two different approaches exist when dealing with modification requests. The
first consists of regarding them as a deletion of a base or view fact followed by an
insertion of another fact of the same predicate, where the values have been changed
for the desired attributes. The natural meaning of the events allows us to define a
goal where all these actions are considered.

As an example, consider the following knowledge base:
Ed (John, D1)
Dm (D1, Mary)
Edm (e,d,m) ~ Ed (e,d) A Dm (d,m)
Assume that the modification request consists of the replacement of the view fact

Edm (John, D1, Mary) by Edm (John, D1, Sue). This update can be understood
as a request for deleting the first fact and inserting Edm (John, D1, Sue). In
our method, T is a solution if there is a constructive derivation from ({~-- 6Edm
(John,D1,Mary) AcEdm (John,D1,Sue)} 0 0) to ([] T C). In this case, we obtain
the solution T = {6Dm(D1,Mary), cDm(D1,Sue)}.

The second approach for dealing with modification requests consists of adapting
the framework described by Urpi and Oliv6 (1992) and Urpl (1993). In this proposal
it is assumed that each predicate has a non-null vector of arguments that form
the key for that predicate. The kind of events considered by Olivd (1991) is
extended by considering not only insertions and deletions, but also modifications of

226

base and derived predicates, and deriving the modification event rules accordingly.
Incorporating the concept of key (not considered in this article), we could adapt
our method to use the modification event rules to handle modifications of view and
base predicates.

8.2 Evaluable Predicates

To simplify the presentation, we considered that all predicates appearing in the
body of deductive rules were ordinary (i.e., base or derived). However, we also can
deal with evaluable (built-in) predicates like arithmetic operators. In this case, the
allowedness condition that the knowledge base should satisfy is that any variable
that occurs in a deductive rule has an occurrence in a positive condition of an
ordinary predicate (Ullmann, 1988). This ensures that evaluable predicates can be
fully instantiated before being evaluated. This evaluation can be performed without
accessing the knowledge base. For this reason, the only thing that needs to be done
when such a literal is selected, once ground, is to evaluate it. If the result of the
evaluation succeeds, we can continue with the translation process. Otherwise, we
must consider a different alternative.

8.3 Handling Recursion

The Events Method is sound and complete (Section 6). However, in the presence
of recursive rules, the method may not terminate because it may enter into an
infinite loop. For this reason, in a practical implementation of the Events Method,
we should adapt some of the existing loop checking techniques for logic programs
to avoid this problem.

In general, loop checking techniques (Bol et al., 1991; Bol, 1993) are based
on excluding some kind of repetition in the derivations because such a repetition
makes a method enter an infinite loop. We could adopt this technique by forcing
our method to stop its search through a certain part of the derivation when it gets
a goal (or a variant of it) that had been previously reached in the derivation, and
the contents of the translation and condition sets are the same as before. Pruning a
tree in this way prevents our method from entering into an infinite loop and, thus,
it always terminates.

8.4 Preventing Side Effects

Due to the deductive rules, non-requested updates may be induced on some derived
predicates. We say that a side effect occurs when this happens. The Events Method
is able to prevent side effects by giving a set of facts for which we want insertions
and/or deletions not to occur. The resulting solutions will satisfy the update request
and will satisfy that no insertion and/or deletion is induced for the given set of facts.

A new literal ~cPi (respectively, --nt~aj) is added to the root goal for each fact Pi
(respectively, Qj) for which we want induced insertions (respectively, deletions) not
to occur. The root goal has the form { +- u A--1/,P1 A... A-n IbPn A "1 ~Q1 A... A--i ~Qm },
where u corresponds to the update request. The Events Method must be applied in

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 227

the usual way. Note that the approach followed for preventing side effects is similar
to the way we deal with integrity constraint maintenance. This is not surprising
because, in fact, a violation of an integrity constraint is a particular side effect
involving inconsistency predicates.

Preventing side effects is particularly important because it allows us to follow
the constant complement approach in view updating (Bancilhon and Spyratos, 1981).
This elegant approach consists of defining for each view a complement that describes
the information not visible within the view, in such a way that the knowledge base
may be computed from the view and its complement. In this context, a view update
is translated by changing only the view, while the complement remains invariant
(that is, the information not visible within the view does not change). We could
apply the constant complement approach in the Events Method. First, we should
define the complement of each view. Then, when updating a view, we should
prevent all possible side effects over its complement.

8.5 Repairing Inconsistent Knowledge Bases

Sometimes, it may be interesting to allow for intermediate inconsistent knowledge
base states (e.g., to avoid excessive integrity checking). In this case, a method
for repairing inconsistent knowledge bases becomes necessary. In this section, we
outline how the Events Method can be used to deal with this problem.

As we have seen in Section 2, we associate with each integrity constraint an
inconsistency predicate Icn, with or without terms. For this reason, an inconsistency
predicate can be seen as a special kind of view. When the knowledge base is
inconsistent, some of the Icn facts will be true. A request for repairing this
inconsistency corresponds to a view delete request involving inconsistency predicates.
That is, in our framework, the problem of repairing an inconsistent knowledge base
is understood as a particular case of view updating.

However, we should adapt the procedure for deriving the augmented knowledge
base (Section 3) to derive deletion event rules for inconsistency predicates, and not
to apply the consistency simplification which assumes that the knowledge base is
consistent before the update. Therefore, both insertion and deletion event rules
for view and inconsistency predicates would be obtained in the same way.

To repair an inconsistent knowledge base, the root goal must be defined as
+- ~Ic, and our method can be applied in the usual way. In this case, a translation
T contains base facts updates needed to repair all integrity constraints violations.

As an example, consider the following inconsistent knowledge base, where Q,
R, and S are base predicates:

Q(A)
R(A)
P (x) ~-- Q (x) A R (x)
Icl(x) e (x) A- s (x)
We can use our method to restore consistency of this knowledge base. In this

case, predicate Ic is defined as Ic ~-- lc l (x), because there is only one integrity

228

constraint. We have to derive its transition and event rules:

*c 1,1 ~-- Icl (x) A~6Icl (x)

Ic 1,2 acl (x)
ic ,j j = 1,2

tic ~-- Ic 1,2 A -qc
~Ic ~ ~Icl (x) A mlc

T will be a solution if there is a constructive derivation from ({~-- ~Ic} ~ ~) to
([] TC). In this example, we obtain the solutions T1 = {SO(A)}, T2 = {~R(A)},
and Ta = {tS (A)}. Note that all of them restore knowledge base consistency.

An interesting conclusion can be drawn from the above explanation. In this
article, we assume that the knowledge base is consistent before the update to
derive more efficient event rules for inconsistency predicates and, thus, simplify the
process of integrity constraint maintenance. However, we could also apply integrity
constraints maintenance when the user requests an update over a known inconsistent
knowledge base. In this case, we should first adapt the procedure for deriving the
augmented knowledge base as explained above. The Events Method is applied in
the same way as defined in Sections 5.1 and 7, with the only difference that the
literal ~tlc is replaced by ~Ic in the root goal.

8.6 Rule Annotation

In some cases, it is not necessary to obtain all possible translations for a given
request. In this sense, Tomasic (1988) suggests an interesting technique for reducing
the number of obtained solutions. This technique, called rule annotation, allows the
designer to express additional information as simple markings of rules and predicates.
These annotations are used to guide the translation process. The general idea is
to explore only the branches which are permitted by the annotations.

We can adapt this framework to reduce the number of solutions obtained by
the Events Method, by annotating the event rules to be used. When translating an
update request, we only explore the branches peruaitted by the annotations.

8.7 Optimization of the Events Method

In this article, we present a version of the Events Method where the translation
process is completely performed at execution time, and when the update request
parameters and the content of the extensional part of the knowledge base are
known. Nevertheless, we could do some preparatory work at compile time by using
partial evaluation (Lloyd and Shepherdson, 1991), thus increasing efficiency of our
method.

In the Events Method, we could partially evaluate the intensional part of the
augmented knowledge base (i.e., deductive, transition, and event rules) with respect
to the update request, thus obtaining at compile time a set of eqdivalent rules that
can be evaluated more efficiently at execution time.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 229

9. Comparison With Previous Work in View Updating

Related work can be divided into two groups: Methods that have been proposed
to solve the view update problem, and methods that are concerned with integrity
constraints maintenance. In this section, we compare in detail our method for view
updating with the approaches taken by some of the methods in the first group.
In Section 10, we compare our approach to integrity constraints maintenance with
related methods in this field.

As mentioned in the introduction, the view update problem has attracted a lot of
research during past years in relational as well as in deductive databases. To clarify
the contribution of our Events Method, we select a representative set of existing
methods and provide a comparison with them (see also, Teniente, 1992). All these
methods deal with the same class of knowledge bases and view update requests as
ours. However, none of them is able to handle transition integrity constraints or
prevention of side effects on other views.

• Drawing Updates From Derivations (Decker). Let D be a deductive database,
and u an update request. Decker (1990) obtained view updates for delete
requests by having each non-failed branch in an SLDNF-tree of D LJ { ~-- u }
fail. This is effected by deleting, for each non-failed derivation in the tree,
an input clause used in that derivation, or by requesting the insertion of an
atom of a negative literal used as an input clause (negative literals are treated
as subsidiary insert requests). In insert requests, the concept of view update
trees is defined to obtain the translations impeded by the selection function
employed in the SLDNF resolution. Informally, the basic idea of these trees
consists of selecting and resolving each literal of every goal against each
candidate input clause but, in general, not every literal has to be selected.
Translations are obtained by having a failed goal of this tree succeed. This can
be effected by inserting a ground instance of each positive literal appearing in
some goal G of the derivation, and by requesting the deletion of the atom of
each ground negative literal in G (negative literals are treated as subsidiary
delete requests). We see three noteworthy problems with this method. First,
the main problem is that it is possible to draw solutions that are invalidated
due to negation. That is, solutions that do not satisfy the view update may
be obtained. As an example, consider a database containing the following
facts and deductive rules:

Q(A)
R(A)
P (x) +- Q (x) A R (x) A ~S (x)
e(x) +-- 7"(x)
S(A)~ - Q(A)

and let the view update request be the insertion of P(A). Decker's method
obtains two different solutions: delete(Q(A)) and insert(T(A)). However,

230

the deletion of Q (A) does not satisfy the insert request P (A). Thus, what
can be drawn from derivations in the presence of negation are possible
updates. A possible update is a valid one, if the updated database satisfies
the update request. This must be validated by running the request in the
updated database. In our method, only one translation T={cT(A)} would
be obtained. Notice that this is the only valid solution. A second difference
is that, in some cases, the method proposed by Decker must be iterated a
number of times to obtain all valid solutions. The problem is that, in general,
it is not known how many iterations should be performed. Because of this,
Decker proposed to settle with single pass runs of the method, with which it is
possible that not all valid translations are obtained. Our method always gets
all valid solutions. Finally, this method only allows integrity checking. On the
contrary, our method can also deal with integrity constraints maintenance.

Updating Knowledge Bases (Guessoum and Lloyd). The method of Guessoum
and Lloyd (1990, 1991) also uses SLDNF resolution to obtain the translations
that satisfy a view update request. In a first version of the method (Guessoum
and Lloyd, 1990), procedures for deleting an atom from a normal program
and inserting an atom into a normal program were presented. In a later
version (Guessoum and Lloyd, 1991), these procedures were generalized such
that the deletion procedure calls the insertion procedure and vice versa. Let
K be a knowledge base. Translations satisfying a delete request u are obtained
by cutting each non-failed branch of the SLDNF tree of K U {~-- u}. For
insert requests, the translations are obtained by having a failed derivation
of K U {~--- u} succeed. A translation will be valid if, once updated in the
knowledge base, there is an SLDNF refutation associated with the view update
request. This work closely parallels the work by Decker (1990). Nevertheless,
there are some differences. First, Guessoum and Lloyd check the updated
knowledge base to determine whether a solution is valid. Because of this,
this method does not present the problem of solutions invalidated due to
negation. However, the cost of this verification can be very high because, in
general, the knowledge base must be accessed as many times as accesses have
been performed during the translation process. The second difference is the
most important. To deal with insert requests, Decker defined "view update
trees" to obtain all translations impeded by the selection function used in
the SLDNF resolution. However, Guessoum and Lloyd did not propose any
alternative to this problem and, for this reason, they could not obtain all
translations that satisfy an insert request. Our method always gets all valid
solutions. Finally, in some cases, this method should be iterated a number
of times to obtain a solution without knowing how many iterations should
be performed. On the contrary, the Events Method does not need to be
iterated.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 231

Updates Through Abduction (Kakas and Mancarella). These authors explored
the view update problem within an elegant abductive approach (Kakas and
Mancarella, 1990). They clearly distinguished two steps to obtaining the
translations. In the first step, the update request was translated into several
sets Ai. Each Ai is a specification of a set of sufficient requirements that
the extensional part of the database, EDB, should satisfy for the original
request to be effected. Thus, every set Ai corresponds to a valid solution.
The second step of the update procedure involves solving the update problem
on the EDB generated in the previous step. A first problem of this method
is that, in the first step, it may do some unnecessary ~vork due to the fact
that it does not take into account the contents of the current database to
obtain the Ai. Then, some Ai expressing requirements that the current
database already satisfies may be obtained. Because of this, the number of
Ai obtained may become very large and, thus, the amount of unnecessary
work can increase. As an example, consider a knowledge base containing
the following facts and rules:

Q
R

P * - Q A R
P + - S A T
S + - A A B
T + - C A D

and let the view update request be the deletion of P. In this method, eight
different sets Ai of sufficient requirements that the EDB should satisfy are
obtained: Ai={Q*, A*}, A f ~ . B*l 2=-t~ , f, Aa={Q*, C*}, A4={Q*, D*},
As= {R*, A* }, A6={R*, B*}, AT:{R*, C'I, AN={R *, D*}, where P*
denotes the fact that P must not hold in the new database state. However,
there are only two solutions that satisfy the update request: {delete(Q)}
or {delete(R)}. In our method, two translations are obtained: Ti={SQ}
and T2 ={6R}. Notice that they correspond to the valid solutions. Another
important difference is the way integrity constraints maintenance is handled.
With the method of Kakas and Mancarella, integrity constraints can be
maintained dynamically as part of the derivation performed in the first step.
The problem is that perhaps not all violations of integrity constraints may
be detected during this derivation. As an example, consider the database
containing the following rules and integrity constraints:

S(x) +- Q(x)
P(x) +-- Q(x)
I c l (x) ~ P(x) A~R(x)

and let the view update request be the insertion of S (A). In this method, a set
A={Q (A)} would be obtained. Thus, in step 2, Q (A) would be inserted in

232

the database. Note that this solution does not satisfy the integrity constraint.
In our method, we obtain the solution Tf{~Q(A), ~R(A)}, which satisfies
both the update request and the integrity constraint.

Updating Intensional Predicates (Atzeni and Torlone). This method (Torlone
and Atzeni, 1991; Atzeni and Torlone, 1992) deals with view updating in
definite deductive databases (i.e., databases 'where view predicates can only
be defined by means of function free Horn rules, and without negation).
Despite this expressive limitation, we remark on some interesting features of
this proposal. The main contribution of this work is to provide a formalization
of a declarative semantics of updates of facts. Among the possible translations
of an insertion, they considered as important the minimalpotential results,
which include only the information that is strictly needed to satisfy the insert
request. They distinguished between deteiministic and non-deterministic
updates, depending on the existence of a minimal potential result. Semantics
for deletions were defined in a similar way. They also proposed a method for
translating view updates into updates of the underlying base facts. This method
is based on SLD-resolution and its soundness and completeness are proved.
In a later version (Torlone and Atzeni, 1991), this method was extended by
considering some integrity constraints (specifically functional dependencies)
in the management of view updates, thus being able to resolve potential
ambiguities in several cases. We see two noteworthy differences between the
method of Atzeni and Torlone and the Events Method. First, they considered
a particular case of deductive databases where view predicates are defined by
means of function free Horn rules, and integrity constraints are restricted to
functional dependencies, while the Events Method deals with knowledge bases
in general, and the only condition that clauses must satisfy is allowedness. In
this context, the view update problem becomes more complex because the
operations are not monotone in general. Second, they applied the integrity
checking approach when dealing with functional dependencies, while the
Events Method follows the integrity constraints maintenance approach. The
next example (Torlone and Atzeni, 1991) illustrates the main advantages of
the latter. Consider the following database, where the functional dependency
p ~ c (every professor teaches at most one course) is defined:

Teaches (Smith, CS101)
CPS (c,p,s) ~ Teaches(p,c) A Attends(s,c)

Let the view update request be the insertion of the fact CPS(CS202,Smith,Tom).
In this case, Atzeni and Torlone's method would not obtain any solu-
tion since they take the constraints checking approach, and Smith cannot
teach both CS101 and CS202. However, in our method the translation T
= {6Teaches(Smith,CS101), t~Teaches(Smith, CS202), t~Attends(Tom,CS202)}
would be obtained.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 233

10. Comparison With Previous Work in Integrity Maintenance

In this section, we compare in detail our approach to integrity constraints maintenance
with related methods in this field. None of the other methods dealt with insertions
and deletions of deductive rules, nor with insertions of integrity constraints.

Reactive Consistency Control (Moerkotte and Lockemann). Moerkotte and
Lockemann (1991) explored the problem of reactive consistency control in
the context of definite deductive databases. When a transaction executed by
the user violates one or more integrity constraints, this method automatically
generates repairs (i.e., transactions that must be appended to the original
transaction to regain consistency). This method clearly distinguishes three
steps to obtain the repairs. In the first step, a set of symptoms is obtained from
the violated integrity constraints. These symptoms correspond to (possibly
derived) facts that violate the existing constraints. In the second step, a
set of causes is generated from the symptoms. Causes correspond to base
(stored) facts that give rise to a symptom. In step three, the causes are
transformed into repairs by syntactic modification. The method of Moerkotte
and Lockemann inspired our approach to integrity constraints maintenance,
although it is restricted to definite deductive databases, and considers only
fiat transactions (i.e., transactions that consist of updates of base facts). On
the contrary, the Events Method allows negation to appear in the body of
clauses, and deals with updates of base facts, view updates, and insertions
and deletions of deductive and integrity rules.

Integrity Maintenance Systems (Ceri et al.) The approach taken by Ceri et
al. (1992) is to provide automatic repair of inconsistent databases by using
production rules. For each constraint, production rules are used to detect
constraint violation, and to initiate database operations that restore consis-
tency. This work extends, in some sense, the method presented by Ceri and
Widom (1990), in which constraints (expressed in an SQL-like language)
were used to generate production rules. The problem was that the trans-
lation from integrity constraints to constraint-maintaining production rules
was not completely automatic, and it required designer intervention. Ceri
et al. (1992) avoided this problem because, in their proposal, production
rules can be automatically generated. This method is mainly concerned with
obtaining a set of efficient, optimized production rules. This step can be fully
performed at compile time, thus providing an efficient way for generating
repairs of integrity constraints violations. In our Events Method, the analy-
sis is completely performed at execution time, although we could do some
preparatory work at compile time by means of partial evaluation (Section
8.6). A second important difference is that the method of Ceri et al. is
restricted to definite databases and view predicates cannot appear in the
body of integrity constraints, and that it considers only transactions which

234

consist of updates of base facts. The Events lVlethod deals with more general
knowledge bases and kinds of updates.

11. Conclusions

In this article, we present a new method that can be used for integrity constraints
maintenance, view updating, and their combination. Moreover, the method can also
be combined with any integrity checking method :for view updating and integrity
checking.

Our method is based on events and transition rules, which explicitly define
the insertions and deletions induced by a knowledge base update. Using these
rules, an extension of the SLDNF proof procedure allows us to obtain all possible
ways of updating a knowledge base without violating any integrity constraint. The
kind of updates handled by our method are: updates of base facts, updates of
deductive rules, updates of integrity constraints, and view updates. In the latter
case, our method also translates a view update request into appropriate updates
of the underlying base facts. We have proven soundness and completeness in this
case.

Our method uniformly handles both insert and delete requests. Complex updates,
such as mixed multiple updates and modifications, also can be requested. We have
presented several important additional features of our method, such as preventing
side effects on other views, repairing inconsistent knowledge bases, and maintaining
transition integrity constraints.

We have also compared our method with previous ones and shown that we
extend their functionalities, either by dealing with more general knowledge bases
or by considering more general kinds of updates. Our method is able to solve the
problems of view updating, integrity constraints maintenance, and their combination
in this more general setting.

Our purpose in this article has been to develop a sound and complete method for
dealing with view updating and integrity maintenance in knowledge bases. Efficiency
issues have not been considered. We made a preliminary implementation of the
method in Teniente (1992), but we plan to continue working to develop an efficient
implementation.

On the other hand, we have not considered the computational cost required,
in the general case, to obtain all minimal translations. Again, the aim has been
to provide a method that guarantees completeness, and extends the functionalities
of previous methods. However, it is obvious that the obtention of all minimal
translations may not be practical in some applications. In such cases, the users
might be interested in finding only one solution (or a few), at the expense of losing
the guarantee of minimality. We also plan to continue working in this direction.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 235

Acknowledgements

We would like to thank Dolors Costal, Hendrik Decker, Robert Demolombe,
Carme Martin, Enric Mayol, Joan Antoni Pastor, Carme Quer, Maria Ribera Sancho,
Jaume Sistac, and Toni Urpi for many useful comments and discussions. We are
also indebted to the anonymous reviewers who provided us with excellent comments
during the course of reviewing this work. This work has been partially supported
by the CICYT PRONTIC program project TIC 680.

References

Abiteboul, S. Updates, a new frontier. Proceedings of the International Conference
on Database Theor~ Bruges, Belgium, 1988.

mtzeni, P. and Torlone, R. Updating intensional predicates in datalog. Data and
Knowledge Engineering; 8:1-17, 1992.

Bancilhon, E and Ramakrishnan, R. An amateur's introduction to recursive query
processing. Proceedings of the InternationaI A CM SIGMOD Conference on the Man-
agement of Data, Washington D.C., 1986.

Bancilhon, F and Spyratos, N. Update semantics of relational views. ACM Trans-
actions on Database Systems, 6(4):557-575, 1981.

Bol, R.N. Loop checking and negation. Journal of Logic Programming; 15:147-175,
1993.

Bol, R.N., Apt, K.R., and Klop, J.W. An analysis of loop checking mechanisms for
logic programs. Theoretical Computer Science, 86:35-79, 1991.

Bry, E Intensional updates: Abduction via deduction. Proceedings of the Seventh
ICLP, Jerusalem, 1990.

Bry, E, Manthey, R., and Martens, B. Integrity verification in knowledge bases.
ECRC Report D.2.1.a, Munich, 1990.

Cavedon, L. and Lloyd, J. A completeness theorem for SLDNF resolution. Journal
of Logic Programming 7:177-191, 1989.

Ceri, S., Fraternali, P., Paraboschi, S., and Tanca, L. Integrity maintenance sys-
tems: An architecture. Third International Workshop on the Deductive Approach
to Information Systems and Databases, Roses, Catalonia, 1992.

Ceri, S. and Widom, J. Deriving production rules for constraint maintenance. Pro-
ceedings of the Sixteenth VLDB Conference, Brisbane, Australia, 1990.

Clark, K.L. Negation as failure. In: Gallaire, H. and Minker, J., eds., Logic and
Databases. New York: Plenum Press, 1978, pp. 293-322.

Cosmadakis; S. and Papadimitriou, C. Updates of relational views. Journal of the
Association for Computing Machinety, 31(4):742-760, 1984.

Date, C.J. Updating views. In: Relational Databases: Selected Writings, Reading,
MA: Addison-Wesley, 1986, pp.367-395.

Dayal, U. and Bernstein, P.A. On the correct translation of update operations on
relational views. A CM Transactions on Database Systems, 8(3):381-416, 1982.

236

Decker, H. The range form of databases or: How to avoid floundering. Proceedings
oftheFifth OGAI, Innsbruck, Austria, 1989.

Decker, H. Drawing updates from derivations. Proceedings of the Thirdlnternational
Conference on Database Theory, Paris, 1990.

Decker, H. and Cavedon, L. Generalizing allowedness while retaining completeness
of SLDNF resolution. Proceedings of the Third Workshop on Computer Science
Logic, Kaiserslautern, 1990.

Fagin, R., Kuper, G.M., Ullman, J.D., and Vardi, M.Y. Updating logical databases.
Advances in Computing Research, 3:1-18, 1986.

Fagin, R., Ullman, J.D., and Vardi, M.Y. On the semantics of updates in databases.
Proceedings of the ACM PODS, 1983.

Furtado, A.L. and Casanova, M.A. Updating relational views. In: Kim, W.,
Reiner, D.S., and Batory, D.S., eds., Query processing in Database Systems, Berlin:
Springer-Verlag, 1985, pp. 127-142.

Gallaire, H., Minker, J., and Nicolas, J.M. Logic and databases: A deductive
approach. ACM Computing Surveys, 16(2):153-185:, 1984.

Gfirdenfors, P. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Cam-
bridge, MA: MIT Press, 1988.

Guessoum, A. and Lloyd, J.W. Updating knowledge bases. New Generation Com-
puting 8(1):71-89, 1990.

Guessoum, A. and Lloyd, J.W. Updating knowledge bases II. New Generation Com-
puting~ 10:73-100, 1991.

Kakas, A. and Mancarella, P. Database updates through abduction. Proceedings of
the Sixteenth VLDB Conference, Brisbane, Australia, 1990.

Keller, A.M. Algorithms for translating view updates to database updates for views in-
volving selection, projections, and joins. Proceedings of the Fourth ACM SIGACT-
SIGMOD Symposium on the Principles of Database ,Systems, Portland, OR, 1985.

Keller, A.M. Choosing translator at view definition time. Proceedings of the Twelfth
VLDB Conference, Kyoto, Japan, 1986.

Kowalski, R. Database updates in the event calculus. Journal of Logic Programming,
12:121-146, 1992.

Kunen, K. Signed data dependencies in logic programs. Journal of Logic Program-
ming, 7:231-245, 1989.

Langerak, R. View updates in relational databases with an independent schema
interface. ACM Transactions on Database Systems, 15(1):40-66, 1990.

Larson, J. and Sheth, A. Updating relational views using knowledge at view definition
and view update time. Information Systems, 16(2)::145-168, 1991.

Lloyd, J.W. Foundations on Logic Programming 2nd edition, New York: Springer,
1987.

Lloyd, J.W. and Shepherdson, J.C. Partial evaluation in logic programming. Journal
of Logic Programming, 8(11):217-247, 1991.

Lloyd, J.W. and Topor, R.W. Making Prolog more expressive. Journal of Logic
Programming, 1(3):225-240, 1984.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 237

Manchanda, S. and Warren, D.S. A logic-based language for database updates. In:
Minker, J., ed., Foundations of Deductive Databases and Logic Programming. Los
Altos, CA: Morgan-Kaufmann, 1988, pp. 363-394.

Masunaga, Y. A relational database view update translation mechanism. Proceedings
of the Tenth FLDB Conference, Singapore, 1984.

Moerkotte, G. and Lockemann, EC. Reactive consistency control in deductive
databases. ACM Transactions on Database Systems, 16(4):670-702, 1991.

Nicolas, J.M. Logic for improving integrity checking in relational data bases. Tech-
nical report, ONERA-CERT, 1979. Also in: Acta Informatica, 18(3):227-253,
1982.

Oliv6, A. On the design and implementation of information systems from deductive
conceptual models. Proceedings of the Fifteenth VLDB Conference, Amsterdam,
1989.

Oliv6, A. Integrity checking in deductive databases. Proceedings of the Seventeenth
VLDB Conference, Barcelona, 1991.

Reiter, R. Towards a logical reconstruction of relational database theory. In: Brodie,
M.L., Mylopoulos, J., and Schmidt, J.W, eds., On ConceptuaIModeling; New York:
Springer-Verlag, 1984, pp. 191-233.

Sadri, E and Kowalski R. A theorem-prover approach to database integrity. In:
Minker, J., ed., Foundations of Deductive Databases and Logic Programming~ Los
Altos, CA: Morgan-Kaufman, 1988, pp. 313-362.

Teniente, E. E1 M6tode dels Esdeveniments per a l'actualitzaci6 de vistes en bases de
dades deductives. PhD Thesis, Universitat Polit~cnica de Catalunya, Barcelona,
1992 (in Catalan).

Teniente, E. and Oliv6, A. The events method for view updating in deductive
databases. International Conference on Extending Database Technology, Vienna,
1992.

Teniente, E. and Oliv6, A. Updating knowledge bases while maintaining their con-
sistency. Research Report LSI-94-25-R, UPC, Barcelona, 1994.

Tomasic, A. View update annotation in definite deductive databases. Proceedings
of the International Conference on Database Theor~ Bruges, Belgium, 1988.

Torlone, R. and Atzeni, P. Updating deductive databases with functional dependen-
cies. Second International Conference on Deductive and Object Oriented Databases,
Munich, 1991.

Ullman, J.D. Principles of Database and Knowledge-Base Systems. New York: Com-
puter Science Press, 1988.

Urpi, T. E1 M~tode dels Esdeveniments per al c/tlcul de canvis en bases de dades
deductives. PhD Thesis, Universitat Polit6cnica de Catalunya, Barcelona, 1993
(in Catalan).

Urpi, T. and Oliv6, A. A method for change computation in deductive databases.
Proceedings of the Eighteenth VLDB Conference, Vancouver, Canada, 1992.

Winslett, M. Updating logical databases. Cambridge Tracts in Theoretical Computer
Science, 9, 1990.

238

Appendix A: Simplifications of the Event Rules

Proof: New simplification
In: (14) tP(x) ~-- P~,j(x) A~Pi(x) A... A ~Pm(X)

for i = 1... m a n d j = 2... 2 ki

if the transition rule (9) corresponding to P~,j has a literal N(L ~,j,h) = [tQh(Xh) I
6Qh(Xh)] in U(P~j), then (14) can be rewritten as:

(A.1) tP(x) ~ [tQh(Xh) 16Qh(Xh)] mO~ m ~PI(X) A A ~Pi(x) A ... A -sPin(x)

where ~ comprises all other literals in P~,j. On the other hand, we have:

(A.2) ei(x) ~ [ah(Xh) I~ah(Xh)] Aft
where fl comprises all other literals in the body of Pdlx). Replacing (A.2) in (A.1)
we get:

(A.3) tP(x) ~-- [tQh(Xh) It~Qh(Xh)] AO~ A ~Pl(X) A... A ~Pi-l(X) A
~([Qh(Xh) I~Qh(Xh)] Aft) A
~Pi+l(x) n. . . A ~Pm(x)

and given that, by (1), tQh(Xh) ~ ~Qh(Xh) and, by (2), 3Qh(Xh) ---~ Qh(Xh), we
can remove ~([Qh(Xh) I~Qh(Xh)] Aft) from (A.3), obtaining (15).

Proof: OM simplification
In: (14) ,P(x) ~-- P~,j(x) A~Pi(x) A... A ~Pm(x)

for / = 1... m and j = 2... 2 ki

if all literals in the transition rule (9) corresponding to P~,j have the form O(L ~j,h)
in U(P~j), and there are q such literals, then P~,j is:

(A.4) P~j(x) ~ [Ql(Xl) A~SQi(Xl) I~Ql(Xl) A---1/,Qi(Xl)] A.. .A

[al(xq) A~aq(xq) I~aq(xq) A~baq(xq)] A E(P~,j)

On the other hand, we have:

Pi(x) ~ U(Pi) A E(Pi)
P (x) v(PO A E_P (x)
(A.5) Pi(x) ~ [Ql(Xl) I- Ql(xl)] A...A [Qq(xq)I~Qq(xq)] A E_Pi(x)

Replacing in (14) e~j(x) with (A.4), and ~Pi(x) with (A.5) we get:

(A.6) tP(x) ~-- [Ql(Xl) A~6Qi(xl) I~al(xl) A~ta l (x l)] A...A
[aq(xq) A~t~aq(xq) I~aq(xq) A~aq(xq)] A E(P~,j)
~ e l (x) A... A ~Pi-1 (x) A
~([Ql(Xl) I~Ql(Xl)] A...A [Qq(xq) I~aq(xq)] A E_(P~(x)) A
~Pi+l(X) A... A ~Pm(x)

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 239

from where we can remove literals [Ql(Xl) I~Ql(X0] A.. .A [Qq(xq) I~Qq(xq)],
thus obtaining (16).

Proof: Simplification of the deletion event rules
If we denote: o~ = ~P~(x) A... A ~P~_l(X) A~P~+i(x) A... A ~P~m(x), then

rules (18) become:

(A.9) /~P(x) ~--Pi(x) A~P~(x) Ace f o r / = 1 ... m

By (10)P~(x) ~ P~,l(X) V...V P'i,2k,(x) and replacing the above:

(A.10) 6P(x) ~ ei(x) AmP~,l(X) A... A ~P'i,2k(x) A a

which, if we make fl = ~P~2(x) A... A ~PIi,2ki(X), becomes:

(A.11) ~P(x) ~-- Pi(x) A~P~,i(x) Aft A ol for i = 1 ... m

Assume Pi(x) ~ L1 A ...A Ln, with U(Pi) = L1 A ...A Lq, and E(Pi) =
Lq+l A ...A Ln. Then, by (11):
(A.12) P{,l(X) +-+ O(Li) A...A O(LIn)

and

(A.13) P~,l(X) +-+ U(P 0 A [~6Ql(x l) I~t, Ql(xl)] A.. .A [~SQq(xq) I~Qq(xq)] A
E(P~,i)

Replacing (A.13) in (A.11) we get:

(A.14) t~P(x) ~ Pi(x) A~U(Pi) Aft A oz for i = 1...m
(A.15) ¢SP(x) ~-- Pi(x) A [6Qj(xj) It, Qj(xj)] Aft A o~ for i = 1...m a n d j = 1...q
(A.16) tSP(x) ~ Pi(x) A~E(Pi,1) A/3 A ol f o r / = 1...m

where rules (A.14) can be removed, since Pi(x) ~ U(Pi). In (A.15), literals Lj
of Pi(x) and fl can also be removed, since [6Qj(xj) IcQj(xj)] ~ Lj, 6Qj(xj)

~LQj(xj) and ~Qj(xj) ~ ~t~Qj(xj) and we get rules (19).
In rules (A.16), if we replace fl and distribute A over V, we get:

(A.17) tSP(x) ~ Pi(x) A~E(Pi,j) A... A ~E(Pi,2k) Ao~ for i = 1...m

and replacing E(Pi,1) we obtain, after a simple transformation, rules (20).

Appendix B: Syntactic Properties of A(K)

In this appendix, we review the definition of the syntactic properties of logic programs,
related to the SLDNF completeness. We then show that if a knowledge base K
is stratified, then the augmented knowledge base A(K) is call-consistent. This is
an interesting result, since known completeness results for SLDNF require these
properties.

Stratification and call-consistency are defined in terms of the dependency graph.
We follow the terminology and definitions of Decker and Cavedon (1990), where
more details can be found. The nodes of the dependency graph are the facts and

240

rules of the knowledge base, and for each pair F,F ~ of nodes there is an edge from
F ~ to F if there is an atom A in the body of F suclh that the predicates in A and
the head of F ~ are the same. The edge is marked positive (respectively, negative)
if A is positive (respectively, negative) in E

If F and F ~ are two nodes in the dependency graph of K, we say that:
a) Fdepends on F ~ if there is a path from F ~ to F.
b) F depends positively (respectively, negatively) on F ~ if there is a path from F ~

to F containing no negative edge (respectively, at least one negative edge).
c) Fdepends evenly (respectively, oddly) on F ~ if there is a path from F ~ to F

containing an even (respectively, odd) number of negative edges.
d) F depends recursively on itself if there is a path from F to F of length greater

than 0.
e) The set of nodes in K on which F depends is denoted by KF.

These definitions are used to characterize the following properties of a knowledge
base K and a goal G:

a) K is hierarchical if no node in the dependency graph of K depends recursively
on itself.

b) K is stratified if no node in the dependency graph of K depends negatively
on itself.

c) K is call-consistent if no node in the dependency graph of K depends oddly
on itself.

d) K U {G} is strict if there is no pair F, F t of nodes in the dependency graph
of KGU {G} such that F depends evenly and oddly on F ~.

e) K U {G} is even if there is no pair F, F ~ of nodes in the dependency graph
of KGU {G} such that F depends evenly and oddly on FF ~, and F ~ depends
recursively on itself.

It is easy to show the following relationships between the properties of K and those
of A(K):

a) If K is hierarchical then A(K) is also hierarchical.
b) If K is stratified then A(K) is also call-consistent.
c) If K is call-consistent then A(K) is also call-consistent.

We illustrate relationship (b) by means of an example. Assume a stratified
knowledge base K and a recursive rule in K such as P ~-- P (we only show names).
In A(K), we would then have:

(A.1) p i ~__ p A ~ P
(A.2) p i ~._ tiP
(A.3) cP ~-- p i A ~ P
(A.4) ~P ~ P / k ~ P '

All these rules depend recursively on themselves, but it is always an even
dependency. Thus A(K) becomes call-consistent.

VLDB Journal 4 (2) Teniente: Updating Knowledge Bases 241

SLDNF resolution is incomplete, in general, but there are large classes of
knowledge bases and goals for which it is complete. Clark (1978) proved completeness
for hierarchical and allowed knowledge bases. Cavedon and Lloyd (1989) showed
completeness for knowledge bases and goals which are allowed, strict, and stratified.
Kunen (1989) showed completeness for knowledge bases and goals which are allowed,
strict, and call-consistent. More recently, Decker and Cavedon (1990) generalized
the above results by proving completeness for recursively covered (a generalization
of allowed) knowledge bases K and goals G such that K is call-consistent and K U
{G} is even.

