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Abstract. We describe the conceptual model of SORAC, a data modeling system 
developed at the University of Rhode Island. SORAC supports both semantic 
objects and relationships, and provides a tool for modeling databases needed for 
complex design domains. SORAC's set of built-in semantic relationships permits 
the schema designer to specify enforcement rules that maintain constraints on the 
object and relationship types. SORAC then automatically generates C+ + code to 
maintain the specified enforcement rules, producing a schema that is compatible 
with Ontos. This facilitates the task of the schema designer, who no longer has to 
ensure that all methods on object classes correctly maintain necessary constraints. 
In addition, explicit specification of enforcement rules permits automated analy- 
sis of enforcement propagations. We compare the interpretations of relationships 
within the semantic and object-oriented models as an introduction to the mixed 
model that SORAC supports. Next, the set of built-in SORAC relationship types 
is presented in terms of the enforcement rules permitted on each relationship type. 
We then use the modeling requirements of an architectural design support system, 
called ArchObjects, to demonstrate the capabilities of SORAC. The implementa- 
tion of the current SORAC prototype is also briefly discussed. 

Key Words. Database constraints, semantic and object-oriented data modeling, 
relationship semantics, computer-aided architectural design. 

1. Introduction 

The management of design activities in large projects is a multi-level, multi-faceted 
task (Sathi et al., 1985). Computer tools are needed for the planning, scheduling, 
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monitoring, and analysis of these projects. Methodologies developed for other 
domains often do not scale well to the complexities inherent in large design envi- 
ronments. Here we describe the use of semantic modeling to design object-oriented 
databases needed to support design systems. To illustrate the techniques, we show 
how the prototype Semantic Objects, Relationships,, and Constraints (SORAC) sys- 
tem at the University of Rhode Island can be used to specify and automatically 
generate an object-oriented database for the support of the ArchObjects architectural 
design system (MacKellar and Ozel, 1991). 

A data model with a rich set of built-in relationship types is needed to model 
the complex and non-standard relationships of the ArchObjects system, because 
the standard semantic models are inadequate for such applications. For example, 
relationships that are usually supported by semantic data models include IS-A, aggre- 
gation, association, and classification (Peckham and Maryanski, 1988). Relationship 
types needed in design systems include is-part-of, role, and alternate (MacKellar 
and Peckham, 1992). Also, much of the information that needs to be represented 
in a design database is procedural in nature. However, many semantic data models 
do not provide support for data encapsulation. Their emphasis is on the description 
of the static structure of the database, and the associated dynamic structure is often 
not addressed. 

Another alternative is to construct an object-oriented database. Object-oriented 
data models (OODMs; Kim, 1990; Zdonik and Maier, 1990) have become very 
popular for modeling design applications due to their ability to represent procedural 
knowledge as a part of an object class definition. Through the use of a sound 
programming language paradigm, object-oriented models can support the design 
of objects and methods necessary for the support of complex relationships. This is 
adequate for the development of unique relationships. However, with the exception 
of IS-A, the canonical object-oriented data models currently do not offer relationships 
with built-in semantics. Thus, the developer of a design database would be required 
to construct ad hoc relationships in support of the application, even when the 
relationships are of established types. As Rumbaugh (1987) pointed out, this buries 
the relationship in the code and makes it much more difficult to describe and to 
understand the structure of the system. 

Both semantic and object-oriented data models are lacking in their support for 
the analysis of the semantics of complex relationships. Built-in relationships are 
useful in that they provide a vehicle for the careful analysis of database semantics. 
Since semantics can take the form of intra-object and inter-object constraints, they 
can have wide-ranging effects on the database. Design tools that support analysis 
and modification of these semantics can prevent errors in the logical design of 
complex schema. 

Another problem arises when attempting to construct a data model for the 
support of design databases. While the relationships necessary for these systems 
possess an agreed upon structure and set of core semantics, they are not completely 
standard. Even the semantics of frequently used design relationships can easily 
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vary from application to application. Thus, the relationships presented to the data 
modeler should be generic in nature, but extensible through a menu of semantics 
to provide the exact relationship desired. We illustrate such relationship types in 
later sections. 

Sathi et al. (1985) chronicled the difficulties involved in the development of 
constructs for the design of complex applications and provided a framework for 
several representation layers. These layers represent a mapping from the specific 
domain design interface providing constructs for the design of a particular application 
to the more general implementation layer, which contains the low level data structures 
used for semantic knowledge representation. 

For example, in the architectural domain, a part relationship may be used to 
model the association between objects and their components. This relationship is 
presented to the database designer on the domain layer, and then mapped to the 
semantic layer, which contains a more generic model of objects and relationships 
that is not application dependent. HAS-PART may be represented internally as an 
association of part components, where association has a specific, but more generic, 
meaning and structure. Additional generic semantics expressing the structure and 
behavior of the relationship can also be expressed here. An example is a cardinality 
constraint of 1-N on the links of the HAS-PART relationship, specifying the maximum 
number of objects of one type that may be related to an object of another type. 

This information is then mapped to the epistemological layer, where a description 
of the generic semantics of the modeling constructs is provided. The exact definitions 
of cardinality and inheritance semantics, for example, are given here. The update 
behavior of the relationships, indicating how the system will maintain constraints 
under changes, can also be given on this level. On the logical level, this information 
is then translated into a set of assertions about the general structure and behavior of 
the relationships, which is then mapped to the implementation of the system. These 
layers parallel the levels of the SORAC system, from the upper level application- 
dependent design layer to the low level object-oriented implementation of the 
database (Section 6). 

Sathi et al. (1985) also addressed the insufficiency of standard relationships for 
particular application domains and the need for conflict resolution in a complex design 
to assure system consistency and correctness (Peckham et al., 1995). They provided 
early documentation of the need for active semantics describing the propagation 
of activity in a complex set of interconnected relationships, and the ability of 
relationships to provide availability of information at a distance, from one location 
to another in the system, issues that we consider important and have addressed in 
our research. 

Rumbaugh (1987) argued strongly for the explicit incorporation of relationships 
within the object-oriented data modeling paradigm and provided a paradigm for 
the support of relationships using a C+ + type of language. Batory and Kim (1985) 
identified several relationships, and the associated semantics that are necessary for 
the design of VLSI CAD (computer aided design) objects. This was one of many 
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articles documenting the necessity for the extension of semantic modeling constructs 
to manage design databases. Using a particular design database application, Foo 
and Takefuji (1990) described the relationships and update semantics needed for 
the maintenance of their VLSI design database. 

Eastman et al. (1991) developed EDM, a data model for engineering product 
databases. This employs several design oriented, built-in relationships with semantics 
expressed as constraints in the form of logical expressions. Using these constructs, 
high-level semantics can be expressed over several relationships to address both 
local and global schema design, and design integration. 

Nguyen and Rieu (1991) addressed the issue of semantic complexity in design 
objects in their data model SHOOD. Their data model includes only IS-A and part 
relationships, and they separate semantics from structure to implicitly model other 
kinds of relationships. Our approach is to permit a greater variety of structural 
relationships which the schema modeler can define and tailor to a specific domain. 
Although their work has many of the same goals as ours, they do not present a 
detailed view of update actions implied by the object semantics. 

In another OODB, called ADAM (Diaz and Gray, 1991), relationships are 
defined as objects, permitting encapsulation of relationship semantics that are 
viewed in terms of structural dynamic aspects. This refers to the ways in which state 
changes may occur, including method definitions and derived data. Once defined as 
objects, relationships may be incorporated into an IS-A hierarchy, permitting users 
to create specialized relationships. Since user-defined semantics are supported in 
this approach, it is very compatible with the ideas presented in this article. 

Kim (1989) investigated the semantics of composite objects extensively. In his 
system, ORION, bi-directional relationships are only provided at the implementation 
level, in terms of backwards pointers. References are distinguished initially on the 
basis of non-composite vs. composite references. A composite reference is similar 
to a part relationship. Non-composite references can have no additional semantics 
associated with them, whereas composite references may be exclusive or shared, 
and dependent or independent. Kim's view of composite object semantics has 
much in common with our view of part relationship semantics. ORION does 
not, however, provide built-in semantics for other types of relationships, such as 
collections, derivation relationships, or specialized relationships such as adjacency. 
In our model, relationships play a central role and are as important as objects. 

Our work is related to that in the active database community. Morgenstern 
(1984) provided equations for the expression of database constraints, and algorithms 
for the mapping of the constraints to database actions maintaining the constraints. 
Gehani and Jagadish (1991) provided facilities for the specification of constraints 
and triggers upon objects in their object-oriented ciatabase, Ode. The constraint 
construct includes actions to be performed upon violation of the constraint, thus 
including the update semantics we advocate. Relationships are not used as a 
construct for expression of update semantics; the semantics are encoded within the 
involved objects. 
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Albano et al. (1991) addressed the modeling of objects, relationships, and 
constraints through the use of of an object-oriented language employing an object 
and relationship data model. They have identified the update actions to be monitored 
due to the possibility that those actions may violate particular constraints. Support 
for the maintenance of constraints is provided through an exception mechanism. 

A major problem in object-oriented databases is to correctly specify operations 
on the objects that will not violate integrity constraints. This is the motivation 
behind our view that a schema designer should explicitly specify actions to support 
relationship semantics. Constraint analysis is an approach in which constraints are 
explicitly specified using a formal language (Urban, 1989; Urban and Delcambre, 
1990). CONTEXT (Urban et al., 1992) is a tool for the explanation of constraints to 
assist the schema designer in specifying propagation actions. The schema designer 
must specify the operation; CONTEXT then identifies constraints that would be 
affected by the operation, along with possible propagation actions. In SORAC, 
the schema designer directly specifies the database actions through the selection of 
built-in enforcement rules, and then interacts with a schema checker to determine 
schema correctness and consistency. An advantage to Urban's constraint analysis 
method is that the database semantics are expressed in a declarative manner and 
can be stored as part of the database for future reference. In SORAC, database 
semantics are expressed through update rules that can be maintained in a similar 
way, although we do not currently do this. 

Other approaches to the problem include the following: Ceri and Widom 
(1990) and Widom and Finkelstein (1990) provided specification and analysis of 
update semantics over relational constructs using extensions to SQL. Although 
explicit relationships are not used, this can be viewed as the implicit definition 
of relationships between relational tables through the expression of constraint and 
update expressions. In the similar approach of Bouzeghoub and Metals (1991), 
a semantic model was used to capture the database constraints, and map them 
automatically to implemented update rules in an object-oriented database. However, 
in their system, update rules are not directly specified, but are inferred from the 
constraints. 

This article presents the SORAC data modeling tool for the definition of complex 
objects and relationships. In Section 2, we compare the capabilities of semantic and 
object-oriented data models in the context of databases for support of design systems. 
In Section 3, we employ the ArchObjects architectural design system (MacKeUar 
and Ozel, 1991; MacKellar, 1992) for examples of the types of relationships that are 
frequently needed for design databases. In Section 4, we describe several SORAC 
relationship types, which we believe are necessary for architectural design systems, 
ArchObjects in particular and design databases in general. In Section 5, we show 
how an illustrative subset of the ArchObjects relationships can be constructed using 
the relationships developed in Section 4. In Section 6, the implementation of 
SORAC is briefly described. The result illustrates the advantages of the integration 
and augmentation of object-oriented and semantic modeling techniques to meet the 



162 

data modeling challenges provided by current advanced applications. 

2. Relationships 

2.1 Interpretations of a Relationship 

There are several ways that a relationship between the Objects of a database schema 
can be viewed. For example, we can think of a relationship as a pathway for the flow 
of information or data. This is clearly illustrated by the Cactus system (Hudson and 
King, 1988). In this system, object and relationship specifications include names, 
types, and a direction for the values that flow between related objects. 

In our view, a relationship is also a construct over which constraints specifying 
the relative states of objects can be expressed. For example, existence constraints 
and cardinality constraints express the relative existence and the relative number 
of objects, respectively, that may be related to an object of another type. SORAC 
enforcement rules enforce constraints and are thus associated with relationships: 

Definition 1. An enforcement rule specifies the exact operational means for the 
maintenance of a database constraint. 

A relationship can also reflect the sharing and organization of the data, thus 
facilitating the proper association and sharing of operations among the objects of 
the database schema. This is clearly illustrated by the usual expression of IS-A 
within most object-oriented data models. In the Pu:chObjects system, the database 
schema organizes design objects using several types of hierarchies (Figure 1). As 
described in Section 3, ArchObjects also organizes design objects according to 
another relationship, called <has_role>, that represents functional role(s). 

2.2 Semantic Versus Object-Oriented Relationships 

Several authors have compared and contrasted semantic and object-oriented data 
models (Hull and King, 1987; Kim, 1990). The focus is usually on the structural 
modeling capabilities of the semantic models, as opposed to the integral structural and 
operational modeling capacity of the object-oriented models. Each is characterized 
by a different relationship style that affects the modeler's ease of relationship 
specification. 

Semantic data modeling systems have tended to present relationships between 
database objects using a more explicit construct than object-oriented systems. Figure 
2 is an example of a semantic presentation of a relationship, in which OT1 and OT2 
represent object types, and the line connecting these two types expresses a relationship 
between them. Thus, in this graphical mode of expression, relationships are modeled 
as edges and object types are modeled as nodes. In the Entity-Relationship model 
(Chen, 1976), relationships are also differentiated from objects, but they are similar 
since relationships can hold data. 
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Figure 1. Building component hierarchy 

S 
These semantic presentations are convenient since the relationship provides a 

good receptacle for inter-object constraints and inter-object activity. In addition, 
bi-directional relationships are easily represented. This paradigm is also convenient 
since it provides a basis for the clear presentation of hierarchical and deeply nested 
structures. For example, consider the architectural design hierarchy presented in 
Figure 1. There are several object types and relationship types present. Since the 
semantics of each relationship is very different, this can be a confusing structure to 
analyze. Viewing the relationship as a separate, typed construct provides a powerful 
mechanism for the specification, analysis, and understanding of the update behavior 
of the database. 

Semantic data models also present collections of built-in relationships having 
clearly specified semantics. These semantics can include relationship structure, 
constraints, and enforcement rules. When the modeler defines a relationship to be 
of a given (built-in) relationship type, (s)he is automatically specifying the semantics 
as well. Some recent extensions (Dogac et al., 1986; Barsalou et al., 1991; Doherty 
et al., 1993) include the automatic generation of code that will maintain enforcement 
rules associated with relationship constraints. 

In the object-oriented modeling paradigm (Kim, 1990; Zdonik and Maier, 1990), 
object types and their associated methods are the basic constructs for defining the 
structure and behavior of database objects. The use of IS-A to support inclusion 
polymorphism, in which a type's methods can be applied to all of its subtype's 
instances, provides a powerful structural and procedural paradigm for modeling 
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Figure 2. Semantic relationship 

complex applications. However, with the exception of IS-A, the object-oriented 
models do not have built-in relationship types. As a result, many authors (Kim et 
al., 1989; Zdonik, 1990) have argued for the augmentation of the object-oriented 
models with other built-in types. 

The canonical object-oriented data models do permit definition of complex nested 
objects; related object types can be defined as attributes within a new object type 
representing the relationship. For example, in Figure 21, we have given a C+ + type of 
definition of a Door class containing attributes l a t ch  and opener. Latch and opener 
are two attributes which are of types Latch* and 0pening_Mechanism*, respectively. 
The * defines a pointer to objects of type Latch and 0pening_Mechanism. 

The Door type, through its implementation, serves as the container of the seman- 
tics of the relationship between the three types, Door, Latch, and 0pening_Mechanism. 
This technique can be used to model hierarchical situations. For example, a part 
relationship hierarchy can be defined on each level in the same way that Door 
was defined above. C+ + code implementing each type in the hierarchy would be 
written, including the semantics managing the part links just below it. 

There are, however, three disadvantages associated with this relationship rep- 
resentation. First, it is difficult to clearly represent propagated inter-object activity 
within the database. In this representation, we have code representing separate 
levels of the hierarchy, but no clear representation of the hierarchy as a whole. 
Second, many times it is more natural and consistent with the real world to think 
of relationships as different from objects. Objects usually correspond to real world 
objects; relationships usually represent abstract connections between objects. Third, 
the code for inter-object behavior is written for each individual type that is created. 
There is no reuse of the semantics relating types to each other. 

This analysis of the semantic and object-oriented presentations of relationships 
indicates that each modeling technique has strengths and weaknesses. The differ- 
entiated object and relationship presentation of the semantic model is convenient 
for representing and analyzing deeply nested structures and the inter-object activity 
upon these global structures. The object-oriented presentation of relationships is 
convenient for the specification of complex object types as well as the definition of 
methods. However, the object-oriented model is lacking in that it does not provide 
strong support for global analysis of the inter-object activity within the database. 
Each is capable of expressing relationship structures, but for some purposes the 
expression is awkward. 
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Figure 3. Door class definition 

Class Door: public opening 

{ 
public: 

/*Constructors*/ 

Door() ; 

Door(Latch *initial_latch, Opening_Mechanism *initial_opener) ; 

/*Destructor*/ 

-Door() ; 

/*Attributes*/ 

private: /*The private attributes latch and opener*/ 

Latch *latch; 

OpeningMechanism *opener; 

Public:/*The public access methods for Latch and Opening_Mechanism*/ 

Latch *Get_latch() ; 

Opening_Mechanism *Get Opening_Mechanism() ; 

void Has_Latch (Latch *new latch) ; 

void Has_Opening_Mechanism(OpeningMechanism *new opener) ; 

In the next sections, we discuss the modeling of the ArchObjects architectural 
design system and illustrate the role that semantic modeling techniques can play in 
object-oriented data modeling systems. In the current implementation, ArchObjects 
is based on a set of standard relationships, but in reality the semantics of these 
relationships are embedded into individual methods defined upon the various types. 
It is very difficult to ensure correctness and consistency of updates with this type of 
ad-hoc implementation. Therefore, the idea of built-in semantic relationships, as 
defined in earlier semantic models, is quite desirable. This would free the schema 
designer and method writers from worrying about maintaining the semantics of such 
relationships. 

The reasons for adding built-in relationship semantics are as follows: 

1. To support reuse of relationship semantics. The same relationships are used 
over and over. We don't want to have to keep building the same semantics 
into individual methods, but would rather have them enforced automatically. 

2. To facilitate evaluation and enforcement of complex constraints, both at the 
trigger level and at the rule evaluation level. 
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3. To allow analysis of relationship interactions during schema design. Explicit 
representation of relationships facilitates automated schema design tools that 
check for correctness of a schema design and tools that enforce consistency 
of the complex constraint set. 

SORAC is a modeling tool that imposes a semantic object/relationship view on 
an object-oriented DBMS (database management system). By requiring the schema 
designer to specify the enforcement rules for each relationship type, the designer is 
forced to clearly specify relationship behaviors. SORAC supports the designer in this 
task by automatically generating the underlying class definitions and enforcement rule 
methods. To demonstrate the capabilities of semantic object/relationship modeling, 
a data model for ArchObjects was developed. 

3. ArchObjects 

This section presents an overview of the ArchObjects system and explains the 
data modeling capabilities necessary for the definition of an integrated object- 
oriented database to support the system. ArchObjects is an intelligent design 
assistant that functions in the domain of architecture. Design verification services 
are provided by evaluating the design against a set of design codes, particularly 
legally required rules such as fire code. Relationships between objects function as a 
central organizing concept within the knowledge representation which is essentially 
object-oriented, both structurally and in terms of behavior. The original Prolog 
implementation did not have explicit support for relationships or behavior across 
relationships; this discrepancy between our conceptual model of ArchObjects and 
its actual implementation caused numerous problems and inefficiencies. It was 
decided that further development of this system would be facilitated if it took place 
within an object-oriented data model that provides built-in support for relationship 
semantics. Correctly maintaining semantic choices would then be the responsibility 
of the data model rather than individual method programmers. SORAC presents 
an ideal environment for accomplishing this goal, by supporting built-in, customized 
relationships. 

The current version, ArchObjects2 (Roberts, 1993), is an intermediate step. It 
implements part of the SORAC model in C+ +. In particular, it includes relationships 
as first class objects, support for queries on relationships, and enforcement rules. 
Although this version was not generated by SORAC, it is very similar to the type 
of schema that would be produced. The motivation for this version, in fact, was to 
verify that the type of schema produced by SORAC would be suitable for a design 
system such as ArchObjects. We have, in addition, generated a preliminary schema 
for ArchObjects using SORAC (Vora, 1992). This schema is not as complete as 
ArchObjects2 and does not include query support, but it verifies that SORAC is 
capable of generating this type of schema. 
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3.1 ArchObjects Conceptual Model 

ArchObjects stores a semantic representation of each architectural object. One 
problem inherent to the design domain is that representations of objects that are 
otherwise perceived as similar may vary quite a bit. This means that representation 
schemes that depend heavily on standardized sets of attributes for objects of the 
same type will not be suitable for representing this type of data. Object instances are 
much more complex and detailed than the object types of which they are members. 
Thus, there is a need to define the semantics of relationships between instances of 
design objects and to support these semantics within the data model. 

The set of relationships in ArchObjects consists of: 
• <has_ins tance> : An object instance is connected to its type through this 

link. The instance inherits attributes and methods from the type. 
• <has spec> : This is a relationship between two object types, and means 

the same thing as IS-A. 
• <has_a t t r>  : This relationship asserts that a particular value is associated 

with a particular object. In ArchObjects, attributes are atomic. 
• <has_geometry> : This is a binary relationship between a design object and 

its geometry. It is discussed in more detail below. 
• <has_member> : This is a relationship between a set or collection object, 

and the individual objects that comprise the set. 
• <has_part> : This models the fundamental hierarchical relationship of design 

objects. For example, a single floor may be composed of a set of rooms. 
Each room has a set of walls as components, and at least one entrance. An 
entrance may include a door assembly, which is composed of a frame and a 
door. 

• <has_role> : This is a hierarchical relationship between a design object and 
a description of its role in the design. The object, in addition to having a 
primary type, also has a particular role inherited from the role type. Such 
functional components cannot be easily incorporated into the primary object 
type hierarchy since the functionality may cut across several object types. 
For example, not all doorways function as protected exits (i.e., fire exits) 
and, in addition, other objects such as windows may in certain circumstances 
function as exits. Therefore, a separate type hierarchy based on functionality 
is part of the knowledge representation. As with <has_instance>,  methods 
and attributes are inherited via this relationship. 

• <adj acent_to> : This is a relationship between an object and the parts that 
are adjacent to it in the design. Two objects are said to be adjacent if they 
do not participate in a <has_part> relation, and the distance between them 
is less than a specified threshold. 

rel (R, adjacent, Obj i :Thing, Obj2 :Thing) IF 

(distance(Objl, Obj2) <dMAX AND 
NOT (has_part (Obj i, Obj 2) OK has_part (Obj 2, Obj i) ) 
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• <connected_to> : This relationship is similar but requires that two objects 
have overlapping volumes 

rel (R, connected, Obj i :Thing, Obj 2 :Thing) IF 

(Volume(Objl fq Obj2) > VMI N) 

The semantics of these relationships are considered to be standard across the system 
although, in the first version, these semantics were implemented in an ad hoc fashion 
within object type methods. 

Geometric classes and symbolic classes exist in separate class hierarchies. Each 
object instance has a symbolic aspect and a geometric aspect. The part hierarchy 
in the geometric model is strongly isomorphic to the part hierarchy of the semantic 
model in the sense that 

1. each object 0bj I participates in at most one: <has_geometry> relationship 
with a geometry object, and 

2. has_part(Objl, Obj2) if and only if has_part(ObjlGeom, Obj2Geom). 

From a logical design perspective, the geometric model forms a complete subsystem 
which is capable of functioning in isolation from the semantic model. Separating 
the two models at this point simplifies the design and results in a consistent system 
organization (Dube and MacKellar, 1992). Since relationships are central concepts, 
database update actions are expressed at the lowest level as insertions or deletions 
of relationships between objects. For example, a method call to create a new 
instance of a type would generate a series of low level database update actions to 
insert a room instance, connect a wallset instance to the room instance, and set the 
maximum height attribute to a default value of 12 feet. 

We have found that it is quite difficult for the :schema designer to keep track 
of all possible relationship interactions without an automated modeling tool such 
as SORAC. Instead of hand-coding the relationship semantics and hoping for 
correctness, the data model should present a menu of supported semantics to the 
schema designer. Schema design tools can then analyze the designer's choices for 
consistency and the system can then generate code to maintain the enforcement 
rules. 

3.2 ArchObjects2 Implementation 

To address the concerns presented in the previous section, we undertook a project to 
update ArchObjects and port the symbolic model to C+ + and the SORAC paradigm 
(Roberts, 1993). Since this project was begun before the SORAC implementation 
was completed, we do not automatically generate the schema. Instead, we produced 
by hand the type of implementation that SORAC would have generated so that we 
could test the behavior of the enforcement rules. In fact, one of the goals of this 
implementation was to investigate update rules with an eye towards including them 
as an integral part of the planned solid model (Dube and MacKellar, 1992). 
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Figure 4. ArchObjects2 relationship classes 
class HasPart : public Root { 

System * const SystemPtr; 

const int HasPartId; 

Object * const CompositePtr; 

Object * const ComponentPtr; 

...details omitted... 

protected: 

HasPart ( Object ~, Object ~ ); 

~HasPart (); 

public: 

static HasPart * create ( Object ~, 

Object ~ ); 

int destroy (); // Destruction control 

...details omitted... }; 

class HasPart13 : public HasPartO { 

int Side; 

int FromLeft; 

HasPart13 ( Object ~ a, Object ~ b, int i ) 

: HasPartO ( a,b ), Side ( i ) {} 

int validSection (const Wall ~, const Wall Section ~ ); 

public: 

static HasPart13 * create ( Object ~ a, Object ~ b ); 

...details omitted...}; 

class ProtectedExit : public RoleO{ // ProtectedExit class 

public: 

ProtectedExit ( const System ~ s, const int i ) : 

RoleO( s, "ProtectedExit", i, 0 ) {} 

...details omitted...}; 

// Basic HasPart abstract class 

// Address of System object 

// HasPart's unique id 

// composite object 

// component object 

// Initialize parameters 

// Disconnect from PartTable 

// Conditional creation 

// Wall/WallSection class 

The objective was to translate the relationships described in the definition of 
ArchObjects to a SORAC database that includes: 

• Architectural object classes, 

• Application-specific has-part and has-role relationship classes, 

• Enforcement rules to maintain existing constraints, and 

• Basic facilities for processing queries over current design contents that include 
provision for querying over specific architectural objects. 
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3.2.1 Relationships. Since a major feature of SORAC is its emphasis on built-in 
relationships, the manner in which relationships were implemented was a critical 
aspect of the implementation. C++  provides direct support for the <has a t t r> ,  
<has_ins'e>, and <has spec> relationships that are required by ArchObjects. There 
are no native C+ + constructs for representing either the < h a s p a r t >  or <has roZe> 
relationships. Thus, the corresponding base relationship classes from SORAC were 
duplicated; relationship classes derived from these provide constraints and behavior 
details that are appropriate for particular relationship instances. Figure 4 shows 
part of the base HasPart class, and two derived relationship classes, one for part 
relationships between a wall and a wall section, and the other for a role relationship 
between objects and the role "Protected Exit." 

3.2.2 ArchObjects2 Application Module. While a separately compiled symbolic 
framework contains the relevant built-in features of SORAC, individual applica- 
tions are constructed by creating an application module through the use of derived 
classes. The architectural classes selected for inclusion in the application module 
are familiar objects that could be used to provide a :simple design for a one story 
building. Classes include DoorAssembly, Building, Floor, Ceiling, Door, Door- 
Frame, WindowFrame, and TrapDoor, as well as the derived relationship classes. 
The principal information embodied within an object class is the definition of data 
members, and the enforcement rules to enforce creation (insertion) and deletion 
constraints that are specific to objects of that type. 

Most constraint enforcement occurs when <has pazg> relationships are created. 
One example is the Wall/WallSection part relationship shown in Figure 4. When 
this relationship is established, the user must supply information indicating the side 
of the wall to which the wall section is attached, and the distance from the left end 
of the wall to the beginning of the wall section. This information will be stored 
in data members associated with the relationship class. As part of the creation 
process, the WallSection's size and location are used to ensure that the proposed 
WallSection does not overlap with those previously reJated to the wall. 

Another example of an enforcement rule is provided by the Roorn/WallSection 
part relationship. When an internal WallSection is created, it must be associated 
with a Room. This is an example of a creation constraint. A related deletion 
rule is required to maintain the constraint, which specifies that, if the <has part> 
relationship is deleted, then the WallSection must also be removed. Another rule 
specifies that if a Room object is deleted, all part relationships in which it participates 
are deleted as well. This results in a cascading set of deletions from the Room 
object, to the part relationship object, and finally to the WallSection object. When 
update rules are buried inside methods, as in the first ArchObjects, this type of 
propagation behavior is very difficult to foresee. Explicit representation of update 
rules makes it much easier for the schema designer to catch this behavior. 
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Figure 5. Definition of DECK object class 

IS-PART~~IS.PART,.OF 

4. SORAC: A Semantic Object/Relationship Model 

SORAC is a prototype data modeling system that accepts semantic object and 
relationship definitions, and maps them automatically to C+ + implementing an 
ONTOS (1991) database that maintains the specified constraints and update seman- 
tics. SORAC's conceptual model is semantic in that it includes built-in relationship 
types to be chosen by the data modeler. For example, since a part relationship 
is frequently employed for design applications, a predetermined relationship type 
having the structure and semantics of this relationship is offered by SORAC. The 
structure of an IS-PART-OF relationship is shown in Figure 5. The relationship 
connects a DECK type with the associated DECKING, BEAMS, JOISTS, and 
PIERS types. IS-PART-OF identifies the built-in relationship used. As outlined in 
this section, a menu of optional enforcement rules is provided to the designer who 
then specifies the exact semantics of the relationship. 

SORAC provides two schema design interfaces: Architectural Relationships and 
Constraints (ARAC; Vora, 1992) and Database Schema Design Tool (DSDT; Dong, 
1992), as well as a database generation component, Object Interface Language (OIL; 
Doherty et al., 1993). ARAC and DSDT permit the designer to model the schema 
using object types, relationships, constraints, and enforcement rules as the primary 
modeling constructs. The output from each interface is OIL code, which is then 
used to map the specification to an ONTOS object-oriented database, including code 
implementing the enforcement rules. More detail of the SORAC implementation 
is given in Section 6. 

4.1 Relationship Semantics 

We define the semantics of a relationship as structure, cardinality, existence, noti- 
fication, and selection rules: 

• S tructure:  Specifies the relationship connections between the types involved 
in the relationship. For example, IS-PART-OF is a relationship between an 
owning type and one or more part types. 
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• Cardinality: Specifies the maximal possible instances (objects) of a given type 
that can be connected to another type over a relationship link. For example, 
IS-A has cardinality 1-1, thus exactly one supertype object is connected to a 
subtype object over an IS-A link. 

• Existence: Specifies the relative presence of objects over relationship links. For 
example, the existence semantics of an IS-PART-OF relationship between 
BEAMS and DECK types might state that every DECK object must be 
connected to a BEAMS object through IS-PART-OE 

• Notification: Specifies that the system must notify the end user of all actions 
taken by the system to maintain an enforcement rule. For example, if the 
end user deletes a DECK object, and the system responds by deleting all of 
its parts, then the end user is notified. 

• Selection: Specifies related objects that are presented to the end user upon 
querying an object. For example, if a DECK object is queried, then the 
related part objects connected via the IS-PART-OF relationship would be 
displayed as well. 

• Inheritance: Specifies how objects may reuse definitions from related types. 
Examples are given in Sections 4.1.2 and 5.3. 

For each relationship type, some of these semantics are built-in and others are 
given as options. These relationship types, along with their various options, are to 
be used as constructors of relationships for individual systems. The schema modeler 
interacts with the system by selecting a relationship type with built-in semantics. 
Then optional semantics are chosen from a menu to model the exact characteristics 
of the domain. Later, we will show how these relationship types can be used to 
define relationships needed for the ArchObjects system. In this article, we will not 
dwell on the expression of cardinality constraints and the supporting enforcement 
rules. (For good coverage of this material in the context of the Entity-Relationship 
model, see Dogac et el., 1986). 

The following sections outline the relationship semantics defined and imple- 
mented by the SORAC group. There are two general relationship enforcement 
rules always supported for all relationships. The general relationship insertion rule 
states that, for a relationship to be correctly inserted, both participating instances 
must have already been inserted. The general relationship deletion rule states that 
if either participating object instance is deleted, the relationship instance must also 
be deleted. 

4.1.1 HAS-ATTRIBUTE Semant ics .  The fundamental HAS-ATTRIBUTE relation- 
ship is supported by the relational and semantic models in the form of aggregation. 
When the attribute is of a subrange or system built-in type, then the semantics 
are straightforward. We need only to specify the behavior of the system upon the 
change of an attribute to an out of range value. 

Also needed are additional semantics to specify correct behavior when an 
attribute is used to refer to other objects in the database. Also, if inverse relationships 
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are maintained, an SDM-like construct (Hammer and MacLeod, 1981) should be 
provided to permit the definition of a bi-directional relationship of the HAS- 
ATFRIBUTE type. That is, the user can specify an inverse relationship through an 
option. For example, suppose we have a DOOR type that has an Opener attribute 
of type OPENING-MECHANISM, where OPENING-MECHANISM is an object 
type. We can define the following to specify the inverse of the relationship Opens 
between a door and its opener. 

DOOR Opens-i:HAS-ATTRIBUTE Opener:OPENING-MECHANISM 

To be consistent with our philosophy of specifying update behavior at modeling 
time, we must offer additional supporting semantics indicating the behavior of the 
objects related through the HAS-AITRIBUTE relationship. The possibilities were 
discussed and outlined by Peckham et al. (1989), and thus are not repeated here. 
Briefly, cardinality, existence, notification, and selection semantics can be offered 
as in Section 4.1.3 for the IS-PART-OF relationship. 

The built-in attribute relationship was not implemented in the SORAC prototype. 
In both ARAC and DSDT, attributes are implemented directly as C+ + class variables. 
However, a built-in HAS-ATTRIBUTE relationship is interpretable by SORAC's 
database generation component, OIL. In ArchObjects2, attributes were mapped 
directly to C+ + attributes. 

4.1.2 IS-A Relationship Semantics. The IS-A relationship is central to both semantic 
and object-oriented data models. However, as is the case with many other "standard" 
relationship types, the semantics of IS-A are not fixed. One of the problems occurs 
with inheritance. For example, in some semantic interpretations of IS-A, if a 
revolving door IS-A door, and door has attribute color, then this attribute is also 
inherited by the revolving door. Thus, if the door object is defined to be blue, 
then we can also view the revolving door object as having the color blue. Multiple 
inheritance results when we permit a type to have more than one supertype. If two 
supertypes of an object both have the same attribute, then techniques for resolution 
of the names of inherited attributes must be developed. 

Due to the various approaches that can be taken with respect to the semantics 
of IS-A, we approach this relationship just as we do the others that follow. We 
define a generic IS-A having the core semantics that are essential in any IS-A 
relationship, and include a menu of semantics which can be additionally imposed 
upon the relationship. 

IS-A has the usual graph structure supporting single and multiple inheritance. 
The following semantics can be additionally imposed. 

1. Inheritance Semantics: 

(a) Multiple inheritance (MI): If the modeler chooses this option, multiple 
inheritance will be supported with built-in attribute resolution facilities. 
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We will not elaborate upon the means of resolution, but assume a valid 
technique (e.g., that of Stefik and Bobrow, 1986). 

(b) Inheritance suppression (IS): This descriptor is used within a subtype 
definition to specify the attributes that are not inherited from the 
supertype. 

2. Cardinal#y/Existence Semantics: 

(a) Strict mandatory subtype membership (SMSM): This means that every 
object that is an instance of the supertype must also be an instance 
of exactly one of the subtypes. In the; absence of this selection, this 
condition is not required. Upon insertion of the supertype object, the 
subtype object must also be clearly indicated (Hammer and MacLeod, 
1981). Deletion of the subtype object requires deletion of the supertype 
object. 

(b) Mandatory subtype membership (MSM): This means that every object 
that is an instance of the supertype type, must also be an instance of 
one or more of the subtypes. This is similar to the SMSM choice, 
except that we are permitting membership in at least one and possibly 
more that one subtype. Update semantics as in SMSM above are also 
included. 

See Section 5.1 for the definition of the ArchObjects <has_spec> relation- 
ship using SORAC's IS-A semantics. The SORAC DSDT design interface has 
implemented semantics similar to MSM and SMSM, providing four choices for con- 
nections and rules between subtype and supertype. SORAC ARAC has implemented 
a more refined set of semantics for inheritance permitting the designer to suppress 
inheritance of attributes and/or inheritance of relationships. This means that we 
can specify on the type level if a subtype object will inherit the relationship links 
specified for its supertype object(s). For example, if REVOLVING-DOOR IS-A 
DOOR and DOOR is connected to PROTECTED-EXIT via a role relationship, 
we can specify that REVOLVING-DOOR will not inherit this relationship (cannot 
serve as a protected exit). 

4.1.3 IS-PART-OF Relationship Semantics. The IS-PART-OF relationship is neces- 
sary for the support of design databases. However, the semantics for this relationship 
are not universally established (Kim, 1990; Geller, 1991; Halper et al., 1992). Again, 
we define a generic built-in relationship having semantics that describe the struc- 
ture and cardinality of the IS-PART-OF relationship. Other semantics are given as 
options. 

The structure of the IS-PART-OF relationship is shown in Figure 5. DECK is 
an owning object type that represents an object constructed from objects of part 
types DECKING, BEAMS, JOISTS, and PIERS. The cardinality of the relationship 



VLDB Journal 4 (2) Peckham: Support of Relationships in Design Databases 175 

between DECK and each part type is Ni, where Ni C [1, .., cx:~] and is user specified, 
meaning that each part object may be part-of at most Ni owning objects. The 
IS-PART-OF relationship is used whenever the exact number and types of parts of 
a design object are known. The collection relationship described next can be used 
if the exact components of the design object are not known in advance. 

During most of the initial design phases, many of an object's parts may not be 
described. The rules that determine which part relationships (with possibly empty 
objects) must be instantiated are given by the existence and notification semantics. 

1. Existence Semantics: 
(a) The following rules can be chosen in support of a constraint stating 

that a part object must belong to at least one owning object. 

DELETION: 
i. Mandatory Deletion (DM): Upon deletion of the owning object, 

all part objects associated with it are deleted. Upon deletion of 
an IS-PART-OF relationship instance between an owning and a 
part object, the part object is deleted. 

ii. Conditional (DC): Upon deletion of the owning object (or a 
relationship instance between an owning object and a part object), 
all part objects which are not participating as a part of any other 
IS-PART-OF or COLLECTION relationship are deleted. 

iii. Blocking (DB): The deletion of an owning object (or a relationship 
instance between an owning object and a part object), is denied 
if it will leave a dangling part object. 

INSERTION: 
i. Mandatory (IM): Upon insertion of a part object, the associated 

relationship link to an owning object must also be established. 

(b) The following rules can be chosen in support of a constraint specifying 
that an owning object may not exist without all of its parts. 

DELETION: 
i. Mandatory Deletion (ODM): Upon deletion of one of the parts 

of an owning object (or one of the relationship instances between 
an owning object and a part object), the owning object is also 
deleted. 

ii. Blocking (ODB): Upon the user's attempt to delete a part of an 
owning object (or an IS-PART-OF relationship instance), the user 
is notified that this action is not permitted. 

iii. Conditional Deletion (ODC): Upon the user's attempt to delete 
a part object (or relationship instance between an owing and part 
object), the user is asked if the associated owning object should 
also be deleted. If so, the part and owning objects are deleted, 
otherwise, the deletion of the part object (relationship) is not 
permitted. 
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INSERTION: 

i. Blocking (IB): Upon insertion of an owning object, information 
indicating relationship links with parts existing in the database 
must also be supplied. Otherwise the insertion is denied. 

ii. Conditional (IC): Upon insertion of an owning object, relationship 
links with all parts will be established with data present in the 
database if identified. When this information is not supplied for 
all parts, part object stubs will be created for later specification. 

2. Notification Semantics (DPN): Upon insertion/deletion of an owning or part 
object (or deletion of an IS-PART-OF relationship instance), the user should 
be notified of any propagated activity resulting from the action. 

3. Selection Semantics: Mandatory Selection (MS): Whenever an owning object 
is queried, then the part objects are also returned. In the absence of this 
choice of semantics, the owning object will be selected, with only references 
to the part objects. 

The database modeler, on choosing an IS-PART-OF relationship, automatically 
gets the generic semantics. In addition, the modeler can choose selection semantics, 
insertion and deletion semantics for each existence constraint desired, and notification 
semantics for any of the insertion/deletion semantics that specify propagated actions. 

The existence and notification semantics were implemented by the ARAC 
interface, and were also included in ArchObjects2. Selection semantics are not 
currently supported by the SORAC system due to the lack of an implemented query 
interface. If implemented, selection semantics could be associated with a whole 
IS-PART-OF instance, or with individual part links. Automatic generation of a 
query interface that fully supports semantic relationships is an interesting problem 
that we have not yet fully investigated. 

4.1.4 COLLECTION Relationship Semantics. The COLLECTION relationship is 
used to specify objects consisting of collections or sets of objects of a given type. If 
a collection consists of objects of many types, then it is assumed that a supertype 
encompassing all of the classes included is defined through generalization before 
the collection type is defined. Another alternative is to have the modeling system 
perform this task automatically on behalf of the modeler when the collection object 
is defined. The modeler will, of course, have to enumerate the types included and 
provide a name for the new generalized type. 

The semantics of the collection relationship will differ depending upon the needs 
of the particular application. For example, there are some modeling circumstances 
in which we might not wish to delete the collection object if it becomes empty 
through deletion of its members (Kim, 1990). An example of this is a builder's 
definition of a deck in which a PIERS object represents a collection of actual 
resources used for piers. We might temporarily take the pieces of lumber away 
from the deck for a more immediate project, but we will eventually build the deck, 
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thus, lumber will be assigned to the deck at a later date. In this case, we wish the 
empty PIERS object to remain, even though the details of its resources are not yet 
available. 

The cardinality of the collection relationship is always M.'N, where M,N E 1..oo. 
This means that, for each collection object, there may be up to M member objects, 
and each member object may be in up to N collections. 

1. Existence Semantics: 
(a) Member Deletion: The following rules can be chosen in support of a 

constraint specifying that a collection object may not exist without at 
least one member in the collection. 

i. Mandatory Collection Deletion (MCD): This means that upon 
removal (through object deletion or relationship instance removal) 
of all of the members of the collection object, the collection object 
is deleted. 

ii. Conditional Collection Deletion (CCD): This means that the user 
may decide whether to permit the empty collection remain or to 
delete the collection. The system notifies the user of the situation 
and permits a run time choice of the appropriate action. (This 
makes the above stated constraint soft, as empty collections may 
actually occur.) 

iii. Blocking (BCD): The user is not permitted to remove (through 
object deletion or relationship instance removal) the last remaining 
member of a collection. This should not be chosen with the BMD 
rule. 

(b) Collection Deletion: The following rules can be used to support a con- 
straint stating that member objects cannot exist without the associated 
collection object. 

i. Mandatory Member Deletion (MMD): Upon deletion of the col- 
lection object (or removal of a relationship instance), all member 
objects associated with it are deleted. 

ii. Conditional Member Deletion (CMD): Upon deletion of the col- 
lection object (or removal of a relationship instance), all member 
objects that are not part of any other existing IS-PART-OF or 
COLLECTION relationship are also deleted. 

iii. Blocking (BMD): (This should not be chosen in conjunction with 
the BCD rule). The end-user is denied the ability to delete a 
collection object that has remaining members. 

2. Notification Semantics: 
(a) Notification (DCN) This means that upon the deletion of the last object 

in the collection, the user is notified that it is the last object. The system 
proceeds as the deletion semantics specify, but the user is notified of 
any additional actions. 
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Notice that, if none of the above options are chosen, the system will permit 
collection objects to be empty, even though there are no remaining members in 
the collection. This is because there are no actions implied when the last member 
is removed. The semantics of the COLLECTION relationship type were fully 
implemented by the ARAC schema design interface. 

4.1.5 Derivation Semantics. Derivation semantics are used whenever an attribute 
of an object is derived from attributes of other (domain) objects. It is convenient 
to specify these interdependencies among objects as relationships, since the ma- 
nipulation of domain objects affects other objects that have values derived from 
them. The relationship semantics (enforcement rules) specify exactly how derived 
attributes are correctly computed when updates to domain objects occur. In ARAC, 
derivations are specifiable over all relationship types. 

1. Update Semantics: 

(a) Virtual (V): The attribute value is never stored. It is computed upon 
access by the user. Appropriate messages are sent to the user in the 
absence of data needed to compute the derived value. 

If this option is not selected, the attribute is stored and updated in the database 
whenever modifications to the domain values occur, whenever domain objects are 
inserted, or whenever a relationship link to a domain object is instantiated. In 
this case, one of each of the following sets of semantics must also be chosen to 
determine how the database will behave whenever referenced values are inserted, 
deleted, or modified. 

1. Existence Semantics: 

(a) Deletion: 

i. Null (NL): Upon deletion of one of the domain objects, the derived 
attribute is set to null. 

ii. Deletion Denial (DL): The user is denied permission to delete a 
domain object. The derived object or the derivation relationship 
link between the domain object and the derived object must first 
be removed. 

2. Notification Semantics: 

(a) Notification (MDN): Upon modification of a domain attribute or dele- 
tion of an object containing a domain attribute the user is notified of 
a possible effect upon the derived attribute. 

5. Example of Constructed Relationships for ArchObjects 

We now show how the relationship modeling needs of ArchObjects can be satisfied 
by the built-in SORAC relationship types of Section 4. Of particular interest is 
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the combination of generic and add-on semantics needed to model this application. 
Some of these semantics were implemented in ArchObjects, to test the functionality 
of this approach. 

5.1 <has_spec> Relationship 

The <has_spec> relationship represents specialization. For example, ifA <has_spec> 
B, then B is a specialization of A. The <has_spec> relationship is one-to-many, 
transitive, and is defined only between types. Inheritance occurs along this relation- 
ship, and each object of type A must be connected to an object of type B through 
this link. 

To model this relationship, we use the inverse of SORAC's IS-A relationship type. 
For example, we can establish a <has spec> relationship between COMPONENT 
and FLOOR, CEILING, and WALL types: 

COMPONENT <has_spec>: I S - - A  -1 (SMSM) FLOOR, CEILING, WALL 

As explained above, the option SMSM indicates that each COMPONENT object 
must be an instance of exactly one subtype. That is, a component must be exactly 
one of a floor, a ceiling, or a wall. This mode of relationship specification permits us 
to specify different levels of a <has_spec> hierarchy with different characteristics, 
such as SMSM versus MSM. However, in most systems, the specialization hierarchy 
has uniform characteristics throughout the system. Thus, we can also define the 
<has_spec> relationship in the following way: 

Relationship <has_spec> : IS - - A  -1 (SMSM) 
COMPONENT <has_spec> FLOOR, CEILING, WALL 

This permits the definition of the <has_spec> relationship between other sets 
of object types without repeating the specification of <has_spec> in terms of IS-A. 
This feature is available in the DSDT design interface. 

5.2 <has_part> Relationship 

Here is a collection of ArchObjects relationship classes specifying the parts of a 
room class: 

Room <has_part> Wallset 

Room <has_part> Floor 

Room <has_part> Ceiling 

Room <has_part> Openingset 

Room <has_part> Elementset. 

If we assume that Wall, Floor, Room, Ceiling, and Element have been previ- 
ously defined as object types, the SORAC specification of this structure will be as 
follows: 



180 

ELEMENTSET COLLECTION (CMD) ELEMENT 
WALLSET COLLECTION (CMD, CCD) WALL 
OPENINGSET COLLECTION (CMD, CCD) OPENING 

ROOM <has_part> : IS-PART-OF -1 (DC,IC) WALI_SET 
ROOM <has_part> : IS-PART-OF -1 (DC, IC) FLOOR 
ROOM <has_part> : IS-PART-OF -1 (DC, IC) CEILING 
ROOM <has_part> : IS-PART-OF -1 (DC, IC) OPENINGSET 
ROOM <has_part> : IS-PART-OF -1 (DC) ELEMENTSET 

Here we have used SORAC's IS-PART-OF to construct the ArchObjects <has_part> 
relationship to model a room and its components. E:Lementset is an arbitrary and 
possibly empty set of architectural components of a room. The inverse notation for 
the IS-PART-OF relationship is important since the insertion and deletion semantics 
on the owning and part types are not necessarily symmetric. As specified above, 
ROOM is the owning type, and WALLSET, FLOOR, CEILING, OPENINGSET, 
and ELEMENTSET are the part types. Specifying that the type of an <has_part> 
link is IS-PART-OF -1 (DC, IC) explicitly states the exact enforcement rules of the 
relationship. The update rules implemented in ArchObjects2 support this approach 
(Section 3.2.3). 

5.3 <has_role> Relationship 

As discussed in Section 3, there are two distinct IS-A hierarchies in the ArchObjects 
system representing design objects and their functional roles. For example, design 
information such as dimensions and location would make up an instance of type 
CORRIDOR. However, the corridor object may seIve as a means of egress and, 
thus, have data associated with it in its role as a means of egress. The object type 
CORRIDOR participates in an IS-A hierarchy of design object types. Similarly, there 
are many role types (e.g., MEANS-OF-EGRESS COMPONENT) that participate 
in an IS-A hierarchy of which the most general type is FUNCTION. Thus, we have 
two somewhat orthogonal hierarchies describing objects and roles (Figure 6). 

To model the associations between the objects and their functional roles, we 
need a means by which we might draw horizontal arcs from one hierarchy to the 
other. For example, if we know that objects of type CORRIDOR might serve as a 
means of egress, we could define an association or reference relationship between 
CORRIDOR type and MEANS-OF-EGRESS COMPONENT, thereby indicating 
the potential for relationship links on the instance level. 

However, this approach is quickly foiled by the complexity of the design en- 
vironment. Consider an example such as REVOLVING-DOOR ASSEMBLY. A 
revolving door is a specialization of a door, but may not legally serve as a protected 
exit. For simplicity, we would like to draw a horizontal line between DOOR AS- 
SEMBLY and PROTECTED-EXIT but, since all properties of DOOR ASSEMBLY 
are inherited by REVOLVING-DOOR ASSEMBLY, we cannot. Also, we notice 
that many objects participate in several roles. These subsets of all role types are 
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Figure 6. Physical object and role type hierarchies 
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not particularly well organized through the use of the IS-A hierarchy, thus forcing 
the definition of several horizontal associations between a given object type and 
several role types. 

One solution to this problem is the combined use of the collection and the 
attribute relationship types. For a given object type, we consider all possible roles in 
which an object of that type might participate. We then define a HAS-ATtRIBUTE 
relationship using the most specialized role supertype that characterizes these roles 
as follows: 

DOOR<has_role>:HAS-A'ITRIBUTE Role:MEANS-OF-EGRESS-COMPONENT 

Thus, we have associated the type DOOR with the role types in which the DOOR 
might potentially participate. We have named the horizontal link <has_role>, and 
defined it to be of type HAS-ATI'RIBUTE. Additional semantics (Section 4.1.1) 
might also be specified with the HAS-ATTRIBUTE relationship type. For the 
<has_role> relationship, we must choose semantics that do not force an individual 
door object to participate in any role. The relationship is there to support the 
potential for a door to participate in the relationship. Notice also that if we wish to 
define a different collection of functional roles for the type REVOLVING-DOOR 
ASSEMBLY, we can first suppress the inheritance of the Role attribute from DOOR, 
and then tailor a role set for the revolving door that eliminates the protected exit 
role. 
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In contrast to the general SORAC semantics, the ARAC interface does not 
require use of an attribute relationship to model this connection between the 
part and role hierarchies. A built-in HAS-ROLE relationship is available, and 
additional inheritance semantics permit the suppression of relationship semantics 
from supertype to subtype in an IS-A hierarchy. This was the approach taken in 
ArchObjects2 as well. 

5.4 <has_geometry> Relationship 

In the ArchObjects system, there is a special relationship used between the types 
representing the physical components of a design (e.g., FLOOR, DOOR ASSEM- 
BLY), and objects representing the geometry of the objects. To model this situation, 
all objects representing physical components are defined to be subtypes of supertype 
PHYSICAL-COMPONENT The supertype has an attribute, Solid-Model-Set, that 
is a collection of SOLID-MODEL. 

SOLID-MODEL-SET Collection:COLLECTION (MMD,MCD) SOLID-MODEL 
PHYSICAL-COMPONENT <has_geometry>: 

HAS-A'ITRIBUTE Solid-Model-Set: SOLID-MODEL-SET 
The following outlines the semantics of the has_geometry> relationship as 

defined. 
• A PHYSICAL-COMPONENT object can have zero or one geometries, but 

the collection object should not be present in the case of zero geometries, 
thus the MCD option is chosen. 

• A SOLID-MODEL-SET cannot exist without the corresponding PHYSICAL- 
COMPONENT object. Thus, semantics enforcing the deletion of the SOLID- 
MODEL-SET upon deletion of the PHYSICAL-COMPONENT should be 
chosen for the HAS-ATTRIBUTE relationship. The MMD option takes care 
of removing the SOLID-MODEL objects. Semantics prohibiting the inser- 
tion of SOLID-MODEL-SETS (unless they are attached to a PHYSICAL- 
COMPONENT object) should also be chosen with the has-attribute relation- 
ship. 

In addition to the above, a PHYSICAL-COMPONENT's parts can be derived from 
the parts of the corresponding SOLID-MODEL-SET This can be specified using 
the derivation relationship. 

6. SORAC Implementation 

In this section, we describe the implementation of the current SORAC prototype, 
with emphasis on the underlying support supplied by OIL (Doherty et al., 1993). 
OIL provides programmable support for semantic relationships in an object-oriented 
data model. This is accomplished by permitting the definition of high level object 
and relationship semantics, and then by mapping these semantics to object-oriented 
code in a well established and predictable manner. 
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The SORAC system has two application schema design interfaces (ASDIs), 
Architectural Relationships and Constraints (ARAC) and Database Schema Design 
Tool (DSDT). Each ASDI permits the high level design of objects and relationships, 
and then automatically generates OIL output. Through translation of semantics 
into OIL, SORAC provides automatic generation of databases having complex 
relationship semantics, including those needed for systems like ArchObjects. 

The following criteria motivated the design of the system. 

• The conceptual constructs in the designer's schema appear as addressable 
entities in the user's view of the database. In particular, relationships must 
be available as both modeling constructs and database objects. 

• The semantics of standard system defined relationships and arbitrary user- 
defined relationships are equally supported. As illustrated by the ArchObjects 
examples given above, design systems for different domains require different 
sets of standard relationships. In addition, it is generally necessary to allow 
the designer to define new relationships to handle unanticipated special cases. 

• The specification and implementation of the enforcement rules that maintain 
inter-object constraints must not violate object-oriented encapsulation. The 
implementation of data objects should not be influenced by the relationships 
in which they may potentially participate. 

• The mapping from the conceptual schema to the implementation should be 
automatic. 

• A tool should be available to check the schema semantics for correctness, 
completeness, and consistency before they are mapped to the implementation. 

To provide this functionality, OIL maps relationship specifications, expressed in 
the OIL language, to code that implements a monitor construct. This allows objects 
to monitor the activities of related objects and thereby maintain the semantics of 
relationships. 

6.1 Overview of SORAC System 

The organization of the SORAC system is shown in Figure 7. The ASDI represents 
ARAC and DSDT, and can be viewed as a replaceable module that supports the 
specific semantics of a particular database domain. The ASDI outputs a schema 
definition as a set of OIL object type declarations. The OIL compiler generates 
C + +  code compatible with the ONTOS object-oriented database management 
system (Andrews and Sinkel, 1991; ONTOS, 1991), and this code is processed by 
ONTOS utilities and the native C+ + compiler to generate the required database. 
The support of relationship behavior is implemented as an extension to the ONTOS 
Client Library. 

The prototype OIL compiler and the SORAC extensions to the ONTOS ODBMS 
have been implemented on a SUN Sparc station. ARAC and DSDT both have been 
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Figure 7. SORAC system 
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integrated with the SORAC system. A query language for SORAC databases has 
not yet been defined but the database implementation has been tested through a 
textual interface that allows the user to construct and send messages to any object in 
the database. Some query language issues have been explored in the ArchObjects2 
implementation. 

A schema checker that uses semantic information from the ASDIs to interact with 
the designer to assure correct and consistent schema has been developed (Peckham 
1994; Qian, 1994). A graph theoretic representation of the objects, relationships, 
and enforcement rules is used with properties such as the transitivity of update 
actions to discover awkward, incorrect, and/or incomplete schema structures such as 
cycles and conflicting updates. These structures are then presented to the database 
designer to aid in refinement of the schema specifications. 

6.2 OIL Interface 

The OIL interface supports the SORAC data model in which a relationship is 
viewed as an interactive object. The semantics of a relationship are defined by the 
constraints that the relationship places on the behavior of the participating objects. 
The interactive nature of relationships in the SORAC data model allows these 
constraints to be modeled as behavior of the relationship, rather than behavior of 
the participating objects. The relationships are mapped to objects in the implemented 
database yielding the benefits of relationships as modeling constructs (Rumbaugh, 
1987). 
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Figure 8. ARAC DoorHasLatch relationship 

ARAC Specification: 

Kelationship: DoorHasLatch 
Relationship Type: Has_Part 
Composite Object: Door 
Part Object: Latch 
Enforcement Rules for Deletion of Composite Object: 

DM (Mandatory Deletion) 

0IL Specification: 

object DoorHasLatch 
{participants 

{object Door composite; 
object Latch part;} 

monitor (composite.delete) // Mandatory Deletion constraint 
{updateif (part != NULL) delete part;}} 

The OIL language is based on C+ + with the addition of participants and monitors. 
A list of participants and a set of monitors is what distinguishes a relationship from 
a data object. The participants list defines the object types that may participate 
in the relationship and the roles that those object types play in the relationship. 
Monitors implement the constraints that define the semantics of the relationship. 
The monitor construct enhances the object-oriented model by allowing relationships 
to act in response to the operations applied to participant objects. These operations 
act as triggers that cause the monitor to execute the enforcement rules maintaining 
the constraints. The syntax and implementation of monitors are derived from the 
propagator (Laffra and van den Bos, 1991) which demonstrates that inter-object 
constraints can be implemented in a manner that does not violate encapsulation. 
By defining monitors as properties of relationship objects, the SORAC data model 
combines the benefits of relationships as modeling constructs with the encapsulation 
of the propagator. 

The enforcement rules which define the operation of a monitor are taken from 
Peckham (1994), where they are defined for the analysis of schema correctness. 
Since the behavior defined by a monitor's enforcement rules is directly mapped 
to the behavior of a relationship object, any correctness guarantees made through 
analysis of the enforcement rules can be assumed for the resulting database. Since 
the mapping is automatic, the possibility of incorrect translation from the data 
definition to the database schema is avoided. 
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Figure 9. DSDT DoorHasOpener Relationship 

DSDT Spec i f i c a t i on :  

Rela t ionship :  DoorHasOpener 

Participants: 
Source: Door 
Destination: OpeningMechanism 

Constraints: 
Existence: OpeningMechanism depends on Door 
Cardinality: l_to_l 

OIL Specification: 

object DoorHasOpener 
{participants 

{object Door source; 
object OpeningMechanism destination;} 

monitor (source.delete) // existence constraint 
{delete destination;} 

monitor (destination.delete) // existence constraint 
{reject;} 

monitor (self.insert) // cardinality constraint 
{if (source.ParticipatesIn("DoorHasOpener")) reject; 
if (destination.ParticipatesIn("DoorHasOpener")) reject;}} 

6.3 Implementation of Enforcement Rules 

The following examples illustrate the specification of relationships in the ARAC 
and DSDT ASDIs, and the OIL code that the interfaces generate. The ARAC 
definition of a part relationship named DoorHasLatch between a Door and a Latch 
is first shown in Figure 8. Since ARAC was developed to support architectural 
design systems, a built-in and generic has-part relationship type is provided. The 
maintenance of an existence constraint between the Door and the Latch is assured 
through the optional choice of the DM enforcement rule. The OIL code that 
is generated by ARAC directs the generation of lower level code implementing a 
monitor which triggers on a Delete message to the Door and maintains the constraint 
by deleting the related part, as well as the relationship. 

The definition of the Door and Latch object types can be specified independently 
of the HasPart relationship, since the semantics of the relationship are encapsulated 
in the definition of the relationship. Implementation details, such as inverse pointers 
and triggers, are automatically generated by the OIL compiler and the SORAC library 
extensions. The OIL interface thus provides an intermediate layer of abstraction, 
which allows for the expression of complex objects and relationships without the 
details required by a typical object-oriented implementation. 
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Figure 9 shows the DSDT definition of a DoorHasOpener relationship. The OIL 
code that is generated shows the meaning of the DSDT existence and cardinality con- 
straints. The existence constraint, specifying that OpeningMechanism depends upon 
Door, is maintained by deleting the related OpeningMechanism object whenever 
a Door object is deleted and denying the independent deletion of OpeningMech- 
anism objects associated with Door objects. The one-to-one cardinality constraint 
is maintained by monitoring the instantiation of relationship instances and denying 
the instantiation whenever there is more than one Door object associated with a 
given OpeningMechanism object, and vice versa. 

7. Conclusion 

In this article, we developed a model that augments the object-oriented model with a 
group of core semantic relationships, from which domain specific relationship types 
can be derived. This was done in the context of ArchObjects, an intelligent design 
database operating in the domain of architecture. Design databases are a good 
example of the need for incorporating semantic relationships. On the one hand, the 
object-oriented model is a very natural way to represent a design, because inheritance 
and specialization allow knowledge to be stated at the highest possible level. On the 
other hand, much of the understanding of a design in a domain-like architecture is 
based on the relationships between objects. It is clear that these relationships are 
more than mere references between objects. In fact, much of the meaning of the 
design model is conveyed through an understanding of the relationship semantics. 
Therefore, the relationship semantics should be made explicit, rather than buried in 
method code. Furthermore, certain relationships seem to be fundamental in a given 
design domain, and are used over and over throughout the model. The <has_part> 
relationship is a good example of this. It is much simpler if the semantics of these 
relationships are handled by built-in enforcement rules, rather than re-implemented 
again and again. It is even more desirable if this set of semantics is not fixed, but 
can be tailored to the domain by the schema designer. 

Future additions to this work include the augmentation of interrelationship 
semantics. There are possibly many ways in which semantics may be specified over 
subsets of relationships. These needs should be documented, and a manageable set 
of these semantics should be formulated to resolve and clearly specify interactions 
among relationships. We also plan to investigate tools for maintaining and browsing 
through the update rules, so that the database semantics are accessible once the 
database has been built. In addition, we are also investigating the role of relationships 
and enforcement rules in real time database applications (Prichard, 1994) and in 
forming complex views in design domains. 

Further work in the development of query primitives capable of operating over 
the defined relationships of a given database is also of interest. For example, if a 
<has_role> relationship has been defined to be of type HAS-ATTRIBUTE then, at 
design time, we know the structure, the semantics, and the name of this relationship. 
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The design interface should be capable of generating code for the support of query 
primitives, which can easily operate over the role relationship. In this way, we have 
generated a schema with built-in update support, as well as meaningful querying 
tools. Techniques for the generation of this type of support should be carefully 
investigated and prototypes should be developed to provide a basis for the analysis 
of the possible approaches. 

The area of design is heavily based on relationships that often have a very specific 
meaning and behavior. Therefore, relationships se, rve as an important organizing 
paradigm in such systems. In this article, we address the limitations of the traditional 
object-oriented model in the area of relationship modeling by providing a core set 
of semantic relationships, "menus" of choices for additional behavior, and a means 
for defining new relationship types derived from the core set. This is done in 
the context of ArchObjects, which serves as an example of how domain-specific 
relationships may be derived from the core relationship types. Therefore, this 
approach can be seen as beneficial in the area of architectural modeling. It is 
highly likely that other complex domains, such as geographic information systems 
or molecular design systems, could benefit as we]tl from a model that integrates 
semantic and object-oriented modeling. 
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