
VLDB Journal, 4, 127-154 (1995), Wesley Chn, Editor 127
QVLDB

Characterization of Database Access Pattern for
Analytic Prediction of Buffer Hit Probability

Asit Dan, Philip S. Yu, and Jen-Yao Chung

Received August, 1994; accepted February, 1994.

Abstract. The analytic prediction of buffer hit probability, based on the charac-
terization of database accesses from real reference traces, is extremely useful for
workload management and system capacity planning. The knowledge can be help-
ful for proper allocation of buffer space to various database relations, as well as for
the management of buffer space for a mixed transaction and query environment.
Access characterization can also be used to predict the buffer invalidation effect in
a multi-node environment which, in turn, can influence transaction routing strate-
gies. However, it is a challenge to characterize the database access pattern of a real
workload reference trace in a simple manner that can easily be used to compute
buffer hit probability. In this article, we use a characterization method that distin-
guishes three types of access patterns from a trace: (1) locality within a transaction,
(2) random accesses by transactions, and (3) sequential accesses by long queries.
We then propose a concise way to characterize the access skew across randomly
accessed pages by logically grouping the large number of data pages into a small
number of partitions such that the frequency of accessing each page within a par-
tition can be treated as equal. Based on this approach, we present a recursive
binary partitioning algorithm that can infer the access skew characterization from
the buffer hit probabilities for a subset of the buffer sizes. We validate the buffer hit
predictions for single and multiple node systems using production database traces.
We further show that the proposed approach can predict the buffer hit probability
of a composite workload from those of its component files.

Key Words. Database access characterization, access skew, sequential access, ref-
erence trace, workload management, analytic prediction.

1. Introduction

In a re la t iona l da t abase envi ronment , accesses to the da t abase come f rom var ious
app l ica t ion sources. T h e r e are many shor t t ransac t ions tha t r e ad and /o r wri te a

Ask Dan, Ph.D., Philip S. Yu, Ph.D., and Jen-Yao Chung, Ph.D. are Research Staff Members, IBM T.J.
Watson Research Center, Yorktown Heights, NY 10598, asit@watson.ibm.com.

128

small number of pages. There are also long queries that may sequentially access
a large number of pages from one or more database relations. In addition, within
both short transactions and long queries some of the pages are rereferenced, and
are called locality sets (Chou and Dewitt, 1985). Viewed as a whole, the combination
of transaction and query accesses generates all possib]Le access patterns (Rodriguez-
Rosell, 1976; Smith, 1978; Hawthorn and Stonebraker, 1979; Effelsberg and Loomis,
1984; Chou and Dewitt, 1985; Verkamo, 1985; Sacco and Schkolnick, 1986; Kearns
and Defazio, 1989). Traditional buffer management policies (e.g., strict LRU policy
that does not exploit the knowledge of access components such as sequential vs
random accesses) may not provide good buffer hit probability (Smith, 1978; Effelsberg
and Haerder, 1984; Teng and Gumaer, 1984; Chou and Dewitt, 1985; Sacco and
Schkolnick, 1986; IBM, 1993). Alternatively, if the various access components can
be identified and categorized, the information can be used not only to design better
buffer management policies but also to predict the buffer hit probabilities. The
knowledge of access patterns can also be useful to a buffer management policy that
exerts control over the buffer space to provide different buffer hit probabilities to
transactions and queries. It is the goal of this article; to provide a characterization
method that can be used for the above purpose.

In an earlier study on database reference traces (Kearns and Defazio, 1989),
it was shown that the database access pattern of each transaction type and file
changes very little over time. Kearns and Defazio (1.989) collected traces over five
working days, and found the degree of stability notable, even for the least stable
transaction types. Therefore, the characterization of access pattern in the traces from
representative workload can be used for analytic prediction of buffer hit probability
in various system configurations. For example, existing analytic models for the LRU
(Dan and Towsley, 1990) and Clock (Nicola et al., 2[992) replacement policies can
be used to predict the buffer hit probabilities of multiple relations sharing the same
buffer pool, given the access characterizations of individual relations. Such buffer hit
prediction capability will be extremely useful for both workload management as well
as system capacity planning in various ways. The knowledge can be helpful for proper
allocation of buffer space to various database relations as well as the management
of buffer space for a mixed transaction and query environment (Faloutsos et al.,
1991; Ng et al., 1990; Yu and Cornell, 1991). In a multi-node environment, the
access characterization of individual relations can also be used to predict the effect
of cross-node buffer invalidation which can influence transaction routing strategies.
However, it is a challenging problem to characterize the database access pattern
based on a real workload reference trace in a simple manner that can easily be
used to compute the buffer hit probability.

There have been many earlier analytical buffer modeling works that assumed
skewed access pattern based on independent reference model (IRM) for a transac-
tion processing workload (Dan and Towsley, 1990; Dan et al., 1994a, 1994b; Nicola
et al., 1992). Ability to characterize the model parameters from workload traces
will make these models applicable to real environment. In a mixed transaction and

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 129

query environment, workload can not be characterized directly by the IRM model.
Therefore, we separate the non-IRM and IRM access components. More specifi-
cally, our characterization method first distinguishes three types of access patterns
from a trace: (1) locality within a transaction, (2) random accesses by transactions, and
(3) sequential accesses by long queries. The presence of these types of access behavior
has been shown (Rodriguez-Rosell, 1976; Hawthorn and Stonebraker, 1979; Effels-
berg and Loomis, 1984; Verkamo, 1985; Kearns and Defazio, 1989). Each access
component can be accounted for separately, both in terms of buffer management
as well as buffer hit prediction. The overall buffer hit probability for transactions
or queries is then given by the weighted average of the buffer hit probabilities of
their access components.

Here we assume that the buffer manager will use prefetching for the sequentially
accessed pages, and the LRU replacement policy for buffer management for the
remaining pages. Prefetching provides very high buffer hit probability for sequential
accesses. The prefetched pages are assumed to be discarded after they are used 1
and, hence, they do not affect the performance of the LRU policy for the randomly
accessed pages. In DB2 (Teng and Gumaer, 1984), they were placed in a separate list
from the normal LRU chain. As the rereferenced pages of the short transactions are
also expected to be found in the buffer since transaction working set size generally
is much smaller than most database buffer sizes, the synchronous database I/Os will
come mainly from the random accesses. The buffer hit prediction for the random
access component is a non-trivial task. Our main focus here is the characterization
of random accesses for the prediction of buffer hit probability. The random access
is not uniform over the entire database. For example, in a banking application
(TPC-A workload; Gray, 1991) whenever an account record is updated, a branch
total associated with this account is also updated. Therefore, each branch record
is accessed more often than each account record. Furthermore, some accounts
may be updated more often than others. Also, if the database pages are accessed
through an index, the index pages are accessed more often than the data pages.
The resulting non-uniform access pattern is referred to as random access skew.

In several earlier analytical models for transaction processing (Tay et al., 1985;
Dan and Towsley, 1990; Dan et al., 1991a, 1994; Yu et al., 1993; Nicola et al., 1992),
access skew was modeled by assuming that the database is divided into a small
number of logical partitions (e.g., Hot-set Cold-set model) and the probability of
accessing any page within a partition is the same. To make these models useful for

1. Chou and Dewitt (1985) and Sacco and Schkolnick (1986) proposed various query access models. Further
knowledge of the query access pattern from the query optimizer may be used by the buffer manager to reduce
prefetching I/O and/or buffer space requirement. However, this kind of top-down approach using the query
plan and the optimizer information for buffer management (Ng et al., 1990; Faloutsos et al., 1991; Cornell
and Yu, 1989; Yu and Cornell, 1991) is beyond the scope of this article, which uses a bottom-up approach
based on the access trace information to predict buffer hit probability.

130

real environment, we follow the above skew characterization method (i.e., we assume
that the large number of data pages can be logically grouped into a small number
of partitions such that the frequency of accessing each page within a partition can
be treated as equal). This requires a small number of parameters to express the
access skew. More specifically, the access skew in a trace is characterized by the
number of partitions, and the access frequency and size of each of the partitions.
For example, 80-20 access rule can be represented by 2 partitions where 80% of the
accesses go to smaller partition (i.e., 20% of the database). Based on this approach,
we present a recursive binary partitioning algorithm that can infer the access skew
characterization from the buffer hit probabilities for a subset of the buffer sizes.
This avoids explicit estimation of individual access frequencies for the large, number
of database pages. The buffer hit prediction based on this skew characterization is
also efficient. 2

Therefore, our skew characterization method ..satisfies all three objectives that
guide the characterization process: 1) economy of expression (very few parameters
are needed to express the skew) 2) ease of skew characterization and 3) efficient
estimation of buffer hit probability based on the characterization. Further discussions on
alternative skew characterization methods can be found in (Dan et al., 1991).

In Section 2, we describe the composition of a database workload that is used for
this study in terms of access patterns (e.g., random, sequential, rereference). Section
3 presents the details of the skew characterization algorithm that characterizes the
skew in an access trace. Section 4 provides the validation of buffer hit prediction
capability both for the overall database access characterization and for the random
access skew characterization. We summarize the results in Section 5.

2. Database Workload Description

Two production database workloads are employed to validate our characterization
approach. The first trace was taken on a DB2 system (Date and White, 1989; IBM,
1993) from a long distance communication company during the peak activity period
for a duration of 2 hours and 30 minutes (2:30 pm to 5 pm). There are 10.7 million
page accesses recorded on the trace. We describe this workload in detail since it
will be the primary one for presentation in this article. A second DB2 trace from
a commercial bank is also analyzed. It was taken at peak load for an hour with
13.3 million page accesses recorded, and it contains a substantially larger number
of updates. It will be introduced for the validation of the predictive capability of
the multi-node buffer invalidation effect. The buffer traces consist of a sequence
of Getpage and Setwrite records, where a Getpage is recorded each time a page

2. If the database of size D is logically divided into K partitions, the computational complexity of estimating
the buffer hit probability for a buffer size of B is O(KB) under the LRU replacement policy (Dan and
Towsley, 1990; Dan et al., 1994), where K <~ < D.

Table 1. Size, access count, and access components of first
database trace

File size

R1

R2

R3

R4

R5

R6

I R7 234600 (13.06%)

1065865 (59.34%)

Access count Random

170700 (9.50%) 1501951 (14.01%) 0.00% 24.74% 75.26%

36300 (2.02%) 552874 (5.16%) 92.84% 3.64% 3.52%

60560 (3.37%) 402460 (3.75%) 80.27% 6.89% 12.84%

83420 (4.64%) 316706 (2.95%) 0.00% 22.56% 77.44%

15300 (0.85%) 203586 (1.90%) 0.00% 43.90% 56.10%

12900 (0.72%) 136189 (1.26%) 0.13% 37.20% 62.67%

6308434 (41.15%)

I1 39875 (2.22%)

12 7839 (0.44%)

I3 22076 (1.23%)

I4 26491 (1.47%)

807981 (7.54%)

Relation Summary

461464 (4.30%)

206942 (1.93%)

91991 (0.86%)

4410865 (58.85%) Index Summary

10719299 (100.00%)

Sequential Rereference

0.03% 6.79% 93.18% 95332 (0.89%)

0.00% 87.86%

0.00% 79.05%

51.19% 33.09%

14.22% 62.33%

12.14%

[II 730368 (40.66%)

!l II 1796233 (100.00%)

20.95%

15.72%

23.45%

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 131

Relation & Index Summary

reference request is made to the buffer manager from the data manager in DB2,
and a Setwrite is recorded each time the buffer manager is informed that a page
update is requested to the data manager. These records contain information on
the database relation, page ID, process ID (also known as ACE or Agent Control
Element in DB2), and timing information. The system maintains some fixed number
of processes. An incoming transaction is executed by one of these processes. The
same process executes an entire transaction. Therefore, the process ID can be used
to track the access string of a particular transaction.

In the first trace, the database consists of 117 relations and 138 index files.
Temporary work files are ignored in this study. Only 62 relations and 91 index files
were accessed during the tracing period. These are referred to as the active files.
Table 1 provides a summary of file size, access count, and fraction of various access
components (random, rereference, and sequential) in each relation or index file for
the most active ones among these files. We shortly define the access components
and describe the algorithm that was used to identify each of the components in the
trace driven simulations. Also indicated in parentheses in the file size column is
the fraction relative to the total size of the active files. Similarly indicated in the
access count column is the fraction relative to the total number of page accesses.

132

The access trace for each file (relation or index) consists of concurrent page
accesses by multiple transactions or queries to the same file. For the identification
of sequential accesses, the access string from each process (transaction or query) is
tracked separately in the trace driven simulation based on the process ID. The query
optimizer often provides explicit hints of sequential accesses to the buffer manager
for the purpose of prefetching as well as separate handling of pages brought in by
sequential accesses (Teng and Gumaer, 1984). Unfortunately, such hints were not
recorded in the particular traces that we processed. Note that the primary objective
for characterizing an access trace is to predict the buffer hit probability under the
specific buffer management policy. Therefore, the characterization process should
capture the behavior of the buffer management policy. In different environments,
different methods may be used for identifying and, hence, prefetching sequential
accesses. Here, we assume an environment where a simple dynamic prefetching
algorithm is used by the buffer manager to identify the sequential accesses. The
algorithm uses run length to identify sequential accesses and then triggers prefetch.
An access is counted as a part of an ongoing run if it is to the same or the next page
relative to the page accessed in the previous step (Smith, 1978). Once a sequential
run up to some prespecified threshold (NT) is dete.cted, the subsequent references
are considered to be part of a sequential access string. We assume that the dynamic
prefetching will then be activated by the buffer manager. We further assume that
Np pages are brought into the buffer due to each prefetch. Prefetching for a
process is deactivated once a break in the run is detected. We like to emphasize
here that our goal is not to design an optimal prefetching policy or to determine the
best way to allocate buffer space among sequential and random access components
(i.e, query and transactions), but to characterize such access components for use in
future buffer hit prediction.

The behavior of the buffer management policy depends on the values of control
parameters N T and Np. Too small a value for NT will identify most access strings
as sequential, and will cause many false prefetches, while too large a value will
miss most sequential accesses. The choice of Np value for small values of NT
is also an important factor in determining minirrmm false prefetch I/O overhead
(Smith, 1978). We will seek a large enough NT to avoid substantial false prefetch
overhead, while not affecting the buffer hit probability of the (what we identify)
non-sequential component. Figure 2 shows the effect of recognizing and separating
the sequential component on the buffer hit probability of the remaining component.
Different curves correspond to different values of NT, where the sequential access
component is identified once an ongoing run of NT is detected. Only references
with run lengths less than NT are kept in the main buffer and the rest of the pages
(identified as sequential component) are put into a separate buffer. The pages
needed by the sequential component are prefetched, and therefore will be found in
the buffer as needed (i.e., there is no synchronous I/O requirement). However, if
the prefetch pages are not buffered in a separate buffer space or through a separate
LRU chain as in SLRU (Teng and Gumaer, 1984), a long sequential scan can wipe

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 133

out the frequently accessed pages by the transactions from the buffer.

The effect of the sequential access component on the buffer hit probability of
the other access components is examined later in Figure 3. We assume that the
small set of prefetched pages will be put into a separate buffer, calledprefetch buffer.
(This is similar to the separate logical chain in DB2 buffer; Teng and Gumaer, 1984).
The size of the prefetch buffer only needs to be large enough to keep the number
of prefetched pages (Np) to get actually referenced during a sequential scan. (Here
the prefetch buffer is not intended to capture rereferencing after the sequential
scan. Optimizing buffer allocation for join queries to reduce the number of prefech
I/Os is beyond the scope of this article (see Ng et al., 1990; Faloutsos et al., 1991;
Yu and Cornell, 1991). This has a very small effect on the buffer hit probability
of the non-sequentially accessed pages. 3 As shown in the figure, too large an NT
value (> 100) is not effective in identifying the sequential component. However,
the buffer hit probability of the non-sequential component is not very sensitive to
the smaller values of NT. Our objective here is not how to select the best values
of NT and Np, but to demonstrate the effectiveness of characterization process for
any reasonable values of NT and Np. Therefore, we choose arbitrarily NT and Np
to be 10.

Figure 3 shows the buffer hit probabilities of the sequential and non-sequential
components after the sequential component is identified, and/or prefetched, and/or
put into a separate prefetch buffer. The three solid curves are the buffer hit
probabilities (random, sequential, and overall) for the case when the prefetching is
not activated, and both the sequential and non-sequential components are put into
the same buffer. The dashed curves are the corresponding buffer hit probabilities
after the sequential component is prefetched but still put into the same buffer. The
buffer hit probability of the sequential component becomes 1.0, but that of the
non-sequential component changes very little. If the sequential component is put
into a separate prefetch buffer, then the buffer hit probability of the non-sequential
component improves substantially (dotted curve). Hereafter in this article, we
assume that the buffer manager uses a separate prefetch buffer.

The non-sequential component is further divided into two components: (i)
rereferenced pages within the locality set and (2) randomly accessed pages. Within
a transaction a page may be rereferenced several times as a result of the executions
of multiple SQL statements referencing the same page or same tuple. For example,
in the TPC-A benchmark (Gray, 1991) an account is first updated (UPDATE
statement), and then the result on that account is reported through a separate
SELECT statement. Rereferencing can also occur in the small loops of the query

3. Note that in the simulation, a page is never replicated in two separate buffer spaces. If a sequentially

accessed page is already present in the main buffer, the page is neither prefetched nor moved to the prefetch

buffer. However, if a random access fails on a page present in the prefetch buffer, it will be moved to the

main buffer.

134

access string that would not be identified as sequential accesses. The rereferenced
pages within the small locality sets are highly likely to be found in the buffer even
for very small buffer sizes. Therefore, for the estinaation of buffer hit probability,
this access component needs to be separately accounted for. Also, it will be shown
later that rereferencing within a transaction has to be distinguished for accurate
prediction of invalidation effect in a multi-system environment. Let Nw be the
size of a transaction (i.e., the number of pages accessed by a transaction). The
transaction boundaries were not recorded in this particular trace. Experimentation
with the trace showed that most of the rereferences occurred within a window of
size 10. Therefore, we arbitrarily chose the transaction size, (Nw), to be 10.

The remaining accessed pages are assumed to be; random, particularly when they
come from several concurrently executing transactions. However, the random access
is not uniform over all database pages. Figure 4 shows the buffer hit probabilities
of the rereference and random components for three relations and one index file in
the first database workload. The rereference hit probability is 1.0 for most buffer
sizes. However, the buffer hit probabilities of the random components are very
different for the different relations and index files. The random accesses are clearly
skewed, as buffer hit probability does not increase, uniformly with the increase in
buffer size. In the next section, we will provide an algorithm that can determine
the access skew in the randomly accessed pages.

Given the fractions of various access components, and the characterization of
the random access skew under the above described buffer management policy, the
overall buffer hit probability can easily be compute, d. Let AS, AL, and An be the
access ratios for the sequentially accessed pages, re, referenced pages within locality
sets, and the randomly accessed pages, respectively. Let hs, hL, and hR be the
corresponding buffer hit probabilities. Then the overall buffer hit probability is
given by

H = Ashs + •LhL +)~RhR (1)

Both hs and hL will be close to 1, if sequentially accessed pages are prefetched,
and if the combined locality sets of all concurrently executing transactions are
small compared to the database buffer size. hR is estimated as a function of
buffer size based on the skew characterization described in the next section. The
characterization can also be used to predict the effect of multi-node invalidation.
Buffer invalidation will have impact only on h R . If the transactions are routed
randomly to all nodes then, using the analysis of :Dan et al. (1994), the buffer hit
probability due to random access can be estimated in a multi-node environment.

3. Recursive Binary Partitioning Algorithm

In this section, we describe an algorithm that infers the access skew, given the
random access component of a database access trace. As mentioned in the previous

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 135

section, the access skew can be characterized by logically grouping the pages into
a smaller number of disjoint partitions such that the access frequencies to pages
within a partition can be treated as equal. Assume that a particular database needs
to be divided into K partitions for a desired accuracy in the prediction of buffer hit
probability. Let o~i be the frequency that an access will go to partition i, and let
Di be the number of pages in that partition. Then the access skew is characterized
by [(oli,Di), i=I, . . . ,K]. Given an access trace, we have to to determine the value
of K as well as [(oei,Di), i=l,...,K].

We first obtain the buffer hit probability vs buffer size curve under the LRU
policy through trace driven simulation. Let Bj, j = l , ...,N be the set of buffer sizes
for which buffer hit probabilities, sim hj , j = 1, ...,iV, are evaluated. This can be done
in a single pass of the trace (Mattson et al., 1970). The buffer sizes selected are
somewhat arbitrary, but they should reflect the range of buffer sizes for which we
are interested in predicting the buffer hit probability. Let h~ ha, j = l , ...,N, be the
predicted buffer hit probabilities based on the skew characterization for the buffer
sizes Bj, j = l , ...,N under the LRU policy. (See Appendix for a summary of the
buffer hit analysis, which is based on Dan and Towsley, 1990.) We say that the skew
is well characterized if the absolute difference s i r e ar ia (Ihj -- hj I) between the buffer
hit probabilities for any buffer size under the given replacement policy obtained
through a trace driven simulation and through an analytical prediction is within some
desired accuracy (say, 1%). In this article, we use LRU replacement policy for the
purpose of characterization. Similar approaches can be used for other replacement
(e.g., clock) policies.

The above problem can be thought of as an optimization problem, where the
optimal values of the parameter.s [(ozi, Di), i=1, ...,K] need to be determined such
that some error function, g (h~ *m, h~ n'~, j = l , ...,N) is minimized. The number of
partitions, K, is also an unknown parameter and, hence, needs to be determined
by iterating over K (and carrying out optimization for each value of K) until some
desired accuracy in the buffer hit probabilities is reached. For each search step in
the optimization procedure, the computation of the predicted curve requires analytic
solution of the LRU model for the buffer sizes B j, j = 1,..., N. Since this computational
overhead may be significant, the efficiency of the optimization algorithm is of
particular concern. The search space for the optimization algorithm is very large
(e.g., range for partition size, Di, is given by 1 _< Di ~ Dmax, where Drnax is the
maximum number of database pages), and starting anew for each iteration over K
will make the algorithm inefficient.

We overcome these difficulties by taking advantage of one special property
observed for the LRU replacement policy under the IRM access pattern considered.
The observation is that in estimating the buffer hit probability for a given buffer
size, the "relatively" hotter partitions (with total size much smaller than the buffer
size) can be lumped together and treated as one partition with little effect on the
accuracy of the estimate. This is due to the fact that the pages of the hotter
partitions are mostly retained in the buffer for larger buffer sizes. This property

136

Figure 1. Recursive binary partitioning algorithm

(1,D)
Recursioa Step 1

((1 - cat), D~)

Recursion Step 2

• (ar + an- i + a/c-z), IYK_2~

Recursion Step (K - 2) /
((OtK + OtK-t), Ok_l),,] /

I Recursi°n Step (K - 1) I /

(a/c, D/c) (aK-t,DK-t) (CtK-2, DK-:Z) (a~, D:) (tat, Dr)

is referred to as the property of insensitivity of the buffer hit probability for large
buffer sizes to the differences in access frequency of the hotter partitions. We can
thus devise a recursive algorithm that uses a two-partition model to match the
simulated curve for the large buffer sizes first, and then increase the number of
partitions to improve the accuracy for smaller buffer sizes. Each recursion step
solves only a two-partition problem (details are described later in this section), by
dividing the hotter partition (frequency and size) from the previous recursion step
into two smaller partitions. The colder partitions derived in the earlier steps of the
recursion need not be revised due to the insensitivity property (i.e., very few pages
of the colder partitions are retained in the buffer for smaller buffer sizes).

3.1 Overview of the Algorithm

Figure 1 illustrates the algorithm through a schematic diagram. At the beginning,
the undivided database consists of D pages and the relative access frequency to the
whole database is assumed to be unity. At recursion step 1, the database is divided
into two partitions such that the frequencies of the two new partitions add up to the
frequency of the undivided database, oq and D 1 are the size and access frequency
of the coldest partition. Here, the smaller partition represents the union of all other
(hotter) partitions. The recursion step also deterrnines the size of this equivalent
partition, D~, that minimizes the error function at recursion step 1. At recursion
step 2, the hotter partition is subdivided into two new partitions with frequency and
size (0~2, D2) and ((1 -- (a l + a2), D~), respectively. The partitioning process
is repeated and at each subsequent recursion step the error function is further
minimized. In general, at recursion step I, the smallest partition (which is the
partition to be split) represents the equivalent partition corresponding to the union
of the (K - 1) hottest partitions and the frequencies and the corresponding sizes of

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 137

all colder partitions determined in earlier recursion steps, (cti, Di), i < l, are kept
unchanged. The algorithm terminates either when the desired accuracy or some
specified limit on the maximum number of partitions is reached. The choice of
error function as well as the selection of the associated optimization algorithm are
non-trivial problems and the issues are discussed below.

Choice of Error (Objective)Function: We choose the area between the simu-
lation and the prediction curves as the objective function to be minimized.
Let sl and s2 be the points on the simulated curve for buffer sizes bl and
b2, respectively. Let Pl and P2 be the corresponding points (for the same
buffer sizes) on the predicted curve. Then the area enclosed by the 4 points
between the two curves can be approximated as (b2-- b l) ((s l - - P l) + (s2--
p2))/2. To put an ordering on the search space, we do not allow in any search
step the predicted and simulated curves to intersect each other. Without
any loss of generality, we assume that the predicted curve always lies below
the simulation curve (i.e., sl > Pl and s2 _> p~. One could devise a similar
scheme by assuming the predicted curve always lies above the simulated
curve.) As the objective is to match the curves at the large buffer sizes
first and then to improve the accuracy on smaller buffer sizes at subsequent
recursive steps, we do not seek uniform discrepancies over all buffer sizes at
all recursion steps. The better match at the higher end can be achieved by
assigning higher weights (Section 3.2) to the areas at the higher end. Note
also that the least square error estimation reduces the maximum error (since
square of error translates to higher weight) rather than the errors we seek
to minimize, and therefore is not appropriate for our objective.

Constraint on Search Space." Under the IRM access pattern and the LRU
replacement policy, the buffer hit probability vs buffer size curve is concave
(i.e., with smaller marginal improvement of buffer hit probability for larger
buffer size; Van den Berg, 1993). The buffer locations near the LRU stack
top will have a higher probability of holding a hot page than the locations
near the stack bottom. Therefore, the increase in buffer hit probability for
an additional buffer allocation will be smaller for larger buffer sizes (i.e.,
will have diminishing return). For this type of buffer hit curve, we can use
similarly shaped concave curves to match it from below. This restriction will
greatly simplify the search space. Note that ordering in our matching process
(higher-end of the buffer size first), as described earlier, further restricts the
search space. A one step approach to match the curves would have a far
more complex search space to go through.

Non-Concave BufferHit Curve: As mentioned above, the buffer hit probability
for an IRM access pattern is a concave function. However, in the access
trace, the presence of sequential and looping sequential behavior will cause
the buffer hit probability vs buffer size curve to violate this property. As

138

Figure 2. Effect of separation of sequential access on the
buffer hit probability of remaining (R3)

i I
0 2000 4.000 6000 8000 10000

BUFFER SIZE

discussed before, we use some simple rules to identify and filter out these
non-random components. Still the process is not perfect and some of them
may continue to be present in the trace and make the curve non-concave.
Although in this study we rarely observe any non-IRM points, the following is
included to make the methodology complete. Figure 5 shows a hypothetical
buffer hit probability vs buffer size curve. As marked in the figure, point p l
violates the IRM property, as the slope of the curve on the right is larger than
the slope of the curve on its left. The best we can hope for is to match the
envelope of the buffer hit probability curve. In this case, our characterization
algorithm ignores any points that violate the IRM property. We refer to the
points on the curve that do not violate the IRM property, as IRM points,
and the others as non-IRM points. In the above example, there are many
such non-IRM points. Note that after the non-IRM point p2 is eliminated,
point p3 also becomes non-IRM and should be eliminated. The elimination
process continues, and at the end we are left only with the IRM points. 4

• Effective Characterization Range: For some access skew a very accurate char-

4. Note that in Figure 5, there are no points on the left of point p2 that satisfy the IRM property. We

therefore, have two choices: either to eliminate completely all the points to the left of pointp2, or to include

the leftmost point that will capture the upper envelope of the sim~tlation curve as the curve to match. We
have chosen the second alternative, since the first alternative results in characterization that gives larger

error in buffer hit prediction for smaller buffer sizes.

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 139

Figure 3. Effect of prefetching on buffer hit of sequential
a n d n o n - s e q u e n t i a l a c c e s s e s

~ ~ . S S - S . 5 - - ~ - . 5 --S-- S-- .5--S- ~5 ,S-
~ " .., , , .ala.~.O O.5.. - O - ..O- -O" - ~ " - ~ " " O 0 - ~ -O

~ :,.RR.-- R---R'"R """'"R'"'R'R R "R
W H " o - - -

~ d ~ H ' R NON-SEQUENtIAL HIT: NO PREFETCH
J JJ ~ SEQUENTI,,U. Par: NO PREFErCH
~- / I ,C OVERALL HIT: NO PR~TCH

°~.g .°o

-'-~.-- NON-SEOUI~,qlAL HIT: SEPARATE BUFFER

I I l i I , , , t

BUFI:'ER SIZE

Figure 4. Random and reference buffer hit probabi l i t ies

~-ss-ss---s---s---s---s---s---~ s - s.S222LL~L~

2 -2"'" " ~ . 4 - ~ g , ' ' r ~ ~
-2

g 3 / ~ ' ' 3 ' ' - - 1 RANDOM Hff: R1

~ 3 --4.--- RANDOM HIT: I I
3, ~ S--. REREFERENCE HIT CASES

i I I I , I L , . I
2000 8000 10000

I I I
4 0 0 0 6 0 0 0

B U F F E R S I Z E

acterization may require a large number of partitions. Given a fixed number
of partitions to choose, an effective characterization will choose only those
points that result in minimum error in the prediction of buffer hit probability
in some specified range. For example, if the minimum allocation of buffer
space is large (say, 1,000 pages), small partitioning sizes that have significant
effect only for small buffer sizes (say, < 500 pages) are not very important
due to the insensitivity property.

3.2 Details of the Algorithm

We will now detail the algorithm. Assume that the buffer hit probabilities, h~ ira, for
the buffer sizes, B j, j = 1, ..., N, are obtained from the trace driven simulation. In the
case that there are points violating the IRM property, the algorithm removes these

140

Figure 5. Illustration of recursive binary partitioning

~ 12

==

==

.. "" /1<--~7/NON-IRM POINTS

/ /

..."'"////////// ~ SIMULATION POINTS
'" JP2~/P~3 U--- UPPER ENVELOPE

S I I I I I I I I I
2000 4000 6000 8000 10000

BUFFER SIZE

points to construct an envelope of the simulated buffer hit curve for matching with
the predicted curve. In the following, we still refer to this curve as the simulated
buffer hit curve. The algorithm then tries to match the predicted curve to the
simulated curve at the higher end through minimization of the weighted area. The
weight assignment is as follows. Let M be the number of IRM points to be matched.
The M points and the origin can be used to divide the buffer size axis and, hence,
the area between the simulated and the predicted curves into M regions. We will
refer to the region closest to the origin as region 1, and the region between the
points (j -- 1) and j as region j. As the algorithm tries to match the higher end
first, higher weights should be given to the areas of the higher region. However, a
very large weight for the higher region will make the algorithm insensitive for the
lower buffer sizes. Since we merely want to express the preference of matching at
the higher end, without making the algorithm insensitive for the lower end, a linear
weight assignment (value of weight for each region is its index) seems to be a good
compromise. We will show in the validation section that this weight assignment
works well for a wide range of skewed access patterns.

Recall that at the l th recursion step, the (K - l) hottest partitions are grouped
g (i.e., together into an equivalent partition of size DI+ 1 and frequency ~i=/+1 o~i

l 1 -- ~]i=z c~i). The frequencies and their corresponding sizes, (ozi, D i) , i < l, of
all colder partitions determined in the earlier recursion steps are kept unchanged.
However, the smallest partition of the previous step (i.e., I th partition) is divided
into two new partitions, such that the frequencies of the two new partitions add
up to the frequency of the undivided partition (Figure 1). The sizes of the two
new partitions (DI+ 1 and Dl) however, are allowed to vary independently (since,
the size of the equivalent partition, D~, is always smaller than the total size of the
new partitions, DI+ 1 and Dl). Hence, at each recursion step l the optimization

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 141

Figure 6. Validation of random buffer hit probability (R1)

4
. . j . °o" -~

tl .°"

2" .~'""
~ U L A T I O N

.2 ..." ----t PREDICTION: PARTITIONS
~ j ---£- ~.~EDELo~: ~ F,~rr,o.s

," J r " " YI~I:.UIE..,HUP4:4 PARTITIONS
: .'~' 4,--- PREDICTION: 55 PARTITIONS °..~,

2 .,.1"

~ ,:t"

•
l . t . l . r ~ '"

I I I I I I I
8O00

BUFFER SIZE

procedure determines only the three new parameters (D~+i, Di and olt) such that
the weighted area is minimized further than the previous step. The algorithm is
illustrated through an example. In Figure 6, the predicted buffer hit probability
after each recursion step, as well as the simulated buffer hit probabilities, are shown
for Relation 1. As can be seen from the figure, after the first step the predicted
curve matches well with the simulated curve for larger buffer sizes (> 10,000 pages).
After the subsequent recursion steps, the predicted buffer hit probability matches
for a longer and longer range of buffer sizes. Also, partitioning of the smallest
partition does not affect the match at the higher end. Further validation will be
shown in Section 4.1.

We will now describe a few ways to improve the efficiency of the optimization
algorithm used at each recursion step.

. Efficient LRUEstimation: The analytic estimation of the buffer hit probability
under the IRM access pattern and LRU replacement policy for a buffer size
of B and for a workload consisting of K partitions is given in the Appendix
and is of order O(KB) (Dan and Towsley, 1990). The computation overhead
can be easily reduced for very large buffer sizes (say, > > 1,000) by scaling
down the database and the partition sizes (by the same scale down factor)
such that the buffer size is of the order of 1,000 pages. We note from our
experience that this introduces very little error.

2. Starting Value for Parameters: Good starting values of D t /+1, Dl and at at
each recursion step l are of extreme importance to reduce the number of
search steps needed by the optimization procedure at each recursion step.

142

For recursion step 1, we note that the asymptote to the buffer hit probability
curve will intersect the buffer hit probability aids at the point (1 --Oel) (i.e.,
the intersection point, 11, represents the total :frequency of accessing all but
the coldest partition; see Figure 5). 5 Let irm(M) represent the M th IRM
point on the simulated curve. The asymptote is then approximated as the
line passing through the highest two IRM points on the buffer hit curve
(i.e., points irrn(M) and irm(M -- 1)). Therefore, (1 - I1) is taken to be
the starting value of eel. At each subsequent recursion step l, the starting

K value of ~ i = t + l O~i is taken to be the intersection point (Iz) on the buffer
hit probability axis of the line passing through the highest two IRM points
for which the predicted curve of the previous step differ from the simulated
curve by an amount greater than the desired accuracy (Figure 5).

The starting values of D'l+ 1 and Di are chosen as follows. Let Bts be the

smallest buffer size for which the buffer hit probability hs sire > It. This
implies that the total size of the smallest (K - l) partitions, DI+i, is at most

Bls. 6 Therefore, Bls is a good starting value for D~+ 1. The starting value for
Dl is (D' t - DIt+l). Note that for l = 1, D~ is the size of the total active
database (D), which is approximated as

D = Birm(M) +

(1 h s i m ~(l~sirn t~sim
- ' ~irm(M) J ~' ~irm(M) -- 'virtu(M-- 1) J

(Birm(M) -- Birm(M-1))

The above approximation linearly extrapolates the buffer hit probability curve
to determine the buffer size for which the buffer hit probability becomes
unity.

. Step Size in Parameter Search: The search on any parameter can be made
efficient by first taking progressively larger steps, and then once the predicted
curve violates the constraint, taking progressively smaller steps (Bracketing
and Bisection method; Press et al., 1986).

The resulting a.lgorithm is very efficient. A summary of the algorithm is shown
below, where g (hjs*m, hjana,j" = 1, M) represents the weighted error estimate between

sire aria the hj and hj over M selected points. We are unable to provide estimates of

5. If the coldest partition is much larger than the rest, the asymptote of the buffer hit probability curve would

be (1 - - C~1) + O l l B / D 1, where B is the buffer size. That is to say for a large buffer size B, accessing the

coldest partition has a buffer hit probability of B / D 1 while accessir~g the hotter partitions always results in

a hit.

6. At buffer size Bls , not all pages in the buffer belong to the hottest k - - I partitions. If only pages from

those partitions are buffered, buffer hit I l would be reached at a smaller buffer size.

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 143

its computational overhead. However, for most of our examples presented here, it
took less than a minute of CPU time (7.6 - 46.3 seconds) on the IBM mainframe.
Note that once each relation is characterized prediction of buffer hit for various
composition of workloads (due to buffer pool allocation and load change) and buffer
sizes can be done very efficiently through analytical models. In contrast, trace driven
simulation for each such composition will take on the order of minutes and hours.

l:=1; remalpha := 1.0; / * after l th step remalpha K = E =t+l /
D : = B i r r n (M) ' J - (1 sire sire sire -- hirm(M)) (hirm(M)-- hirm(M_l)) / (Birm(M)-- Birm(M-1));
D~ := D; / * initial undivided partition * /

• __ sire aria whtle((l <--K)&(3i lhirm(i) - - hirm(i) I > aceura~, i E (1 ...M))
{

/ * starting values * /
ozt := remalpha - I t ; /* It is the intersection point * /

D't+ 1 := Bts;
Dl := D~-- D~+i;

/ * search for al, Dl, and J l+l * /
/* (ai, Di), i < l are fixed at the l th step * /

[L s i m ana (I
Minimize E [' ~ i r m (j) , h i r m (j) Dr+l, Dl, Oil, (O~i, Di), i < l)) ,

j = i , . . . , M I (Oei, Di), i < l)]
remalpha = remalpha -- eel;
l := l-q- l;

}

3.3 Estimation of Update Probabilities

All database pages may not be updated with the same frequency. The knowledge
of update probability for each of the logical data partitions is required for the
estimation of the multi-node buffer invalidation effect (Section 4.3). As above, an
analogous method can be devised to determine the update probabilities, '3i, i =
1, ...,K, to each region. For this purpose, only the update (i.e., Setwrite) entries
are used in the trace driven simulation to obtain the buffer hit probability vs buffer
size curve only for the update operations. (Recall that in the previous subsection,
we determine the access frequency and the size of each region from the buffer hit
probability curve.) The partition sizes, Di, i = 1, ...,K, are already known, and the
corresponding access frequency of Di is equal to Tiai, where oli is also known.
Hence, only "Yi, i = 1, ...,K, needs to be determined, such that the predicted curve
using (Tiai, Di), i = 1, ...,K is close to the simulated curve.

144

Figure 7. Validation of random buffer hit probability (11)

d 2 PARTITIONS
3 PARTITIONS
4 PARTITIONS

/

I I I I I I
4000 8000 12000

BUFFER SIZE

4. Model Validation and Applications

In this section, we validate our algorithm extensively, based on the database workload
described in Section 2. We then show how the characterization of individual files
can be used to predict the buffer hit probability of the composite workload (i.e.,
more than one file sharing the same buffer space), as well as the effect of multi-node
invalidation, with good accuracy. We will present resu]its primarily based on database
trace 1 except in Section 4.3 where database trace 2 is used.

4.1 Validation

The random buffer hit probabilities of Relation 1 (R1) and Index file 1 (I1),
obtained through prediction and trace driven simulation, are plotted in Figures 6
and 7, respectively. The simulated curve presented in this section includes both IRM
points and non-IRM points, if any. Multiple predicted curves refer to the predicted
values after various recursion steps. (A small number of recursion steps is generally
sufficient (e.g., four and three steps for R1 and I1, respectively.) The predicted
curve after the last recursion step matches well with the trace driven simulation
results for all buffer sizes, and the curves from the intermediate steps match only a
portion of the simulated curve. Similar matches in buffer hit probability were found
for many other relations and index files that we experimented with. The sizes and
frequencies of all partitions (hottest to coldest) after all recursion steps for R1 are
shown in Table 2. From now on, only the final predicted curves for various files
are presented.

4.2 Prediction of Buffer Hit Probability of Composite Workloads

Next we consider how to predict the buffer hit probability of a composite workload

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 145

Table 2. Access frequencies and sizes of all partitions of Relation 1
after various recursion steps

Step* tl (ozi in per cent, Di in number ofpages)

(36.3, 20)

(55.6, 204)

(19.3, 127)

(98.8, 9690) (1.2, 36438)

(75.0, 1276) (23.8, 7632) (1.2, 36438)

(19.4, 754)

(19.4, 754)

(23.8, 7632)

(23.8, 7632)

(1.2, 36438)

(1.2, 36438)

from those of its component workloads. Based on the skew characterization of
each of the files and the access fraction to each of the files, the overall random
buffer hit probability under the LRU replacement policy can be computed using the
analytical buffer model (Dan and Towsley, 1990; see Appendix for a summary). The
computation uses the total number of logical partitions as the sum of the partitions
of each file. The corresponding access frequency is given by the product of the
original access frequency to each partition (normalized for each file) and the fraction
of the accesses to that file. The rereference component of each relation is assumed
to be retained in the buffer. The overall non-sequential buffer hit probability is
the weighted sum of the components. Figure 8 shows the simulated and predicted
curves for random, rereference, and overall non-sequential buffer hit probabilities
for the composite workload of R1 and R4. 7 As can be seen in the figure, all three
buffer hit components are well predicted. The composite workload is created by
filtering out the accesses to all other files except to R1 and R4 from the original
database access trace. The fraction of the accesses of the composite workload that
goes to each of the files is computed from the trace.

The validation process is repeated for various compositions of workloads (mul-
tiple files, and various types of files). Figure 9 shows the overall non-sequential
buffer hit probabilities of the combinations (R1 & R4) and (R1 & I1). Also shown
are those of R1, R4, and I1, respectively. The predicted values of the composite
workloads (dotted curves) show excellent agreement with the simulation values.
Note that the shapes of the composite buffer hit probabilities are very different for
the two cases.

The prediction can be put to use to answer what if types of questions. As the
fraction of the load to each of the files changes (due to change in application mix),
the LRU analysis can also be used to predict the buffer hit probabilities for the
new workload compositions, assuming the access skew characterization for each file
remains unchanged (Kearns and Defazio, 1989). Figure 10 shows the changes in

7. R4 is chosen over R2 and R3 for the purpose of presentation as there are more random accesses to this
relation compared to the others (see Table 1).

146

Figure 8. Validation of composite buffer hit probability
(R1 & R4)

-

o. ~ f ~ . 2 REREFERENCE FLIT: SIMULATION
~ . ~ F ~ - - 2 . - - REFERENCE HIT: PREDICTION
' ~ " 3 NON-SEQUENT1/~ HIT: SIMULATION

.... 3 - - NON-SEQUEN'rl/~ HIT: PREDICI'ION

I r I I I I I

BUFFER SIZE

Figure 9. Validation of composite (non-sequential) buffet hit
probabilities (R1 & R4 and R1 & I1)

o

' ' *

ofirf ./ 3 ,I : S,MUU~ON
I ~ ~ - - R1 AND R4: SIMULATION
r~' ~ - - - 5 - - R1 AND I1: StMU!,J~TION

r I I I i I I I
0 4000 8000 12000

BUFFER SIZE

buffer hit probability of the composite workload as the transaction load to R1 and
R4 changes. Le tL1 and L2 be the access rates to R1 and R4, respectively. The solid
curve represents the original load mix and the dotted curves represent the predicted
buffer hit probabilities after various load changes. Four different cases in terms of
the ratios of L1 to L2 are presented. As the relative load to R1 decreases, the
overall buffer hit probability decreases. The effect is significantly different for the
combination of R1 and I1. In Figure 11, besides the original case, four additional
cases in terms of the ratios on the load changes of R1 and I1 are presented. Note
also that the composite buffer hit probability of the workload (R1 and I1) changes
only for small buffer sizes in contrast to the case in Figure 10.

The changes in relative loads to the component files can have a significant
effect on the buffer hit probability, if the access skews of the component files

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 147

are very different. This would affect the total buffer requirement or the optimal
buffer allocations among the buffer pools in a multiple buffer pool environment
(Effelsberg and Haerder, 1984). Dan and Towsley (1990) studied the performance
gain of optimal file assignment and allocation of buffer pools, based on a given
skewed access workload. Generally speaking, it would be too time consuming to try
out various workload compositions or buffer pool assignments of files through trace
driven simulations. To predict the effect of the load changes would be even more
formidable. The proposed methodology provides an analytic approach to predict
the buffer hit probability efficiently.

4.3 Prediction of Multiple-Node Invalidation Effect

Multi-node systems can provide the horizontal growth capability (Stickland et al.,
1982; Kronenberg et al., 1986). One way to couple multiple systems is through data
sharing (Dan et al., 1994a, 1994b) where the database resides on a set of shared disks
and each processing node retains in its local (memory) buffer the recently accessed
pages. Therefore, the same page may be retained in the buffers of multiple nodes.
When a page is updated, the other copies of the page in remote nodes need to be
invalidated (Dan et al., 1994a). Therefore, a buffer coherency protocol is required
to maintain the consistency across nodes. The buffer invalidation reduces the
local buffer hit probability. Prediction of the multi-node buffer invalidation effect
is extremely useful from the point of view of system configuration and capacity
planning when the number of nodes changes. Of course, the invalidation effect
depends on the transaction routing (i.e., how the files are shared by the transactions
executing in multiple nodes). We will assume random transaction routing and,
therefore, all files are equally likely to be accessed by all nodes.

The invalidation effect depends not only on access skew characterization but also
on the transaction update probability. The buffer hit probability is predicted using
the analytical model (Dan et al., 1994a). Update probabilities may be different for
hot and cold partitions of a relation. To obtain update probability for each partition,
we first construct a trace consisting of only the Setwrite (update) operations. Since
each Setwrite entry is preceded by one or more Getpage entries for the same page,
a relationship exists between the number of Setwrite operations for each partition
and its access frequency and update probability. Therefore, if we treat this new
trace as any other access trace, a higher buffer hit probability in this trace implies a
high update probability for the hottest partitions. We use the matching procedure
outlined in Section 3.3 to obtain these update probabilities. Figure 12 shows the
validation of Setwrite (update) buffer hit probability for Relation 2 of the second
database trace, which is from a banking application with heavy updates. The access
skew is characterized by three partitions and, therefore, two recursion steps are
required to obtain the update probabilities. Step 1 shows the intermediate result
where only the update probability of the largest partition is correctly determined.
A large number of pages read from this relation are also updated. This will give a

148

Figure 10. Effect of load change on composite (non-sequential)
buffer hit probability of R1 & R4

L 4
::::::::::::::::::::::::

.

/
- .L ,~.-* , . a 3 " ~ j * - ' " ' . ' Z ~ .~ *r .4-~.~L.~..~..--"::....~-

L ~.ar'.,,~P~"~..t['~.~" .-t... =.~ fActoR - 1-a

" "

_ . L _ _ _ . - . . . I . - - - .
0 4000 8000 I ~

BUFFER SIZE

Figure 11. Effect of load change on composite (non-sequential)
buffer hit probability of R1 & I 1

~. . .2--2" ' . : . . -

° 22~'~[ORIGm~_ LOAD
I- , ~ = , . t ~ ~ LoAD fACTOR = 1:2
/ ~ ; r r ~ : ~ ~ - . LOAD FACTOR = 1:4

m I _ . ~ 1 ' ~ - ~ " 3 - - - LOAD FACTOR = 2 :1
d ~ 1 ~ --"4"'" LOAD FACTOR = 4:1

:FF
~IF , , , , , , ,

0 4000 8000 12000

BUFFER SIZE

very noticeable invalidation effect (i.e., a stress case to validate the methodology).
The Setwrite buffer hit probability matches only if the update probabilities for each
of the logical partitions are well predicted. The curves are plotted in logarithmic
scale since the sizes of the hot partitions are small.

We now show by a simple example that to estimate the multi-node buffer
invalidation effect, only the random access component needs to be considered, while
the rereference component should be excluded. Consider the following example
with a two-node system. Assume that each transaction only accesses one page of
data. It rereferences the page nine times while making an update during the last
rereference. We further assume that the first reference, which is a random access,
has a buffer hit probability of 0.1. The overall buffer hit probability would be 0.91
since the other nine out of the ten references are hits. In a two-node system, if the

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 149

Figure 12. Validation of Setwrite buffer hit prediction

/ / 4.-'? ~' .~, SIMULATION

• --- PREDICTION: S'I~P 2

, " .1""

. . -o

I " i ' l l ~ l I I I I I I I I J I I I I f I I I J I I I

1 O0 1000 10000
BUFFER SIZE

transactions are randomly routed between the two nodes, we expect the buffer hit
probability of the first (random) reference to be the same at either node. A page
update in a node causes an invalidation in the other node if a copy of that page
resides in the buffer of the remote node. Therefore, the probability that the final
update would cause a buffer invalidation at the other node would be the same as
the buffer hit probability (0.1) of the initial random access, not the overall buffer
hit probability (0.91).

Figure 13 shows the effect of cross-node buffer invalidation on the buffer hit
probability for the above relation. This information would be useful in predicting
the effect of migrating from a single node to multi-node environment when database
load increases. There is a sharp drop in buffer hit probability due to the invalidation
effect for the multi-node case. However, this is accurately captured by the proposed
methodology as the match between simulation and predicted curves is excellent
both for random and overall non-sequential buffer hit probabilities (for the buffer
sizes of 250 and 500 pages/node). Note that the buffer hit probability curves for
250 and 500 pages are close to each other beyond a single node. This is due to
the multi-node invalidation effect, since the effective number of hot pages that can
be retained in the buffer becomes smaller than 250 pages (Dan et al., 1994). /Mso
note that the invalidation effect has a stronger impact on the random buffer hit
probability than on the overall non-sequential buffer hit probability. This is due to
the fact that rereferenced pages are always found in the buffer since invalidation can
only cause a buffer miss for the first reference to the page. If the two components
(random and rereference) were not separately accounted, the invalidation effect
will be over predicted as explained in Section 2.

150

Figure 13. Validation of buffer hit prediction for multi-node
environment

/
~ . ~ ---~-- RANDOM HIT: BUFFER SIZE=250
or~.~. ~ ---2-- RANDOM HIT: BUFFER SIZE=500

I ' ~ 1 OVERALL HiT: BUFFER SIZE=250
J " ~ 2 OVERALL HIT: BUFFER SIZE=500
t ~ ' - ' ~-.~ ANAI_YSIS CASES

I I I I I I I
2 4 6 8

NUMBER OF NODES

Conclusions

In this article, we showed that, from a database reference trace, the database
accesses can be effectively categorized into three types of access patterns: (1) random
accesses by transactions, (2) locality within a transaction due to rereferencing, and
(3) sequential accesses by queries. For buffer managers with prefetch capability
for sequential accesses, the synchronous database I/Os mainly come from random
accesses. Thus, the main issue is to characterize the random access pattern and
predict its buffer hit probabilities under different buffer sizes. We proposed a skew
characterization method that logically groups the pages into a small number of
partitions such that the frequency of accessing a page within a partition can be
treated as equal. We also developed an algorithm that can be used to infer the
access skew from the buffer hit probabilities for a subset of the buffer sizes. This
avoids explicit estimation of individual access frequencies for a large number of
database pages. The skew characterization algorithm is recursive. At each recursion
step, it divides the smallest partition into two new partitions and determines the
sizes and access frequencies to the two new partitions. The algorithm terminates
when the maximum number of partitions is reached or the difference between the
predicted and the simulated buffer hit probabilities is within some desired accuracy.
We provided extensive validation of our algorithm using production database traces.
The characterization algorithm provides excellent buffer hit estimates for both the
random access and the overall buffer hit probabilities.

The knowledge of database access skew is useful for both workload management
(buffer pool allocation, transaction routing, etc.), as well as capacity planning for
changing transaction mix and rate. We showed how the characterization of the
individual database files can be used to estimate the buffer hit probability of a

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 151

composite workload where data from more than one file are buffered in the same
buffer pool. Our estimate matched very well with the buffer hit probability obtained
through a trace driven simulation. This approach can be used to predict the buffer
hit probability under changing workload mix and rate. Also considered is the issue
of predicting the buffer hit probability when migrating from a single node system
to a configuration with multiple nodes. In a multiple node environment, cross-node
buffer invalidation effect reduces the local buffer hit probability. The invalidation
effect is sensitive to the skewness of the access pattern. We showed that the skew
characterization can accurately predict this effect.

Acknowledgement

We would like to thank Joel Wolf and Steve Lavenberg for their comments and
suggestions, and Ted Messinger for providing us with the trace.

References

Chou, H.T. and Dewitt, D.J. An evaluation of buffer management strategies for
relational database systems. Eleventh International Conference on linty Large Data-
bases, Stockholm, Sweden, 1985.

Cornell, D.W. and Yu, P.S. Integration of buffer management and query optimization
in relational database environment. Fifteenth International Conference on Very
Large Databases, Amsterdam, Netherlands, 1989.

Dan, A. and Towsley, D. An approximate analysis of the LRU and FIFO buffer
replacement schemes. ACMSIGMETRICS, Denver, CO, 1990.

Dan, A., Dias, D.M., and Yu, RS. Buffer analysis for a data sharing environment
with skewed data access. IEEE Transactions on Knowledge and Data Engineering,
6(2):331-337, 1994a.

Dan, A., Yu, P.S., and Dias, D.M. Performance modelling and comparisons of global
shared buffer management policies in a cluster environment. 1EEE Transactions
on Computers, 43(11):1281-1297, 1994b.

Dan, A., Yu, RS., and Chung, J.Y. Characterization of database access skew in a
transaction processing environment. IBM Research Report RC 17436, 1991.

Date, C.J. and White, C.J. A Guide to DB2, Third edition, Reading, MA: Addision-
Wesley, 1989.

Effelsberg, W. and l_,oomis, M.E.S. Logical, internal, and physical reference behavior
in CODASYL database systems. ACM Transactions on Database Systems, 9(2): 187-
213, 1984.

Effelsberg, W. and Haerder, T. Principles of database buffer management. A C M
Transactions on Database Systems, 9(4):560-595, 1984.

Faloutsos, C., Ng, R., and Sellis, T. Predictive load control for flexible buffer allo-
cation. Seventeenth International Conference on Vely Large Databases, Barcelona,
Spain, 1991.

152

Gray, J., ed. The Benchmark Handbook for Database and Transaction Processing Sys-
tems. San Mateo, CA: Morgan Kaufmann, 1991.

Hawthorn, E and Stonebraker, M. Performance analysis of a relational data base
management system. ACMSIGMOD, Boston, MA, 1979.

IBM Database 2 Administration Guide, Vol. III, Section 7, Performance Monitoring
and Tuning, SC26-4888-00, 1993.

Kearns, J.P. and Defazio, S. Diversity in database reference behavior. Performance
Evaluation Review, 17(1):11-19, 1989.

Kronenberg, N., Levy, H., and Strecker, W.D. VAXcluster: A closely-coupled dis-
tributed system. ACM Transactions on Computer Systems, 4:130-146, 1986.

Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, LL. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

Ng, R., Faloutsos, C., and Sellis, T. Flexible buffer allocation based on marginal
gains. ACMSIGMOD, Atlantic City, NJ, 1990.

Nicola, V.E, Dan, A., and Dias, D.M. Analysis of the generalized clock buffer
replacement scheme for database transaction processing. ACM SIGMETRICS,
Newport, RI, 1992.

Press, WH., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. NumericaIRecipes.
New York, NY: Cambridge University Press, 1986.

Rodriguez-Rosell, J. Empirical data reference behavior in data base systems. Com-
puter, 9(11):3-13, 1976.

Sacco, G.M. and Schkolnick, M. Buffer management in relational database systems.
ACM Transactions on Database Systems, 11(4):473-498, 1986.

Smith, A.J. Sequentiality and prefetching in database systems. ACM Transactions
on Database Systems, 3(3):223-247, 1978.

Strickland, J.R, Uhrowczik, RE, and Watts, V.L. IMS/VS: An evolving system. IBM
Systems Journal, 21:490-510, 1982.

Tay, Y.C., Suri, R., and Goodman, N. A mean value performance model for locking
in databases: The no-waiting case. Journal oftheACM, 32(3):618-651, 1985.

Teng, J.Z., and Gumaer, R.A. Managing IBM Database 2 Buffers to Maximize
Performance. IBM Systems Journal, 23(2):211-218, 1984.

Van den Berg, J. and Towsley, D. Properties of the miss ratio for a 2-level storage
model with LRU or FIFO replacement strategy and Independent References.
IEEE Transactions on Computers, 42(4):508-512, 1993.

Verkamo, A.I. Empirical results on locality in database referencing. ACMSIGMET-
RICS, Austin, TX, 1985.

Yu, ES., Dias, D.M., and Lavenberg, S.S. On the analytical modeling of database
concurrency control. Journal oftheACM, 40(4):831-872, 1993.

Yu, ES. and Cornell, D.W. Optimal buffer allocation in a multi-query environment.
Seventh International Conference on Data Engineering, Kobe, Japan, 1991.

VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 153

Appendix

In this appendix, we outline the analysis of the LRU replacement policy (Dan and
Towsley, 1990), which is used to derive the buffer hit probability for a database
consisting of multiple partitions. Let the database consists of K partitions, and the
access frequency and size of the i th partition be o~i and Di, respectively. Let B be
the size of the buffer. To estimate the steady state buffer hit probability, we first
estimate the average number of pages of each partition in the buffer. Let Xi(j)
denote the average number of pages of partition i in the top j locations of the
LRU stack. Therefore, the buffer hit probability of the i th partition is estimated as

K Hi = Xi(B)/Di, and the overall buffer hit probability for a page as H = ~ i=1 Oil

Xi(B)/Di. Let Pi(l') be the probability that the jth buffer location from the top of
the LRU stack contains a page of partition i. Then,

J
Xi(j) = Y~pi(l). (2)

l=l

A recursive formulation is used to determine pi(j+l) given Pi(j) for j _> 1.
Consider a smaller buffer consisting of the top j locations only. The buffer location
(j+ l) receives the page that is pushed down from location j. Let ri(j) be the rate
at which pages of partition i are pushed down from location j. The estimation of
Pi(]) is given as follows.

r~(j) = a~(1 X~,j,)(~ (3)
Di "

(This is referred to as the conservation offlow as the rate of type i pages brought
into the top j buffer locations must be equal to that taken out of them.)

Pi(j + 1) ,~ K j = 1 / 3 - 1. (4)
~]i=1 T i (j) '

Equations 2, 3, and 4 can be solved iteratively, with the base condition ofpi(1)
= o~i. At the point when Xi(]) is very close to its limit (Di), Xi(j) may exceed Di
because of the approximation in the above equations. This is corrected by resetting
Xi((j) to Di whenever Xi(j) exceeds Di and ri(j) is taken to be zero for all subsequent
steps for that partition.

The buffer hit probability of a composite workload can also be predicted using
the above analysis. Assume the workload is composed of M files. Each file may
have a different skewed access pattern. Let Km be the number of partitions in the
m th file. Also, let o~i,m and Di,m be the frequency and sizes of the i th partition

of the m th file. For the LRU analysis, the total number of partitions is the sum
M of all the partitions of the component files, that is, K = ~ r a = l Kin. Let Am be

154

the access rate (load) to the m th file. In the composite workload, a new index,
I(i ,m), can be defined to reference the i th partition of the the mth file. Then the
normalized frequency to each of the K partitions are given by

(5) O~/(i,m) -- M
~m=l Am"

The above LRU analysis methodology can again be applied to estimate the buffer
hit probability of the composite workload.

