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Abstract. Non-quantitative information such as documents and pictures pose in- 
teresting new problems in the database world. Traditional data models and query 
languages do not provide appropriate support for this information. Such data are 
typically stored in file systems, which do not provide the security, integrity, or query 
features of database management systems. The hypertext model has emerged as 
a good interface to this information; however, finding information using hypertext 
browsing does not scale well. We developed a query interface that serves as an ex- 
tension of the browsing model of hypertext systems. These queries minimize the 
repeated user interactions required to locate data in a standard hypertext system. 
HyperFile is a prototype data server interface. In this article, we describe Hyper- 
File, including a number of issues such as query generation, query processing, and 
indexing. 
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1. Introduction 

Hypertext  (Conklin, 1987) is emerging as a model  for the managemen t  o f  loosely- 
s tructured information.  The  key idea is to view data as a collection of  "cards" or  
nodes  that  are linked in a variety of  ways. Each  node  may contain text or  mult imedia 
information.  End  users can view one or more  cards at a time, and can traverse 
links to view other  nodes. 

Hypertext  systems are currently built on top of  file-based storage systems. This 
means  that  they often do not  provide adequate  data managemen t  facilities such as 
indexing, concurrency control, and recovery. Storage systems for hypermedia  must  
provide these facilities (Halasz, 1988; Lange, 1992; Grelnbaek, 1994). To add data 
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management facilities to a hypertext system, one can hard code the facilities into an 
existing system, or have the hypertext system store its data in an existing database 
management system. We feel the second approach is far superior, since one does 
not have to "reinvent the wheel" in every hypertext system built. 

To run a hypertext system on top of an existing database management system, 
there are two options (Figure 1). Under option (a), a monolithic hypertext system 
interacts directly with the DBMS. The hypertext system must map its objects into 
the data model supported by the DBMS, either relational or object-oriented. To 
manipulate data, say to retrieve a particular node, the hypertext system must generate 
the appropriate query to the underlying DBMS. Option (b) differs from option (a) 
in that the hypertext system has been split into two components. The Interface 
System handles all interactions with the end user, rendering nodes on the screen, 
presenting menus to the user, showing "buttons" for traversing a link, and so 
on. What we have called HyperFile is a system that captures the common data 
management functionality needed by most hypertext interfaces. The key idea is that 
a single generic HyperFile system can tailor the data services offered by the even 
more generic DBMS to better serve a particular class of applications, in this case, 
hypertext applications. (Note that we do not rule out direct access to the DBMS 
by the Interface System. This is shown by a dotted line in Figure l(b).) The term 
"blade" has recently been coined (Stonebraker, 1993; Ubell, 1994) to refer to this 
type of add-on system that enhances a DBMS for a particular class of applications. 
(This is analogous to how a blade is added to a razor. I) Using this notion, HyperFile 
can be viewed as a blade for hypertext management. 

There are at least four types of functionality that HyperFile can provide: 

1. Data Model HyperFile presents to the Interface System a hypertext data 
model. From the point of view of the underlying DBMS, this "model" is 
simply a class library or pre-defined schema. 

2. A Query Language. The common queries that the Interface System must 
generate are captured more easily and naturally in this language than in the 
underlying DBMS query language. HyperFile translates the incoming queries 
into DBMS queries, in much the same way as C+ + is translated into C by 
some compilers. 

3. Indexing Facilities. HyperFile can implement indexes that speed up the com- 
monly expected hypertext queries. These indexes enhance, rather than replace, 
the index facilities provided by the underlying DBMS. These HyperFile index 
structures are stored in the DBMS, which treats them as application data. 

4. Distribution Facilities. If the hypertext objects are stored on a collection 
of independent DBMSs, HyperFile can provide transparent access to these 
objects. If the underlying DBMSs are already integrated into a distributed 

1. The implication is also that a company will make more money selling the blades than selling the razor. 
Our discussion here is independent of the financial aspects. 
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Figure 1. Monolithic hypertext system vs. HyperFile 
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DBMS, the distribution facilities may be unnecessary. However, in many 
cases, the underlying DBMSs are not integrated at the database system level 
(perhaps because they are from different vendors), so HyperFile can provide 
the necessary "glue" without requiring changes to the DBMSs. This glue can 
come in the form of a naming framework for distributed hypertext objects, 
facilities for following remote pointers, and facilities for indexing distributed 
collections of objects. 

Typically, the Interface System (Figure l(b)) runs on an end-user workstation, 
while the DBMS runs on one or more shared back-end servers. Although HyperFile 
could conceptually run at either the front or back end, we believe it is advantageous 
to run it at the back-end server where the DBMS resides. This is because a single 
HyperFile query may generate multiple DBMS interactions, examining much more 
data than the query ultimately returns. By placing HyperFile at the back-end, we 
can achieve an additional significant improvement over the monolithic approach of 
Figure l(a): The data intensive hypertext search operations are performed tightly 
coupled to the DBMS, as opposed to transferring large volumes of data over the 
network for processing at the front-end. 

The key to the success of a system like HyperFile is that it captures the data 
model and services needed to simplify the design of the Interface System. In 
addition, its indexing facilities should improve performance of common queries. 
In this article, we present the design of HyperFile and argue that it does satisfy 
the above criteria. We have implemented a prototype version of HyperFile and 
an Interface System, and have shown that HyperFile does significantly simplify the 
Interface system. We have also evaluated the performance of HyperFile's indexing 
facilities, and identify the cases where substantial improvements occur. We have also 
implemented and evaluated distribution services for HyperFile, but these will not 
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be discussed here (they were described by Clifton and Garcia-Molina, 1991). Final 
validation of HyperFile and the blade concept in general will, of course, come only 
over the years. However, we feel that this article presents an important first step: 
it gives a detailed description of a hypertext blade and its functionality. We believe 
that this article can serve not only hypertext applications, but other application 
areas as well, by showing in detail one case study of a blade and the design and 
performance issues involved. 

We compare HyperFile with other approaches to managing Hypermedia data- 
bases in Section 3; we first give a description of the data model and query language 
we provide. Following Section 3 we discuss certain key aspects of HyperFile in 
detail: 

• A Query Processing algorithm for HyperFile queries is given in Section 4. 

• Indexing of HyperFile queries is discussed in Section 5. 

• User Interface ideas and experiences are given in Section 6. 

The Eiffel object-oriented language was used as an implementation vehicle for 
the prototype HyperFile server. This has given us considerable flexibility in modifying 
the prototype as we have developed new ideas, and it also shows the viability of 
implementing HyperFile on an Object-Oriented DBMS. This prototype runs on a 
variety of platforms, and has been used for experiments with various aspects of 
HyperFile. In Section 5.5.1 we discuss results of experiments with indexing. Section 
6 also makes use of this prototype in conjunction with a sample application. 

2. Data Model and Query Language 

What is the right data model for a hypertext application? There is a spectrum of 
choices. At one end, we could have a very rich model, with many object classes. 
For instance, we could have one object type for textual nodes, another for image 
nodes, another for table of contents nodes, another for hypertext link nodes (giving 
information about the link), and so on. For each object type, the model would 
define the desired fields. For instance, a text node could have a date field, a body 
field, an author field, and so on. 

However, by preordaining the types of objects and their structure, a rich model 
makes it hard to deal with diversity. For example, some Interface Systems may 
require additional or fewer fields within an object of a given type. Document 
structure is somewhat free-form; users will often find that the predefined structures 
do not fit their needs (this problem occurs in areas other than Hypermedia, see 
Zdonik, 1993). 

We propose, instead, an object model at the other end of the spectrum. There 
is a single object class, but this class is "freeform." Essentially, each object is simply 
modeled as a set of tuples of the form <tuple_type, key, data>. Each tuple represents 
a property of the node, with the tuple_type being its name, the data being its value, 
and key being a short property that distinguishes that value from others of the same 
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Figure 2. HyperFile data model 

{ (String, "Title," "Main Program for Sort Routine") 

(String, "Author," "3oe Programmer") 

(Text, "Descript  ion,"  < Arbitrary text description. > ) 

(Text, "C Code," < Text of  the Program > ) 

(Text, "0b jec t  Code," < Executable for module > ) 

(Poin ter ,  "Called Routine,"  < Pointer to another object > ) 

(Poin ter ,  "Library ,"  < Pointer to a library used by this routine > ) } 

tuple type. These tuples can contain text, pictorial data, keywords, bibliographic 
information, references and pointers to other objects, or arbitrary bit strings. A 
sample set containing, for example, a module from a Software Engineering system, 
is given in Figure 2. 

The system keeps a Tuple Type Definition Table that lists the allowable tuple 
types, giving for each the permitted data types that can occur in the key and data 
fields. For example, the tuple type St r ing  shown in Figure 2 must be defined in 
the Tuple Type Definition Table; its entry would specify that a tuple of this type 
must have a string key and a string data value. The Poin ter  tuple type is defined 
to have a key of data type "string" and a data component of type "object ID." An 
application can add entries into the Tuple Type Definition Table. For example, an 
application could define 0bj ect_Code to be a tuple type where the key would name 
the target machine (a string), and the data (binary) would be the actual object code. 
This would be a convention between applications; HyperFile would only understand 
0bject_Code as a tuple type having a string as a key, and arbitrary bits as data. The 
data model does not understand (or restrict) the concepts of "target machine" or 
"object code" (except that the basic representation of "target machine" is a string, 
and of "object code" is a sequence of bits). Tuple type definitions extend across the 
HyperFile database, which encourages the sharing of data between interfaces. In a 
sense, the Tuple Type Definition Table represents the "schema" of the application 
databases. 

Tuples may contain pointers to other objects, as shown in the above example. 
It is also possible for an application to use multiple HyperFile objects and pointers 
to store what the end user views as a single "document." For example, one text 
processing application may wish to store an entire paper in a single object, while 
another may store each paragraph in a separate object, linking them together into 
sections and chapters with additional objects. This is entirely up to the application. 

We can also use this capability to create sets of documents (used in set filter 
queries; Section 2.1.2). A set of objects is created using a basic object, with tuples 
containing pointers to the objects in the set. The set of objects {A, B, C} is simply 
an object containing three tuples, one of which points to each of A, B, and C. Figure 
3 shows a set S containing three objects: M (from the previous example), N, and 
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Figure 3. Set of routines from a software engineering application 

L 

S string i A u t h o r  ! J P o i n t e r  i p r i n t f  : 
Pointer i element ! Pointer i L i b r a r y  i 

Pointer i element i Pointer i C a l l e d  ... i C 

Pointer !element i - -  ... : ... : S t r i n g  T i t l e  : ... 

S t r i n g  A u t h o r  : J o e  ... 

N T e x t  ! O b j e c t  ... i <binary> 

the library L. Note that M, the program object shown above, can be used as a set 
containing the library L and the called routine C. This representation has a number 
of advantages over having a special container type for sets: 

• The query language has a single set of operators. Every object in the system 
is of the same class. 

• Sets can be permanent, in the same manner as any object is made permanent.  
This allows users to build "private libraries." 

• It is easy to build annotated bibliographies. Since a set is an ordinary object, 
associating text, keywords, and other information with it is easy ((just add 
descriptive tuples to the set). 

• A paper that contains references can also be used as a set of the referenced 
documents. This allows easy "literature search" operations. 

The set operations provided for individual objects also have the appropriate meaning 
for sets of objects defined in the above fashion. Since two sets S and T are actually 
sets of triples, where each triple points to an object in the set, S t_J T produces a 
new set of triples which points to all of the objects in either S or T. In fact, the 
primary use of these operations is likely to be on documents which are considered 
to be "sets of objects" rather than on individual items. 

In most cases, a HyperFile database will contain a root set of all the objects in 
the database, much like a library card catalog. This allows searches over the entire 
database. However, the use of sets allows the scope of queries to be restricted if 
desired. This has a number of uses: A single query could construct a set on which 
a variety of further queries can operate; a user can repeatedly restrict the items of 
interest without having to repeat queries; or a query could operate on an already 
existing "mini-database." The root set could also serve as the root of a directory 
(the objects in root would be sets), allowing a hierarchical structure of the data. 

As discussed at the beginning of this section, the HyperFile data model we 
are proposing is extremely simple. The disadvantage is that Interface Systems that 
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require richer object types will have to build them out of simpler objects. The 
advantage is that with a simple model, HyperFile is able to serve a wider class 
of hypertext applications. Furthermore, with the appropriate query language (such 
as the HyperFile Interface Language described later in this section), dealing with 
"collections of simple objects" should be as simple as dealing with richer objects. 

To illustrate these points, consider the "pointer" triples illustrated in Figure 
2. The pointer has a key that defines its meaning, for instance, whether it points 
to a "bibliographic reference" or a "called routine." These keys can be used for 
searching. 

However, the Interface System cannot conveniently attach more information 
to a pointer (e.g., the date it was created and the name of the creator). To do 
this, the Interface System can create an auxiliary object. This object contains the 
relevant properties for the pointer (e.g., creation date, creator's name). The pointer 
in the original document points to the auxiliary object, and it in turn points to the 
referenced object. This also makes it possible to have a back pointer to the original 
document. As we will see in Section 2.1, our query language easily allows searches 
over both types of pointers (e.g., either following pointers with key "bibliography," 
or following pointers that in their auxiliary object have a certain creation date). In 
summary, Interface Systems that require a richer structure than what is provided 
by the basic model can provide it; Interfaces that do not need this richer structure 
are still able to user HyperFile. 

Note that objects are represented as sets, so triples are not ordered within 
an object. This restriction substantially simplifies our language. Ordering can be 
obtained by linking the components together (e.g., part A points to part B which 
points to part C). As an alternative, ordering can be indicated by using a number 
in the key field. 

A brief summary of the HyperFile data model is: 

Object ~ {Triple} 
Triple ~-- (Tuple_Type, Key, Data) 
Tuple_Type ~-- identifier 
Key ~ Date I Numeric I Stringlt,ointer 
D a t a  ~ Date I Numeric I StringlPointer I Binary Large OBject 

Identifiers that appear as tuple types must exist in the Tuple Type Definition Table, 
whose entries have the following structure: 

Tuple_Type_Entry +-- <identifier, Key_Data_Type, Data_Type> 
Key_Data_Type ~ "string" I "numeric" I "date" I "pointer" 
Data_Type ~ "string"l"numeric"l"date ' l"pointer"l"BLOB" 

2.1 HyperFile Query Language 

The Hyperfile Interface Language (HIL) is used to represent queries. By imple- 
menting the HyperFile data model as a user-defined type on an extensible database 
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system (Stonebraker and Rowe, 1986), we can also define new operations on that 
type, allowing a query language that reflects the needs of the users. 

Much of the motivation for HyperFile queries comes from the browsing tech- 
niques of hypertext (Conklin, 1987). Browsing provides a very unrestricted method 
for searching; users of hypertext databases will often find things in ways not foreseen 
by the database designer. The problem with browsing is that it is labor-intensive; 
selection is done by manually navigating through the data. This is apparent with 
the World-Wide Web (Berners-Lee et al., 1992). 

We use ideas from the information retrieval world to solve this problem. Rather 
than browsing through a large set of items, users issue queries that filter this set and 
produce new sets (much the same idea as the computerized card catalogs in some 
libraries). These techniques can limit the user to what the database designer believes 
to be useful queries; however we go beyond traditional Information Retrieval systems 
in that links in the data can be used by the queries to produce new sets "on the 
fly." Utilizing the links within the queries allows many of the benefits of browsing 
without the time consumed by the step-by-step "manual" approach. These queries 
allow the user to construct a small set of potentially interesting objects, which can 
then be viewed using a browsing approach. Manual browsing will also be helpful 
to give the user ideas as to how to define a query; however HyperFile queries can 
eliminate considerable manual interaction in between these two browsing phases. 

Our filter queries provide for the common queries we expect to see in hypertext 
applications. As a matter of fact, we interviewed a number of potential users of a 
hypertext interface to determine what constraints their requirements would place 
on the storage system for a Hypermedia system. These users included hardware 
designers, programmers, hypertext users, and users of other document retrieval 
systems (Clifton et al., 1988). From our discussions we learned that chained queries 
(combining separate filtering criteria into a single query), pointer dereferencing 
and, of course, selection were very common. We believe that the vast majority of 
searches in such applications can be easily and succinctly expressed in our language. 

The most interesting class of HyperFile queries are filter queries. The types of 
retrievals performed by these queries fall into two categories: 

• Retrieval along pointer chains. This is important both for references and for 
retrieving parts of objects. These queries are the major difference between 
hypertext and conventional databases. 

• Searches for objects meeting particular criteria. These are related to con- 
ventional database queries. The queries will look for specifics like keywords. 
They may also look for types of relationships between items (particular 
patterns of pointers to other objects). 

In addition to filter queries (which retrieve multiple objects), we need queries that 
can manipulate individual objects. These Basic Filters are queries that retrieve 
selected triples from within an item. For example, we may desire the abstract (a 
tuple within a document) rather than the entire document. 
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Figure 4. Syntax of top-level of HyperFile query 

query ::= expr ~ object Basic Query, produces a new object 

expr :: = object 

:: = ( tuple_type, key_value, data_value) The set consisting of the given literal tuple 

:: = expr setop expr Basic set operations: Union, Intersect, etc. 

:: = expr basefilter Basic filter, described in Section 2.1.1 

:: = expr setfilter Set filter, described in Section 2.1.2 

setop ::= U , N , -  

The Basic set operations (union, intersection, difference) are also provided. 
These take an object (or set of objects), and return a new object (or set) without 
modifying the original. Changes are made to a single object with these functions 
as well. 

It must be remembered that the HIL is embedded in a host programming 
language. Object identifiers are actually stored in variables in the host language. 
The HIL is not in itself a "complete" programming language, nor is it intended as 
a user interface. It is a query language for use by programmers writing a Hypertext 
interface system. 

The rest of this section describes specific features of the query language. Although 
most of the features are covered, this is by no means a user manual for the language. 
We will briefly mention some basic operations, then go into detail on filtering queries. 
Finally we will describe how data is transferred between HyperFile and applications. 
We will also give a running BNF for the HIL; the top level (including basic set 
operations) is shown in Figure 4. 

2.1.1 Basic Filters. These are operations that take an object away, and return a 
new object that includes a subset of triples of the original. They are based on triple 
selection using pattern matching. Perhaps it is easiest to start with an example. 
Given a document (object ID) D, we can construct a new object consisting of just 
the authors of the original document as follows: 

D(string, "author", ?) --+ object ID 

This is the triple selection filter. Note the use of the ?, a pattern matching 
character that matches any data item. It can also be used in the key or tuple 
type fields. Standard range expressions are also allowed for basic data types (date, 
numeric, regular expressions for strings). 

Filters can also be joined using and, or  and not.  For example, 
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Figure 5. Syntax of a HyperFile basic filter 

basicfilter ::= basicfilter basefilter 

basefilter ::= (typespec, key, data) 

::= basefilter and basefilter 

::= basefilter or basefilter 

::= not basefilter 

key :: = 

data :: = 

matching-expr ::= 

typespec : :  = 

: : =  

matching-expr 

matching-expr 

literal of appropriate type 

expression of appropriate type 
? 

application-communication 

name of type of this triple 
application-communication 

Described in Section 2.1.3 

Described in Section 2.1.3 

D( (string, "author", "Chris*") OK (string, "author", "Hector*") ) 

--~ object ID 

returns author triples in D, which have either Chris or Hector  as the prefix of the 
data. Figure 5 contains a description of the syntax of basic filters. 

2.1.2 Set Filters. Set filtering queries are used when the user has a large set of 
potentially interesting objects (perhaps the entire database), and wishes to find a 
small set of items which are actually of interest. We assume that the user (or 
application) has some idea of what makes an object interesting, and how the user 
would manually browse the database given the time (which links would be followed, 
etc.). The first of these gives the criteria on which to filter (much as in an Information 
Retrieval system). The second gives the scope of the query, and allows HyperFile 
to follow links in the manner of hypertext browsing. 

In particular, filtering queries start with a set of objects, and produce a new 
set which may contain some of the items in the original, as well as items which are 
reachable from those in the original set. There are two types of operations which 
happen in a query: 

• An object may be tested to see if any of its tuples match particular criteria 
(for example, does the item contain object code?). 
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• A pointer may be followed; the item pointed to will become one of those 
being processed. 

A sample query, to find all objects in the set S (as shown in Figure 3), which were 
written by Joe Programmer, is: 

S I (String, "Author", "Joe Programmer")--~ T 

This takes the objects pointed to by S (L, M, and N); then checks to see if they have 
a tuple of type S t r i n g  with the key Author and data Joe Programmer; and puts 
the resulting items (only M in the example) into the set T. Processing is analogous 
to Unix pipes: the objects in S flow through a series of filters (in this case a single 
one), and the objects that satisfy the conditions in the filters end up in T. 

We can also write a query to find the programs in S and in the routines they call, 
which are written by Joe: 

S I (Pointer, "Called Routine", ?X) I TT x I (String, "Author", 
"Joe Programmer") --+ T 

In this case, we again start with the items pointed to by S. Tuples which contain 
the key Ca l l ed  Rout ine  are selected, and the value of the pointer (for example, 
the pointer to C) is placed in the variable X (using the ?X operator). Note that X 
is a set-valued variable, and thus can contain many references. In the next part of 
the query, the values placed in each X are dereferenced using the operator TTx. 2 
This adds C to the set of "possible results" (which becomes {M, N, L}  t_J (C}.)  The 
last part of the query checks for the presence of the author Joe Programmer in the 
items. The objects which meet this criterion (M and C) are placed in the result set 
T, which can be used in further queries just like the set S. Note that the key Called 
Routine is used to select a particular category of pointer; we could use a wild card 
(?) in place of the key Ca l l ed  Rout ine  if we wished to follow all pointers (such 
as the L i b r a r y  pointer). 

Set variables, such as X in the above example, take on a different set of values 
for each object. This allows comparison of tuple values within an item, for example 
choosing programs which are being maintained by their author: 

S I (String, "Author", ?X) I (String, "Maintained By", X)--+ T 

In the portion of the query "Author", ?X; X becomes a set of all of theAuthors of 
the object, and later these are compared against the values of Maintained By tuples. 
If any of these matches a value in X the expression evaluates true and the program 
"passes" the query. 

More complex comparisons are allowed. For example, we may wish to find 
articles with multiple authors: 

2. The TTX operator keeps the pointing object as well as the item referenced. There is also an operator TX 
which keeps only the referenced object. 
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S I (String, "Author", ?X) I (String, "Author", X ~?Y)--+ T 

If an object has only a single Author tuple, X will be set to the name in the data 
field of that tuple. The second part of the filter will also select the same tuple and 
bind ?V to the data field. Since X=V, the tuple does not match and, as there are no 
other author tuples, the object does not pass this filter. In the case of a document 
with two author tuples (with names Chris and Hector) the first part of the query 
will bind both names to X. The second part of the filter will test a tuple (say the 
one with author Chris) and find that there is a binding for X (Hector) which is not 
Chris, and the tuple will match. Since at least one tuple matches, the object passes 
the filter and is placed in the result set T. 

The occurrence of the variable preceded by ? specifies that it is free; without 
the ? it is bound. Filters are evaluated left to right, hence the. leftmost occurrence 
of a variable should be a free occurrence (otherwise nothing will match). Further 
free occurrences add to the set of possible values for the variable for that object. 
Figure 6 contains a description of set filters. Another  way of thinking of matching 
variables is that each instance of an object passing through a filter has its own set of 
variables. Each variable is actually a set of values, which it matches in that object. 
An expression using the variable is true if any of the values in the set would make 
the expression true. A more formal Understanding of matching variables can be 
obtained from the query processing algorithm in Section 4. 

Iteration is also provided, in case we wish to traverse the graph created by 
the pointers. The iteration can occur a fixed number of times, or can continue 
indefinitely (to find a transitive closure of the reference graph). Expanding the 
"called routine" query to check the transitive closure of the called routines in S 
would be done as follows: 

S [ [ (Pointer, "Called Routine", ?X) ] TTx]* I (String, "Author", 

"Joe Programmer") --+ T 

Replacing the ]* with ] 3 would cause the iteration to terminate after three levels 
of pointers have been traversed. The meaning of [<query pa r t> ]  k is to repeat 
<query pa r t>  k times, as if the loop were unrolled and executed straight through. 

This last query illustrates a primary goal of our query language. In a con- 
ventional hypertext system, the above query would require repeated user actions 
(manual navigation). A conventional file system would also require repeated in- 
teractions. With HyperFile, a query can be developed following the browsing style 
of the user: If  I were to browse, I would follow links to called routines, looking for those 
authored by '~loe Programmer." This is then performed with a single request to the 
server. The HyperFile query language is designed around queries that simulate 
browsing; operations are provided to mimic browsing while allowing considerable 
server flexibility in the way the operations are processed. We believe that queries 
like the above are representative of those occurring in a Hypertext environment 
and, hence, must be handled efficiently and naturally. 
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Figure 6. Syntax of Hyperfile Filter Queries 
expr : :=  ... 

: :=  expr setfilter 

setfilter : := [ setfilter ]n 

: :=  [ setfilter ]* 

:: = setfilter setfilter 

: :=  [ filter 

filter : :=  selector 

:: = filter or filter 

: :=  not filter 

: :=  arrow 

selector : :=  (typespec, key, data) 

: :=  selector arrow 

::-- selector selector 

arrow : := T filtervar 

: :=  TT filtervar 

:: = filtervar 

key : :=  matching-expr 

data :: = matching-expr 

matching-expr :: = literal of appropriate type 
:: = expression of appropriate type 
:: -- expression involving matching variable 
: :=  appl icat ion-communicat ion 

matching-variable : :=  ? 

: :=  ?filtervar 

filtervar : :=  identifier 

The query language we have defined so far does not  permit  "joins" between 
sets. For  example, say we have two sets of  documents ,  S and T, and we wish to 
identify documents  that have a c o m m o n  author. This cannot  be expressed with a 
single HyperFi le  query. An  application program would have to extract the authors 
in S (see Section 2.1.3) and then search for those authors in T. Al though our  query 
language could be extended to include joins, we have not  done  so because we 
believe such queries are rare in hypertext applications. The  added  complexity to 
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the query language and the query processing algori thms outweighs the benefi ts  of  
suppor t ing rarely used queries. 

2.1.3 Transferring Data to the Application. The  preceding queries  do not  i l lustrate 
how results are actually provided to the application. Providing just an object  identifier  
to the HyperF i le  server  will re turn  the entire object  (a basic filter with no selection 
criteria). It is also possible to retr ieve certain fields as par t  of  ano the r  query  (for 
example ,  ga ther  the titles of  all i tems found in the query).  

To do this, values of  fields in a tuple are re t r ieved explicitly using the 
opera tor .  The  HyperFi le  query language is used as a:n e m b e d d e d  language;  viewing 
actual  tuple  values is done  by placing the values in var iables  in the appl icat ion 
p r o g r a m m i n g  language.  For  example,  a C appl icat ion p r o g r a m  could contain:  

n= 1; 

S I (String, "Author", "Chris Clifton") I (String, "Title",---+title) --~T 

{ printf("Title ~d: ~.s\n", n++, title) } 

to display individually all of  the titles of  documents  (neatly n u m b e r e d )  in S wri t ten 
by Chris Clifton. 

The above variable title can be of any data type in the applications pro- 
gramming language. HyperFi le  sees this data  only as a string of  bits (a l though 
the type may  be l imited based on the tuple_type field, as descr ibed on page  5). 
For  example ,  a TEX documen t  could be  placed as the data  field of  a single tuple  
(text,  "TeX",  <TeX source>). Applicat ions would t reat  this da ta  field much  
like a file for  use by the TEX processor.  3 Proper t ies  such as the au thor  and title 
of  the documen t  would be placed in o ther  tuples in the same  object  to be  used for  
queries.  

T h e  t ranslat ion f rom a string of bits to a data  s t ructure  in the appl ica t ion is 
analogous  to that  which occurs when  reading and writing files in a file system. This  
can be  used to modify  applicat ions for  use with HyperFi le  with a m i n i m u m  of  effort. 
Ins tead  of  storing data in a file, it is s tored in a HyperFi le  tuple. The  data  s t ructures  
and organizat ion of the applicat ion need not  be  changed.  T h e  appl icat ion can then  
add tuples with proper t ies  to be  used in queries,  even though  this may  dupl icate  
in format ion  already conta ined  in the "file" tuple. 4 

3. The interface between a large HyperFile field and the host language is dependent on the host language, 
As an example, the prototype (which uses Eiffel, an object-oriented language, as the host language) returns 
an object of a type that inherits from FILE, and can be treated as a file by the applications program. We 
could return a socket (file pointer) to a C language application. 

4. An alternative would be to provide a function to extract the property from the "file" tuple automatically. 
This has two problems: It increases query time, and it requires running application code at the server. The 
problem of keeping the duplicated information consistent becomes a problem of keeping the extracting 
function current. Security is also a concern; the function must not be allowed to affect the server or database. 
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Figure 7. Syntax of communication with applications 

application-communication ::= ~ host_variable 
Used in matching_exper; place value in host language variable. 

Note that the above retrieval is explicit; filtering queries that only search for 
objects of interest will return the result set, but not any of the data in the objects 
in that set. This gives the number of items in the result; the user can then decide 
if further queries are needed to restrict this set. These  queries need not send large 
amounts of data (e.g., text, bitmaps). When the set of items of interest is small 
enough that the user actually wants to see the items, a query is issued to retrieve 
just the desired fields. (The syntax is described in Figure 7.) 

We have not discussed queries that update the database. Due to the nature 
of the data, most updates will involve a single object. Examples would be editing 
a document, or running an enhancement program on a picture. We expect that 
updates that affect a number of objects at once to be rare. Therefore, HyperFile 
provides for modification, addition, and deletion of single objects. Wider ranging 
updates may be built as applications. For example, installation of a new compiler 
may require all object code for a machine to be recompiled. An application would 
issue a query to construct a set of all objects containing object code for that machine. 
Each object would then be retrieved, the code recompiled, and the object code 
tuple replaced. 

Finally, note that the query language we have described is not intended for 
end users. Instead, application-specific interfaces will be used, and the application 
will compose the HyperFile query. For example, in a programming environment 
the user may first choose what to search for (variable name, author), and then be 
provided with three main choices in which to look: in the current module, in all 
called modules, or in the entire program containing the current module. 

3. Comparison With Other Systems 

In this section, we briefly compare some common data storage systems to a storage 
system composed of HyperFile and its underlying DBMS (Figure l(b)). We will 
argue that, for loosely-structured hypertext information, HyperFile provides better 
tailored services. 

3.1 File Systems 

HyperFile is probably most similar to a file system, particularly one with self-describing 
data records (Wiederhold, 1987). In these systems, records of a file contain tags 
stating what information is contained in the record, as opposed to either a heavily 
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structured file (where each record contains the same type of information) or totally 
unstructured files. 

Most electronic documents are currently stored in file systems, rather than 
databases. This is because of the flexibility allowed in the contents of a file. This 
freedom is necessary for documents, due to the combination of text, drawings, and 
other media. Many other applications require this as well; databases for software 
engineering systems, CAD tools, and other such applications are often custom- 
designed or built on file systems. In addition, most documents, although structured, 
are not rigidly structured; variations are acceptable when necessary. 

File systems allow this flexibility, but provide little structure in places where it 
is desirable. Items can be grouped in directories, and often hierarchical structure 
of the directories is allowed, but references and other pointers, which are a part 
of many objects, are not recognized by file systems. File systems are inefficient for 
search and retrieval. In a large (and particularly distributed) system, this problem 
is magnified. HyperFile can be viewed as a powerful file server: It provides for 
storage of unstructured data, but allows much more powerful queries based on the 
properties of files (objects) and their relation to other objects. 

3.2 CODASYL Systems 

HyperFile is similar to CODASYL (Data Base Task Group, 1974) in that they both 
provide objects and pointers. However, a major difference between HyperFile and 
CODASYL is that CODASYL pointers must be used in a very structured way, 
as parts of predefined sets. The database schema determines where pointers are 
allowed and what they may point to. All items in a set are of the same type. 
HyperFile does not place such restrictions on the structure of data. Pointers may be 
used freely, wherever the user or application desires. Although there are difficulties 
in providing this flexibility (for example, indexing becomes a much more difficult 
problem, as discussed in Section 5), we feel that the tradeoff is worthwhile for our 
applications. 

Another difference is the query language. The CODASYL query language only 
allows searches over a fixed set; the scope of a search can be determined from 
the database schema. We allow queries that arbitrarily follow pointers. This allows 
for fewer server-application interactions. For a query which covers the transitive 
closure of a portion of the graph of pointers, CODASYL may require many such 
interactions, where HyperFile would require only one. 

3.3 Information Retrieval Systems 

Information retrieval systems provide powerful means for accessing text (Salton, 
1989). The main difference between HyperFile and information retrieval systems 
is the support of pointers. The ability to incorporate pointers as part of the 
"search space" is needed in a Hypertext database (Frisse and Cousins, 1989). Also, 
information retrieval systems typically do not support non-text data. 
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Ideas from information retrieval systems, combined with hypertext methods, can 
be used to form a general interface to a HyperFile database. Information retrieval 
research into automatic indexing (Salton, 1988), automatic structure detection (Salton 
et al., 1994), and natural language (Croft and Lewis, 1987) can be used to generate 
properties for textual objects and a fiat document into a "semi-structured" HyperFile 
document. 

3.4 Relational Systems 

Relational systems provide a regular structure for data. HyperFile supports data 
that do not fit into a regular structure. Although work has been done on placing 
text items in a relational database (Stonebraker et al., 1983; Smith and Zdonik, 
1986), creating a relational database that can support a variety of heterogeneous 
types of data is difficult. Conventional relational systems do not support pointers 
and this is a serious shortcoming for us. Steps have been taken to address some of 
these problems in "advanced" relational systems (e.g., pointers, flexible data types), 
but we address these below. 

3.5 Advanced Database Systems 

Advanced database systems such as object oriented (Maier et al., 1986; Woelk et al., 
1986; Weinreb et al., 1988) and extended relational (Stonebraker, 1986; Schwarz et 
al., 1986; Dadam et al., 1986) provide many of the facilities of HyperFile (objects, 
pointers, queries), but also provide a lot more (like a full programming language 
or an inferencing engine). As discussed in the Introduction, HyperFile is likely to 
be a "value added system" on top of an advanced object oriented storage system. 
It provides a data model, query language, and index structures that are specifically 
tailored to the needs of hypertext applications. 

There are other examples of "blades" to support documents in database systems. 
Atlas (Sacks-Davis et al., to appear) builds a document model on top of a relational 
database. This system adds full-text search and nesting to support structuring 
to the standard relational model. Atlas provides the ability to store and query 
large collections of documents (including full-text search), and provides support 
for pointers. Atlas is perhaps best viewed as a "blade" for supporting information 
retrieval applications. In Christophides et al. (1994), a Standard Generalized 
Markup Language (SGML) data model is built on top of 02 (Deux, 1991). The 
goal here is to represent a structured document in a database. 

HyperFile is similar to these systems in providing support for collections of 
documents. However, the query mechanism is designed around hypertext. The 
support for path queries in HyperFile is much greater (in particular, supporting 
limited depth transitive queries and "pruned" paths) than in either of these systems. 
These location dependent queries allow the user to maintain the mental model of 
"browsing hypertext" while issuing queries. 
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3.6 HyperBases 

Hypertext specific database management systems (HyperBases) are currently being 
developed. These systems need query facilities (Lange et al., 1992; Lange, 1993; 
Schnase et al., 1993; Wiil and Leggett, 1992). HyperFile is a proposal for a 
schema/query facility for these systems. We feel that HyperBase management 
systems should be built using existing DBMS tec:hnology, HyperFile attempts to 
show that this is feasible. 

3.7 G + 

G + is a graph query language developed at the University of Toronto (Cruz et al., 
1987). It has goals in common with HyperFile, and provides a more powerful query 
language. Like HyperFile, G + provides for graph based transitive-closure queries. 
However, computing some G + queries can be NP-hard (Mendelzon and Wood, 
1989). This defeats our goal of providing a simple and efficient back-end data storage 
service. By concentrating on browsing-style object retrieval queries we can keep our 
language simple (an advantage for both computational and interface development 
reasons). We hold that support for sophisticated analysis of the relationships between 
data items (as opposed to retrieval based on those relationships) is not required by 
users of hypertext systems. 

4. Query Processing 

Basic filters and other basic operations are straightforward to process. The algorithm 
for processing filtering queries is more interesting. It is worth noting that the design 
of the query language has allowed a simple and efficient processing algorithm for 
filtering queries, as described in this section. 

First let us introduce a notation for representing queries. Let a query Q be: 

Q : Si F1 F2 . . .  Fn ---+ So 

where Si is the initial set of objects (possibly the result of an expression), So is the 
result set of objects, and each Fi is a filter operation (setfilter) of the form: 

Fi : (type, pattern, pattern) ;; Selection of tuples 

T matching_variable ;; Dereference 

TT matching_variable ;; Dereference retaining referencing object 
13 ;; Iterator starting at Fj, ending at Fi, repeating k times. 

The pattern in the tuple selection filter operation varies depending on the type of 
the value. It may be a string, a range of numbers, or a matching variable. 

Let us look at a sample query: Take all of the items in the set S and choose 
those that contain the keyword Indexing. In addition, follow reference pointers for 
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three levels searching for objects that meet  these criteria. 

S [ I ( p o i n t e r ,  " R e f e r e n c e " ,  ?X) I TTx ]3 I (keyword,  
"Indexing", ?) --~ T 

In the above query, F 1 = (pointer, Reference, ?X), is a selection operation that sets 
the matching variable X. F2 = T Tx, a dereference of the matching variable. F3 is 
the iterator/13, which starts at F1, and causes pointers to be followed for up to three 
levels. The last filter F4 = (keyword, Indexing, ?) does simple pattern matching: 
Any object containing a tuple with type keyword, key Indexing, and any value for 
the data field will pass this section. The initial set Si is S, and T will be bound to 
the result set So. 

Certain temporary information will be associated with each object O which is 
processed by a query. These are: 

O./d The unique Object ID (used to retrieve the object). 

O.next The index of the next filter Fi to process the object. 

O.start The first filter to process the object. For objects in the initial set 

Si this is 1. Objects reached as a result of a dereference will have 

their .start set to the filter following the dereference. 

O.iter# The current iteration of an iterator; this corresponds to the length 

of the pointer chain used to reach O from the initial set. 

O.mvars A table of bindings of matching variables for the object. This is a 

function O.mvars(X) --~ {values for X}. 

The basic means for processing queries is to create a working set W containing 
objects in the original set S.5 An object is taken from the set and passed through 
the query from left to right. At each stage it can pass or fail to pass a filter, and 
may add new objects to the working set. At each stage the object is processed using 
the function E: 

E(Fi, O) -+ {Oz, "" "}, [O1 

E takes a filter and an object; and returns a (possibly empty) set of objects obtained 
through dereferencing, and either the initial object (if it passed the filter) or null. 
The actions of E are determined by the type of the filter Fi: 

• If Fi is a selection (pattern matching) operation, such as F4 in the example 
query, the return set of dereferenced objects is empty. Each tuple of O 
is processed as follows: If the type field of the tuple matches the type 
field of the filter, the key and data fields are checked. If these fields 

5. The choice of data structure for the working set will determine the search order for the algorithm; for 
example, a queue will give a breadth-first search. Work by Kapidakis (1990) shows that a node-based search 
(such as a breadth-first search) will give the best results in the average case. 
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match, the object passes the filter. The pattern can be a variety of things; 
"Matching" depends on the pattern: 

The pattern may be a simple comparison (such as a regular expression for 
strings, or a range of values for a number). In this case, matching involves 
equivalence of the pattern and the field in the tuple. The meaning of 
equivalence depends on the type of the field. 

The pattern may be a ?, such as in F4. 'This matches anything. 

The pattern may set a matching variable. An example of this is F1. The ?X 
adds the value of the field of the tuple to the bindings for X (if the other 
fields match). More formally, O.mvars(X)=O.mvars(X) t_J {field_value}. 
The field matches regardless of the field value, as with ?. 

A matching variable may be used, such as in the example in Section 2.1.2. 
In this case, the field matches if any of the values of the matching variable 
match the field value, that is field_valueE O.mvars(X). 

To be more precise, we will give pseudocode for the E function in the case 
of a selection filter. The details of pattern matching have been left out, as 
pattern matching is straightforward but dependent on the data type of the 
field being compared. 

E( (type_pattern, key_pattern, data_pattern ),O ) : 

for each tuple tEO 

if t. type =type_pattern and 

t.key matches key_pattern and 

t.data matches data_pattern then 

match =true 

Modify O.mvars if key_pattern or data_pattern sets a matching variable. 

if match then 

O.next =O.next + l 

return {}, O 

else 

return {}, null 

• Fi can be a dereference (T or TT). An example of this is F2 in the above 
query (TTJ O. In this case, E returns a set of all of the pointer values of X. 
With T T, o is also returned. 
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E(TX, O) : 

Result_set = { } 

for each xCO.rnvars(X) 

if x is an object ID then 

create an object P for processing 

;; The following line initializes P. 

P.id=x, P.start=Onext + 1, P.next=Onext + 1, P.iter# =O.iter# + 1, P.mvars= { } 

Result_set=Result_set U {e} 

if the filter is a T T then 

O.next=Onext + l 

return Result_set, 0 

else 

return Result_set, null 

Some of the initialization of P in the above needs explanation. P.next is set 
to the filter after the dereference. P.mvars starts empty; the set contains 
no bindings. The use of P.start and P.iter# will be explained in the next 
paragraph. 

• If Fi is an iterator I ) ,  one of two things can happen. If the object has 
already passed through the entire body of the iterator, or if it is the result 
of a k length pointer chain, it continues processing with Fi+l. Otherwise, 
processing continues at the beginning of the iterator (Fj). Note that iterators 
do not actually cause objects to be processed repeatedly. Operations in the 
query language are idempotent; passing an object through the same filter 
many times will not change the result. Iterators instead control how often 
pointers are followed. 

O.start is used to determine if an object has passed through the entire iterator. 
If O.start is greater than j, the beginning of the iterator, then O must return 
to the beginning of the iterator. O.iter# stores the length of the pointer chain 
used to 'reach O. For example, if an object P is reached by dereferencing 
O, P.iter#=O.iter#+l. This is done as part of the dereferencing operation 
shown in the previous section of pseudocode for E. If O.iter#>Ik; 0 is the 
result of a pointer chain of length at least k and is not run back through the 
iteration. 6 

6. O.iter# ~_k is not tested if k = :¢. * may be thought of as (X). 
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Figure 8. Chain of references 

S A B C 

IpointerlReferenee i--J~pointeriReference i--~-~qpointerlReference I --~pointer!Reference I ~ D 

e(I , o): 
if O.start_<j or O.iter#>k then 

O.next=Onext + l 

else 

O.start =j 

O.next=j 

return {}, O 

;; So that O will pass the iterator next time. 

Actual processing occurs by creating a working set and filling it with the 
objects in Si. The .next and .start indexes for each of these objects are 
initialized to 1 (the first filter). Iteration numbers are also set to 1, and the 
.mvars bindings are initially empty. Each object is then taken from the set, 
and pushed through the filters (using the E function) until they either reach 
the end or fail to pass part of the filter. Dereferencing operations may add 
objects to the set. The query terminates when the working set is empty. 

To give a short example, let us assume that we have a set S containing an object 
A. A has a reference pointer to B, B has a pointer to C, and C has a pointer to D 
(see Figure 8). We will run the following query (described at the beginning of this 
section) on the set S: 

S [ I (pointer, "Reference", ?X) I TT x I S I (keyword, 
"Indexing", ?) --~ T 

The object A (the only thing in S) is processed. A.iter# is initialized to 1. In F1 
the matching variable X is set to the pointer (object ID) B. F2 dereferences this, 
setting B.start and B.next to 3, and B.iter# to A.i ter#+l,  or 2. The initialized B is 
then added to the set W. Next, .el continues processing with F4, which checks for a 
keyword Indexing and adds A to T if the keyword is found. B is then removed from 
the set, and processing starts at the iterator F3=I!~ (as B.next=3). Since B.start>l 
and B.iter#<3 we realize B is new to the iterator and the result of a short chain 
of pointers, so B goes to F1 (with B.start=l). Here X is set to C. In F2 X is 
dereferenced; C is initialized with C.start = C. next = 3 and C. iter# =B. iter# + 1 = 3 then 
placed in W. Next B reaches F3, but this time B.start<l so it continues processing 
with F4. When C begins processing (at F3) C.iter#>3 and C exits the iteration 
(continuing with F4). Thus, the query terminates before examining D (which is 4 
levels deep). 
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So far we have assumed that iterators are not nested. We do not expect nesting 
to be common, but it is handled with a slight extension to the above algorithms. 
The iteration number associated with an object 0 (O.iter#) is actually a stack of 
iteration numbers. Where O.iter# is used in the above algorithms, we actually 
use the topmost iteration number, which corresponds to the innermost iterator. 
When a dereference occurs, the new object is initialized by copying the stack, and 
incrementing only the top iteration number. 

Queries that cover the transitive closure of a graph of pointers (queries that 
contain an iterator [<query par t>I* pose a potential problem: cycles in the graph 
of pointers could cause cycles in the processing, preventing termination. This is 
handled by marking objects as they are processed (actually, noting the object ID in 
a table of used items); if a marked object is found in the working set it is ignored. 

However, there is one important subtlety. Consider a query Q = Si FiF2FaF4So. 
Say a particular object O is in the initial set Si, but fails to make it through filter 
F1. Some other object containing a reference to O makes it through F1, and in F2 
(a dereferencing filter) the pointer to O is dereferenced. Now we must realize that 
even though O was seen earlier (at F1), it still needs to be processed starting at F3. 
Thus, our mark table will record not only the identifiers of objects seen by a query, 
but also where in the query they were seen. In particular, mark_tabIe(object_id) will 
store a set of filter numbers. In our example, after processing O at F1, mark_table(O) 
= {1}. After O is processed at F3, mark_table(O) = {1, 3}. Figure 9 gives the 
complete query processing algorithm. 

Note that there is no global state to be maintained between processing of each 
object in the set other than that in the work set W and the markJable. In fact, 
the matching variable table O.mvar and "next filter" O.next are only needed while 
the object is being processed; O.mvar always starts as {} and, in all cases, O.next 
is initially equal to O.start. The only state that must be maintained in W is the 
object ID, iteration number, and starting point in the query. This eases the task of 
parallel processing; to process an object in the set all that must be known is the 
original query Q the information in the object O, and the markJable. 

This also adapts well to distributed query processing. This is done by mapping 
the object ID into the location of the object. When an object is dereferenced, it is 
tested to see if it is local. If not, instead of adding it to the working set W, it is 
sent to the site that contains the item (along with the query Q and the initial site 
that started processing Q). When a site receives such a message, it is either already 
processing the query (in which case it just adds the new item to its working set), 
or it must create a working set and begin processing the query. Results from the 
query are sent directly back to the site which originated the query (which may not 
be the site that sent the reference to be processed). This is only a brief overview; 
for a complete description of the distribution issues in HyperFile see Clifton and 
Garcia-Molina (1991). 
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Figure 9. Query processing algorithm 

For each object_idxCSi do;; ;;Initialize W with objects in Si. 

create an object 0 for processing. 

O.id=x, O.start=l, O.next=l, O.iter#=l, O.mw~rs={} 
append 0 to W. 

While not empty (W) do 

0 = head (W) ;;remove 0 from the set 

If O.start ([ mark_table(O.id) then 

While not null(O) and O.next < n do 

mark_table(O.id)=mark_table(Oid) U { O.next} 
s, 0 = E (FO.nezt, O) 
W=WU s ;; add all dereferences to the set. 

If not null(O) then 

So=SoU{O} ;;add O to the result set 

5. Indexing 

As with many large databases, some HyperFile queries can take considerable time 
to process. A query which searches every item in the database can take time that an 
interactive user would consider unreasonable. Indexing speeds up these searches by 
effectively "precomputing" parts of common queries. Indexing HyperFile queries is 
somewhat different from standard indexing techniques. This is because the scope 
of a query is determined by the pointers in the data, rather than being statically 
determined by the database schema. Extensible indexes (Stonebraker, 1986; Aoki, 
1991) allow user-defined indexing and access methods in advanced database systems. 

For example, a traditional relational index returns tuples in the indexed relation 
based on a search key. Any query which is based on that key with a scope of the 
entire relation can make use of the index (actually, in some cases the index could 
be useful even if the scope were a part of the relation, such as a view which involves 
a selection from that relation). The scope of the query can be determined simply 
from looking at the query and the schema (database catalog). With HyperFile, 
the scope of a query may be dependent on the contents of the objects. A standard 
index over the entire database may return hundreds of objects for a given search 
key; determining which of these objects are in the scope of the query may be more 
expensive than performing the query without the index. However, the HyperFile 
query processor can select a HyperFile specific index that is appropriate to the 
query. 

Our indexing technique starts with the simple idea of attaching an index to an 
object in the database. The index allows lookup of items based on a particular 
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attribute type (the property of the query), and covers objects which could be reached 
from that node following a particular type of link in a "browsing" interface (the 
scope of the query). 

5.1 What is Indexed 

The choice of a key for indexing can be quite varied; just about any type of data 
will serve. This is no different from indexing in a traditional database. However, 
specifying the scope of the index is different. Rather than specifying a relation or 
set which is to be indexed, we must specify a portion of the graph: a place from 
which queries will start, and a type of link to follow. Creating an index thus requires 
specifying three parameters: The anchor point (node) to which the index is to be 
connected, the search key for the index, and the link type which determines the scope 
of the index. 

Figure 10 is a sample database consisting of two types of links (solid and dashed) 
and a single attribute (noted as key). An index has been created at node root on 
the attribute key and the link type solid. A few interesting points to note about the 
index are: 

• Item D is not in the index, even though it has a key of interest. This is 
because the index is for items reachable through solid links, and D is reached 
only through a dashed link. 

• Item / is pointed to by a solid link. However, since it is not reachable from 
root via solid links, it is not in the index. 

• Item G is in the index, even though its parent (C) does not appear in the 
index. Node C is in the scope of the index, but does not appear since it has 
no key attribute. 

The index of Figure 10 will speed up searches whose scope is the solid-link tree 
rooted at root. 

5.2 Structure of the index 

The index itself is structured in a manner similar to a traditional database index. 
B-trees, hashing, and other such techniques are all applicable. However, certain 
special information is required. In addition to pointers from the index to relevant 
objects, objects are required to have back pointers to indexes which potentially 
include them. This is necessary to maintain the index properly. For example, in 
Figure 10, C will have a back-pointer to ensure that updates that add keys to C will 
be reflected in the index. Items D, H, and I do not need back pointers, as changes 
to these objects will not result in their being reachable, and thus they will not be in 
the index. If the dashed links are changed to solid, the presence of back pointers 
to the index in the parents of the links will point to the need for including D, H, 
and I in the index. 
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Figure 10. Index of a tree-structured database 
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5.3 Multiple Indexes 

In a real system, there may be many nodes from which we often make queries. We 
could build an index at each of these nodes, but this leads to space problems due to 
replication of information. Figure 11 provides an example of this situation. Some 
users may wish to query the entire database, using :index root; others may only be 
interested in the subset contained in the tree rooted at A. To allow the efficiency 
provided by indexing to both sets of users, we can construct indexes anchored at 
both nodes (the indexes pointed to by solid lines.) All of the functions described 
at the end of the previous section will work here as well. Note that each object 
which is below A must have back-pointers to both indexes. 

This naive approach has one problem. All of the items in index A are also 
indexed by root. This leads to replication in the indexes. In a large database with 
many indexes, the size of the indexes could in fact grow at a faster rate than the 
size of the database itself. Given that the index grows linearly in the number of 
items indexed, a complete set of indexes on an n node tree of depth k would take 
space O(n • k). A more space-efficient index structure would help, but the indexes 
could still end up requiring more space than the data itself. In addition, updates 
to the database may take a long time because they must modify many indexes. 

This replication can be eliminated by requiring indexes to refer to "lower" 
indexes, rather than directly indexing the entire subtree (illustrated by the indexes 
pointed to by dotted lines on the left side of Figure 11). A search for all items in the 
database (starting at root) that have attribute dog would first find B from the root 
index. Next, the search would proceed along the Next Index pointer to the index 
anchored at A, where it would find D. Note that this increases the time required to 



VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 71 

Figure 11. Tree-structured database with two indexes 
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find an item. In the worst case, putting an index at every node, we end up with a 
linear search and have lost the benefits of indexing. However, we expect the typical 

cost will be much smaller. 
Update in such a system is slightly more complex, although the time required 

is less (due to updating only a single index). This complexity results from the need 
to remove links between indexes when links between objects are changed, in much 
the same manner as objects must be removed from the index in the basic scenario. 

5.4 Single Multiple-Attribute Index 

An alternative to the previous structure is to use a single database-wide index for 
each type of key. In a sense, this is a multiple attribute index (Lum, 1970). However, 
the second attribute in our system is "reachability," rather than an attribute in the 
normal sense. As such, previous techniques do not apply. 

Our method is to use a single primary index on the search key that returns 
a secondary index. The secondary index maps the "anchor points"(nodes in the 
database which have indexes) to the objects that can be found from those anchor 
points. The structure of the primary and secondary indexes could be any of a number 
of things, including B-trees, hash tables, and sorted lists. A naive implementation of 
the secondary indexes, in which each anchor point hashes to a list of all of the objects 
reachable from that anchor point, could require O(n 2) space per secondary index 
(where n is the size of the database). However, all of the objects at many anchor 
points are reachable from other anchors (e.g., in Figure 11 all objects reachable 
from A are also reachable from root). This fact was used to eliminate replication in 
the previous section. In the secondary index, we can associate with a given anchor 
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Figure 12. Single multiple-attribute index 
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point only those objects for which it is the "closest" anchor point, cutting the space 
considerably (worst case O(n)). A number of algorithms which can be used for our 
secondary index are presented in (Jagadish, 1990). 

For example, Figure 12 is a sample index containing entries for a few keywords 
based on the database of Figure 11 (with anchor points at root and A). Note that 
the secondary index for "dog" only associates B with the anchor root, even though a 
query on "dog" from root would also find D. Node D is associated with the anchor 
point A. The reachability graph on the anchor points is used to determine which 
anchors can be reached from the desired "start" anchor point. The result set of 
data items is then the union of all of the nodes found from all of these anchors 
(in the chosen secondary index.) To illustrate a search, say that we wish to find all 
of the objects reachable from root which contain the keyword "dog." We use the 
primary index to find the secondary index associated with "dog." We also need all 
of the anchor points reachable from root (done using the reachability graph, these 
are root and A.) Next, we find all of the objects reachable from these anchor points 
using the secondary index. The objects B and D are the result of our search. 

5.5 Cost Comparison 

The methods of indexing we have introduced (single indexes, indexes with replication, 
indexes without replication, and multiple-attribute indexes) each have advantages 
and disadvantages. We have computed simple estimates of the time and space costs 
for each technique on a regularly-structured database. Some comparisons of the 
indexing techniques based on this analysis are presented here. 
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First, we set out the assumptions we used for these estimates. Although the 
techniques work for an arbitrary directed-graph structured database, we assume that 
the data is tree-structured. The structure of data in a hypermedia database is likely 
to be oriented towards a tree more than, for example, a randomly-created directed 
graph. We feel that worst-case costs derived for tree-structured data will reflect 
practical costs better than an analysis on arbitrary graph-structured data. Another 
assumption is that searches will only use indexes at or below the start node. 

For the purposes of this discussion, we assume that the data and pointers are 
indexed form a complete tree with constant branching factor (each parent has 
the same number of children). This restriction significantly simplifies the analysis, 
and we feel the analysis on this structure will reflect performance on more varied 
data. The Tektronix HyperModel Benchmark (Anderson et al., 1989) uses such an 
arrangement as one of its three "hierarchies." Later in this section, we present 
experiments on less regularly structured data, and compare the results with the 
results of the analysis. 

We will use indexes placed at the root and at all nodes halfway down the tree. 
This provides a uniform placement of indexes (each index has an equal number 
of nodes located "directly" beneath it). Such an arrangement is an intuitively 
reasonable example. We will also look at a single index placed at root, as described 
in Section 5.1. 

We assume a logarithmic index structure (such as a B-tree), and a linear time 
to search the data otherwise. Parameters to the analysis include the total number 
of possible keys K, the probability P that a given key attribute value appears in a 
given data item, the branching factor B (number of children of any non-leaf data 
item), and database size N 

We have worked out formulas which give an estimate of the time and space 
requirements of the indexing methods described (Clifton and Garcia-Molina, 1990). 
Here we present graphs which show estimates based on those formulas. 

The graphs in this section are based on complete trees with a branching factor 
of five. We did try varying the branching factor; the results varied by an equivalent 
factor for all of the indexing methods. The values of K and P are given above each 
graph. We assume a main memory database; with increasing (Gigabyte) memory 
sizes we expect to be able to cache some information, such as links and keywords, 
for each node in the database. Access to disk will only be needed to obtain complete 
objects, which will not be required for queries which search large portions of the 
database. 

For each of the indexing methods, Figure 13 shows the find time for a search 
over the entire database. We use K= 1,000 and P=.001, which provides an expected 
value of 10 search keys per node. 

Figure 14 shows the expected time for queries from just below the root of 
the database (thus encompassing one fifth of the database). Otherwise, this figure 
corresponds exactly to Figure 13. The gains provided by indexing are substantial. 
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Figure 13. Find-time vs. database size, search from root 
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Figure 14. Find-time vs. database size, just below root 
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5.5.1 Experimental Results. The preceding discussion of costs assumes a very regular 
database. Practical databases will have a more varied structure. We believe that 
the cost functions of the previous section will be reasonably close to costs on 
practical databases. We have performed some experiments using our prototype 
query processor/main memory database on less regularly structured databases to 
verify this. We include graphs in this section, which plot the experimental results 
alongside predicted results from our analytical estimates. 

The experiments presented here serve two purposes: 

• To verify our analysis. 

• Perhaps more interestingly, to explore how well we can predict indexing 
performance on data which do not hold to the strict structure of the analysis 
(complete trees with a fixed branching factor). 
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The experiments presented here were run on a DEC 5410 with 128MB of main 
memory. This allowed us to run experiments with many nodes, while still caching 
all of the query information in main memory (to provide a meaningful comparison 
with the main memory analysis). 

To perform these experiments, we must first calibrate the model (determine the 
actual index lookup and database search time). We assumed that the time to search 
through the database (without an index) was linear in the size of the database; 
based on this we determined that a search took 3ms per item. The index used for 
our experiments is a balanced binary search tree. We determined that the time to 
look up an item in an index of size n is log2(n).l.5ms. 

To see how well our analysis predicts performance on databases without a regular 
structure, we performed experiments on randomly constructed databases. Note that 
the databases used in the experiments are not entirely random collections of nodes 
and links. We expect large hypertext databases to have a structure which resembles 
a tree more than, for example, a completely connected graph. Therefore,  our 
experiments are based on data with a somewhat regular structure. The databases 
were built within the bounds of the following parameters: 

• Each node contains a single key, randomly selected from a space of 700 
distinct keys. 

• The number of outgoing branches from each node varies randomly from 1 
to 7. 

• Each path from the root to a leaf node is at least of length four. 
• For the tests on indexed databases, each database has an index at root, and 

indexes at each node "halfway" between the root and the leaves (using the 
fully replicated index method described in Section 5.3). 

This forms a tree-structured database. Although not presented here, queries on this 
database were quite close to the predictions from our analysis. Of more interest is 
what happens when we relax the requirement that the database be a tree. To do 
this, we added new links to the databases described above, which formed a directed 
acyclic graph. Specifically, from each node N in the database, we added a number 
of links to children of the siblings of N. Note that this corresponds to the PartOf 
relationship of the Tektronix HyperModel benchmark (Anderson et al., 1989). The 
number of outgoing links from each node was selected randomly from 1 to 7. We 
assigned a different link type to these new links; the experiments on these databases 
used only links of the new type. 

The following graphs contains data points for identical sets of queries run with 
and without indexing. Each data point corresponds to a different database, and 
represents an average time of forty queries on that database. Note that each point 
represents an average of queries on a single database rather than an average over 
several databases of the same size; we are interested in seeing the deviation in a 
particular database from the prediction of the analysis. The lines represent the 
theoretical results from the analysis of the previous section, with a branching factor 
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Figure 15. Queries from root, DAG database, 
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Figure 16. Queries from just below root, DAG database 
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B=4 (the parameters on key placement are K=700 and P=I/K, which correspond 
exactly to the experimental databases). 

Figures 15 and 16 show the results of queries run over these databases. Although 
not exact, the predictions do appear to be in the ballpark, particularly with the 
larger databases. Of more importance, the prediction of performance improvement 
appears quite close; if the experimental index is slower than predicted, so are the 
experimental results without an index. 

The trends in the experiments coincide relatively well with the predictions from 
the analysis. The model we described earlier in this section cannot be used to 
predict the exact performance of indexes on a particular database. However, the 
model can be used to study tradeoffs and general trends. 
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Figure 17. Complete browser screen 
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6. A Sample Query Generation Interface 

It is expected that HyperFile user interfaces will be application specific. For example, 
the kind of interface desired for a CAD/CAM database would be combined with 
a CAD design tool, while an on-line library application would likely resemble a 
hypertext browser. Different applications will result in different kinds of queries, 
and this will change the way in which the user interface is used to generate queries. 

We have built an interface for gaining experience with HyperFile query generation 
and use. The interface presented here is not intended as T H E  application for 
HyperFile. It is instead an example of ideas that might be incorporated into 
more application-specific interfaces. This application was written using the Eiffel 
object-oriented programming language and runs under the X window system. 

The interface we have developed runs in a single application window. Figure 
17 contains a sample screen. (All figures showing the application window are actual 
screen dumps). Conceptually, we have divided this window into three horizontal 
regions. The top region of the window contains an area for menus, as well as a 
"prompt message." The center region is used for display of results; in a production 
system, this would be application specific, for example it could be a traditional 
hypertext browser. The lower region of the screen contains a number of sets 
(Root,  Set1 . . . .  ); these are used to store the results of queries (and as starting 
sets for further queries). To the right of some of these sets are small boxes; these 
represent the items in the set. Clicking on the set "button" will display the contents 
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of the set in the center region; clicking on one of the small boxes will retrieve and 
display the contents of that particular item. To the right of these is a text output 
window; this appears on demand to display long, unstructured (text) fields. This 
would be subsumed by application-specific means of output in production systems. 
At the bottom are matching variables, and variables used to retrieve fields during 
a query. 

To demonstrate how the browser works, we use a database that contains this 
section of this article, as well as the implementation of the browser. Note that 
this article is linked to the implementation and vice-versa, thereby allowing a user 
reading about the screen layout, for example, to look at the code defining this 
layout. We first build the following query to recursively find routines called by the 
main program of the browser (to two levels): 

Koot [ I (Pointer, 'Calls', ?X) I TT x 32 -+ z 

We then look through these routines for those written by David, and take a look 
at the code of one of those routines with the following query: 

Z [ ( S t r i n g ,  ' A u t h o r ' ,  "David Bloom") I (Sources ,  ' E i f f e l ' ,  - -+code) 
{ d i s p l a y _ t e x t  (code) } 

Instead of typing queries, the browser lets us enter queries interactively, using 
menus. The menu at the top of Figure 17 offers a number of options: 

• Filter Query: Search the database for objects meeting specified criteria. 
• Selection Query: Choose specific tuples from an object. 
• Add Triple: Add a tuple to an object. 
• Create Document: Create a new (empty) object. 
• Exit. 

We select F i l t e r  Query and are then prompted for a set of items to start with. 
For our first sample query, we start with the Root set (which contains the top level 
of the Browser program, as well as this article): 

Choose Set Below 

a ~  

[]~]] 

J 
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Selecting Root requires a simple mouse click on the button marked Root (at the 
bot tom of the preceding illustration). 

We now choose the criteria on which we wish to select: 

C h o o s e  N e x t  A c t i o n  

~ m  
~ t  

~ q ~ r  

In this case, we will start by iterating (since we will want to follow pointers recursively). 
We are then returned to the same menu, and choose S p e c i f y  Tuple.  This allows 
us to specify criteria, which restrict the objects we are interested in; objects that do 
not meet  these criteria will be ignored. In this case, we want to follow P o i n t e r s  
to C a l l e d  routines. We are immediately prompted for the tuple_lype of the tuple 
on which we wish to search: 

S e l e c t  T y p e F l e l d  

m m l D l ~  

Note that the tuple_type menu is application specific; it could be hard-coded into 
the browser, or perhaps "gleaned" from the database catalog. 

Following this, we are given options for the key. 

S e l e c t  K e y  F i e l d  

m ~  

u ~  
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Figure 18. Result of recursive query 
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Note that we have a number of options: 

Wildcard: Accept any key. 

Set Matching Var: Set a variable which can be used later for com- 

parisons (such as ?X in the query language). 

Matching Variable: This tests the value of a matching variable. 

Binding Variable: This sets a variable which can be later viewed (but 

not used in a query). 

Other: This is a chance to enter your own value, if none 

of the given options are appropriate. 

Suggestions: This is a submenu of application-defined "inter- 

esting possibilities." 

In this case, we just pick Ca l l s  from the suggestions menu. 

It is also worth noting that the partially completed query is displayed as it is con- 
structed; this is shown at the bottom of the preceding figure (under c u r r e n t  query :  ). 

We next have to specify the data field. In most cases, this is a long field, such 
as the text of an article. As a result, comparisons will be infrequent. However, in 
the case of a Pointer tuple, the data field contains the pointer to another  object. 
Since we want to dereference this pointer (for a tuple with key Cal l s ) ,  we will set 
a matching variable: 

S e l e c t  I ~ t a  F i e l d  

E -° I l ~ m m  00 
i ~ m m o ~ l o  

An unused identifier is assigned for this variable, and inserted in the A v a i l a b l e  
V a r i a b l e s  area (shown at the bottom of Figure 18). 
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Now we have completely specified the tuple for this filter. This returns us to 
the Next Act ion  menu. We have picked out the pointers we want to follow, so we 
choose D e r e f e r e n c e ,  keep paren t .  This adds all of the pointers in a matching 
variable to the objects being processed. Of course, we have to specify the matching 
variable from the list at the bottom of the window: 

A v a i l a b l e  V a r i a b l e s  

N 

Note that x was added to this list when we set the matching variable using the data 
menu above. 

All that remains is to specify that the loop (recursively chasing pointers) is done; 
to do this we choose end i t e r a t i o n  from the next action menu. This prompts 
for the number of iterations (keyboard entry): An integer (for a fixed number of 
iterations) or * for a complete transitive closure. We will only go two levels deep 
(there is no sense in gathering the entire code just for an example). We are ready 
then to send the finished query: 

C h o m e  Next  Act ion 

a m . m m ~  

SpecS~tde 
k ~  

b d  Iwmbe 
Dalfa'u=e vu'tabk 

~ , ~ . , ~  kt~p psem 

1 P ~  ~ t s q l  Pc3 8pahr 
2 Pemtm Brmues'Doc ~18 t  pdm' 

a i r  qumlpl 
R e l [ I  O~Inle,~...alla',1~)l ~ I ] I  

&'~llablo [l~lm [ ~ ]  

The results of this query are displayed in the window at the top of Figure 18. 
The result contains two tuples, each of which is a pointer to another object (note 
the contents of the da t a  fields). The results are also placed in the next available set 
(in this case S e t l )  for future use. Currently "next available" is the least recently 
used set; other options (such as allowing the user to specify which set) could be 
used. An arrow points to Set1, to show that it is the currently displayed set (as 
shown in the bottom of Figure 18). 
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Figure 19. Viewing a binding variable 
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Figure 18 also shows the next query. As previously mentioned, this is to find 
all of the programs in the result of the previous query (placed in Set1,  referred to 
by the letter 7. in the display of the query) which were written by David, and view 
the source code from those programs. This is constructed in the same manner  as 
the previous query. A few interesting differences: 

• The name of the author was not selected from a menu, but was entered by 
choosing Other: from the data menu (which prompts for keyboard input). 
Likewise for the language type (the key of the Source tuple). 

• The data from the source tuple are retrieved explicitly ( (Source, 'Eiffel', 
X) ), to allow later viewing. 

Once the query has been executed, we can view the contents of the binding variable 
used to explicitly retrieve the program text. To do this, we simply click on the 
variable (at the bottom of the window). This brings up the contents in the main 
viewing area (in this case, a single value as shown in Figure 19). Also notice the 
small box to the left of this value; this means that the item is actually a text field, 
and clicking on this box allows us to view it in a separate window (in this case it 
is the text of a program). 

Note that the results were placed in Set2, as the arrow is currently pointing to 
it. The set is not displayed in its entirety in this figure, as we are looking at the 
binding variable. However, one of the tuples in Set2  is a pointer; we can see this 
because of the small box to the right of Set2. 

The user interface we have presented allows the construction of arbitrary Hy- 
perFile queries. An actual application would probably not be as general: instead 
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providing "canned" query parts which would be combined by the user to form the ac- 
tual query. These query parts would be given in application-specific language rather 
than displaying the actual HyperFile query. We believe the idea of menu-based 
query construction and hints serves as a good basis for forming application-specific 
queries. 

7. Conclusions and Further Work 

We have described HyperFile, a data model and query facility for heterogeneous 
applications. It provides a query language that permits searches based on properties 
of the stored objects, as well as by following pointers contained in the objects. We 
believe that the query language is powerful enough so that many common queries 
in hypertext applications can be answered with a single request to HyperFile. Yet, 
HyperFile is simple and flexible enough that designers of such applications will not 
have to resort to file systems to store their data to avoid frequent schema changes 
(and corresponding modifications to the applications). 

This article presented the HyperFile query processing algorithm. We have also 
looked at developing indexes to support HyperFile queries. A browsing style of 
user interface has also been presented (more as an idea of what can be done than 
as a specific application). 

We are currently looking at further applications of HyperFile, such as scientific 
databases. Scientific environments are often heterogeneous in hardware, software, 
and perhaps most importantly, personnel. Although such environments have made 
use of traditional business-oriented databases, rarely are all of the data put into 
such a database. Scientists within an organization will often create special-purpose 
systems for their own use. Although HyperFile will not eliminate such systems, it 
provides the capability to store and link data, code, and notes so that the information 
will still be available to future researchers. 
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