
VLDB Journal, 4, 45-86 (1995), Ron Sacks-Davis, Editor

QVLDB

45

HyperFile: A Data and Query Model for Documents

Chris Clifton, Hector Garcia-Molina, and David Bloom

Received July 1, 1992; revised version received, January 25, 1994; accepted October 7,
1994.

Abstract. Non-quantitative information such as documents and pictures pose in-
teresting new problems in the database world. Traditional data models and query
languages do not provide appropriate support for this information. Such data are
typically stored in file systems, which do not provide the security, integrity, or query
features of database management systems. The hypertext model has emerged as
a good interface to this information; however, finding information using hypertext
browsing does not scale well. We developed a query interface that serves as an ex-
tension of the browsing model of hypertext systems. These queries minimize the
repeated user interactions required to locate data in a standard hypertext system.
HyperFile is a prototype data server interface. In this article, we describe Hyper-
File, including a number of issues such as query generation, query processing, and
indexing.

Key Words. Hypertext, indexing, user interface.

1. Introduction

Hypertext (Conklin, 1987) is emerging as a model for the managemen t o f loosely-
s tructured information. The key idea is to view data as a collection of "cards" or
nodes that are linked in a variety of ways. Each node may contain text or mult imedia
information. End users can view one or more cards at a time, and can traverse
links to view other nodes.

Hypertext systems are currently built on top of file-based storage systems. This
means that they often do not provide adequate data managemen t facilities such as
indexing, concurrency control, and recovery. Storage systems for hypermedia must
provide these facilities (Halasz, 1988; Lange, 1992; Grelnbaek, 1994). To add data

Chris Clifton, Ph.D., is Assistant Professor, Department of Electrical Engineering and Computer Sci-
ence, Northwestern University, Evanston, IL 60208-3118, clifion@eecs.nwu.edu, Hector Garcia-Molina,
Ph.D., is Professor, Department of Computer Science, Stanford University, Stanford, CA 94305-2140, hec-
tor@cs.stanford.edu, and David Bloom, B.S., is with Anderson Consulting, 1345 Avenue of the Americas,
Room 928, New York, NY 10105.

46

management facilities to a hypertext system, one can hard code the facilities into an
existing system, or have the hypertext system store its data in an existing database
management system. We feel the second approach is far superior, since one does
not have to "reinvent the wheel" in every hypertext system built.

To run a hypertext system on top of an existing database management system,
there are two options (Figure 1). Under option (a), a monolithic hypertext system
interacts directly with the DBMS. The hypertext system must map its objects into
the data model supported by the DBMS, either relational or object-oriented. To
manipulate data, say to retrieve a particular node, the hypertext system must generate
the appropriate query to the underlying DBMS. Option (b) differs from option (a)
in that the hypertext system has been split into two components. The Interface
System handles all interactions with the end user, rendering nodes on the screen,
presenting menus to the user, showing "buttons" for traversing a link, and so
on. What we have called HyperFile is a system that captures the common data
management functionality needed by most hypertext interfaces. The key idea is that
a single generic HyperFile system can tailor the data services offered by the even
more generic DBMS to better serve a particular class of applications, in this case,
hypertext applications. (Note that we do not rule out direct access to the DBMS
by the Interface System. This is shown by a dotted line in Figure l(b).) The term
"blade" has recently been coined (Stonebraker, 1993; Ubell, 1994) to refer to this
type of add-on system that enhances a DBMS for a particular class of applications.
(This is analogous to how a blade is added to a razor. I) Using this notion, HyperFile
can be viewed as a blade for hypertext management.

There are at least four types of functionality that HyperFile can provide:

1. Data Model HyperFile presents to the Interface System a hypertext data
model. From the point of view of the underlying DBMS, this "model" is
simply a class library or pre-defined schema.

2. A Query Language. The common queries that the Interface System must
generate are captured more easily and naturally in this language than in the
underlying DBMS query language. HyperFile translates the incoming queries
into DBMS queries, in much the same way as C+ + is translated into C by
some compilers.

3. Indexing Facilities. HyperFile can implement indexes that speed up the com-
monly expected hypertext queries. These indexes enhance, rather than replace,
the index facilities provided by the underlying DBMS. These HyperFile index
structures are stored in the DBMS, which treats them as application data.

4. Distribution Facilities. If the hypertext objects are stored on a collection
of independent DBMSs, HyperFile can provide transparent access to these
objects. If the underlying DBMSs are already integrated into a distributed

1. The implication is also that a company will make more money selling the blades than selling the razor.
Our discussion here is independent of the financial aspects.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 47

Figure 1. Monolithic hypertext system vs. HyperFile

Hypertext
System

DBMS

""t Interface System

I
HyperFile

I
"" "1" DBMS

(a) Co)

DBMS, the distribution facilities may be unnecessary. However, in many
cases, the underlying DBMSs are not integrated at the database system level
(perhaps because they are from different vendors), so HyperFile can provide
the necessary "glue" without requiring changes to the DBMSs. This glue can
come in the form of a naming framework for distributed hypertext objects,
facilities for following remote pointers, and facilities for indexing distributed
collections of objects.

Typically, the Interface System (Figure l(b)) runs on an end-user workstation,
while the DBMS runs on one or more shared back-end servers. Although HyperFile
could conceptually run at either the front or back end, we believe it is advantageous
to run it at the back-end server where the DBMS resides. This is because a single
HyperFile query may generate multiple DBMS interactions, examining much more
data than the query ultimately returns. By placing HyperFile at the back-end, we
can achieve an additional significant improvement over the monolithic approach of
Figure l(a): The data intensive hypertext search operations are performed tightly
coupled to the DBMS, as opposed to transferring large volumes of data over the
network for processing at the front-end.

The key to the success of a system like HyperFile is that it captures the data
model and services needed to simplify the design of the Interface System. In
addition, its indexing facilities should improve performance of common queries.
In this article, we present the design of HyperFile and argue that it does satisfy
the above criteria. We have implemented a prototype version of HyperFile and
an Interface System, and have shown that HyperFile does significantly simplify the
Interface system. We have also evaluated the performance of HyperFile's indexing
facilities, and identify the cases where substantial improvements occur. We have also
implemented and evaluated distribution services for HyperFile, but these will not

48

be discussed here (they were described by Clifton and Garcia-Molina, 1991). Final
validation of HyperFile and the blade concept in general will, of course, come only
over the years. However, we feel that this article presents an important first step:
it gives a detailed description of a hypertext blade and its functionality. We believe
that this article can serve not only hypertext applications, but other application
areas as well, by showing in detail one case study of a blade and the design and
performance issues involved.

We compare HyperFile with other approaches to managing Hypermedia data-
bases in Section 3; we first give a description of the data model and query language
we provide. Following Section 3 we discuss certain key aspects of HyperFile in
detail:

• A Query Processing algorithm for HyperFile queries is given in Section 4.

• Indexing of HyperFile queries is discussed in Section 5.

• User Interface ideas and experiences are given in Section 6.

The Eiffel object-oriented language was used as an implementation vehicle for
the prototype HyperFile server. This has given us considerable flexibility in modifying
the prototype as we have developed new ideas, and it also shows the viability of
implementing HyperFile on an Object-Oriented DBMS. This prototype runs on a
variety of platforms, and has been used for experiments with various aspects of
HyperFile. In Section 5.5.1 we discuss results of experiments with indexing. Section
6 also makes use of this prototype in conjunction with a sample application.

2. Data Model and Query Language

What is the right data model for a hypertext application? There is a spectrum of
choices. At one end, we could have a very rich model, with many object classes.
For instance, we could have one object type for textual nodes, another for image
nodes, another for table of contents nodes, another for hypertext link nodes (giving
information about the link), and so on. For each object type, the model would
define the desired fields. For instance, a text node could have a date field, a body
field, an author field, and so on.

However, by preordaining the types of objects and their structure, a rich model
makes it hard to deal with diversity. For example, some Interface Systems may
require additional or fewer fields within an object of a given type. Document
structure is somewhat free-form; users will often find that the predefined structures
do not fit their needs (this problem occurs in areas other than Hypermedia, see
Zdonik, 1993).

We propose, instead, an object model at the other end of the spectrum. There
is a single object class, but this class is "freeform." Essentially, each object is simply
modeled as a set of tuples of the form <tuple_type, key, data>. Each tuple represents
a property of the node, with the tuple_type being its name, the data being its value,
and key being a short property that distinguishes that value from others of the same

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 49

Figure 2. HyperFile data model

{ (String, "Title," "Main Program for Sort Routine")

(String, "Author," "3oe Programmer")

(Text, "Descript ion," < Arbitrary text description. >)

(Text, "C Code," < Text of the Program >)

(Text, "0b jec t Code," < Executable for module >)

(Poin ter , "Called Routine," < Pointer to another object >)

(Poin ter , "Library ," < Pointer to a library used by this routine >) }

tuple type. These tuples can contain text, pictorial data, keywords, bibliographic
information, references and pointers to other objects, or arbitrary bit strings. A
sample set containing, for example, a module from a Software Engineering system,
is given in Figure 2.

The system keeps a Tuple Type Definition Table that lists the allowable tuple
types, giving for each the permitted data types that can occur in the key and data
fields. For example, the tuple type St r ing shown in Figure 2 must be defined in
the Tuple Type Definition Table; its entry would specify that a tuple of this type
must have a string key and a string data value. The Poin ter tuple type is defined
to have a key of data type "string" and a data component of type "object ID." An
application can add entries into the Tuple Type Definition Table. For example, an
application could define 0bj ect_Code to be a tuple type where the key would name
the target machine (a string), and the data (binary) would be the actual object code.
This would be a convention between applications; HyperFile would only understand
0bject_Code as a tuple type having a string as a key, and arbitrary bits as data. The
data model does not understand (or restrict) the concepts of "target machine" or
"object code" (except that the basic representation of "target machine" is a string,
and of "object code" is a sequence of bits). Tuple type definitions extend across the
HyperFile database, which encourages the sharing of data between interfaces. In a
sense, the Tuple Type Definition Table represents the "schema" of the application
databases.

Tuples may contain pointers to other objects, as shown in the above example.
It is also possible for an application to use multiple HyperFile objects and pointers
to store what the end user views as a single "document." For example, one text
processing application may wish to store an entire paper in a single object, while
another may store each paragraph in a separate object, linking them together into
sections and chapters with additional objects. This is entirely up to the application.

We can also use this capability to create sets of documents (used in set filter
queries; Section 2.1.2). A set of objects is created using a basic object, with tuples
containing pointers to the objects in the set. The set of objects {A, B, C} is simply
an object containing three tuples, one of which points to each of A, B, and C. Figure
3 shows a set S containing three objects: M (from the previous example), N, and

50

Figure 3. Set of routines from a software engineering application

L

S string i A u t h o r ! J P o i n t e r i p r i n t f :
Pointer i element ! Pointer i L i b r a r y i

Pointer i element i Pointer i C a l l e d ... i C

Pointer !element i - - ... : ... : S t r i n g T i t l e : ...

S t r i n g A u t h o r : J o e ...

N T e x t ! O b j e c t ... i <binary>

the library L. Note that M, the program object shown above, can be used as a set
containing the library L and the called routine C. This representation has a number
of advantages over having a special container type for sets:

• The query language has a single set of operators. Every object in the system
is of the same class.

• Sets can be permanent, in the same manner as any object is made permanent.
This allows users to build "private libraries."

• It is easy to build annotated bibliographies. Since a set is an ordinary object,
associating text, keywords, and other information with it is easy ((just add
descriptive tuples to the set).

• A paper that contains references can also be used as a set of the referenced
documents. This allows easy "literature search" operations.

The set operations provided for individual objects also have the appropriate meaning
for sets of objects defined in the above fashion. Since two sets S and T are actually
sets of triples, where each triple points to an object in the set, S t_J T produces a
new set of triples which points to all of the objects in either S or T. In fact, the
primary use of these operations is likely to be on documents which are considered
to be "sets of objects" rather than on individual items.

In most cases, a HyperFile database will contain a root set of all the objects in
the database, much like a library card catalog. This allows searches over the entire
database. However, the use of sets allows the scope of queries to be restricted if
desired. This has a number of uses: A single query could construct a set on which
a variety of further queries can operate; a user can repeatedly restrict the items of
interest without having to repeat queries; or a query could operate on an already
existing "mini-database." The root set could also serve as the root of a directory
(the objects in root would be sets), allowing a hierarchical structure of the data.

As discussed at the beginning of this section, the HyperFile data model we
are proposing is extremely simple. The disadvantage is that Interface Systems that

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 51

require richer object types will have to build them out of simpler objects. The
advantage is that with a simple model, HyperFile is able to serve a wider class
of hypertext applications. Furthermore, with the appropriate query language (such
as the HyperFile Interface Language described later in this section), dealing with
"collections of simple objects" should be as simple as dealing with richer objects.

To illustrate these points, consider the "pointer" triples illustrated in Figure
2. The pointer has a key that defines its meaning, for instance, whether it points
to a "bibliographic reference" or a "called routine." These keys can be used for
searching.

However, the Interface System cannot conveniently attach more information
to a pointer (e.g., the date it was created and the name of the creator). To do
this, the Interface System can create an auxiliary object. This object contains the
relevant properties for the pointer (e.g., creation date, creator's name). The pointer
in the original document points to the auxiliary object, and it in turn points to the
referenced object. This also makes it possible to have a back pointer to the original
document. As we will see in Section 2.1, our query language easily allows searches
over both types of pointers (e.g., either following pointers with key "bibliography,"
or following pointers that in their auxiliary object have a certain creation date). In
summary, Interface Systems that require a richer structure than what is provided
by the basic model can provide it; Interfaces that do not need this richer structure
are still able to user HyperFile.

Note that objects are represented as sets, so triples are not ordered within
an object. This restriction substantially simplifies our language. Ordering can be
obtained by linking the components together (e.g., part A points to part B which
points to part C). As an alternative, ordering can be indicated by using a number
in the key field.

A brief summary of the HyperFile data model is:

Object ~ {Triple}
Triple ~-- (Tuple_Type, Key, Data)
Tuple_Type ~-- identifier
Key ~ Date I Numeric I Stringlt,ointer
D a t a ~ Date I Numeric I StringlPointer I Binary Large OBject

Identifiers that appear as tuple types must exist in the Tuple Type Definition Table,
whose entries have the following structure:

Tuple_Type_Entry +-- <identifier, Key_Data_Type, Data_Type>
Key_Data_Type ~ "string" I "numeric" I "date" I "pointer"
Data_Type ~ "string"l"numeric"l"date ' l"pointer"l"BLOB"

2.1 HyperFile Query Language

The Hyperfile Interface Language (HIL) is used to represent queries. By imple-
menting the HyperFile data model as a user-defined type on an extensible database

52

system (Stonebraker and Rowe, 1986), we can also define new operations on that
type, allowing a query language that reflects the needs of the users.

Much of the motivation for HyperFile queries comes from the browsing tech-
niques of hypertext (Conklin, 1987). Browsing provides a very unrestricted method
for searching; users of hypertext databases will often find things in ways not foreseen
by the database designer. The problem with browsing is that it is labor-intensive;
selection is done by manually navigating through the data. This is apparent with
the World-Wide Web (Berners-Lee et al., 1992).

We use ideas from the information retrieval world to solve this problem. Rather
than browsing through a large set of items, users issue queries that filter this set and
produce new sets (much the same idea as the computerized card catalogs in some
libraries). These techniques can limit the user to what the database designer believes
to be useful queries; however we go beyond traditional Information Retrieval systems
in that links in the data can be used by the queries to produce new sets "on the
fly." Utilizing the links within the queries allows many of the benefits of browsing
without the time consumed by the step-by-step "manual" approach. These queries
allow the user to construct a small set of potentially interesting objects, which can
then be viewed using a browsing approach. Manual browsing will also be helpful
to give the user ideas as to how to define a query; however HyperFile queries can
eliminate considerable manual interaction in between these two browsing phases.

Our filter queries provide for the common queries we expect to see in hypertext
applications. As a matter of fact, we interviewed a number of potential users of a
hypertext interface to determine what constraints their requirements would place
on the storage system for a Hypermedia system. These users included hardware
designers, programmers, hypertext users, and users of other document retrieval
systems (Clifton et al., 1988). From our discussions we learned that chained queries
(combining separate filtering criteria into a single query), pointer dereferencing
and, of course, selection were very common. We believe that the vast majority of
searches in such applications can be easily and succinctly expressed in our language.

The most interesting class of HyperFile queries are filter queries. The types of
retrievals performed by these queries fall into two categories:

• Retrieval along pointer chains. This is important both for references and for
retrieving parts of objects. These queries are the major difference between
hypertext and conventional databases.

• Searches for objects meeting particular criteria. These are related to con-
ventional database queries. The queries will look for specifics like keywords.
They may also look for types of relationships between items (particular
patterns of pointers to other objects).

In addition to filter queries (which retrieve multiple objects), we need queries that
can manipulate individual objects. These Basic Filters are queries that retrieve
selected triples from within an item. For example, we may desire the abstract (a
tuple within a document) rather than the entire document.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 53

Figure 4. Syntax of top-level of HyperFile query

query ::= expr ~ object Basic Query, produces a new object

expr :: = object

:: = (tuple_type, key_value, data_value) The set consisting of the given literal tuple

:: = expr setop expr Basic set operations: Union, Intersect, etc.

:: = expr basefilter Basic filter, described in Section 2.1.1

:: = expr setfilter Set filter, described in Section 2.1.2

setop ::= U , N , -

The Basic set operations (union, intersection, difference) are also provided.
These take an object (or set of objects), and return a new object (or set) without
modifying the original. Changes are made to a single object with these functions
as well.

It must be remembered that the HIL is embedded in a host programming
language. Object identifiers are actually stored in variables in the host language.
The HIL is not in itself a "complete" programming language, nor is it intended as
a user interface. It is a query language for use by programmers writing a Hypertext
interface system.

The rest of this section describes specific features of the query language. Although
most of the features are covered, this is by no means a user manual for the language.
We will briefly mention some basic operations, then go into detail on filtering queries.
Finally we will describe how data is transferred between HyperFile and applications.
We will also give a running BNF for the HIL; the top level (including basic set
operations) is shown in Figure 4.

2.1.1 Basic Filters. These are operations that take an object away, and return a
new object that includes a subset of triples of the original. They are based on triple
selection using pattern matching. Perhaps it is easiest to start with an example.
Given a document (object ID) D, we can construct a new object consisting of just
the authors of the original document as follows:

D(string, "author", ?) --+ object ID

This is the triple selection filter. Note the use of the ?, a pattern matching
character that matches any data item. It can also be used in the key or tuple
type fields. Standard range expressions are also allowed for basic data types (date,
numeric, regular expressions for strings).

Filters can also be joined using and, or and not. For example,

54

Figure 5. Syntax of a HyperFile basic filter

basicfilter ::= basicfilter basefilter

basefilter ::= (typespec, key, data)

::= basefilter and basefilter

::= basefilter or basefilter

::= not basefilter

key :: =

data :: =

matching-expr ::=

typespec : : =

: : =

matching-expr

matching-expr

literal of appropriate type

expression of appropriate type
?

application-communication

name of type of this triple
application-communication

Described in Section 2.1.3

Described in Section 2.1.3

D((string, "author", "Chris*") OK (string, "author", "Hector*"))

--~ object ID

returns author triples in D, which have either Chris or Hector as the prefix of the
data. Figure 5 contains a description of the syntax of basic filters.

2.1.2 Set Filters. Set filtering queries are used when the user has a large set of
potentially interesting objects (perhaps the entire database), and wishes to find a
small set of items which are actually of interest. We assume that the user (or
application) has some idea of what makes an object interesting, and how the user
would manually browse the database given the time (which links would be followed,
etc.). The first of these gives the criteria on which to filter (much as in an Information
Retrieval system). The second gives the scope of the query, and allows HyperFile
to follow links in the manner of hypertext browsing.

In particular, filtering queries start with a set of objects, and produce a new
set which may contain some of the items in the original, as well as items which are
reachable from those in the original set. There are two types of operations which
happen in a query:

• An object may be tested to see if any of its tuples match particular criteria
(for example, does the item contain object code?).

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 55

• A pointer may be followed; the item pointed to will become one of those
being processed.

A sample query, to find all objects in the set S (as shown in Figure 3), which were
written by Joe Programmer, is:

S I (String, "Author", "Joe Programmer")--~ T

This takes the objects pointed to by S (L, M, and N); then checks to see if they have
a tuple of type S t r i n g with the key Author and data Joe Programmer; and puts
the resulting items (only M in the example) into the set T. Processing is analogous
to Unix pipes: the objects in S flow through a series of filters (in this case a single
one), and the objects that satisfy the conditions in the filters end up in T.

We can also write a query to find the programs in S and in the routines they call,
which are written by Joe:

S I (Pointer, "Called Routine", ?X) I TT x I (String, "Author",
"Joe Programmer") --+ T

In this case, we again start with the items pointed to by S. Tuples which contain
the key Ca l l ed Rout ine are selected, and the value of the pointer (for example,
the pointer to C) is placed in the variable X (using the ?X operator). Note that X
is a set-valued variable, and thus can contain many references. In the next part of
the query, the values placed in each X are dereferenced using the operator TTx. 2
This adds C to the set of "possible results" (which becomes {M, N, L} t_J (C}.) The
last part of the query checks for the presence of the author Joe Programmer in the
items. The objects which meet this criterion (M and C) are placed in the result set
T, which can be used in further queries just like the set S. Note that the key Called
Routine is used to select a particular category of pointer; we could use a wild card
(?) in place of the key Ca l l ed Rout ine if we wished to follow all pointers (such
as the L i b r a r y pointer).

Set variables, such as X in the above example, take on a different set of values
for each object. This allows comparison of tuple values within an item, for example
choosing programs which are being maintained by their author:

S I (String, "Author", ?X) I (String, "Maintained By", X)--+ T

In the portion of the query "Author", ?X; X becomes a set of all of theAuthors of
the object, and later these are compared against the values of Maintained By tuples.
If any of these matches a value in X the expression evaluates true and the program
"passes" the query.

More complex comparisons are allowed. For example, we may wish to find
articles with multiple authors:

2. The TTX operator keeps the pointing object as well as the item referenced. There is also an operator TX
which keeps only the referenced object.

56

S I (String, "Author", ?X) I (String, "Author", X ~?Y)--+ T

If an object has only a single Author tuple, X will be set to the name in the data
field of that tuple. The second part of the filter will also select the same tuple and
bind ?V to the data field. Since X=V, the tuple does not match and, as there are no
other author tuples, the object does not pass this filter. In the case of a document
with two author tuples (with names Chris and Hector) the first part of the query
will bind both names to X. The second part of the filter will test a tuple (say the
one with author Chris) and find that there is a binding for X (Hector) which is not
Chris, and the tuple will match. Since at least one tuple matches, the object passes
the filter and is placed in the result set T.

The occurrence of the variable preceded by ? specifies that it is free; without
the ? it is bound. Filters are evaluated left to right, hence the. leftmost occurrence
of a variable should be a free occurrence (otherwise nothing will match). Further
free occurrences add to the set of possible values for the variable for that object.
Figure 6 contains a description of set filters. Another way of thinking of matching
variables is that each instance of an object passing through a filter has its own set of
variables. Each variable is actually a set of values, which it matches in that object.
An expression using the variable is true if any of the values in the set would make
the expression true. A more formal Understanding of matching variables can be
obtained from the query processing algorithm in Section 4.

Iteration is also provided, in case we wish to traverse the graph created by
the pointers. The iteration can occur a fixed number of times, or can continue
indefinitely (to find a transitive closure of the reference graph). Expanding the
"called routine" query to check the transitive closure of the called routines in S
would be done as follows:

S [[(Pointer, "Called Routine", ?X)] TTx]* I (String, "Author",

"Joe Programmer") --+ T

Replacing the]* with] 3 would cause the iteration to terminate after three levels
of pointers have been traversed. The meaning of [<query pa r t>] k is to repeat
<query pa r t> k times, as if the loop were unrolled and executed straight through.

This last query illustrates a primary goal of our query language. In a con-
ventional hypertext system, the above query would require repeated user actions
(manual navigation). A conventional file system would also require repeated in-
teractions. With HyperFile, a query can be developed following the browsing style
of the user: If I were to browse, I would follow links to called routines, looking for those
authored by '~loe Programmer." This is then performed with a single request to the
server. The HyperFile query language is designed around queries that simulate
browsing; operations are provided to mimic browsing while allowing considerable
server flexibility in the way the operations are processed. We believe that queries
like the above are representative of those occurring in a Hypertext environment
and, hence, must be handled efficiently and naturally.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 57

Figure 6. Syntax of Hyperfile Filter Queries
expr : := ...

: := expr setfilter

setfilter : := [setfilter]n

: := [setfilter]*

:: = setfilter setfilter

: := [filter

filter : := selector

:: = filter or filter

: := not filter

: := arrow

selector : := (typespec, key, data)

: := selector arrow

::-- selector selector

arrow : := T filtervar

: := TT filtervar

:: = filtervar

key : := matching-expr

data :: = matching-expr

matching-expr :: = literal of appropriate type
:: = expression of appropriate type
:: -- expression involving matching variable
: := appl icat ion-communicat ion

matching-variable : := ?

: := ?filtervar

filtervar : := identifier

The query language we have defined so far does not permit "joins" between
sets. For example, say we have two sets of documents , S and T, and we wish to
identify documents that have a c o m m o n author. This cannot be expressed with a
single HyperFi le query. An application program would have to extract the authors
in S (see Section 2.1.3) and then search for those authors in T. Al though our query
language could be extended to include joins, we have not done so because we
believe such queries are rare in hypertext applications. The added complexity to

58

the query language and the query processing algori thms outweighs the benefi ts of
suppor t ing rarely used queries.

2.1.3 Transferring Data to the Application. The preceding queries do not i l lustrate
how results are actually provided to the application. Providing just an object identifier
to the HyperF i le server will re turn the entire object (a basic filter with no selection
criteria). It is also possible to retr ieve certain fields as par t of ano the r query (for
example , ga ther the titles of all i tems found in the query).

To do this, values of fields in a tuple are re t r ieved explicitly using the
opera tor . The HyperFi le query language is used as a:n e m b e d d e d language; viewing
actual tuple values is done by placing the values in var iables in the appl icat ion
p r o g r a m m i n g language. For example, a C appl icat ion p r o g r a m could contain:

n= 1;

S I (String, "Author", "Chris Clifton") I (String, "Title",---+title) --~T

{ printf("Title ~d: ~.s\n", n++, title) }

to display individually all of the titles of documents (neatly n u m b e r e d) in S wri t ten
by Chris Clifton.

The above variable title can be of any data type in the applications pro-
gramming language. HyperFi le sees this data only as a string of bits (a l though
the type may be l imited based on the tuple_type field, as descr ibed on page 5).
For example , a TEX documen t could be placed as the data field of a single tuple
(text, "TeX", <TeX source>). Applicat ions would t reat this da ta field much
like a file for use by the TEX processor. 3 Proper t ies such as the au thor and title
of the documen t would be placed in o ther tuples in the same object to be used for
queries.

T h e t ranslat ion f rom a string of bits to a data s t ructure in the appl ica t ion is
analogous to that which occurs when reading and writing files in a file system. This
can be used to modify applicat ions for use with HyperFi le with a m i n i m u m of effort.
Ins tead of storing data in a file, it is s tored in a HyperFi le tuple. The data s t ructures
and organizat ion of the applicat ion need not be changed. T h e appl icat ion can then
add tuples with proper t ies to be used in queries, even though this may dupl icate
in format ion already conta ined in the "file" tuple. 4

3. The interface between a large HyperFile field and the host language is dependent on the host language,
As an example, the prototype (which uses Eiffel, an object-oriented language, as the host language) returns
an object of a type that inherits from FILE, and can be treated as a file by the applications program. We
could return a socket (file pointer) to a C language application.

4. An alternative would be to provide a function to extract the property from the "file" tuple automatically.
This has two problems: It increases query time, and it requires running application code at the server. The
problem of keeping the duplicated information consistent becomes a problem of keeping the extracting
function current. Security is also a concern; the function must not be allowed to affect the server or database.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 59

Figure 7. Syntax of communication with applications

application-communication ::= ~ host_variable
Used in matching_exper; place value in host language variable.

Note that the above retrieval is explicit; filtering queries that only search for
objects of interest will return the result set, but not any of the data in the objects
in that set. This gives the number of items in the result; the user can then decide
if further queries are needed to restrict this set. These queries need not send large
amounts of data (e.g., text, bitmaps). When the set of items of interest is small
enough that the user actually wants to see the items, a query is issued to retrieve
just the desired fields. (The syntax is described in Figure 7.)

We have not discussed queries that update the database. Due to the nature
of the data, most updates will involve a single object. Examples would be editing
a document, or running an enhancement program on a picture. We expect that
updates that affect a number of objects at once to be rare. Therefore, HyperFile
provides for modification, addition, and deletion of single objects. Wider ranging
updates may be built as applications. For example, installation of a new compiler
may require all object code for a machine to be recompiled. An application would
issue a query to construct a set of all objects containing object code for that machine.
Each object would then be retrieved, the code recompiled, and the object code
tuple replaced.

Finally, note that the query language we have described is not intended for
end users. Instead, application-specific interfaces will be used, and the application
will compose the HyperFile query. For example, in a programming environment
the user may first choose what to search for (variable name, author), and then be
provided with three main choices in which to look: in the current module, in all
called modules, or in the entire program containing the current module.

3. Comparison With Other Systems

In this section, we briefly compare some common data storage systems to a storage
system composed of HyperFile and its underlying DBMS (Figure l(b)). We will
argue that, for loosely-structured hypertext information, HyperFile provides better
tailored services.

3.1 File Systems

HyperFile is probably most similar to a file system, particularly one with self-describing
data records (Wiederhold, 1987). In these systems, records of a file contain tags
stating what information is contained in the record, as opposed to either a heavily

60

structured file (where each record contains the same type of information) or totally
unstructured files.

Most electronic documents are currently stored in file systems, rather than
databases. This is because of the flexibility allowed in the contents of a file. This
freedom is necessary for documents, due to the combination of text, drawings, and
other media. Many other applications require this as well; databases for software
engineering systems, CAD tools, and other such applications are often custom-
designed or built on file systems. In addition, most documents, although structured,
are not rigidly structured; variations are acceptable when necessary.

File systems allow this flexibility, but provide little structure in places where it
is desirable. Items can be grouped in directories, and often hierarchical structure
of the directories is allowed, but references and other pointers, which are a part
of many objects, are not recognized by file systems. File systems are inefficient for
search and retrieval. In a large (and particularly distributed) system, this problem
is magnified. HyperFile can be viewed as a powerful file server: It provides for
storage of unstructured data, but allows much more powerful queries based on the
properties of files (objects) and their relation to other objects.

3.2 CODASYL Systems

HyperFile is similar to CODASYL (Data Base Task Group, 1974) in that they both
provide objects and pointers. However, a major difference between HyperFile and
CODASYL is that CODASYL pointers must be used in a very structured way,
as parts of predefined sets. The database schema determines where pointers are
allowed and what they may point to. All items in a set are of the same type.
HyperFile does not place such restrictions on the structure of data. Pointers may be
used freely, wherever the user or application desires. Although there are difficulties
in providing this flexibility (for example, indexing becomes a much more difficult
problem, as discussed in Section 5), we feel that the tradeoff is worthwhile for our
applications.

Another difference is the query language. The CODASYL query language only
allows searches over a fixed set; the scope of a search can be determined from
the database schema. We allow queries that arbitrarily follow pointers. This allows
for fewer server-application interactions. For a query which covers the transitive
closure of a portion of the graph of pointers, CODASYL may require many such
interactions, where HyperFile would require only one.

3.3 Information Retrieval Systems

Information retrieval systems provide powerful means for accessing text (Salton,
1989). The main difference between HyperFile and information retrieval systems
is the support of pointers. The ability to incorporate pointers as part of the
"search space" is needed in a Hypertext database (Frisse and Cousins, 1989). Also,
information retrieval systems typically do not support non-text data.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 61

Ideas from information retrieval systems, combined with hypertext methods, can
be used to form a general interface to a HyperFile database. Information retrieval
research into automatic indexing (Salton, 1988), automatic structure detection (Salton
et al., 1994), and natural language (Croft and Lewis, 1987) can be used to generate
properties for textual objects and a fiat document into a "semi-structured" HyperFile
document.

3.4 Relational Systems

Relational systems provide a regular structure for data. HyperFile supports data
that do not fit into a regular structure. Although work has been done on placing
text items in a relational database (Stonebraker et al., 1983; Smith and Zdonik,
1986), creating a relational database that can support a variety of heterogeneous
types of data is difficult. Conventional relational systems do not support pointers
and this is a serious shortcoming for us. Steps have been taken to address some of
these problems in "advanced" relational systems (e.g., pointers, flexible data types),
but we address these below.

3.5 Advanced Database Systems

Advanced database systems such as object oriented (Maier et al., 1986; Woelk et al.,
1986; Weinreb et al., 1988) and extended relational (Stonebraker, 1986; Schwarz et
al., 1986; Dadam et al., 1986) provide many of the facilities of HyperFile (objects,
pointers, queries), but also provide a lot more (like a full programming language
or an inferencing engine). As discussed in the Introduction, HyperFile is likely to
be a "value added system" on top of an advanced object oriented storage system.
It provides a data model, query language, and index structures that are specifically
tailored to the needs of hypertext applications.

There are other examples of "blades" to support documents in database systems.
Atlas (Sacks-Davis et al., to appear) builds a document model on top of a relational
database. This system adds full-text search and nesting to support structuring
to the standard relational model. Atlas provides the ability to store and query
large collections of documents (including full-text search), and provides support
for pointers. Atlas is perhaps best viewed as a "blade" for supporting information
retrieval applications. In Christophides et al. (1994), a Standard Generalized
Markup Language (SGML) data model is built on top of 02 (Deux, 1991). The
goal here is to represent a structured document in a database.

HyperFile is similar to these systems in providing support for collections of
documents. However, the query mechanism is designed around hypertext. The
support for path queries in HyperFile is much greater (in particular, supporting
limited depth transitive queries and "pruned" paths) than in either of these systems.
These location dependent queries allow the user to maintain the mental model of
"browsing hypertext" while issuing queries.

62

3.6 HyperBases

Hypertext specific database management systems (HyperBases) are currently being
developed. These systems need query facilities (Lange et al., 1992; Lange, 1993;
Schnase et al., 1993; Wiil and Leggett, 1992). HyperFile is a proposal for a
schema/query facility for these systems. We feel that HyperBase management
systems should be built using existing DBMS tec:hnology, HyperFile attempts to
show that this is feasible.

3.7 G +

G + is a graph query language developed at the University of Toronto (Cruz et al.,
1987). It has goals in common with HyperFile, and provides a more powerful query
language. Like HyperFile, G + provides for graph based transitive-closure queries.
However, computing some G + queries can be NP-hard (Mendelzon and Wood,
1989). This defeats our goal of providing a simple and efficient back-end data storage
service. By concentrating on browsing-style object retrieval queries we can keep our
language simple (an advantage for both computational and interface development
reasons). We hold that support for sophisticated analysis of the relationships between
data items (as opposed to retrieval based on those relationships) is not required by
users of hypertext systems.

4. Query Processing

Basic filters and other basic operations are straightforward to process. The algorithm
for processing filtering queries is more interesting. It is worth noting that the design
of the query language has allowed a simple and efficient processing algorithm for
filtering queries, as described in this section.

First let us introduce a notation for representing queries. Let a query Q be:

Q : Si F1 F2 . . . Fn ---+ So

where Si is the initial set of objects (possibly the result of an expression), So is the
result set of objects, and each Fi is a filter operation (setfilter) of the form:

Fi : (type, pattern, pattern) ;; Selection of tuples

T matching_variable ;; Dereference

TT matching_variable ;; Dereference retaining referencing object
13 ;; Iterator starting at Fj, ending at Fi, repeating k times.

The pattern in the tuple selection filter operation varies depending on the type of
the value. It may be a string, a range of numbers, or a matching variable.

Let us look at a sample query: Take all of the items in the set S and choose
those that contain the keyword Indexing. In addition, follow reference pointers for

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 63

three levels searching for objects that meet these criteria.

S [I (p o i n t e r , " R e f e r e n c e " , ?X) I TTx]3 I (keyword,
"Indexing", ?) --~ T

In the above query, F 1 = (pointer, Reference, ?X), is a selection operation that sets
the matching variable X. F2 = T Tx, a dereference of the matching variable. F3 is
the iterator/13, which starts at F1, and causes pointers to be followed for up to three
levels. The last filter F4 = (keyword, Indexing, ?) does simple pattern matching:
Any object containing a tuple with type keyword, key Indexing, and any value for
the data field will pass this section. The initial set Si is S, and T will be bound to
the result set So.

Certain temporary information will be associated with each object O which is
processed by a query. These are:

O./d The unique Object ID (used to retrieve the object).

O.next The index of the next filter Fi to process the object.

O.start The first filter to process the object. For objects in the initial set

Si this is 1. Objects reached as a result of a dereference will have

their .start set to the filter following the dereference.

O.iter# The current iteration of an iterator; this corresponds to the length

of the pointer chain used to reach O from the initial set.

O.mvars A table of bindings of matching variables for the object. This is a

function O.mvars(X) --~ {values for X}.

The basic means for processing queries is to create a working set W containing
objects in the original set S.5 An object is taken from the set and passed through
the query from left to right. At each stage it can pass or fail to pass a filter, and
may add new objects to the working set. At each stage the object is processed using
the function E:

E(Fi, O) -+ {Oz, "" "}, [O1

E takes a filter and an object; and returns a (possibly empty) set of objects obtained
through dereferencing, and either the initial object (if it passed the filter) or null.
The actions of E are determined by the type of the filter Fi:

• If Fi is a selection (pattern matching) operation, such as F4 in the example
query, the return set of dereferenced objects is empty. Each tuple of O
is processed as follows: If the type field of the tuple matches the type
field of the filter, the key and data fields are checked. If these fields

5. The choice of data structure for the working set will determine the search order for the algorithm; for
example, a queue will give a breadth-first search. Work by Kapidakis (1990) shows that a node-based search
(such as a breadth-first search) will give the best results in the average case.

64

match, the object passes the filter. The pattern can be a variety of things;
"Matching" depends on the pattern:

The pattern may be a simple comparison (such as a regular expression for
strings, or a range of values for a number). In this case, matching involves
equivalence of the pattern and the field in the tuple. The meaning of
equivalence depends on the type of the field.

The pattern may be a ?, such as in F4. 'This matches anything.

The pattern may set a matching variable. An example of this is F1. The ?X
adds the value of the field of the tuple to the bindings for X (if the other
fields match). More formally, O.mvars(X)=O.mvars(X) t_J {field_value}.
The field matches regardless of the field value, as with ?.

A matching variable may be used, such as in the example in Section 2.1.2.
In this case, the field matches if any of the values of the matching variable
match the field value, that is field_valueE O.mvars(X).

To be more precise, we will give pseudocode for the E function in the case
of a selection filter. The details of pattern matching have been left out, as
pattern matching is straightforward but dependent on the data type of the
field being compared.

E((type_pattern, key_pattern, data_pattern),O) :

for each tuple tEO

if t. type =type_pattern and

t.key matches key_pattern and

t.data matches data_pattern then

match =true

Modify O.mvars if key_pattern or data_pattern sets a matching variable.

if match then

O.next =O.next + l

return {}, O

else

return {}, null

• Fi can be a dereference (T or TT). An example of this is F2 in the above
query (TTJ O. In this case, E returns a set of all of the pointer values of X.
With T T, o is also returned.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 65

E(TX, O) :

Result_set = { }

for each xCO.rnvars(X)

if x is an object ID then

create an object P for processing

;; The following line initializes P.

P.id=x, P.start=Onext + 1, P.next=Onext + 1, P.iter# =O.iter# + 1, P.mvars= { }

Result_set=Result_set U {e}

if the filter is a T T then

O.next=Onext + l

return Result_set, 0

else

return Result_set, null

Some of the initialization of P in the above needs explanation. P.next is set
to the filter after the dereference. P.mvars starts empty; the set contains
no bindings. The use of P.start and P.iter# will be explained in the next
paragraph.

• If Fi is an iterator I) , one of two things can happen. If the object has
already passed through the entire body of the iterator, or if it is the result
of a k length pointer chain, it continues processing with Fi+l. Otherwise,
processing continues at the beginning of the iterator (Fj). Note that iterators
do not actually cause objects to be processed repeatedly. Operations in the
query language are idempotent; passing an object through the same filter
many times will not change the result. Iterators instead control how often
pointers are followed.

O.start is used to determine if an object has passed through the entire iterator.
If O.start is greater than j, the beginning of the iterator, then O must return
to the beginning of the iterator. O.iter# stores the length of the pointer chain
used to 'reach O. For example, if an object P is reached by dereferencing
O, P.iter#=O.iter#+l. This is done as part of the dereferencing operation
shown in the previous section of pseudocode for E. If O.iter#>Ik; 0 is the
result of a pointer chain of length at least k and is not run back through the
iteration. 6

6. O.iter# ~_k is not tested if k = :¢. * may be thought of as (X).

66

Figure 8. Chain of references

S A B C

IpointerlReferenee i--J~pointeriReference i--~-~qpointerlReference I --~pointer!Reference I ~ D

e(I , o):
if O.start_<j or O.iter#>k then

O.next=Onext + l

else

O.start =j

O.next=j

return {}, O

;; So that O will pass the iterator next time.

Actual processing occurs by creating a working set and filling it with the
objects in Si. The .next and .start indexes for each of these objects are
initialized to 1 (the first filter). Iteration numbers are also set to 1, and the
.mvars bindings are initially empty. Each object is then taken from the set,
and pushed through the filters (using the E function) until they either reach
the end or fail to pass part of the filter. Dereferencing operations may add
objects to the set. The query terminates when the working set is empty.

To give a short example, let us assume that we have a set S containing an object
A. A has a reference pointer to B, B has a pointer to C, and C has a pointer to D
(see Figure 8). We will run the following query (described at the beginning of this
section) on the set S:

S [I (pointer, "Reference", ?X) I TT x I S I (keyword,
"Indexing", ?) --~ T

The object A (the only thing in S) is processed. A.iter# is initialized to 1. In F1
the matching variable X is set to the pointer (object ID) B. F2 dereferences this,
setting B.start and B.next to 3, and B.iter# to A.i ter#+l, or 2. The initialized B is
then added to the set W. Next, .el continues processing with F4, which checks for a
keyword Indexing and adds A to T if the keyword is found. B is then removed from
the set, and processing starts at the iterator F3=I!~ (as B.next=3). Since B.start>l
and B.iter#<3 we realize B is new to the iterator and the result of a short chain
of pointers, so B goes to F1 (with B.start=l). Here X is set to C. In F2 X is
dereferenced; C is initialized with C.start = C. next = 3 and C. iter# =B. iter# + 1 = 3 then
placed in W. Next B reaches F3, but this time B.start<l so it continues processing
with F4. When C begins processing (at F3) C.iter#>3 and C exits the iteration
(continuing with F4). Thus, the query terminates before examining D (which is 4
levels deep).

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 67

So far we have assumed that iterators are not nested. We do not expect nesting
to be common, but it is handled with a slight extension to the above algorithms.
The iteration number associated with an object 0 (O.iter#) is actually a stack of
iteration numbers. Where O.iter# is used in the above algorithms, we actually
use the topmost iteration number, which corresponds to the innermost iterator.
When a dereference occurs, the new object is initialized by copying the stack, and
incrementing only the top iteration number.

Queries that cover the transitive closure of a graph of pointers (queries that
contain an iterator [<query par t>I* pose a potential problem: cycles in the graph
of pointers could cause cycles in the processing, preventing termination. This is
handled by marking objects as they are processed (actually, noting the object ID in
a table of used items); if a marked object is found in the working set it is ignored.

However, there is one important subtlety. Consider a query Q = Si FiF2FaF4So.
Say a particular object O is in the initial set Si, but fails to make it through filter
F1. Some other object containing a reference to O makes it through F1, and in F2
(a dereferencing filter) the pointer to O is dereferenced. Now we must realize that
even though O was seen earlier (at F1), it still needs to be processed starting at F3.
Thus, our mark table will record not only the identifiers of objects seen by a query,
but also where in the query they were seen. In particular, mark_tabIe(object_id) will
store a set of filter numbers. In our example, after processing O at F1, mark_table(O)
= {1}. After O is processed at F3, mark_table(O) = {1, 3}. Figure 9 gives the
complete query processing algorithm.

Note that there is no global state to be maintained between processing of each
object in the set other than that in the work set W and the markJable. In fact,
the matching variable table O.mvar and "next filter" O.next are only needed while
the object is being processed; O.mvar always starts as {} and, in all cases, O.next
is initially equal to O.start. The only state that must be maintained in W is the
object ID, iteration number, and starting point in the query. This eases the task of
parallel processing; to process an object in the set all that must be known is the
original query Q the information in the object O, and the markJable.

This also adapts well to distributed query processing. This is done by mapping
the object ID into the location of the object. When an object is dereferenced, it is
tested to see if it is local. If not, instead of adding it to the working set W, it is
sent to the site that contains the item (along with the query Q and the initial site
that started processing Q). When a site receives such a message, it is either already
processing the query (in which case it just adds the new item to its working set),
or it must create a working set and begin processing the query. Results from the
query are sent directly back to the site which originated the query (which may not
be the site that sent the reference to be processed). This is only a brief overview;
for a complete description of the distribution issues in HyperFile see Clifton and
Garcia-Molina (1991).

68

Figure 9. Query processing algorithm

For each object_idxCSi do;; ;;Initialize W with objects in Si.

create an object 0 for processing.

O.id=x, O.start=l, O.next=l, O.iter#=l, O.mw~rs={}
append 0 to W.

While not empty (W) do

0 = head (W) ;;remove 0 from the set

If O.start ([mark_table(O.id) then

While not null(O) and O.next < n do

mark_table(O.id)=mark_table(Oid) U { O.next}
s, 0 = E (FO.nezt, O)
W=WU s ;; add all dereferences to the set.

If not null(O) then

So=SoU{O} ;;add O to the result set

5. Indexing

As with many large databases, some HyperFile queries can take considerable time
to process. A query which searches every item in the database can take time that an
interactive user would consider unreasonable. Indexing speeds up these searches by
effectively "precomputing" parts of common queries. Indexing HyperFile queries is
somewhat different from standard indexing techniques. This is because the scope
of a query is determined by the pointers in the data, rather than being statically
determined by the database schema. Extensible indexes (Stonebraker, 1986; Aoki,
1991) allow user-defined indexing and access methods in advanced database systems.

For example, a traditional relational index returns tuples in the indexed relation
based on a search key. Any query which is based on that key with a scope of the
entire relation can make use of the index (actually, in some cases the index could
be useful even if the scope were a part of the relation, such as a view which involves
a selection from that relation). The scope of the query can be determined simply
from looking at the query and the schema (database catalog). With HyperFile,
the scope of a query may be dependent on the contents of the objects. A standard
index over the entire database may return hundreds of objects for a given search
key; determining which of these objects are in the scope of the query may be more
expensive than performing the query without the index. However, the HyperFile
query processor can select a HyperFile specific index that is appropriate to the
query.

Our indexing technique starts with the simple idea of attaching an index to an
object in the database. The index allows lookup of items based on a particular

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 69

attribute type (the property of the query), and covers objects which could be reached
from that node following a particular type of link in a "browsing" interface (the
scope of the query).

5.1 What is Indexed

The choice of a key for indexing can be quite varied; just about any type of data
will serve. This is no different from indexing in a traditional database. However,
specifying the scope of the index is different. Rather than specifying a relation or
set which is to be indexed, we must specify a portion of the graph: a place from
which queries will start, and a type of link to follow. Creating an index thus requires
specifying three parameters: The anchor point (node) to which the index is to be
connected, the search key for the index, and the link type which determines the scope
of the index.

Figure 10 is a sample database consisting of two types of links (solid and dashed)
and a single attribute (noted as key). An index has been created at node root on
the attribute key and the link type solid. A few interesting points to note about the
index are:

• Item D is not in the index, even though it has a key of interest. This is
because the index is for items reachable through solid links, and D is reached
only through a dashed link.

• Item / is pointed to by a solid link. However, since it is not reachable from
root via solid links, it is not in the index.

• Item G is in the index, even though its parent (C) does not appear in the
index. Node C is in the scope of the index, but does not appear since it has
no key attribute.

The index of Figure 10 will speed up searches whose scope is the solid-link tree
rooted at root.

5.2 Structure of the index

The index itself is structured in a manner similar to a traditional database index.
B-trees, hashing, and other such techniques are all applicable. However, certain
special information is required. In addition to pointers from the index to relevant
objects, objects are required to have back pointers to indexes which potentially
include them. This is necessary to maintain the index properly. For example, in
Figure 10, C will have a back-pointer to ensure that updates that add keys to C will
be reflected in the index. Items D, H, and I do not need back pointers, as changes
to these objects will not result in their being reachable, and thus they will not be in
the index. If the dashed links are changed to solid, the presence of back pointers
to the index in the parents of the links will point to the need for including D, H,
and I in the index.

70

Figure 10. Index of a tree-structured database

Index: key, solid l
roof { { bird: E ! ~l eat: A,B index: I f l dog:A,F

I "sh:

key: cat, dog key: eat key: dog

/ / / , , \
key:Ebird{ I key:Log { { key:Gfish I [H { }key: /mouse[

5.3 Multiple Indexes

In a real system, there may be many nodes from which we often make queries. We
could build an index at each of these nodes, but this leads to space problems due to
replication of information. Figure 11 provides an example of this situation. Some
users may wish to query the entire database, using :index root; others may only be
interested in the subset contained in the tree rooted at A. To allow the efficiency
provided by indexing to both sets of users, we can construct indexes anchored at
both nodes (the indexes pointed to by solid lines.) All of the functions described
at the end of the previous section will work here as well. Note that each object
which is below A must have back-pointers to both indexes.

This naive approach has one problem. All of the items in index A are also
indexed by root. This leads to replication in the indexes. In a large database with
many indexes, the size of the indexes could in fact grow at a faster rate than the
size of the database itself. Given that the index grows linearly in the number of
items indexed, a complete set of indexes on an n node tree of depth k would take
space O(n • k). A more space-efficient index structure would help, but the indexes
could still end up requiring more space than the data itself. In addition, updates
to the database may take a long time because they must modify many indexes.

This replication can be eliminated by requiring indexes to refer to "lower"
indexes, rather than directly indexing the entire subtree (illustrated by the indexes
pointed to by dotted lines on the left side of Figure 11). A search for all items in the
database (starting at root) that have attribute dog would first find B from the root
index. Next, the search would proceed along the Next Index pointer to the index
anchored at A, where it would find D. Note that this increases the time required to

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 71

Figure 11. Tree-structured database with two indexes

] Index: key, s 'oli~ t t [index: key, soli,
dog: B / I root I / bir.d:C

" " " 7X " ,

, Next ;Index | [

bird: C ~---J----a ndex B
cat:A I - I ," . key: dog
dog:D]] Key. cat
fish: E J

find an item. In the worst case, putting an index at every node, we end up with a
linear search and have lost the benefits of indexing. However, we expect the typical

cost will be much smaller.
Update in such a system is slightly more complex, although the time required

is less (due to updating only a single index). This complexity results from the need
to remove links between indexes when links between objects are changed, in much
the same manner as objects must be removed from the index in the basic scenario.

5.4 Single Multiple-Attribute Index

An alternative to the previous structure is to use a single database-wide index for
each type of key. In a sense, this is a multiple attribute index (Lum, 1970). However,
the second attribute in our system is "reachability," rather than an attribute in the
normal sense. As such, previous techniques do not apply.

Our method is to use a single primary index on the search key that returns
a secondary index. The secondary index maps the "anchor points"(nodes in the
database which have indexes) to the objects that can be found from those anchor
points. The structure of the primary and secondary indexes could be any of a number
of things, including B-trees, hash tables, and sorted lists. A naive implementation of
the secondary indexes, in which each anchor point hashes to a list of all of the objects
reachable from that anchor point, could require O(n 2) space per secondary index
(where n is the size of the database). However, all of the objects at many anchor
points are reachable from other anchors (e.g., in Figure 11 all objects reachable
from A are also reachable from root). This fact was used to eliminate replication in
the previous section. In the secondary index, we can associate with a given anchor

72

Figure 12. Single multiple-attribute index

Primary index

bird eat

Secondary Index
Anchor: Objects

A: A

dog

Secondary Index
Anchor: Objects

root. B

A: D

Reachabflity Graph

root

A

point only those objects for which it is the "closest" anchor point, cutting the space
considerably (worst case O(n)). A number of algorithms which can be used for our
secondary index are presented in (Jagadish, 1990).

For example, Figure 12 is a sample index containing entries for a few keywords
based on the database of Figure 11 (with anchor points at root and A). Note that
the secondary index for "dog" only associates B with the anchor root, even though a
query on "dog" from root would also find D. Node D is associated with the anchor
point A. The reachability graph on the anchor points is used to determine which
anchors can be reached from the desired "start" anchor point. The result set of
data items is then the union of all of the nodes found from all of these anchors
(in the chosen secondary index.) To illustrate a search, say that we wish to find all
of the objects reachable from root which contain the keyword "dog." We use the
primary index to find the secondary index associated with "dog." We also need all
of the anchor points reachable from root (done using the reachability graph, these
are root and A.) Next, we find all of the objects reachable from these anchor points
using the secondary index. The objects B and D are the result of our search.

5.5 Cost Comparison

The methods of indexing we have introduced (single indexes, indexes with replication,
indexes without replication, and multiple-attribute indexes) each have advantages
and disadvantages. We have computed simple estimates of the time and space costs
for each technique on a regularly-structured database. Some comparisons of the
indexing techniques based on this analysis are presented here.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 73

First, we set out the assumptions we used for these estimates. Although the
techniques work for an arbitrary directed-graph structured database, we assume that
the data is tree-structured. The structure of data in a hypermedia database is likely
to be oriented towards a tree more than, for example, a randomly-created directed
graph. We feel that worst-case costs derived for tree-structured data will reflect
practical costs better than an analysis on arbitrary graph-structured data. Another
assumption is that searches will only use indexes at or below the start node.

For the purposes of this discussion, we assume that the data and pointers are
indexed form a complete tree with constant branching factor (each parent has
the same number of children). This restriction significantly simplifies the analysis,
and we feel the analysis on this structure will reflect performance on more varied
data. The Tektronix HyperModel Benchmark (Anderson et al., 1989) uses such an
arrangement as one of its three "hierarchies." Later in this section, we present
experiments on less regularly structured data, and compare the results with the
results of the analysis.

We will use indexes placed at the root and at all nodes halfway down the tree.
This provides a uniform placement of indexes (each index has an equal number
of nodes located "directly" beneath it). Such an arrangement is an intuitively
reasonable example. We will also look at a single index placed at root, as described
in Section 5.1.

We assume a logarithmic index structure (such as a B-tree), and a linear time
to search the data otherwise. Parameters to the analysis include the total number
of possible keys K, the probability P that a given key attribute value appears in a
given data item, the branching factor B (number of children of any non-leaf data
item), and database size N

We have worked out formulas which give an estimate of the time and space
requirements of the indexing methods described (Clifton and Garcia-Molina, 1990).
Here we present graphs which show estimates based on those formulas.

The graphs in this section are based on complete trees with a branching factor
of five. We did try varying the branching factor; the results varied by an equivalent
factor for all of the indexing methods. The values of K and P are given above each
graph. We assume a main memory database; with increasing (Gigabyte) memory
sizes we expect to be able to cache some information, such as links and keywords,
for each node in the database. Access to disk will only be needed to obtain complete
objects, which will not be required for queries which search large portions of the
database.

For each of the indexing methods, Figure 13 shows the find time for a search
over the entire database. We use K= 1,000 and P=.001, which provides an expected
value of 10 search keys per node.

Figure 14 shows the expected time for queries from just below the root of
the database (thus encompassing one fifth of the database). Otherwise, this figure
corresponds exactly to Figure 13. The gains provided by indexing are substantial.

74

Figure 13. Find-time vs. database size, search from root

1 0 0 0 0 0 -

Time requirements 10000
(steps)

Search fromRoot 1000
Includes data retrieval

(log scale) 100

10-

K = 1000, P = . O 0 1

- - Unindexed /
. . . . Unreplicated indices /

/

. - ~ " ~ . . " " - - Single Multi-Attribute index
J / ."
~ • " Fully replicated indices
: . (also Single index at root)

I I I I I I
10 I00 1000 10000 101~000 le+06

Number of items in Database
(log scale)

Figure 14. Find-time vs. database size, just below root

1 0 0 0 0 -

1000-
Time requirements

(steps) 100-
Search from below Root
Includes data re tr ieva l

(log scale) 10 -

K = 1000, P=.O01

/ . . ~ - - Unindexed
/ f . ~ (a i s o Single ind.ex at r o o t) " /

/ . ! Fully repdcateo inaices
.... Unreplicated indices
- - Single Multi-Attribute index

I I I I I
100 1000 10000 100000 le+06

Number of items in Database
(log scale)

5.5.1 Experimental Results. The preceding discussion of costs assumes a very regular
database. Practical databases will have a more varied structure. We believe that
the cost functions of the previous section will be reasonably close to costs on
practical databases. We have performed some experiments using our prototype
query processor/main memory database on less regularly structured databases to
verify this. We include graphs in this section, which plot the experimental results
alongside predicted results from our analytical estimates.

The experiments presented here serve two purposes:

• To verify our analysis.

• Perhaps more interestingly, to explore how well we can predict indexing
performance on data which do not hold to the strict structure of the analysis
(complete trees with a fixed branching factor).

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 75

The experiments presented here were run on a DEC 5410 with 128MB of main
memory. This allowed us to run experiments with many nodes, while still caching
all of the query information in main memory (to provide a meaningful comparison
with the main memory analysis).

To perform these experiments, we must first calibrate the model (determine the
actual index lookup and database search time). We assumed that the time to search
through the database (without an index) was linear in the size of the database;
based on this we determined that a search took 3ms per item. The index used for
our experiments is a balanced binary search tree. We determined that the time to
look up an item in an index of size n is log2(n).l.5ms.

To see how well our analysis predicts performance on databases without a regular
structure, we performed experiments on randomly constructed databases. Note that
the databases used in the experiments are not entirely random collections of nodes
and links. We expect large hypertext databases to have a structure which resembles
a tree more than, for example, a completely connected graph. Therefore, our
experiments are based on data with a somewhat regular structure. The databases
were built within the bounds of the following parameters:

• Each node contains a single key, randomly selected from a space of 700
distinct keys.

• The number of outgoing branches from each node varies randomly from 1
to 7.

• Each path from the root to a leaf node is at least of length four.
• For the tests on indexed databases, each database has an index at root, and

indexes at each node "halfway" between the root and the leaves (using the
fully replicated index method described in Section 5.3).

This forms a tree-structured database. Although not presented here, queries on this
database were quite close to the predictions from our analysis. Of more interest is
what happens when we relax the requirement that the database be a tree. To do
this, we added new links to the databases described above, which formed a directed
acyclic graph. Specifically, from each node N in the database, we added a number
of links to children of the siblings of N. Note that this corresponds to the PartOf
relationship of the Tektronix HyperModel benchmark (Anderson et al., 1989). The
number of outgoing links from each node was selected randomly from 1 to 7. We
assigned a different link type to these new links; the experiments on these databases
used only links of the new type.

The following graphs contains data points for identical sets of queries run with
and without indexing. Each data point corresponds to a different database, and
represents an average time of forty queries on that database. Note that each point
represents an average of queries on a single database rather than an average over
several databases of the same size; we are interested in seeing the deviation in a
particular database from the prediction of the analysis. The lines represent the
theoretical results from the analysis of the previous section, with a branching factor

76

Figure 15. Queries from root, DAG database,

Type Ft Query
100- +

1 0 - ~ ,

Time (sec) 1 -
(log scale)

0.1-
4 - 4 - - " ' " ' "

0.01 "* * ¢ . , . . . - * . - ' * ' " ' ~ ' " * , *

I I I
100 1000 10000
Number of items in Database

(log scale)

Unindexed
(+ experimental)
Fully replicated indices
(* experimental)

Figure 16. Queries from just below root, DAG database

Type F2 Query

4- I00-

lO-

"rime (sec) !
(log scale)

0.1

0.01

at. . ° ' 11 I

I I I

100 1000 10000
Number of items in Database

(log scale)

Unindexed
(+ experimental)
Fully replicated indices
(* experimental)

B=4 (the parameters on key placement are K=700 and P=I/K, which correspond
exactly to the experimental databases).

Figures 15 and 16 show the results of queries run over these databases. Although
not exact, the predictions do appear to be in the ballpark, particularly with the
larger databases. Of more importance, the prediction of performance improvement
appears quite close; if the experimental index is slower than predicted, so are the
experimental results without an index.

The trends in the experiments coincide relatively well with the predictions from
the analysis. The model we described earlier in this section cannot be used to
predict the exact performance of indexes on a particular database. However, the
model can be used to study tradeoffs and general trends.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 77

Figure 17. Complete browser screen

(:II~*3m mn A c t k I t

i v i s a J q l a i

JndeMelbm

m
a l i i ~ w l J a d a . I I

B

I ' - I N C l u W
~ T q ~

ni t

de l l
P~,ll it i i l i r

ene4J

6. A Sample Query Generation Interface

It is expected that HyperFile user interfaces will be application specific. For example,
the kind of interface desired for a CAD/CAM database would be combined with
a CAD design tool, while an on-line library application would likely resemble a
hypertext browser. Different applications will result in different kinds of queries,
and this will change the way in which the user interface is used to generate queries.

We have built an interface for gaining experience with HyperFile query generation
and use. The interface presented here is not intended as T H E application for
HyperFile. It is instead an example of ideas that might be incorporated into
more application-specific interfaces. This application was written using the Eiffel
object-oriented programming language and runs under the X window system.

The interface we have developed runs in a single application window. Figure
17 contains a sample screen. (All figures showing the application window are actual
screen dumps). Conceptually, we have divided this window into three horizontal
regions. The top region of the window contains an area for menus, as well as a
"prompt message." The center region is used for display of results; in a production
system, this would be application specific, for example it could be a traditional
hypertext browser. The lower region of the screen contains a number of sets
(Root, Set1); these are used to store the results of queries (and as starting
sets for further queries). To the right of some of these sets are small boxes; these
represent the items in the set. Clicking on the set "button" will display the contents

78

of the set in the center region; clicking on one of the small boxes will retrieve and
display the contents of that particular item. To the right of these is a text output
window; this appears on demand to display long, unstructured (text) fields. This
would be subsumed by application-specific means of output in production systems.
At the bottom are matching variables, and variables used to retrieve fields during
a query.

To demonstrate how the browser works, we use a database that contains this
section of this article, as well as the implementation of the browser. Note that
this article is linked to the implementation and vice-versa, thereby allowing a user
reading about the screen layout, for example, to look at the code defining this
layout. We first build the following query to recursively find routines called by the
main program of the browser (to two levels):

Koot [I (Pointer, 'Calls', ?X) I TT x 32 -+ z

We then look through these routines for those written by David, and take a look
at the code of one of those routines with the following query:

Z [(S t r i n g , ' A u t h o r ' , "David Bloom") I (Sources , ' E i f f e l ' , - -+code)
{ d i s p l a y _ t e x t (code) }

Instead of typing queries, the browser lets us enter queries interactively, using
menus. The menu at the top of Figure 17 offers a number of options:

• Filter Query: Search the database for objects meeting specified criteria.
• Selection Query: Choose specific tuples from an object.
• Add Triple: Add a tuple to an object.
• Create Document: Create a new (empty) object.
• Exit.

We select F i l t e r Query and are then prompted for a set of items to start with.
For our first sample query, we start with the Root set (which contains the top level
of the Browser program, as well as this article):

Choose Set Below

a ~

[]~]]

J

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 79

Selecting Root requires a simple mouse click on the button marked Root (at the
bot tom of the preceding illustration).

We now choose the criteria on which we wish to select:

C h o o s e N e x t A c t i o n

~ m
~ t

~ q ~ r

In this case, we will start by iterating (since we will want to follow pointers recursively).
We are then returned to the same menu, and choose S p e c i f y Tuple. This allows
us to specify criteria, which restrict the objects we are interested in; objects that do
not meet these criteria will be ignored. In this case, we want to follow P o i n t e r s
to C a l l e d routines. We are immediately prompted for the tuple_lype of the tuple
on which we wish to search:

S e l e c t T y p e F l e l d

m m l D l ~

Note that the tuple_type menu is application specific; it could be hard-coded into
the browser, or perhaps "gleaned" from the database catalog.

Following this, we are given options for the key.

S e l e c t K e y F i e l d

m ~

u ~

80

Figure 18. Result of recursive query

mT, ,mu~ ,

z i l in t tml~ AiIIUWr' " ~d n~ ') I (Bommo, 11~ar Jos)

I!N

Note that we have a number of options:

Wildcard: Accept any key.

Set Matching Var: Set a variable which can be used later for com-

parisons (such as ?X in the query language).

Matching Variable: This tests the value of a matching variable.

Binding Variable: This sets a variable which can be later viewed (but

not used in a query).

Other: This is a chance to enter your own value, if none

of the given options are appropriate.

Suggestions: This is a submenu of application-defined "inter-

esting possibilities."

In this case, we just pick Ca l l s from the suggestions menu.

It is also worth noting that the partially completed query is displayed as it is con-
structed; this is shown at the bottom of the preceding figure (under c u r r e n t query :).

We next have to specify the data field. In most cases, this is a long field, such
as the text of an article. As a result, comparisons will be infrequent. However, in
the case of a Pointer tuple, the data field contains the pointer to another object.
Since we want to dereference this pointer (for a tuple with key Cal l s) , we will set
a matching variable:

S e l e c t I ~ t a F i e l d

E -° I l ~ m m 00
i ~ m m o ~ l o

An unused identifier is assigned for this variable, and inserted in the A v a i l a b l e
V a r i a b l e s area (shown at the bottom of Figure 18).

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 81

Now we have completely specified the tuple for this filter. This returns us to
the Next Act ion menu. We have picked out the pointers we want to follow, so we
choose D e r e f e r e n c e , keep paren t . This adds all of the pointers in a matching
variable to the objects being processed. Of course, we have to specify the matching
variable from the list at the bottom of the window:

A v a i l a b l e V a r i a b l e s

N

Note that x was added to this list when we set the matching variable using the data
menu above.

All that remains is to specify that the loop (recursively chasing pointers) is done;
to do this we choose end i t e r a t i o n from the next action menu. This prompts
for the number of iterations (keyboard entry): An integer (for a fixed number of
iterations) or * for a complete transitive closure. We will only go two levels deep
(there is no sense in gathering the entire code just for an example). We are ready
then to send the finished query:

C h o m e Next Act ion

a m . m m ~

SpecS~tde
k ~

b d Iwmbe
Dalfa'u=e vu'tabk

~ , ~ . , ~ kt~p psem

1 P ~ ~ t s q l Pc3 8pahr
2 Pemtm Brmues'Doc ~18 t pdm'

a i r qumlpl
R e l [I O~Inle,~...alla',1~)l ~ I] I

&'~llablo [l~lm [~]

The results of this query are displayed in the window at the top of Figure 18.
The result contains two tuples, each of which is a pointer to another object (note
the contents of the da t a fields). The results are also placed in the next available set
(in this case S e t l) for future use. Currently "next available" is the least recently
used set; other options (such as allowing the user to specify which set) could be
used. An arrow points to Set1, to show that it is the currently displayed set (as
shown in the bottom of Figure 18).

82

Figure 19. Viewing a binding variable

m t ~ l l d la41,dball I,m'lknlbi,m

/ I / , . I / ~ ¢ m ¢ / ~

a t ~

N!]

~ < . 1

Figure 18 also shows the next query. As previously mentioned, this is to find
all of the programs in the result of the previous query (placed in Set1, referred to
by the letter 7. in the display of the query) which were written by David, and view
the source code from those programs. This is constructed in the same manner as
the previous query. A few interesting differences:

• The name of the author was not selected from a menu, but was entered by
choosing Other: from the data menu (which prompts for keyboard input).
Likewise for the language type (the key of the Source tuple).

• The data from the source tuple are retrieved explicitly ((Source, 'Eiffel',
X)), to allow later viewing.

Once the query has been executed, we can view the contents of the binding variable
used to explicitly retrieve the program text. To do this, we simply click on the
variable (at the bottom of the window). This brings up the contents in the main
viewing area (in this case, a single value as shown in Figure 19). Also notice the
small box to the left of this value; this means that the item is actually a text field,
and clicking on this box allows us to view it in a separate window (in this case it
is the text of a program).

Note that the results were placed in Set2, as the arrow is currently pointing to
it. The set is not displayed in its entirety in this figure, as we are looking at the
binding variable. However, one of the tuples in Set2 is a pointer; we can see this
because of the small box to the right of Set2.

The user interface we have presented allows the construction of arbitrary Hy-
perFile queries. An actual application would probably not be as general: instead

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 83

providing "canned" query parts which would be combined by the user to form the ac-
tual query. These query parts would be given in application-specific language rather
than displaying the actual HyperFile query. We believe the idea of menu-based
query construction and hints serves as a good basis for forming application-specific
queries.

7. Conclusions and Further Work

We have described HyperFile, a data model and query facility for heterogeneous
applications. It provides a query language that permits searches based on properties
of the stored objects, as well as by following pointers contained in the objects. We
believe that the query language is powerful enough so that many common queries
in hypertext applications can be answered with a single request to HyperFile. Yet,
HyperFile is simple and flexible enough that designers of such applications will not
have to resort to file systems to store their data to avoid frequent schema changes
(and corresponding modifications to the applications).

This article presented the HyperFile query processing algorithm. We have also
looked at developing indexes to support HyperFile queries. A browsing style of
user interface has also been presented (more as an idea of what can be done than
as a specific application).

We are currently looking at further applications of HyperFile, such as scientific
databases. Scientific environments are often heterogeneous in hardware, software,
and perhaps most importantly, personnel. Although such environments have made
use of traditional business-oriented databases, rarely are all of the data put into
such a database. Scientists within an organization will often create special-purpose
systems for their own use. Although HyperFile will not eliminate such systems, it
provides the capability to store and link data, code, and notes so that the information
will still be available to future researchers.

Acknowledgments

Much of the motivation for this work comes from the needs of hypertext researchers
at Xerox PARC (Halasz, 1987; Halasz, 1988). Some of the ideas described in this
article were initially developed at Xerox in discussions with Robert Hagmann, Jack
Kent, and Derek Oppen. We would like to acknowledge their contribution.

This research was supported by the Defense Advanced Research Projects Agency
of the Department of Defense and by the Office of Naval Research under Contracts
Nos. N00014-85-C-0456 and N00014-85-K- 0465, and by the National Science
Foundation under Cooperative Agreement No. DCR-8420948. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government.
Work of the first author was supported in part by an IBM Graduate Fellowship.

84

References

Anderson, T.L., Berre, A.J., Mallison, M., Porter, H., and Schneider, B. The
Tektronix HyperModel benchmark specification. Technical Report No. 89-05,
Tektronix Computer Research Laboratory, Beawzrton, OR, August 3, 1989.

Aoki, EM. Implementation of extended indexes in POSTGRES. SIGIR Forum,
25(1):2-9, 1991.

Berners-Lee, T.J., Cailliau, R., Groff, J.-E, and Pollermann, B. World-wide web:
The information universe. Electronic Networking: Research, Applications, and
Policy, 2(1):52-58, 1992.

Christophides, V., Abiteboul, S., Cluet, S., and Sch, oll, M. From structured docu-
ments to novel query facilities. Proceedings of t,~e ACM SIGMOD International
Conference on Management of Data, Minneapolis, MN, 1994.

Clifton, C., Garcia-Molina, H., and Hagmann, R. The design of a document database.
Proceedings of the ACM Conference on Document Processing Systems, Santa Fe,
NM, 1988.

Clifton, C. and Garcia-Molina, H. Indexing in a Hypertext Database. Proceedings
of the International Conference on ½ry Large Databases, Brisbane, Australia, 1990.

Clifton, C. and Garcia-Molina, H. Distributed processing of filtering queries in
HyperFile. Proceedings of the IEEE International Conference on Distributed Com-
puting Systems, Arlington, TX, 1991.

Conklin, J. Hypertext: An introduction and survey. IEEE Computer, 20(9):17-41,
1987.

Croft, W.B. and Lewis, D.D. An approach to natural language processing for
document retrieval. Proceedings of the Tenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, New Orleans,
LA, 1987.

Cruz, I.E, Mendelzon, A.O., and Wood, P.T. A graphical query language supporting
recursion. Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, San Francisco, CA, 1987.

Dadam, E, Kuespert, K., Andersen, E, Blanken, H., Erbe, R., Guenauer, J., Lum,
V., Pistor, P., and Walch, G. A DBMS prototype to support extended NF 2
relations: An integrated view on fiat tables and hierarchies. Proceedings of
the ACM SIGMOD International Conference on Management of Data, Washington,
DC, 1986.

Data Base Task Group. CODASYL Data Description Language. National Bureau
of Standards Handbook 113, US Department of Commerce, Washington, DC,
January, 1974.

Deux, O. The 02 system. Communications oftheACM, 34(10):34-48, 1991.
Frisse, M.E. and Cousins, S.B. Information retrieval from Hypertext: Update on

the dynamic medical handbook project. ACMHypertext Proceedings, Pittsburgh,
PA, 1989.

VLDB Journal 4 (1) Clifton: Data & Query Model for Documents 85

Gr0nbaek, K., Hem, J.A., Madsen, O.L., and Sloth, L. Cooperative hypermedia
systems: A dexter-based architecture. Communications oftheACM, 37(2):64~74,
1994.

Halasz, EG., Moran, T.P., and Trigg, R.H. NoteCards in a nutshell. Proceedings of
the ACM CHI+GI Conference, Toronto, Canada, 1987.

Halasz, E Reflections on NoteCards: Seven issues for the next generation of
hypermedia systems. Communications oftheACM, 31(7):836-852, 1988.

Jagadish, H.V. A compression technique to materialize transitive closure. Transac-
tions on Database Systems, 15(4):558-598, 1990.

Kapidakis, S. Average-case analysis of graph-searching algorithms. Ph.D. Thesis,
Princeton University, Princeton, NJ, 1990.

Lange, D.B., Osterbye, K., and Sch/itt, H. Hypermedia storage. Technical Report
R-92-2009, The University of Aalborg, Institute for Electronic Systems, 1992.

Lange, D.B. Object-oriented hypermodeling of Hypertext supported information
systems. Proceedings of the Twenty-sixth IEEE International Conference on System
Sciences, Hawaii, 1993.

Lure, V.Y. Multiple-attribute retrieval with combined indexes. Communications of
theACM, 13(11):660-665, 1970.

Maier, D., Stein, J., Otis, A., and Purdy, A. Development of an object-oriented
DBMS. Proceedings of the A CM Object-Oriented Programming Systems, Langauges,
and Applications Conference, Portland, OR, 1986.

Mendelzon, A.O. and Wood, ET. Finding regular simple paths in graph databases.
Proceedings of the Fifteenth International Conference on Very Large Data Bases, Am-
sterdam, 1989.

Sacks-Davis, R., Kent, A., Ramamohanarao, K., Thorn, J., and Zobel, J. Atlas:
A nested relational database system for text applications. IEEE Knowledge and
Data Engineering, to appear.

Salton, G. Automatic text indexing using complex identifiers. Proceedings of the
ACM Conference on Document Processing Systems, Santa Fe, NM, 1988.

Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Reading, MA: Addison-Wesley, 1989.

Salton, G., Allan, J., and Buckley, C. Automatic structuring and retrieval of large
text files. Communications oftheACM, 37(2):97-108, 1994.

Schnase, J.L., Leggett, J.J., Hicks, D.L., Nuernberg, EJ., and Sanchez, J.A. Design
and implementation of the HB1 hyperbase management system. Electronic
Publishing: Origination, Dissemination, and Design, 6(1):35-63, 1993.

Schwarz, P., Chang, W., Freytag, J., Lohman, G., McPherson, J., Mohan, C., and
Pirahesh, H. Extensibility in the Starburst database system. Proceedings of the
International Workshop on Object Oriented Database Systems, Pacific Grove, CA
1986.

86

Smith, K.E. and Zdonik, S.B. Intermedia: A case study of the differences be-
tween relational and object-oriented database systems. Proceedings oftheACM
Conference on Object Oriented Programming Systems, Languages, and Applications,
Orlando, FL, 1986.

Stonebraker, M. Inclusion of new types in relational database systems. Proceedings
of the Fourth IEEE International Conference on Data Engineering, Washington, DC,
1986.

Stonebraker, M. The Miro DBMS. Proceedings of theACMSIGMOD International
Conference on Management of Data, Washington, DC, 1993.

Stonebraker, M., Stettner, A., Lynn, N., Kalash, J., and Guttman, N. Document
processing in a relational database system. Transactions on Office Information
Systems, 1(2):143-158, 1983.

Stonebraker, M. and Rowe, L. The design of POSTGRES. Proceedings oftheACM
SIGMOD International Conference on Management of Data, Washington, DC, 1986.

Ubell, M. The Montage extensible DataBlade T M architecture. Proceedings of the
ACM SIGMOD International Conference on Management of Data, Minneapolis,
MN, 1994.

Weinreb, D., Feinberg, N., Gerson, D., and Lamb, C. An object-oriented data-
base system to support an integrated programming environment. IEEE Data
Engineering, 11(2), 1988.

Wiederhold, G. File Organization for Database Design. New York, NY: McGraw-Hill,
1987.

Wiil, U.K. and Leggett, J.J. Hyperform: An extensible hyperbase management
system. Department of Computer Science Technical Report No. TAMU-HRL
92-003, Texas A&M University, College Station, TX, 1992.

Woelk, D., Kim, W., and Luther, W An object-oriented approach to multime-
dia databases. Proceedings of the ACM SIGMOD International Conference on the
Management of Data, Washington, DC, 1986.

Zdonik, S.B. Incremental database systems: Databases from the ground up. Pro-
ceedings of the ACM SIGMOD International Conference on the Management of Data,
Washington, DC, 1993.

