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Abstract. We present an experimental software repository system that provides or- 
ganization, storage, management, and access facilities for reusable software com- 
ponents. The system, intended as part of an applications development environ- 
ment, supports the representation of information about requirements, designs and 
implementations of software, and offers facilities for visual presentation of the soft- 
ware objects. This article details the features and architecture of the repository 
system, the technical challenges and the choices made for the system development 
along with a usage scenario that illustrates its functionality. The system has been 
developed and evaluated within the context of the ITHACA project, a technology 
integration/software engineering project sponsored by the European Communities 
through the ESPRIT program, aimed at developing an integrated reuse-centered 
application development and support environment based on object-oriented tech- 
niques. 
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1. Introduction 

Software reuse has grabbed center-stage in international software engineering re- 
search, promising to deliver the productivity increase that will eliminate, or  at least 
alleviate, the software crisis. Unfortunately,  the path that leads to reuse is not  as 
clearly defined as its promised results. Software libraries, properly populated,  are 
certainly a step in the right direction. So is organizational support  and encourage-  
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ment of reuse, aided by rewards for experience-sharing among software development 
teams. Object-oriented computing constitutes yet another touted path to the reuse 
silver bullet. Better understanding of the process of software reuse, supported by 
appropriate tools is another. So is research that advocates linking software reuse 
to design reuse in general (as in hardware or architectural design) and developing 
general AI-based methods such as case-based reasoning and case-based knowledge 
organization to address it. 

Despite the wealth of diverse approaches to reuse, some themes are common. 
Fundamental among them is the thesis that reuse concerns more than software code. 
Designs, requirements specifications, and development processes are also reusable 
and can contribute as much to the legendary productivity increase as the reuse 
of existing programs. Indeed, software reuse concerns all aspects of the software 
development experience. Consequently, one can characterize the degree of reuse 
in terms of a channel of communication between the original developers and the 
re-users. The broader and better defined the channel, the greater the potential 
for reuse and, therefore, for productivity improvements. For program libraries, for 
example, the channel is well defined but narrow, since all development experience 
other than coding is missing. For experience-sharing meetings between original 
developer and reuser the channel is broad but ill-defined because it relies on human 
memory. A major concern of reuse research is the development of methods and 
tools that broaden and sharpen this channel, by facilitating the recording of the 
software development experience in all its breadth and richness, and by assisting in 
its selection and adaptation to new software development tasks. A key component 
for this is repository technology. 

Broad and comprehensive surveys of reuse and the technical challenges it 
poses have been published (Biggerstaff and Perlis, 1989; Biggerstaff and Richter, 
1989; Krueger, 1992). This research addressed problems such as: designing-with- 
reuse, designing-for-reuse, software artifact classification (characterization), selec- 
tion/comprehension of reusable objects, and adaptation. Krueger (1992) presented 
a taxonomy of reuse methods in terms of their ability to abstract, select, specialize 
(or adapt), and integrate the software artifacts (by composition or combination 
into a new system). Although repository technology is still immature, there are 
some major commercial efforts and platform standards, notably the IBM Repository 
Manager/MVS, Digital's CDD Cohesion, PCTE+ OMS, CAIS, and IRDS (Jobes, 
1990; Jones, 1992). There are also a host of less ambitious products, for exam- 
ple ADW/MVS, CASE*Dictionary, DB Excel, or Brownstone (Plotkin, 1992). In 
research, there are a number of projects of narrower scope that experiment with 
applications of traditional or object-oriented database technology (Dittrich et al., 
1987; Hudson and King, 1989), with hypertext environments (Garg and Scacchi, 
1987, 1989; Bigelow, 1988), and with artificial intelligence techniques (Devanbu et 
al., 1991; Meyer, 1985; Ostertag et al., 1992; Jarke, 1993). Regarding repositories 
for source code fragments only, much progress has been made with object-oriented 
class libraries that provide powerful browsers (e.g., Objectworks, SPARCworks Pro- 
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Figure 1. The reuse process 
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This article presents a software repository system designed for reuse, and 

for broadening and supporting the communication channel between developer and 
reuser. The system is intended to store and manage information about requirements, 
designs, and implementations of software and offers facilities for locating and 
selecting software components. The repository system has been developed within 
the context of the ITHACA project, a software engineering project sponsored by 
the European Communities through the ESPRIT program, whose aim is to develop 
a complete integrated application development and support environment based on 
object-oriented techniques. The ITHACA environment includes an object-oriented 
programming language and database service, as well as application development 
and application support tools. In all aspects of the project, ITHACA adopts a 
reuse-oriented methodology. Therefore, much of the ITHACA work on languages 
and tools is focusing on how to make reuse a practical technology. This article gives 
an account of the structure and implementation of the software repository system, 
or Software Information Base (SIB) as a means towards reuse. 

Assuming a repository-based reuse methodology, key technical challenges (di- 
rectly related to repository system development) are: providing the right abstraction 
concepts/mechanisms, carefully organizing, effectively managing, and efficiently se- 
lecting and understanding the software artifacts. Figure 1 offers a simplified view 
of the repository-based reuse process; important functions (e.g., composition of the 
software artifacts into a new system) are the responsibility of application development 
tools acting as clients of the repository system. 
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A number of considerations had to be kept in mind in designing the SIB and its 
functionality. First, storing information other than code about a software system (e.g., 
requirements, designs, design decisions, and justifications) means that higher-level 
software specifications may be reused directly, and that they can serve as indexes to 
lower-level software artifacts (i.e., code). Second, the issues of representation and 
presentation of information about reusable artifacts do not have simplistic solutions 
and need to be addressed separately. Software artifacts should be treated as 
multimedia objects, which are created and used by distinct application development 
tools, and must be presented in a format compatible with those tools. A data flow or 
an entity relationship diagram, for instance, should be suitable to the tool that uses 
it. Yet, all these drastically different artifacts need to be abstracted and represented 
in a uniform way within the repository to facilitate the user's conception of the 
contents of the repository, and understanding of the supporting tools. This calls for 
a common SIB representation, extensible to accommodate new types of artifacts 
(e.g., SADT diagrams), and to support multiple presentation forms, depending on 
the tool using a particular artifact. 

The representation language chosen for the SIB is Telos (Mylopoulos et al., 1990), 
a conceptual modeling language in the family of entity-relationship (ER) models 
(Chen, 1976), designed specifically for information system development applications. 
The main reason for the adoption of Telos over other extensions of the ER model 
(e.g., those used by the IBM Repository Manager/MVS or PCTE+ OMS) is its 
treatment of attributes as first-class objects, and the treatment of metaclasses, which 
together lead to a notation that is both expressive and readily extensible. Moreover, 
Telos has been shown to have a simple and elegant formal semantics in which the 
data structures and abstraction mechanisms (including extensibility) are specified 
in terms of a deductive relational database using only a few basic system facts, 
deduction rules, and integrity constraints (Jeusfeld, 1992). This simplicity offers 
advantages over existing object-oriented DBMSs, especially when designing multiple 
related query interfaces--a main feature of the SIB. Specifically, the Telos semantics 
enables the SIB to offer three integrated query interfaces that can be used by a user 
at different times, depending on the task the user is working on: a graphical network 
interface, a form-based interface, and a linear query language (e.g., SQL- or QBE- 
like) like the ones found in relational databases. The disadvantages of Telos with 
respect to object-oriented DBMSs (i.e., limited integration of procedural methods 
for complex update operations) play a lesser role in the SIB context, which is very 
much search-intensive. From a practical viewpoint, the multi-paradigm interface 
support offered by Telos is made possible through the use of a powerful graphical 
editor (Katevenis et al., 1990) and a hypertext engine. Navigation along links, 
searches through keywords, and structured presentations of the SIB contents are all 
supported as aids for the SIB user. The adoption of both hypertext and conceptual 
modeling facilities and their integration into a single user interface is intended to 
alleviate inherent problems of hypertext systems, such as user disorientation and 
cognitive overhead. 
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The SIB organization constitutes one of the keys to its usefulness. All query- 
ing facilities (e.g., browsing, filtering, navigating) are supported and facilitated by 
organization principles, which include the usual general principles of conceptual 
modeling (i.e., classification, generalization, and aggregation) and are enriched with 
principles of modularization and semantic similarity. These principles are intended 
to address both user and methodological needs. For example, there are similarity 
links because users find it natural to ask for "similar" components. In addition, they 
support software construction by "scripting" together existing classes (Tsichritzis, 
1991) that are shared by ITHACA and other object-oriented viewpoints, where 
software composition replaces problem decomposition associated with structured 
programming. 

Considering its size, complexity, and required investment, effective management 
of the SIB is obviously critical. The SIB has been implemented as an efficient 
and stable prototype. Persistent storage, together with much of the functionality 
found in relational or object-oriented database systems are realized with an object 
management component specialized for software repository systems. 

A major goal of reuse is, of course, to "... find the software artifacts faster 
than the time it takes to develop them ..." (Krueger, 1992). Therefore, in addition 
to providing basic retrieval optimization mechanisms, our approach adopts a multi- 
paradigm selection strategy, which includes query processing, browsing, filtering, 
navigational facilities, and approximate retrieval based on similarities among software 
artifacts. Furthermore, the user interface has been carefully designed to meet the 
challenge of offering a combination of several retrieval modes in a user-friendly 
manner. Finally, the SIB system includes built-in facilities which make it possible 
to associate with any software object annotations and/or animations. 

Apart from general considerations concerning the maintenance of any large 
repository, the context of reuse-based software development introduces a number 
of additional complications. In particular, there must be a provision for information 
acquisition, integrity enforcement strategies, version management, and schema evo- 
lution. We are only beginning to address these and other issues concerning support 
for SIB users, starting with the prototype implementation reported here. 

Finally, while not addressing issues concerning software artifact understanding 
(Fichman and Kemerer, 1992), we do claim that the SIB offers valuable assistance to 
software artifact understanding efforts through the representation and organization 
of software descriptions. 

The remainder of the article is organized as follows. Section 2 elaborates on 
the SIB structure in terms of descriptions which serve as basic building blocks, along 
with a number of link types used to organize the contents of the SIB. In Section 3, 
the SIB system is detailed, with emphasis on the rationale behind the choices made 
for its development. Section 4 presents an empirical evaluation of the approach in 
the context of a specific reuse-oriented methodology, that of ITHACA, including a 
sample usage scenario. Conclusions are drawn and future research directions are 
outlined in Section 5. 



2. Structure of the Software Information Base: The SIB model 

In a nutshell, the SIB is structured as a directed attributed graph, with nodes 
describing software artifacts (objects) and edges representing semantic relationships 
that hold among them. The software objects themselves are assumed to have their 
own representation, external to the SIB (e.g. in terms of a UNIX file storing a 
C program or an SADT TM 1 diagram; Ross, 1977), which are accessible from the 
corresponding SIB description. 

The basic building block for the SIB is a description that provides information 
about a software system. This information may concern a requirements, design, 
or implementation specification for a particular software system. Descriptions may 
also be used to represent design decisions or run-time performance information 
about a software object. In addition, descriptions may be atomic, built up from 
primitives such as programming language expressions, or composite, having other 
descriptions as parts. 

The modeling constructs (types of links) used in the SIB can be divided into 
four categories: 

1. General structural~semantic relationships, including attribution, classification, 
and generalization. These are the basic structuring mechanisms offered by 
Telos. 

2. Special structural/semantic relationships, including aggregation, correspondence, 
genericity, and similarity. These have been identified as a minimal set of 
system-supplied special software descriptors. 

3. User-defined and informal links, including versioning and hypertext. The at- 
tribute definition facility supported by Telos can be used to extend this set 
of links. 

4. Associations are groupings of software artifact descriptions into larger func- 
tional units, and are orthogonal to the above binary linking mechanisms. 
Associations are sets of descriptors along with private symbol tables, which 
allow for the partition of the SIB into coherent subspaces through the creation 
(in terms of queries) of materialized views (or snapshots) and of contexts 
(or workspaces). 

2.1 Attribution and Aggregation 

One description can be related to another through a number of built-in semantic 
relationships. These include attribution and aggregation (part-whole) as in 

Description SofiwareObject with 

attributes 

author : Person 

1. S A D T i s  a registered trademark of Softec, Inc. 
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Figure 2. Attribution and aggregation 
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dateOfFirstVersion : Date 

currentVersion : VersionNumber 

hasParts 

components : SoftwareObject 

end SoftwareObj ect 

Here SoftwareObject is defined as a description having three attributes: author, 
dateOfFirstVersion and currentVersion, whose 0 or more values have to be 

instances of the descriptions Person, Date and VersionNmnber, respectively. 
Sof tware0bjec t  also has 0 or more parts of type Software0bject .  Schemati- 
cally, this description can be represented in terms of the diagram shown in Figure 
2, with boxes representing SIB nodes and arrows representing SIB edges. 

Attribution (Mylopoulos et al., 1990), similar to the notion of attribution in 
Omega (Attardi and Simi, 1981), provides a general and rather unconstrained 
representation mechanism that describes an object in terms of attribute-value pairs. 
Aggregation, on the other hand, relates an object to its components (Winston and 
Chaffin, 1987). The components of an object are assumed to be of the same general 
kind (in our case, software object descriptions). Changes to a component (e.g., 
through the creation of a new version) imply changes of the aggregate object as 
well. This property is, in fact, not shared by attributes. It is noted that aggregation 
axioms imply referential integrity. 

2.2 Classification 

From a modeling perspective, classification (converse: instantiation) is perhaps the 
most important semantic relationship represented in the SIB. Every atomic SIB object 
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Figure 3. Classification levels 
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must be an instance of one or more other, generic SIB objects, referred to as classes. 
Classes are themselves instances of yet more generic classes (called metaclasses) and 
so on. Most SIB objects are assumed to lie on a unique classification level ranging 
from 0 for tokens with no instances of their own, to level 1 for simple classes with 
instances from level 0, to level 2 for metaclasses (or M1 classes) with instances from 
level 1, and so on. Certain SIB objects that take instances from several levels are 
known as omega classes and belong to the omega-level. Omega classes are needed 
to avoid infinite regress in the semantics of the language. From a pragmatic point 
of view, omega classes help define built-in classes such as Proposition (having all 
SIB objects as instances) and Class (having all classes as instances), hardcoded into 
the SIB system, and responsible for elements of the system's operational semantics. 
Figure 3 shows the structure of the classification dimension. 

As with other classification mechanisms described in the literature, instantiation 
of a class involves instantiation of all associated semantic relationships. For example, 
instantiation of the Sof tware0b j  e c t  class involves defining 0 or more instances of its 
attributes and parts, as shown in Figure 4. Note that in the adopted representation, 
semantic relationships are treated as objects in their own right, and are instantiations 
of relationship classes. Moreover, interrelated objects need not lie on the same 
classification level. For instance, HotellS may be a simple class (with particular 
executions of this information system as instances), while 6 .03 .1 ,  Sept90 and 
Yannis are tokens. 

Syntactically, the above instantiation is specified in terms of the following: 
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Figure 4. Classification example 
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Description Ho~IIS in SoftwareObject with 

author 

: Yannis 

dateOfFirstVersion 

: SeptgO 

currentVersion 

: 6 . 0 3 . 1  
components 

: Accounting, Cashier, Bar 

end HotelIS 
Note thatthe edges associated with Ho~llS may have their own labels, a s i n  

Description Ho~llS in SoftwareObject with 

components 

acc: Accounting 

cash: Cashier 

bar: Bar 

end HotelIS 
In the latter definition of Ho~llS, its components can be accessed bytravers ing 
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the edges that are instances of the components link of Software0bject ,  or by 
traversing the edges labeled acc, cash and bar, respectively. 

2.3 Generalization, Genericity and Correspondence 

The three link types, generalization, genericity, and correspondence, have been 
grouped together because they all have definitions that include some kind of in- 
heritance. Thus, a class lower down in one of these hierarchies has fewer possible 
instances, and its instances are inherited from their more general ancestors. Their 
differences will become apparent as we discuss them in turn. 

Generalization (converse: specialization) has traditionally been supported by semantic 
and object-oriented data models as well as knowledge representation schemes. 
The notion of generalization adopted here allows multiple, strict inheritance. For 
example, the data class Student.Employee can be declared as a specialization of 
both classes Student and Employee, thereby inheriting attributes and parts from 
both classes (multiple inheritance). However, the definition of StudentEmployee 
cannot override any of the inherited information, it can only further constrain it. For 
instance, if age has been declared to be an attribute of Student, which has an integer 
range of 3-60, the age attribute of StudentEmployee can be constrained further to 
fall in the range 15-45, but cannot be redefined to have a range of, say, 15-70. In 
programming languages, the term subtyping has been used for generalization. Note, 
however, that when an object is a subtype of another, this does not imply that they 
share implementation. 

Genericity (converse: specificity) links related software descriptions, and is intended 
to convey the sense that one class is an incremental modification of another. A good 
example of genericity can be found in programming languages where implementation 
inheritance has been used to represent a situation where a software object is more 
parameterized, and hence has greater genericity, than another with the implication 
that at code level the two share (some of) their implementation methods. Like 
generalization, genericity is assumed to be acyclic, transitive, and non-reflexive. 

In general, the SIB will include several associated descriptions for a single software 
object. These may include zero or more versions of a requirements, design, and im- 
plementation description. A correspondence link represents information concerning 
the identity of the software system described by two descriptions. In addition, cor- 
respondence links can have parts that represent structural correspondences among 
the components of corresponding descriptions. 

In Figure 5, for example, HotellSReq, HotellSDes, and HotellSlmpl rep- 
resent the requirements, design, and implementation descriptions of a hotel infor- 
mation system, described through the HotellS description. Correspondence links 
indicate that the three descriptions respresent the same system at different levels 
of abstraction. These links have as parts other correspondence links, which relate 
the constituent descriptions of HotelISReq, HotelISDes, and HotelISImpl. Note 
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Figure 5. Correspondence relationships 
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that the correspondences of the constituents need not be one-to-one. The require- 
ments description, for instance, may contain descriptions of activities taking place 
in the hotel environment within which the information system will function, such 
as the organization of an event (e.g., a wedding reception) for which there are 
no corresponding descriptions in the system design. Likewise, several implemen- 
tation descriptions, say procedures ChargeExpense and GenBill, may correspond 
to a particular design description, say TrackExpenses, which is, intended to keep 
track of all expenses associated with a particular client. Conversely, several de- 
sign descriptions may correspond to a single implementation description. In the 
example, the design descriptions Customer and VIPCustomer, which may be part 
of a generalization hierarchy for customers, correspond to a single implementation 
description Customer (because, for instance, all customer records are stored on a 
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single database relation). In addition to their parts, correspondence links may have 
additional associated links that justify and otherwise annotate the correspondence 
relationship, as in the DAIDA environment (Jarke et al., 1992). 

The SIB model emphasizes the use of carefully controlled correspondence 
hierarchies through the notion of application frames. Each application frame includes 
at least one implementation, and optional design and requirements descriptions: 

Description AppIicationFrame in Metaclass with 

hasParts 

reqDesc : RequirementsDescription 

desDesc : DesignDescription 

hasParts, atLeastOne 

impIDesc : ImplementationDescription 

end ApplicationFrame 

An application frame can be either a generic application frame (GAF) or a specific 
application frame (SAF). A SAF describes a particular, complete software system, 
and includes exactly one implementation (and optional design and requirements 
descriptions). A GAF, on the other hand, is an abstraction of a collection of appli- 
cations pertinent to a particular application domain and includes one requirements 
description (describing the application), one or more designs, and one or more 
implementations for each of these designs. 

Description SAF in Metaclass isA ApplicationFrame with 

hasParts, exactly0ne 

implDesc : ImplementationDescription 

end SAF 

Description GAF in Metaclass isA ApplicationFrame with 

hasParts, exactlyOne 

reqDesc : RequirementsDescription 

hasParts, atLeast0ne 

desDesc : DesignDescription 

end GAF 

GAFs can be viewed as idealized design histories of SAFs, their evolution 
reflecting the accumulation of experience in deriving SAFs from GAFs and devel- 
oping them further. Application frames can also be specialized according to the 
application for which a software system is intended, such as Text Processing or 
Public Administration. 

In summary, generalization/specialization hierarchies (subtyping) "specialize to- 
wards a particular domain," (e.g., from administration in general to public adminis- 
tration). The upper classes contain less information than the lower ones, which are 
typically modeled by adding new attributes to subclasses, or by stronger constraints. 
These hierarchies concern the "depth" of knowledge covered. Genericity/specificity 
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hierarchies (incremental modification or parameterization) tend to promote a nar- 
rower class of solutions, for example, from generic aggregations of requirements, 
design, and code to specific ones in which parameters are instantiated--or from 
sorting procedures where the base to be sorted is a parameter type to ones where 
the base is an integer type. Finally, correspondence hierarchies tend to promote 
implementations. Thus, from the point of view of correspondence, an implementa- 
tion is below a design which, in turn, is below a requirements specification. Vistas 
along the correspondence hierarchy (application frames) play a major role in the 
ITHACA methodology. 

2.4 Similarity 

Similarity links represent similarity relationships with software objects, and provide 
a foundation for approximate retrieval from the SIB. Similarity has been studied in 
psychology (Tverskky, 1977) and artificial intelligence, most relevantly to this work 
within the context of case-based reasoning (Barletta, 1991). Similarity has also been 
offered, within the context of object-oriented systems, as a generalized version of 
generalization (Wegner, 1987). Its applications include the support of approximate 
retrieval with respect to a software repository as well as the re-engineering of 
software systems (Schwanke, 1991). 

In general, similarity is a relation determined by a flexible comparison between 
distinct constituents of two entities. Quantitatively, the result of the comparison 
can be interpreted either as a measure of closeness in some abstract space (Tversky, 
1977; Michalski, 1986), or as a probability of the entities resembling each other, 
even when possibly missing constituents are taken into consideration (Russel, 1988; 
Esposito et al., 1992). In the present work we adopt the first interpretation. Thus, 
similarity links are derived links, computed with respect to some abstractions, either 
explicit (represented in the SIB) or implicit (in the user's mind). 

Within the SIB, we are primarily interested in similarity with respect to the 
abstractions (kinds of links) explicitly defined in it, as only such similarity links can 
be computed automatically. On the other hand, user-defined similarity links are also 
allowed for flexibility reasons. Similarity is computed with respect to similarity criteria, 
and expressed in terms of corresponding similarity measures, which are numbers in 
the range [0,1]. An aggregate similarity measure with respect to a set of criteria can 
be obtained as a weighted aggregate function of single-criterion similarity measures, 
the weights expressing the relative importance of the individual criteria in the set. 
This measure may be symmetric or directed. For example, similarity with respect 
to generalization may be defined as symmetric, whereas similarity with respect to 
type compatibility of the parameters of two C routines may be defined as directed. 

Similarity can be used to define task-specific partial orders on the SIB, thus 
facilitating the search and evaluation of reusable software objects. Moreover, subsets 
of the SIB can be treated as equivalence classes with respect to a particular symmetric 
similarity measure, provided all pairs of the class are more similar than a given 
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threshold. Such similarity-equivalent classes may span different application domains, 
thus supporting inter-domain reuse. 

2.5 User-Defined and Informal Links 

Another important link type is that of derivedFrom links for version management. 
As in other version models (Katz, 1990), the version space of a description would 
be structured as a tree with derivedFrom links pointing away from the leaves (the 
latest versions) and towards the root (the initial version). 

A key issue in any version model is the propagation of changes from a description 
to other related ones through correspondence or hasParts links. Configuration 
management tools such as those described by Rose et al. (1991) will be adopted 
to address this issue. Another planned extension is the inclusion of links denoting 
procedure calls within implementation descriptions. Such links can be particularly 
useful in debugging, software modification and reverse engineering. 

In general, if users have foreseeable demands for other link types, they can define 
them through the mechanisms provided by Telos. For unforeseen representational 
needs, there is a hypertext link type which makes it possible to attach informal 
annotations or animations to any SIB object. 

2.6 Associations 

The SIB described so far can be viewed as a global information base where everything 
is visible and accessible through a symbol table that contains external identifiers 
for particular SIB objects. For example, the simple SIB of Figure 4 includes 
external identifiers Software0bject ,  Person, Date, VersionNumber, HotelIS,  
Accounting, Cashier,  Bar, 6 .03.1,  Septg0 and Yarmis. In general, the SIB will 
also contain descriptions with no external identifiers or with several. 

Association is intended to allow the grouping of descriptions that play together 
a functional role (Brodie and Ridjanovic, 1984). For example, we may define an 
association as the descriptions that constitute a design specification for a hotel 
information system, or all the classes that define an implementation of that same 
system. Note that an association partly addresses the need for encapsulation facilities 
in conceptual modeling. The contents of an association can only be accessed through 
the entry points defined in its symbol table. Thus, an association is, actually, a 
tuple: 

Association = (setOfDescriptions, symbolTable) 

The SIB itself is a global association containing all objects. Its symbol table 
contains all the external identifiers of every object. Name conflicts are resolved by 
a precedence rule. 

Associations can be combined to define new associations. Assuming that the 
functions space and symTable access the set of descriptions and the symbol table 
of an association, respectively, and that the components of entries of the symbol 
table can be accessed through identifier and range, we can define: 



VLDB Journal 4 (1) Constantopoulos: The Software Information Base 15 

associationl = ( {XlX E space(SIB) and instanceOf(X, 
DesignDescription)}, {{YIY C symTable(SIB) and range(Y) 

space(associationl)}) 
6 

or, 

association2 = (space(SIB) - space(associationl), 

{Xl X C symTable(SlB) and 

identifier(X) ~ identifier(associationl)} ) 

Associations can be represented as special descriptions having the structure: 

Description Association in OmegaClass with 
attributes 

author : Person; 

importFormula , exportFormula: DerivationFormula 
hasParts 

space : Description; 
symTable : SymbolTable 

end Association 

The importFormula, exportForrnula components of an association are assumed to be 
maintained automatically, and keep track of interdependencies in the definitions 
of associations. In the earlier examples, a s soc i a t i on l  imports from the SIB, and 
exports to associa t ion2,  while assoc ia t ion2 imports from SIB and a s soc ia t ion l .  

Associations can be considered as materialized views, defined through queries, 
or through set-theoretic operations from other associations. For pragmatic reasons, 
the SIB offers another form of modularization, called views, where the defined 
groupings are not materialized. Like their database cousins, and unlike associations, 
views cannot be updated directly, but only through updates of their importsFrom 
associations. 

2.7 The Global SIB Structure 

The structure and meaning of each requirement, design, or implementation descrip- 
tion depends, of course, on the notation (linear, graphic, or other) used for that 
description. To accommodate different notations (e.g., SADT or ORM; Pernici, 
1990) for requirements; E-R diagrams or some object-oriented notation for design; 
and C+ + or COBOL for implementation requires facilities for modeling the nature 
of the symbolic structures accommodated by that notation. This is achieved within 
the SIB through extensive use of the classification dimension. 

Figure 6 shows a number of C+ + class descriptions, including the class GenBill, 
which defines the implementation of a hotel information system. For example, 
HotellSlmpl is an association, and is part of an application frame named HotellS. 
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Figure 6. Global SIB structure 
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These are simple classes within the SIB. The figure also shows some of the metaclasses 
that might be instantiated during the process of inserting such application frames in 
the SIB: C++Class, C++Method, and C++0bj oct, whose instantiations populate C+ + 
implementation descriptions such as I-IotelISImpl. All C+ + objects are included in 
the C++association, which is an instance of the metametaclass IraplModel, along 
with Smalltalk and CooL (CooL, 1990). SADT, on the other hand, is listed under 
ReqModel. Some models (e.g., the Entity-Relationship model), may be listed under 
more than one metametaclass model. 

The picture of the SIB structure suggested by Figure 6 can now be augmented 
with that of Figure 7. The token level of the SIB is reserved for information 
concerning run-time experiences with software described in the SIB. For example, 
the Hotellglmpl association is shown in Figure 7 to have been run for Lato 
(presumably, a hotel) with attached information on performance characteristics and 
bug reports for classes included in the association, such as GenBill. The simple 
class level of the SIB includes program descriptions (mostly declarations), along 
with descriptions of the designs and requirements from which they were derived. In 
addition, the simple class level includes more macroscopic units such as associations 



VLDB Journal 4 (1) Constantopoulos: The Software Information Base 17 

Figure 7. SIB structure and application frames 
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representing implementation, design, or requirements descriptions, and application 
frames. Finally, the metaclass level includes generic descriptions of application 
frames as well as requirements, design, and implementation descriptions. 

As mentioned earlier, all SIB objects (not just tokens) are subject to modification. 
However, pragmatic reasons dictate the adoption of different operational rules for 
objects at different classification levels. In particular, modifications at meta-levels 
are relatively rare and are under the authority of designated engineers, while at the 
simple class level application developers actually change the schema by populating 
the SIB with software descriptions (either manually or through development tools). 

3. The SIB Prototype System 

This section describes an industrial strength prototype SIB system that has been 
implemented at the Institute of Computer Science, FORTH. This robust prototype 
has been functional for some time and has been made available to other sites for 
experimentation. After an overview, the section presents the system's architecture 
and user interface, followed by a discussion of its implementation and integration 
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with other tools within the ITHACA application development environment. A usage 
scenario is detailed in Section 4 as part of the SIB evaluation. 

3.1 System Functionality 

The SIB system offers a number of maintenance, selection, and workspace man- 
agement functions. Maintenance functions include insertion, deletion, and update 
of information in the SIB, and are supported by appropriate access language and 
interactive form-based data entry tools. The latter offer a form based on the type 
of object to be edited by reading out schema information from the SIB itself. 
Selection functions include retrieval and browsing, while workspace management 
involves the dynamic definition and modification of workspaces to provide easier 
and more efficient interaction with the SIB. 

3.1.1 General Description. Maintenance and selection operations are performed 
on workspaces, which are application-specific and/or user-specific subsets of the SIB, 
and are represented as associations. When there are several overlapping workspaces, 
the identity of shared objects is maintained through reference to the identifiers used 
within the SIB itself. Classification and generalization links are also shared between 
workspaces, being an integral part of an object's identity. The use of workspaces 
offers several benefits, such as focusing attention on selected parts of the SIB by 
hiding irrelevant information; creating convenient views of the same objects either by 
renaming them or by hiding particular parts of their descriptions; improving search 
performance by effectively restricting the search space; and supporting privacy. In 
terms of the structure introduced in the previous section, workspaces are special 
cases of associations. The default workspace is the entire SIB (which can be thought 
of as a global workspace). 

Queries to the SIB can be classified from a user's point of view as explicit or 
implicit. An explicit query involves an arbitrary predicate explicitly formulated in a 
query language or through an appropriate form interface. An implicit query, on the 
other hand, is generated through navigational commands in the browsing mode, or 
through a button or menu option, for frequently used, predefined queries. Browsing 
commands and explicit queries can also be issued through appropriate interfaces 
from external tools. 

The selection of software descriptions from the SIB is accomplished through 
the Selection Tool (ST) in terms of an iterative process consisting of retrieval and 
browsing steps. Browsing is usually the final and sometimes the only step required 
for selection. The functional difference between the retrieval and the browsing 
mode is that the former supports the retrieval of an arbitrary subset of the SIB, 
and presumes some knowledge of the SIB contents, while the latter supports local 
exploratory searches within a given subset of the SIB without any prior knowledge. 
Operationally, both selection modes evaluate queries against the SIB. 

Browsing in a software development environment is a powerful and required 
facility, as evidenced from the emphasis on good browsers in almost all available 



VLDB Journal 4 (1) Constantopoulos: The Software Information Base 19 

software class libraries (Korson and McGregor, 1992). Of course, when offered as 
the only access mechanism in large libraries, browsing has its limitations. On the 
other hand, when augmented with filters and orientation facilities, and coupled with 
additional retrieval modes, browsing becomes a very effective access mode. 

A few examples of non-Boolean predicates concerning software are: the rele- 
vance of a software description to some application, the similarity of two descriptions 
with respect to some criterion, and the coupling of two pieces of code in a running 
system. The SIB system is intended to support such non-Boolean queries through 
tools that order their response by relevance, similarity, affinity, and the like. 

3.1.2 Basic Functions. The basic functions of the SIB are as follows: 

Maintenance functions: 
lnsert: Descriptions X Associations ~ Associations 
Delete." Identifiers × Associations ~ Associations 
Update: Descriptions x Associations ~ Associations 
NewVersion: Descriptions × Associations ~ Associations 

The Insert function takes as input a description and an association, and inserts that 
description to the association as well as the global association (SIB). If the description 
is that of an association, insertion includes materialization of the association. Delete 
takes as argument the identifier of a description and an association, and deletes 
the description from the association. Update modifies a particular version of a 
description, while NewVersion turns the updated description into a new version. 

Selection functions: 
Retrieve: Queries x Associations ~ SetOf (Descriptions × Weights) 
Browse: Identifiers × SetOf (Links x Depths) x Associations ~ Views 

The Retrieve function takes as input an association and a (compound, in general 
non-Boolean) query, and returns a subset of the association with weights attached 
indicating the degree to which each description in the answer set matches the 
query. The prototype implementation only handles Boolean queries, but extensions 
to handle non-Boolean queries are already under way. Queries are formulated in 
terms of the query primitives offered by the Programmatic Query Interface. A set 
of queries of particular significance can be pre-formulated and offered as menu 
options, thus providing maximum ease-of-use and efficiency for frequent retrieval 
operations. 

Browsing is a special retrieval operation that begins with a particular SIB 
description, which is the current focus of attention (the current object), and produces 
a view of a neighborhood of the current object within a given association. Since the 
SIB has a network structure, the neighborhood of the current object is defined in 
terms of incoming and outgoing links of interest. The size of the neighborhood can 
also be controlled. Thus, the Browse function takes as input the identifier (name) 
of the current object, a list of names of link classes paired with depth control 



20 

parameter values, and an association, and then determines a local view centered 
around the current object. 

When the depth control parameters are all equal to 1, a star view results, 
showing the current object at the center surrounded by objects directly connected 
to it through links of the selected types. In topological terms, this is the simplest 
and smallest neighborhood of an object, with a controllable population. Browse can 
be called iteratively with argument one of the objects contained in the browser's 
view, resulting in a new current object and an updated view. Effectively, the Browse 
function provides a moving window with controllable filters and size, which allows 
navigational search over subsets of the SIB network. 

When the depth control parameters are assigned values greater than 1, Browse 
displays all objects connected to the current object via paths consisting of links of 
the selected types (possibly mixed), where each type of link appears in a path, at 
most the number of times specified by the corresponding depth parameter. This 
results in a directed graph that is rooted at the current object. Finally, when the 
depth parameters are assigned the value ALL (infinite), the transitive closure of one 
or more link types is displayed with respect to the current object. Such a browse 
operation can display, for example, the call graph (forward or backward) of a given 
routine. 

The multimedia nature of SIB descriptions calls for the development of a hyper- 
media annotation mechanism that would gracefully complement the SIB semantic 
network. This is accomplished by establishing referential links between descriptions, 
treated as a special category of attribute links, thereby integrating them within the 
SIB network model. Hypermedia annotations include text, graphics, raster images, 
and algorithm animations. 

3.2 The SIB Architecture 

The SIB system consists of the following modules (Figure 8): 

• The Interactive User Interface generates and coordinates the other parts, in- 
cluding the interface tools of the Data Entry Forms and the Selection Tool. 
It is implemented using the OSF/Motif toolkit. 

• As a component of the Selection Tool, the Graphical Browser presents parts 
of the SIB network graphically, and allows the user to browse through it 
by sending messages to the Interactive User Interface in response to user 
actions. The Graphical Browser is a LABY 2 graphical editor with only the 
working area present. 

• The Data Entry and Display Forms offer form interfaces for entering and 
presenting data. These display forms are used to provide information about 
the current object or another selected node in a form layout. The forms 

2. LABY is a general purpose graphical editor developed in part within the ITHACA project at the Institute 
of Computer Science, FORTH (Katevenis et al., 1990). 
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Figure 8. The SIB architecture 
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have been designed to support multimedia information (e.g., text, graphics, 
images, and animation). 

• The Programmatic Query Interface handles queries issued by various compo- 
nents of the Selection Tool, the Data Entry Form, or external tools. Processing 
of a query results in the construction of a file suitable for display by the 
Graphical Browser or the Display Form. In the current implementation, 
a separate query interface (based on the client-server model) is used for 
programmatic queries. However, the two query interfaces will be integrated 
in the future. 

• The ITHACA Tools, integrated with the SIB at command level, use explicitly 
the Selection Tool for retrieval or access directly the programmatic query 
interface for query and data entry operations. 

• The Telos Runtime System, described in Section 3.4, constitutes the kernel of 
the SIB system. 
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3.3 User Interface 

The user interface of the system consists of the following windows (Figure 9): 

• The Graphical Browser, built using the LABY graphical editor, displays a part 
of the SIB network in the neighborhood of the current object. The window 
of the Graphical Browser is topologically divided in two parts. At least one 
link emanates from each node appearing in the lower part, pointing to the 
current node. Likewise, there is at least one link emanating from the current 
node and pointing to each node appearing in the upper part. The types of 
links are represented by a color code, which is shown in the Link Filter. 
Nodes appearing in the graph of the browser are selectable with the mouse. 
The links displayed at any one time include direct links from the current 
object to/from other objects and computed isA and instanceOf links. 

• The population of the display is controlled by means of the Link Filter (see 
below) and the Instance Box. The Instance Box appears in the display of 
the Graphical Browser when the instances of a certain active link type and 
adjacent to the current object are too many to be shown on the display. On 
selecting the Instance Box of a link class with the mouse, a list of objects 
related to the current one by that type of links appears. The objects on this 
list are selectable just like those displayed graphically. 

• The Link Filter provides buttons corresponding to link types and is used for 
activating/deactivating links, thus controlling the information displayed in the 
Graphical Browser. The isA and instanceOf buttons further offer the option 
of displaying inherited as well as direct isA and instanceOf links. All buttons 
show the color code of the link classes and come with a help facility. 

• The History List is a navigation aid intended to prevent users from getting 
lost, a common problem in hypertext systems (Conklin, 1987). The History 
List is scrollable and contains the names of the objects selected as current 
during a session in chronological order (the most recent one shown at the 
bottom, as with the history command of Unix). All entries of the list are 
selectable. A selection made on the History List is functionally equivalent 
to one made on the Graphical Browser. 

• The Application Frames List contains the names of all application frames, thus 
presenting a bird's-eye-view of the SIB. This facility is provided as compensa- 
tion for the limited scope of the Graphical Browser. The application frames 
are displayed in an indented list representing their hierarchical structure. 
Each item on the list is selectable, which effectively allows big jumps within 
the SIB network while in the browsing mode. Moreover, the Application 
Frames List serves as the initial entry point to the Selection Tool. 

• The Main Form is the top right-most window of the Selection Tool and 
invariably displays information about the current object. This information 
includes the abstracted definition of the object in a form layout, generated 
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Figure 9. The  SIB user  interface.  
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by unparsing the SIB description of the object. The form may also contain 
multimedia annotations for the object, each one displayed in a separate 
window. At present, this annotation is textual and graphical, but can be of 
any other type with no additional effort, provided that appropriate tools exist 
within the SIB's operating environment. 

The Auxiliary Form is used to display information about an object other than 
the current one, without changing the actual view in the Graphical Browser 
(Figure 9, bottom right window). To minimize user distraction, only one 
auxiliary form can be open at a time and objects are not selectable on 
auxiliary forms. The auxiliary form is actually a preview mechanism and is 
offered as an orientation aid. 

Through the Button Panel, several other windows for performing a variety of 
useful functions can appear on demand. Currently these functions are: 

GotoObject: Allows direct access to invisible objects by name. 

EnterData: A Data Entry Form is offered for entering data into the SIB. 

KeepObject: Keeps a retrieved object in a local workspace. 

Iconify and Quit: Closes and iconifies a window; quits the Selection Tool 
respectively. / 

/ 

3.4 Implementation Aspects 

As indicated earlier, the SIB model is based on Telos without its temporal reasoning 
mechanism and assertional sublanguage. Early experimentation with traditional and 
object-oriented database systems proved Telos to be superior in modeling flexibility. 
Moreover, its SIB implementation is based on C + +  and clearly outperforms the 
earlier Prolog implementation of the language. 

Before proceeding with an overview of the system implementation and the 
choices we have made, we list some of the object management and modeling 
requirements that actually shaped the implementation. 

3.4.1 Object Management and Modeling Requirements. Foremost among these re- 
quirements is the need for a powerful and expressively rich data model. This require- 
ment effectively ruled out traditional DBMSs based on the classical data models. 
However, there have been noteworthy investigations of the modeling requirements 
of software applications, including the studies of versioning models (Katz, 1990), 
the mechanisms supported in CACTIS for derived data (Hudson and King, 1989), 
and the configuration management model of Rose et al. (1991). Some work has 
been done in Software Engineering on the identification of relationship types for 
describing software objects (Meyer, 1985). Along a different direction, terminolog- 
ical languages such as CLASSIC (Borgida et al., 1989) offer facilities for defining 
terms that include a subsumption operation to determine automatically whether one 
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term description is more specialized than another. LASSIE (Devanbu et al., 1991) 
illustrates graphically how such a facility can be used for a software repository. 

A second requirement is the need for effective and efficient support for concurrent 
usage of the SIB, in addition to adequate query processing facilities. Unlike databases, 
software information bases contain mostly schema descriptions. Moreover, these 
schema descriptions include cycles and evolve dynamically. These considerations 
rule out the direct use of standard database implementation techniques, such as two- 
phase locking or directed acyclic graph methods for concurrency control. Current 
research indicates that the features of database transactions (Atomicity, Concurrency, 
Isolation, Durability) will have to be separated into multiple services, where each of 
these services might look quite different from the one used in traditional DBMSs. 
Software designers do not want to work in isolation but in overlapping workspaces 
with explicit communication. Atomicity and recovery have to be separated, because 
no one wants to reset a whole design transaction when a conflict occurrs. Likewise, 
the rich structure of software information bases such as the SIB render traditional 
query optimizations for DBMSs ineffective. 

Of course, there are useful results in the area of databases, which can readily 
be adopted to improve the efficiency and safety of software information bases. For 
example, extending traditional database types with long fields and complex object 
structures eliminates the need for costly file-opening and closing operations when 
scanning software information. It also means that common parts can be shared 
among complex objects in a controlled manner. The DAMOKLES system (Dittrich 
et al., 1987) is an excellent example of this kind of extension. 

A final requirement of the SIB calls for a host of functions not available in 
DBMSs, including configuration managers that support the efficient and consistent 
re-configuration of complex objects when components have changed (e.g., CACTIS; 
Hudson and King, 1989), and similar measuring tools (e.g., code descriptions; 
Schwanke, 1991). 

In summary, current database technology leaves much to be desired in terms 
of supporting software information bases intended for reuse. Accordingly, our 
work has been founded on a richer semantic data model that can be thought of 
as a layer on top of emerging object-oriented database systems. Nevertheless, the 
implementation technology for DBMSs in general, and object-oriented database 
systems in particular, has served as source of ideas and inspiration throughout. 
Admittedly, it is still an open question whether such a layered approach will be 
feasible for very large software information bases, or whether database technology 
will advance to satisfy some or all of the requirements discussed here. 

3.4.2 System Implementation. As we indicated, the SIB has been developed as part 
of a complete application development environment containing several tools. Their 
interconnections are shown in Figure 10. 

Architecturally, the prototype SIB system contains all the main components of a 
typical object-oriented DBMS implementation, but low-level optimizations and data 
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Figure 10. SIB tools interfaces and object store 

Tools and User Interfaces 

Programmatic 
Interface 

Query 
Parser 

Telos 
Parser 

TELOS Runtime System 

SIB Persistent Object Store 

structures are rather different (Dadouris et al., 1992; Constantopoulos et al., 1993). 
All data fields are set-valued and there has been much emphasis on efficient handling 
of network-like structures and fast retrieval of transitive closures for particular link 
types. All links can be traversed bi-directionally and there is direct support for 
all atomic retrieval operations (e.g., find all classes an object is an instance of, 
find all related objects). No optimization is done for range queries on primitive 
values (integers, floats, etc.). The schema is maintained completely at data-level, 
allowing for fast schema extensions at run-time. The data of a software information 
system are in general rather static, with infrequent and bulk changes, suggesting a 
strong preference for query optimization over update optimization. Telos objects are 
presented in terms of their (hopefully meaningful) external identifiers. Like object- 
oriented databases, objects have associated unique and system-supported internal 
identifiers (Khosafian and Copeland, 1986; Kim et al., 1989), which are invisible to 
the user. 

Five C+ + classes are used to represent all Telos objects. The contents of the 
five classes are sets of system identifiers for the instanceOf, isA, attribute, and trigger 
relations, respectively. All of these relations are kept in both directions to allow 
fast query processing. Triggers are either built-in or user-supplied, in which case 
they must be linked to the runtime system. Triggers can be used to provide access 
to data outside the database, thereby offering a powerful interface mechanism. 
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The Telos objects are kept persistent on disk and copied to memory in a cache- 
like manner. The system implemention employs demand loading in the current 
prototype, to be replaced later with a prefetch mechanism (Low, 1988). During 
the execution of a transaction, all modifications done on existing and newly created 
objects are kept in memory, and only become persistent at the end of the transaction. 
Queries may be allowed on these objects before the end of a transaction under 
certain restrictions. All dynamic memory allocations are done on a fixed granularity 
base to reduce allocation time and, more importantly, to avoid cluttering the virtual 
address space after longer execution times. Similar implementation issues have 
been discussed (Khosafian and Frank, 1988; Merrow and Laursen, 1987; Skarra 
and Zdonik, 1986). The association of system identifiers with object locations on 
persistent store and/or in memory is done by the system catalogue. The system 
identifiers are kept dense in the sense that the numerically lowest free identifier is 
allocated first. Moreover, since system identifiers are only internal, there are no 
identity conflicts. Identifier density allows a virtual memory-like indexing of the 
system catalog with use of page tables. Since it requires an additional indirection 
step after a growth of the database by a factor of 1,000, this design leads to nearly 
size-independent performance. Symbol tables translate from external identifiers to 
system identifiers and vice versa. The symbol table tuples are organized as the 
system catalog, giving good performance for translations from system identifiers 
to external identifiers translation. The inverse translation, however, is supported 
by B-trees and is the only component whose performance degrades with growing 
database size. Fortunately, the frequency of the inverse translation operation is 
several orders of magnitude lower than forward translation, since queries usually 
return larger answer sets than their argument set and all internal query processing 
is done in terms of system identifiers. Symbol tables as well as the system catalog 
are cached. 

Tests for measuring the performance of the SIB with a population of 12,000 
objects (links and nodes) yield query response times between 1 and 4 seconds 
(the maximum occuring for recursive queries following over 1,000 links). With 
a population ten times larger (120,000 objects), the response times for the same 
queries (now following up to 10,000 links) range from 1.2 to 4.5 seconds. 

Concurrency control in network-like structures is still an open problem. Database 
parts to be locked can hardly be determined. Based on the assumption that updates 
are not too frequent, we have built only read and write locks into the implementation 
for the whole database. This implies that locks may be held only for short time 
intervals and that interactive data entry form operations must check consistency 
before they commit their data to the database. Cache invalidation is done at the 
lock grant on demand of each server instance, thereby minimizing degradation of 
performance with an increasing number of clients. The lock mechanism works 
reliably on local area networks. 

Finally, the implementation has emphasized portability of the platform across 
all UNIX systems and a variety of hardware settings, including PC-based ones. The 
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system currently runs on Sun3, Sun4 series, SparcStations and 386 machines under 
UNIX. The X window system is required, preferably with a color monitor. The 
system may run in a local area network being based on a client-server architecture. 
Query processing using caches of controllable size is mainly done on the server 
side. Usage of shared caches for read-only access is currently under investigation. 

4. Empirical Evaluation of the SIB Concept 

The SIB model and system have been evaluated in the context of a specific reuse- 
oriented methodology developed in the ITHACA project. Moreover, we have begun 
the evaluation of the model with other object-oriented analysis and design method- 
ologies (Fichman and Kemerer, 1992) starting with the Booch design methodology 
(Booch, 1991). An obvious advantage of doing the evaluation using the ITHACA 
methodology is that there already exist substantial amounts of data, generated by 
companies participating in the project. After all, it is difficult to establish the 
strengths of the SIB unless it is first properly and heavily populated. 

This section reviews the reuse-oriented development methodology, the test ap- 
plication domain and applications used to validate the SIB concept, and an extended 
example from these test applications intended to demonstrate the interaction with 
the system. 

4.1 The ITHACA Object-Oriented Methodology 

Consider a concrete scenario for software reuse, adopted from Ader et al. (1990), 
De Antonellis et al. (1991), and Fugini et al. (1992). The scenario assumes 
that all software information is organized in terms of Application Frames (AFs) 
which comprise descriptions of requirements, designs, implementations, and their 
interdependencies. Thus, an AF provides three views of a software system, plus 
some process information. As indicated earlier, several different ,models can be 
supported for each of the three views. For example, in the Object-Role-Model 
(ORM; Pernici, 1990), the requirements view is a network of application objects 
connected by roles. Under certain applicability conditions, design-level software 
object specification can be related to the set of roles the object is intended to support. 
Similarly, implementation objects are related to their design-level counterparts under 
certain applicability conditions. In general, design objects may be associated with 
multiple requirements, and implementation objects may be associated with multiple 
designs, and vice versa. 

Development proceeds from a library of Generic Application Frames (GAFs) 
and the result of a development process is a Specific Application Frame (SAF). From 
the viewpoint of an application domain, a GAF is an abstraction of a collection of 
applications pertinent to this domain, while a SAF is a specific running application in 
the same domain. It isassumed that the initial class libraries and an AF library have 
been generated by application engineers and are clustered by application domains. 
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Figure 11. Application development scenario in ITHACA 
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The test application domain is Public Administration, including information systems 
for office applications. The application developers follow the steps below to produce 
a new application (Ader et al., 1990; see also Figure 11). 

1. Select an application frame from the repository, meeting the requirements for 
the application being developed. 

2. Select useful classes. In employing an application frame, the developer is 
guided to select reusable classes from the repository in that the AF drives 
requirements collection and specification according to pre-existing generic 
specifications and designs. 

3. Tailor classes. The selected classes are adapted (incrementally modified), 
using previous design experiences, by supplying parameters or by modifying 
class behavior through inheritance. 

4. Use script application. A new application is composed by linking design classes 
together by means of a "script" (Tsichritzis, 1991). The script artifacts are 
to be entered in the repository for future reuse. 

5. Monitor behavior and continuously develop. Through testing and validation, or 
because of changes in the requirements, the application is adapted. 

This methodology has been tested with an application development environment 
that includes the SIB, a requirements collection and specification tool supporting 
the ORM (RECAST; Fugini, 1992), a visual scripting tool (VISTA; de Mey et al., 
1991), and the runtime environments of the object-oriented languages CooL (CooL, 
1990) and C+ +. 
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Among the models that the SIB stores and supports, the ORM, C++,  and 
CooL models are particularly relevant. A comprehensive account of how these 
models have been stored in the SIB is presented by Charalabidis et al. (1992). It is 
noted that since the SIB descriptions for the object-oriented programming language 
models (CooL and C+ +) are rather straightforward representations of the code, 
it was possible to construct tools that generate Telos descriptions from CooL and 
C+ + code automatically and classify them within the SIB at the same time. 

Public administration has been adopted as the test application area for the SIB. 
Professional application developers from three commercial organizations generated 
the code and the description of a generic office work flow system (WooRKS; Ader et 
al., 1991). The system offers assistance to a group of users collaborating to achieve a 
sequence of tasks to accomplish an office procedure. WooRKS consists of models for 
organizations, information handling, time, operation, and coordination of activities. 

The current population of the SIB is about 20,000 separate objects (logical 
identifiers) for the above application. Most were introduced manually by the 
application developers, since the automatic population tools were not available at 
the time. The positive usage experiences of the developers were presented by 
Proefrock et al. (1992) and Charalabidis et al. (1992). Most of the interaction of 
the application developers is through the form-based SIB interface which provides 
full transparency from Telos. Application engineers, who also use Telos directly, 
have found the E-R nature of the language and the graphical visualization very 
effective. 

4.2 An SIB Usage Example 

Suppose we are assigned the task of creating an application dealing with letter 
processing to assist secretaries, managers, and others in writing, checking, and 
mailing professional letters. Looking at the AF List, we observe that an office 
information system, WooRKS, already exists. Actors, roles, and procedures are the 
basic concepts in WooRKS. 

Our starting point in exploring the SIB will then be WooRKS, selected through 
the AF List. In the natural language description in the Main Form we read that 
WooRKS is an office work flow system that handles various activities (Figure 12). 
Therefore, it is a reasonable candidate to search for a letter processing application. 
The description of WooRKS includes three attributes which are further explained in 
the Main Form. One of them, reqDescr, describes WooRKS requirements, providing 
further information about what WooRKS actually does. It is convenient to preview 
the contents of this description before deciding to make it the current object. This 
is done using the Auxiliary Form, by selecting WooRKSi_RD_FORM from the Main 
Form. 

In Figure 13, WooRKSl_RD_FORM is current in the Graphical Browser window. 
Among the classes of activities that it handles, 0rderProcessing appears to be the 
most relevant, so we inspect it. After we conclude that this is not useful, we return 
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to WooRKSI_RD FORM through the History List and try WarehouseProcessing and 
AccountProcessing, which also turn out to be irrelevant to our task. However, we 
notice that all three are instances of FormProcessClass. 

To inspect FormProcessClass, we move to it using the GotoObject facility (Fig- 
ure 14). FormProcessClass inherits the attributes of its superclass FormClass. By 

previewing the latter we see that it has two attributes, roles and baseRole (Figure 14). 
We decide to create a new instance of FormProcessClass,  called L e t t e r P r o c e s s  ing, 
whose respective attributes correspond to the requirements of our letter processing 
application. In particular, the baseRole of L e t t e r P r o c e s s i n g  will be LP_base ro le ,  
and the roles will be LP_letterCompose, LP_letterCheck, LP_letterApprove, 
LP_letterSend, LP_letterReceive, and LP_letterArchive. 

The naming convention for roles is chosen by analogy to existing form roles. To 
see those we inspect FormRole (value domain of the roles attribute) by making it 
current with the GotoObject facility (Figure 15). Because Forml~ole has too many 
instances, these are not directly displayed on the Graphical Browser, but are shown 
instead on a scrollable list after clicking on the MANY INSTANCES box appearing 
on the Browser. 

We now create the roles and baseRole of LetterProcessing. As an exploratory 
step related to the creation of LP l e t t e r A r c h i v e ,  we inspect 0P orderArch±ve by 
selecting it from the list of instances of FormRole (Figure 15). This step turns out 
to be useful because a corresponds To link from 0P orderArchive  to ArchiveAct is 
found, the latter being an instance of ADMActivity (see the Main Form in Figure 
16). Since ADMActivity is a class of design descriptions, we can define the design 
description of the new LP l e t t e r A r c h i v e  by analogy to Arch±veAct or simply re- 
use the latter. Similarly, we may use Compilel~efAct and/or Eva lua t ion0rde rAc t  
which correspondTo 0P orderCheck as the instance(s) of ADMActivity (describing 
e.g., LP_let terCheck).  

Finally, to actually define the new L e t t e r P r o c e s s i n g  description, we move to 
FormProcessClass using the GotoObject option, and then invoke the EnterData 
facility, which does not presume any knowledge of the Telos syntax. Figure 17 shows 
the Data Entry Form for Le t te rProcess±ng  along with the result of entering the 
information. 
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Figure 12. The selection tool of the SIB. WooRKS is the current object. 
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Figure 13. Requirements of WooRKS and preview of OrderProcessing 
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Figure 14. Inspecting FormProcessClass and previewing FormClass. 
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Figure 15. Instance Box display: Numerous instances of FormRole 
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Figure 16. Textual annotat ion to ArchiveAct 
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Figure 17. LetterProcessing inserted in the SIB through the 
Data Entry Form 
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5. Conclusion 

The design of the SIB integrates ideas and techniques from knowledge representa- 
tion, graphics, databases, and software engineering to offer a basis for supporting 
software reuse. To make the integration possible, these techniques had to be en- 
hanced and extended. Among the enhancements we note the efficient handling of 
large conceptual schemata in Telos; the rapid change of viewpoints and flexible pre- 
sentation of large information bases supported by the constraint-based presentation 
mechanisms of LABY (Katevenis et al., 1990); the tailor-made optimization of the 
SIB data management functions (Dadoulris et al., 1992); and the extension of the 
DAIDA framework for information systems representation (Jarke et al., 1992) by 
object and link types specifically dedicated to reuse. Scalability, portability, size- 
independent performance, and support of a multi-paradigm access with a carefully 
designed interface have all served as guiding principles of the prototype design and 
implementation. 

The population of the SIB with software information about a real office ap- 
plication, a first test of the SIB concept, has demonstrated the breadth of reuse 
viewpoints handled effectively and the practical usefulness of the specific graphical 
support. Furthermore, performance results confirm the technical choices made for 
the SIB. Ongoing experiments in different application domains and with different 
application development methodologies seem to indicate that this success is, in fact, 
generalizable. 

However, the construction of application-specific SIBs requires more facilities 
than those offered by the current prototype. In particular, additional research is 
needed to address the problem of computer-assisted acquisition of similarity links. 
Ongoing work in this direction was reported by Spanoudakis and Constantopoulos 
(1993). To guide the SIB developer (or to partially automate the job), reference 
models for different classes of applications would be of great value, analogous to 
the call for "shared ontologies" in the Knowledge Sharing Project (Patil et al., 1992) 
of the Defense Advanced Research Projects Agency (DARPA). The extensibility 
offered by Telos is a big asset in the definition of such reference models. Moreover, 
besides defining the "right" classes of software objects and their relationships, there 
are problems with the description of individual objects to be classified. We need 
to know how to describe them, where to place them, and how to do most of this 
automatically. A useful scheme of classification facets was presented by Prieto-Diaz 
(1991). Based on library science classification mechanisms, this scheme distinguishes 
facets such as the actions a system performs, its characteristics as an object that 
has been created and stored, the main data structure it supports, or its intended 
usage. Based on this work and on semantic networks, a classification model (the 
AIRS model) was proposed by Ostertag et al. (1992) and has been used for Ada 
and C libraries. The goal of this work is to provide for similarity-based retrieval 
and to automate the classification process. We have adapted this model to deal 
with the idiosyncrancies of the object-oriented nature of the languages used within 
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the ITHACA setting. 
Another potential extension of the SIB system could involve special-purpose 

tools for more "intelligent" support of the classification and retrieval process. One 
such tool has been developed in prototype form (Katalagarianos and Vassiliou, 
1992). It employs case-based reasoning to adopt past experiences in searching for 
"analogous" software objects. 

In the longer term, we want to experiment with the SIB model and system to 
include other, more general, software-related information such as business plans, 
organizational strategies, and the like. Such external information provides non- 
functional requirements on the systems to be developed, which can be exploited to 
steer the search process for reusable components. Non-functional requirements such 
as system performance, robustness, cost, and security can also play an important 
role in selecting software components and in understanding the rationale behind 
software system structure, thereby facilitating their adaptation. 
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