
VLDB Journal 3, 355-399 (1994), Kyu-Young Whang, Editor 355
©VLDB

Index Configuration in Object-Oriented Databases

Elisa Bertino

Received December, 1992; revised version received August, 1993; accepted December,
1993.

Abstract. In relational databases, an attribute of a relation can have only a single
primitive value, making it cumbersome to model complex objects. The object-
oriented paradigm removes this difficulty by introducing the notion of nested ob-
jects, which allows the value of an object attribute to he another object or a set
of other objects. This means that a class consists of a set of attributes, and the
values of the attributes are objects that belong to other classes; that is, the defini-
tion of a class forms a hierarchy of classes. All attributes of the nested classes are
nested attributes of the root of the hierarchy. A branch of such hierarchy is called
a path. In this article, we address the problem of index configuration for a given
path. We first summarize some basic concepts, and introduce the concept of index
configuration for a path. Then we present cost formulas to evaluate the costs of
the various configurations. Finally, we present the algorithm that determines the
optimal configuration, and show its correctness.

Key Words. Index selection, physical database design, query optimization.

1. Introduction

The growing need for data management facilities to handle objects more com-
plex than tuples of relations (e.g., CAD/DAM, software engineering, and office
automation) has resulted in the development of object-oriented database systems
(OODBMSs; Skarra et al., 1986; Banerjee et al., 1987; Fishman et al., 1987; An-
drews and Harris, 1987; Bjornerstedt and Hulten, 1989; Breitl et al., 1989; Deux et
al., 1990). Because of the increased complexity of the data model to be supported,
OODBMSs have had to address new issues and requirements in the design and
analysis of suitable access mechanisms. To be viable, the object-oriented approach
to data management must be supported by an architecture that directly implements
the basic concepts of the object-oriented paradigm.

Elisa Bertino, Sc.Dr., is Full Professor of Computer Science at the Dipartimento di Scienze
dell'Informazione, Universita' degli Studi di Milano, Via Comelico 39, 20135 Milano, Italy.

356

This paradigm is based on a number of fundamental concepts (Bertino and
Martino, 1993; Kim, 1990). Any real-world entity is represented by only one data
modeling concept: the object. Each object is identified by a unique identifier (UID).
The state of each object is defined at any point in time by the value of its attributes
(also called instance variables). The attributes can have as value both primitive (or
atomic) objects (e.g., strings, integers, or booleans) and non-primitive objects, which,
in turn, consist of a set of attributes. (Note that when the value of an attribute A
of an object is a non-primitive object 0, the UID of O is stored in A.)

Objects with similar attributes and behavior are grouped into classes. A class
specifies a set of attributes that define object structure, and a set of methods that
define object behavior. An attribute definition consists of a name and a domain.
The domain can be any class, including a primitive class. The fact that a class C' is
the domain of an attribute of a class C establishes an association, most often called
an aggregation relationship, between C and C'. Since C' in turn has aggregation
relationships with the class domains of its attributes and so on, the definition of
class C results in a directed graph of classes rooted at C, called an aggregation
hierarchy. We refer to attributes of class C ' in the aggregation hierarchy as nested
attributes of C. An example of an aggregation hierarchy is shown in Figure 1. In
the figure, an arc connects an attribute A of class C to class C ' if C ~ is the domain
of A. The * denotes a multivalued attribute. Furthermore, classes are organized
into inheritance hierarchies. A subclass inherits attributes and methods from its
superclass and, in addition to these, may have specific attributes and methods.

Object-oriented programming languages imply navigational access to objects.
However, this capability alone is not adequate for applications that must deal with a
large number of objects. Therefore, advanced OODBMSs provide associative query
capabilities (Banerjee et al., 1988) in addition to navigational access to objects.
Because of the nested object structures, object-oriented query languages such as
the one described by Banerjee et al. (1988) allow restrictions on objects based on
predicates on both nested and non-nested attribute,,; of classes. The following is an
example of a query against the aggregation hierarchy of Figure 1:

Retrieve all projects in the database area with a total

budget higher than $50,000.

In this query there is a predicate against the attribute "area" and a predicate
against the nested attribute "total_budget" of class Project. We refer to a predicate
defined on a nested attribute as a nested predicate. To support query predicates on
class-nested attributes, object-oriented query languages (Bertino et al., 1992) usually
provide some forms of path-expression. A path-expression specifies an implicit join
between an object O and an object referenced by O. 1 Therefore, in object-oriented
query languages it is useful to distinguish between the implicit join, deriving from

1. An object O references an object O t, if O contains the UID of O t as value of some of its attributes.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 357

Figure 1. Aggregation hierarchy example

[A.nex <
projectname: STRING summary: TEXT
area: STRING financial_info
description techrtical_info:TEXT
work plan* ~

start date:DATE | ~ Research_Group 1 ~
end -date: DATE [[[
task_description: STRING I / I group_name: STRING/I" [
participatingteam ~ I location: STRING / [(
man_year: INTEGER) k leader _ / J "

Financial Annex

total_budget: INTEGER
software_cost: INTEGER
hardware_cost: INTEGER

Researcher]
name: STRING
specialization: STRING
salary: INTEGER
university: STRING

the hierarchical nesting of objects, and the explicit join, similar to the relational join
where two objects are explicitly compared on the values of their attributes. Note
that some query languages only support implicit joins, based on the argument that in
relational systems joins are mostly used to recompose entities that were decomposed
for normalization (Breitl et al., 1989), and to support relationships among entities.
In object-oriented data models there is no need to normalize objects, because these
models directly support complex objects. Moreover, relationships among entities are
supported through object references; thus, the same function of joins used in the rela-
tional model to support relationships is provided more naturally by path-expressions.
Therefore, it appears that in OODBMSs there is no strong need for explicit joins,
especially if path-expressions are provided. An example of path-expression (or
simply path) is Proj ac t . desc r ip t ion , f inaxtcial_info, to ta l_budget denoting
the nested attribute "total_budget" of class Project. The evaluation of a query with
nested predicates may cause the traversal of objects along aggregation hierarchies
(Bertino, 1990; Jenq et al., 1989; Kim et al., 1988).

To expedite the evaluation of queries, relational database systems typically
provide a secondary index using some variation of the B-tree structure (Bayer and
McCreight, 1972; Comer, 1979), or some hashing technique. An index is maintained
on an attribute or a combination of attributes of a relation. Since object-oriented
databases require an attribute to be generalized to a nested attribute, secondary
indexing must be also generalized to indexing of a nested attribute. It is important
to note that in OODBMSs, as we discussed earlier, joins are very often implicit joins
along aggregation hierarchies. This implies that most join operations are already
predefined by the conceptual database schema. Moreover, joins are in most cases
equality joins based on object-identifiers; that is, they are identity equality joins.
Thus, it is possible to define specialized access techniques supporting fast traversal

358

of aggregation hierarchies.
Maier and Stein (1986) and Kim (1990) provided preliminary discussions of the

notion of secondary indexing on a sequence of nested attributes (or path). The
concepts of nested index and path index were proposed by Bertino and Kim (1989)
as access mechanisms to provide efficient support for queries on nested attributes
and to evaluate their performance. Here, we address the problem of defining the
optimal index configuration for a given sequence ,of nested attributes. Therefore,
the contributions of this article with respect to the article by Bertino and Kim (1989)
are:

• The definition of index configurations for a sequence of nested attributes.
• The definition of an algorithm that determines the optimal configuration.

We compare our approach with related work in the following section, after we
introduce the basic concepts of our approach that are relevant for the understanding
of the comparison.

The remainder of this article is organized as foUows. In Section 2 we survey
the concepts of nested index and path index (Bertino and Kim, 1989). We also
introduce the concept of index configuration, and briefly describe index structures
and operations. In Section 3 we present cost formulas that are used by the subsequent
algorithm in Section 4.

2. Index Organizations

In this section, we first briefly recall two index organizations that support nested
predicates. Then we introduce the concept of index configuration and the associated
operations that are novel with respect to the material presented in previous articles.

2.1 Preliminary Definitions

The remainder of this section is based on the following concepts (see Bertino and
Kim, 1989, for a more precise definition):

Path: A branch in an aggregation hierarchy; it consists of a class C followed by a
sequence of attribute names.

Path instantiation: A sequence of objects found by instantiating a path.

Nested index: An index establishing a direct connection between the object at the
beginning of a path instantiation and the object at the end. The index is keyed on
the objects at the end of path instantiations.

Path index: An index storing path instantiations (i.e., sequences of objects). The
index is keyed on the objects at the end of path instantiations.

Figure 2 provides a graphic representation of those concepts.
The following are example paths for the aggregation hierarchy in Figure 1. In

the examples, given a path P, len(P), class(P), and dom(P) denote, respectively, the
length of P, the set of classes along P, and the domain of the last attribute in P.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 359

Figure 2. Path, path instantiation, nested Index, path index

Path : C1.AII .A21.A31.A41 (denoted by bold edges)

A33: STRING A43: STRING
A23: STRING

c, 1 AShSTR/NG | [A61:STRING
A52: INTEGER J ~ A62: INTEGER

P a t h ins t an t i a t ion : 01.02.O3.O4.05
(instantiation of path C1.AI I.A2 I.A31.A41)

Oi is irstance of class Ci (i=l,4)
05 is an integer

Nested index on path C1.All.A21.A31.A41

Path index on path CI.A1LA21.A31.A41

/
• . . : - =

P1 : Task. participating_team, leader, name
len(P1)=3 class(P1) = {Task, Research_Group, Researcher} dom(P1) = STRING

P2: Project. work_plan, part±cipat ing_team, leader, name
len(P2)=4 class(P2) = {Project, Task, Research_Group, Researcher} dom(P2) =
STRING

P3: Technical_Annex. f inancial_inf o. total_budget
len(P3)=2 class(P3) = {Technical_Annex, Financial.Annex} dom(P3) = INTEGER

P4: Proj act. descript ion. f inancial_info
len(P4)=2 class(P4) = {Project, Technical.Annex} dom(P4) = Financial_Annex

The order of classes along a path is determined by the path definition itself.
For example, in P2, Project has position 1, Task has position 2, Research_Group
has position 3, and Researcher has position 4.

360

Figure 3. Instances of classes of Figure I

IA Project[i]
dvancod Models
atabase
echnicalAnnex[i]

{Task[i], Task[j]}

I Task[i[
March I, 93
December 30, 93
Data Model Defin.idon
• esearch_Group[kl

Project[j] ~ I Task[j]
advanced Architectures[[November 1, 93
Database l [March 30, 94
Technical_Annex[j] | [Query Language
{Task[k]}) L4Research_Group[k]

rResearch_Group[k]
Group 102
Pisa - Italy
Researcher[i[

esearch_Group[j]
roup207

Milano - Italy
Researcher[m]

i 4 Task[k] December 1, 93
June 30, 94
Indexing Techniques

esearch_Gmup[j]

I Researcher[i]
Bianchi
Formal models
40,000
Pisa

F Researcher[m]
| ver~
] Architectures
/ 50,000
~ Mi~o

In the following, we assume that a UID for an object consists of the class
identifier of the object's class, concatenated with the identifier of the object within
its class. For example, Project[i] denotes the i-th instance of the class Project.
Primitive objects (such as numbers, Booleans, characters, strings) are identified by
their values. Note that an object O which is a component of another object O ~ has
its own identifier, which does not contain the identifier of O t. This allows O to be
a component of several different objects, and to be directly accessed without first
accessing the object(s) of which it is a component.

The objects in Figure 3 are instances of some of the classes shown in Figure
1. As an example, a nested index on the path P1 associates a distinct value of the
name attribute with a list of object identifiers of class Task. For the objects shown
in Figure 3, the nested index contains the following pairs:

(Bianchi, {Task[i], Task[j]})
(Verdi, {Task[k]}).

The path-index on P1 for the object in Figure 3 contains the following pairs:

(Bianchi, {Task[i].Research_Group[k].Researcher[i],Task[j].
Research_Group[k].Researcher[i] })

(Verdi, {Task[k].Research_Group[j].Researcher[m] }).

Note that when n = l , the nested index and path index are identical and are
the indexes used in most relational DBMSs. We refer to these indexes as simple
indexes. Note also that a path index can be used to evaluate nested predicates on all

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 361

classes along the path. In the current example, we could use the index to retrieve
the researchers with a specified name, to retrieve the research groups whose leader
has a specified name, or to retrieve the tasks with a participant team whose leader
has a specified name.

Given a path 79=C1 . A1. A2 An , and an object Oi of a class Ci in class(P),
we use the term forward traversal to denote the access of objects Oi+l, • • • ,On, such
that 0i+1 is referenced by Oi through Ai, . . . , On is referenced by On-1 through
A,~-i. Objects on a path may be traversed in a reverse direction of the path (i.e.,
O i - 1 , . . . ,O2,O1, such that Oi-1 references object Oi t h r o u g h A i _ l , . . . , and O1
references 02 through attribute A1. It may not be profitable to support backward
traversal, unless, given an object O, it is possible to directly determine the objects
that reference O. For example, in GemStone reference from an object to another
is unidirectional. In Orion (Kim et al., 1989) reverse references are supported for
composite objects. Given an object O that has a reference to an object O t, a reverse
reference is a reference from O t to O. We make the assumption, as did Kim et
al., that the reverse reference from an object O ~ to another object O is stored as a
system-attribute in O ~.

As an example, consider path P1 = T a s k . p a r t i c i p a t 5.ng_team. leader.name,
a forward traversal of P1 starting from object Task[i] implies access to objects
Research_Group[k] and Researcher[i]. Indeed, object Task[i] references object Re-
search_Group[k] through attribute "participating_team." Object Research_Group[k],
in turn, references Researcher[i] through attribute "leader." By contrast, a backward
traversal with reverse references from object Researcher[i] implies access to object
Research_Group[k].

Index Structure and Operations. The data structure that we use to model the nested
index and path index organizations is a B+-tree (Bayer and McCreight, 1972; Comer,
1979). The format of the non-leaf node is identical in these two organizations.
A non-leaf node consists of f records, where a record is a triple (key-length, key,
pointer). The pointer contains the physical address of the next-level index node.

The format of the leaf nodes differs in the two index organizations. In a nested
index, a leaf-node record consists of the record-length, key-length, key-value, number
of elements in the list of UIDs, and the list of UIDs. In a path index, the format of
a leaf-node record consists of the record-length, key-length, key-value, the number
of elements in the list of path instantiations, and the list of path instantiations. Each
path instantiation is implemented as an array of dimension equal to the path length.
Figure 4 shows the format of a leaf-node record. Figure 5 provides examples of
leaf-node records for the objects in Figure 3 on the path P1. In the remainder of
this section we briefly describe the operations on the two index organizations.

Nested Index. Given a path "P=C1. A1. A2 An and a nested index defined on
this path, the evaluation of a predicate against the nested attribute An of class C1
requires the lookup of a single index. Therefore, the cost of evaluating a nested

362

Figure 4. Leaf-node in a path index

record

] lreenC~] lenk~ - [valku:~ path~lO.[{path(l) .]

[uid(1) 1] uid(1)~ [uid(l)n I luid(n)l I ui0(n I uid(n)~

Figure 5. Leaf-node records in a path index

I Task[i] [Research_Group[k] [Researcher[i] I [Tasklj] Research_Group[k] [Researcher[i]]

I] { p a t h s

[Task[k] [Research_Group[j] [Researcher[m] [

predicate is the same as if the attribute An were a direct attribute of class C1.
Let us consider a path 79=C1. A1. A2 An and an object Oi, 1 < i < n

instance of a class Ci in class(7~). Suppose that Oi has an object Oi+l as the value
of attribute Ai and that Oi is updated to assign a new object Oi+ 1 toAi. To update
the index, two forward traversals must be executed to determine the value of nested

! attribute A n with respect to Oi+l and Oi+ 1. Then the path is reverse-traversed
from object Oi to determine the UID(s) of object(s) of class C1 that contains direct
or indirect references to Oi. Finally, the data structure implementing the index is
modified.

To update a nested index, in general, the path must be traversed. In particular,
two forward traversals and one backward traversal are. required. If Oi is the modified
object, then the forward path traversal has length dry =n -- i, where n is the path
length. The backward path traversal has length lb=i -- 2 if i>2, lb=0 if i < 2. If
no reverse references are provided in objects, the nested index organization cannot
be used.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 363

The operation of insertion and deletion are similar to the update operation,
except that only one forward traversal is executed.

Path Index. Given a path "P=C1. A1. A2 An and a path index defined on
it, the evaluation of a predicate against the nested attribute A n of a class Ci, 1
< i < n, requires a lookup of a single index. Once the set of path instantiations
associated with the key value is determined, the i-th elements are extracted from the
arrays representing these instantiations. However, a greater number of leaf-nodes
may need to be accessed than with a corresponding nested index, because leaf-node
records in a path index contain more information than those in a nested index.
(For a comparison of the paths of lengths 2 and 3 see Bertino and Kim, 1989).

Again, let us assume that an object Oi, 1 < i < n, which is an instance of
class Ci in class(P), is modified by replacing object Oi+1, the value of Ai, with a
new object t Oi+ 1. The effect of this update is that some instantiations have been
modified and therefore the index must be updated. To update the index, two forward
traversals must be performed, as in the case of the nested index. However, unlike
the nested index organization, a path index does not require a backward traversal,
since paths are stored in the leaf-node records. Therefore, this organization can
be used even if backward references are not supported in objects. The update
algorithm is described in detail elsewhere (Bertino and Kim, 1989).

2.2 Index Configuration

A path may be split into several subpaths, and for each subpath a different index
organization may be used, or indexes may be used only on some subpaths. In this
case we say that the path is supported by a multi-index organization. The motivation
for splitting a path is mainly to reduce the update costs and, at the same time,
provide efficient retrieval. Both nested indexes and path indexes have high update
costs (Bertino and Kim, 1989), especially if allocated on long paths (i.e., with length
greater than 3), and low retrieval cost. Conversely, the multi-index organization
has low update cost and high retrieval cost. Therefore, the purpose of splitting
a path into several subpaths is to provide intermediate configurations that allow
the update costs to be reduced, while providing efficient retrieval. The algorithm
described in Section 4 is used to determine the most efficient configuration. Let us
consider the path P2 = Project. work_plan, part icipat ing_team, leader, name.
This path can be split in different ways, for example:

1. P21 =Project.work_plan
P22 =Task" part icipat ing_t eam

P23 = Research_group. leader
P24 = Leader. name

2. P21 =Project. work_plan, participating_team
P2~ =Research_group. leader
P23 = Leader. name

364

3. P21 =Project. work_plan.participating_team
P22 =Research_group. leader, name

Given a path, the number of subpaths and the index organization of each
subpath defines the index configuration. Which configuration is best depends on the
access patterns and on data characteristics. An algorithm for configuration selection
is presented in Section 4. The algorithm also determines whether a path must be
split into several subpaths and for which subpaths an index must be allocated.

Definition 8. Given a path P=Ct.A1.A2 A , , (n > 1) an index configuration
for 79 of degree /k; denoted as X(79), is defined as a sequence of pairs, {T1,
T2 , . . . ,Tk}, (k< n). Ti (1 < i < k) has the form <Si, ITi > where

Si=Cj. Aj. Aj+i Aj+li (j _> i and li > 0) is a subpath definition; the subpath
length is li + 1; Cj is in class(P) and is called the starting class of the subpath and
is denoted by SCi; Aj+tl is called ending attribute of the subpath and is denoted by
EAi;

ITi indicates whether an index is allocated on the subpath, and the type of index
allocated on the subpath; it can assume one of the following values: NX, PX,/,
0, where NX denotes a nested index, PX a path index, and I a simple index (i.e.,
a nested index defined on a subpath of length 1). The symbol 0 denotes that no
index is allocated on the subpath.

The sequence ~ = {S1,$2,. . . ,Sk} is called the subpath specification. A
configuration having degree greater than one is called a split configuration. This
means that under the configuration the path has been split in at least two subpaths.

Given a path ~S)=C 1. A1. A2 An, (n _> 1) a configuration X(79) of degree
k must satisfy the following constraints:

1. The ending attribute of Sk must be An.

2. The starting class of subpath Si (1 < i < k) must be the domain of the
ending attribute of path Si-1.

Note that these constraints require that subpaths be non-overlapping. This is to
avoid overlapping indexes. Overlapping indexes cause higher update costs, since an
update to an object implies the modification of several indexes. Moreover, retrieval
becomes inefficient if there are several overlapping indexes on the same path.

Definition 9. Given a path 79=C1. A1. A2 An (n > 1), an index configuration
for 7 9, X(79), and a class Ci in class(Sj), Ci is indexed by X(79) if o n e of the
following conditions is satisfied:

a path index is allocated on S j;

a nested index is allocated on Sj and Ci is the starting class of Sj.

As an example, consider the path P3 ---- Techn:Lcal_Annex.financial_info.
total_budget, involving two classes. The possible configurations are as follows:

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 365

1. { < Technical_Annex.financial_info.total_budget, NX > }
In this case P3 is not split and a nested index is used. Class Technical.Annex
is indexed in this configuration, while class Financial_Annex is not indexed.

2. { < Technical_Annex.financial_info.total_budget, PX > }
In this case P3 is not split and a path index is used. Both classes are indexed
in this configuration.

3. { <Technical_Annex.financial_Jnfo.total_budget, 0 > }
In this case no index is allocated on the path. Neither class is indexed in
this configuration.

4. { <Technical_Annex.financial_info, I> , <Financial_Annex.total_budget, I > }
In this configuration P3 is split into two subpaths of length 1. A simple index
is allocated on each subpath. Both classes are indexed in this configuration.

5. { <Technical_Annex.financial_info, 0 > , <Financial_Annex.total_budget, I > }
In this configuration P3 is split into two subpaths of length 1. An index is
allocated only on the second subpath. Only Financial_Annex is indexed in
this configuration.

6. { <Technical_Annex.financial_info, I> , <Financial_Annex.total_budget, 0 > }
This configuration is similar to the previous one, except that the index is
allocated only on the first subpath. Only Technical_Annex is indexed in this
configuration.

In configurations 1, 2, and 3 the path is not split. Therefore, the subpath
specification coincides with P3. On the other hand, configurations 4, 5, and 6 are split
configurations and the subpath specification is ~ = {Technical_Annex.financial_info,
Financial.Annex. total_budget }.

Finally, a configuration where an index is defined on each subpath is completely
indexed; otherwise it is said to be partially indexed. For example, Configuration 4
above is completely indexed, while Configuration 6 is partially indexed.

Note that given a configuration such as

xi(P2) = {< Project.work_plan, 19 > , < Task.participating_team, 0 > ,
< Research_Group.leader.name, PX > }

is equivalent with respect to the index allocation to the configuration

x2(P2) = {< Project.work_plan.participating_team, 0 > ,
< Research_Group.leader.name, PX >}.

We call a configuration like x2(P2), where there are no two consecutive subpaths
on which no index is allocated, a non-trivial configuration.

2.2.1 Retrieval Operations. Given a path "P=C1. A1. A2 AN and a config-
uration X('P) of degree k > 2, the evaluation of a predicate against the nested
attribute An with respect to class Ci may require the lookup of several indexes.

366

Let Sh be the subpath to which the class Ci belongs, then the evaluation of the
predicate is executed as follows:

If h < k (i.e., Ci does not belong to the last subpath) then
If an index is allocated on Sk, an index lookup is performed on this index
to determine the instances of SCk (starting class of Sk) that satisfy the given
predicate (using whatever index organization is defined for Sk).

If no index is allocated on Sk, the instances of SCk satisfying the given predicate are
determined by accessing the instances themselves. The strategy for evaluating
the predicate is determined by some query optimization algorithm (possible
execution strategies have been proposed by Bertino, 1993). Let us indicate the
qualifying set of SCk instances as UIDk_i.

Then the instances of SCk-1 are determined .,;uch that their nested attribute
EAk_i assumes values in the set UIDk_I. This activity is executed by using
an index, if an index is allocated on subpath Sit-l, or accessing the instances,
according to some query execution strategy.

This process is repeated until the subpath Sh is reached. If an index is allocated
on Sh and Ci is indexed by X(79), an index lookup is then performed to determine
the instances of class Ci such that the nested instance attribute EAh assumes
values in the set UIDh. Otherwise such instances are determined by accessing
the instances themselves.

If h=k (i.e., Ci belongs to the last subpath) then:
If an index is allocated on Sk and Ci is indexed by X(79), only one index lookup
is executed to determine the instances of Ci that satisfy the given predicate.

If no index is allocated or Ci is not indexed by' X(~o), the instances verifying
the predicate are determined by accessing the instances themselves, according
to some query execution strategy.

Example 1. Consider the path P2 = Projec t .work_plaaa .par t ic ipa t ing_team.
leader.name and the configuration

{<Project.work_plan.participating_team, PX> ,
<Research_Group.leader.name, NX >}.

In this configuration the path has been split into two subpaths, such that a path
index is allocated on the first subpath, while a nested index is allocated on the
second path. The configuration is completely indexed since there is an index on
each subpath. The two indexes will have the following entries for the objects in
Figure 3:

Path index on Proj oct . work_plan, pa r t icipating_teetm
(Research_Group[k], {Project[i].Task[i], Project[i].Task[j]})
(Research_Group[j], {Project[j].Task[k] })

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 367

Nested index on Research_Group. leader .name
(Bianchi, {Research_Group[k]})
(Verdi, {Research_Group[j]})

Note that only classes Project, Task, and Research_Group are indexed by this
configuration.

Suppose that we wish to retrieve all instances of class Project such that the nested
attribute "name" is equal to a given value (e.g., "Bianchi"). In this case, a lookup on
the nested index defined on the second subpath (i.e., Research_Group. l eader , name)
is performed. This lookup returns a set of UIDs of instances of class Task
such that their nested attribute "name" verifies the given predicate. This set is
{Research_Group[k]}.

Then a lookup on the path index defined on the first subpath is performed to
retrieve the instances of the class Project having the attribute "participating_team"
(ending attribute of the first subpath) values in the set of UIDs returned by
the previous index lookup. In this case, this set contains only one UID (i.e.
Research_Group[k]). The lookup of the path index for this UID returns as result
{Project[i]}. []

Example 2. We now consider a partially indexed configuration, the path P2 and the
configuration

{ < Project.work_plan.participating_team, O > ,
< Research_Group.leader.name, NX > }.

In this configuration, a nested index has been allocated on the second subpath (as
in Example 1), while no index has been allocated on the first subpath. Suppose
that, as in Example 1, we wish to determine all projects having a task whose
leader is a researcher named Bianchi. This query is executed as follows. First
an index lookup on the nested index is executed. The set {Research_Group[k]}
is returned. Then instances of class Project are determined as having the nested
attribute "participating_team" values in the set returned by the index lookup. Note
that, depending on the query execution strategy, we may need to access instances of
classes Task and Project, since there is no index allocated on the subpath containing
these classes. []

2.2.2 Update Operations. We now consider the update operation. Consider a class
Ci (1 < i < n) which is modified. Let Sh be the subpath to which Ci belongs.
The update is executed depending on the index type, as discussed previously. Note,
however, that the forward traversals need only to determine the old and new values
of EAh (subpath ending attribute) for the modified objects. Therefore, no access
must be executed to instances of classes that belong to subpaths different from Sh.
Similarly, if the index type is nested, the backward path traversal must be executed
only up to the class following the starting class of the path.

368

Example 3. Consider the path P2 : P ro j ec t .work_p lan .pa r t i c ipa t ing_ team.
leader.name and the configuration of Example 1:

{ <Project.work_plan.participating_team, PX>,
<Research_Group.leader.name, N X > }.

Suppose that an update is performed that replaces the leader of Research_Group[j]
with the new researcher Researcher[p]. In this configuration, the updates are on
the second subpath and therefore only instances of classes in this subpath must be
traversed. To determine the updates to be performed on the index, the following
steps must be executed:

Researcher[m] is accessed and its value for attribute "name" is determined. The
attribute value is "Verdi."

Researcher[p] is accessed and its value for attribute "name" is determined.
Suppose the attribute value is "Smith."

The following updates are executed to the nested index:
Research_Group[j] is eliminated from the set of instances associated with

the key value "Verdi."
Research_Group[j] is added to the set of instances associated with the key

value "Smith."
Note that no backward traversal is needed in this case. Indeed, the modified

class is the class at the beginning of the subpath. Note also that the classes in the
other subpath do not need to be accessed. []

Finally, consider the configuration of Example 2, where no index is allocated
on the first subpath. In this case, any update concerning instances of the classes
in the second subpath is executed as in Example 3. If, however, updates occur on
the first subpath, the update operation has no additional costs due to the index
updates.

2.3 Related Work on Indexing

The problem of efficiently supporting hierarchical data has been widely investigated in
the framework of CODASYL database systems. A basic feature of the CODASYL
data model is the one of set, which allows a record type called owner to be
connected to another record type called member. To efficiently support navigation
from occurrences of a record owner to occurrences of a record member, different
implementations of the set have been proposed (the most common order being
based on pointer arrays or on list structures). However, a basic difference is that the
CODASYL data model does not support a high level declarative query language as
in the case of object-oriented data models. For example, to provide the equivalent
of a nested predicate (e.g., Task .par t ic ipa t ing_team. leader , name = Bianchi),
a program must be used in CODASYL. Therefore, most techniques proposed for

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 369

supporting sets are really oriented toward a step-by-step navigation. For example, a
pointer array associated with a given record occurrence only stores the pointers of the
child record occurrences, but not those of the other descendants. To determine the
descendants, a child occurrence first must be fetched, then the addresses of the record
occurrences following in the hierarchies are determined from the pointer array of the
child occurrence, and so on. Some extensions of these techniques are provided by
the IMS system for a direct support of hierarchies of more than one set by flattening
each hierarchy occurrence into a two-level hierarchy (Batory, 1985). However, those
techniques can be applied only to trees, while in our case general graphs must be
handled. Moreover, we note that all information needed to implement sets (such
as pointer arrays) is stored with the record occurrences themselves (for example,
a pointer array is stored with the occurrence of the parent record). By contrast,
the purpose of the indexing techniques we present in this article is to provide
generalized data organizations that allow nested predicates to be efficiently solved
without having to access the objects themselves. Therefore, some data that facilitate
an efficient query processing are stored in separate structures. This makes the data
structures quite small and therefore more efficient. However, it is worthwhile noting
that OODBMSs support two modes of object access: (i) high-level queries (like
relational systems); (ii) step-by-step navigation (like CODASYL system). Very often
the two access modes are used in a complementary way. A query is used to select
a set of objects. The retrieved objects and their components are then accessed by
using navigational capabilities. The problem we are addressing concerns the efficient
support for high-level queries with nested predicates. CODASYL techniques could be
used and/or extended for efficiently supporting navigation among objects. However,
note that techniques used for supporting efficient step-by-step navigation could be
used, in certain cases, as alternatives to indices to support queries. Therefore,
the overall problem of physical database design for object-oriented databases is
very complex because both associative accesses through queries and step-by-step
navigation must be taken into account.

An indexing technique for complex objects has been proposed (Valduriez et
al., 1986), based on the notion of join index which was originally proposed for the
relational model (Valduriez, 1987). A join index on two relations R and S is a file
of pairs, where each pair contains the identifier (surrogate) of a tuple of R and the
identifier of a tuple of S, such that the two tuples verify a given join predicate.
In the implementation proposed by Valduriez (1987), two copies of the file can be
allocated. One copy is clustered with respect to relation R and the other with respect
to relation S. However, for limited access patterns (e.g., if always given a tuple of
R, the matching tuples of S must be determined), a single copy is sufficient. Both
copies are implemented as a B+-tree. A join index in an object-oriented database
can be used to support the implicit join between the instances of a class C and the
instances of a class which is the domain of an attribute of C. Therefore, a sequence
of join indexes could be used to support a nested predicate. We note that in this
case a join index provides the same function as a nested index allocated on a path of

370

length 1 (i.e., a simple index). Therefore, the sequence of join indexes is equivalent
to a configuration where a given path has been split into several subpaths all of
length 1. Therefore, our approach concerning patla configurations is more general
since it provides the equivalent of a sequence of join indexes as a particular case.
Moreover, note that the path index that we consider here constitutes a generalization
of the join index, since it allows an arbitrary number of classes connected through
aggregated relationships to be related (rather than relating two classes).

A recent work (Kemper and Moerkotte, 1990) proposes a technique, called the
access support relation, which is equivalent to the path index. The authors suggested
that a path be split into several subpaths and different access support relations be
allocated on each subpath, which is similar to our notion of configuration (except
that they proposed a single indexing technique, while we consider two different
indexing techniques). However, they proposed no algorithm for determining the
optimal way to split a path. The definition of such an algorithm is our main goal
in this article.

3. Cost Functions

In this section we present basic cost functions of index access and maintenance for
the nested index and path index. Using these costs we derive the cost functions
for a generic configuration. We present the workload model used in the selection
algorithm. In defining the cost functions we use the parameters listed in Table
1. The parameters ki (1 < i < n) model the degree of reference sharing. Two
instances of a class Ci share a reference if they reference the same object O as
value of attribute Ai. For example, objects Task[i] and TaskD] share a reference
along the path P1, since both objects reference Research_Group[k] through attribute
"participating_team." None of the parameters used in the cost functions (except the
physical page size) are input parameters to the configuration algorithm (Section 4).
The parameters in Table 1 are derived from the input parameters of the algorithms.
The input parameters are listed in Table 3.

3.1 Basic Cost Functions

We define the access cost functions for two types of index access: single-key and
key-set. In the first type, a single key value is provided as input to the index lookup.
In the second type, a set of key values randomly selected among the index keys is
provided as input to the index lookup. We also define index maintenance costs and
briefly discuss the access costs in cases where a predicate must be evaluated directly
on the instances. In defining the cost functions we make the following assumptions:

1. The values of attributes are uniformly distributed among instances of the
class defining the attributes.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 371

Table 1. Cost function parameters

• h B+-t ree height

• X record size in a leaf-node

• D number of distinct key values in the index

• int (1 < l < h) number of index nodes at level l of the index

• np number of pages occupied by a record when record size is larger than

page size;

np = r X I P]

• k i average number of instances of class Ci assuming the same value for

attribute A i (1 < i < n)

• P physical page size

2. All attributes are single-valued. 2

3. All key values have the same length.

4. Each instance of a class Ci is referenced by instances of class Ci-1, 1 < i <_ n.
Without this assumption, we would have to introduce additional parameters
to take into account object reference topologies.

A c c e s s cost. The single-key access cost is denoted by Isingte and is formulated as
follows:

• Isingle = h if X __< P

• Isingle = h - - 1 + np if X > P.

The key-set access cost is denoted by Ise t (s) where s is the cardinality of the
key-set. We evaluate the cost of a search for a number s of keys by using the
formulation proposed by Lang et al. (1989):

h
• Iset(S) = E t = l H(s, int, D) if X < P

h
• Iset(S) = (E t = l H (s , i n t , D)) + s × (n p - 1) i f X > P .

2. We introduce this assumption mainly for simplifying the presentation of the cost formulas. The orga-
nizations can easily support multi-valued attributes. In particular, while the path index does not need any
extension, the nested index must be extended by including a counter for each UID in the set associated with
a key value, indicating the number of different path instantiations starting with the same object and ending
with the key value.

372

where H is the formula defined by Yao (1977). This formula determines the number
of pages hit when accessing a number k of records randomly selected from a file
containing n records grouped into m pages:

k (n/m) iq-1
H(k,m,n) = m × (1 - - H n - - --

i=l n - i + 1)"

Bertino and Kim (1989) defined how values for h, X, and int are derived for
both the nested index and path index, given parameters defining the data logical
characteristics.

Maintenance cost. The index maintenance cost deriving from update, delete, or
create operations for an instance of a class Ci (where the subscript i indicates
the position of the class along the path) is denoted by U, D, a n d / , respectively.
In computing this cost we exclude the costs of updating, deleting, or creating the
instance itself, since these costs are common to al][organizations, and focus on the
additional costs of index modification. To further simplify the analysis, we consider
only the costs of leaf-page modification and exclude the costs of index page splits
(cf. Schkolnick and Tiberio, 1985).

In defining the cost functions we will make use of the following additional
variables:

CFT cost of a forward traversal (in IO operations)
CBT cost of a backkward traversal (in IO operations)
C BM average cost of the B+-tree modification (in IO operations).

The cost functions for modification operations on a class Ci are as follows:
Nested Index U = 2 x CFT + CBT + 2 × CBM

D = ! = C F T + C B T + CBM
Path Index

U = 2 x CFT + 2 x CBM
D = ! = C F T + CBM.

CFT is evaluated by observing that the number of objects that must accessed is
n -- i. For each object, first an access must be executed to determine the physical
address of the object (since references are logical), and then a second access to
fetch the object itself. Therefore:

CFT = 2 X (n - i) .
CBT is evaluated by the following expression: 3

i--1 i--1
CBT = 2 X (~ j = 2 (r l l = j kl)) if i > 2
CBT = 0 otherwise.

3. "Hae CBT cost is evaluated under the assumption that reverse references are used. The CBT cost in the

case of no reverse references is not of interest for the present discussion and therefore is not reported.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 373

In the previous expression the quantity in parentheses determines the number of
objects to be accessed. For each of those objects, two IO operations are performed.

We note that costs of both forward and backward traversal are dependent on
i (i.e., on the position of the modified class along the path). Since the purpose of
forward traversal is to determine the value of the nested attribute at the end of the
path for the modified instance, the cost of the forward traversal depends on the
position of the class in the path. If the class is very close to the beginning of the
path, the cost of forward traversal is very high, being proportional to the difference
between the path length and the class position in the path. Similarly, the cost of
backward traversal is directly proportional to the position of the class along the
path.

CBM is formulated by the following expressions:
C B M = h + 1 i f X < P

A number h of IO operations is executed to retrieve the leaf page containing the
record to be modified; an additional IO operation is then executed to rewrite
the modified page.

CBM = h + 1 + (np - 1)/np i f X > P
If the record size is larger than the page size, then a number h of IO are
executed to access the leaf page that contains the initial part of the record.
From the initial part of the record, it is possible to determine the page from
which the UID must be deleted or to which the UID must be added. If this
page is different from the page containing the initial part of the record, then a
further access must be performed. The probability of a further page access is
given by (np -- 1)/np.

If no index is defined on a subpath, the cost maintenance for the subpath is zero.

Instance Access Cost. As we have seen in the previous section, when no index is
defined on a subpath, a given predicate must be evaluated by accessing the instances
themselves. The cost depends on the query execution strategy used (Bertino and
Martino, 1993). However, it should be noted that the cost functions used are
orthogonal to the algorithm presented in Section 4. For example, it is possible to
use the cost estimates provided by a query optimizer (Finkelstein et al., 1988). In
the following:

Zset(C, A, U) denotes the cost of determining which instances of the class C
assume values for the (nested) attribute A in a set of UIDs of cardinality U.
As an example, given the set Ue={Task[i], Task[j]}, Aset(Project, work_plan,
card(Uc)) denotes the cost of determining which instances of the class Project
have in their work plans Task[i] and/or Task[j].

Asingte(C, A, pred) denotes the cost of determining which instances of the class C
have the (nested) attributeA that verifies the predicate pred. As an example, con-
sider the predicate name = Bianchi. hsingle(Research_Group, leader.name,
name=Biaxtchi) denotes the cost of determining which instances of the class Re-
search_Group are headed by a researcher named Bianchi.

374

3.2 Configuration Cost Functions

Now we present access and maintenance costs for index configurations of degree k >_
2 (i.e., configurations consisting of at least two subpaths). When the configurations
consist of only one subpath, then the costs are the. ones presented in the previous
subsection.

Access Costs. The access costs are provided only for the case of single-key predicates.
The access costs for range-key or set-key predicates can be easily derived from the
cost of single-key predicate.

Given a path ~:)=C 1. A1. A2 . . . An and a non-trivial configuration X('P) of
degree k, the cost of evaluating a single-key predicate pred on attribute An with
respect to a class Ci (1 < i < n) is denoted as cost_a[Ci, pred], and is obtained
as follows. In the following cost expressions, NUIDj denotes the cardinality of the
set of UIDs obtained by the lookup on the j+ l - th subpath (this set of UIDs is
obtained by accessing the instances themselves or by scanning an index depending
on the configuration of subpath Sj+i).

Let Sh be the subpath to which Ci belongs, then 4
for h =k (i.e., Sh is the last subpath)

I Isingle(Sk) if an index is allocated onSk
cost_a [Ci , pred]

I Asingle(Ci, EAk,pred) otherwise

for h<k (i.e., Sh is not the last subpath)
rv'~k-1 ~ rSC cost_a[Ci, pred] = cost_a[SCk, pred] + tA.,j=h+l~setk j, NUIDj)] + Qset(Ci,

NUIDh).
The expression for function Qset is provided in Table 2.
In the previous expression Isingle(Sk) denotes the access cost to the index

allocated on Sk (last subpath) for evaluating pred~ Since we made the assumption
that pred is a single-key predicate, the access cost is the cost of an index lookup
when a single key value is provided as input. This cost depends on the index
organization defined on Sk and it is obtained by applying the basic cost functions
for the single-key case defined in the previous subsection.

Similarly, Iset(Sj, NUIDj) denotes the access cost to the index defined on the
j-th subpath when a set of key-values is provided as input to the index lookup. The
access cost is obtained by applying the cost functions defined for the key-set case
for the two index organizations.

Example 4. Consider a path P2 = P r o j e c t . work_plan, pa r t ±cipant_team. l eade r
name and the confijzuration of Example 2 in Section 2:

{ <Project.work_plan.participating_team,0 > ,
< Research_Group.leader.name,NX> }.

4. Recall that SCj (EAj), for I ~ j ~ k is the starting class (ending attribute) of subpath Sj.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 375

Table 2. Functions Q~i~gz~ and Qset

• f o r h + l < j < k

Iset(Sj,NUIDh)
Qset(SCj'NUIDj)= Aset(SCj,EAj,NUIDj)

if an index is allocated onSj

otherwise

= I Iset(Sh,NUIDh) if an index is allocated onSh
Qset(Ci,NUIDh)

L Zset(Ci, Ehh, NUIDh) otherwise

Suppose that we wish to determine all tasks with a participating team headed by
a researcher named Bianchi. The cost of this query under the given configuration is
given by cost_a[Task, name="Bianchi"] =cost_a [Research_Group, name="Bianchi"]
+ Oset(Task, NUID1)= Isingle(S2) + Aset(Task, participating_team, NUID1).

The cost of the query in the example is explained by observing that the query
is executed by first determining the instances of class Research_Group headed by
a researcher named Bianchi, and then by determining the instances of class Task
having as participating team one of the qualified instances of class Research_Group
(cf. Example 2 in Section 2). The first step is executed by scanning an index, since
an index is allocated on the subpath Research_Group.leader.name. The second step
is executed by accessing the instances of class Task, since no index is allocated on
the subpath Project.work_plan.participating_team. []

NUIDj (j<k) for a configuration of degree k is evaluated as follows:

Tb

NUIDj = H ki × f(pred)
i=ncl

where ncl is such that Cncl is the starting class of the j+ l - th subpath; f(pred) is
a factor depending on the type of predicate pred (it is derived by using standard
formulas for predicate selectivities estimation). In particular, when the predicate
pred contains the operator =, f(pred) = 1. In the example in Figure 6, we consider
a configuration that consists of four subpaths and a predicate pred containing the
= operator. We present the values of NUID for subpaths $1, $2, and $3.

We note that the cost of the j-th index lookup, when j<k~ is dependent only on
the cardinality of the set NUIDj and on the index organization for the subpath Sj.
However, the cost is independent from the organization of all the other subpaths.
When no index is allocated on a subpath Sj, the cost of determining which instances
of a class in Sj assume a value in NUIDj for the nested attribute at the end of the
subpath is independent from the index organization of the other subpaths.

376

Figure 6. Example of evaluation of NUID~ for configuration

P=C1. Ai. A2. A3. A4. AS. A6. AT, len(P)=7

x(P)={<C1 • A1. A2, NX>, <C3. A3, I> , <C4. A4. A5, PX>, <C6. Ao. a7,
NX>}
ki=2, k2=2, k3=l , k4=2, k5=2, ko=2, k7=3

NUID1 =k3 x k4 × k5 x k6 x k7 = 24 NUID2 =k4 x k5 × k6 × k7 = 24 NUID3 =k6 × k7 = 6

When h = ~ the cost of the j-th index loop is only dependent from the index
organization defined on Sk, and from the data logical characteristics. The cost is
similar when no index is allocated on a subpath.

Therefore these cost functions verify a property that is similar to the separability
property defined by Whang et al. (1984). This is ~lportant because we can choose
the optimal index organization for each subpath independently from the index
organizations chosen for the other subpaths.

Maintenance Cost. The maintenance costs are defined as the basic costs. The only
difference is that the forward traversal and the backward traversal (for the nested
index organization) are limited to classes in the subpath to which the modified class
belongs.

More formally, let Ci be the modified class, Sh be the subpath to which Ci
belongs, e be such that Ae is the ending attribute of Sh, hs be such that Chs is the
starting class of Sh (cf. Section 2). Then:

CFT= 2 × (e - - i)
i--1 i--1

CBT = 2 × (~j=h,+l (rXl=j kl)) if i -- hs > 1
CBT = 0 otherwise.

Because a modification operation on a class Ci involves accessing only object
instances of the classes in the subpath to which Ci belongs, the cost functions for
update, delete, and create operations have the separability property. That is, the
costs are only the functions of the index organization defined for the subpath and
it is independent from the organizations of the other subpaths.

In the following we will denote the cost of an update on a class Ci as
cost_u[Ci]. The cost of a delete or create operation will be denoted as cost_d_i[Ci],
since cost functions are equal for the delete and create operations. Note that
cost_u[Ci]=cost_d_i[Ci]=O if no index is allocated on the subpath.

3.3 Workload Model

To determine the optimal index configuration for a given path, the expected workload
for classes along the path must be specified.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 377

Given a path P = C t . A1. A2 An, the workload in our case is characterized
by a set of triplets

W(79) = {(oli, vi, t~i), i = 1 , 2 , . . . , n } ,

where:
o~i is the frequency of evaluation of a single-key predicate on attribute An with

respect to class Ci;
vi is the frequency of updates executed on attribute Ai of class Ci;
6i is the frequency of instance deletions and generations for class Ci.

All frequencies are expressed as real numbers in the interval [0,1]. We assume
that the frequencies are provided as input to the algorithm. Very often, these
frequencies are provided by the physical database designer (Finkelstein et al., 1988)
or can be obtained by monitoring the system (Yu et al., 1985).

Given a workload specification, the optimal index configuration must minimize
the following cost expression:

n

E ai × cost_a[Ci,pred] + Ui × cost_u[Ci] + ~i × cost_d_i[Ci].
i = 1

3.3.1 Subpath Workload. Given a configuration X(79) and a workload specification,
it is important to determine the workload on each subpath. This makes it possible
to determine the best index organization for each subpath. For a given Si, the
subpath workload of Si determines the frequencies of retrieval and modification
operations that are executed on each class in class(Si).

Given a subpath Si, the workload specification of Si is defined as a set of triplets

DW(Si) = { (d~j, dvj , d6j), j = is, is + 1, . . . , is + l i - 1}.

where li denotes the length of Si (el. Section 2) and is denotes the subscript of the
starting class of Si. Therefore, the derived workload for a given subpath contains
a number of triplets equal to the number of classes along the subpath; doq, du 5,
and d~j are derived as follows:

i--1 ~lj--1
doti, = [~ j = t 2--~h=00l(j,+h)] +Oli,
doLj : O~j, j = is+ 1, . . . , is+ li-- 1.
dvj = t/j, j = is, i s+ 1, . . . , is+ li-- 1.
d~j =~5 , J = is, is+ 1, . . . , i s + l i - - 1.

The workload for a subpath Si is derived by observing that the index defined
on the subpath is accessed for retrieval each time a predicate on any class along Si
must be evaluated and also each time a predicate on any class along any subpath
Sj preceding Si (i.e., j < i) must be evaluated. By contrast, the workload for the
modification operations depends only on the frequencies of these operations for
the classes along Si. In particular, the instances of SCi (starting class of Si) will
have to be retrieved when:

378

Figure 7. Example of derived workload

P=C1. A1. A2. h3. a4. As, len(P)=5 x(P)=

{<C1. A1. A2, NX>, <C3. A3,I>, <C4. A4. A5, PX>}

~1=0.20 /Jl=O.O1 t~l=O.O1 ~2=0.00 v2=O.O1 t~2=:O.O1 0~3=0.20 //3=0.10 t~3=0.02
Oq=0.20 Y4=0.05 t~4=0.02

ce5 =0.10 v5 =0.05 65 =0.02

dot1=0.20 dVl=O.O1 dt~l=O.O1 do~2=O.O0 dv2=O01 d~2=O.O1

dee3=0.40 dt]3=O.lO dt~3=O.02 doL4=0.60 dv4=O05 dt~4=O.02
dols=O.lO dvs=O.05 dt~5=O.02

1. a predicate must be evaluated on SCi or
2. a predicate must be evaluated on any class preceding SCi in 7 9.

As an example, consider the configuration { < Project.work_plan.participating_
team, 0 > , < Research_Group.leader.name, NX> }.

Under this configuration, the instances of class Research_Group must be retrieved
each time a query is issued on class Research_Group, and also when queries are
issued on classes Project and Task, since these are classes preceding Research_Group
in the path. Indeed, the qualified set of UIDs of instances of class Research_Group
are used to determine the qualifying instances of class Project and Task.

Therefore, the relative derived retrieval frequency for the starting class of each
path includes also the retrieval due to queries on preceding classes. As in the example
in Figure 7, we consider an index configuration, consisting of three subpaths and a
workload, and we derive DW.

Note that the cost of the j-th index lookup, when j<k; is dependent on the
cardinality NUID 5 and on the index organization for the subpath S 5. However, the
cost is independent from the index organization of all the other subpaths.

Given a configuration X(79) of degree k, and a subpath Si, (1 < i <k) we
define the overall cost for Si as

li--1

cost(Si) = ~ dol(i,+h) X Qset(C(G+h),NUIDi)-b
h=0

li--1

[~ du(i,+h) X COSt-u[C(i,+h)] -t- dl)(i,+h) × cost_d_i[C(i,+h)]].
h=O

Substituting expressions for dai, dui, and d6i.., and recalling the configuration
cost functions presented in the previous subsection, we obtain:

i--1 lj--1 li--1

cost(Si)----Qset(SCi,NUIDi) × Z Z C~(j,+h)-b ~ OZ(i,+h)×
j = l h=O h=O

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 379

Qset(C(i.+h),NUIDi) + V(i.+h) × cost-u[C(io+h)] + 3(i,+h) X COStM_i[C(i.+h)]. 5

The overall cost for Sk (last subpath) is defined as follows:

lk--1

cost(Sk) = E do~(k.+h) X cost-a[C(k.+h),prea]+
h=0

dV(k,+h) × cost-.u[C(k,+h)] + d6(k,+h) × cost-d-i[C(k,+h)].

As in the previous case, we obtain the following expression for cost(Sk):

k-1 l j -1 Ik--1

cost(Sk) =cost_a[SCk,pred] x ~ ~ a(j.+h) + ~ C~X
j = l h=O h=O

cost.a[C(k.+h),prea] + "(k.+h) X cost_u[C¢k.+h)] + e¢k.+h) X cost_d.i[Cf,,+h)l.
Because of the separability property (cf. Subsection 3.2), cost(Si) (1 < i < k)

is independent from the cost(Sj) (1 _< j _< k and i 76 j).
Finally we define the overall cost for X(79) as

k

°v-c°st[X(79)] = E cost(si).
i=1

The following proposition holds,

Proposition 1. Given a path 79=C1. Av A2 , . . . ,An, a workload W(79), and a
configuration X(7 9) of degree k

Ein=l OL i X cost_a[Ci,pred] ++ ui X cost_u[Ci] + ~i × cost_d_i[Ci] = (1)
k • i : l cost(Si) . (2)

The proof of the proposition is given in Appendix A. Therefore, the problem of
finding a configuration that minimizes expression (1) can be restated as the problem
of finding a configuration that minimizes expression (2).

4. Selection Algorithm

The selection algorithm receives as input a set of parameters defining:
path definition, 7 9 = C1. A 1. A 2 A r~ (n > 1);

5. Recall that Cia =SC i since i s denotes the subscript of the starting class of path S i.

380

Table 3. Data parameters

• Di number of distinct values for attribute Ai , 1 < i < n.

• Ni cardinality of class Ci, 1 < i < n assuming the same value for attribute

Ai (1 < i < n) .

• PC(Ci), 1 < i < n, number of disk pages containing instances of class Ci.

• ri (2 < i < n) a binary variable assuming value equal to 1 if instances of

class Ci have reverse references to instances of class Ci -1 in the path; equal

to 0 otherwise.

• k / ave rage length of a key value for the indexed attribute, (i.e. An) .

• r[dom(P)] a binary variable assuming value equal to 1 if the instances of the

class dom(P) have reverse references to the instances of class Cn; equal to

0 otherwise. This variable assumes always value 0 if dorn(P) is a primitive

class (i.e., string, number, character, etc.).

• UIDL length of the object-identifier.

data characteristics (listed in Table 3); 8
workload specification (as defined in the previous section).

The algorithm is organized in n steps. In the first step all subpaths of length 1
are considered and for each of them the costs are evaluated. In the first step there
is only one choice to be made since for the case of subpath length equal to 1 the
nested index and path index are identical. Therefore, the only choice is whether to
allocate an index. At the second step all subpaths of length 2 are considered. In
this case there are six possible choices for each subpath. A nested or path index
can be used, or no index allocated, or the subpath can be further split into two
subpaths of length 1, such that an index is allocated on both subpaths, or only on
one (Subsection 2.2). In particular, a nested index is taken into consideration only
if there are backward references f rom the second class in the subpath to the first
class in the subpath and there is no retrieval from the second class of the subpath.
The path index is always taken into consideration. Then the costs for all possible
subpath configurations are evaluated and the configuration with the minimum cost

6. Parameters in Table 3 are used to derive all parameters (except the page size) used in the cost formula-
tions, such as the index height listed in Table 1. In this article we do not discuss how parameters in Table 1
are derived from parameters in Table 3, since this derivation is presented in a previous article (Bertino and
Kim, 1989). However, this derivation is quite trivial; it mainly concerns the determination of index charac-
teristics, such as height or leaf-node sizes, from input parameters such as the number of instances per class
and the number of distinct values for attributes.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 381

is chosen. Note that the cost of the configuration where the subpath is split into two
subpaths of length 1 is obtained as the sum of the costs of each of these subpaths.
These costs have already been evaluated at the previous step.

At the k-th step, all paths of lengths k are considered. For each subpath the
algorithm considers k+2 choices. The first choice is represented by the nested index.
This organization is taken into consideration if there are reverse references among
the classes in the subpaths, and if the frequency of retrieval is zero for all the classes
in the subpath except the starting class. The second choice is represented by a path
index, which is always taken into consideration. The third choice is represented by
not allocating any index on the path. The remaining k -- 1 choices are obtained
by considering all possible configurations obtained by further splitting the subpath
into two subpaths, that is, considering all the split configurations. Given a subpath
Sj = Cj. Aj. A j+l. A j+2 A j +k-1 (of length k) the configurations that are
considered are the following:

(1) C j . A j . A j + i Aj+k-2, Cj+k- l .Aj+k-1
A

(2)Cy.Aj.A~+i As+k_3, C~+k-2.A~+k-2.A~+k-;
. . . o o ,

(k- 2) Cj.Aj .Aj+;, Cj+2.Aj+2 Aj+k-; .

(k- 1) C~.Aj, Cj+i.Aj+i As+k-l".

The cost of one these configurations is given as the sum of the costs of the
two subpaths that make up the configuration. For example ov_cost(configuration2)
= cost(Cj. Aj. A j+l A/+k-3) + cost(Cj+k-2.hj+k-2.Aj+k-1).

Note that the configurations and costs of the subpaths into which Sj can be
split have already been evaluated at some previous steps.

The costs of all k+2 choices are then evaluated and the choice with the minimum
cost is selected. Note that in the resulting configuration, Sj can be split in more
than two subpaths. This happens when a split configuration is chosen for Sj. In
the chosen configuration Sj is split into two subpaths Si and S~. For each of these
two subpaths the optimal configuration has been determined at some previous step
and the resulting configuration for Sj is the concatenation of the configurations of
Si and S~. If, for example, Si has in turn a split configuration consisting of two
subpaths Sh and S~, then the overall configuration of Sj is the concatenation of
the configurations of Sh, S~, S~ and therefore S t is split into three subpaths.

At step n the algorithm considers all possible paths of length n. There is only
one path of this length--the input path P . The algorithm generates a number
of choices equal to n+2 where the first three choices are the nested index, the
path index, or no index. The remaining n -- 1 choices are the split configurations
obtained by splitting 7 :~ into two subpaths. The costs of all the choices are evaluated.
The choice with the minimum cost is the configuration selected for the input path
P.

382

In all the steps the costs for each subpath are evaluated with respect to the
derived workload of the subpath.

We assume that when considering a configuration without index, all possible
execution strategies are considered and the one with the minimum cost is selected.

In presenting the algorithm we will make use of some additional notations:

S~ denotes a subpath of length j having as starting class Ci.
cost_NX, cost_PX, and cost_l denote the overall subpath cost when a nested

index, a path index, and a simple index are used respectively.
cost_O denotes the cost of the most efficient execution strategy (Bertino and

Martino, 1993) when no index is allocated.
Given two paths 79 and 7 9' and two configurations X(79) and X(79') of degree

k and k', such that:
X (7 9) = { T l , T2, . . }
X (7 9 ' l = { r l : Z ' 2 , • • •

cat[x(7 9), X(79)] is a configuration of degree k+k' defined as the sequence

{ T1, T2, . . . , Tk, T;, TJ, . . . , T~ }

The algorithm is organized in the following steps:

• STEP 1. Consider all subpaths of length 1. The number of these subpaths
is n, and each subpath has the form S~ =Ci. Ai. For each S/1

1. evaluate DW(S{ 1) for i=l n;

2. evaluate cost_I;

3. evaluate cost_O;

4. cost(S ~) =min { cost .J, cost_O }

• STEP 2. Consider all subpaths of length 2. The number of these subl~aths
is n -- 1 and each subpath has the form Si 2 =Ci. hi. ai+l. For each S~

1. evaluate DW(Si2);

2. if ri+l =1, and OZi+ 1 =0, evaluate cost.NX; otherwise cost_NX=cx~;

3. evaluate cost.PX;

4. evaluate cost_O;

5. cost1 = cost(S~) + cost(S~+l) where

- S~ is a subpath of length 1 such that the starting class of S/1 is Ci;
- Si1+1 is a subpath of length 1 such that the starting class of S~+ 1

is Ci+l;

(note that cost(S~) and cost(Sil+l) hawz been evaluated at the previous
step).

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 383

6. cost(Si2) = min{cost_NX, cost_PX, cost_~9, costl}

7. In this step the optimal configuration for the subpath S/2 is determined.

X (Si 2) = {<Ci. Ai. Ai+l, NX > } if cost.NX is the minimum cost; else

X (S~) = {<Ci. Ai. Ai+l, PX > } if cost.PX is the minimum cost; else

X (S~) = {<Ci. Ai. Ai+i,/9 > } if cost_~9 is the minimum cost; else
S x S 1 X (S/2) = cat [X (i) , X (i+1)]"

• STEP3. Consider all subpaths of length 3. The number of these subpaths is
n -- 2 and each subpath has the form S~ =Ci. Ai. Ai+l. Ai+2. For each S/3

1. evaluate DW(S~);

2. If ri+l =1, ri+2 =1, Oli+ 1 =0, and ai+2 =0, evaluate cost_NX; otherwise
c ost_NX = oo;

3. evaluate cost_PX;

4. evaluate cost_~9;

5. cost1 = cost(ST) + cost(S~+2) where

- S/2 is a subpath of length 2 having as starting class Ci;
- Si1+2 is a subpath of length 1 having as starting class Ci+2;

6. cost2= cost(Si 1) + cost(Si2+l) where

- S~ is a subpath of length 1 having as starting class Ci;
- Si2+l is a subpath of length 2 having as starting class Ci+l;

7. cost(Si 3) = min{cost.NX, cost_PX, cost_~9, costl, cost2}

8. In this step the optimal configuration for the subpath S~ is determined.

X (Si 3) = {<Ci. Ai. Ai+l. Ai+2, NX>} if cost_NX is the minimum
cost; else
x =

cost; else

x =
else

x =

x =

{<Ci. Ai. Ai+l. Ai+2, PX>} if cost_PX is the minimum

{<Ci. Ai. Ai+i. Ai+2,/9 > } if cost_~9 is the minimum cost;

1 cat Ix(S/Z), X (Si+2)] if costl is the minimum cost; else

cat Ix(S/l), x(S~+i)].

• STEP lc Consider all subpaths of length k (k<n). The number of these
subpaths is n + l -- k and each subpath has the form S~ = Ci. hi. Ai+l.
Ai+2 Ai+k_ 1. For each S~

1. evaluate DW(Sik);

384

2. If r i + l = l , r i+2=l , ri+k_l=l, anti

Oli+ 1 =0, Oli+2=0 , . . . , and O t i + k _ l = 0 evaluate cost_NX; otherwise
cost.NX = cx~ ;

3. evaluate cost_PX;

4. evaluate cost_O;

5. For 1=1, k -- 1:

costl = cost(St -l) + cost(S~+k_l) where

- Si k-t is a subpath of length k - 1 having as starting class Ci;

- S~+k_ t is a subpath of length 1 h~Mng as starting class Ci+k-l

6. costl, =rain{cost1, cost2,. • . , costk_l }

7. cost(Sik)=min{cost_NX, cost_PX, cost_O, cost l, }

8. In this step the optimal configuration for the subpath S/k is determined.

X (S/k) = {<Ci . Ai. Ai+l. Ai+2 A~+k-1, N X ~ } if cost_NX is the
minimum cost; else

X (Si k) = {<Ci" Ai. Ai+l. Ai+2 A~i+k-1, PX > } if cost_PX is the
minimum cost; else

x (s~) = {<c~. A~. A~+i. Ai+2... ~i+k-1, 0 >} if cost_O is the
minimum cost; else

II X (Si k) = cat[x(Sik-t'), X (Si+k-v)] if cost[is the minimum cost.

• S T E P n . Consider the subpath of length n. There is only one subpath of this
length and coincides with the input path 79 .

1. evaluate DW(S~);

2. I f r 2 = l , rn=l, ol2=0, . . . , and o~n=0

evaluate cost_NX; otherwise cost.NX=cx~;

3. evaluate cost_PX;

4. evaluate cost_O;

5. For 1=1, n -- 1:

costt = cost(S~ -t) + cost(Stn_t) where

- S~ -t is a subpath of length n-I having as starting class C1;

- Sln_t is a subpath of length l having as starting class Cn-t

6. costv =min{costl, cost2 , . . . , costn-1 }

7. cost(S~)=min{cost.NX, cost_PX, cost_O, costl,}

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 385

8. In this step the optimal configuration for the subpathS~ is determined.
X (S~) = (<C1. A1. A2An , NX > } if cost_NX is the minimum
cost; else

X (S~) = {<C1. A1. A2 An, PX >) if cost_PX is the minimum
cost; else

X (S~) = {<C1. A1. A2. . . .An , 0 > } if cost_O is the minimum cost;
else

X (S~) = cat[x(S ln-l'), X (Sn-v)]t' if costl, is the minimum cost.

The optimal configuration for the path 7 9 is given by X (S~).
The formal correctness proof of this algorithm is presented in Appendix B. Here

we provide some informal justification. We note that a correct algorithm is one
that would consider all possible ways of splitting a path (including the case of not
splitting the path), and for each one of these ways would consider all possible index
organizations. The algorithm, at STEPn, considers first the case of not splitting the
path, and then the three possible organizations (nested index, path index, and no
index). Then it considers all possible ways of splitting the path into two subpaths.
Note that there is no need at STEP n to consider splitting the path into a larger
number of subpaths (e.g., three or more), since these have already been considered
when evaluating the subpaths of length lower than n at the previous steps of the
algorithm. The algorithm considers all possible ways of splitting the path into two
subpaths. The optimal configuration of each of these subpaths is in turn obtained
by evaluating all possible index organizations and all possible ways of splitting them
into two subpaths.

4.1 Complexity Evaluation

The complexity of the algorithm is evaluated in terms of the number of configurations
whose costs must be evaluated. Given a path P whose length is n, the number of
configurations nc(P) that are evaluated is given in the worst case by the following
expression:

n

n c (P) = 2 , n + ~ ((n + 1 - i) × (3 + i - 1)).
i=2

This expression is obtained as follows:

• The term 2*n is the number of configurations that are examined at STEP 1.
At this step all subpaths of P of length 1 are considered. Since P has length
n, the number of such subpaths is n. For each path of length 1, we consider
only two configurations: (1) allocation of a simple index; (2) no allocation
of an index.

• At step i-th of the algorithm, we consider all subpaths of P whose length is
i. The number of such subpaths is n + 1 -- i. For each subpath of length i,

386

Table 4. Data parameters, workload, reverse reference specification

• Data parameters

- N1=200,000 D1=20,000 k1=10 PC(C1)=iO,O00
- N2= 20,000 D2=10,000 k2= 2 PC(C2)= 1,000

- N3= 10,000 D3=10,000 k 3 = l PC(C3)= 500

- N4 = 10,000 D4=10,000 k 4 = l PC(C4)= 500
- N s = 10,000 05=10,000 k 5 = l PC(Ca)= 500

• Workload

- oe1=0.1 V 1=0.05 61=0.05
- 0L2=0.1 V2=0.05 62=0.05

- 013=0.1 ~3=0.05 63=0.05
- OL4=O.1 U4=0.05 64=0.05

- o~5=0.0 us=O.1 65=0.1

• Reverse reference specification: ri =1 (1 < i < 5).

• r[dom(P)]=O

we consider the following configurations: path index, nested index, no index.
Moreover, we consider a number of configurations that consist of splitting
the subpaths of length i into pairs of subpaths. The number of such pairs for
a subpath of length i is equal to i -- 1. Therefore, we find that the number
of configurations for a subpath of length i is (3 + i - 1). Note that this is
the worst case, since the nested index organization is not considered when
there are no reverse references, and thus the number of configurations is (2
+ i - 1) .

By developing the above expression for nc we obtain that the total number
of configurations to be considered is c = (n 3 + 9 × n 2 + 2 × n)/6. Therefore,
the complexity of the algorithm is polynomial. In terms of storage, the algorithm
requires that the optimal configuration cost for each subpath be considered. Since
the total number of subpaths is n + ~ i ~ 2 (n + l -- i) = (n 2 + n)/2, the space
required is proportional to this expression which is linear with the square of n, that
is, with the path length.

4.2 Illustrative Examples

To illustrate the algorithm, we consider the path P=C1. A1. A2. A3. A4. A5. Table 4
presents the data parameters, workload, values, and reverse reference specification.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 387

In the table, we also report the values of parameters ki which are derived from Ni
and Di.

• STEP 1. The subpaths of length 1 are considered. Their costs are as follows:

- S~=C1. A1 cost J=0.9 cost_O=0.4
cost(S~)=O.4 x(S~)= {<C1. A1,O >}

- $12=C2. A2 costJ=0.85 cost_O=0.4
cost(S21)=O.4 x(S21)= {<C2. A2,0 > }

- $31=C3. A3 costJ=l.05 cost_O=0.6
cost(S31)=0.6 x(S3)1 = {(C 3. h3, 0 >}

- $41=C4. A4 cost_l=l.25 cost_O=0.8
cost(S~)=0.8 X($14)= {<C4. Z4, 0 >}

-S~=Q. A5 cost_l=1.7 cost_O=200
cost(S~)=l.7 x(S~)= {<C5. A5, I>}

• STEP 2. The subpaths of length 2 are considered. Their costs and configu-
rations are as follows:

- S~ =C1. A1. A2 for this path the nested index cannot be used because
class C2 has a frequency of predicate evaluation (0~2) which is different
from zero. Therefore the following configurations are considered for
this subpath:

* {<C1. A1. A2, PX>} cost_PX=2.1
* {<C1. A1. A2,0 > } cost_O=0.8
* {<C1. Aj.,/9 > , <C2. A2,0 > } cost1=0.4+0.4=0.8

Therefore x(S~)={<C1. Aj. A2, 0 > } cost(S~)=0.8

- S~ =C2. A2. A3 for this path the nested index cannot be used because
class C3 has a frequency of predicate evaluation (ce3) which is different
from zero. Therefore, the following configurations are considered for
this subpath:

* {<C2. A2. A3,PX>} cost_PX=I.8
* {<C2. A2. A3,0 > } cost_O=l
* { < C 2. A2, 0 > , <C 3. A3, 0 > } cost1=0.4+0.6=1

Therefore, A2. A3, 0 >} cost(S)=l
- S~ =C 3. A3. A4 for this path the nested index cannot be used because

class C4 has a frequency of predicate evaluation (oL4) which is different
from zero. Therefore the following configurations are considered for
this subpath:

388

* {<C3. A3. A4, PX>} cost_PX=2
* {<C3. A3. A4, 0 >} cost_O=l.4
* {<Ca. A3, 0 >, <C4. A4, 0 >} costl =0.6+0.8=1.4

Therefore x(S~)={<C3. A3. A4, 0 >} cost(S])=l.4

- $42 =C4. A4. As for this path the nested index can be used because 0~5 =0
and r5 = 1. Therefore, the following configurations are considered for
this subpath:

* {<C4. A4. A5, NX>} cost_NX=2,.45
* {<C4. A4. As, PX>} cost_PX= 2. 45
* {<C4. A4. A5, 0 >} cost_O=200
* {<C4. A4, 0 >, <~C5. As, I>} cost1=0.8+1.7=2.5

Therefore X($42)= { <Ca. A4. As, NX> } cost($24)=2.45

STEP 3. The subpaths of length 3 are considered. Their costs and configu-
rations are as follows:

- S~=C1. A1. A2. A3. The following configurations are considered for
this subpath:

* {<C1. A1. A 2. A3, PX>} cost_PX=3.6
* {<C1. A1. A2. A3, 0 >} cost_O=l.4
* cat[x(S12), X($31)] cost1=0.8+0.6=1.4
* cat[x(S~), x(S~)] cost2=0.4+1=1.4

Therefore, X($13)= {<C1. A1. A2. A3, 0 >} cost(S13)=l.4.

- S~=C2. A2. A3. A4. The following configurations are considered for
this subpath:

* {<C2. A2. A3. A4, PX>} cost_PX=3.05
* {<C2. A2. A3. A4, 0 >} cost_O=1.8

* cat[x(S~), X($41)] cost1=1+0.8=1.8
* cat[x(S21), X($32)] cost2=0.4+1.4=1.8

Therefore, x(S~)= {<C2. A2. A3. A4, 0 >} cost($23)=1.8.

- $33=C3 • A3. A4. A5. The following configurations are considered for
this subpath:

* {<Ca. A3. A4. A5, P X >} cost_PX=3.5
* {<C3. A3. A4. AS, 0 >} cost_O=200.6
* cat[x(S]), X(S~)] cost1=1.4+1.7=3.1
* cat[x(S31), X($42)] cost2=0.6+2.45=3.05

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 389

Therefore X($33)= cattx(S~) , x(S,~)]= {<C3. A3,/9 >, <C4. A4. As,
NX>}
cost($ 33) = 3.05.

• STEP 4. The subpaths of length 4 are considered. Their costs and configu-
rations are as follows:

- St=C1. A1. A2. Z3. A4. The following configurations are considered
for this subpath:

* {<C1. A1. A2. A3. A4, PX>} cost_PX=5.4
* {<C1. A1. A2. A3. A4, 0 >} cost_O=2.2
* cat[x(S31), x(S~)] cost1=1.4+0.8=2.2
* cat[x(S12), x(S~)] cost2=0.8+1.4=2.2
* cat[x(S~), X($32)] cost3=0.4+1.8=2.2

Therefore x(S14)= { <C1. A1. A2. A3. A4, 0 >} cost(S~)=2.2

- $42 =C2. A2. A3. A4. A5. The following configurations are considered
for this subpath:

* {<C2. A2. A3. A4. A5, PX>} cost_PX=4.85
* {<C2. A2. A3. A4. A5, 0 >} cost_O=201
* cat[x(S~), x(S~)] cost1=1.8+1.7=3.5
* cat[x(S~), X($42)] cost2=1+2.45=3.45
* cat[x(S~), X($33)] cost2=0.4+3.05=3.45

Therefore, x(S~)= [x(S~), X($42)1 = {<C2. A2. A3,/9 >, < C 4. A 4.

A5, NX> } cost(S~)=3.45.

• STEP5. The subpath of length 5 is considered, S~=C1. A1. h2. A3. A4. A5.
The following configurations are considered:

- {<C1. A1. A2. A3. A4. A5, PX>} cost.PX=7.8

- {<C1. A1. A2. A3. A4. A5, 0 >} cost_0=201.2

- cat[x(S~), x(S51)] cOStl--2.2+1.7=3.9

- cat[x(S13), X($42)] cost2=1.4+2.45=3.85

- cat[x(S~), X($33)1 costz=0.8+3.05=3.85

- cat[x(S~), X($24)] costa=0.4+3.45=3.85

Therefore x(S~)= cat[x(S~), x(S~)] =
{<C1. A1. A2. A3,/9 >, <C4. A4. As, NX>} cost(S~)=3.85.

390

The resulting configuration for P is given by X($15). The optimal configuration
consists of splitting the path into two subpaths. The first is C1. A1. A2. A3. No
index is allocated on this subpath. The second subpath is C4. A4. As. A nested
index is allocated on this subpath.

Note that, in the example, the best query execution strategy is based on reverse
traversal (in all cases except for subpaths that are last in the configuration). The
reason for this is that there are reverse references among objects in the example.
This allows the system to determine the instances of a class Ci that reference a given
instance O of class Ci+l directly from O by using reverse references. Therefore,
there is no need to access all instances of class Ci, as would have been needed
without reverse references. Intuitively, we can see that the configuration has been
chosen because an index on the last subpath avoids accessing all instances of the
last class (C5) to evaluate the predicate. Not having an index on the last subpath
would have implied a total scanning of class C5. By contrast, it is not convenient
to allocate an index on the first subpath since there are reverse references among
objects. Therefore, once the instances of class C4 that verify the predicates are
determined, it is possible to determine the instances of classes C1, C2, C3 by simply
navigating backward using the reverse references. This is particularly efficient since
the degree of reference sharing is rather low. For example, given an object O,
instance of class C4, there is only one instance of class C3 that references O. On
the other hand, given an object 0 I, instance of class Ca, there are two instances of
class C2 that reference 0 I. Therefore, since objects contain reverse references, the
reverse traversal is very efficient, and this eliminates the need for the index on the
first subpath.

To further assess this point we consider the data parameters and workload in
Table 4, while there are no reverse references among objects. In this case, the
configuration chosen by the algorithm (we omit the steps for brevity) is {<C1. al,
I>, C2. A2. A3, PI>, < C 4. A4. A5, PI> }. The overall cost of this configuration is
5.25. Under this configuration, the path has been split into three subpaths and an
index allocated on each subpath. In this case, since there are no reverse references,
the query execution strategies based on instance access are very expensive.

Among the two configurations, the first has a lower overall cost. This shows
that reverse references are useful not only for supporting referential integrity and
enforcing certain types of constraint (Kim et al., 1989), but they can also be used
in some cases to provide efficient query execution strategies.

To show the influence of the degree of reference sharing, we consider another
example where these degrees have higher values for some classes than those of the
previous examples. Table 5 presents the data parameters, workload, and reverse
reference specification.

The configuration chosen is {<C1. A1. A2. A3, PI>, <C4. A4. As, NI>}. In
this case, even if there are reverse references, it is more efficient to split the path
into two subpaths and to allocate a path index on the first, and a nested index on
the second. The nested index is allocated on the second subpath because, as in the

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 391

Table 5. Data parameters, workload, reverse reference specification

• Data parameters

- N1 =200,000 D1 =200,000 k l= 1 PC(C1)=iO,O00
- N2=20,000 D2 = 20,000 k2=10 PC(C2)=IO,O00
- N3= 20,000 D3= 2,000 k3=10 PC(C3)= 1,500

- N4= 2,000 D4 = 200 k4=10 PC(C4)= 100
- Ns= 500 D5= 100 k5=2 PC(Ca)= 10

• Workload

- 0~1=0.1 /~1=0.05 ~1=0.05
- 0~2=0.1 V2=0.05 ~2=0.05
- O~3=0.1 /J3=0.05 53=0.05
- O~4=0.1 //4=0.05 54=0.05
- 0~5=0.0 vs=O.1 55=0.1

• Reverse reference specification: r i= l (1 < i _< 5).

• r[dom(P)l=O

previous example, there is no retrieval from class C5 (0~5=0.0). This configuration
is the most efficient because, when the degree of reference sharing increases, the
number of object accesses in the reverse traversal becomes quite high. In this
situation, it is preferable to allocate an index.

5. Summary and Future Work

In this article we presented a formal definition of access mechanisms to support
the evaluation of nested predicates on a path. A path is defined as a sequence of
classes, such that the first class has a domain of an attribute of the second class
of the path, the second class has a domain of an attribute of the third class of
the path, and so forth. We presented an algorithm that defines the optimal index
configuration for a path, and we gave parameters defining the access patterns and
logical data characteristics.

The algorithm presented defines the optimal index configuration when only
a path is considered. We note that queries may contain nested predicates on
several paths originating from the same class. Therefore, future work includes the
extension to the case of multiple paths when these paths have overlapping subpaths.
We note, however, that the case we have considered in this article (i.e., a single
nested predicate) is quite significant. In fact, a nested predicate is equivalent in

392

a relational query language to a restriction on a relation attribute, and to several
joins among different relations.

It is also important to observe that the algorithm proposed should be included
in a more general methodology for index allocation. We believe that existing
methodologies, such as those proposed by Finkelstein et al. (1988), Reuter and
Kinzinger (1984), Lam et al. (1988), and Rullo and Sacca (1988) can be extended
to deal with object-oriented databases and the nowfl indexing techniques. Finally,
another open research issue concerns how to integrate the indexing techniques
described in this article with the class hierarchy indexing technique proposed by
Kim et al. (1989).

References

Andrews, T. and Harris, C. Combining language and database advances in an
object-oriented development environment. Proceedings of the Second lnternational
Conference on Object-Oriented Programming Systems, Languages, and Applications,
Orlando, FL, 1987.

Banerjee, J., Chou, H.T., Garza, J., Kim, W., Woelk, D., Ballou, N., and Kim, H.J.
Data model issues for object-oriented applications. ACM Transactions on Office
Information Systems, 5(1):3-26, 1987.

Banerjee, J., Kim, W., and Kim, H.K. Queries in object-oriented databases. Pro-
ceedings of the IEEE International Conference on Data Engineering, Los Angeles,
CA, 1988.

Batory, D.S. Modeling the storage architecture of commercial database systems.
ACM Transactions on Database Systems, 10(4):463-.528, 1985.

Bayer, R. and McCreight, E. Organization and maintenance of large ordered indexes.
Acta Informatica, 1(3): 173-189, 1972.

Bertino, E. and Kim, W. Indexing techniques for queries on nested objects. IEEE
Transactions on Knowledge and Data Engineering, 1 (2): 196-214, 1989.

Bertino, E. Query optimization using nested indices. Proceedings of the Second In-
ternational Conference on Extending Database Technology (EDBT90), Venice, Italy,
March 26-30, 1990, Lecture Notes in Computer Science 416, Springer-Verlag.

Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L. Object-oriented query lan-
guages: The notion and the issues. IEEE Transactions on Knowledge and Data
Engineering, 4(3):223-237, 1992.

Bertino, E. and Martino, L. Object-OrientedDatabase Systems: Concepts andArchi-
tectures. New York: Addison-Wesley, 1993.

Bertino, E. On index configuration in object-oriented databases. Extended version,
August 1993. In: Kim, W. and Lochovsky, E, eds., Object-Oriented Concepts,
Databases, and Applications. New York: Addison-Wesley, 1989, pp. 283-308.

Bjornerstedt, A. and Hulten, C. Version control in an object-oriented architecture.
In: W. Kim, and E Lochovsky, eds., Object-Oriented Concepts, Databases, and
Applications. New York: Addison-Wesley, 1989, pp. 451-485.

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 393

Breitl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, H.,
and Williams, M. The GemStone data management system. In: Kim, W., and
Lochovsky, E, eds., Object-Oriented Concepts, Databases, and Applications. New
York: Addison-Wesley, 1989, pp. 283-308.

Comer, D. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, 1979.
Deux, O. The story of 02. IEEE Transactions on Knowledge and Data Engineering,

2(1):91-108, 1990.
Finkelstein, S.; Schkolnick, M., and Tiberio, P. Physical database design for relational

databases. AC M Transactions on Database Systems, 13(1): 91-128, 1988.
Fishman, D.H., Beech, D., Care, H., Chow, E., Connors, T., Davis, J., Derrett, N.,

Hoch, C., Kent, W., Lyngback, P., Mahbod, B., Neimat, M., Ryan, T., and Shan,
M. IRIS: An object-oriented database management system. A C M Transactions
on Office Information Systems, 5(1):48-69, 1987.

Jenq, P., Woelk, D., Kim, W., and Lee, W.L. Query processing in distributed ORION.
MCC Technical Report, No. ACA-ST-035-89, January 1989.

Lam, H., Su, S., and Kogant, N. A physical database design evaluation system for
CODASYL databases. IEEE Transactions on Software Engineering, 14(7):1010-
1022, 1988.

Lang, S.D., DriscoU, J., and Dou, J. A unified analysis of batched searching and
tree-structured files. A C M Transactions on Database Systems, 14(4):604-618, 1989.

Kemper, A. and Moerkotte, G. Access support in object bases. Proceedings of the
ACM-SIGMOD Conference on Management of Data, Atlantic City, NJ, 1990.

Kim, W. A foundation for object-oriented databases. IEEE Transactions on Knowl-
edge and Data Engineering, 2(3):327-341, 1990.

Kim, K.C., Kim, W., Woelk, D., and Dale, A. Acyclic query processing in object-
oriented databases. Proceedings of the Entity-Relationship Conference, Rome, 1988.
Also: MCC Technical Report, No. ACA-ST-287-88, September 1988.

Kim, W., Bertino, E., and Garza, J.F. Composite objects revisited. Proceedings of the
ACM-SIGMOD Conference on Management of Data, Portland, OR, 1989. Also:
MCC Technical Report, No. ACA-ST-387-88, Nov. 1988.

Kim, W., Kim K.C., and Dale A. Indexing techniques for object-oriented databases.
In: Kim, W. and Lochovsky, EH., eds., Object-Oriented Concepts, Databases, and
Applications, New York: Addison-Wesley, 1989.

Maier, D. and Stein, J. Indexing in an object-oriented DBMS. Proceedings of the
IEEE Workshop on Object-Oriented DBMS, Asilomar, CA, 1986.

Reuter, A. and Kinzinger, H. Automatic design of the internal schema for a CODA-
SYL database system. IEEE Transactions on Software Engineering, 10(4):358-375,
1984.

RuUo, E and Sacca, D. An automatic physical designer for network model databases.
IEEE Transactions on Software Engineering, (14):9, 1293-1306, 1988.

Schkolnick, M. and Tiberio, P. Estimating the cost of updates in a relational database.
A C M Transactions on Database Systems, 10(2):163-179, 1985.

394

Skarra, A., Zdonik, S., and Reiss, S. An object server for an object-oriented database
system. Proceedings of the First International Workzrhop on Object-Oriented Database
Systems, Asilomar, CA, 1986.

Valduriez, P., Khoshafian, S., and Copeland, G. Implementation techniques of
complex objects. Proceedings of the International Conference on Very Large Data
Bases, Kyoto, Japan, 1986.

Valduriez, E Join indices. ACM 7~ansactions on Database Systems, 12(2):218-246,
1987.

Whang, K.Y, Wiederhold, G., and Sagalowicz, D. Separability: An approach to
physical database design. IEEE Transactions on Computer Systems, 33(3):209-222,
1984.

Yao, S.B. Approximating block accesses in database organizations. ACM Commu-
nications, 20(4):260-261, 1977.

Yu, C., Suen, C., Lam, K., and Siu, M.K. Adaptive record clustering. ACM
Transactions on Database Systems, 14(2):147-167, 1985.

Appendix A: Proof of Proposition 1

Given the configuration x(P) of degree k, each class along path P belongs to only
one of the subpaths into which P is split. Therefore, expression (1) is developed as
follows:

n

cei × cost_a[Ci,pred] + vi × cost_u[Ci] + 5i × cost_d_i[Ci] =
i=1

k li--1

E E a(i.+h) × cost_a[C(i.+h),pred]+
i=1 h=0

~(i.+h) × cost_u[C(i.+h)] + 5(i.+h) × cost_d_i[C(i.+h)] =

recalling the cost function for cost_a[Ci,pred])

k-1 l i -1 k -1

E E [a(i.+h) × [cost_a[SCk, pred] + [E :
i=1 h=O j=i+l

Q~,t(SCj , N U I D3)]+

Q~t(C(i .+h) ,NUIDi)] + u(i.+h) x cost_u[C(i.+h)]+

lk--1

(~(i,+h) X cost_d_i[C(i,+h)]] + ~ [O/(k,+h) X cost_a[C(k.+h),pred]+
h=O

v(k.+h) × cost_u[C(k.+h)] + 5(k.+h) × cost_d_i[C(k.+h)]] =

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs
395

k-1 l i - 1 k -1

E[a(i,+h) x [E Q,~t(SCj,NUIDj)]+
i=1 h=O j = i + l

a(i.+h) X Q.et(C(i.+h), NUIDi) + O~(i.+h) X cost-a[SC~,pred]+
P(i.+h) X cost-u[C(i.+h)] + 5(i.+h) X cost-d_i[C(i,+h)]]+

l~ -1

[a(k,+h) X cost-a[Qk,+h),pred] + V(k,+h) X cost_u[Qk.+h)] + h=0

k-1 i - 1 l j - 1
5(k.+h) X cost-d_i[C(k.+h)]] = E[Q~et(SCi, NUIDi) x E ~ a(j.+h)]+

i=1
1~--1 j = l h=O

a(i.+h) X Q.~t(C(i...), Uln i) + ~'(,.+h) X cost-u[C(i.+h)]+
h=O

5(i. +h) X cost-d_i[C(i,+h)]] + cost-a[SCk, pred] x
k -1 l i -1 lk~l

[E E + E ×
i=1 h=0 h=0

~'(k,+h) X cost-u[C(k.+h)] + 5(k,+h) X cost_d_i[C(k,+h)J (3)
Expression (2) is developed as follows:

k k-1

cost(Si) = ~ cost(Si) + cost(Sk) =
i=1 i=1

k -1 i - 1 l j ~ l

E[Q~t(SCi , NUIDi) x E E a(j.+h)+
i=1

j = l h-~-O

~(i.+h) x Q~¢t(C(i.+h), NUIDi) + u(i.+h) x cost-u[C(i.+h)]+
h=O

5(i~ + h) x cost-d_i[C(i.+h)]] + cost-aISCk,pred]x
k-1 l j - 1 l k_ l

[~ E a(~,+h)] + E a(~,+h) X cost-a[C(k,+h).pred]+
j= l h=O h=O

~'(k,+h) X cost_u[C(k,+h)] + 5(k.+h) X cost-d-i[C(k,+h)] (4)
Since expressions (3) and (4) are equal, the assertion is proved.

li--1

396

Appendix B: Correctness Proof of Selection Algorithm

We show that the algorithm determines the optimal non-trivial configuration. That
is, given O(79)={Xt(79),X2(79) , Xp(79)} the set of all possible configurations
for a path 79, the algorithm determines a non-trivial configuration Xi(79) such that

ov_cost(xi(79)) _< ov_cost(xj(79)) forl < j _< p

where Xi(79)E 0(79) and Xj(79)E 0(79).
In the proof we will make use of the following definition:

Definition 8. Given two subpaths

$1 = Ci.Ai.Ai+l Ai+zl and $2 = Cj.A~.A~+I AS+z2

they can be concatenated if Cj is the domain of attribute Ai+ll of class Ci+h. The
concatenation is denoted and defined as follows:

cat[S1, $2] = Ci.Ai.Ai+t Ai+ll.Aj.Aj+i Aj+12.

For example, given the path P=Ci.Ai.A2.A3.A4 and two subpaths S 1 =C1.Ai.A 2
and $2 --C3.A3JI4~

cat[S1, $2] = C1.A1.A2.Aa.A4.

We first prove that the algorithm determines the optimal sprit configuration.
We denote as Os (79) the set of all possible split configurations for 79.

0s(79) = {Xj(7~)/Xj(79) E O(79)anddegree(xj(79)) >_ 2}.

Proposition 2. Given a path 79 of length n, the algorit]hm determines a configuration
Xh(79), Xh(P) E Os(7 9) such that:

ov-cost(Xh(P)) < ov-cost(x~(79)), VX~(79) E Os(P).

Proof. The proof is ab absurdo. Let's assume that exists a configuration Xy(7 9)
such that

ov_cost(xy(P)) < ov_cost(xh(P)) h ~ y (4)

where Xh(P) is the configuration determined by the algorithm. We show that
a contradiction follows. Let ~h and ~u be the subpath specification of the two
configurations. We consider two cases. []

Case 1. ~ h = Ey = { S 1 , S 2 , . . . , S m } where m is the degree of the two
configurations. This means that, under the two configurations, 7 9 has been split
in the same way. Therefore, the two configurations differ because, in at least one
subpath, a different index organizationhas been chosen for Xh(79) with respect to
Xu(79). Let assume that they differ in only one subpath (the proof can easily be

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 397

extended to the case of several subpaths). That is T t E Xh('P) and Ty E Xu(79)
exist such that

j = j ' a n d S t = Sy and I T t 7 ~ ITy .

that is S t is identical to St, , but different index organizations have been chosen in
the two configurations for these subpaths.

Since the algorithm considers all subpaths of length l at the l-th step, subpath S t
has been considered at the (l t -4- 1)-th step (cf. Definition 8 in Section 2). Suppose
that IT t = N X , and ITy = P X . Since the organization chosen for S t is the
nested index, we have that

cos t_NX _< cost_PX f o r subpath S t (5).

We also have that costh(Sj) = cost_Ng and costu(St)= cost_PX, where COMb(St)
(cOSty(St)) denotes the cost of subpath S t under configuration Xh (Xu).

Recalling the definition of the cost of a configuration, we have that:

m

ov_co~t(x~(~,)) = ~2 co~ty(s,)
i=1

m

ov_cost(xh(v) = ~C cost~(s,)
i=1

Therefore, expression (4) is expanded as follows:

m m

i=1 i=1

The previous expression can be expanded as follows:

m m

Z costy(S,) + co~t~(St,) < ~2 co~th(Sd + co~th(Sj)
i=l,i~j' i=l,i#j

Since j= f and costh(Si)=costy(Si) for i ¢ j, we can rewrite the previous
expression as follows:

m m

~2 cost(s,) + costy(sj) < Z cost(S,) + co~th(sj)
i=l,iCj i=l,iT~j

Therefore, we obtain:

~o~t~(sj) < ~o~tdsj)

398

and then, by substituting expressions for costv(Sj) and COSth(Sj), we obtain that

cost_PX < cost_NX for subpath Sj.

Since this contradicts expression (5), our thesis follows.

Case 2. Eh ~ Ev" Let us assume that

~h = {Sl, S2, . . . , S m} and Ey = {$1, $ 2 , . . . , Sr }.

Because we are considering split configurations, both m and r are greater than 1.
Also note that

7 9 = cat[S1, $2 , . . . , Sin] and similarly

T ~ = cat[S1, $ 2 , . . . , St].

Given Eh we observe that we can define two subpaths Sh and S~ as follows:

Sh = cat[S1, $ 2 , . . . , Sin-l] and S~ = Sin, :such that "P = cat[Sh, Ski.
cost(Sh) ra-1 = E , = i cost(Si) and cost(S~) = cost(Sin).

, Given Ey it is always possible to define two subpaths S u and S u as follows:

Sy = cat[S1, $2 , . . . , St - l] and S~ = S~, such that "P = cat[Sy, S~].

cost(s) = E i : l cost(Si) and cost(S~) = cost(S~).

Note that lr is the length of subpath Sr and therefore, is the length of subpath
I S u and 1 < lr < n -- 1. In fact lr cannot be equal to n because X(79) is a split

configuration. Therefore the length of Sy is (n -- l~) and the starting class of Sy
I l r is C1. Therefore, S u = S~ -t~ and S u = S l + n _ l . The algorithm evaluates at step

n the following expressions:

cost(Sh) + cost(S~) (7) and

cost(s) + (8)
Since Xh(~) has been chosen by the algorithm, this means that

cost(Sh) + cost(S~) < cost(S~-') + cost(S~+n_t) l = 1 , . . . , n - 1 (9).

In fact the algorithm at step n considers all possible partitions of "P into two
subpaths. Expression (9) holds in particular for l = lr. Therefore, we obtain

and thus

cost(sh) + cost(s ,) < +

cost(Sh) + cost(S~) < cost(Sy) + cost(S'u) (10).

VLDB Journal 3 (3) Bertino: Index Configuration in Object-Oriented DBs 399

By using equalities (7) and (8) the inequality (4) can be expressed as follows:

cost(Sy) + cost(S~,) < COst(Sh) + COst(S~) (11)

Since expression (11) is in contradiction with expression (10) the thesis follows.

Proposition 3. Given a path 7 9 of length n, the algorithm determines a non-trivial
configuration Xi(79), Xi(79) E O (~) such that ov_cost(Xi(79)) < ov.cost(xi(79)) ,
VXj(7::')C e(79).
Proof. The optimal index configuration is the configuration having the lowest cost
among the nested index (if applicable), the path index, the optimal split configuration,
and the configuration without index. At step n the algorithm determines the optimal
split configuration (by the previous proposition). Then the algorithm compares the
cost of the nested index (if applicable), the cost of the path index, the cost of the
no-index configuration, and the cost of the selected split organization. Therefore at
step n the algorithm determines the optimal configuration. The algorithm determines
also the non-trivial configuration. This is explained by observing that at step n,
we always consider a configuration of the form {<C1. A1. A2 An, 0 >}.
Therefore, even if among the split configurations, the selected one has been a trivial
one (e.g., {<C1. A2....Ai, 19 > , < Ci+l. Ai+i An, 0 >}), the algorithm always
considers the equivalent a non-trivial one. When the resulting cost of a trivial
configuration is equal to the cost of the non-trivial one, the algorithm always selects
the non-trivial configuration (cf. with the choices at the end of STEPS 2....n). []

