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Abstract. In relational databases, an attribute of a relation can have only a single 
primitive value, making it cumbersome to model complex objects. The object- 
oriented paradigm removes this difficulty by introducing the notion of nested ob- 
jects, which allows the value of an object attribute to he another object or a set 
of other objects. This means that a class consists of a set of attributes, and the 
values of the attributes are objects that belong to other classes; that is, the defini- 
tion of a class forms a hierarchy of classes. All attributes of the nested classes are 
nested attributes of the root of the hierarchy. A branch of such hierarchy is called 
a path. In this article, we address the problem of index configuration for a given 
path. We first summarize some basic concepts, and introduce the concept of index 
configuration for a path. Then we present cost formulas to evaluate the costs of 
the various configurations. Finally, we present the algorithm that determines the 
optimal configuration, and show its correctness. 
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1. Introduction 

The growing need for data management  facilities to handle objects more  com- 
plex than tuples of  relations (e.g., CAD/DAM, software engineering, and office 
automation) has resulted in the development of object-oriented database systems 
(OODBMSs;  Skarra et al., 1986; Banerjee et al., 1987; Fishman et al., 1987; An- 
drews and Harris, 1987; Bjornerstedt and Hulten, 1989; Breitl et al., 1989; Deux et 
al., 1990). Because of the increased complexity of the data model to be supported, 
OODBMSs  have had to address new issues and requirements in the design and 
analysis of  suitable access mechanisms. To be viable, the object-oriented approach 
to data management  must be supported by an architecture that directly implements 
the basic concepts of the object-oriented paradigm. 
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This paradigm is based on a number of fundamental concepts (Bertino and 
Martino, 1993; Kim, 1990). Any real-world entity is represented by only one data 
modeling concept: the object. Each object is identified by a unique identifier (UID). 
The state of each object is defined at any point in time by the value of its attributes 
(also called instance variables). The attributes can have as value both primitive (or 
atomic) objects (e.g., strings, integers, or booleans) and non-primitive objects, which, 
in turn, consist of a set of attributes. (Note that when the value of an attribute A 
of an object is a non-primitive object 0, the UID of O is stored in A.) 

Objects with similar attributes and behavior are grouped into classes. A class 
specifies a set of attributes that define object structure, and a set of methods that 
define object behavior. An attribute definition consists of a name and a domain. 
The domain can be any class, including a primitive class. The fact that a class C' is 
the domain of an attribute of a class C establishes an association, most often called 
an aggregation relationship, between C and C'. Since C' in turn has aggregation 
relationships with the class domains of its attributes and so on, the definition of 
class C results in a directed graph of classes rooted at C, called an aggregation 
hierarchy. We refer to attributes of class C ' in the aggregation hierarchy as nested 
attributes of C. An example of an aggregation hierarchy is shown in Figure 1. In 
the figure, an arc connects an attribute A of class C to class C ' if C ~ is the domain 
of A. The * denotes a multivalued attribute. Furthermore, classes are organized 
into inheritance hierarchies. A subclass inherits attributes and methods from its 
superclass and, in addition to these, may have specific attributes and methods. 

Object-oriented programming languages imply navigational access to objects. 
However, this capability alone is not adequate for applications that must deal with a 
large number of objects. Therefore, advanced OODBMSs provide associative query 
capabilities (Banerjee et al., 1988) in addition to navigational access to objects. 
Because of the nested object structures, object-oriented query languages such as 
the one described by Banerjee et al. (1988) allow restrictions on objects based on 
predicates on both nested and non-nested attribute,,; of classes. The following is an 
example of a query against the aggregation hierarchy of Figure 1: 

Retrieve all projects in the database area with a total 

budget higher than $50,000. 

In this query there is a predicate against the attribute "area" and a predicate 
against the nested attribute "total_budget" of class Project. We refer to a predicate 
defined on a nested attribute as a nested predicate. To support query predicates on 
class-nested attributes, object-oriented query languages (Bertino et al., 1992) usually 
provide some forms of path-expression. A path-expression specifies an implicit join 
between an object O and an object referenced by O. 1 Therefore, in object-oriented 
query languages it is useful to distinguish between the implicit join, deriving from 

1. An object O references an object O t, if O contains the UID of O t as value of some of its attributes. 
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Figure 1. Aggregation hierarchy example 

[ A.nex < 
projectname: STRING summary: TEXT 
area: STRING financial_info 
description techrtical_info:TEXT 
work plan* ~ 

start date:DATE | ~ Research_Group 1 ~  
end -date: DATE [ [ [ 
task_description: STRING I / I group_name: STRING/I" [ 
participatingteam ~ I location: STRING / [ ( 
man_year: INTEGER ) k leader _ / J " 

Financial Annex 

total_budget: INTEGER 
software_cost: INTEGER 
hardware_cost: INTEGER 

Researcher ] 
name: STRING 
specialization: STRING 
salary: INTEGER 
university: STRING 

the hierarchical nesting of objects, and the explicit join, similar to the relational join 
where two objects are explicitly compared on the values of their attributes. Note 
that some query languages only support implicit joins, based on the argument that in 
relational systems joins are mostly used to recompose entities that were decomposed 
for normalization (Breitl et al., 1989), and to support relationships among entities. 
In object-oriented data models there is no need to normalize objects, because these 
models directly support complex objects. Moreover, relationships among entities are 
supported through object references; thus, the same function of joins used in the rela- 
tional model to support relationships is provided more naturally by path-expressions. 
Therefore, it appears that in OODBMSs there is no strong need for explicit joins, 
especially if path-expressions are provided. An example of path-expression (or 
simply path) is Proj ac t .  desc r ip t ion ,  f inaxtcial_info,  to ta l_budget  denoting 
the nested attribute "total_budget" of class Project. The evaluation of a query with 
nested predicates may cause the traversal of objects along aggregation hierarchies 
(Bertino, 1990; Jenq et al., 1989; Kim et al., 1988). 

To expedite the evaluation of queries, relational database systems typically 
provide a secondary index using some variation of the B-tree structure (Bayer and 
McCreight, 1972; Comer, 1979), or some hashing technique. An index is maintained 
on an attribute or a combination of attributes of a relation. Since object-oriented 
databases require an attribute to be generalized to a nested attribute, secondary 
indexing must be also generalized to indexing of a nested attribute. It is important 
to note that in OODBMSs, as we discussed earlier, joins are very often implicit joins 
along aggregation hierarchies. This implies that most join operations are already 
predefined by the conceptual database schema. Moreover, joins are in most cases 
equality joins based on object-identifiers; that is, they are identity equality joins. 
Thus, it is possible to define specialized access techniques supporting fast traversal 
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of aggregation hierarchies. 
Maier and Stein (1986) and Kim (1990) provided preliminary discussions of the 

notion of secondary indexing on a sequence of nested attributes (or path). The 
concepts of nested index and path index were proposed by Bertino and Kim (1989) 
as access mechanisms to provide efficient support for queries on nested attributes 
and to evaluate their performance. Here, we address the problem of defining the 
optimal index configuration for a given sequence ,of nested attributes. Therefore, 
the contributions of this article with respect to the article by Bertino and Kim (1989) 
are: 

• The definition of index configurations for a sequence of nested attributes. 
• The definition of an algorithm that determines the optimal configuration. 

We compare our approach with related work in the following section, after we 
introduce the basic concepts of our approach that are relevant for the understanding 
of the comparison. 

The remainder of this article is organized as foUows. In Section 2 we survey 
the concepts of nested index and path index (Bertino and Kim, 1989). We also 
introduce the concept of index configuration, and briefly describe index structures 
and operations. In Section 3 we present cost formulas that are used by the subsequent 
algorithm in Section 4. 

2. Index Organizations 

In this section, we first briefly recall two index organizations that support nested 
predicates. Then we introduce the concept of index configuration and the associated 
operations that are novel with respect to the material presented in previous articles. 

2.1 Preliminary Definitions 

The remainder of this section is based on the following concepts (see Bertino and 
Kim, 1989, for a more precise definition): 

Path: A branch in an aggregation hierarchy; it consists of a class C followed by a 
sequence of attribute names. 

Path instantiation: A sequence of objects found by instantiating a path. 

Nested index: An index establishing a direct connection between the object at the 
beginning of a path instantiation and the object at the end. The index is keyed on 
the objects at the end of path instantiations. 

Path index: An index storing path instantiations (i.e., sequences of objects). The 
index is keyed on the objects at the end of path instantiations. 

Figure 2 provides a graphic representation of those concepts. 
The following are example paths for the aggregation hierarchy in Figure 1. In 

the examples, given a path P, len(P), class(P), and dom(P) denote, respectively, the 
length of P, the set of classes along P, and the domain of the last attribute in P. 
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Figure 2. Path, path instantiation, nested Index, path index 

Path :  C1.AII .A21.A31.A41 (denoted by bold edges) 

A33: STRING A43: STRING 
A23: STRING 

c, 1 AShSTR/NG | [ A61:STRING 
A52: INTEGER J ~ A62: INTEGER 

P a t h  ins t an t i a t ion :  01.02.O3.O4.05 
(instantiation of path C1.AI I.A2 I.A31.A41) 

Oi is irstance of class Ci (i=l,4) 
05 is an integer 

Nested index on path C1.All.A21.A31.A41 

Path index on path CI.A1LA21.A31.A41 

/ 
• . . : - = 

P1 : Task. participating_team, leader, name 
len(P1)=3 class(P1) = {Task, Research_Group, Researcher} dom(P1) = STRING 

P2: Project. work_plan, part±cipat ing_team, leader, name 
len(P2)=4 class(P2) = {Project, Task, Research_Group, Researcher} dom(P2) = 
STRING 

P3: Technical_Annex. f inancial_inf o. total_budget 
len(P3)=2 class(P3) = {Technical_Annex, Financial.Annex} dom(P3) = INTEGER 

P4: Proj act. descript ion. f inancial_info 
len(P4)=2 class(P4) = {Project, Technical.Annex} dom(P4) = Financial_Annex 

The order of classes along a path is determined by the path definition itself. 
For example, in P2, Project has position 1, Task has position 2, Research_Group 
has position 3, and Researcher has position 4. 
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Figure 3. Instances of classes of Figure I 

IA Project[i] 
dvancod Models 
atabase 
echnicalAnnex[i] 

{Task[i], Task[j]} 

I Task[i[ 
March I, 93 
December 30, 93 
Data Model Defin.idon 
• esearch_Group[kl 

Project[j] ~ I Task[j] 
advanced Architectures[ [November 1, 93 
Database l [March 30, 94 
Technical_Annex[j] | [Query Language 
{Task[k]} ) L4Research_Group[k] 

rResearch_Group[k] 
Group 102 
Pisa - Italy 
Researcher[i[ 

esearch_Group[j] 
roup207 

Milano - Italy 
Researcher[m] 

i 4  Task[k] December 1, 93 
June 30, 94 
Indexing Techniques 

esearch_Gmup[j] 

I Researcher[i] 
Bianchi 
Formal models 
40,000 
Pisa 

F Researcher[m] 
| ver~ 
] Architectures 
/ 50,000 
~ Mi~o 

In the following, we assume that a UID for an object consists of the class 
identifier of the object's class, concatenated with the identifier of the object within 
its class. For example, Project[i] denotes the i-th instance of the class Project. 
Primitive objects (such as numbers, Booleans, characters, strings) are identified by 
their values. Note that an object O which is a component of another object O ~ has 
its own identifier, which does not contain the identifier of O t. This allows O to be 
a component of several different objects, and to be directly accessed without first 
accessing the object(s) of which it is a component. 

The objects in Figure 3 are instances of some of the classes shown in Figure 
1. As an example, a nested index on the path P1 associates a distinct value of the 
name attribute with a list of object identifiers of class Task. For the objects shown 
in Figure 3, the nested index contains the following pairs: 

(Bianchi, {Task[i], Task[j]}) 
(Verdi, {Task[k]}). 

The path-index on P1 for the object in Figure 3 contains the following pairs: 

(Bianchi, {Task[i].Research_Group[k].Researcher[i],Task[j]. 
Research_Group[k].Researcher[i] }) 

(Verdi, {Task[k].Research_Group[j].Researcher[m] }). 

Note that when n = l ,  the nested index and path index are identical and are 
the indexes used in most relational DBMSs. We refer to these indexes as simple 
indexes. Note also that a path index can be used to evaluate nested predicates on all 
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classes along the path. In the current example, we could use the index to retrieve 
the researchers with a specified name, to retrieve the research groups whose leader 
has a specified name, or to retrieve the tasks with a participant team whose leader 
has a specified name. 

Given a path 79=C1 . A1. A2 . . . . .  An ,  and an object Oi of a class Ci in class(P), 
we use the term forward traversal to denote the access of objects Oi+l, • • • ,On, such 
that 0i+1 is referenced by Oi through Ai, . . . ,  On is referenced by On-1 through 
A,~-i. Objects on a path may be traversed in a reverse direction of the path (i.e., 
O i - 1 , . . .  ,O2,O1, such that Oi-1 references object Oi t h r o u g h A i _ l , . . . ,  and O1 
references 02 through attribute A1. It may not be profitable to support backward 
traversal, unless, given an object O, it is possible to directly determine the objects 
that reference O. For example, in GemStone reference from an object to another 
is unidirectional. In Orion (Kim et al., 1989) reverse references are supported for 
composite objects. Given an object O that has a reference to an object O t, a reverse 
reference is a reference from O t to O. We make the assumption, as did Kim et 
al., that the reverse reference from an object O ~ to another object O is stored as a 
system-attribute in O ~. 

As an example, consider path P1 = T a s k . p a r t i c i p a t  5.ng_team. leader.name, 
a forward traversal of P1 starting from object Task[i] implies access to objects 
Research_Group[k] and Researcher[i]. Indeed, object Task[i] references object Re- 
search_Group[k] through attribute "participating_team." Object Research_Group[k], 
in turn, references Researcher[i] through attribute "leader." By contrast, a backward 
traversal with reverse references from object Researcher[i] implies access to object 
Research_Group[k]. 

Index Structure and Operations. The data structure that we use to model the nested 
index and path index organizations is a B+-tree (Bayer and McCreight, 1972; Comer, 
1979). The format of the non-leaf node is identical in these two organizations. 
A non-leaf node consists of f records, where a record is a triple (key-length, key, 
pointer). The pointer contains the physical address of the next-level index node. 

The format of the leaf nodes differs in the two index organizations. In a nested 
index, a leaf-node record consists of the record-length, key-length, key-value, number 
of elements in the list of UIDs, and the list of UIDs. In a path index, the format of 
a leaf-node record consists of the record-length, key-length, key-value, the number 
of elements in the list of path instantiations, and the list of path instantiations. Each 
path instantiation is implemented as an array of dimension equal to the path length. 
Figure 4 shows the format of a leaf-node record. Figure 5 provides examples of 
leaf-node records for the objects in Figure 3 on the path P1. In the remainder of 
this section we briefly describe the operations on the two index organizations. 

Nested Index. Given a path "P=C1. A1. A2 . . . . .  An  and a nested index defined on 
this path, the evaluation of a predicate against the nested attribute An of class C1 
requires the lookup of a single index. Therefore, the cost of evaluating a nested 
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Figure 4. Leaf-node in a path index 

record 

] lreenC~ ] lenk~ - [valku:~ path~lO.[ {path(l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

[uid(1) 1 ] uid(1)~ ....... [ uid(l)n I luid(n)l I ui0(n   ....... I uid(n)~ 

Figure 5. Leaf-node records in a path index 

I Task[i] [Research_Group[k] [Researcher[i] I [ Tasklj] Research_Group[k] [Researcher[i] ] 

I ] { p a t h s  

[ Task[k] [ Research_Group[j] [ Researcher[m] [ 

predicate is the same as if the attribute An were a direct attribute of class C1. 
Let us consider a path 79=C1. A1. A2 . . . . .  An and an object Oi, 1 < i < n 

instance of a class Ci in class(7~). Suppose that Oi has an object Oi+l as the value 
of attribute Ai and that Oi is updated to assign a new object Oi+ 1 toAi.  To update 
the index, two forward traversals must be executed to determine the value of nested 

! attribute A n with respect to Oi+l and Oi+ 1. Then the path is reverse-traversed 
from object Oi to determine the UID(s) of object(s) of class C1 that contains direct 
or indirect references to Oi. Finally, the data structure implementing the index is 
modified. 

To update a nested index, in general, the path must be traversed. In particular, 
two forward traversals and one backward traversal are. required. If Oi is the modified 
object, then the forward path traversal has length dry =n -- i, where n is the path 
length. The backward path traversal has length lb=i -- 2 if i>2, lb=0 if i < 2. If 
no reverse references are provided in objects, the nested index organization cannot 
be used. 
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The operation of insertion and deletion are similar to the update operation, 
except that only one forward traversal is executed. 

Path Index. Given a path "P=C1. A1. A2 . . . . .  An  and a path index defined on 
it, the evaluation of a predicate against the nested attribute A n of a class Ci, 1 
< i < n, requires a lookup of a single index. Once the set of path instantiations 
associated with the key value is determined, the i-th elements are extracted from the 
arrays representing these instantiations. However, a greater number of leaf-nodes 
may need to be accessed than with a corresponding nested index, because leaf-node 
records in a path index contain more information than those in a nested index. 
(For a comparison of the paths of lengths 2 and 3 see Bertino and Kim, 1989). 

Again, let us assume that an object Oi, 1 < i < n, which is an instance of 
class Ci in class(P), is modified by replacing object Oi+1, the value of Ai, with a 
new object t Oi+ 1. The effect of this update is that some instantiations have been 
modified and therefore the index must be updated. To update the index, two forward 
traversals must be performed, as in the case of the nested index. However, unlike 
the nested index organization, a path index does not require a backward traversal, 
since paths are stored in the leaf-node records. Therefore, this organization can 
be used even if backward references are not supported in objects. The update 
algorithm is described in detail elsewhere (Bertino and Kim, 1989). 

2.2 Index Configuration 

A path may be split into several subpaths, and for each subpath a different index 
organization may be used, or indexes may be used only on some subpaths. In this 
case we say that the path is supported by a multi-index organization. The motivation 
for splitting a path is mainly to reduce the update costs and, at the same time, 
provide efficient retrieval. Both nested indexes and path indexes have high update 
costs (Bertino and Kim, 1989), especially if allocated on long paths (i.e., with length 
greater than 3), and low retrieval cost. Conversely, the multi-index organization 
has low update cost and high retrieval cost. Therefore, the purpose of splitting 
a path into several subpaths is to provide intermediate configurations that allow 
the update costs to be reduced, while providing efficient retrieval. The algorithm 
described in Section 4 is used to determine the most efficient configuration. Let us 
consider the path P2 = Project. work_plan, part icipat ing_team, leader, name. 
This path can be split in different ways, for example: 

1. P21 =Project.work_plan 
P22 =Task" part icipat ing_t eam 

P23 = Research_group. leader 
P24 = Leader. name 

2. P21 =Project. work_plan, participating_team 
P2~ =Research_group. leader 
P23 = Leader. name 
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3. P21 =Project. work_plan.participating_team 
P22 =Research_group. leader, name 

Given a path, the number of subpaths and the index organization of each 
subpath defines the index configuration. Which configuration is best depends on the 
access patterns and on data characteristics. An algorithm for configuration selection 
is presented in Section 4. The algorithm also determines whether a path must be 
split into several subpaths and for which subpaths an index must be allocated. 

Definition 8. Given a path P=Ct.A1.A2 . . . . .  A , ,  (n > 1) an index configuration 
for 79 of degree /k; denoted as X(79), is defined as a sequence of pairs, {T1, 
T2 , . . .  ,Tk}, (k< n). Ti (1 < i < k) has the form <Si, ITi > where 

Si=Cj. Aj. Aj+i . . . . .  Aj+li (j _> i and li > 0) is a subpath definition; the subpath 
length is li + 1; Cj is in class(P) and is called the starting class of the subpath and 
is denoted by SCi; Aj+tl is called ending attribute of the subpath and is denoted by 
EAi; 

ITi indicates whether an index is allocated on the subpath, and the type of index 
allocated on the subpath; it can assume one of the following values: NX, PX,/, 
0, where NX denotes a nested index, PX a path index, and I a simple index (i.e., 
a nested index defined on a subpath of length 1). The symbol 0 denotes that no 
index is allocated on the subpath. 

The sequence ~ = {S1,$2,. . .  ,Sk} is called the subpath specification. A 
configuration having degree greater than one is called a split configuration. This 
means that under the configuration the path has been split in at least two subpaths. 

Given a path ~S)=C 1. A1. A2 . . . .  An, (n _> 1) a configuration X(79) of degree 
k must satisfy the following constraints: 

1. The ending attribute of Sk must be An. 

2. The starting class of subpath Si (1 < i < k) must be the domain of the 
ending attribute of path Si-1. 

Note that these constraints require that subpaths be non-overlapping. This is to 
avoid overlapping indexes. Overlapping indexes cause higher update costs, since an 
update to an object implies the modification of several indexes. Moreover, retrieval 
becomes inefficient if there are several overlapping indexes on the same path. 

Definition 9. Given a path 79=C1. A1. A2 . . . . .  An (n > 1), an index configuration 
for 7 9, X(79), and a class Ci in class(Sj), Ci is indexed by X(79) if o n e  of the 
following conditions is satisfied: 

a path index is allocated on S j; 

a nested index is allocated on Sj and Ci is the starting class of Sj. 

As an example, consider the path P3 ---- Techn:Lcal_Annex.financial_info. 
total_budget, involving two classes. The possible configurations are as follows: 
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1. { < Technical_Annex.financial_info.total_budget, NX > } 
In this case P3 is not split and a nested index is used. Class Technical.Annex 
is indexed in this configuration, while class Financial_Annex is not indexed. 

2. { < Technical_Annex.financial_info.total_budget, PX > } 
In this case P3 is not split and a path index is used. Both classes are indexed 
in this configuration. 

3. { <Technical_Annex.financial_Jnfo.total_budget, 0 > } 
In this case no index is allocated on the path. Neither class is indexed in 
this configuration. 

4. { <Technical_Annex.financial_info, I> ,  <Financial_Annex.total_budget, I >  } 
In this configuration P3 is split into two subpaths of length 1. A simple index 
is allocated on each subpath. Both classes are indexed in this configuration. 

5. { <Technical_Annex.financial_info, 0 > ,  <Financial_Annex.total_budget, I >  } 
In this configuration P3 is split into two subpaths of length 1. An index is 
allocated only on the second subpath. Only Financial_Annex is indexed in 
this configuration. 

6. { <Technical_Annex.financial_info, I> ,  <Financial_Annex.total_budget, 0 > } 
This configuration is similar to the previous one, except that the index is 
allocated only on the first subpath. Only Technical_Annex is indexed in this 
configuration. 

In configurations 1, 2, and 3 the path is not split. Therefore, the subpath 
specification coincides with P3. On the other hand, configurations 4, 5, and 6 are split 
configurations and the subpath specification is ~ = {Technical_Annex.financial_info, 
Financial.Annex. total_budget }. 

Finally, a configuration where an index is defined on each subpath is completely 
indexed; otherwise it is said to be partially indexed. For example, Configuration 4 
above is completely indexed, while Configuration 6 is partially indexed. 

Note that given a configuration such as 

xi(P2) = {<  Project.work_plan, 19 > ,  < Task.participating_team, 0 > ,  
< Research_Group.leader.name, PX > } 

is equivalent with respect to the index allocation to the configuration 

x2(P2) = {<  Project.work_plan.participating_team, 0 > ,  
< Research_Group.leader.name, PX >}.  

We call a configuration like x2(P2), where there are no two consecutive subpaths 
on which no index is allocated, a non-trivial configuration. 

2.2.1 Retrieval Operations. Given a path "P=C1. A1. A2 . . . . .  AN and a config- 
uration X('P) of degree k > 2, the evaluation of a predicate against the nested 
attribute An with respect to class Ci may require the lookup of several indexes. 
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Let Sh be the subpath to which the class Ci belongs, then the evaluation of the 
predicate is executed as follows: 

If h < k (i.e., Ci does not belong to the last subpath) then 
If an index is allocated on Sk, an index lookup is performed on this index 
to determine the instances of SCk (starting class of Sk) that satisfy the given 
predicate (using whatever index organization is defined for Sk). 

If no index is allocated on Sk, the instances of SCk satisfying the given predicate are 
determined by accessing the instances themselves. The strategy for evaluating 
the predicate is determined by some query optimization algorithm (possible 
execution strategies have been proposed by Bertino, 1993). Let us indicate the 
qualifying set of SCk instances as UIDk_i. 

Then the instances of SCk-1 are determined .,;uch that their nested attribute 
EAk_i assumes values in the set UIDk_I. This activity is executed by using 
an index, if an index is allocated on subpath Sit-l, or accessing the instances, 
according to some query execution strategy. 

This process is repeated until the subpath Sh is reached. If an index is allocated 
on Sh and Ci is indexed by X(79), an index lookup is then performed to determine 
the instances of class Ci such that the nested instance attribute EAh assumes 
values in the set UIDh. Otherwise such instances are determined by accessing 
the instances themselves. 

If h=k (i.e., Ci belongs to the last subpath) then: 
If an index is allocated on Sk and Ci is indexed by X(79), only one index lookup 
is executed to determine the instances of Ci that satisfy the given predicate. 

If no index is allocated or Ci is not indexed by' X(~o), the instances verifying 
the predicate are determined by accessing the instances themselves, according 
to some query execution strategy. 

Example 1. Consider the path P2 = Projec t .work_plaaa .par t ic ipa t ing_team.  
leader.name and the configuration 

{<Project.work_plan.participating_team, PX> , 
<Research_Group.leader.name, NX >}.  

In this configuration the path has been split into two subpaths, such that a path 
index is allocated on the first subpath, while a nested index is allocated on the 
second path. The configuration is completely indexed since there is an index on 
each subpath. The two indexes will have the following entries for the objects in 
Figure 3: 

Path index on Proj oct .  work_plan, pa r t  icipating_teetm 
(Research_Group[k], {Project[i].Task[i], Project[i].Task[j]}) 
(Research_Group[j], {Project[j].Task[k] }) 
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Nested index on Research_Group. leader  .name 
(Bianchi, {Research_Group[k]}) 
(Verdi, {Research_Group[j]}) 

Note that only classes Project, Task, and Research_Group are indexed by this 
configuration. 

Suppose that we wish to retrieve all instances of class Project such that the nested 
attribute "name" is equal to a given value (e.g., "Bianchi"). In this case, a lookup on 
the nested index defined on the second subpath (i.e., Research_Group. l eader ,  name) 
is performed. This lookup returns a set of UIDs of instances of class Task 
such that their nested attribute "name" verifies the given predicate. This set is 
{Research_Group[k]}. 

Then a lookup on the path index defined on the first subpath is performed to 
retrieve the instances of the class Project having the attribute "participating_team" 
(ending attribute of the first subpath) values in the set of UIDs returned by 
the previous index lookup. In this case, this set contains only one UID (i.e. 
Research_Group[k]). The lookup of the path index for this UID returns as result 
{Project[i]}. [] 

Example 2. We now consider a partially indexed configuration, the path P2 and the 
configuration 

{ <  Project.work_plan.participating_team, O > ,  
< Research_Group.leader.name, NX > }. 

In this configuration, a nested index has been allocated on the second subpath (as 
in Example 1), while no index has been allocated on the first subpath. Suppose 
that, as in Example 1, we wish to determine all projects having a task whose 
leader is a researcher named Bianchi. This query is executed as follows. First 
an index lookup on the nested index is executed. The set {Research_Group[k]} 
is returned. Then instances of class Project are determined as having the nested 
attribute "participating_team" values in the set returned by the index lookup. Note 
that, depending on the query execution strategy, we may need to access instances of 
classes Task and Project, since there is no index allocated on the subpath containing 
these classes. [] 

2.2.2 Update Operations. We now consider the update operation. Consider a class 
Ci (1 < i < n) which is modified. Let Sh be the subpath to which Ci belongs. 
The update is executed depending on the index type, as discussed previously. Note, 
however, that the forward traversals need only to determine the old and new values 
of EAh (subpath ending attribute) for the modified objects. Therefore, no access 
must be executed to instances of classes that belong to subpaths different from Sh. 
Similarly, if the index type is nested, the backward path traversal must be executed 
only up to the class following the starting class of the path. 
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Example 3. Consider the path P2 : P ro j ec t .work_p lan .pa r t i c ipa t ing_ team.  
leader.name and the configuration of Example 1: 

{ <Project.work_plan.participating_team, PX>,  
<Research_Group.leader.name, N X >  }. 

Suppose that an update is performed that replaces the leader of Research_Group[j] 
with the new researcher Researcher[p]. In this configuration, the updates are on 
the second subpath and therefore only instances of classes in this subpath must be 
traversed. To determine the updates to be performed on the index, the following 
steps must be executed: 

Researcher[m] is accessed and its value for attribute "name" is determined. The 
attribute value is "Verdi." 

Researcher[p] is accessed and its value for attribute "name" is determined. 
Suppose the attribute value is "Smith." 

The following updates are executed to the nested index: 
Research_Group[j] is eliminated from the set of instances associated with 

the key value "Verdi." 
Research_Group[j] is added to the set of instances associated with the key 

value "Smith." 
Note that no backward traversal is needed in this case. Indeed, the modified 

class is the class at the beginning of the subpath. Note also that the classes in the 
other subpath do not need to be accessed. [] 

Finally, consider the configuration of Example 2, where no index is allocated 
on the first subpath. In this case, any update concerning instances of the classes 
in the second subpath is executed as in Example 3. If, however, updates occur on 
the first subpath, the update operation has no additional costs due to the index 
updates. 

2.3 Related Work on Indexing 

The problem of efficiently supporting hierarchical data has been widely investigated in 
the framework of CODASYL database systems. A basic feature of the CODASYL 
data model is the one of set, which allows a record type called owner to be 
connected to another record type called member. To efficiently support navigation 
from occurrences of a record owner to occurrences of a record member, different 
implementations of the set have been proposed (the most common order being 
based on pointer arrays or on list structures). However, a basic difference is that the 
CODASYL data model does not support a high level declarative query language as 
in the case of object-oriented data models. For example, to provide the equivalent 
of a nested predicate (e.g., Task .par t ic ipa t ing_team.  leader ,  name = Bianchi), 
a program must be used in CODASYL. Therefore, most techniques proposed for 
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supporting sets are really oriented toward a step-by-step navigation. For example, a 
pointer array associated with a given record occurrence only stores the pointers of the 
child record occurrences, but not those of the other descendants. To determine the 
descendants, a child occurrence first must be fetched, then the addresses of the record 
occurrences following in the hierarchies are determined from the pointer array of the 
child occurrence, and so on. Some extensions of these techniques are provided by 
the IMS system for a direct support of hierarchies of more than one set by flattening 
each hierarchy occurrence into a two-level hierarchy (Batory, 1985). However, those 
techniques can be applied only to trees, while in our case general graphs must be 
handled. Moreover, we note that all information needed to implement sets (such 
as pointer arrays) is stored with the record occurrences themselves (for example, 
a pointer array is stored with the occurrence of the parent record). By contrast, 
the purpose of the indexing techniques we present in this article is to provide 
generalized data organizations that allow nested predicates to be efficiently solved 
without having to access the objects themselves. Therefore, some data that facilitate 
an efficient query processing are stored in separate structures. This makes the data 
structures quite small and therefore more efficient. However, it is worthwhile noting 
that OODBMSs support two modes of object access: (i) high-level queries (like 
relational systems); (ii) step-by-step navigation (like CODASYL system). Very often 
the two access modes are used in a complementary way. A query is used to select 
a set of objects. The retrieved objects and their components are then accessed by 
using navigational capabilities. The problem we are addressing concerns the efficient 
support for high-level queries with nested predicates. CODASYL techniques could be 
used and/or extended for efficiently supporting navigation among objects. However, 
note that techniques used for supporting efficient step-by-step navigation could be 
used, in certain cases, as alternatives to indices to support queries. Therefore, 
the overall problem of physical database design for object-oriented databases is 
very complex because both associative accesses through queries and step-by-step 
navigation must be taken into account. 

An indexing technique for complex objects has been proposed (Valduriez et 
al., 1986), based on the notion of join index which was originally proposed for the 
relational model (Valduriez, 1987). A join index on two relations R and S is a file 
of pairs, where each pair contains the identifier (surrogate) of a tuple of R and the 
identifier of a tuple of S, such that the two tuples verify a given join predicate. 
In the implementation proposed by Valduriez (1987), two copies of the file can be 
allocated. One copy is clustered with respect to relation R and the other with respect 
to relation S. However, for limited access patterns (e.g., if always given a tuple of 
R, the matching tuples of S must be determined), a single copy is sufficient. Both 
copies are implemented as a B+-tree. A join index in an object-oriented database 
can be used to support the implicit join between the instances of a class C and the 
instances of a class which is the domain of an attribute of C. Therefore, a sequence 
of join indexes could be used to support a nested predicate. We note that in this 
case a join index provides the same function as a nested index allocated on a path of 
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length 1 (i.e., a simple index). Therefore, the sequence of join indexes is equivalent 
to a configuration where a given path has been split into several subpaths all of 
length 1. Therefore, our approach concerning patla configurations is more general 
since it provides the equivalent of a sequence of join indexes as a particular case. 
Moreover, note that the path index that we consider here constitutes a generalization 
of the join index, since it allows an arbitrary number of classes connected through 
aggregated relationships to be related (rather than relating two classes). 

A recent work (Kemper and Moerkotte, 1990) proposes a technique, called the 
access support relation, which is equivalent to the path index. The authors suggested 
that a path be split into several subpaths and different access support relations be 
allocated on each subpath, which is similar to our notion of configuration (except 
that they proposed a single indexing technique, while we consider two different 
indexing techniques). However, they proposed no algorithm for determining the 
optimal way to split a path. The definition of such an algorithm is our main goal 
in this article. 

3. Cost Functions 

In this section we present basic cost functions of index access and maintenance for 
the nested index and path index. Using these costs we derive the cost functions 
for a generic configuration. We present the workload model used in the selection 
algorithm. In defining the cost functions we use the parameters listed in Table 
1. The parameters ki (1 < i < n) model the degree of reference sharing. Two 
instances of a class Ci share a reference if they reference the same object O as 
value of attribute Ai. For example, objects Task[i] and TaskD] share a reference 
along the path P1, since both objects reference Research_Group[k] through attribute 
"participating_team." None of the parameters used in the cost functions (except the 
physical page size) are input parameters to the configuration algorithm (Section 4). 
The parameters in Table 1 are derived from the input parameters of the algorithms. 
The input parameters are listed in Table 3. 

3.1 Basic Cost Functions 

We define the access cost functions for two types of index access: single-key and 
key-set. In the first type, a single key value is provided as input to the index lookup. 
In the second type, a set of key values randomly selected among the index keys is 
provided as input to the index lookup. We also define index maintenance costs and 
briefly discuss the access costs in cases where a predicate must be evaluated directly 
on the instances. In defining the cost functions we make the following assumptions: 

1. The values of attributes are uniformly distributed among instances of the 
class defining the attributes. 
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Table 1. Cost function parameters 

• h B+-t ree  height 

• X record size in a leaf-node 

• D number  of distinct key values in the index 

• int (1 < l < h) number  of index nodes at level l of the index 

• np  number  of pages occupied by a record when record size is larger than 

page size; 

np = r X I P  ] 

• k i  average number  of instances of class Ci assuming the same value for 

attribute A i (1 < i < n) 

• P physical page size 

2. All attributes are single-valued. 2 

3. All key values have the same length. 

4. Each instance of a class Ci is referenced by instances of class Ci-1,  1 < i <_ n. 
Without this assumption, we would have to introduce additional parameters  
to take into account object reference topologies. 

A c c e s s  cost. The single-key access cost is denoted by Isingte and is formulated as 
follows: 

• Isingle = h if X __< P 

• Isingle = h - -  1 + np if X > P. 

The key-set access cost is denoted by Ise t (s )  where s is the cardinality of the 
key-set. We evaluate the cost of a search for a number  s of keys by using the 
formulation proposed by Lang et al. (1989): 

h 
• Iset(S)  = E t = l  H(s,  int,  D )  if X < P 

h 
• Iset(S)  = ( E t = l H ( s ,  i n t , D ) )  + s  × ( n p -  1) i f X > P .  

2. We introduce this assumption mainly for simplifying the presentation of the cost formulas. The orga- 
nizations can easily support multi-valued attributes. In particular, while the path index does not need any 
extension, the nested index must be extended by including a counter for each UID in the set associated with 
a key value, indicating the number of different path instantiations starting with the same object and ending 
with the key value. 
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where H is the formula defined by Yao (1977). This formula determines the number 
of pages hit when accessing a number k of records randomly selected from a file 
containing n records grouped into m pages: 

k (n/m) iq-1  
H(k,m,n) = m  × ( 1 - -  H n - -  -- 

i=l n -  i +  1 )" 

Bertino and Kim (1989) defined how values for h, X, and int are derived for 
both the nested index and path index, given parameters defining the data logical 
characteristics. 

Maintenance cost. The index maintenance cost deriving from update, delete, or 
create operations for an instance of a class Ci (where the subscript i indicates 
the position of the class along the path) is denoted by U, D, a n d / ,  respectively. 
In computing this cost we exclude the costs of updating, deleting, or creating the 
instance itself, since these costs are common to al][ organizations, and focus on the 
additional costs of index modification. To further simplify the analysis, we consider 
only the costs of leaf-page modification and exclude the costs of index page splits 
(cf. Schkolnick and Tiberio, 1985). 

In defining the cost functions we will make use of the following additional 
variables: 

CFT cost of a forward traversal (in IO operations) 
CBT cost of a backkward traversal (in IO operations) 
C BM average cost of the B+-tree modification (in IO operations). 

The cost functions for modification operations on a class Ci are as follows: 
Nested Index U = 2 x CFT + CBT + 2 × CBM 

D = ! =  C F T +  C B T +  CBM 
Path Index 

U =  2 x CFT + 2 x CBM 
D = ! =  C F T +  CBM. 

CFT is evaluated by observing that the number of objects that must accessed is 
n -- i. For each object, first an access must be executed to determine the physical 
address of the object (since references are logical), and then a second access to 
fetch the object itself. Therefore: 

CFT = 2 X (n - i ) .  
CBT is evaluated by the following expression: 3 

i--1 i--1 
CBT = 2 X ( ~ j = 2 ( r l l =  j kl)  ) if i > 2 
CBT = 0 otherwise. 

3. "Hae CBT cost is evaluated under the assumption that reverse references are used. The CBT cost in the 

case of no reverse references is not of interest for the present discussion and therefore is not reported. 
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In the previous expression the quantity in parentheses determines the number of 
objects to be accessed. For each of those objects, two IO operations are performed. 

We note that costs of both forward and backward traversal are dependent on 
i (i.e., on the position of the modified class along the path). Since the purpose of 
forward traversal is to determine the value of the nested attribute at the end of the 
path for the modified instance, the cost of the forward traversal depends on the 
position of the class in the path. If the class is very close to the beginning of the 
path, the cost of forward traversal is very high, being proportional to the difference 
between the path length and the class position in the path. Similarly, the cost of 
backward traversal is directly proportional to the position of the class along the 
path. 

CBM is formulated by the following expressions: 
C B M = h  + 1 i f X < P  

A number h of IO operations is executed to retrieve the leaf page containing the 
record to be modified; an additional IO operation is then executed to rewrite 
the modified page. 

CBM = h + 1 + (np - 1)/np i f X >  P 
If the record size is larger than the page size, then a number h of IO are 
executed to access the leaf page that contains the initial part of the record. 
From the initial part of the record, it is possible to determine the page from 
which the UID must be deleted or to which the UID must be added. If this 
page is different from the page containing the initial part of the record, then a 
further access must be performed. The probability of a further page access is 
given by (np -- 1)/np. 

If no index is defined on a subpath, the cost maintenance for the subpath is zero. 

Instance Access Cost. As  we have seen in the previous section, when no index is 
defined on a subpath, a given predicate must be evaluated by accessing the instances 
themselves. The cost depends on the query execution strategy used (Bertino and 
Martino, 1993). However, it should be noted that the cost functions used are 
orthogonal to the algorithm presented in Section 4. For example, it is possible to 
use the cost estimates provided by a query optimizer (Finkelstein et al., 1988). In 
the following: 

Zset(C, A, U) denotes the cost of determining which instances of the class C 
assume values for the (nested) attribute A in a set of UIDs of cardinality U. 
As an example, given the set Ue={Task[i], Task[j]}, Aset(Project, work_plan, 
card(Uc)) denotes the cost of determining which instances of the class Project 
have in their work plans Task[i] and/or Task[j]. 

Asingte(C, A, pred) denotes the cost of determining which instances of the class C 
have the (nested) attributeA that verifies the predicate pred. As  an example, con- 
sider the predicate name = Bianchi. hsingle( Research_Group, leader.name, 
name=Biaxtchi) denotes the cost of determining which instances of the class Re- 
search_Group are headed by a researcher named Bianchi. 
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3.2 Configuration Cost Functions 

Now we present access and maintenance costs for index configurations of degree k >_ 
2 (i.e., configurations consisting of at least two subpaths). When the configurations 
consist of only one subpath, then the costs are the. ones presented in the previous 
subsection. 

Access Costs. The access costs are provided only for the case of single-key predicates. 
The access costs for range-key or set-key predicates can be easily derived from the 
cost of single-key predicate. 

Given a path ~:)=C 1. A1. A2 . . .  An and a non-trivial configuration X('P) of 
degree k, the cost of evaluating a single-key predicate pred on attribute An with 
respect to a class Ci (1 < i < n) is denoted as cost_a[Ci, pred], and is obtained 
as follows. In the following cost expressions, NUIDj denotes the cardinality of the 
set of UIDs obtained by the lookup on the j+ l - th  subpath (this set of UIDs is 
obtained by accessing the instances themselves or by scanning an index depending 
on the configuration of subpath Sj+i). 

Let Sh be the subpath to which Ci belongs, then 4 
for h =k (i.e., Sh is the last subpath) 

I Isingle(Sk) if an index is allocated onSk 
cost_a [ Ci , pred] 

I Asingle(Ci, EAk,pred) otherwise 

for h<k (i.e., Sh is not the last subpath) 
rv'~k-1 ~ rSC cost_a[Ci, pred] = cost_a[SCk, pred] + tA.,j=h+l~setk j, NUIDj)] + Qset(Ci, 

NUIDh). 
The expression for function Qset is provided in Table 2. 
In the previous expression Isingle(Sk ) denotes the access cost to the index 

allocated on Sk (last subpath) for evaluating pred~ Since we made the assumption 
that pred is a single-key predicate, the access cost is the cost of an index lookup 
when a single key value is provided as input. This cost depends on the index 
organization defined on Sk and it is obtained by applying the basic cost functions 
for the single-key case defined in the previous subsection. 

Similarly, Iset(Sj, NUIDj) denotes the access cost to the index defined on the 
j-th subpath when a set of key-values is provided as input to the index lookup. The 
access cost is obtained by applying the cost functions defined for the key-set case 
for the two index organizations. 

Example 4. Consider a path P2 = P r o j e c t .  work_plan, pa r t  ±cipant_team. l eade r  
name and the confijzuration of Example 2 in Section 2: 

{ <Project.work_plan.participating_team,0 > ,  
< Research_Group.leader.name,NX> }. 

4. Recall that SCj (EAj), for I ~ j ~ k is the starting class (ending attribute) of subpath Sj. 
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Table 2. Functions Q~i~gz~ and Qset 

• f o r h + l  < j  < k  

Iset(Sj,NUIDh) 
Qset(SCj'NUIDj)= Aset(SCj,EAj,NUIDj) 

if an index is allocated onSj  

otherwise 

= I Iset(Sh,NUIDh) if an index is allocated onSh 
Qset(Ci,NUIDh ) 

L Zset(Ci, Ehh, NUIDh ) otherwise 

Suppose that we wish to determine all tasks with a participating team headed by 
a researcher named Bianchi. The cost of this query under the given configuration is 
given by cost_a[Task, name="Bianchi"] =cost_a [Research_Group, name="Bianchi"] 
+ Oset(Task, NUID1)= Isingle(S2) + Aset(Task, participating_team, NUID1). 

The cost of the query in the example is explained by observing that the query 
is executed by first determining the instances of class Research_Group headed by 
a researcher named Bianchi, and then by determining the instances of class Task 
having as participating team one of the qualified instances of class Research_Group 
(cf. Example 2 in Section 2). The first step is executed by scanning an index, since 
an index is allocated on the subpath Research_Group.leader.name. The second step 
is executed by accessing the instances of class Task, since no index is allocated on 
the subpath Project.work_plan.participating_team. [] 

NUIDj (j<k) for a configuration of degree k is evaluated as follows: 

Tb 

NUIDj = H ki × f(pred) 
i=ncl 

where ncl is such that Cncl is the starting class of the j+ l - th  subpath; f(pred) is 
a factor depending on the type of predicate pred (it is derived by using standard 
formulas for predicate selectivities estimation). In particular, when the predicate 
pred contains the operator =, f(pred) = 1. In the example in Figure 6, we consider 
a configuration that consists of four subpaths and a predicate pred containing the 
= operator. We present the values of NUID for subpaths $1, $2, and $3. 

We note that the cost of the j-th index lookup, when j<k~ is dependent only on 
the cardinality of the set NUIDj and on the index organization for the subpath Sj. 
However, the cost is independent from the organization of all the other subpaths. 
When no index is allocated on a subpath Sj, the cost of determining which instances 
of a class in Sj assume a value in NUIDj for the nested attribute at the end of the 
subpath is independent from the index organization of the other subpaths. 
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Figure 6. Example of evaluation of NUID~ for configuration 

P=C1. Ai. A2. A3. A4. AS. A6. AT, len(P)=7 

x(P)={<C1 • A1. A2, NX>,  <C3. A3, I> ,  <C4. A4. A5, PX>, <C6. Ao. a7,  
NX>} 
ki=2,  k2=2, k3=l ,  k4=2, k5=2, ko=2, k7=3 

NUID1 =k3 x k4 × k5 x k6 x k7 = 24 NUID2 =k4 x k5 × k6 × k7 = 24 NUID3 =k6 × k7 = 6 

When h = ~  the cost of the j-th index loop is only dependent from the index 
organization defined on Sk, and from the data logical characteristics. The cost is 
similar when no index is allocated on a subpath. 

Therefore these cost functions verify a property that is similar to the separability 
property defined by Whang et al. (1984). This is ~lportant because we can choose 
the optimal index organization for each subpath independently from the index 
organizations chosen for the other subpaths. 

Maintenance Cost. The maintenance costs are defined as the basic costs. The only 
difference is that the forward traversal and the backward traversal (for the nested 
index organization) are limited to classes in the subpath to which the modified class 
belongs. 

More formally, let Ci be the modified class, Sh be the subpath to which Ci 
belongs, e be such that Ae is the ending attribute of Sh, hs be such that Chs is the 
starting class of Sh (cf. Section 2). Then: 

CFT= 2 × ( e - - i )  
i--1 i--1 

CBT = 2 × (~j=h,+l (rXl=j kl)) if i -- hs > 1 
CBT = 0 otherwise. 

Because a modification operation on a class Ci involves accessing only object 
instances of the classes in the subpath to which Ci belongs, the cost functions for 
update, delete, and create operations have the separability property. That is, the 
costs are only the functions of the index organization defined for the subpath and 
it is independent from the organizations of the other subpaths. 

In the following we will denote the cost of an update on a class Ci as 
cost_u[Ci]. The cost of a delete or create operation will be denoted as cost_d_i[Ci], 
since cost functions are equal for the delete and create operations. Note that 
cost_u[Ci]=cost_d_i[Ci]=O if no index is allocated on the subpath. 

3.3 Workload Model 

To determine the optimal index configuration for a given path, the expected workload 
for classes along the path must be specified. 
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Given a path P = C t .  A1. A2 . . . .  An,  the workload in our case is characterized 
by a set of triplets 

W(79) = {(oli, vi, t~i), i =  1 , 2 , . . . , n } ,  

where: 
o~i is the frequency of evaluation of a single-key predicate on attribute An with 

respect to class Ci; 
vi is the frequency of updates executed on attribute Ai of class Ci; 
6i is the frequency of instance deletions and generations for class Ci. 

All frequencies are expressed as real numbers in the interval [0,1]. We assume 
that the frequencies are provided as input to the algorithm. Very often, these 
frequencies are provided by the physical database designer (Finkelstein et al., 1988) 
or can be obtained by monitoring the system (Yu et al., 1985). 

Given a workload specification, the optimal index configuration must minimize 
the following cost expression: 

n 

E ai  × cost_a[Ci,pred] + Ui × cost_u[Ci] + ~i × cost_d_i[Ci]. 
i = 1  

3.3.1 Subpath Workload. Given a configuration X(79) and a workload specification, 
it is important to determine the workload on each subpath. This makes it possible 
to determine the best index organization for each subpath. For a given Si, the 
subpath workload of Si determines the frequencies of retrieval and modification 
operations that are executed on each class in class(Si). 

Given a subpath Si, the workload specification of Si is defined as a set of triplets 

DW(Si) = { (d~j,  dvj ,  d6j), j = is, is + 1, . . . ,  is + l i -  1}. 

where li denotes the length of Si (el. Section 2) and is denotes the subscript of the 
starting class of Si. Therefore, the derived workload for a given subpath contains 
a number of triplets equal to the number of classes along the subpath; doq, du 5, 
and d~j are derived as follows: 

i--1 ~lj--1 
doti, = [ ~ j = t  2--~h=00l(j,+h)] +Oli, 
doLj : O~j, j = is+ 1, . . . ,  is+ li-- 1. 
dvj  = t/j, j = is, i s+ 1, . . . ,  is+ li-- 1. 
d~j =~5 ,  J = is, is+ 1, . . . , i s + l i - -  1. 

The workload for a subpath Si is derived by observing that the index defined 
on the subpath is accessed for retrieval each time a predicate on any class along Si 
must be evaluated and also each time a predicate on any class along any subpath 
Sj preceding Si (i.e., j < i) must be evaluated. By contrast, the workload for the 
modification operations depends only on the frequencies of these operations for 
the classes along Si. In particular, the instances of SCi (starting class of Si) will 
have to be retrieved when: 
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Figure 7. Example of derived workload 

P=C1. A1. A2. h3. a4. As, len(P)=5 x(P)= 

{<C1. A1. A2, NX>, <C3. A3,I>, <C4. A4. A5, PX>} 

~1=0.20 /Jl=O.O1 t~l=O.O1 ~2=0.00 v2=O.O1 t~2=:O.O1 0~3=0.20 //3=0.10 t~3=0.02 
Oq=0.20 Y4=0.05 t~4=0.02 

ce5 =0.10 v5 =0.05 65 =0.02 

dot1=0.20 dVl=O.O1 dt~l=O.O1 do~2=O.O0 dv2=O01 d~2=O.O1 

dee3=0.40 dt]3=O.lO dt~3=O.02 doL4=0.60 dv4=O05 dt~4=O.02 
dols=O.lO dvs=O.05 dt~5=O.02 

1. a predicate must be evaluated on SCi or 
2. a predicate must be evaluated on any class preceding SCi in 7 9. 

As an example, consider the configuration { < Project.work_plan.participating_ 
team, 0 > ,  < Research_Group.leader.name, NX> }. 

Under this configuration, the instances of class Research_Group must be retrieved 
each time a query is issued on class Research_Group, and also when queries are 
issued on classes Project and Task, since these are classes preceding Research_Group 
in the path. Indeed, the qualified set of UIDs of instances of class Research_Group 
are used to determine the qualifying instances of class Project and Task. 

Therefore, the relative derived retrieval frequency for the starting class of each 
path includes also the retrieval due to queries on preceding classes. As in the example 
in Figure 7, we consider an index configuration, consisting of three subpaths and a 
workload, and we derive DW. 

Note that the cost of the j-th index lookup, when j<k; is dependent on the 
cardinality NUID 5 and on the index organization for the subpath S 5. However, the 
cost is independent from the index organization of all the other subpaths. 

Given a configuration X(79) of degree k, and a subpath Si, (1 < i <k)  we 
define the overall cost for Si as 

li--1 

cost(Si) = ~ dol(i,+h) X Qset(C(G+h),NUIDi)-b 
h=0 

li--1 

[ ~  du(i,+h) X COSt-u[C(i,+h)] -t- dl)(i,+h) × cost_d_i[C(i,+h)]]. 
h=O 

Substituting expressions for dai, dui, and d6i.., and recalling the configuration 
cost functions presented in the previous subsection, we obtain: 

i--1 lj--1 li--1 

cost(Si)----Qset(SCi,NUIDi) × Z Z C~(j,+h)-b ~ OZ(i,+h)× 
j = l  h=O h=O 
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Qset(C(i.+h),NUIDi) + V(i.+h) × cost-u[C(io+h)] + 3(i,+h) X COStM_i[C(i.+h)]. 5 

The overall cost for Sk (last subpath) is defined as follows: 

lk--1 

cost(Sk) = E do~(k.+h) X cost-a[C(k.+h),prea]+ 
h=0  

dV(k,+h) × cost-.u[C(k,+h)] + d6(k,+h) × cost-d-i[C(k,+h)]. 

As in the previous case, we obtain the following expression for cost(Sk): 

k-1 l j -1  Ik--1 

cost(Sk) =cost_a[SCk,pred] x ~ ~ a(j.+h) + ~ C~X 
j = l  h=O h=O 

cost.a[C(k.+h),prea] + "(k.+h) X cost_u[C¢k.+h)] + e¢k.+h) X cost_d.i[Cf,,+h)l. 
Because of the separability property (cf. Subsection 3.2), cost(Si) (1 < i < k) 

is independent from the cost(Sj) (1 _< j _< k and i 76 j). 
Finally we define the overall cost for X(79) as 

k 

°v-c°st[X(79)] = E cost(si). 
i=1 

The following proposition holds, 

Proposition 1. Given a path 79=C1. Av A2 , . . .  ,An, a workload W(79), and a 
configuration X(7 9) of degree k 

Ein=l OL i X cost_a[Ci,pred] ++ ui X cost_u[Ci] + ~i × cost_d_i[Ci] = (1) 
k • i : l  cost(Si) .  (2) 

The proof of the proposition is given in Appendix A. Therefore, the problem of 
finding a configuration that minimizes expression (1) can be restated as the problem 
of finding a configuration that minimizes expression (2). 

4. Selection Algorithm 

The selection algorithm receives as input a set of parameters defining: 
path definition, 7 9 = C1. A 1. A 2 . . . .  A r~ (n > 1 ); 

5. Recall that Cia =SC i since i s denotes the subscript of the starting class of path S i. 
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Table 3. Data parameters 

• Di number  of distinct values for attribute Ai ,  1 < i < n. 

• Ni cardinality of class Ci, 1 < i < n assuming the same value for attribute 

Ai (1 < i < n ) .  

• PC(Ci), 1 < i < n, number  of disk pages containing instances of class Ci. 

• ri (2 < i < n) a binary variable assuming value equal to 1 if instances of  

class Ci have reverse references to instances of  class Ci -1  in the path; equal 

to 0 otherwise. 

• k / ave rage  length of a key value for the indexed attribute, (i.e. An) .  

• r[dom(P)] a binary variable assuming value equal to 1 if the instances of  the 

class dom(P) have reverse references to the instances of class Cn; equal to 

0 otherwise. This variable assumes always value 0 if dorn(P) is a primitive 

class (i.e., string, number, character, etc.). 

• UIDL length of the object-identifier. 

data characteristics (listed in Table 3); 8 
workload specification (as defined in the previous section). 

The algorithm is organized in n steps. In the first step all subpaths of length 1 
are considered and for each of them the costs are evaluated. In the first step there 
is only one choice to be made since for the case of subpath length equal to 1 the 
nested index and path index are identical. Therefore,  the only choice is whether  to 
allocate an index. At the second step all subpaths of length 2 are considered. In 
this case there are six possible choices for each subpath. A nested or path  index 
can be used, or no index allocated, or the subpath can be further split into two 
subpaths of  length 1, such that an index is allocated on both subpaths, or  only on 
one (Subsection 2.2). In particular, a nested index is taken into consideration only 
if there are backward references f rom the second class in the subpath to the first 
class in the subpath and there is no retrieval from the second class of the subpath. 
The path index is always taken into consideration. Then the costs for all possible 
subpath configurations are evaluated and the configuration with the minimum cost 

6. Parameters in Table 3 are used to derive all parameters (except the page size) used in the cost formula- 
tions, such as the index height listed in Table 1. In this article we do not discuss how parameters in Table 1 
are derived from parameters in Table 3, since this derivation is presented in a previous article (Bertino and 
Kim, 1989). However, this derivation is quite trivial; it mainly concerns the determination of index charac- 
teristics, such as height or leaf-node sizes, from input parameters such as the number of instances per class 
and the number of distinct values for attributes. 
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is chosen. Note that the cost of the configuration where the subpath is split into two 
subpaths of length 1 is obtained as the sum of the costs of each of these subpaths. 
These costs have already been evaluated at the previous step. 

At the k-th step, all paths of lengths k are considered. For each subpath the 
algorithm considers k+2 choices. The first choice is represented by the nested index. 
This organization is taken into consideration if there are reverse references among 
the classes in the subpaths, and if the frequency of retrieval is zero for all the classes 
in the subpath except the starting class. The second choice is represented by a path 
index, which is always taken into consideration. The third choice is represented by 
not allocating any index on the path. The remaining k -- 1 choices are obtained 
by considering all possible configurations obtained by further splitting the subpath 
into two subpaths, that is, considering all the split configurations. Given a subpath 
Sj = Cj. Aj. A j+l. A j+2 . . . . .  A j  +k-1 (of length k) the configurations that are 
considered are the following: 

( 1 ) C j . A j . A j + i  . . . . .  Aj+k-2,  Cj+k- l .Aj+k-1  
A 

(2)Cy.Aj.A~+i . . . . .  As+k_3, C~+k-2.A~+k-2.A~+k-; 
. . .  o o , 

(k-  2) Cj.Aj .Aj+;,  Cj+2.Aj+2 . . . . .  Aj+k-; .  

(k-  1) C~.Aj, Cj+i.Aj+i . . . . .  As+k-l". 

The cost of one these configurations is given as the sum of the costs of the 
two subpaths that make up the configuration. For example ov_cost(configuration2) 
= cost(Cj. Aj. A j+l . . . .  A/+k-3)  + cost(Cj+k-2.hj+k-2.Aj+k-1). 

Note that the configurations and costs of the subpaths into which Sj can be 
split have already been evaluated at some previous steps. 

The costs of all k+2 choices are then evaluated and the choice with the minimum 
cost is selected. Note that in the resulting configuration, Sj can be split in more 
than two subpaths. This happens when a split configuration is chosen for Sj. In 
the chosen configuration Sj is split into two subpaths Si and S~. For each of these 
two subpaths the optimal configuration has been determined at some previous step 
and the resulting configuration for Sj is the concatenation of the configurations of 
Si and S~. If, for example, Si has in turn a split configuration consisting of two 
subpaths Sh and S~, then the overall configuration of Sj is the concatenation of 
the configurations of Sh, S~, S~ and therefore S t is split into three subpaths. 

At step n the algorithm considers all possible paths of length n. There is only 
one path of this length--the input path P .  The algorithm generates a number 
of choices equal to n+2 where the first three choices are the nested index, the 
path index, or no index. The remaining n -- 1 choices are the split configurations 
obtained by splitting 7 :~ into two subpaths. The costs of all the choices are evaluated. 
The choice with the minimum cost is the configuration selected for the input path 
P. 
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In all the steps the costs for each subpath are evaluated with respect to the 
derived workload of the subpath. 

We assume that when considering a configuration without index, all possible 
execution strategies are considered and the one with the minimum cost is selected. 

In presenting the algorithm we will make use of some additional notations: 

S~ denotes a subpath of length j having as starting class Ci. 
cost_NX, cost_PX, and cost_l denote the overall subpath cost when a nested 

index, a path index, and a simple index are used respectively. 
cost_O denotes the cost of the most efficient execution strategy (Bertino and 

Martino, 1993) when no index is allocated. 
Given two paths 79 and 7 9' and two configurations X(79) and X(79') of degree 

k and k', such that: 
X ( 7 9 ) = { T l ,  T2, . . } 
X ( 7 9 ' l = { r l :  Z ' 2 ,  • • • 

cat[x(7 9), X(79 )] is a configuration of degree k+k'  defined as the sequence 

{ T1, T2, . . . , Tk, T;,  TJ, . . . , T~ } 

The algorithm is organized in the following steps: 

• STEP 1. Consider all subpaths of length 1. The number of these subpaths 
is n, and each subpath has the form S~ =Ci. Ai.  For each S/1 

1. evaluate DW(S{ 1) for i=l  . . . . .  n; 

2. evaluate cost_I; 

3. evaluate cost_O; 

4. cost( S ~ ) =min { cost .J, cost_O } 

• STEP 2. Consider all subpaths of length 2. The number of these subl~aths 
is n -- 1 and each subpath has the form Si 2 =Ci. hi. ai+l. For each S~ 

1. evaluate DW(Si2); 

2. if ri+l =1, and OZi+ 1 =0, evaluate cost.NX; otherwise cost_NX=cx~; 

3. evaluate cost.PX; 

4. evaluate cost_O; 

5. cost1 = cost(S~) + cost(S~+l) where 

- S~ is a subpath of length 1 such that the starting class of S/1 is Ci; 
- Si1+1 is a subpath of length 1 such that the starting class of S~+ 1 

is Ci+l; 

(note that cost(S~) and cost(Sil+l) hawz been evaluated at the previous 
step). 
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6. cost(Si2) = min{cost_NX, cost_PX, cost_~9, costl} 

7. In this step the optimal configuration for the subpath S/2 is determined. 

X (Si 2) = {<Ci. Ai. Ai+l, NX > }  if cost.NX is the minimum cost; else 

X (S~) = {<Ci. Ai. Ai+l, PX > }  if cost.PX is the minimum cost; else 

X (S~) = {<Ci. Ai. Ai+i,/9 > }  if cost_~9 is the minimum cost; else 
S x S 1 X (S/2) = cat [X ( i ) ,  X ( i+1 )  ]" 

• STEP3. Consider all subpaths of length 3. The number of these subpaths is 
n -- 2 and each subpath has the form S~ =Ci. Ai. Ai+l. Ai+2. For each S/3 

1. evaluate DW(S~); 

2. If ri+l =1, ri+2 =1, Oli+ 1 =0, and ai+2 =0, evaluate cost_NX; otherwise 
c ost_NX = oo; 

3. evaluate cost_PX; 

4. evaluate cost_~9; 

5. cost1 = cost(ST) + cost(S~+2) where 

- S/2 is a subpath of length 2 having as starting class Ci; 
- Si1+2 is a subpath of length 1 having as starting class Ci+2; 

6. cost2= cost(Si 1) + cost(Si2+l) where 

- S~ is a subpath of length 1 having as starting class Ci; 
- Si2+l is a subpath of length 2 having as starting class Ci+l; 

7. cost(Si 3) = min{cost.NX, cost_PX, cost_~9, costl, cost2} 

8. In this step the optimal configuration for the subpath S~ is determined. 

X (Si 3) = {<Ci. Ai. Ai+l. Ai+2, NX>}  if cost_NX is the minimum 
cost; else 
x = 

cost; else 

x = 
else 

x = 

x = 

{<Ci. Ai. Ai+l. Ai+2, PX>} if cost_PX is the minimum 

{<Ci. Ai. Ai+i. Ai+2,/9 > }  if cost_~9 is the minimum cost; 

1 cat Ix(S/Z), X (Si+2) ] if costl is the minimum cost; else 

cat Ix(S/l), x(S~+i) ]. 

• STEP lc Consider all subpaths of length k (k<n). The number of these 
subpaths is n + l  -- k and each subpath has the form S~ = Ci. hi. Ai+l. 
Ai+2 . . . .  Ai+k_ 1. For each S~ 

1. evaluate DW(Sik); 
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2. If r i + l = l ,  r i+2=l  . . . .  , ri+k_l=l, anti 

Oli+ 1 =0,  Oli+2=0 , . . . ,  and O t i + k _ l = 0  evaluate cost_NX; otherwise 
cost.NX = cx~ ; 

3. evaluate cost_PX; 

4. evaluate cost_O; 

5. For 1=1, k -- 1: 

costl = cost(St -l)  + cost(S~+k_l) where 

- Si k-t is a subpath of length k - 1 having as starting class Ci; 

- S~+k_ t is a subpath of length 1 h~Mng as starting class Ci+k-l 

6. costl, =rain{cost1, cost2,. • . ,  costk_l } 

7. cost(Sik)=min{cost_NX, cost_PX, cost_O, cost l, } 

8. In this step the optimal configuration for the subpath S/k is determined. 

X (S/k) = {<Ci .  Ai. Ai+l. Ai+2 . . . .  A~+k-1, N X ~ }  if cost_NX is the 
minimum cost; else 

X (Si k) = {<Ci" Ai. Ai+l. Ai+2 . . . .  A~i+k-1, PX > }  if cost_PX is the 
minimum cost; else 

x (s~) = {<c~. A~. A~+i. Ai+2... ~i+k-1, 0 >} if cost_O is the 
minimum cost; else 

II X (Si k) = cat[x(Sik-t'), X (Si+k-v)] if cost[ is the minimum cost. 

• S T E P n .  Consider the subpath of length n. There is only one subpath of this 
length and coincides with the input path 79 . 

1. evaluate DW(S~); 

2. I f r 2 = l  . . . .  , rn=l, ol2=0, . . . ,  and o~n=0 

evaluate cost_NX; otherwise cost.NX=cx~; 

3. evaluate cost_PX; 

4. evaluate cost_O; 

5. For 1=1, n -- 1: 

costt = cost(S~ -t)  + cost(Stn_t) where 

- S~ -t  is a subpath of length n-I having as starting class C1; 

- Sln_t is a subpath of length l having as starting class Cn-t 

6. costv =min{costl, cost2 , . . . ,  costn-1 } 

7. cost(S~)=min{cost.NX, cost_PX, cost_O, costl,} 
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8. In this step the optimal configuration for the subpathS~ is determined. 
X (S~) = (<C1. A1. A2 . . . .An ,  NX  > }  if cost_NX is the minimum 
cost; else 

X (S~) = {<C1. A1. A2 . . . .  An, PX > )  if cost_PX is the minimum 
cost; else 

X (S~) = {<C1. A1. A2. . . .An ,  0 > }  if cost_O is the minimum cost; 
else 

X (S~) = cat[x(S ln-l'), X (Sn-v)]t' if costl, is the minimum cost. 

The optimal configuration for the path 7 9 is given by X (S~). 
The formal correctness proof of this algorithm is presented in Appendix B. Here 

we provide some informal justification. We note that a correct algorithm is one 
that would consider all possible ways of splitting a path (including the case of not 
splitting the path), and for each one of these ways would consider all possible index 
organizations. The algorithm, at STEPn, considers first the case of not splitting the 
path, and then the three possible organizations (nested index, path index, and no 
index). Then it considers all possible ways of splitting the path into two subpaths. 
Note that there is no need at STEP n to consider splitting the path into a larger 
number of subpaths (e.g., three or more), since these have already been considered 
when evaluating the subpaths of length lower than n at the previous steps of the 
algorithm. The algorithm considers all possible ways of splitting the path into two 
subpaths. The optimal configuration of each of these subpaths is in turn obtained 
by evaluating all possible index organizations and all possible ways of splitting them 
into two subpaths. 

4.1 Complexity Evaluation 

The complexity of the algorithm is evaluated in terms of the number of configurations 
whose costs must be evaluated. Given a path P whose length is n, the number of 
configurations nc(P) that are evaluated is given in the worst case by the following 
expression: 

n 

n c ( P )  = 2 ,  n + ~ ( ( n  + 1 - i) × (3 + i -  1)). 
i=2  

This expression is obtained as follows: 

• The term 2*n is the number of configurations that are examined at STEP 1. 
At this step all subpaths of P of length 1 are considered. Since P has length 
n, the number of such subpaths is n. For each path of length 1, we consider 
only two configurations: (1) allocation of a simple index; (2) no allocation 
of an index. 

• At step i-th of the algorithm, we consider all subpaths of P whose length is 
i. The number of such subpaths is n + 1 -- i. For each subpath of length i, 
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Table 4. Data parameters, workload, reverse reference specification 

• Data parameters 

- N1=200,000 D1=20,000 k1=10 PC(C1)=iO,O00 
- N2= 20,000 D2=10,000 k2= 2 PC(C2)= 1,000 

- N3= 10,000 D3=10,000 k 3 = l  PC(C3)= 500 

- N4 = 10,000 D4=10,000 k 4 = l  PC(C4)= 500 
- N s =  10,000 05=10,000 k 5 = l  PC(Ca)= 500 

• Workload 

- oe1=0.1 V 1=0.05 61=0.05 
- 0L2=0.1 V2=0.05 62=0.05 

- 013=0.1 ~3=0.05 63=0.05 
- OL4=O.1 U4=0.05 64=0.05 

- o~5=0.0 us=O.1 65=0.1 

• Reverse reference specification: ri =1 (1 < i < 5). 

• r[dom(P)]=O 

we consider the following configurations: path index, nested index, no index. 
Moreover, we consider a number of configurations that consist of splitting 
the subpaths of length i into pairs of subpaths. The number of such pairs for 
a subpath of length i is equal to i -- 1. Therefore, we find that the number 
of configurations for a subpath of length i is (3 + i - 1). Note that this is 
the worst case, since the nested index organization is not considered when 
there are no reverse references, and thus the number of configurations is (2 
+ i - 1 ) .  

By developing the above expression for nc we obtain that the total number 
of configurations to be considered is c = (n 3 + 9 × n 2 + 2 × n)/6. Therefore, 
the complexity of the algorithm is polynomial. In terms of storage, the algorithm 
requires that the optimal configuration cost for each subpath be considered. Since 
the total number of subpaths is n + ~ i ~ 2  ( n + l  -- i) = (n 2 + n)/2, the space 
required is proportional to this expression which is linear with the square of n, that 
is, with the path length. 

4.2 Illustrative Examples 

To illustrate the algorithm, we consider the path P=C1. A1. A2. A3. A4. A5. Table 4 
presents the data parameters, workload, values, and reverse reference specification. 
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In the table, we also report the values of parameters ki which are derived from Ni 
and Di. 

• STEP 1. The subpaths of length 1 are considered. Their costs are as follows: 

- S~=C1. A1 cost J=0.9 cost_O=0.4 
cost(S~)=O.4 x(S~)= {<C1. A1,O >} 

- $12=C2. A2 costJ=0.85 cost_O=0.4 
cost(S21)=O.4 x(S21)= {<C2. A2,0 > }  

- $31=C3. A3 costJ=l.05 cost_O=0.6 
cost(S31)=0.6 x(S3 )1 = {(C 3. h3, 0 >} 

- $41=C4. A4 cost_l=l.25 cost_O=0.8 
cost(S~)=0.8 X($14)= {<C4. Z4, 0 >} 

-S~=Q.  A5 cost_l=1.7 cost_O=200 
cost(S~)=l.7 x(S~)= {<C5. A5, I>} 

• STEP 2. The subpaths of length 2 are considered. Their costs and configu- 
rations are as follows: 

- S~ =C1. A1. A2 for this path the nested index cannot be used because 
class C2 has a frequency of predicate evaluation (0~2) which is different 
from zero. Therefore the following configurations are considered for 
this subpath: 

* {<C1. A1. A2, PX>} cost_PX=2.1 
* {<C1. A1. A2,0  > }  cost_O=0.8 
* {<C1. Aj.,/9 > ,  <C2. A2,0  > }  cost1=0.4+0.4=0.8 

Therefore x(S~)={<C1. Aj. A2, 0 > }  cost(S~)=0.8 

- S~ =C2. A2. A3 for this path the nested index cannot be used because 
class C3 has a frequency of predicate evaluation (ce3) which is different 
from zero. Therefore, the following configurations are considered for 
this subpath: 

* {<C2. A2. A3,PX>} cost_PX=I.8 
* {<C2. A2. A3,0  > }  cost_O=l 
* { < C  2. A2, 0 > ,  <C  3. A3, 0 > }  cost1=0.4+0.6=1 

Therefore, A2. A3, 0 >} cost(S )=l 
- S~ =C 3. A3. A4 for this path the nested index cannot be used because 

class C4 has a frequency of predicate evaluation (oL4) which is different 
from zero. Therefore the following configurations are considered for 
this subpath: 
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* {<C3. A3. A4, PX>} cost_PX=2 
* {<C3. A3. A4, 0 >} cost_O=l.4 
* {<Ca. A3, 0 >, <C4. A4, 0 >} costl =0.6+0.8=1.4 

Therefore x(S~)={<C3. A3. A4, 0 >} cost(S])=l.4 

- $42 =C4. A4. As for this path the nested index can be used because 0~5 =0 
and r5 = 1. Therefore, the following configurations are considered for 
this subpath: 

* {<C4. A4. A5, NX>} cost_NX=2,.45 
* {<C4. A4. As, PX>} cost_PX= 2. 45 
* {<C4. A4. A5, 0 >} cost_O=200 
* {<C4. A4, 0 >, <~C5. As, I>}  cost1=0.8+1.7=2.5 

Therefore X($42)= { <Ca. A4. As, NX> } cost($24)=2.45 

STEP 3. The subpaths of length 3 are considered. Their costs and configu- 
rations are as follows: 

- S~=C1. A1. A2. A3. The following configurations are considered for 
this subpath: 

* {<C1. A1. A 2. A3, PX>} cost_PX=3.6 
* {<C1. A1. A2. A3, 0 >} cost_O=l.4 
* cat[x(S12), X($31)] cost1=0.8+0.6=1.4 
* cat[x(S~), x(S~)] cost2=0.4+1=1.4 

Therefore, X($13)= {<C1. A1. A2. A3, 0 >} cost(S13)=l.4. 

- S~=C2. A2. A3. A4. The following configurations are considered for 
this subpath: 

* {<C2. A2. A3. A4, PX>} cost_PX=3.05 
* {<C2. A2. A3. A4, 0 >} cost_O=1.8 

* cat[x(S~), X($41)] cost1=1+0.8=1.8 
* cat[x(S21), X($32)] cost2=0.4+1.4=1.8 

Therefore, x(S~)= {<C2. A2. A3. A4, 0 >} cost($23)=1.8. 

- $33=C3 • A3. A4. A5. The following configurations are considered for 
this subpath: 

* {<Ca. A3. A4. A5, P X  >} cost_PX=3.5 
* {<C3. A3. A4. AS, 0 >} cost_O=200.6 
* cat[x(S]), X(S~)] cost1=1.4+1.7=3.1 
* cat[x(S31), X($42)] cost2=0.6+2.45=3.05 
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Therefore X($33)= cattx(S~) , x(S,~)]= {<C3. A3,/9 >,  <C4. A4. As, 
NX>} 
cost( $ 33 ) = 3.05. 

• STEP 4. The subpaths of length 4 are considered. Their costs and configu- 
rations are as follows: 

- St=C1. A1. A2. Z3. A4. The following configurations are considered 
for this subpath: 

* {<C1. A1. A2. A3. A4, PX>} cost_PX=5.4 
* {<C1. A1. A2. A3. A4, 0 >} cost_O=2.2 
* cat[x(S31), x(S~)] cost1=1.4+0.8=2.2 
* cat[x(S12), x(S~)] cost2=0.8+1.4=2.2 
* cat[x(S~), X($32)] cost3=0.4+1.8=2.2 

Therefore x(S14)= { <C1. A1. A2. A3. A4, 0 >} cost(S~)=2.2 

- $42 =C2. A2. A3. A4. A5. The following configurations are considered 
for this subpath: 

* {<C2. A2. A3. A4. A5, PX>} cost_PX=4.85 
* {<C2. A2. A3. A4. A5, 0 >} cost_O=201 
* cat[x(S~), x(S~)] cost1=1.8+1.7=3.5 
* cat[x(S~), X($42)] cost2=1+2.45=3.45 
* cat[x(S~), X($33)] cost2=0.4+3.05=3.45 

Therefore, x(S~)= [x(S~), X($42)1 = {<C2. A2. A3,/9 >, < C  4. A 4. 

A5, NX> } cost(S~)=3.45. 

• STEP5. The subpath of length 5 is considered, S~=C1. A1. h2. A3. A4. A5. 
The following configurations are considered: 

- {<C1. A1. A2. A3. A4. A5, PX>} cost.PX=7.8 

- {<C1. A1. A2. A3. A4. A5, 0 >} cost_0=201.2 

- cat[x(S~), x(S51)] cOStl--2.2+1.7=3.9 

- cat[x(S13), X($42)] cost2=1.4+2.45=3.85 

- cat[x(S~), X($33)1 costz=0.8+3.05=3.85 

- cat[x(S~), X($24)] costa=0.4+3.45=3.85 

Therefore x(S~)= cat[x(S~), x(S~)] = 
{<C1. A1. A2. A3,/9 >,  <C4. A4. As, NX>} cost(S~)=3.85. 
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The resulting configuration for P is given by X($15). The optimal configuration 
consists of splitting the path into two subpaths. The first is C1. A1. A2. A3. No 
index is allocated on this subpath. The second subpath is C4. A4. As. A nested 
index is allocated on this subpath. 

Note that, in the example, the best query execution strategy is based on reverse 
traversal (in all cases except for subpaths that are last in the configuration). The 
reason for this is that there are reverse references among objects in the example. 
This allows the system to determine the instances of a class Ci that reference a given 
instance O of class Ci+l directly from O by using reverse references. Therefore, 
there is no need to access all instances of class Ci, as would have been needed 
without reverse references. Intuitively, we can see that the configuration has been 
chosen because an index on the last subpath avoids accessing all instances of the 
last class (C5) to evaluate the predicate. Not having an index on the last subpath 
would have implied a total scanning of class C5. By contrast, it is not convenient 
to allocate an index on the first subpath since there are reverse references among 
objects. Therefore, once the instances of class C4 that verify the predicates are 
determined, it is possible to determine the instances of classes C1, C2, C3 by simply 
navigating backward using the reverse references. This is particularly efficient since 
the degree of reference sharing is rather low. For example, given an object O, 
instance of class C4, there is only one instance of class C3 that references O. On 
the other hand, given an object 0 I, instance of class Ca, there are two instances of 
class C2 that reference 0 I. Therefore, since objects contain reverse references, the 
reverse traversal is very efficient, and this eliminates the need for the index on the 
first subpath. 

To further assess this point we consider the data parameters and workload in 
Table 4, while there are no reverse references among objects. In this case, the 
configuration chosen by the algorithm (we omit the steps for brevity) is {<C1. al,  
I>, C2. A2. A3, PI>, < C  4. A4. A5, PI> }. The overall cost of this configuration is 
5.25. Under this configuration, the path has been split into three subpaths and an 
index allocated on each subpath. In this case, since there are no reverse references, 
the query execution strategies based on instance access are very expensive. 

Among the two configurations, the first has a lower overall cost. This shows 
that reverse references are useful not only for supporting referential integrity and 
enforcing certain types of constraint (Kim et al., 1989), but they can also be used 
in some cases to provide efficient query execution strategies. 

To show the influence of the degree of reference sharing, we consider another 
example where these degrees have higher values for some classes than those of the 
previous examples. Table 5 presents the data parameters, workload, and reverse 
reference specification. 

The configuration chosen is {<C1. A1. A2. A3, PI>, <C4. A4. As, NI>}. In 
this case, even if there are reverse references, it is more efficient to split the path 
into two subpaths and to allocate a path index on the first, and a nested index on 
the second. The nested index is allocated on the second subpath because, as in the 
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Table 5. Data parameters, workload, reverse reference specification 

• Data parameters 

- N1 =200,000 D1 =200,000 k l=  1 PC(C1)=iO,O00 
- N2=20,000 D2 = 20,000 k2=10 PC(C2)=IO,O00 
- N3= 20,000 D3= 2,000 k3=10 PC(C3)= 1,500 

- N4= 2,000 D4 = 200 k4=10 PC(C4)= 100 
- Ns= 500 D5= 100 k5=2 PC(Ca)= 10 

• Workload 

- 0~1=0.1 /~1=0.05 ~1=0.05 
- 0~2=0.1 V2=0.05 ~2=0.05 
- O~3=0.1 /J3=0.05 53=0.05 
- O~4=0.1 //4=0.05 54=0.05 
- 0~5=0.0 vs=O.1 55=0.1 

• Reverse reference specification: r i= l  (1 < i _< 5). 

• r[dom(P)l=O 

previous example, there is no retrieval from class C5 (0~5=0.0). This configuration 
is the most efficient because, when the degree of reference sharing increases, the 
number of object accesses in the reverse traversal becomes quite high. In this 
situation, it is preferable to allocate an index. 

5. Summary and Future Work 

In this article we presented a formal definition of access mechanisms to support 
the evaluation of nested predicates on a path. A path is defined as a sequence of 
classes, such that the first class has a domain of an attribute of the second class 
of the path, the second class has a domain of an attribute of the third class of 
the path, and so forth. We presented an algorithm that defines the optimal index 
configuration for a path, and we gave parameters defining the access patterns and 
logical data characteristics. 

The algorithm presented defines the optimal index configuration when only 
a path is considered. We note that queries may contain nested predicates on 
several paths originating from the same class. Therefore, future work includes the 
extension to the case of multiple paths when these paths have overlapping subpaths. 
We note, however, that the case we have considered in this article (i.e., a single 
nested predicate) is quite significant. In fact, a nested predicate is equivalent in 
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a relational query language to a restriction on a relation attribute, and to several 
joins among different relations. 

It is also important to observe that the algorithm proposed should be included 
in a more general methodology for index allocation. We believe that existing 
methodologies, such as those proposed by Finkelstein et al. (1988), Reuter and 
Kinzinger (1984), Lam et al. (1988), and Rullo and Sacca (1988) can be extended 
to deal with object-oriented databases and the nowfl indexing techniques. Finally, 
another open research issue concerns how to integrate the indexing techniques 
described in this article with the class hierarchy indexing technique proposed by 
Kim et al. (1989). 
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Appendix A: Proof of Proposition 1 

Given the configuration x(P) of degree k, each class along path P belongs to only 
one of the subpaths into which P is split. Therefore, expression (1) is developed as 
follows: 

n 

cei × cost_a[Ci,pred] + vi × cost_u[Ci] + 5i × cost_d_i[Ci] = 
i=1 

k li--1 

E E a(i.+h) × cost_a[C(i.+h),pred]+ 
i=1 h=0 

~(i.+h) × cost_u[C(i.+h)] + 5(i.+h) × cost_d_i[C(i.+h)] = 

recalling the cost function for cost_a[Ci,pred]) 

k-1  l i -1 k -1  

E E [a(i.+h) × [cost_a[SCk, pred] + [  E :  
i=1 h=O j=i+l  

Q~,t( SCj ,  N U I  D3 )]+ 

Q~t(C(i .+h) ,NUIDi)]  + u(i.+h) x cost_u[C(i.+h)]+ 

lk--1 

(~(i,+h) X cost_d_i[C(i,+h)]] + ~ [O/(k,+h ) X cost_a[C(k.+h),pred]+ 
h=O 

v(k.+h) × cost_u[C(k.+h)] + 5(k.+h) × cost_d_i[C(k.+h)]] = 
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k-1  l i - 1  k -1  

E[a(i,+h) x [ E Q,~t(SCj,NUIDj)]+ 
i=1 h=O j = i + l  

a(i.+h) X Q.et(C(i.+h), NUIDi) + O~(i.+h) X cost-a[SC~,pred]+ 
P(i.+h) X cost-u[C(i.+h)] + 5(i.+h) X cost-d_i[C(i,+h)]]+ 

l~ -1  

[a(k,+h) X cost-a[Qk,+h),pred] + V(k,+h) X cost_u[Qk.+h)] + h=0 

k-1  i - 1  l j - 1  
5(k.+h) X cost-d_i[C(k.+h)]] = E[Q~et(SCi, NUIDi)  x E ~ a(j.+h)]+ 

i=1 
1~--1 j = l  h=O 

a(i.+h) X Q.~t(C(i...), Uln i )  + ~'(,.+h) X cost-u[C(i.+h)]+ 
h=O 

5(i. +h) X cost-d_i[C(i,+h)]] + cost-a[SCk, pred] x 
k -1  l i -1  lk~l  

[E E + E × 
i=1 h=0 h=0 

~'(k,+h) X cost-u[C(k.+h)] + 5(k,+h) X cost_d_i[C(k,+h)J (3) 
Expression (2) is developed as follows: 

k k-1  

cost(Si) = ~ cost(Si) + cost(Sk) = 
i=1 i=1 

k -1  i - 1  l j ~ l  

E[Q~t(SCi ,  NUIDi)  x E E a(j.+h)+ 
i=1 

j = l  h-~-O 

~(i.+h) x Q~¢t(C(i.+h), NUIDi) + u(i.+h) x cost-u[C(i.+h)]+ 
h=O 

5(i~ + h) x cost-d_i[C(i.+h)]] + cost-aISCk,pred]x 
k-1  l j - 1  l k_ l  

[~ E a(~,+h)] + E a(~,+h) X cost-a[C(k,+h).pred]+ 
j= l  h=O h=O 

~'(k,+h) X cost_u[C(k,+h)] + 5(k.+h) X cost-d-i[C(k,+h)] (4) 
Since expressions (3) and (4) are equal, the assertion is proved. 

li--1 
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Appendix B: Correctness Proof of Selection Algorithm 

We show that the algorithm determines the optimal non-trivial configuration. That 
is, given O(79)={Xt(79),X2(79 ) . . . .  , Xp(79)} the set of all possible configurations 
for a path 79, the algorithm determines a non-trivial configuration Xi(79) such that 

ov_cost(xi(79)) _< ov_cost(xj(79)) forl < j _< p 

where Xi(79)E 0(79) and Xj(79)E 0(79). 
In the proof we will make use of the following definition: 

Definition 8. Given two subpaths 

$1 = Ci.Ai.Ai+l . . . . .  Ai+zl and $2 = Cj.A~.A~+I . . . . .  AS+z2 

they can be concatenated if Cj is the domain of attribute Ai+ll of class Ci+h. The 
concatenation is denoted and defined as follows: 

cat[S1, $2] = Ci.Ai.Ai+t . . . . .  Ai+ll.Aj.Aj+i . . . . .  Aj+12. 

For example, given the path P=Ci.Ai.A2.A3.A4 and two subpaths S 1 =C1.Ai.A 2 
and $2 --C3.A3JI4~ 

cat[S1, $2] = C1.A1.A2.Aa.A4. 

We first prove that the algorithm determines the optimal sprit configuration. 
We denote as Os (79) the set of all possible split configurations for 79. 

0s(79) = {Xj(7~)/Xj(79) E O(79)anddegree(xj(79)) >_ 2}. 

Proposition 2. Given a path 79 of length n, the algorit]hm determines a configuration 
Xh(79), Xh(P) E Os(7 9) such that: 

ov-cost(Xh(P)) < ov-cost(x~(79)), VX~(79) E Os(P). 

Proof. The proof is ab absurdo. Let's assume that exists a configuration Xy(7 9) 
such that 

ov_cost(xy(P)) < ov_cost(xh(P)) h ~ y ( 4 )  

where Xh(P) is the configuration determined by the algorithm. We show that 
a contradiction follows. Let ~h and ~u be the subpath specification of the two 
configurations. We consider two cases. [] 

Case 1. ~ h  = Ey  = { S 1 , S 2 , . . . , S m }  where m is the degree of the two 
configurations. This means that, under the two configurations, 7 9 has been split 
in the same way. Therefore, the two configurations differ because, in at least one 
subpath, a different index organizationhas been chosen for Xh(79) with respect to 
Xu(79). Let assume that they differ in only one subpath (the proof can easily be 
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extended to the case of several subpaths). That is T t E Xh('P) and Ty E Xu(79) 
exist such that 

j = j ' a n d S  t = Sy and I T  t 7  ~ ITy .  

that is S t is identical to St, , but different index organizations have been chosen in 
the two configurations for these subpaths. 

Since the algorithm considers all subpaths of length l at the l-th step, subpath S t 
has been considered at the (l t -4- 1)-th step (cf. Definition 8 in Section 2). Suppose 
that IT t = N X ,  and ITy = P X .  Since the organization chosen for S t is the 
nested index, we have that 

cos t_NX _< cost_PX f o r  subpath S t (5). 

We also have that costh(Sj) = cost_Ng and costu(St)= cost_PX, where COMb(St) 
(cOSty(St)) denotes the cost of subpath S t under configuration Xh (Xu). 

Recalling the definition of the cost of a configuration, we have that: 

m 

ov_co~t(x~(~,)) = ~2 co~ty(s,) 
i=1 

m 

ov_cost(xh(v) = ~C cost~(s,) 
i=1 

Therefore, expression (4) is expanded as follows: 

m m 

i=1 i=1 

The previous expression can be expanded as follows: 

m m 

Z costy(S,) + co~t~(St,) < ~2 co~th(Sd + co~th(Sj) 
i=l,i~j' i=l,i#j 

Since j= f  and costh(Si)=costy(Si) for i ¢ j, we can rewrite the previous 
expression as follows: 

m m 

~2 cost(s,) + costy(sj) < Z cost(S,) + co~th(sj) 
i=l,iCj i=l,iT~j 

Therefore, we obtain: 

~o~t~(sj) < ~o~tdsj) 



398 

and then, by substituting expressions for costv(Sj) and COSth(Sj), we obtain that 

cost_PX < cost_NX for  subpath Sj. 

Since this contradicts expression (5), our thesis follows. 

Case 2. Eh ~ Ev" Let us assume that 

~h = {Sl, S2, . . . ,  S m} and Ey = {$1, $ 2 , . . . ,  Sr }. 

Because we are considering split configurations, both m and r are greater than 1. 
Also note that 

7 9 = cat[S1, $2 , . . . ,  Sin] and similarly 

T ~ = cat[S1, $ 2 , . . . ,  St]. 

Given Eh we observe that we can define two subpaths Sh and S~ as follows: 

Sh = cat[S1, $ 2 , . . . ,  Sin-l] and S~ = Sin, :such that "P = cat[Sh, Ski. 
cost(Sh) ra-1 = E , = i  cost(Si) and cost(S~) = cost(Sin). 

, Given Ey it is always possible to define two subpaths S u and S u as follows: 

Sy = cat[S1, $2 , . . . ,  St - l ]  and S~ = S~, such that "P = cat[Sy, S~]. 

cost(s ) = E i : l  cost(Si) and cost(S~) = cost(S~). 

Note that lr is the length of subpath Sr and therefore, is the length of subpath 
I S u and 1 < lr < n -- 1. In fact lr cannot be equal to n because X(79) is a split 

configuration. Therefore the length of Sy is (n -- l~) and the starting class of Sy 
I l r  is C1. Therefore, S u = S~ -t~ and S u = S l + n _ l  . The algorithm evaluates at step 

n the following expressions: 

cost(Sh) + cost(S~) (7) and 

cost(s ) + (8) 
Since Xh(~) has been chosen by the algorithm, this means that 

cost(Sh) + cost(S~) < cost(S~-') + cost(S~+n_t) l = 1 , . . .  , n  - 1 (9). 

In fact the algorithm at step n considers all possible partitions of "P into two 
subpaths. Expression (9) holds in particular for l = lr. Therefore, we obtain 

and thus 

cost(sh) + cost(s ,) < + 

cost(Sh) + cost(S~) < cost(Sy) + cost(S'u) (10). 
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By using equalities (7) and (8) the inequality (4) can be expressed as follows: 

cost(Sy) + cost(S~,) < COst(Sh) + COst(S~) (11) 

Since expression (11) is in contradiction with expression (10) the thesis follows. 

Proposition 3. Given a path 7 9 of length n, the algorithm determines a non-trivial 
configuration Xi(79), Xi(79) E O ( ~ )  such that ov_cost(Xi(79)) < ov.cost(xi(79)) , 
VXj(7::')C e(79). 
Proof. The optimal index configuration is the configuration having the lowest cost 
among the nested index (if applicable), the path index, the optimal split configuration, 
and the configuration without index. At step n the algorithm determines the optimal 
split configuration (by the previous proposition). Then the algorithm compares the 
cost of the nested index (if applicable), the cost of the path index, the cost of the 
no-index configuration, and the cost of the selected split organization. Therefore at 
step n the algorithm determines the optimal configuration. The algorithm determines 
also the non-trivial configuration. This is explained by observing that at step n, 
we always consider a configuration of the form {<C1. A1. A2 ..... An, 0 >}.  
Therefore, even if among the split configurations, the selected one has been a trivial 
one (e.g., {<C1. A2....Ai, 19 > ,  < Ci+l. Ai+i ..... An, 0 >}),  the algorithm always 
considers the equivalent a non-trivial one. When the resulting cost of a trivial 
configuration is equal to the cost of the non-trivial one, the algorithm always selects 
the non-trivial configuration (cf. with the choices at the end of STEPS 2....n). [] 


