
VLDB Journal3, 325-353 (1994), Peter Scheurermann, Editor

©VLDB

325

The Demarcation Protocol: A Technique for Maintaining
Constraints in Distributed Database Systems

Daniel Barbard-Mill~ and Hector Garcia-Molina

Received August, 1992; revised version received June, 1993; accepted June, 1993.

Abstract. Traditional protocols for distributed database management have a high
message overhead; restrain or lock access to resources during protocol execution;
and may become impractical for some scenarios like real-time systems and very
large distributed databases. In this article, we present the demarcation protocol;
it overcomes these problems by using explicit consistency constraints as the cor-
rectness criteria. The method establishes safe limits as "lines drawn in the sand"
for updates, and makes it possible to change these limits dynamically, enforcing
the constraints at all times. We show how this technique can be applied to linear
arithmetic, existential, key, and approximate copy constraints.

Key Words. Consistency constraints, transaction limits, serializability.

1. Introduction

Traditional protocols used to manage distributed data (e.g., two-phase commit)
require one or more rounds of messages, restrain or lock access to resources during
the protocol execution, and have a high overhead. Moreover, these protocols could
render data unavailable during failure periods, decreasing system availability. This
may be impractical for some scenarios, like those involving very large distributed
databases or real-time systems. In this article, we propose an alternative protocol that
overcomes these problems by using explicit consistency constraints as the correctness
criteria. The method gives the involved nodes substantial autonomy for performing
changes to individual data items.

Consider an application where "items" are stored in two separate locations.
Assume that there must be sufficient stock of these items between the two locations.
This could, for instance, correspond to a military application in which planes are

Daniel Barbarfi-Mill~, Ph.D., is Senior Scientist, Matsushita Information Technology Laboratory, 2 Re-
search Way, Princeton, NJ 08540; Hector Garcia-Molina, Ph.D., is Professor, Department of Computer
Science, Stanford University, Stanford, CA 94305.

326

stationed at two different bases, with the requirement that at all times the total
number of stationed planes cannot be below some specified limit (perhaps out
of fear of being short of planes in case of an attack). Or the application could
correspond to a retail business in which the "parts" stock at two warehouses must
be maintained above a certain limit all the time. "Itansactions will try to withdraw
or add to the stock, and the system should verify that the constraint is obeyed at
all times. In the military application, planes can be put out for maintenance, or
sent off to missions, but the minimum number of planes should be kept stationed
at all times.

In the following example we have two nodes, each storing the value of the stock
kept at a certain location. Let A and B be the data items at locations a and b,
respectively. Let the constraint be A + B > 100. Consider a typical transaction
that attempts to withdraw ~ units from A:

I f A - - ~ + B < 100 then abort

else A = A --z2x

In a conventional transaction processing system, such a transaction would have
to lock data item B at location b, and A at a, verify whether the updated value
satisfies the constraint and, in that case, update A and follow a two-phase commit
protocol to ensure that the transaction commits. Notice that this would require
two rounds of messages, and would lock and limit access by other transactions to
A and B during protocol execution, resulting in a high overhead. The protocol
could also render the data unavailable if one node or the network fails during
execution, thus decreasing the availability of the system. This can occur because
the two-phase commit protocol can block (i.e., after a failure the nodes may not
be able to determine the outcome-commit or abor t -of the transaction). Therefore,
the nodes cannot release the locks and other transactions cannot run.

Alternatively, we could have a variable At at node a that acts as a limit, and
state that transactions can continue withdrawing units of A as long as the final value
of A remains above AI(A > At). Similarly, a variable Bi will be stored in node
b, serving as a limit for the updates made to B(B > Bt). (Think of At and Bl as
"lines drawn in the sand.") The transactions will produce correct results as long as
we ensure that At + Bt > 100. Notice that now, A (or B) can be modified by a
transaction without involving the other node, as long as the updated value remains
larger than the limit At (Bt). In these cases, what used to be a global transaction
has become a local one, so there is no need for global concurrency control or a
two-phase commit protocol. This increases data availability since transactions of
this type may run even if the other node (or the network) is unavailable. One would
expect that in many applications there is often slack in the constraints, so that in a
very large number of cases transactions will be able to run locally as illustrated. In
the aircraft example, say each base has 80 aircraft and that a total of 100 aircraft
must be kept between the two bases. If we set At --= Bt = 50, we satisfy the global
constraint, leaving each base with a slack of 30 aircraft. Thus, each base could

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 327

dispose of 30 aircraft without consulting the other.
The limits do not have to be static, but can change over time as needed.

However, the changes have to be made in such a way that the constraint At + Bt >
100 is obeyed at all times. This is the goal of the demarcation protocol presented
here. The protocol is designed for high autonomy. Clearly, some changes in limits
must be delayed because they are not "safe"; however, these delays do not block safe
changes or transactions that operate within the current limits. Besides a protocol
for changing limits, we also need a policy for selecting the values of the desired
new limits. (In our aircraft example, do we set At = Bt = 50 or do we select At
= 30, Bt = 70?) Policies will also be discussed in this article.

Our approach does not guarantee global serializable schedules (neither conflict
nor view serializable). Local executions are serializable, however, because each node
uses conventional techniques (e.g., two-phase locking) to run local transactions. Our
approach does guarantee that inter-node constraints, which we assume are given,
are satisfied. A conventional global concurrency control mechanism, on the other
hand, would guarantee globally serializable schedules and the satisfaction of all
constraints without the need to explicitly give them to the system.

One could argue that having to explicitly list the global consistency constraints is
a disadvantage of our method. We can counter this argument, first by noting that with
conventional approaches programmers still have to know and understand consistency
constraints to write transactions (a transaction must preserve all constraints). Second,
by knowing the constraints, the system can exploit their semantics, yielding better
availability and performance.

Third, we are only talking of specifying constraints that span more than one node
(local control ensures that local constraints are satisfied.) If we look at inter-node
consistency constraints in practice, we see that they tend to be very simple. For
instance, it is very unlikely that we would encounter an application with employee
records in New York and an index to those records in Los Angeles. Data that are
closely interrelated tend to be placed on a single node. (In a parallel database
machine or in a local cluster, there may be complex inter-computer constraints.
But in this case, the autonomy of each computer and network delays are not the
critical issues. We are focusing on geographically distributed systems.) If we look
at the types of constraints that are found in databases (Date, 1983), we claim that
the following ones are the most likely to involve data stored in different nodes of
a distributed system:

1. Linear arithmetic inequalities. Example: the available funds for a computer
at an ATM machine should be less than or equal to the actual balance of
an account.

2. Linear arithmetic equalities. Example: the hourly wage rate at one plant
must equal the rate at another plant.

3. Referential integrity constraints. Example: if an abbreviated customer record
exists on one node, then the full customer record must exist at headquarters.

328

4. Object copies. Example: the employee benefits brochure must be a copy of
the brochure at the personnel office.

Our main focus here is on linear arithmetic inequalities. If an arithmetic equality
is tight (e.g., A = B + 6, then maintaining it will be expensive. Every change involves
two-phase commit or the equivalent, because B must change immediately each time
A changes. However, in many applications a tight equality can be treated as an
inequality (e.g., ~A -- B --61 < 6. This is simply the two constraintsA -- B --6 < c
and -A + B + 6 < 6, which can be handled via our demarcation protocol. In
Section 7 we show that the same principles that are used for arithmetic constraints
can be applied to existential, key, and copy constraints.

This article is organized as follows. Section 2 lists related research. Section
3 offers additional examples and an informal description of our approach. The
protocol and a policy under a particular arithmetic inequality are presented in
Section 4. Section 5 presents an analytical model to evaluate the protocol. The
generalization to arbitrary arithmetic constraints is in Section 6. Section 7 discusses
other types of constraints. Section 8 discusses serializability issues related to the
demarcation protocol. Section 9 presents the conclusions.

2. Related Research

There has been a lot of recent interest in trying to reduce the delays associated with
conventional transaction processing and on exploiting semantics. In this section, we
briefly summarize research that is related to the demarcation protocol.

The idea of setting limits for updates has been suggested informally many times
(Hammer and Shipman, 1980; Davidson, 1982). These ideas were formalized by
Carvalho and Roucariol (1982) in the context of enforcing assertions in distributed
systems. Their limit-changing protocol is more general than ours, but is substantially
more complex and, we believe, less practical.

First, the protocol of Carvalho and Roucariol (1982) exchanges the values of
the limits between the nodes, instead of exchanging the increments/decrements, as
the demarcation protocol does. This makes the protocol, in principle, vulnerable
to the order of the messages. This problem is corrected by the use of auxiliary
variables or counters that keep track of the time at which the messages were sent.
A message with a timestamp lower than the value of the local counter is always
discarded. This way of proceeding makes the changes sequential. That is, if a
node, for any reason, decides to make two consecutive changes to a limit, it cannot
effectively propagate the second change until the first one has been acknowledged
by every other node involved in the treaty. On the. other hand, the demarcation
protocol is immune to delays in the message or the order of reception of them and
would allow the propagation of any number of consecutive changes to be made
without having to wait for acknowledgments.

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 329

The Carvalho and Roucariol (1982) protocol forces each node to maintain in
memory one treaty variable per node involved. One of them indicates the compromise
made by the node itself, while the others are images of the compromises made
by the other nodes. An instantiation of the protocol is needed to maintain each
treaty variable. For instance, in a two-node network, node i would maintain two

treaty variables 14~ and M~, indicating to node i the compromises taken by itself
and node j, respectively. Meanwhile, node j would maintain l~j and APj. The
variables M would be images of the variables W. An instantiation of the protocol

would maintain the assertion between l ~ and M~, while other instantiation would

do the same for pair ~ and bt~. Once a node makes a change in its limit (or
treaty variable), it should propagate the change to all nodes that maintain images
of this variable, and it cannot effectively propagate a new change until all those
nodes acknowledge the reception of the original message. This could be a burden
if the number of nodes involved is large. On the other hand, the demarcation
protocol maintains a single limit per node (per constraint) and is flexible enough
to allow pairwise treaties (i.e., once a node has changed a limit, it may only have
to communicate the increment/decrement to one of the nodes involved, most likely
the node that requested the change in the first place, greatly reducing the number
of messages involved. Furthermore, Carvalho and Roucariol (1982) do not discuss
policies for changing limits. Consequently, the protocol presented here is a more
efficient and practical way of dealing with distributed transaction management than
their protocol. Moreover, important details (e.g., when and how the changes on
the limits take place) are missing from their discussion.

The demarcation protocol is loosely related to O'Neil's (1986) escrow mechanism.
This technique was devised to support high-speed transaction updates by enforcing
integrity constraints without locking items. However, the mechanism was designed
to be used only in a single database management system. (O'Neil proposed the
application to the management of replicated data as a research topic.) Kumar and
Stonebraker (1988) also have proposed a strategy for the management of replicated
data based on exploiting application semantics. They present an algorithm to
implement the constraints B > Brain and B < Brnax. However, their technique
relies heavily on the commutativity of the transactions involved, and does not
generalize to arbitrary arithmetic constraints. Soparkar and Silbershatz (1990)
developed a protocol to partition a set of objects across nodes. A node may
"borrow" elements from neighbors. This approach does not deal with arbitrary
constraints, but it does guarantee serializable global schedules. Pu and Left (1991)
introduced epsilon-serializability, a correctness criterion that allows temporary and
bounded inconsistency of replicas. Krishnakumar and Bernstein (1992) developed
a protocol called the Generalized Site Escrow algorithm that uses quorum locking
and gossip messages to dynamically allocate resources among nodes while providing
a high degree of site autonomy and throughput.

The notion of quasi-copies was defined by Alonso et al. (1990) as a way of
managing copies that may diverge in a controlled fashion. The goals of their work

330

were the same as ours for the demarcation protocol. However, quasi-copies are not
useful for arithmetic constraints. For managing copies, the notion of quasi-copies
is more flexible in some ways. For instance, one can specify that a copy must be
equal to some value that the primary had within t]he last 24 hours. This type of
constraint is not handled by the demarcation protocol. On the other hand, updates
may occur at a primary location. The demarcation protocol allows updates at any
site containing an arithmetic value (Section 7.3).

There are other articles that deal with weaker notions of serializability and use
of application semantics (Fischer et al., 1982; Garcia-Molina, 1983; Lynch et al.,
1986; Korth and Speegle, 1988; Du and Elmagarmid, 1989; Fernandez and Zdonik,
1989).

3. Examples

In this section, we present two examples that illustrate how the demarcation protocol
works and the kinds of problems that are to be dealt with. First, we return to the
example presented in Section 1. The proposed method of operation imposes some
restrictions. As pointed out, a transaction that attempts to lowerA (or B) under the
limit At (Bl) would be aborted. The only way to run such a transaction would be
first to get the site to lower its limit. Since this is not a "safe" operation (lowering
At may violate the constraint At + Bi > 100), it can only be achieved by asking
the other node to raise its limit first. The only safe operation in this example is to
raise the limit above the current value.

To see how limits can be changed, assume that A = 61, while B = 69, and the
limits are chosen initially to be At = 45 and Bt = 5.5;. Figure 1 shows the setting of
the base scenario for this example. Notice that transactions at node a can update A
without further intervention from b, as long as the final value remains greater than
or equal to 45. The same is true for b and B, as long as B remains greater than or
equal to 55. Assume now that for some reason, node a wants to raise its limit At
to 50. Since this is a safe operation, a can go ahead. Node a will send a message
to b, informing it of the increment to At by 5 units. Upon receipt of this, b may
lower Bi by 5 to 50 (an originally unsafe operation). No reply to a is necessary.

If a wants to lower At, the procedure is not as easy. Lowering the limit is an
unsafe operation in this case, so node a would have to send a request to b, asking it
to raise Bl by the necessary amount. Node b is free to reject this request. However,
if it does honor it by raising Bt, it will send a a message, and only then could a
lower At. If the nodes follow this protocol, it can be assured that at all times At
+ Bt _> 100.

This is essentially the way the demarcation protocol operates. Whenever a node
wishes to perform an unsafe operation, it requests that the other node perform a
corresponding safe operation and waits for notification. Notice that the demarcation
protocol is not two-phase commit. (The decision to give another node slack by
increasing a limit is made by one node only.) The nodes are still autonomous and

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 331

Figure 1. Base scenario for sufficient supply problem

there is no need for locking remote resources. While limits are being changed,
transactions that modify A or B can still run (as long as A > At, and B > Bz.)

There are still two issues to be discussed. The first is the establishment of a
policy for invoking the protocol. The policy is orthogonal to the protocol, and the
changes can be triggered at any time. For instance, the changes could be triggered
whenever A (B) gets too close to Al (Bt). The second issue is the selection of the
new limits. Each node needs a formula for computing the new limits when a change
is to be made. In this example, it may be desirable to split the "slack" evenly (i.e.,
to make the distance between At and A equal to the one between Bz and B).

For instance, using the initial values of Figure 1, consider a transaction that
updates B to 57. Say that B -- Bt = 2 is considered "close," so the change mechanism
is triggered. However, node b does not know how to split the slack time since it
does not know the value of A, and it cannot lower Bt anyway. Therefore, b sends
a message to a, requesting that At be raised, and including the current value of B.
Upon receipt of this message, a knows that B = 57 and A = 61. The slack is A +
B -- 100 = 18. Subtracting half of this from each value we get At = A -- 9 = 52,
and Bt = B -- 9 = 48. These are the new limits that split the slack evenly. Finally,
a can safely increase At from 45 to 52 (increment of 7), sending a message to b,
allowing it to decrement Bt by 7 to 48.

So far we have only discussed one type of constraint (i.e., A + B > c5). Do
the ideas generalize to other types of arithmetic inequalities? Fortunately, they do.
For any constraint, some operations are safe while others are not. To illustrate,
consider the following example: Ensuring that project expenses E do not exceed
budget B. Assume that we store B at node b and E at node e. Node b could be
located at company headquarters, while e is at the project location. We require
that E < B at all times. Both the expenses and the budget are updated over time.
For the demarcation protocol, we will keep two limits Et and Bt such that E <
Et, Bt < B, and Et < Bt. In the supply example, it was safe to increase the limits
of both variables. In this budget problem, the limit Et can be decreased safely by

332

e, while Bt can be increased safely by b. On the other hand, the operations of
incrementing Et at e, or decrementing Bt at b, are unsafe. Notice again that once
one node performs a safe operation, it leaves room for the other to perform what
was originally an unsafe change. Consider that initially E = 0, B = 20 and that
limits Et and Bt have been set to 10. As long as E stays under 10, node e is free
to modify E without consulting b. Similarly, node b can lower B to 10.

4. Protocol and Policies

In this section, we present the demarcation protocol and its associated policies. To
simplify the explanation, we assume a particular constraint, A < B + 3. We also
show a particular policy choice for splitting slack, although many others are possible
(e.g., Section 6).

4.1 The Demarcation Protocol

The demarcation protocol consists of two operation.,;, one for changing a limit and
one for accepting the change performed by the other node. Recall that the constraint
we are dealing with is A < B + 3. Let the predicate SAFE(X, o-), where X is
either A or B, and o- is a desired change in value, be defined as follows:

SAFE(X, o') = i f (X = A and o" _< 0) or (X = B and o" > 0)
then TRUE otherwise FALSE

Essentially, SAFE is TRUE when we decrement the limit of A or increment the
limit of B. The other two operations are unsafe. We also define the following
predicate to signal when the change in a limit exceeds its data value:

LIMIT_BEYOND (X, o') = if (X = A and At + o < A)
o r (X = B a n d B t + o" > B)
then TRUE otherwise FALSE

When we refer to one of the values as X, we will use Y to refer to the
complementary variable in the constraint A < B + 3 (i.e., Y = A if X = B, and
vice versa). We use the notation N(X) for the node holding X. The demarcation
protocol is composed by two procedures: change_limit 0 and accept_change():

P 1 : The Demarcation Protocol

change_ 1 imit (X, o")
if LIMIT_BEYOND (X, o') then

abort the change
e/se

/f not SAFE (X,o') then
send message to N(Y) requesting it to perform change_limit(Y,o')

e/se

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 333

{Xl ~ X t + o-;
send message to N(Y) requesting it to perform accept_change(Y,o').

accept_change(Y, if)
Yt +- Yt + o'.

Conventional database techniques should be used at each node to make changes in
the limits and variables atomic and persistent. For instance, the values of the limits
should not be lost due to a node failure. Loss of messages is undesirable but does
not cause the constraint to be violated. For example, say N(A) decreases its limit by
5 and sends an accept_change message to N(B). If this message is never delivered,
Bt will be 5 units higher than need be. This is safe, but it means that N(B) will
be unable to "use" these 5 units. Thus, for proving our protocol correct (Theorem
4.1) we make no assumptions about message delivery. However, in practice it is
desirable to use persistent message delivery (messages are delivered eventually,
without specifying how long this might be). Also note that since messages from
different calls to change_limit only include decrements/increments, they need not
be delivered in order at the other node.

For simplicity, we have assumed that nodes are always willing to cooperate
with their partners. In reality, nodes need not comply with change_limit or
accept_change requests. When node a gets a request from b to decrease At by
10 units, a is free to ignore the request, or to decrease At by whatever amount it
wishes. Similarly, when a receives amount_change(A, 10), it may increase A by any
amount up to 10. Of course, in most cases it is advantageous for a to perform the
full increment, as indicated by the code. This is what we assume here.

Theorem 4.1: The demarcation protocol ensures that at all times At < Bt + 6,
assuming that the system starts with limits Al ° and By, where At ° < Bt ° + 6.

Proof." All the increments or decrements to limits are done by adding a value vi or
subtracting a value ui to the old limits, where i is simply an ascending index. For
data value A, v/A represents a change performed via the accept change call, while
u/A represents a change made via change_limit. For B, v/B represents a change
made using change_Xim:i.t, and u/B represents one made using accept_change. At
any time, we have:

Az A ~ + ~ v i A ~ u / A a n d B , Bt ° + ~ f i B - - ~ u B
i_<kl i_<k2 i<k3 i_<k4

where kl and k3 are the indexes of the last increments seen by nodes N(A) and
N(B), respectively, and k2 and k4 are the indexes of the last decrements seen by
nodes N(A) and N(B), respectively. []

Every increment v/B performed by change_limit produces an equivalent in-
A done by accept_change. The increments for A may not be done in crement vj

334

the same order as for B. However, the increment v~ is always done before the
increment of the same magnitude v¢ is done. Thus,

i<kl i<k3

By a similar argument,

i_<k4 i<k2

We can combine these two inequalities with A~ _< .B~ + ~ by adding all left-hand
sides to all fight-hand sides, obtaining that at all times At < Bi + ~ []

Note, incidentally, that/~ plays a limited role in the protocol (and proof). As
long as At and Bt are initially 6 units apart, the protocol ensures that they continue
to be that far apart.

Corollary 4.1 Using the demarcation protocol, we ensure that A < B + ~ at all
times.

Proof." The line in change_limit that checks LIMIT_BEYOND(X,o-) ensures that
B >_ Bt and A <_ At. Then, by Theorem 4.1, the result follows. []

Corollary 4.2 Suppose that At ° = B~ + t~, that all update activity stops, and that all
messages have been delivered. Then At = Bt + ~ (note equality).

Proof" Same as the proof for Theorem 4.1 except that after all messages are delivered,

4.2 Policies

Z V/A = Z V/Band ~ U / B = ~ U/A
i<kl i_<k3 i<k4 i<k2

[]

The policies associated with the demarcation protocol specify when to initiate limit
changes, how to compute new limits, and what to do in case a transaction tries to
change the data value beyond its limit. We describe here the framework for such
policies, and present some choices for them. However, the reader should bear in
mind that other policies exist.

We begin by explaining how a transaction will actually perform changes on the
data items. To change a value, a transaction will use a system call chartge_value(X, 0),
where X is the data item and 0 is the amount (positive or negative) to change.
Within this call, we will have invocations of three policies. The first will be triggered
whenever the change would exceed the limit. The second will be fired up when the
final value gets too "close" to the limit. The last one will be triggered if the final
value gets too "far" from the limit. These policies are implemented by procedures

VLDB Journal 3 (3) Barbara-MiUa: The Demarcation Protocol 335

associated with the constraint that we are enforcing. Since a data value may be
involved with more than one constraint (and thus, have more than one limit), we
will have to test the limits on a per constraint basis. We will denote the constraints
by the symbol if j, where 1 < j < m and m is the number of constraints. Up
to this point, we have only discussed the constraint A < B + 6, but we are now
generalizing to emphasize that the policies are constraint dependent.

Before presenting the change_value procedure, we introduce the following
predicate, for the case ~ j with the constraint A < B + 6. (A generalization is
presented in Section 6.)

VALUE_BEYOND (X,0) = i f (X=A andA + 0 > Az)

or(X = B and B + 0 < Bt)
then TRUE otherwise FALSE

This predicate is analogous to LIMIT_BEYOND, in this case checking whether a
change would violate the limit constraint.

The system calls for changing a data value as follows. Again, X refers to the
variable being changed (A or B is our sample constraint). The limit for X under
constraint ~ j is Xzj. Parameter Tcode is a pointer to the code that runs the calling
transaction and is explained below. (Note that the procedure below is valid for any
constraint, not just our sample.)

change_value (x,O,Teode)
for each constraint ~ j (1 < j < rn) in which X is involved do

{ if ~j. VALUE_BEYOND (X,0) then
{ Fire up process ~ j . policyl(X,O,Tcoae) at N(X)
abort calling transaction; }

if IX + 0 -Xtj[< Oj.e then
Fire up process ~j, policy2(X,O,Tcoae) at N(J0;

if IX + O-- Xtj[> ~j.fl then
Fire up process ¢j. policy3(X,O,Tcod~) at N(X) }

X~-- -X+O.

The procedures ~j.policyl, ~j.policy2, and ~j.policy3 are associated with the
constraint ~ j . The first policy is invoked when a change exceeds one of the limits.
In some cases policy1 may be null, but in other cases it may be important to initiate
some action, such as trying to increase the limit. The code pointer parameter
Tcode is useful for restarting the transaction once the limit has been changed. An
alternative would be to move the "abort transaction" command 'in change_value
into policyl. This way, policyl could choose between aborting the transaction or
simply delaying it until the limit has been successfully changed. Incidentally, notice
that if the abort option is taken, there is a potential starvation problem. That is, by
the time an aborted transaction T1 is rerun, the slack generated by its limit change

336

request may have been used up by another transaction that needed it. If this is a
problem, the system can "reserve" the slack generated by T 1 for its exclusive use.

The second procedure deals with the case where the value is getting close to the
limit; close is defined by the constraint-specific constant @j.e. It may be desirable
at this point to initiate a change in limits. For instance, if a military base is running
low on planes, it may be a good idea to renegotiate its limits with the other base.
The third procedure handles the case in which the value is getting too far away
from the limit, as defined by constant ~j.fl. In our example, if a base has too
many planes, it may wish to not i~ the other base to arrange new limits.

A fourth policy is needed to cover the case where the change_ l imi t procedure
encounters a change that exceeds the data value. In Section 4.1, we opted for
aborting the change in general, but we can have a policy that decides what action is
to be taken. The procedure (@j.policy4) can be invoked when the LIMIT_BEYOND
check in change_ l imi t detects a violation. Due to space limitation we will not
present the modified change_l imi t procedure here; a more general version is
presented in Section 6.

The policies must also implement some form of load control. For example,
say the system has reached a point where A = At and B = Bi. Transactions that
attempt to increase A will repeatedly try to increase At by sending a message to
N(B) to increase BI. Since Bl cannot be raised, all these attempts will fail. Instead
of wasting N(B)'s time N(A) may remember how many times it has attempted to
change the limits, and thus decide to wait for a given period of time before trying
again.

Finally, there is the issue of how to compute the limits. A formula should be
agreed upon to compute the new values when needed. We illustrate one possible
formula for splitting the available slack, for the constraint A _< B + 3. (A
generalization is presented later.)

A~ = A + (B - A + 3)k

Bl = Al - 3 (1)

Equation 1 is derived by computing the slack between A and B, and by giving a
fraction k of it to variable A as the "room to mow~ up." The remaining 1 -- k
of the slack is given to variable B. By setting up k, one can tune the system to
favor or constrain one of the two variables. By setting k = 0.5, one divides the
interval evenly. Notice, however, that computing the new limits by using Equation 1
requires information about both variables A and B, information that neither of the
nodes has. However, we can design policy2 and policy3 to overcome this problem
as follows:

j.policy2(X, O,Tcode)
send message to N(Y) node, requesting it to perlbrm ~j.split_slack(J 0

• j.policy3(X, O,Tcode)

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 337

Figure 2. Initial scenario

send message to N(X) node, requesting it to perform ~j.split_slack(X)
~ j.split_slack(X)

local variable is Y; value of remote variable is parameter X,'
compute new limits, y~ew and)t,~ ew using Equation 1 and X,Y values.

• l j ,

let a = y ~ e w _ Yl3;

/f SAFE(Y,o') then invoke ej.change_limit(Y,a)
else send message to N(X) node, requesting it to perform ej.split_slack(Y)

Notice that we prefixed the function split_slack with the constraint identification ~ j .
In general, the way the slack is split will depend on the specific constraint. (The
generalization of Equation 1 is given in Section 6.) It may be desirable to include a
timestamp in a split_slack message, so that the receiving node may discard messages
that took "too long" in transit and represent stale data. Also note that we ignored
load control issues in these policies.

To illustrate how limit changing and slack splitting work, consider the following
example. Assume that we are using the single constraint A ~ B + 6 so that all our
constraints and policies refer to it. Initially A = 0, B = 20 with ~ = 10, ~ = 20,
and e = 2. The limits have been set to At = 15 and B = 5, assuming that we are
using k = 1/2. Figure 2 shows the initial scenario.

Now assume that a transaction calls chaage va lue at N(B) to update B to 30.
(Notice that this update is allowed since B > BI.) Since B -- Bt > /~, the request
to change limits is initiated by N(B), by triggering policy3. A message is sent to
N(A), requesting it to perform s p l i t s lack(B = 30). Using Equation 1, node
N(A) computes the new limits, obtaining a value of 20 for At. (The slack is 30 --
0 + 10 = 40; half of this added to A to give the desired new limit.) To obtain At
= 20, N(A) must add 5 to the current limit; since this is an unsafe increment, it
does not perform the change. Instead, it sends a message to N(B), requesting it to
perform s p l i t s lack(A = 0). Node N(B) will compute the same limits, and this
time the change in B l will be performed there, updating it to 10. Node N(B) will

338

send a message to N(A), requesting accept_change(A,5). Finally N(A) will raise
At to 20. This example illustrates the case where s p l i t _ s l a c k is called twice. In
other cases, s p l i t _ s l a c k is only called once (e.g., from the initial scenario, A is
updated to 15).

Now consider a scenario with concurrent updates. Starting with the values of
Figure 2, assume that both N(A) and N(B) complete transactions. The transaction
at N(A) updates A to 13, while the one at N(B) updates B to 5. Both nodes
send their new values to the other node, since both want to change their limits.
Upon receipt of the new value B = 5 at N(A), the limit At is computed to be
14. Therefore, the change is made and a message ~is sent to N(B), requesting it to
perform accept_change(B,-1). In the meantime, N(B) processes the first message
from N(A), computing a desired new limit B~ ew of 4. Since this change is not
safe, a message is sent to N(A), requesting that the change is made there first.
Next, each node receives the second message generated by its partner. When
the accep'e_change(B,-1) arrives at N(B), B is updated to 4. When the second
s p l i t _ s l a c k (B = 5) message arrives at N(A), it is ignored. (In Equation 1, A =
13, B = 5 implies that At should be 14, but that is already the value of the limit,
so nothing is done.) The final values are thus At = 14, Bt = 4, which evenly split
the slack. Notice how the limits converge to the correct values, without any tight
coordination. Each node still makes decisions autonomously.

In general, it is difficult to prove formal properties for the policies, first because
they can be arbitrary programs, and second because we purposely do not wish to
guarantee any properties that may hurt autonomy. For instance, for slack splitting,
one may be tempted to prove that the selected limits are indeed the ones that split
the current slack. However, there is no such thing as the "current slack," because
the nodes may autonomously change A and B at any time (within limits). To enforce
such a property, we would have to restrict updates in one way or another, which
is clearly undesirable.

In the sample of slack splitting policies, we simply assure that the value received
in a split_slack message is current, and act accordingly. If indeed it is current,
then the slack is split properly; if not, the selected limits will be out of date. But
remember that no matter what the policies do, the underlying constraints are always
guaranteed by the demarcation protocol.

In closing this section, we clarify two subtle points. One is that there are certain
global transactions that cannot be run as a sequence of local transactions, with the
help of the demarcation protocol. To illustrate, cousider the constraint A + B >
100 with the values A = 50 and B = 60. We cannot run the transaction

Ti : A ~-'- A -- 50

B ~--B + 50

as a sequence of two local transactions, since this would temporarily invalidate the
constraint. Global transactions that must temporarily invalidate constraints need
to be run with a locking protocol (which can be added on top of the demarcation

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 339

protocol.) Incidentally, note that if we reverse the order of the two steps in T1,
then it does not violate the constraints and no locking is needed.

The second point relates to the checks that transactions must perform. In
general, a transaction must preserve the consistency of the database. Thus, if T1
is going to modify A in our example, it should check that the constraint A + B
> 100 is preserved. However, with the demarcation protocol, enforcement of the
constraint is handled by the system, so the transaction no longer needs to check
if its update may violate the constraint. If T1 attempts to violate the constraint, it
will be aborted.

5. Analytical Evaluation

As discussed in the introduction, the main advantage of the demarcation protocol
is the added autonomy and fault tolerance that it provides. However, a second
advantage may be improved performance during normal operation, because for
some transactions (hopefully the majority) no communication between nodes is
needed for commit. In this section, we present a comparative performance analysis
of the demarcation protocol versus the standard two-phase commit protocol. The
protocols will be evaluated with respect to throughput and response time.

Analyzing the performance of a transaction processing system, under either
the demarcation or the two-phase commit protocol, is very difficult. Predicting
performance depends on many unknown parameters and issues: How many conflicts
will there be among transactions? How expensive is it to get a lock or check a
limit? How often will limits have to be changed? Given the complexity of these
issues, we select two simple, but key scenarios: One where there are no conflicts
and we can evaluate the maximum system throughput, and one where there is a
single remote conflict. We believe these two scenarios will be the most common
and, thus, it will be instructive to study performance in those cases.

The analysis assumes a system with two nodes, each one holding a portion of
the database. In the first scenario, no conflicts arise. That is, in the demarcation
protocol, all transactions are able to run to completion, without triggering any
change of limits. In the two-phase commit protocol, there are no transaction blocks
due to lock contention. This extreme case maximizes throughput for both protocols;
therefore we use that metric for comparison. In the second scenario every transaction
encounters a conflict when it is run for the first time. In the two-phase commit
protocol, the transaction waits for a remote lock before it can proceed. In the
demarcation protocol, the predicate VALUE_BEYOND is TRUE when the transaction
is submitted for the first time. The transaction is aborted, and a change of limits
is triggered. After the limits are changed, the transaction is rescheduled and run
to completion. In this case, we compute the response time for a transaction under
both protocols.

Table 1 presents the parameters used in the analysis. The second column explains
the meaning of each symbol. To illustrate the performance gains of the demarcation

340

Table 1. Parameters

Parameter Meaning Case 1 Case 2

t$

tl

tel
t r
t~

tm
td
tch
tz

context switch

request locks

check limits

running time

release locks

send/receive message

message delay

change limits

scheduling delay

100

100

300

1,000

50

1,000

100,000

300

10,000

Times in microseconds

100

100

300

100,000

50

10,000

100,000

300

10,000

protocol, we consider two "representative" parameter settings, given in columns 3
and 4. There are obviously a great many possible settings, and by selecting only
two of them we are leaving many out. However, to v~[sualize the performance gains,
we think it is useful to study at least two concrete settings at opposite ends of the
transaction cost spectrum. The first setting represents a system with lightweight
transactions and low cost for sending a message. The second system represents a
system with larger transactions and high message costs (i.e., a more conventional
transaction processing system). The only parameter,,; that change in the two cases
are the running time and the time to send/receive a message. All the values are in
microseconds.

In the first scenario (no conflicts), a transaction running under the demarcation
protocol arrives at the node and is scheduled for processing. Before the transaction
starts, a request message is received (tin), and a context switch takes place (ts).
Then the transaction requests local locks (tt), runs (tT), and the system checks limits
(ted). Since there are no conflicts, limits do not have to change, so the locks are
released (tr) and the transaction commits, sending the answer back to the user (tra).
Therefore, the total CPU resources consumed by a transaction in this case are:

t~c = 2tin "q- ts .4_ tl -t- tT -4- tel -'b tr

For the same transaction running under two-phase commit, the timing is as follows.
First a message is received (tin), a context switch is done (ts), the locks are requested
(tt), and then a message is sent to the other node (tin) to request remote locks. At
this point, this node switches to run another transaction while waiting for the answer
to the lock request. (We assume an infinite supply of transactions to maximize
throughput.) At the other node, the transaction produces a context switch (ts),
requests the remote locks (tt), and a message is sent back acknowledging the locks

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 341

Table 2. Throughput values for Scenario 1

Protocol Case 1 Case 2

T~c 563 Trans/sec 16.6 Trans/sec

Tip c 308 Trans/sec 13.3 Trans/sec

(tin). When this message arrives, the first node can switch back to the original
transaction (ts), run it (tT), release the locks (tr), and commit sending a message
to the other node (tin) which, in turn, releases the locks (tr). Finally, a message to
the user is sent (tm). The CPU resources consumed atboth nodes by the transaction
are:

t~p c = 3ts + 2tt + 5tin + tT + 2tr

In analyzing the throughput, we must notice that since we have two nodes, we
have two units of CPU resources available in one second. The respective throughputs
a r e :

2 2
Tile = t~--~ and T~p c = t21p c

From the preceding equations, one can immediately establish that Tic > T21pc if
the following equation holds:

tel < tl + 3tin + tr + 2ts

That is, the demarcation protocol throughput will be greater than the one for
two-phase commit if the cost of checking limits is less than the sum of the costs on
the right hand side. We believe that, in general, this will be true, since checking
limits is a simple operation whose cost should be comparable to that of locking an
item. To see the gains for our two-parameter settings, we substituted the values in
the respective equations. For the values shown in Table 1, the throughput values
are shown in Table 2. As can be seen, the performance of the demarcation protocol
is significantly better; 83% higher throughput in Case 1, 25% in Case 2. In Case
2, gains are smaller because the transaction processing cost tT (equal for both
protocols), is much higher.

Let us turn our attention to the second scenario and compare the response
time for both protocols. Recall that in this scenario every transaction encounters a
conflict when it is run for the first time. Under the demarcation protocol a request
message is received (tin), a context switch takes place (ts), locks are requested (tt),
the transaction is run (tT), and the limits checked (tel). Since the value goes beyond
the limit, the transaction is aborted, the locks released (tr), and a message is sent
to the other node, requesting a change of limits (tin). This message takes ta time
to arrive. When it arrives, there is a scheduling delay tx, until the processor can

342

Table 3. Response times for Scenario 2

Protocol Case 1 Case 2

t~c 228 462

t22pc 340 556

Times in milliseconds.

service the request. Then a context switch takes p]Lace (ts), the limits are changed
(tch), and a message acknowledging the changes is sent back (tin). This message
arrives at the first node ta units later, and there is a scheduling delay (tx). Finally,
after a context switch (ts), the limits are changed (tch), and the transaction can
be resubmitted. Resubmitting the transaction takes again ts + tt + tT + tel + tr.
Finally, a message is sent to the user with the answer tin. Thus, the total response
time for the transaction is:

t~c = 4tm + 4ts + 2tl + 2tT + 2tel + 2tr + 2td + 2tx + 2tch

For two-phase commit, we can use part of the analysis of Case 1. To the value
tip c we should add 2td (i.e., two message delays), and 2tx (i.e., the scheduling delay
at both nodes when the messages arrive). (We did not take this into account earlier
because we were computing throughput, not response time.) This yields tn, the
response time with no conflicts. But, since we are assuming that the remote locks
will be taken, the transaction will wait until the locks are released. We assume that
the transaction will wait on the average of half of the total running time of the
transaction holding the locks (i.e., half of tn). Therefore, the total response time
for the transaction is:

= ~ '~ t~, c (thin + 2td + ,Jz)

Table 3 compares the response times for the two protocols and the two cases
(values in milliseconds). Even in this conflict scenario, the demarcation protocol
outperforms two-phase commit. In Case 1, the response time for the demarcation
protocol is 33% better than the one for two-phase commit. The difference is less
marked for setting 2, again since the dominating factor is the transaction length.
Even in this case, we get non-trivial improvement 1117%).

6. Generalizing the Protocol

In this section, we generalize the demarcation protocol to operate on an arbitrary
constraint of the form clA + c2B < 6, where Cl, c2 ~ 0. We also discuss how to
extend it to more than two data items.

We start by generalizing the predicates SAFE, LIMIT_BEYOND and VALUE_BEYOND
for the constraint ~ j : ClA + c2B < 6. As before, we use X to refer to either A

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 343

or B, and Xtj for its limit. We use the notation cxj to refer to the corresponding
constant in the constraint (either cl or c2).

(~].SAFE(X, ff) = if cxjff < 0 then TRUE otherwise FALSE.

For instance, for the constraint A < B + 5, if we wish to increase the limit Bt by
o > 0, the predicate SAFE would be TRUE.

~j.LIMIT_BEYOND(X, t7) = if (Xlj + iT-- X)CXj < 0
then TRUE otherwise FALSE.

For instance, for the constraint A <_ B + 5, the predicate is true if At + o < A.

ffPj.VALUE_BEYOND(X,O) = if (X + O-- Xij)cxj > 0
then TRUE otherwise FALSE.

For the constraint A < B + (~, the predicate is true if A + /9 > At.
Procedure change_value (Section 4.2) is unchanged, except that it uses the

new definition of VALUE_BEYOND given here. Procedure accept change (Section
4.1) is simply generalized for an arbitrary constraint ~ j (i.e., Yt is replaced by Ytj .)
Procedure change_limit must be modified as follows. In the original procedure
(Section 4.1), when one node changed its limit by o, the second one would perform
a change of the same value later. For the general constraint, however, the sign
of the second change depends on the constants Cl and c2. For example, for the
constraint A + B < 5, a positive change in A's limit must be followed by a negative
change in B's limit. In the procedure below, we also incorporate policy4 (Section
4.2).

~j.change_limit(X, 0")
i f ~j.SAFE(X, tT) is FALSE then

Send message to N(Y), requesting it to perform
~ j.cha~ge_mimi t(g,-sign(%)sign(c%)~r)

else if ~j.LIMIT_BEYOND(X, o') is TRUE then
{ fire up ~j.policy4(X, tr);
abort this change }

else
{ Xt~ ~ Xz~ + o;
send message to N(Y), requesting it to perform

• j.accept_change(Y,-sign(cxi)sign(c2j)o") }.

For splitting the slack in the constraint ClA + c2B < 5, Cl,C2 5~ O, we generalize
Equation 1 as follows:

Al = A + (5 - c l A - c2B) k Bz
C1

B - (5 - c l A - c 2 B) k

C2
(2)

344

Equation 1 can be derived easily from clA + c2B < 6, noticing that the slack is
equal to (5-- clA -- c2B.

To conclude this section, let us consider constraints of more than two variables.
First, observe that if only two nodes are involved, nothing is different. For example,
if we have the constraint A + B + C _< 6, and the items A, B are stored in one
node, while C is stored at another, then A and B can be treated as a single variable
as far as the demarcation protocol is concerned. That is, it would be enough to
have two limits: ABt and Ct, and to follow the protocol.

If there are three or more nodes involved, then whatever node performs a safe
operation must indicate what other node gets the amount. For unsafe operations,
a node must select a particular node for its request to change limits. For instance,
consider the inequalityA + B _< C + (~. Say N(A) wants to raise its limit (an unsafe
operation). N(A) has a choice: it may ask N(B) to lower its limit, or it may ask
N(C) to increase its limit. Suppose that N(C) is selected. If N(C) does raise CI, a
message to perform accept . .change is sent only to N(A), and only it consumes the
available slack. Now suppose that both N(A) and N(B) want to raise their limits
concurrently, and send requests to N(C). N(C) should indicate to each the amount
of their changes. For example, if N(C) raises Ct by 10, it may indicate to N(A) that
At can be raised by 6, and to N(B) that Bt can be raised by 4.

The generalizations we have illustrated here for more than two sites are straight-
forward. However, the generalization of some of the policies may not be. In
particular, to generalize a s p l i t _ s l a c k policy (Section 4) we need to get three
or more nodes that may be concurrently updating their variables to agree on a
slack distribution. In this case, a centralized policy (where one site decides on slack
distributions) may be easier to implement.

7. Other Constraints

In the introduction we argued that internode constraints tend to be simple. So
far we have studied one class of simple constraints: arithmetic inequalities. In this
section, we illustrate how the demarcation protocol and its policies can be used to
manage other types of simple constraints. The key idea is to convert these other
constraints into arithmetic inequalities.

7.1 Referential Integrity

Consider a referential constraint of the form

Exist(A,a) '., Exist(B,b) (3)
where A,B are data objects, a,b are nodes, and Erist(A,a) is a predicate that is
TRUE if object A is stored in node a. Exist(B,b) is TRUE if B is at node b.

To translate this constraint into an arithmetic one, we can define the following
function

f(X, x) : if Ex/st(X, x)/s TRUE then 1 otherwiseO (4)

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 345

where X stands for either A or B, and x corresponds to either node a or b. With
this equation, the referential constraint becomes

f(A,a) < f(B,b) (5)

This constraint can now be enforced via the demarcation protocol, as long as we
interpret arithmetic an operation on f(X, x) to be the appropriate create or delete
operation. That is, changing f(A,a) from 1 to 0 means that A is deleted at a;
changing it from 0 to 1 means that A is created. We must also define policies
that implement the correct semantics for this case. One possibility is to define the
following policies. (Policies 2 and 3 are not necessary in this case.)

~ j .policy l (f(X,x),6 ,Tcode)
*** An invalid change to f(X,x) has been attempted;
first change limit and then try transaction later ***

~j .change_ limit (/(X, X),6);
resubmit later Tcode.

~ j.policy4(f(X,x),6)
* * * An unsafe limit change has been attempted ***
~ j . change _value (f(X,x),6, null)
resubmit ~j.chartge_limit(f(X,x), 6).

To illustrate, assume thatA and B are stored in nodes a and b, respectively. Thus,
f(A,a) = 1, and f(B,b) = 1. Equation 5 must be enforced at all times. Therefore,
the system establishes two limits f(A,a)l andf(B,b)t, such that at all times f(A,a) <
f(A,a)l, f(B,b) < f(B,b)b and f(A,a)t < f(B,b)l. In this initial scenario, these limits
can be f(A,a)l = f(B,b)l = 1. The safe operations are for a to decrease f(A,a)l, and
for b to increase to f(B,b)l.

Now assume that there is a transaction T that wants to delete B at b. The
transaction will try to changef(B,b) by -1 to 0. However, since the limitf(B,b)l = 1,
the transaction will be aborted and policy 1 will be fired. This policy will force the
change of -1 on limit f(B,b)l, invoking change_limit(f(B,b),-1). This is not a safe
operation for b, so a message will be sent to a, requesting it to change f(A,a) by -1
to 0. In turn, a will invoke chaaage_limit(f(A,a),-1). Since the desired new limit
f(A,a)l = 0 violates the constraint 1 = f(A,a) < f(A,a)l, policy4 will be triggered
(and the limit change aborted). This policy will force the change in f(A,a) by -1
to 0, deleting A from a. The policy also resubmits the change in the limit f(A,a)l
to 0. This time, the change will be successful. As a consequence of the change, a
message will sent to b, allowing it to changef(B,b)t = 0. When T is resubmitted and
attempts the deletion of B again, it will find that the new limit allows it, and will
proceed to delete B. Thus, the existential constraint is obeyed at all times. Note that
if T is resubmitted early, bcfore f(B,b)l has had a chance to change, unnecessary
(but not harmful) messages will be triggered. One way to avoid this is to have the
change in the limit f(B,b)l trigger the resubmission of the pending transaction.

346

While this may not be the most efficient way to enforce existential constraints,
we believe it is very useful to have a uniform strategy for handling a significant
fraction of all distributed constraints. Also, notice that we have assumed no failures
in this process. Since the protocol does not guarantee failure atomicity, it is possible
for transaction T to abort (because of a crash, for example) and never delete B on
site b, after the deletion of A on site a had been completed. This, however, does
not violate the constraint.

7.2 Key Constraints

Consider a relation R partitioned over sites S1, ..., Ss. Assume attribute K, over
domain D = { Vl, ..., Vn}, is a key for R. This key constraint indicates that if a tuple
with K value vi exists at site Sj, then that K value cannot exist for any other tuple,
at any site. Enforcing the constraint within each site (i.e., ensuring that locally there
are no duplicate keys) is simple. Here, we focus on enforcing it across sites.

To show how the demarcation protocol can be used in this case, we define the
function:

if value vi exists at site Sj then
e(i,j) = 1
else e(i,j) = O.

The key constraint is then equivalent to the following set of arithmetic constraints:

e(1,1) + e(1,2) + ... + e(1, s) < 1

e(n,1) + e(n,2) + ... + e(n,s) < 1

These constraints can be enforced by the demarcation protocol. Note that each
site will have n limits, one for each possible key value. If one of the limits at Sj,
say the one for value vi = 500, is set to 1, then Sj is free to add this key value
to R without consulting the other sites. If, on the other hand, the limit for vi is 0,
and site Sj wishes to insert this key value, then it must first negotiate for a limit
change. If some other site has its vi = 500 limit set to 1 and does not have that
value, then it can accede to the request. Otherwise, it does not and site Sj cannot
insert the 500 value. InitiaUy, the limits can be set to 1 at those sites that are likely
to want to insert those values.

Of course, keeping track of limits on a per domain value basis requires a lot
of bookkeeping. To make this practical we must somehow encode the limits. One
possibility is to use a bit vector to represent the limits. That is, a 1 in position i of
the limit vector at site Sj indicates that the limit for e(i,j) is one.

If the elements of domain D are ordered, then another encoding scheme is
possible. Each site Sj is assigned two bounds, bj,l and bj,u. The interpretation is that
for all domain values vi between the bounds (bj,t < vi < bj,u) the corresponding

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 347

limit is set to 1. For this to work, the ranges at different sites must not overlap.
That is, for all other sites k different than j, either bk,u < bj,l or bj,u < bk,t.

This technique is actually used in practice. For example, if a company hires
employees at two sites, then the first site may be assigned employee numbers 1
through 1,000 and the second numbers 1,001 through 2,000. The first site can then
insert new employees with numbers between 0 and 1,000. If it runs out of numbers,
it can ask the second site to "slide" its bounds. (Of course, for this to be practical
the second site has to start assigning numbers in a decreasing order, starting from
2,000.) As a variation, we may wish to allow sites to have multiple windows, so
that the first site can request numbers 3,001 through 4,000 (from a master site that
holds the rest of the key) after it inserts its first 1,000 employees.

As with existential constraints, the enforcement of key constraints needs to be
optimized beyond what the basic demarcation protocol provides (e.g., by managing
limits in groups bounded by bj,t and bj,u.) Our main point here is that key constraints
can also be managed within the general framework that the demarcation protocol
provides.

7.3 Copy Constraints

As stated in Section 1, approximate equality constraints of the form ~A -- B[< e
can be implemented via the two constraints A -- B < e and A -- B < e. Each
constraint can then be enforced by the demarcation protocol.

In this case, the policies for changing limits for the two constraints should be
coordinated. To illustrate, let us consider an example, ~1 - - n l _< 5, where A is
stored at N(A) and B is stored at N(B). For the first constraint, B - -A < 5, we
have limit A1 at N(A) and Bt at N(B). The conditions that must be satisfied are
A1 < A, B < Bt, and B1-- At ~ 5. Similarly, for the constraint A -- B < 5, we
have A2 > A (at N(A)), B >_ B2 (at N(B)), and A2-- B2 < 5.

Notice that at each site there is a window of allowable values. At N(A), the
value for A must be in the range A1 _< A _<A2, while at N(B) the range is B2 _<
B < B1. Let us assume that initially A = B = 10, and N(A) is given all the slack
(i.e., A1 = 5, A2 = 15, and Bt = B2 = 10. Figure 3 illustrates this scenario. In
this case, N(A) is free to vary A in the 5-15 window, while N(B) cannot change B
at all. This may make sense, for instance, if N(A) is the stock market, and N(B)
is a site that simply tracks the stock values. As the price of a particular stock A
fluctuates in the window 5-15, its remote copy, B, does not need to be updated.

Next assume that A increases to 14, triggering policy 3 (Section 4). Say N(A)
then requests an increment of 4 units in A2 (unsafe), so a message is sent to N(B),
requesting an increment of 4 in B2. At site N(B), it will be impossible to comply
because the new value of B2 (14) is larger than B. (Remember that the constraint
B2 _~ B _< Bt must be satisfied at N(B). The solution, of course, is to update B to
14, since it is supposed to be a copy of A. Thus, it makes sense that policy2 should
also trigger an update to B.

Figure 3. Initial scenario

348

"---_s(

Figure 4. Scenario after increments

AXN:19 IA f
However, site N(B) cannot update B to 14 because of the B1 constraint. Thus,

before B is updated, N(B) must request a limit change of B1 to 14. Since this is
an unsafe operation, a change in A1 must first be requested. Of course, this extra
round of negotiation could be avoided if N(A) had changed A1 in the beginning.

In summary, here is how the change in limits should proceed when A is updated
to 14 (policy2). Site N(A) should unilaterally increase A1 by 4 (to 14), and send a
message to N(B) to increase B1 by 4; update B to 14; and increase B2 by 4. When
N(B) replies, site N(A) can increment A2 by 4. Figure 4 shows the resulting state.
Thus, the policies for both constraints need to be coordinated. Instead of moving
limits individually, they should be moved as pairs (i.e., the window defined by h l
and A2 should be slid.)

Note that the demarcation protocol may also handle a copy constraint based
on versions (Section 1). The basic idea is to associate with each object a version
number or counter that is incremented at each time period. Constraints (e.g., "the
copy of O at a site must be within two versions of the master copy") can be translated
into arithmetic inequalities that can be managed via the demarcation protocol.

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 349

A limitation of the demarcation protocol for managing approximate copies is
that large changes lead to repeated negotiations. For instance, returning to our ~4
--B[<_ 5 example, say that initiallyA = B = 10, and we want to changeA to 100.
The only way this can be achieved without violating the constraint is to change A
to 15, then change B to 15 and adjust the limits, then move B to 20, 25, 30, and so
on. In this case it may be preferable to use a blocking strategy: First lock A and
B, then change A and B to 100 (violating the constraint momentarily), and then
unlock A and B.

Another solution is offered by quasi-copies (Alonso et al., 1990), as discussed
in Section 2. With this method, only one of the copies can be modified; the other
simply tracks the master copy. Furthermore, the system is given a time window in
which to enforce constraints. Thus, the constraint "copies A and B should be within
5 units of each other" is really the constraint

1. Either A and B are within 5 units;
2. the value B is a copy of A that existed at most T time units ago;
3. site N(B) has failed.

Thus, if the value of master copyA fluctuates close to 10 (within 5 units; assuming B
= 10), no update to B is necessary. I fA changes to 100, the system has T time units
to propagate the update. If N(B) fails, then A can be changed without notifying B.

In summary, quasi-copies provide a more flexible type of constraint that may
be temporarily violated. The demarcation protocol, on the other hand, provides an
absolute guarantee that the constraint will be satisfied. It also allows all participants
(not just a master site) to modify the variables involved.

8. Serializability and the Demarcation Protocol

In Section 1 we stated that the demarcation protocol does not guarantee global
serializable schedules, whether conflict or view serializable. It is clear that the
demarcation protocol gives transactions much more flexibility than conventional
guaranteeing protocols. At the same time, in the examples presented so far, one
does not see any of the anomalies associated with nonserializable schedules (i.e.,
all final database states that have been shown could have been obtained by some
serial schedule.) So, does the demarcation protocol guarantee serializability after
all?

For our discussion, let use the constraint A + B < 100, with A located at site
N(A) and B at N(B). Let us assume that limits have been set at each site. Let us
look first at an execution that involves no limit changes. In this case, it is easy to
see that executions are indeed serializable. Transactions at N(A) will only read and
write data (A and At) locally; the ones at N(B) will only access local data. Hence,
there are no conflicts, and schedules are serializable.

The key to achieving serializability without distributed locking (or the equivalent)
is to "partition" the original constraint into the constraints A < At, B ~ Bt and At

350

Figure 5. Initial scenario before limit changes

+ Bl < 100. With the original constraint, a transaction that wanted to modify A
had to access data at both sites; now it only has to access data at N(A).

Of course, changing the limits involves actions at both sites and this is where
we can lose serializability. Consider the following example. The limits are set to At
= 40 and Bt = 60. An update at N(A) brings A to 36, triggering policy2 because A
is now too close to its limit. Call this transaction T1; it will first ask for a decrement
to the Bt limit (at N(B)), and then it will add the same amount to At at N(A). At
the same time, an update brings B to 50, triggering another instance of policy2.
Call this second transaction T2. The situation at this time is illustrated in Figure 5.

When T1 arrives at N(B), requesting a limit decrease, N(B) decides to decrease
by half of its slack. That is, the local slack is Bt-- B = 60 -- 50 = 10, so N(B)
decrements Bt by 5. A message is sent to N(A), instructing it to increment its At
limit by 5. Concurrently, T2 is requesting a limit change at N(A), where the same
"give half of the slack" policy is in use. The slack isAt--A = 40 -- 36 = 4, soAl is
decremented by 2. A message is sent to N(B) to increment Bt by 2. The resulting
final state isAz = 38 + 5 = 43, and Bt = 55 + 2 = 57.

This state cannot be obtained by a serial execution of Tt and T2. If T1 runs
first, N(B) yields 5 points and the limits are At = 45, Bt = 55. If T2 then follows,
N(A) yields half of its current slack (half of 9), resulting in At = 40.5, Bt = 59.5.
If T1 and T2 run in reverse serial order, the result is At = 44, Bt = 56. Hence,
the execution of the two concurrent limit changes is not serializable.

What makes the changes nonserializable is the "give half of the slack" policy,
which does no commute with other changes. If we had used a commutative policy
(e.g., "always give 1 point"), then the resulting schedule would be (view) serializable
(Bernstein et al., 1987). But in general, limit negotiations can lead to nonserializable
schedules.

Finally, we point out that nonserializable schedules can also arise if user trans-
actions (as opposed to limit negotiation transactions) access data at more than one
site. For example, in our same example, say T1 reads A, commits at N(A), then

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 351

updates B, and commits at N(B). Concurrently, assume T2 reads B, commits at
N(B), then updates A and commits at N(A). At N(A) we have dependency T1
T2, while at N(B) we have T2 ~ T1 (i.e., a nonserializable schedule). Note that in
spite of this, the constraintA + B < 100 continues to hold. If multi-site transactions
such as T1 and T2 are only concerned about the demarcation constraints, then they
can operate at nodes freely, without two-phase commit. On the other hand, if
global serializability is required (e.g., when accessing objects whose constraints are
unknown), then multi-site transactions must follow a two-phase commit protocol or
the equivalent (Breitbart et al., 1992).

9. Conclusions

We have presented a strategy for enforcing linear arithmetic inequalities in distributed
databases. Limits are defined for each of the participating variables; a node is free
to update a variable as long as it stays within its bounds. The demarcation protocol
is used to change the limits in a dynamic fashion. We also showed how this
strategy can be used for other types of constraints, such as referential constraints
and approximate equalities.

Intuitively, we may view a system that uses the demarcation protocol as a
"spring." When a constraint has a lot of slack, limits will not be tight, and many
transactions will be able to perform their updates locally. This corresponds to a
loose spring (the first scenario considered in Section 5). As the slack is reduced,
the spring is compressed, and more and more transactions will hit against the limit.
The transactions will be more expensive to run, as they will require negotiations
with the other node to change limits. When there is no slack (e.g., A = Az and B
= Bz), the spring is compressed the most. Even at this point, the system may be
more efficient than a conventional one (which requires two-phase commit for every
transaction), because transactions that move a variable away from its limit may be
done locally.

The demarcation protocol is limited because it only applies to linear arithmetic
constraints. However, we have argued that a very large number of distributed
constraints fall into this simple category. As a matter of fact, we have difficulty
envisioning more complex constraints that would arise in a practical distributed
system.

There are two ways to implement the demarcation protocol in a database system.
One is to use an existing system, and to provide the user with a library of procedures
(e.g., change_value), sample policies (e.g., for splitting slack), and definitions (e.g.,
for limit variables). The user's code could then call these procedures to update
values or change limits. The disadvantage of this approach is that a user could
circumvent the rules (e.g., by updating a constraint variable directly and not through
change_value). The other option is to incorporate the procedures into the system
itself. The database administrator (or possibly an authorized user) would define the
constraints and policies and give them to the system. The variables involved would

352

be tagged. When a transaction updated one of these variables, it would trigger
the necessary procedures. With either one of these approaches, there are clearly
many issues that still need to be resolved, such as language used for defining the
constraints, load-control strategies, and dealing with contradictory constraints.

Acknowledgments

We would like to thank Luis Cova and Ken Salem for helpful discussions, and
Naftaly Minsky and Patrick O'Neil for pointing out some useful references. We
would also like to thank the referees for many useful suggestions.

References
Alonso, R., Barbarfi, D., and Garcia-Molina, H. Data caching issues in an infor-

mation retrieval system. ACM Transactions on Database Systems, 15(3):359-384,
1990.

Breitbart, Y., Garcia-Molina, H., and Silberschatz, A. Overview of multidatabase
transaction management. VLDB Journal, 2(2):181-239, 1992.

Bernstein, EA., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovely
in Database Systems. Reading, MA: Addison-Wesley, 1987.

Carvalho, O.S.E and Roucariol, G. On the distribution of an assertion. Proceedings
of the ACM-SIGOPS Symposium on Principles of Distributed Computing Ottawa,
Canada, 1982.

Date, C.J. An Introduction to Database Systems. Reading, MA: Addison-Wesley,
1983.

Davidson, S.B. An optimistic protocol for partitioned distributed database sytems.
Ph.D. Dissertation, Princeton University. October, 1982.

Du, W and Elmagarmid, A. Quasi-serializability: A correctness criterion for global
concurrency control in InterBase. Proceedings of the Fifteenth International Con-
ference on l.'~ry Large Data Bases, Amsterdam, 1989.

Fernfindez, M.E and Zdonik, S.B. Transaction groups: A model for controlling
cooperative work. Proceedings of the Third International Workshop on Persistent
Object Systems. Queensland, Australia, 1989.

Fischer, J.M., Griffeth, N.D., and Lynch, N.A. Global states of a distributed system.
IEEE transactions on Software Engineering 8(3):1!)8-202, 1982.

Garcia-Molina, H. Using semantic knowledge for transaction processing in a dis-
tributed database. ACM Transactions on Database Systems, 8(2):186-213, 1983.

Hammer, M.M. and Shipman, D.W The reliability mechanisms of SDD-i: A system
for distributed databases. Computer Corporation of America Technical Report
CCA-80-04, 1980.

Korth, H.E and Speegle, G.D. Formal model of correctness without serializability.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Chicago, IL, 1988.

VLDB Journal 3 (3) Barbara-Milla: The Demarcation Protocol 353

Krishnakumar, N. and Bernstein, A.J. High throughput escrow algorithms for repli-
cated databases. Proceedings of the Eighteenth International Conference on l.~ry
Large Data Bases, Vancouver, BC, 1992.

Kumar, A. and Stonebraker, M. Semantics-based transaction management tech-
niques for replicated data. Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, Chicago, IL, 1988.

Lynch, N.A., Blaustein, B., and Siegel, M. Correctness conditions for highly available
replicated data. Proceedings of the Fifth AnnuaI ACM Symposium on the Principles
of Distributed Systems, Calgary, Canada, 1986.

O'Neil, E The escrow transactional method. ACM Transactions on Database Systems,
11(4):405-430, 1986.

Pu, C. and Left, A. Replica control in distributed systems: An asynchronous ap-
proach. Proceedings of the ACM SIGMOD International Conference on the Man-
agement of Data, Denver, CO, 1991.

Soparkar, N. and Silberschatz, A. Data-value partitioning and virtual messages.
Proceedings of the Conference on the Principles of Database Systems, Nashville, TN,
1990.

