
VLDB Journal, 3, 289-323 (1994), Tadao Ichikawa, Editor

© VLDB

289

Efficiently Instantiating View-Objects From
Remote Relational Databases

Byung Suk Lee and Gio Wiederhold

Received June 13, 1991; revised version received, June 13, 1992; accepted June 17, 1993.

Abstract. View-objects are complex objects that are instantiated by delivering a
query to a database and converting the query result into a nested structure. In
relational databases, query results are conventionally retrieved as a single fiat re-
lation, which contains duplicate subtuples in its composite tuples. These duplicate
subtuples increase the amount of data to be handled and thus degrade perfor-
mance. In this article, we describe two new methods that retrieve a query result
in structures other than a single flat relation. One method retrieves a set of rela-
tion fragments, and the other retrieves a single-nested relation. We first describe
their algorithms and cost models, and then present the cost comparison results in
a client-server architecture with a relational main memory database residing on a
server.

Key Words. Complex object, nested relation, relation fragments, query opti-
mization, client server.

1. Introduction

Relational databases are not sufficient to support non-traditional applications such
as engineering or office information systems. In these applications, users often want
to deal with information in a form more abstract than relations. An object, taking
the form of a user-defined aggregate data structure, is used to program languages
as an abstraction mechanism. Wiederhold (1986) noted that views provide a similar
abstraction in databases, and proposed to use a view-object as an "architectural tool"
for interfacing object-based programs and relational databases. Lee and Wiederhold
subsequently developed a system model (Lee, 1990; Lee and Wiederhold, 1994)
for embodying the view-object concepts. In the system model, a view is not just

Byung Suk Lee, Ph.D., is Assistant Professor, Graduate Programs in Software, University of St. Thomas, St.
Paul, MN 55105-1096 and Gio Wiederhold, Ph.D., is Professor, Computer Science Department, Stanford
University, Stanford, CA 94305.

290

a relational query, but it also contains a function---called the attribute mapping
functionhfor mapping between object attributes and relation attributes. The query
is used to materialize necessary data into a relation, and the function is used to
restructure the materialized relation into a nested relation (Abiteboul and Bidoit,
1984; Roth et al., 1988).

The view-object approach provides an effective mechanism for building complex
object-based applications on top of relational databases. Applications are built using
complex objects as structural units (Haskin and Lorie, 1982; Lorie and Plouffe, 1983;
Dittrich and Lorie, 1985; Wilkes et al., 1989; Barsalou and Wiederhold, 1990) and
benefit from the nonredundant storage of information in a nested structure (compared
with a flat non-nested structure). At the same time, relational databases provide
sharing and flexibility, the benefit from which increases as the size of databases
increases. Currently there are engineering design .applications (Law et al., 1990a,
1990b, 1991; Singh, 1990) and medical application.,; (Wiederhold et al., 1990) that
are being built at Stanford University as part of the PENGUIN project (Barsalou,
1990). Complex object-based applications run on a client workstation and cache
view-objects run from a relational database residing on a server.

There are three problems in the view-object architecture: (1) view update
ambiguity, (2) tuple loss, and (3) performance. Sometimes we update cached view-
objects and cannot update the underlying relations accordingly, because we have
lost information about normalized relation schema while performing joins for view
materialization. (Barsalou, 1990; Barsalou et al., 1991). Tuple losses occur for
dangling tuples in a view materialization. Frequently the semantics of view-objects
require that even a dangling tuple should be retrieved as the result of joins. The
authors introduced a left outer join and developed a mechanism for preventing
tuple losses (Lee, 1990; Lee and Wiederhold, 1994). The last, but not the least,
problem is the performance of view-object caching in the client-server architecture,
especially when the network communication overhead is significant. We address the
performance problem in this article.

Performance is influenced by three factors: (1) quelyprocessing on a server, (2)
transmission of the query result to a client, and (3) translation of the retrieved query
result into view-objects. We have seen other work for speeding up query processing,
such as a high performance server utilizing parallelization, and we do not pursue the
same work as in the PENGUIN project (Barsalou et al., 1990). Instead, we focus
on the other two performance factors--transmission and translation. The key idea
is to reduce the amount of redundant data that the system handles to instantiate
view-objects.

Since the advent of the relational database, the universal method of query
retrieval has been the singleflat relation (SFR). The SFR method has the advantage
of being able to apply the same relational query language uniformly on both base
relations and query results, but is no longer useful in the view-object architecture
because applications need a nested relation. A fiat relation contains redundant
duplicate subtuples inserted just to compose them into a "flat" relation. Their

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 291

numbers are in proportion to the cartesian products of join selectivities--rather
than carrying any additional information, they just bring on the overhead of handling
redundant data.

We present two alternatives to the SFR method. One retrieves a set of relation
fragments (RFs) and the other retrieves a single-nested relation (SNR). RFs are
materialized from base relations by reducing them with the selection, projection,
and join operations as specified in the query. RFs contain all information required
for restructuring them into an SNR. An SNR is a set of nested tuples in which an
attribute can define another relation---called a nested subrelation. We develop the
SFR, RF, and SNR methods and demonstrate that the RF and SNR methods are
far more efficient than the SFR method in terms of both time and memory space. 1

We assume that there are main memory databases 2 (Ammann et al., 1985;
Bitton, 1986) on both the client and server sides. The case of main memory
overflow is not considered. Note that the RF and SNR methods are less subject
to memory overflow than the SFR method because they carry less redundant data.
Here we emphasize that, while a main memory database is the environment that
benefits most from the new methods, disk storage database systems benefit almost
as well, according to sample case studies.

Following this introduction, we first provide a background framework that is
useful for understanding the rest of the article. We describe the SFR, RF, and
SNR methods in Section 3. In Section 4 we develop the cost models for the three
methods and compare their costs in Section 5. The conclusion follows in Section 6.

2. Background Framework

We review relevant portions of the system model and introduce a nesting format. A
full description of the model appears elsewhere (Lee, 1990; Lee and Wiederhold,
1994).

2.1 System Model

The system model has three elements: view-object types, views, and data. Figure
1 shows a schematic example of a view-object type and a view. A type defines the
structure of view-objects. A view contains a relational query and defines a mapping
between view-objects and relations. The data model uses the conventional relational
model (Codd, 1970).

1. There must be some price for this. We may have to use two query processing frameworks (one on a client
and one on a server) if we want to process view-objects further, because they are no longer flat relations.

2. A "main memory database" indicates that the entire database or an actively used subset of a database
fits within main memory at the same time. As high density main memory chips become available at a lower
cost, the number of applications running on main memory databases is increasing. According to Dill (1987),
"approximately 50-75% of all disk accesses occur on data stored on 2-3% of the disk media"

292

Figure 1. Example of system model components

(a) A view-object type: ('simple' denotes a simple attribute).
Type O
[Ao: simple,
Bo: [Do: simple, Eo: simple,
• . . Fo: [Ho: simple, Go: simple]],

Co: [Io: simple, Jo: simple]]

(b) Query part of a view:

• Query: (Each relation name is made up of its attribute names).
7rKADEHGIJ

(o'1KADtM tx~ 0"2 DGtEN I>O tY3HGP t>O or4AtlLtQ ~ o'5LJS)
D~OD GrOG AOA' L~OL

where/9 E { = , 5 , < , --<, > , --> }.

• Join tree (JT) of the query:

(c) Attribute mapping part of a view (OID denotes an object identifier).

K
I

A D
i

~ o l O o

E H G J

0 -tree

2.2 View-object Type Model

attribute mapping

. ~ . relation attributes
(projection set)

A view-object type is defined as a tuple of attributes where each attribute is either
a simple or complex attribute. A simple attribute has an atomic value or a set of
atomic values. It is either internal or external to the object. An internal attribute
has a primitive data type such as string or integer, while an external (or reference)
attribute has another object type as its data type. The value of an external attribute
is the identifier of a referenced object. A complex attribute defines an embedded
object or a set of embedded objects.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 293

We use value-oriented object identifiers (OIDs) (Khoshafian and Copeland,
1986; Abiteboul and KaneUakis, 1989) and retrieve them from the keys of relations. 3
Those relations providing OIDs are called pivot relations (Barsalou and Wiederhold,
1990; Barsalou et al., 1990; Law et al., 1991). An embedded object also has an
associated OlD which is mapped from the key of another relation. For instance,
the embedded objects Bo and Co have hidden OIDs, which are not shown in Figure
1. As a result, there is more than one pivot relation, one for each OID. The OIDs
of all embedded objects are needed only for mapping them to pivot relation keys
and are not retrieved from the database. Not having an OID, an embedded object
is not a "stand-alone" object.

We do not consider derived attributes for our view-object type. Derived attributes
have no direct mapping to relation attributes and therefore are computed separately
from relation attributes.

Given a view-object type O, we can build a tree (O-tree), defined as follows:
(1) The root is labeled O; (2) A leaf is labeled as a simple attribute of the object O
or its OID; (3) A non-leaf node is labeled by a complex attribute of the object O.

2.3 View Model

A view consists of two parts: a query part and a mapping part. For simplicity, we
restrict queries to an acyclic select-project-conjunctive join query. Its join tree (JT)
is rooted by the pivot relation. Two occurrences of the same relation are distinct.
The mapping part in turn consists of an attribute mapping function (AMF) and a
pivot description (PD).

AMF defines a mapping between view-object attributes and relation attributes.
Because a view-object has no derived attribute, there is a one-to-one mapping
between view-object attributes and relation attributes. Figure lc shows an example
between O's attributes and relation attributes. There is a constraint on the definition
of an AMF: two view-object attributes at the same level of an O-tree (e.g., Do
and Eo) must be mapped to the relation attributes that belong to either the same
relation or two different relations with one-to-one cardinality relationship.

PD consists of a set of pivot relations (PS) and a pivot mapping function (PMF).
PMF defines a mapping between the keys of pivot relations and the OIDs of a
view-object or its embedded objects. PS and PMF are irrelevant to the content of
this article.

2.4 Nesting Format

A nesting format (Abiteboul and Bidoit, 1984) is the schema of a nested relation,
and is generated from an O-tree and an AMF as follows: (1) Starting from the

3. Tuple identifiers are usable as well. Otherwise we assume that the system generates OIDs and maps them

to the keys of corresponding relations.

294

root of the O-tree, recursively replace each node by the list of its children and (2)
Replace each object attribute in the list with the relation attribute mapped by the
AME For example, given the O-tree and AMF shown in Figure 1, we generate the
nesting format KA(DE(HG))(IJO.

We can draw out the hierarchy of nested subrelations from a nesting format.
The root of the tree represents a subrelation which is not nested within any other
subrelation, and its descendents represent subrelations nested within their parents.
We call such a tree a nesting format tree (NFT). In particular, the subrelation
represented by the root is called a pivot subrelation because the root always contains
an attribute which is mapped to an OID.

3. View-Object Instantiation Methods

We first give an overview of the SFR, RE and SNR methods, and then give a detailed
description of their steps. As will be explained, the SNR method is basically the
same as the RF method except that the nesting step is carried out by a server.
Therefore, we focus on the SFR and RF methods together and then discuss the
SNR method separately.

3.1 Overview of the Three Methods

The overall process is divided into three phases: materialization, transmission, and
translation. In the SFR method, a query is materialized into an SFR by a server,
transmitted as such, and translated into view-objects by a client. Translation is
done in two steps: nesting, and reference resolution. The nesting step restructures
a retrieved SFR into a nested relation. The reference resolution step resolves
references among view-objects, thus configuring the retrieved view-objects into a
network of references.

In the RF method, a query is materialized into a set of RFs by a server,
transmitted as such, and translated into view-objects by a client. Translation is done
in the same two steps as in the SFR method, but a different process is used for
the nesting step due to the different structure of retrieved data. Because a client
receives no separate information for linking tuples among the RFs, it creates the
linkage information by building indexes on join attributes. Then, joins are performed
starting from each tuple of the pivot RF and navigating along the joins to linked
RFs. The result is an SNR, the same one that would be produced by the nesting
step of the SFR method. The reference resolution step is the same as that of the
SFR method.

In the SNR method, a query is materialized into an SNR, transmitted as such,
and translated into view-objects by a client. A server first materializes a query
using the RF method and then nests the query result into an SNR. We considered
materializing a query directly into an SNR but did not take that approach because it
impeded join reordering by a query optimizer (i.e., joins must be performed strictly

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 295

Figure 2. Example of SFR RFs, and SNR
KADEHGIJ

k2 a2 d4 e2 h~ ga il j~
ka al d2 e2 ha 9z i2 j4
k3 a3 ds e4 hi 91 i2 j2
k2 a~ ds e4 As gl il jl
kl al d~ e~ h4 g2 i2 j2
k3 a3 ds e4 hs 91 i2 j2
kl al d2 e2 h2 ga i2 j4
ka a3 d5 e4 hi gl i~ j4
kl al d2 e2 h2 g3 i2 j2
k3 a3 d~ e4 hs gl i~ j4
k2 a2 ds e4 hl gl il jl

(a) SFR

a2 il 11 I

(b) l:tr'~

KA (DZ(HC)) (i J)

k2 a2

kl al

k3 a3

d4 e2

ds e4 ~ 5 ~

d2 e2 ~ f ~

dse4~f~
(~) SNa

in the nesting order). A client only has to do the reference resolution step, which
is the same as in the other methods. Consequently, the SNR method is the same
as the RF method except that the nesting step is done on a server. (The SNR
method can be based on the SFR method, but it will be less efficient.)

Figure 2 shows an example of tuples obtained for each method by evaluating the
query of Figure lb with '8' ~ '= ' . These three methods have different sources of
redundant data. An SFR contains duplicate subtuples, as discussed in the introduction.
An RF contains no such duplicate subtuple. However, some RFs contain attributes
that are not specified in the projection set of a query (e.g., D', G', A', L'). These
attributes are materialized in, in addition to the projection set, and are needed to
perform joins in the nesting step. We call them extra join attributes (EJAs). An SNR
obviously contains fewer redundant subtuples than a corresponding SFR, but it still
contains some subtuples duplicated in different nested subrelations. We call them

296

duplicate nestedsubtuples. We can make the following observations/hypotheses about
their trade-offs: (1) The SNR method always carries fewer redundant data than
the SFR method; (2) The RF method carries fewer redundant data than the SFR
method, although there is a theoretical trade-off. (3) The amounts of redundant
data in the RF and SNR methods are comparable.

Notation: Throughout this article, T denotes an SFR, Fi an RF, Si a nested
subrelation within an SNR, vi a JT node, and ui an NFT node. Note that there is
a one-to-one mapping between {Fi} and {vi}, and between {Si} and {ui}. We
use two functions defining these one-to-one mappings--RFJT from {Fi} to {vi}
and NSRNFT from {Si} to {ui}.

3.2 Materialization in the SFR and RF Methods

The materialization phase consists of two steps: query processing and duplicate
elimination.

3.2.1 Query Processing. In main memory databases, the choice of query processing
strategies (DeWitt et al., 1984, Bitton and Turbyfill, 1986; Shapiro, 1986; Lehman
and Carey, 1986b; Bitton et al., 1987; Swami, 1989; Whang and Krishnamurthy,
1990) is based on the number of CPU cycles and memory space efficiency rather
than the number of disk accesses and disk space efficiency. The results of comparing
different query processing strategies obtained by some researchers (DeWitt et al.,
1984; Lehman and Carey, 1986b; Shapiro, 1986) showed that hash-based query
processing strategies are faster than others when large main memory is available.
On the other hand, a main memory database system used in OBE (Bitton et al.,
1987; Whang et al., 1987; Whang and Krishnamurthy, 1990) implemented apipelined
nested loop join with array indexes and obtained good performance in both time
and memory space. One advantage of using this join algorithm is that it does not
create intermediate relations during query processing.

Using the pipelined nested loop join strategy, the SFR query processing algorithm
becomes as follows:

Algorithm 3.1 (SFR Query processing)
Input: base relations Ri, i = 1,2,. • .,n; query
Output: SFR composite tuples.
For each tl E o.1 R1

For each t2 E o2 R2 satisfying ~2

".o

For each tn E o'n Rn satisfying fin
Output t1.71"1 II t2. 2 I1"" II II denotes a "concatenation." */

where o'i denotes a selection condition o n Ri, ~i denotes a conjunction of join
predicates between Ri and each R 1 , R 2 , • • ", Ri-1, and 7ri denotes a subset of the
projection set that comes from Ri.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 297

For RF query processing, we modify Algorithm 3.1 to materialize a set of
RFs instead of an SFR, rather than inventing a new algorithm. First, the single
output statement must be decomposed into multiple statements (i.e., one output
for each RF). Second, join attributes (r/i) should be materialized in addition to the
projection set. Accordingly, the output statement is modified to "Output tl.(Tr1Ur/1);
t2.(Tr2 U r/2); • "'; tn.(Trn U r/n)." Third, a tuple from an outer nested loop need
not be emitted unless it is a new tuple. For example, tl C R1 in the outermost
loop needs to be emitted only once for each completion of all the inner loops. We
can use switches (swi's) for signaling whether a new tuple has been obtained from
the outer loop in order to avoid these unnecessary emissions. These modifications
result in Algorithm 3.2.

Algorithm 3.2 (RF Query processing)
Input: base relations Ri, i = 1, 2 , . • •, n; query
Output: RFs Fi, i = 1, 2 , . • •, n.
For each tl E o1 R1,

Set swl.
For each t2 E 0"2 R2 satisfying ~2,

Set sw2.

For each tn C 0"n Rn satisfying ~n ,
Set SWn.
For each swi, i = 1, 2, • • • ,n,

If swi is set then begin
Output ti.(Th U r/i).
Reset swi.

end

By comparing Algorithms 3.1 and 3.2, we see that both execute the same nested
loops and take approximately the same time. However, they differ in the amount
of data emitted by the output statements. In Algorithm 3.1, an SFR composite
tuple is emitted for every execution of the innermost loop, whereas in Algorithm
3.2, an RF tuple is emitted only if all inner loops are completed. Therefore, the
RF method emits fewer data than the SFR method.

3.2.2 Duplicate Elimination. An SFR or RF produced by the query processing step
may have duplicate tuples. These eventually result in duplicate view-objects, which
are difficult to manage by applications. Therefore, duplicate tuples are removed
beforehand by either sorting or hashing. We use hashing because it is usually faster
and its result can be pipelined to the transmission step (not for sorting).

We use a simple chained bucket hashing (Knuth, 1973) for which the bucket
header is an array of pointers to buckets and each chained bucket is a record of a
hashed tuple and a pointer to the next bucket. Given this structure, the algorithm
for eliminating duplicates in pipelining with transmission becomes as follows:

298

Algorithm 3.3 (Duplicate elimination)
1. Allocate a hashing bucket header.
2. For each tuple to emitted from the query processing,

(a) Compute a hashed address h(to). (h: a hashing function)

(b) For each bucket in the chain starting at h(to),
If to = tb then continue step 2. (tb: the tuple in the bucket)

(c) Insert a new bucket containing to into the chain and transmit to. /* to
is new. */

3.3 Translation in the SFR and RF Methods

As mentioned in Section 3.1, the translation phase has two steps: nesting and
reference resolution. The nesting step is carried out differently in the SFR and
RF methods. In the SFR method, it is done by decomposing received composite
tuples into subtuples corresponding to different nested subrelations and assembling
the decomposed subtuples into nested tuples. In the RF method, it is done by
creating indexes on the join attributes of the RFs and performing navigational joins.
Navigation starts from the pivot RF and follows the join links to find matching tuples
in the RFs. Found matching tuples are assembled into nested tuples according to
an assembly plan, which is generated by comparing a JT and an NFE Before the
index creation, one arbitrary join predicate is selected from each conjunction of join
predicates in the joinpurge step. The reference resolution step is out of our scope
because its process is specific to the view-object schema defined by the application.
Besides, omitting this step does not affect the cost comparison result because its
process is identical in all three methods.

3.3.1 Structure of an SNR. Subtuples decomposed by an SFR may have duplicates,
even though the composite tuples do not. RFs may have duplicate tuples as well
after being stripped of EJAs (with projections). Therefore, every insertion into
an output SNR must be preceded by a searching for duplicates, and consequently
searchings are performed more frequently than insertions in the nesting step. (It
is more manifest for an SFR.) This leads to the fact that the structure of an SNR
should show good searching performance.

Figure 3 shows the structure of an SNR we used. Each nested subrelation is
implemented as a binary search tree (BST). The top-most root (KA) contains a
pointer to the BST of the pivot subrelation, and each node of a BST contains a
tuple, pointers to the nested BSTs, and pointers to its left child and right child.
Searching or insertion of a tuple takes O(log2N) time for each BST, where N is the
number of tuples in a BST.

3.3.2 Nesting of an SFR. Fischer and Thomas (1983) introduced NEST as an op-
erator for restructuring a flat relation into a nested relation. Similar concepts were
also discussed by Abiteboul and Bidoit (1984) and Roth et al. (1988). Our nesting

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 299

Figure 3. Structure of an SNR

k2a2 I I~E] ,J,J]]c I rcJ

d 4 ~ e 2 ~ J / ~ k l a l ~ - - - - - - ~ "k
I1~ I r~l [\ \ + + k \ '~'~

/ ,-.-" ~, 4,.) "--.li2j2 ll.~ I rcl
~dSed~l~lrd ~ . . .

h2_o311c ' c' ~ ~" dz ~ i 2 j 4 1 Ic Ire I
x~r x~, -zl hlgl119 I~c I v

/

hSg~l~ I~ol

NoOo~c,~¢: I~"~ l° I ~ubrel~ I ~°b~el2 I I s~b~eh' I lc I~1
: nil subreli: subrelation, lc: left child rc: right child

process is an instance of implementing the NEST operator. Figure 3 shows the
SNR after inserting the first three SFR tuples of Figure 2a. SFR nesting can be
performed pipelined with the reception of data from a server.

Algorithm 3.4 (SFR Nesting)
Input: received SFR tuples {tr}; NFE
Output: SNR.

1. Allocate an empty (root only) SNR.
2. wp := the root of the empty SNR.
3. up := the root of NFE
4. For each tr, Assemble(wp,up,tr).

where Assemble(wv,Up,tr) inserts a decomposed subtuple 7ruptr into a BST pointed
by Wp.Up.

Algorithm 3.5 (SFR Assemble)
Input: SNR node wi; NFF node ui; composite tuple tr.
Output: SNR with ti inserted if ti is new.

1. ti := 7ru~tr/* Project tr on Up. */

2. Wr := the BST node pointed by wi.u i. /* Wr is the root of a BST to be
searched. */

300

3. If (we := Search(wr,ti)) = NOT_FOUND then Insert-tuples(wi,ui,ti)
else/* ti already exists. */

(a) • := the set of ui's children (ue) in NFE

(b) If ~ = { } then return
else for each uc E xIt, Assemble(we,ue,l!r).

where Search(wr,ti) finds a node containing ti from the BST rooted by wr; and
Insert-tuples(wi,ui,ti) inserts a tuple ti into the BST pointed by wi.ui, and recursively
inserts all nested subtuples of ti (corresponding to ui's descendents in the NFT).

Algorithm 3.6 (Search)
Input: SNR node (wi); tuple ti to be searched for.
Output: return NOT_FOUND or the found node.

If wi = nil then return NOT_FOUND
else if wi.tuple = ti then return wi
else if (wi.tuple < ti) then return Search(wi.lc, ti)
else return Search(wi.rc, ti).

Algorithm 3. 7 ([Insert-tuples)
Input: SNR node wi; NFT node ui; tuple ti to be inserted.
Output: SNR with ti inserted.

1. Allocate an empty node Wm and copy ti to Wm.tuple.

2. we := Insert(wi,ui,Wm). /* Insert ti. */

. /* Insert ti's nested subtuples. */
:= the set of ui's children in the NFE

If ~ = { } then return
else for each ue E ~ , Insert-tuples(we,uc,tr.ue).

where Insert(wi,ui,wm) inserts a new node wm into the BST pointed by wi.ui and
returns the inserted node.

Algorithm 3.8 (Insert)
Input: SNR node wi; NFT node ui; new node win.
Output: return the inserted node.

If wi.u i = nil then return wi.u i := Wra /* Insert tom. */
else if ti < wi.ui.tuple then Insert(wi.ui.lc, ui, win)
else Insert(wi.ui.rc, ui, win).

3.3.3 Nesting of an RE Nesting of retrieved RFs is performed in four steps: join
purge, assembly planning, index creation, and navigational join.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 301

Join Purge. In the join purge step, a conjunction of join predicates in a query is
reduced to a single join predicate by choosing one of them arbitrarily. 4 This join
reduction does not affect the result of the nesting step, as verified by the following
theorem.

Theorem 3.1 Let us consider a conjunctive join predicate a 181 BIA A202 B 2 IX. • • A
AnOn Bn between two RFs F1 and F2 retrieved from a server. Then, for an arbitrary
pair of tuples (tl C F1, t2 C F2),

(t l .AiOlt2.B1) A (tl.A292t2.B2) A . . . A (t l .AnOnt2.Bn) (1)

if and only if
tx.AiOit2.Bi for s o m e / E [1,n] (2)

Proof: Since the "only if" part is obvious, we prove only the "if" part: Let us assume
Equation 1 is not satisfied and Equation 2 is satisfied. Then, there is at least one
j E [1,n] such that j ~ i and --a(tl.AjOj t2.Bj). However, if tl.AjOj t2.Bj is false,
tl ~ FF1 if t2 C F2 and t2 ~ F2 if tl E F1 by the definition of join. It contradicts
with the given assumption that t 1 E F1 and t2 E F2. []

Assembly Planning. In this step, we prepare a plan to assemble the tuples that will
be collected by navigational joins. An assembly plan (AP) is a transformation from
JT nodes ((vi}) to NFT nodes ({ui}). Figure 4 illustrates it for the view-object
shown in Figure 1. An NFT node is obtained from one or more JT nodes via
relational projections and joins. A JT node represents an RF, while an N F r node
represents a nested subrelation of an SNR. Joins are needed only if the schema of
an NFF node is not a subset of the schema of any RF but spans the schemas of
two or more RFs. The IJ node of the NFT in Figure 4 is such a case. It is merged
from the JT nodes AtlL ~ and L J via a join and projection. Any merged JT nodes
(i.e., RFs) always have a one-to-one cardinality relationship.

An AP is represented by a set of expressions of the following form:

U :---- 71"u(V 1 ~ V2' '" ~ V k)

The following example shows the assembly plan (name this AP-1) for the JT and
NFT of Figure 4: {KA := 7rKAKAD t, DE := 7rDEDG~E, HG := HG, 1J := 7rld(AtlL t

L'OL L 0 } . We use the same denotations (vi, ui, and AP) for the schema and tuples
of JT and NFT nodes. For example, AP(AIIL I, L D returns 1J and AP(aai213, laj2)
returns i2J2.

The algorithm for generating an AP is as follows:

4. It will be more practical to select one that is easy to compute, such as an equijoin between integer at-
tributes.

302

Figure 4. Example of an assembly plan

-IT-

DG'E A'IL i _N...~X~ lib,/tiC i J

(a) Join tree (b) Nesting: format tree

"['[': projection ~ "join

Algorithm 3.9 (Assembly planning)
Input: JT; NFE
Output: AE

1. For each node v newly visited while traversing JT, starting from the root,
(a) Find an N17I " node u such that u C_ v.
(b) If found then

i. If u = v then add "u := v" to AP
else add "u := 714 v" to AP

ii. Mark v as "visited."

else

i. Find the nodes {vl,v~, • " ,vk} of a minimal subtree of JT rooted
by v such that for some NFT node u, u C Vl U v2 U • .. U vk.

ii. Add "u := 7ru(Vl ~ v2 " " ~ vk)" to the AE

iii. Mark vl, v 2 , " ", vk as "visited."

lndex Creation. Once redundant joins are removed, indexes are created on the join
attribute of each RF except the pivot RE According to the performance study by
Lehman and Carey (1986a) a chained bucket hashing gives the best performance
among all main memory index operations except for a range query. Because
we do not need a range query, bucket hashing is appropriate for our use. The
index is composed of a bucket header table and chained buckets linked to each
header. Unlike the example in Section 3.2.2, each bucket header and chained bucket
contains a pointer to a tuple instead of an actual tuple. An index organized this way
shows the best storage cost/performance ratio when its bucket header table contains
approximately half the number of indexed tuples (L~hman and Carey, 1986a). The
algorithm for creating an index is as follows:

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 303

Algorithm 3.10 (Index creation)
Input: RF Fi; join attribute Ai of Fi.
Output: a chained bucket hashing index on the attribute Ai of F i.

1. Allocate a bucket header table.

2. For each value a of Fi.Ai,
(a) Compute the hashed address h(a). (h: hashing function)

(b) Insert a new bucket containing a at the hashed address h(a) (without
duplicate checking).

Index creation cannot start until the entire tuples of all RFs are received because
(1) a hashing index requires the number of indexed tuples to be known before an
index is created and (2) the tuples of RFs are received in row-wise order (i.e.,
different tuples from different RFs are intermixed).

Navigational Join. Once indexes are created and an assembly plan is prepared, we
perform navigational joins on the RFs staring from the pivot RF and following the
index paths. There are always one or more matching tuples because non-matching
tuples have already been discarded in the materialization step. The set of matching
tuples thus found are assembled into nested tuples according to the assembly plan.
For example, starting from the third tuple [k3 a3 d5] of KAD t in Figure 2b, we find
the following set of matching tuples from the other RFs: [d5 gl e4] from DG~E, [hi
gl], [h5 gl] from HG, [a 3 i 2 13] fromAIIL I, and [13 j2], [13 j4] from LJ. These tuples
are assembled into the last nested tuple of Figure 2c with the assembly plan AP-1
(Section 3.3.3). The following algorithms describe this procedure more rigorously.

Algorithm 3.11 (Navigational join)
Input: Fi's (F1 is the pivot RF); JT; NFT; AE
Output: SNR.

1. Allocate an empty SNR.

2. wp := the root of the empty SNR.

3. Up := the root of NFT.

4. For each tuple tp E F1, Assemble(wp,Up,tp).

Assemble(wp,up,tp) starts navigation from tp and collects a set of matching tuples
from Fi, i = 2,3,. • .,n}. Then, for each set of matching tuples, it finds an associated
expression from the AP and executes the expression on the tuples. The resulting
tuples are inserted into the SNR.

Algorithm 3.12 (RF Assemble)
Input: SNR node wi; NFT node ui; tuple to from which to start navigation.
Output: SNR with newly inserted tuples.

1. wr:=the node pointed by wi.ui./*wr is the root of a BST to be searched.*/

304

. Find {Vl,V2,.. ",Vk} from AP such that ui = AP(vl,v2,"" ",Vk).
/* k > 1 if and only if a merging is required. */

3. /* For i =
between Fi
For each tl
For each t2

For each

1,2,...,k; let Fi be RFJT-I(vi), and ~ i be the join predicate
and Fj where RFJT(Fj) is the parent of RFJT(Fi) in the JT. */
E Match(to,Fa, (~)1),
C Match(tl,F2, ~2),

tk C Match(tk_l,Fk, ~k),

(a) tc := AP(tl , tz, ' -- , tk). /* Execute the assembly plan. */

(b) If (we := Search(wr,tc)) = NOT_FOUND then wc := Insert(wi,ui,tc).

(c) • := the set of ui's children in NFT.

(d) If • = { } then return
else for each uc C k~, Assemble(wc,uc,tc).

where Search and Insert are the same as Algorithms 3.6 and 3.8. No duplicate
checking is necessary for an insertion unless a projection is prescribed in the AE
Given a tuple ti E Fi, Match(ti,Fj, ~j) finds matching tuples from Fj through an
index built for the join predicate ~ j .

Algorithm 3.13 (Match)
Input: ti E Fi; Fj; join predicate "Fi.AO Fj.B."
Output: {tjl tj E Fj, ti.AO tj.B}.

1. Compute the hashed address h(ti.A). (h: hashing function)

2. For each bucket from the bucket header through the end of the chain,
If ti.AO tj.B then collect tj. (tj: a tuple pointed by the bucket entry.)

3.4 The SNR Method

Because the SNR method is based on the RF method, we focus only on the
modifications needed to adapt the RF method to the SNR method. Query processing
and duplicate elimination are exactly the same as in the RF method, except that
emitted tuples are written to an output buffer instead of being transmitted to a
client. Once the tuples of all RFs are collected in the output buffer, they are
converted into an SNR on a server using the same steps as in the RF method.
The navigational join step needs to be modified so that matching tuples are not
only assembled into nested tuples, but also transmitted to a client. According to
Algorithm 3.12, the tuples of nested subrelations are transmitted in a depth-first
search order of an NFT. Delimiters are needed to distinguish between the tuples
of different nested subrelations. For example, the data stream transmitted for the
SNR of Figure 2c looks as follows. ("(" and ")" are delimiters.)

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 305

(KA (DE (HG))(IJ))(k2a2(d4e2(h2g3))(d5e4(hlgl h5gl)) (i l j l))
(k l a t (d2e2(h2g3 h4g2))(i2j2 i2j4)) (k3a3(dae4(hlgl h5gl))(i2j2 i2j4))

where (KA(DE(HG))(IJ)) is a header describing the format of the following data
stream. A data stream is composed of segments. A segment contains the tuples that
will belong to the same nested subrelation when assembled into an SNR. The above
example shows three segments starting with klal, k2a2, and k3a3, respectively.

A client has only to parse the received data stream and assemble the extracted
tuples into an SNR. Algorithm 3.14 describes the assembly process. For each tuple
ti read from the data stream, ti is inserted as a nested subtuple of the previous tuple
if ti is preceded by "(." Otherwise, ti is inserted in the same nested subrelation as
in the previous tuple, wc denotes the currently inserted node and Wp denotes the
previously inserted node. They are moved one level up for each ")." Super(wp)

returns the node in which Wp is nested. 5

Algorithm 3.14 (SNR Assemble)
Input: formated stream of SNR tuples; NFT.
Output: assembled SNR.

1. Allocate an empty SNR.
2. wc := the root of the empty SNR.
3. For each item d read from the data stream,

• If d = "(" then w~ := we.
• I f d ti'(a tupleythen

Find the schema Si of ti from the header.
Up := NSRNFT(Si).
wc := Insert(wp,up,ti).

• If d = ")" then wc := wp; wp := Super(wp).

where Insert is the same as Algorithm 3.8. Note that we need no searching before
an insertion because duplicates have already been eliminated on a server.

4. Cost Model

4.1 A Platform for Cost Modeling

It is tOO complicated a task to obtain a cost model of main memory-resident
operations because the cost depends on so many factors (e.g., hardware, programming
language, programming style, and system load). Since our purpose is comparing
costs as opposed to estimating them, we make some simplifications in the cost

5. To implement this function, we need to keep both back-pointers to previous nodes or a chain of inserted
nodes.

306

models without affecting the comparison results. First, the cost items that are
common to all three methods are excluded. These are the costs of the query
processing and reference resolution steps. Second, we exclude the cost of accessing
schema information, which is negligible compared with the cost of operations on
data tuples. Third, we ignore the difference between server speed and client speed.
Their effect on the cost comparison result is marginal, particularly in an environment
with significant network communication overhead.

We use only the execution time as the measure of cost--although required
main memory space is another important measure---because there is no trade-off
between time and space in our case. The total cost is the sum of local processing
cost and transmission cost. Local processing cost is the total execution time spent
on a server and a client. Transmission cost is the time for sending a query result
to a client.

We consider only complex queries (i.e., queries with one or more joins). SFR,
RF, and SNR methods become identical if a query is a simple query (i.e., it has no
join): The base relation specified in a simple query is reduced to a single fragment,
transmitted to a client, and linked to other view..objects through the reference
resolution step. The nesting step is not needed for the single fragment.

4.1.1 Cost and Data Parameters. Table 1 shows the cost parameters for elementary
main memory and network communication operations. They were measured on a
SUN-3 workstation, between two SUN-3s on the same Ethernet LAN, and between
a SUN-3 on the Stanford campus and another SUN-3 on the University of Illinois
campus. We used CPUtime for main memory operations because it is quite insensitive
to the system load, whereas we used elapsed time for network communication
operations because most communication time is spent on the network. Table 2
shows the data parameters of an SFR, RFs, and an SNR.

4.1.2 Alternative Data Parameters: ozij and flij. We define o~ij as the domain
selectivity (i.e., the average number of tuples with the same value) of Fj 's join
attributes. Then, ozij is related to Nf~ and DA~ as follows:

N,., (3)
o~i3 = Df~j

Because all non-matching tuples of RFs have already been discarded in the query
materialization step, Df~ = DA~. Hence, Olij c a n be interpreted as the average
number of matching tuples in Fj for each tuple of Fi. We call olij a selectivity from
F i to Fj. Since Dy~i = DAj, the following is always true:

Nf~ < Nf, oqj (4)

where the equality holds if and only if Df~ = Nyi (i.e., Fi's join attributes have
unique values).

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 307

Table 1. Cost parameters
(a) Main memory cost parameters (CPU time)

Parameter

Cbs

Ccm
Cci
Ccb
Ce

Cft
Chc

Cma
Crop

Cpb
Csi

Cs,~

Description Value

Cost of elementary binary search operation
(compare and move left or right)

Cost of comparing two tuples

Initial cost of copying a tuple

Per-byte cost of copying a tuple
Cost of evaluating a join predicate

(equijoin on integer attributes)

Per-byte cost of folding tuple into integer
Cost of computing hashed address

for integer hashing key

Cost of allocating memory within workspace
Cost of moving (reading or writing) pointer

Initial cost of performing projection on tuple
Per-byte cost of performing projection on tuple

Initial cost of computing integer hashing key

from a scanned relation column

Per-tuple cost of computing integer hashing key

from a scanned relation column

19 #sec

9.2 #sec

11 #sec

0.17 #sec/byte
16/zsec

0.92/zsec/byte

9.5 #sec
1.2/zsec

0.88 /zsec
4.3 /zsec

1.1 #sec/byte

17 #sec

14 /.zsec/tuple

(b) Communication cost parameters (elapsed time)

Parameter

Ct

Cb

Description Value

LAN WAN

Latency of sending a message 2.5 msec 53 msec
Per-byte data transmission cost 3.4/zsec/byte 60 ~sec/byte

flij is defined as the average degree of nesting, which is the average number of
tuples in Sj for each tuple of Si where Sj is an immediate nested subrelation of
Si. Put in another way,

= (5)

Note that flij _> 1.

308

Table 2. Data parameters

SFR (T)

Parameter Description

Nt
dt

Tt

Cardinality after duplicate elimination
Ratio between cardinalities before and after

duplicate elimination (0 < dt "(1)
Tuple size

RF (Fi,i = 1,2,...,ny where F1 is the pivot RF)

nl

d~

DI~j

/2
P~

Number of RFs (n I > 1 for complex queries)
Cardinality of Fi after duplicate elimination

Ratio between cardinalities of Fi before and after

duplicate elimination. (0 < di~ < 1)
Domain cardinality (i.e., number of distinct values) of Fis

join attribute for join between Fi and Fj

Tuple size of Fi
Extra join attribute (EJA) ratio (:i.e., ratio between

size of EJAs in Fi and Ti~. (0 ,< PI~ --< 1)

n$

N,,
75,

SNR (Si,i=l,2,"',ns where S 1 is pivot nested subrelation)

Number of nested subrelations in an SNR

Cardinality of Si
Tuple size of Si

4.2 Derivation of Cost Formulas

In this section we develop the cost formulas of all but the query processing and
reference resolution steps. The following short-hand notations are used in the cost
formulas.

Ccotscan (N) = Csi + Csn N for scanning N tuples (6)

Ccow (T) = C'ei + CcbT for copying tuple of size T bytes (7)

Cprojeet(T) = Cpi + CpbT for projecting snbtuple of size T bytes out of tuple (8)

4.2.1 Duplicate Elimination Cost. The duplicate elimination process is the same for
all three methods except that it is applied to different structures. We make the
following two assumptions for hashing tuples (Algorithm 3.3): (1) We allocate as
many bucket headers as half the cardinality of a hashed relation, which can be
estimated by a query optimizer. (Otherwise, we could use a linear hashing); (2)

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 309

The shift folding technique (Mauer and Lewis, 1975; Horowitz and Sahni, 1976) is
used for the hashing of tuples (a tuple is divided into integer parts, which are then
added to obtain an integer hashing key).

Let N be the relation cardinality after duplicate elimination, T be the tuple
size, and d be the ratio of the cardinalities before and after duplicate elimination
(0 < d <_ 1). The allocation of a bucket header costs Crn a. Step 2 of Algorithm
3.3 is repeated N/d times. The cost of computing a hashed address is computed as
a function of T as follows.

Ctuphash(T) = Cs, T + Ch~ (9)

Among the N/d hashed tuples, N tuples are actually inserted and the other N/d
- N tuples are discarded. If the same tuple already exists, it takes the cost of
traversing an average half of a bucket chain, Crop + (Nb/2)(Ccm+Cmp) where Nb
is the number of buckets that has been inserted in the chain so far. Otherwise, it
costs traversing the entire bucket chain (Crop + Nb(Ccm+Cmp)) and inserting a
new bucket in the chain (Cma+Ccopy(T) + 2 Crop).

Nb is obtained as follows. N hashed entries are inserted in N/2d bucket headers.
If N > N/2d, all bucket headers are filled, assuming that the hash function distributes
a hashing key uniformly over the bucket header table. In this case, the ultimate
value of Nb becomes N/(N/2d) = 2d. Otherwise, only N bucket headers out of N/2d
headers are filled and the ultimate value of Nb becomes 1. Using half the ultimate
values as expected values,

Nb = MAX(d, ½) (10)

The cost of inserting a hashed tuple into the hash is computed as a function
of T and d as follows. (The cost of transmitting the inserted tuple is part of the
transmission cost and is not included here.)

Ctupinsert(d,T) = d(Cmp + Nb(Ccm + Crop) + Cma + Ccopy(T) +

Nb (C~m + Crop)) (11) 2Cmp) + (1 - d)(Cmp +

Using Equations 9 and 11, the SFR duplicate elimination cost is

Nt
CsfTd~ = Cma + "~t-(Ct~pha,h(Tt) + Ctupi~s~rt(dt, Tt)) (12)

and for all RFs it is computed as follows.

nf NA
= (Cmo + + (13)

i = 1

Because SNR query processing also produces RFs, SNR duplicate elimination
incurs the same cost as the RF method except for the cost of writing non-duplicate

310

tuples to an output buffer. This cost for each RF is Ccopy(TA)Ny ~. Thus, the total
cost is:

ny

C,,~rde = Cryde + ~ Ccopy(Tf,)Nf, (14)
i =1

4.2.2 Nosting Cost.
Binary Search Tree Searching and Insertion Costs. The searching (Algorithm 3.6) and
insertion (Algorithm 3.8) of one tuple are used commonly for all three methods and
therefore we derive their cost formulas separately here. We assume that the binary
search trees (BSTs) implementing nested subrelations are well-balanced. 6 Let M be
the number of tuples that are to be inserted into a BST Every insertion attempt
requires one searching to check out duplicates. Let N denote the number of tuples
that are actually inserted into a BST. According to Knuth (1973), a single searching
requires about 1.385 log2k comparisons (k is the number of nodes currently in the
BST) for a well-balanced BST, considering both a successful and an unsuccessful
search. If we assume that the insertions of the N tuples out of M tuples occur at
regular intervals, the value of k is incremented at every M/N insertion attempt. The
total searching cost for inserting N tuples out of the attempted M tuples then is
computed as follows:

N M
Cbinsearch(M,N) = ~(-~-1.386Cb, log2 k) (15)

k = l

Insertion cost is the sum of the costs of searching for a node unsuccessfully and
inserting it as a leaf of the BST An unsuccessful search of a BST requires log2(k+ 1)
comparisons. Insertion at a leaf requires allocating an empty node (Cma), copying
a tuple into it (Ccopy(7)), and writing a pointer to it (Cmp in its parent node).
Thus, the total cost of inserting N tuples into a BST is computed as follows:

N

Cbininsert(g,T) = ~(CbslOg2(k + 1) + Cma + Ccopy(T) + Crop) (16)
k=l

There will be Ns~ tuples inserted into a nested subrelation Si of the final
output SNR. Let Spar(i) denote the nested subrelation such that NSRNFr(Spar(i))
is the parent of NSRNFT(Si). Then, there are Nsp,~(~) BSTs implementing Si (i.e.,
one BST for each tuple of Spar(i)). Let Ms~ denote the number of tuples that
are attempted for an insertion into Si. If we assume that tuples are uniformly
distributed into every BST of Si, MsJN%,,(o tuples are attempted for an insertion

6. In fact, well-balanced trees are common, and degenerate trees are very rare (Knuth, 1973). Even if a

BST must be balanced sometimes, a tree balancing involves only pointer movements and incurs negligible
cost.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 311

and Ns~/Nsp,~(~) tuples are actually inserted into each BST of Si. Thus, the total
cost of inserting Ns~ tuples into Si out of the attempted Ms~ tuples is computed as
follows:

Csisearch(Msi,Ns,,Nspa~(,)) = Nspa~(i)CbinsearCh(N. M-sl Ns,) (17)
Spar(i) ~ Y s p a r (i)

Y,, T,,) C,. . , . . (gs , , T.,, Ns.o.(,)) = (i s)

SFR Nesting Cost. We consider only the costs of projecting, searching (Algorithm
3.6), and inserting tuples (Algorithm 3.7), which are operations on data tuples and
whose costs are dominant.

According to Algorithm 3.4, Nt composite tuples are decomposed into subtuples
of $1, $2, • • •, Sn~ by projections and assembled into an SNR. For each subtuple of
Si, projecting it from a composite tuple costs Cproject(Ts~), searching for it from
Si costs Csisearch(Nt~gsi, Nsp~,~(~)), and inserting it into Si costs Csiinsert(gsi,Ts~,
Nsr, ar(O). Hence, the total cost is computed as follows:

no

Csfr~est = ~(Cprojea(Ts,)Nt + Csis~arch(Nt, Ns,,Nspa~(,)) +
i=1

Csii~8~t(Ns,, Tsi, N~po~(,))) (19)

RFNesting Cost. We ignore the costs of the join purge step and the assembly planning
step because they are not operations on data tuples. Accordingly, we approximate
the RF nesting cost as the sum of the index creation cost and the navigational join
cost .

cr e.t + Cn=j, (20)
The number of RF joins is always one less than the number of the RFs (i.e.,

n / - -1) after the join purge step.

Index creation (Algorithm 3.10): A bucket header allocation costs Cma. The linear
scan of Fi cos t s Ccolscan(Yfi). We assume all join attributes are integers so that no
folding is required. A hashing computation costs Chc. An insertion to a hashing
bucket chain takes the cost of allocating a bucket (Cma), writing a pointer (Cmp)
to the hashed tuple, and two pointer writings (2Cmp) to make connections to other
buckets. No searching for duplicate checking is necessary. Hence, the cost of
creating n$--i indexes on Fi.Ais for i=2,3,...,nf, where F1 is the pivot RF, is
computed as follows.

my

Vilest = ~(Cma + C~o,~a~(gf,) + (Ch~ + Vine + 3Cmp)gy,) (21)
i=2

312

Navigational join (Algorithm 3.11): Allocating an empty SNR costs Cma. For the
assembly cost (Algorithm 3.12), we consider only the costs of the following operations
on data tuples: finding matching tuples (Algorithm 3.13), executing assembly plans
(AP) on the found tuples, and inserting (Algorithm 3.8) the resulting tuples into
the SNR after duplicate checking (Algorithm 3.6).

Matching (Algorithm 3.13): The cost of Match(ti, Fj, ti.A 0 tj.B), denoted by
Cmatchlj, is computed as follows. First, hashing a join attribute costs Chc. Let Nb
denote the expected length of the bucket chain including the header bucket. Then,
in Step 2, it costs Nb(2Cmp-I-Ce) to follow the bucket chain--one Crop for reading a
pointer to the tuple tj E Fj, another Crop for reading a pointer to the next bucket,
and Ce for evaluating the join predicate ti.A 0 tj.B. o~ij tuples of Fj are collected
from Match(ti,Fj, ti.A O tj.B). Collecting the matching tuples incurs only the cost
of writing o~ij pointers (i.e., CmpO~ij). Thus, the cost of finding matching tuples
from Fj for all tuples (t/s) of Fi is computed as a function of oLij as follows:

Crnatchij(o~ij) = Chc-q- Nb(2Crnp Q-Ce)-q-Cmpolij (22)
where Nb is obtained as

Nb = MAX(Nf j /Df i~ ,2) (23)

= MAX (ceij, 2) by Equation 3 (24)

in the same way as Equation 10. (As mentioned in Section 3.3.3, we assume the
allocated bucket header size is half the hashed RF cardinality.)

The cost of the entire matching process is the sum of the cost of scanning the
pivot RF linearly and the cost of finding matching tuples from the other RFs,

c o,oh = Cco,.co.(N ,) + L ,Cmo,oh,j(,j)
if[Leaf(JT)

(25)

where Leaf(JT) denotes the set of the JT leaves, and Lf~ is obtained as follows:

= I I (26)
(RF JT(F n),RFJT(Fq))ePli

where Pli is a path from RFJT(F1) to RFJT(Fi).

Execution of assembly plans. (Step 3a of Algorithm 3.12): RF tuples that are found
by the matching process are merged as prescribed in the assembly plan. If we let mi
be the number of RF tuples that are merged to produce Si tuples, and let TIs~ ,j= 1,2,
• • ", mi, denote the size of the attributes projected from each to-be-merged RE then

m i

Ts, = ~ 7~j (27)
j=l

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 313

Merging two RF tuples requires two projections. Generalizing this case, we
mi ! obtain the cost of merging mi RF tuples into one Si tuple a s ~j=lCproject(Tsj).

Using Equations 8 and 27, it can be rewritten as a function of Ts~ and mi as follows:

Capexec,(Ts,, mi) = (m, - 1)Cp, + Cprojea(Ts,) (28)

Because ns nested subrelations are produced out of n I RFs, n l - n s mergings
are performed. It depends on a query to determine which RFs are merged to
produce each nested subrelation Si. Let us consider a set of nl--1 o~ijs that are
defined among n I RFs. We define a partition on this set, that is, [F1 IF21 ' ' ' IFn,]
where each Fk,k=l,2, '" ,ns, is the set of Fis that are merged to produce Sk. Let
7k denote the combined value of all a i j ' s to the Fjs in Fk and be defined as
follows:

7k = IX aij where Ceil = 1 (29)
F~erk

Then, the total cost of executing an assembly plan is computed as follows:

n$

Cap,x,c = ~ Mf, Cap~,~,(T,, ,m,) (30)
i = 1

where M A is the number of tuples produced for Si and is computed as follows:

MI, = N$1 IX 7p (31)
NSRNFT(Sp)ePxi

where Pli is the path from NSRN17r(s1) (i.e., the NFT root) to NSRNFT(Si).

Searching (Algorithm 3.6) and Insertion (Algorithm 3.8): The M A tuples are to
be inserted into Si. For each tuple, searching (for duplicate checking) costs
~lCsisearch(M fi Nsi,gsp~(i)) and i n s e r t i o n c o s t s ~lCsiinsert(Nsi, Tsi,Nsp~(i)).

Thus, the total cost of performing navigational joins on RFs is obtained as
follows:

ns

Cnavjn : Cmatch "Jr Capexec + E (Csisearch (M$i' Nsl, N, po,(,)) +
i =1

C, ii,~,,,t(g , , , T,,, g,~,,(,))) (32)

SNR Nesting Cost and Assembly Cost.
Nesting: Ignoring the difference between server and client speeds, the only

difference between SNR and RF nesting is that tuples produced in the navigational
join step are transmitted to a client. The transmission cost is considered separately
in Section 4.2.3; therefore the SNR nesting cost is the same as the RF nesting cost.

Csnrnest = CrI,~est (33)

314

Assembly (Algorithm 3.14): There is an additional cost of assembling the received
data stream into an SNR on a client. Considering only the cost of operating on
tuples (not on the delimiters), the assembly cost is computed as follows:

n8

Cs,~a~em = Y~ Csii.~e~t(N~,, T~,, Nepal(,)) (34)
i=1

4.2.3 Transmission Cost. We use a simple model (Dwyer and Larson, 1987) of data
transmission cost defined as follows:

Transmission cost = Ci + Cb x Size (35)

where Size is the number of bytes of the transmitted data.
In the SFR method, Size is the SFR size Nt Tt :

c,i tx = + CbNtTt (36)

In the RF method, it is the total RF sizes (N A Ti~, i = 1 ,2 , . . . , ny):

nl

Crft~ = Ct + Cb ~ Ni, Ti, (37)
i = l

In the SNR method, it is the total SNR sizes (Nsi Ts~, i = 1,2, . . . , ns), ignoring
the size of the header and delimiters:

us

Cs~rtx = Ct + CD ~ N,,Ts, (38)
i=1

5. Cost Comparison

We selected RF data parameters, flijs, and dt as a base set, and derived the values
of the other data parameters using the formulas shown in Appendix A. We also
selected two data parameters--the selectivity (ceijs) and the extra join attribute
(FEJA) ratio (pAs)--as the variant parameters. The value of ceij is an indicator of
the overhead on an SFR due to duplicate subtuples or on an SNR due to duplicate
nested subtuples. Higher selectivities implicate more tuples in an SFR or nested
subrelations of an SNR for a given set of RFs. On the other hand, the value of PA
is an indicator of the overhead on RFs due to EJAs. Higher EJA ratios implicate
smaller tuples in an SFR or nested subrelations of an SNR for a given set of RFs.

We carry out the cost comparison in two ways: simulation and sample case
test. We first show the simulation result obtained using random values of data

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 315

parameters. Then, we observe the cost dependency on the variant data parameter
values. This observation is reinforced by another round of simulation, this time
with biases given to the value ranges of the variant data parameters.

5.1 Overall Comparison Using Simulation

We computed the average costs of the SFR, RF, and SNR methods, and tallied
the winning counts--the number of times each method incurred the minimum cost
among the three methods. We used a query whose JT and NFF are both a complete
binary tree of 7 nodes. 7 (Figure 5). The base data parameter values were randomly
selected from the following ranges. (~ denotes { < 1, 2 > , < 1 ,3 > , < 2, 4 > , <
2, 5 > , < 3, 6 > , < 3, 7 >}. The numbers tagged with a t are arbitrary "realistic"
values. Others are theoretical bounds.)

• l0 t < N A < 500 t, 10 t < NIj < N A aij forj = 2,3,. • .,7 (satisfying Equation
4).

• l0 t <_ TIj < 500 t for j = 2,3,...,7.

• 1.00 < aij < 10.00 t for <i,j>E ~.

• 0 . 5 0 t O Q j __(f l l j __(1.00 OLlj for j = 2,3 (See Equation 41),

0-50tolij ~ flij ~_ 1.50to~ij for <i,j>C • and i ~ 1.

• 0.00 < Pfi ~ 1.00 for i = 1,2,...,7.

• 0.30 t < df5 < dt < 1.00 fo r j = 1,2,...,7.

Some of the value ranges need a justification. First, an olij value is typically far
less than 1 (Christodoulakis, 1984; Valduriez, 1987) for a conventional relational join.
In the case of a join between RFs however, it is always > 1 because non-matching
tuples have already been discarded in the query materialization step. Secondly,
there is a correspondence between o~ij and flij as we can see from the JT and NFT
of Figure 5. Their values are not quite similar because nested subrelations in an
SNR do not have EJAs and so may have some duplicate tuples eliminated in the
nesting step. We picked up flij values from within =k50% of oqj values, except f lu
for which the upper limit is a i j because Nsi = Nyl (Equation 41). Third, dyj < dt
is always true except when the combined domain cardinality (the number of distinct
values) of the EJAs is higher than that of the other attributes. (This case is rare.)

7. For simplicity we assumed that no RF merging was needed in the nesting step. Its effect on the total cost
is negligible. As a result, we used ")'1 = 1, ~.j = OLij for < / , j > E ~I / a n d j ~ 1, and m i = 1 for i =
1,2," • • ,7 (See Equation 28).

316

Figure 5. Sample query for simulation

l a II a II F: II F, I F - - - l l 11 II I
(a) Join tree (b) Nesting format tree

Table 3. Simulation result

Method

SFR

RF

SNR

Average

data size

3413 Mbytes

2.4 Mbytes

3.2 Mbytes

Transmission

Average cost

LAN WAN

3.2 hours 2.4 days

8.1 secs 2.4 mins

11.1 secs 3.2 mins

#wins

0%
67%

33%

Partial local processing

Average cost

2.9 hours

15.2 secs

17.5 secs

(Transmission time is elapsed time and local processing time is CPU time.)

#wins

0%

100%

0%

Table 3 shows the average values and the winnhag counts (in %) obtained from
5,000 random test cases. The RF and SNR methods showed orders of magnitude
improvement compared to the SFR method for both the transmission and local
processing costs. The RF method won over the SNR method more frequently,
and there was no case where the RF method lost to the SFR method although it
could happen in theory. Since we assumed that a server and a client run at the
same speed, the SNR method always takes the same cost as the RF method and
an additional cost (Equation 34) of assembling an SNR. Therefore, the RF method
always shows less local processing cost than the SNR method. The LAN and WAN
transmissions showed the same relative cost between any two methods.

5.2 Dependency on Selectivity and Extra Join Attribute Ratio

5.2.1 Observation Using Sample Case Test. We continued cost comparisons using
sample values of data parameters and observed the dependency of the costs on the
values of a single otij and a set of PA, i = 1,2,. • .,5. Figure 6 shows the JT, NF'I~
and their associated assembly plan of a sample query. Note that F3 and F5 are

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 317

Figure 6. Sample query for the sample case test

Ct35

~ 3 4

(a) Join tree (b) Nesting format tree

S1 = HF1
$2 = IIF2
S'a = H(F3 ~ F5)
$4 = IIF4

(c) Assembly plan

merged (by a join and projection) to produce $3. The sample values of the base
data parameters are as follows:

• N A = 500, 800, 300, 1200, 300 for i = 1,2,3,4,5, respectively (satisfying
Equation 4).

• T A = 200, 300, 250, 100, 400 for i = 1,2,3,4,5, respectively.

• ce12 = 3.0, 0/13 ---- 1.0 ~ 10.0, 0/34 = 4.0, 0L35 = 1.0. (Ol35 ---- 1.0 because
F3 and F5 are merged.)

• ~ 1 2 = 2.7, fl13 = 0.9 Cel3, fl34 = 3.8 (satisfying f lu --< alJ discussed in
Section 5.1).

o.05,0.1,0.15,0.05,0.05(lower values)
• PA = o.8,0.9,0.7,0.6,0.9(higher values)

respectively.

for i = 1 , 2 , 3 , 4 , 5

• d t = d A = 0.8 for i = 1,2,3,4,5.

We evaluated the costs while varying the value of o~13 from 1 through 10. The
same evaluation has been repeated for the two sets of PA values. Figure 7 shows
the costs of the three methods with respect to the values of ce13 and pAs.

It shows that both the transmission and the local processing costs increase as
the value of oq3 increases, and the slope was in the order of the SFR, SNR, and
RF methods from the highest first. Increasing the value of ce13 without changing
the value of Dila is equivalent to increasing the value of N h (Equation 3). In
the RF method, this increases the size of only FF3 and has no effect on the sizes
of the other RFs. On the other hand, it has a "ripple effect" on the size of an
SFR or SNR. Increasing Nfa also increases fl13, which is amplified by a factor of
N s l f l 1 2 f 1 3 4 (Equation 39).

318

Figure 7. Sample case test result

Cost (seconds) Cost (seconds)

4038 SFR 1 40 38 / 3SFR

36 SFR 36
34 34
32 32
30 30:
28 28
26 26
24 24
22 22
20 20
18 18
16 SNR 16
14 ~ 1 4
12 12 ?
10 10
8 8

6 6
/ _ L%.b

43 _1 - 4,
2 21

0 1 2 3 4 5 6 7 8 9 10 "alphal3 0 1 2 3 4
(a) LAN Trmlsmission cost

5 6 7 8

~SFR

SNR

RF

SNR
RF

9 10
(b) Partial local processing cost

(The abscissa is the value of Oz13 and the ordinate is the cost in seconds. Lines labeled with boxes or circles

are those obtained for lower or higher values o f /g f i 's, respectively.)

It also shows that costs are smaller for the higher values of PA s. One exception
was the RF transmission cost, in which case the transmission cost is independent
of the PA values (see Equation 37). In particular, the SNR transmission incurred
less cost than the RFs for the higher values of PA s.

5.1.2 Observation Using Simulation. We performed another simulation using the
same ranges as in Section 5.1 except for OLijS and pAs. The following two different
ranges were used for these two:

• Range HL: (Higher ceij and lower PA')
5.00--< c~ij _< 10.00 for <i,j>E • and 0.00 < PA -< 0.50 for i = 1 ,2 , . . . ,7 .

• Range LH: (Lower c~ij and higher PSi')
1.00< ceij _< 5.00 for <i,j>E gJ and 0.50_<i PA -< 1.00 for i = 1,2,- . . ,7 .

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 319

Table 4. Simulation results for biased variant data parameter ranges

Method

SFR

RF

SNR

Average

data size

33878 Mbytes

4.1 Mbytes

8.8 Mbytes

Transmission

Average cost #wins

LAN

32.0 hours

14.0 secs

29.9 secs

WAN

23.5 days 0%

4.1 mins 93%

8.8 mins 7%

Partial local processing

Average cost

30.2 hours

31.7 secs

36.6 secs

(a) Range HL (5.00 < Olij < 10.00, 0.00 < PA ~- 0.50)

#wins

0%

100%

0%

Method

SFR

RF

SNR

Average

data size

47.0 Mbytes

0.86 Mbytes

0.53 Mbytes

Transmission

Average cost

LAN WAN

2.7 mins 46.9 rnins

2.9 secs 51.8 secs

1.8 secs 31.8 secs

Partial local processing

#wins

0% 2.0 rains

22% 4.0 sees

78% 4.6 sees

Average cost

(b) Range LH (1.00 < Oqj < 5.00, 0.50 ~_ pf~ < 1.00)

(Transmission time is elapsed time and local processing time is CPU time.)

#wins

0.8%
99.2%

0%

Table 4 shows the simulation result. The RF method shows better performance
than in Table 3 for Range HL, and worse performance for Range LH. There are
even some cases in Range LH where the SFR method is better than the RF method
for the partial local processing cost. These results confirm that the observations
made in Section 5.2.1 are generally true.

6. Conclusion

We have developed three different methods--SFR and two new methods (RF
and SNR)--for instantiating view-objects from a remote relational (preferably main
memory) database server by materializing a view query, restructuring the query result
into a nested relation, and resolving references among them. Rigorous algorithms
have been developed for each step of the methods with a primary focus on the
transmission and nesting steps, and a partial cost model has been developed.

Cost comparison results showed that the RF and SNR methods are far more
efficient than the SFR method. The RF method wins over the SNR method more

320

frequently and therefore is the more preferred method. Alternatively, there remains
an optimization issue of choosing either the RF or SNR method depending on the
query and the speeds of the server and client. The RF and SNR methods are useful
in a local database system environment as well, because they perform better, even
for the local processing costs alone.

We assumed unlimited main memory for the cost model, which is not always true
in a real situation. It may reveal interesting (not opposite) results to elaborate on
the cost model by considering the available main memory size in a virtual memory
architecture.

References

Abiteboul, S. and Bidoit, N. Non-first normal form relations to represent hierar-
chically organized data. Proceedings of the ACM International Conference on the
Principles of Database Systems, Waterloo, 1984.

Abiteboul, S. and Kanellakis, P. Object identity as a query language primitive.
Proceedings of the International ACM SIGMOD Conference on the Management of
Data, Portland, OR, 1989.

Ammann, A., Hanrahan, M., and Krishnamurthy, R. Design of a memory res-
ident DBMS. Proceedings of the IEEE Computer Conference (COMPCON), San
Francisco, 1985.

Barsalou, T. View objects for relational databases. Ph.D. thesis, Medical Information
Sciences Program, Computer Science Department, Stanford University, 1990.

Barsalou, T. and Wiederhold, G. Complex objects for relational databases. Computer
Aided Design, (Special issue on object-oriented techniques for CAD), 22(8):458-
468, 1990.

Barsalou, T., Siambela, N., Keller, A., and Wiederhold, G. Updating relational data-
bases through object-based views. Proceedings of the A CM SIGMOD International
Conference on the Management of Data, Denver, CO, 1991.

Barsalou, T., Sujansky, W., and Wiederhold, G. Expert database systems in medicine-
The PENGUIN project. Proceedings of the AAAI Spring Symposium on A1 in
Medicine, Stanford University, 1990.

Bitton, D. The effect of large main memory on database systems. Proceedings of the
ACM SIGMOD International Conference on the Management of Data, Washington,
DC, 1986.

Bitton, D. and Turbyfill, C. Performance evaluation of main memory database
systems. Technical Report 86-731, Department of Computer Science, Cornell
University, 1986.

Bitton, D., Hanrahan, M., and Turbyfill, C. Performance of complex queries in main
memory database systems. Proceedings of the IEEE International Conference on
Data Engineering, Los Angeles, 1987.

Christodoulakis, S. Implications of certain assumptions in database performance
evaluation. ACM Transactions on Database Systems, 9(2):163-186, 1984.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 321

Codd, E. A relational model of data for large shared data banks. Communications
oftheACM, 13(6):377-387, 1970.

DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., and Wood, D.
Implementation techniques for main memory database systems. Proceedings of
the ACM SIGMOD International Conference on the Management of Data, Boston,
MA, 1984.

Dill, G. Peripheral semiconductor storage: A feasible alternative to disk and tape?
Hardcopy, 7(1):107-113, 1987.

Dittrich, K. and Lorie, R. Object-oriented database concepts for engineering appli-
cations. Technical Report RJ 4691 (50029), IBM Research Lab., San Jose, CA,
May, 1985.

Dwyer, E and Larson, J. Some experiences with a distributed database testbed
system. Proceedings of the IEEE, 75(5):633-648, 1987.

Fischer, E and Thomas, S. Operators for non-first-normal-form relations. Pro-
ceedings of the IEEE Computer Software and Applications Conference, Chicago, IL
1983.

Haskin, R. and Lode, R. On extending the functions of a relational database system.
Proceedings of the ACM SIGMOD International Conference on the Management of
Data, Orlando, FL, 1982.

Horowitz, E. and Sahni, S. Fundamentals of Data Structures. London: Computer
Science Press, Inc., 1976.

Khoshafian, S. and Copeland, G. Object identity. Proceedings of the International
ACM OOPSLA Conference on Object-Oriented Programming Systems, Languages,
and Applications, Portland, OR, 1986.

Knuth, D. TheArt of Computer Programming~ Vol 3: Sorting and Searching. Reading,
MA: Addison-Wesley, 1973.

Law, K., Barsalou, T., and Wiederhold, G. Management of complex structural
engineering objects in a relational framework. Engineering with Computers, 6:81-
92, 1990a.

Law, K., Wiederhold, G., Barsalou, T., Siambela, N., Sujansky, W., Zingmond,
D., and Singh, H. An architecture for managing design objects in a sharable
relational framework. International Journal of Systems Automation: Research and
Applications (SAR4), 1(1):47-66, 1991.

Law, K., Wiederhold, G., Barsalou, T., Siambela, N., Sujansky, W., and Zingmond,
D. Managing design objects in a sharable relational framework. Proceedings of
the ASME International Conference on Computers in Engineering, Boston, 1990b.

Lee, B. Efficiency in Instantiating Objects from Relational Databases through Views,
Ph.D. thesis, Computer Science Department, Stanford University, December,
1990.

Lee, B. and Wiederhold, G. Outer joins and filters for instantiating objects from
relational databases through views. IEEE Transactions on Knowledge and Data
Engineering, 6(1):108-119, 1994.

322

Lehman, T. and Carey, M. A study of index structures for main memory database
management systems. Proceedings of the International Conference on Very Large
Data Bases, Kyoto, Japan, 1986a.

Lehman, T. and M. Carey. Query processing in main memory database manage-
ment systems. Proceedings of the ACM SIGMOD International Conference on the
Management of Data, Washington, DC, 1986b.

Lorie, R. and Plouffe, W. Complex objects and their use in design transactions.
Proceedings of the IEEE Annual Meeting-Database Weelc" Engineering Design Appli-
cations, 1983.

Mauer, W. and Lewis, T. Hash Table Methods. ACM Computing Surveys, 7(1):5-20,
1975.

Roth, M., Korth, H., and Silberschatz, A. Extended algebra and calculus for nested
relational databases. ACM Transactions on Database Systems, 13(4):389-417, 1988.

Shapiro, L. Join processing in database systems with large main memories. ACM
Transactions on Database Systems, 11(3):239-264, 1986.

Singh, H. View-objects in CIM environment. Annual Report of the Center for
Integrated Systems (CIS), Stanford University, 1990.

Swami, A. Optimization of large join queries. Ph.D. thesis, Computer Science
Department, Stanford University, 1989.

Valduriez, E Join indices. ACM Transactions on Database Systems, 12(2):218-246,
1987.

Whang, K., Ammann, A., Bolmarcich, A., Hanrahan, M., Hochgesang, G., Huang,
K., Khorasani, A., Krishnamurthy, R., Sockut, G., Sweeney, P. Waddle, V., and
Zloof, M. Office-by-example: An integrated office system and database manager.
ACM Transactions on Office Information Systems, 5(4):393-427, 1987.

Whang, K. and Krishnamurthy, R. Query optimization in a memory-resident do-
main relational calculus database system. ACM Transactions on Database Systems,
15(1):67-95, 1990.

Wiederhold, G. Views, objects, and databases. IEEE Computer, 19(12):37-44, 1986.
Wiederhold, G., Barsalou, T., and Sujansky, W. Sharing information among biomed-

ical applications. Proceedings of the Conference on Software Engineering in Medical
lnformatics, Amsterdam, 1990.

Wilkes, W., Klahold, E, and Schlageter, G. Complex and composite objects in
CAD/CAM databases. Proceedings of the IEEE International Conference on Data
Engineering, Los Angeles, 1989.

VLDB Journal 3 (3) Lee: Instantiating View-Objects From Remote Relational DBs 323

Appendix
Derivation of Non-base Data Parameters

Provided with the base set of data parameters (Section 5), the other data parameters
are derived as follows. Consider Nt as the number of tuples generated when we
"flatten" a corresponding SNR. The cardinality of $1 is Nsa, and each tuple of Si
is replicated flij times when flattened with its nested subrelation Sj. Hence,

N t = N~ 1 IX flij
(NSRNFT(Si),NSRNFT(Sj))EE(NFT)

(39)

where E(NFT) denotes the set of edges in the NFT. (NSRNFT(S/), NSRNFT(Sj)
) C E(NFT) means that Sj is an immediate nested subrelation of Sj.

Since corresponding SFR and SNR have the same set of attributes,

n s

Tt = ~ T~ k (40)
k=l

Since both $1 and F1 contain the pivot relation key,

N s l = N f l (41)

and the other Ns~s (i ~ 1) are computed from Equation 5 as follows:

Nsk = Nsl n flpq for k = 2 , 3 , . . . , n ~
(NSRNFT(Sp),NSRNFT(Sq))ePlk

(42)

where Pli denotes the path from NSRNFT(S1) to NSRNFT(S/) in the NFT.
A nested subrelation Sk has no EJAs. Therefore, Ts~ = T A (1-p A) if no merging

of RFs is needed. In general, Tsk is the total size of RF tuples merged to produce
Sk after stripped off their EJAs. (See Section 4.2.2 for 1-'k.)

T,~ = ~ Tf,(1 - pf~) (43)
FiEFk

