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Abstract. The Smart Data System (SDS) and its declarative query language, De- 
clarative Reasoning, represent the first large-scale effort to commercialize deduc- 
tive database technology. SDS offers the functionality of deductive reasoning in a 
distributed, heterogeneous database environment. In this article we discuss sev- 
eral interesting aspects of the query compilation and optimization process. The 
emphasis is on the query execution plan data structure and its transformations by 
the optimizing rule compiler. Through detailed case studies we demonstrate that 
efficient and very compact runtime code can be generated. We also discuss our ex- 
periences gained from a large pilot application (the MVV-expert) and report on 
several issues of practical interest in engineering such a complex system, includ- 
ing the migration from Lisp to C. We argue that heuristic knowledge and control 
should be made an integral part of deductive databases. 

Key Words. Declarative reasoning, query optimizer, multi-databases, distributed 
query processing, heuristic control, productization. 

1. Introduction 

Despite a high volume of deductive database research (Gallaire et al., 1978, 1984; 
Bayer, 1985; Ullman, 1985; Zaniolo, 1985; Tsur and Zaniolo, 1986; see also Ceil 
et al., 1989; Naqvi and Tsur, 1989; Ullman, 1989), only a handful of deductive 
database systems have been prototyped, and very few have been used for realistic 
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applications. Among them are LDL (Tsur and Zaniolo, 1986); NAIL! (Morris et 
al., 1986) and its successor Glue-NAIL! (Phipps et al., 1991); EKS-V1 (Vieille et 
al., 1990); Starburst (Murnick et al., 1990); Aditi (Vaghani et al., 1991); LOLA 
(Freitag et al., 1991); and CORAL (Ramakrishnan et al., 1992). 

In this article we focus on the development of the Declarative Reasoning language 
(DECLARE), the Smart Data System (SDS), and the commercialization of deductive 
database technology at a very early stage. Except for private communications 
and colloquium talks, the only available documentation was internal reports (e.g., 
Kieflling, 1987) and a brief overview (Kieflling and[ Gtintzer, 1990). Our initial 
experiences with this new field were at the Technical University of Munich. In 1986, 
a large research and development center was built under the direction of the first 
author to turn these new ideas into a commercial product. 

For a better understanding of some design decisions within this project, we offer 
some remarks on the marketing strategy. One main selling point of this technology is 
its strategic decision making capability. Database technology, enhanced by deductive 
rule-based capabilities, can assist enormously in condensing information to make 
good decisions (a major key in achieving a competitive advantage). In many corporate 
decisions, relevant information is spread out over heterogeneous databases, and such 
an environment has to be addressed. 

The design and development of DECLARE and SDS (from 1986 to 1990) were 
particularly challenging and exciting--many of the beneficial results known today 
(e.g., model-theoretic, optimization, or interoperability issues for multi-databases) 
were barely emerging while the development, with all its milestones, was in progress. 
This article gives an insight into our efforts. 

The rest of this article is organized as follows: In Section 2 we introduce the 
architecture of SDS and discuss deductive reasoning: in a heterogeneous database 
environment. In Section 3 we describe our site-transparent, declarative query 
language, DECLARE. We discuss various aspects of Relational-Lisp, the runtime 
environment for the Lisp-version of DECLARE, in Section 4. We dedicate Section 
5 to the crucial issue of query optimization, and give some detailed case studies. In 
Section 6 we report on a successful pilot application of this technology, the MVV- 
Expert. Section 7 is concerned with aspects of productization and commercialization. 
In Section 8 we tackle one weak point of the puristic declarative view and summarize 
some of our experimental and theoretical results on entering heuristic user knowledge 
and control. In Section 9 this article ends with some of the lessons we have learned. 

2. Architecture of SDS 

2.1 Heterogeneous Database Reasoning 

Novel programming paradigms with the complexity of deductive databases can 
be marketed effectively only if past user investments in database technology are 
preserved to a high extent (notably more recent investments in SQL databases). 
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Figure 1. Architecture of SDS 
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SDS is a deductive database system that was designed to meet these requirements. 
Although it can also operate in a stand-alone mode, a main objective of SDS is to 
add powerful deductive capabilities and connectivity to existing relational databases. 
Therefore it is not required to store both the extensional part (i.e., ground facts) and 
the intensional part (i.e., rules that are not ground facts) of a deductive database. 
Instead, the extensional part can be stored in different relational database systems, 
and be accessed dynamically via so-called database adaptors. The advantages of 
deductive reasoning thus can be combined with the strengths of relational databases 
to develop and maintain large-scale applications. 

Let us explain this architecture for heterogeneous database reasoning in more 
detail. SDS consists of the following major components: 

• The declarative query language DECLARE. 
• The optimizing rule compiler (ORC). 
• The extented relational algebra (ERA). 
• Various database adaptors to commercial SQL-systems. 

ERA is the runtime environment for compiled and optimized DECLARE queries. 
During the project two delivery platforms emerged, one in a Lisp-environment 
(mainly used for internal application development), the other as a C-based production 
environment (Section 7). Figure 1 shows the architecture of SDS, with Relational- 
Lisp as the implementation of the ERA. 

Relational-Lisp (Section 4) adds relations as first class objects to the Lisp 
environment. The local database may be loaded into virtual Lisp memory or be 
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Figure 2. Database adaptors for heterogeneous reasoning support 
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disk-resident, managed by an upgraded high-speed SQL database kernel. Relational- 
Lisp also interacts with heterogeneous databases through the database adaptors. 
An integrated architecture is realized for the local database, whereas tight coupling 
is implemented for remote databases. 

2.2 Da tabase  Adaptors  

In 1986, the area of interoperabitity for multi-databases was a new research topic 
and off-the-shelf database connectivity tools were not available. We therefore had to 
develop our own database adaptors (despite the development of the SQL/1 standard), 
which also had to deal with interoperabihty in a heterogeneous SQL-environment. 
Figure 2 shows a sample SDS configuration with some actually realized adaptors. 
Note that during an application session several remote databases (in addition to 
the local one) can be accessed within a single DECLARE query. 

"The database adaptors in SDS are in charge of the following tasks: 

• Given some transport protocol, establish a connection to a relational DBMS. 
• Get catalog information about the relations stored in the relational DBMS. 

This information is needed by the ORC to check and optimize a DECLARE 
program. 

• Translate an ERA-expression into the SQL dialect of the target relational 
DBMS. 

• Transmit this query to the relational DBMS and start query execution. 

• Transmit the result of this query back to the ERA and perform type trans- 
formations (due to differences in the type systems). 
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3. The DECLARE Language 

From a user's point of view, the most important part of a deductive database system 
is its declarative rule language, which offers expressiveness and convenience far 
beyond that of a conventional SQL database system. The DECLARE language is a 
dialect of the Datalog-family. Besides defining virtual relations by rules, DECLARE 
is used to specify queries to a deductive database. Set-oriented updates to the base 
relations are done using Relational-Lisp (or Embedded SQL for the C-version). 

3.1 DECLARE Features 

The DECLARE language offers the following features: 
• Full recursion (Section 5.6). 
• Negation (Section 5.6). 
• All-quantification in rule bodies (Example 1 and Section 5.6). 
• Interpreted function terms, written in a host language (ComrnonLisp or C). 

Arithmetics, set and list processing, and abstract data types can be realized 
through this mechanism. 

• Constraints with predefined and user-defined boolean predicates. 
• Grouping and aggregation (Example 2). 
• Site-transparent access to ground facts stored in local or remote databases. 

The DECLARE language is strongly lyped. All attribute values and variables must 
belong to one of the DECLARE data types. Besides the basic types integer, float, 
and string, decimal, date, time, and timestamp also are offered (this is the SQL/2 
standard). Moreover, to support complex objects the data type list is provided. For 
ground facts stored in external databases an automatic mapping from the data types 
of the specific DBMS to the corresponding DECLARE data types is performed. 
This type system comes with a variety of conversion and extraction functions to 
translate between representations. 

Restrictions of the DECLARE language are: 
• Range-restricted variables. 
• Covered variables in negation and all-quantification. 
• Stratified negation and grouping. 

The declarative semantics of DECLARE is the usual perfect model semantics with an 
equivalent bottom-up fixpoint evaluation procedure (van Emden and Kowalski, 1976; 
Apt et al., 1987; Przymusinski, 1987). DECLARE is completely order-independent 
with respect to predicates in rule bodies, implying in particular that left-recursion 
causes no safety problems as in Prolog. 

If declarative languages are to be incorporated into conventional database 
processing, then the addition of features for grouping and aggregation is indispensable 
(compare group-by-having in SQL). From early exposure to customer needs it became 
apparent that aggregation must be supported within recursion, leaving the sheltered 
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paradise of stratified logic programs. Therefore, the stratification requirement was 
enforced only for the "normal" use. Beyond that, ]DECLARE supports a default 
operational semantics for non-stratified recursion (Section 5.5). 

DECLARE integrates rule-based programming with the full functionality of 
applicative programming, because DECLARE programs are embedded in Com- 
monLisp o r  C. On the other hand, CommonLisp or (2 functions may be used within 
DECLARE rules. A benefit of this flexibility arises when an attribute is regarded 
as an abstract data type. By choosing an appropriate implementation, the efficiency 
of DECLARE programs may be enhanced (see e.g., the N-queens benchmark in 
Kieflling, 1992). 

3.2 DECLARE Examples 

Now we give two brief examples of DECLARE. In contrast to the usual Horn clause 
Prolog-style, rules with the same head predicate are; collected and define a virtual 
relation. 

Example 1: (Use of the forall-construct, of constraints, and of arithmetics.) 

I f  in 1989 the total sales of a salesperson were $1,000,000 or more, and if all her~his 
customers were highly satisfied in 1989, then she~he shall get a special bonus of 0.5% of 
the sales exceeding $1,000,000. 

DEFINE VIRTUAL RELATION special_bonus(sp string,bonus decimal) { 
IF total_sales(sp, 1989, sum) WITH sum >= i000000, 

FOR3~LL cust 
(customer(sp, cust), sales(cust, _ , 1989) IMPLIES 
cust_satisfaction(cust, 1989, sat) 
WITH sat IN ("high", "very high")) 

THEN special_bonus(sp, 0.005 * (sum - I000000)); } 

Get all sales persons whose special bonus is more than $50,000. 

DEDUCE (sp) FROM special_bonus (sp, bonus) WITH bonus > 50000; 

Example 2: (Use of grouping with aggregation.) 
Determine the total sales of each sales person per year. 

[] 

DEFINE VIRTUAL RELATION 
total_sales (sp string, year integer, sum integer) { 
GROUP customer (sp, cust), sales(cust, value, year) 
BY sp, year 
TO total_sales(sp, year, SUM(value)); } [] 
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4. Relational-Lisp 

In this section we present the extended relational algebra IERA), which is the target 
language of the optimzer. We focus on Relational-Lisp, 1 implementing the ERA 
for the Lisp-version of DECLARE (the C-version is dealt with in Section 7). 

4.1 Extended Relational Algebra 

Relational-Lisp, the runtime environment of DECLARE, offers the following ERA 
operations: 

p r o j e c t ,  s e l e c t ,  product ,  equ i jo in ,  t h e t a j o i n ,  semijoin ,  
a n t i j o i n ,  d i f f e r e n c e ,  i n t e r s e c t ,  union, groupby, i t e r a t e  

Samples of ERA code are provided by the case studies in Section 5.6. The 
main extensions to the standard relational algebra are as follows: 

The semi-naive operator i t e r a t e  for efficient least fixpoint computations 
of general recursive predicates implements the optirnizations proposed by 
Gfintzer et el. (1987). Formal differentiation of the fixpoint equation is done 
at the level of ERA expressions (Bancilhon, 1986; Schmidt, 1986). 

• Interpreted host language functions may occur in s e l e c t ,  t h e t a j o i n ,  
p ro jec t .  

• Anti j o in  is added to implement negation. 

• Groupby is a complex grouping operation with aggregation. 

• Pipelining of select-project; and join-select-project; sequences is provided. 

It should be noted that versions of the standard semi-naive operator have been 
invented independently at various places (e.g., Balbin and Ramamohanarao, 1987). 
Sophisticated refinements of i t e r a t e  (Section 8) seem to be a speciality of DE- 
CLARE, however. 

Several runtime optimizations are performed by these operations: 

• Index selection. 

• Creation of temporary indexes (e.g. in hash-based joins). 

• Simple algebraic optimizations (e.g., R M 0 = ~). 

1. A first operational version of Relational-Lisp was presented at the Hannover fair in the spring of 1987 
and was fully released one year later (Hillman, 1988). 
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Additional functions are provided to scan relations.. Thus result relations can be 
processed by the non-deductive modules of an application program (e.g., to generate 
graphic output). A complete abstract data type for working with relations is available, 
together with the data definition operations described below. 

4.2 Global Schema and Transaction Management 

Relational-Lisp supports different types of relations: 

• Temporary relations are generated as the result of ERA-expressions, but can 
also be defined explicitly. 

• Permanentrelationsmaybelocalrelations(i.e., maintaineddirectlyby Relation- 
al-Lisp), or external relations residing on remote SQL-databases. Primary 
indexes and any number of secondary indexes can be created if desired 
(create_index,  drop_index). 

• Catalog relations contain the usual meta-data plus information on accessible 
databases, their locations, and the necessary parameters for accessing them. 

For updating relations, Relational-Lisp offers the usual functionality. Trans- 
action processing is supported via sessions ( s t a r t _ s e s s i o n ,  commit, r o l l back ,  
end_session).  As a specialty, local transactions may even span data definition 
commands. Since most commercial SQL-databases did not support a prepared- 
to-commit state at that time, a distributed two-phase commit for multi-database 
updates could not be attempted. 

During a session, external databases can be plugged in and de-plugged dynami- 
cally to restrict the allocation of resources to the phases when queries are evaluated 
and particular external relations need to be addressed. Relations can be imported 
from accessible databases. This means that schema information is extracted au- 
tomatically and the relations become accessible under a logical name. The data, 
however, remain at the remote database and relevant pieces are fetched only at 
query evaluation time (tight coupling). The following code fragment demonstrates 
the access to remote relations: 

(create_db_access :domain_name "MVV" :db_name "timetable" 
:external_name "/usr/db/mvv" 
:host_name "server1" :type "oracle" 
:transport_protocol "tcp_ip" ... ) 

(start_session "MVV") 
(plugin_db "timetable") 
(import_tel "departure_time") 
(end_session : commit) 

Now the relation departure_tirae is accessible in subsequent sessions when 
the database t ime tab le  is plugged in. It can be accessed in a site-transparent way 
like any other local or external relation. 
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In summary, Relational-Lisp acts as an SQL-integrator in heterogeneous multi- 
database environments with convenient global schema integration facilities. Since 
DECLARE programs are executed within Relational-Lisp sessions, all transactional 
features apply to such DECLARE applications automatically. 

4.3 Distributed Query Evaluation 

Operations that involve more than one external relation are executed in a distributed 
fashion whenever possible. Here reduction of network traffic is an important 
optimization objective. The class of feasible algorithms, however, is constrained 
because, for query purposes, external database administrators normally don't admit 
write operations (e.g., to temporarily store intermediate query results). Under these 
premises a simple equijoin R Mr=s S invoh, ing two relations on different external 
databases can be performed in the following way: 

1. Determine the smaller relation R from catalog information and compute a 
join filter for attribute r: 
filterR := db_adaptor("select distinct r from R"); 

2. Get all join partners for attribute s: 
impS := db_adaptor("select * from S where s in :filterR"); 

3. Compute a join filter for attribute s and get all join partners for attribute r: 

filters := project(trapS, s); 
tmpR := db_adaptor("select * from R where r in :filterS"); 

4. Construct the join result locally: 
result := equijoin(tmpR, r, s, trapS); 

Note that when the filters are transported via the in-clause of Dynamic SQL, the 

vendor-dependent limits on the length of an SQL statement must be observed. In 

such cases, the SQL query is split automatically into two or more queries, each 
containing some portion of the filter. 

5. The Optimizing Rule Compiler (ORC) 

5.1 Phases and Passes of the ORC 

DECLARE is a static compile-time language for defining virtual relations via rules, 
for asking ad-hoc queries, and for defining query forms for repetitive use. Since 
different tasks have to be done for rules and queries, the ORC could easily be 
divided into two main phases: a rule processing phase and a query processing phase. 

The further subdivision of these phases into passes and, in particular, the 
definition of the internal data structures required some crucial design decisions 
affecting the modularity, flexibility, and efficiency of the ORC. Our guiding policy 
for choosing and implementing internal data structures was to use tailored data 
structures where needed, and to stick to relations whenever possible. The latter policy, 
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Figure 3. Query processing: Main passes olf the ORC 
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of course, reduced specification and implementation time, because DECLARE and 
Relational-Lisp could be used to implement some parts of the ORC. 

Rule processing. During rule processing the DECLARE parser performs the usual 
tasks; the rules are syntactically checked and transformed into an internal repre- 
sentation. After all rules are parsed, context-sensitive checks like the stratification 
test are done. The chosen internal representation is a set of relations and provides 
a one-to-one mapping of the source rules to their internal format. Additionally, a 
predicate connection graph (PCG) is maintained as a relation. Recursive cliques 
(also called strongly connected components) are computed easily using this PCG. 

Query processing. Query processing to answer an ad-hoc query or to compile a 
query form is divided into four main passes (Figure 3). Pass 1 syntactically checks 
the query. Pass 2 constructs the initial query execution plan (QEP). The QEP 
is the main data structure of the ORC and will be discussed later. The initial 
QEP is handed over to pass 3, which handles all optimizations. Optimizations are 
performed exclusively by QEP transformations (Section 5.4). The result of pass 
3 is an optimized QEP, which is the input for pass 4, the code generator. Here 
an ERA-expression is generated in the form of a Relational-Lisp program (in the 
C version of DECLARE Relational-C code is produced here; Section 7). This 
Relational-Lisp program either can be executed immediately for ad-hoc queries or 
be stored permanently for later recurrent use in case of query forms. 

5.2 QEP Data Structure 

The QEP is the central data structure of the ORC and has to represent the operational 
semantics of a DECLARE query. The following rationale guided the choice for the 
QEP data structure. 

• The class of QEPs has to be powerful enough that a broad variety of 
optimization methods can be described as transformation schemes between 
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Figure 4. QEP-nodes and their adornments 

OR-node: n: 0 ~ i  { name, type, vars, bind, sel, filter } 

AND-node: 
n: O ~ j  { r-id, join, antijoin, semijoin, sel, proj, sip } 

LFP-node: n: [LFP[  {clique } 
0 ~  k 

QEPs. Moreover, extensibility is of utmost concern since new optimization 
methods may be invented any day. 

The modeling of the query answering process through the QEP must be both 
abstract enough for optimization purposes (otherwise certain transformations 
may become awkward or even impossible) and concrete enough for code 
generation (which should be straightforward and compact). 

These considerations have led to the following definition of the QEP as a special 
query/rule-graph (Ullman, 1985), which has a direct interpretation as an ERA 
operator graph. 

Definition: (The QEP as adorned "dag") 

A QEP Q = (N, E, A, u, cO is a finite, ordered, directed, acyclic, and 
single-rooted graph with nodes N, edges E C N X N, a set A of adornments 
and two labeling functions u : N ~ {OR, AND, LFP) and ot : N ~ A. 

A QEP is bi-partite with nodes partitioned into {AND, LFP}-nodes and 
OR-nodes. The root is an OR-node. [] 

Note that we have defined the class of QEPs as "dags" (instead of trees) to support 
common subexpressions. The ordering imposed on son nodes is used to represent join 
orderings for sideways information passing. QEP nodes are graphically represented 
as shown in Figure 4. 

The adornments have the following meaning: 
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• For OR-nodes, namo is a relation name (virtual or base), type  distinguishes 
between different types of relations, va t s  is a list of variables relevant at 
this node, bind contains binding information (b if bound, f if free) for the 
variables in vars, sel describes selection conditions and filter is a set of 
variables for which dynamic filters are appli~tble. 

• For AND-nodes, r - i d  is a system-generated rule identifier, j o i n  describes 
"genuine" O-join conditions whereas an t i  j o in  (semi jo in)  holds antijoin 
(semijoin) conditions, s e l  describes selection conditions, proj  describes 
pipelined projections (applicable after joirdantijoin and selection), and finally 
s ip  contains information for dynamic filter propagation (sideways information 
passing). Antijoin conditions correspond to negation and universal quantifi- 
cation. For rules with grouping and aggregation, proj  also describes the 
aggregations to be performed. 

• For LFP-nodes we have the c l ique  adornment which lists the predicates in 
a recursive clique (mutual recursion is supported). 

This set of adornments must be extensible according to the ORC-builders' 
needs. For example, one can add more information on special recursion types (e.g., 
monotonic, t r a n s i t i v e - c l o s u r e ,  or bounded,  etc.) to LFP-nodes as soon as the 
optimizer can capture such cases by specialized algorithms. 

The construction of the initial QEP follows an obvious procedure. For examples 
refer to the case studies in Section 5.6 and the QEPs displayed in the Appendix. 

5.3 The Optimization Model 

The task of the ORC is to successively transform the initial QEP to reduce the 
runtime costs for answering the given query as much as possible. Due to the 
complexity of the optimization problem, however, it will often be impossible to find 
the optimal QEP. Therefore, the only goal of the optimizer is to find a sufficiently 
efficient QEE 

All optimizations applied by the ORC have been implemented as equivalence- 
preserving QEP transformations. More precisely, the ORC provides a repertoire of 
modular and independent optimization methods with the following properties: 

• Each transformation is applied to a part of the QEP (usually a node and all 
of its direct successors). 

• No implicit assumptions are made (e.g., about the order in which the trans- 
formations are applied). It first tests whether all of its pre-conditions hold. 

• Then, using statistical knowledge or some heuristics, it transforms the part of 
the QEP on which it is working. 

• A transformation may change adornments of existing nodes, delete some 
nodes or sub-trees, or add new nodes to the QEE 
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Besides the QEP transformations, a search strategy, describing when and where 
to use which transformation, is needed. For example, a possible search strategy 
for the optimization techniques push - se l ec t ion  and push-p ro jec t ion  may be to 
perform two depth-first traversals of the QEE During the first one, p u s h - s e l e c t i o n  
is applied to each node of the QEP, while during the second one, push-proj  ec t i on  
is applied to each node. 

Note that the optimization process can be stopped at any time between transfor- 
mations and code generation can be started. This feature is very useful if thresholds 
for elapsed optimizer time must not be exceeded. 

This modular approach provides the following advantages: 

• New optimization methods can easily be added, existing methods can easily be 
changed, different methods implementing the same optimization techniques 
can be compared. 

• The order of applying transformations can be changed. For example, when 
adding a comnon-aubexpression optimization, it is not obvious whether 
it is better to apply common-subexpression before push - se l ec t i on  and 
push -p ro j ec t ion  or the other way round. 

• Several "simple" transformations can be combined into one "complex" trans- 
formation. 

• Different search strategies and/or different opimization methods can be used 
for different areas of the QEE For example, j o i n - o r d e r  optimization using 
statistical knowledge is done only for (sub-) QEPs with a height below a 
pre-definable threshold. For more complicated QEPs a heuristic join order 
optimization criterion based on bound/free information is used. 

During the design and implementation of the ORC, many of the optimization 
techniques dealing with recursion were barely emerging. Therefore, this modular 
approach proved very effective. In early stages of the optimizer project (when the 
repertoire of optimization methods just contained some simple optimizations like 
p u s h - s e l e c t i o n  and push-pro jec t ion)  the QEP was traversed several times and 
in each traversal one optimization was applied to all nodes. When more and complex 
optimizations were available, this simple strategy no longer produced satisfactory 
results. Using combined transformations we eventually got much better results. 

5.4 Basic Optimization Repertoire 

Choice of basic optimization methods: 

push-selection, push-projection, join-order, specialize-operation, 
push-filter, supplementary-magic-set, common-subexpression 

Note that each optimization method can be switched on/off independently by 
annotations, and new methods can be added in a modular fashion as soon as they 
become available. 
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The modular, flexible, and integrated design of the ORC has been accom- 
plished independently from other concurrent projects. Concerning the applied 
optimization methods, DECLARE borrows from other theoretical works, of course. 
Push-se lec t ion  and push-pro jec t ion  are extended to push through recursion 
(Ramakrishnan et al., 1988). Jo in-order  optimization determines a good order- 
ing of the subclauses. Our heuristic algorithm for subgoal reordering is based 
on the "bound-is-easier" assumption (van Gelder, 1986; Ullman, 1989) and has 
polynomial complexity. Spec ia l i ze -opera t ion  does things like substituting a 
semijoin for an equ i jo in  immediately followed by a p ro jec t ,  if possible. The 
p u s h - f i l t e r  transformation applies the ideas of a~,namicfilters (Kiei~ling, 1986). 
The supplementary-magic-set  implements the ideas of Bancilhon et al. (1986), 
Beeri and Ramakrishnan (1987), and Sacca and Zaniolo (1987). 

Uncontrolled rewriting considered harmful. We decided to do the supplementary- 
magic-set  transformation by a QEP transformation rather than by rewriting on 
the level of source rules, as usually suggested. Although this QEP transforma- 
tion looks more complicated (Section 5.6), we believe that this approach provides 
some advantages over the usual rewriting. Separating rule rewriting for magic-set 
transformations from the rest of the optimization process may produce an overly 
lengthy and complicated program due to the "pump-up" factor inherent in the 
magic-set approach, which may lead to an explosion of the rules generated. In 
contrast, if magic-sets are integrated with all other optimization methods, a much 
more intelligent control of the transformation process becomes feasible. As an 
example, the ORC needs not apply the supplementary-magic-set  transformation, 
if push - se l ec t ion  was already performed for the recursive clique in question. In 
this way the advantages of a modular optimizer design are carried over even for 
sophisticated recursive optimization methods. 

5.5 Code Generation 

Code generation is done by apost-order traversal of the QEP (i.e., the codes of the 
son nodes are generated before the code of the father is constructed). Note that, for 
stratified programs, such a post-order traversal respects the intended layer-by-layer 
evaluation. OR-nodes, AND-nodes and LFP-nodes are mapped to union, joins 
( t h e t a j o i n ,  a n t i j o i n ,  semi jo in)  and semi-naive iteration ( i t e r a t e ) ,  respec- 
tively. For each type of node, code templates are available. 

Code generation for an OR-node n. Given the adornments {name, type ,  va t s ,  
bind, s e l ,  f i l t e r } ,  the following tasks are performed: 

(a) Wrap the selections around the codes of the son nodes. 
(b) Apply the dynamic filters. 
(c) Perform the union. 

Therefore, the code template has the following shape: 
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template_union( 
template_filterselect( 

template_select (code_son_l, sel_l), filter_l) 

template_filterselect( 
template_select (code_son_k, sel_k), filter_k)) 

Code generation for an AND-node n. Given the adornments {r-id, join, 
antijoin, semijoin, sel, proj, sip}, the following tasks are performed: 

(a) Perform sideways information passing (note that here the evaluation 
order of son nodes is important). 

(b) Apply the join (thetajoin, anti join, semi join). 
(c) Apply the selection. 
(d) Perform the projection. 

Code generation for an LFP-node n. The codes, generated for the k son nodes, are 
used as a k-dimensional fixpoint equation and are supplied to the i terate-operator.  

Beyond stratification. As already mentioned, DECLARE may be configured such 
that, in case of a stratification violation, the query may still be evaluated. There are 
many interesting problems leading to non-stratified, but locally stratified programs. 
An example is the familiar parts-explosion program; a DECLARE solution can be 
found in Kie61ing and Gfmtzer (1990). DECLARE can accept such programs at the 
user's responsibility. Code generation follows exactly the scenario described before. 
Thus, we can offer a default operationalsemantics for non-stratified programs which, 
of course, has to be treated carefully. 

5.6 Case Studies 

Now we provide three case studies to show how the ORC works. 

Uncle: (parent ,  sex, and married are base relations) 

DEFINE VIRTUAL RELATION uncle(x string, u string) { 
IF parent(x, pa), parent(pa, gpa), parent(u, gpa), 

sex(u, "male") WITH u /= pa 
THEN uncle(x, u); 

IF parent(x, pa), parent(pa, gpa), 
sex(a, "female"), married(a, u) 

THEN uncle(x, u) ; } 

parent(a, gpa), 
WITH a /= pa 

DEDUCE u FROM uncle("michael", u); 

Assume that the ORC performs the following optimizations: 
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Figure 5. ERA-code for Uncle 

c_era("semijoin(parent, (i), (i), 
semijoin(parent, (0), (1), 

select (parent, const_equal(0, 'michael') ) ), 
: select attr_unequal (0: 0, 1 : 0) ) ", 

&tmpRel [0] ) ; 
c_era("union(semijoin(tmpRel[0], (0), (0), sex, 

: select const_equal (1: 1, ' male ' ), 

:project (0)), 
semijoin(semijoin(married, (0), (0), tmpRel[O]), 

(0), (0), sex, 
: select const_equal (I : I, ' female' ), 
:project (i)))", 

&QueryResult) ; 

- Common-subexpression: The three parent-atoms are joined only once. 

- P u s h - s e l e c t i o n :  "michael"  is pushed to the leaves of the QEP. 

Jo in -o rde r :  According to the bound-is-easier strategy, the paren t -a tom 
with "michael"  as selection is the starting point for the three-way join. 

- Push-projection, specialize-operation. 

The resulting QEP is shown in Figure 11 of the Appendix. The generated 
ERA-code is shown in Figure 5. 

The second c e ra  expression computes the result of the query using the common 
subexpression (tmpRet [0]) which is the result of the first c e ra  code. The c e r a  
function parses its first argument and recursively calls the function c e r a  with the 
code of the sons (e.g., arguments 1 and 4 in the semijoin case). Then the results 
of these calls are combined and the final result is returned in the second argument 
of the c_era  function. 

Lucky_Man: (human, sex,  d i s e a s e ,  p a r e n t ,  and mar r i ed  are base relations) 

DEFINE VIRTUAL RELATION lucky_man(x s t r i n g )  { 
IF human(x), sex(x ,  "male"), 

NOT (disease(x, ca) WITH ca IN ("cancer", "aids")), 
FORALL d (parent(d, x), sex(d, "female") IMPLIES married(d, _)) 

THEN lucky_man(x) ; } 

DEDUCE x FROM lucky_man(x); 
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Figure 6. ERA-code for Lucky_man 

c_era("antijoin( 
antijoin(semijoin(human, (0), (0), sex 

:select coast_equal(l, 'male')), 
(0),  (0),  
select(disease, const_member(l,('cancer','aids')))), 

(0), (1), 
antijoin(semijoin(parent, (0), (0), sex 

:select const_equal(1, 'female')), 
(0), (0), married))", 

~QueryResult); 

Since Vx(A(x) ~ B(x)) ~ - Jx (A (x )A  ~B(x) ) ,  and because we enforce 
the covered variable restriction for FORALL-formulas, these two negations can safely 
be mapped to nested antijoins. Then let us assume that the ORC performs the 
following optimizations: 

Join-order :  Start by joining positive atoms, then add the negative literal 
and the FOPdtLL-formula via antijoins. 
Push-projection, spe c ialize-operat ion. 

The code produced from the resulting QEP, as shown in Figure 12 of the Appendix, 
is given in Figure 6. 

Same_Generation: (parent and human are base relations) 

DEFINE VIRTUAL RELATION sg(x string, y string) { 
IF human(x) THEN sg(x, x); 
IF parent(x, xl), sg(xl, yl), parent(y, yl) THEN sg(x, y); 

CONFIRM sg("julia", "werner") ; 

The initial QEP for this folklore example is shown in Figure 13 of the Appendix. Now 
assume that the ORC performs the optimizations supplementary-magic-set ,  j o in-  
order  and spec ia l i ze -opera t ion .  From the resulting QEP (Figure 14 of the 
appendix), the ERA-code in Figure 7 can be generated. Here the first i t e r a t e  
computes the supplementary and minimagic sets, which are defined by mutually 
recursive rules. The second i t e r a t e  computes the reeursive predicate sg by using the 
supplementary and minimagic sets. It's worth pointing out here that the generated 
code, even for magic-set transformations, is amazingly compact. 
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Figure 7. ERA-code for Same_Generation 

c_era (" iterate (supmagi c = equij o in (equij o in (parent, O, 0, minimagic), 
3, O, parent, 
:project (0:(3, 1:0, 0:I, 1:1)), 

minimagic= union(project(supmagic, (2, 3)), 
create_temp_rel ( 

'char a1140]; char a2140]~, 
# 

:init_value ('julia', 'werner'))))", 
&tmpRel[O], &tmpRel [1] ) ; 

c_era("iterate(sg = union(semijoin(tmpRel[O], (2,3), (0,I), 
sg, :project ( 0 ,  1 ) ) ,  

semi join(select (tmpEel [1], attr_equal (0, 1)), 
( 0 ) ,  ( 0 ) ,  human)))", 

&tmpRel [2] ) ; 
c_era (" select (tmpRel [2], 

and(const_equal(O, ' julia'), const_equal(1, 'werner')))", 
&OueryResult) ; 

6. The MVV-Expert 

The MVV-Expert (StrauB, 1986; Bayer et al., 1987) is an expert system developed for 
the public transportation system of the Munich area to inform about connections, 
fares, and departure and arrival times. 2 

The Miinchener Verkehrs- und Tarifverbund ( M W )  is a network of all public 
transportation systems in the Munich area, which has about 2.3 million citizens. The 
MVV includes suburban trains, underground trains, streetcars, and buses serving a 
total of about 2,800 stations. 

The MVV uses an integrated tariff system allowing a customer to ride on all 
its lines with only one ticket. Most of the tariff ru~es defining the fare of a ride 
from one station to another are displayed only graphically to the user. For this 
purpose, the M W  offers two maps that present a:n abstract view of the Munich 
area. These maps are the Bartarifschemaplan for computing the price of a single 
ride and the Zeitkartentarifschemaplan for the price., of season tickets. Both maps 
separate the area into different tariff zones. The price of a ride depends on the 
number of zones crossed. The translation of this graphically based tariff system to 
a declarative description proved difficult and generated a complex rule system. Let 

2. This system was designed and implemented as an early pilot application from late 1985 through 1987 and 
its first version was presented at the Systec-fair in 1986 in Munich and at the Hannover-fair in 1987. 
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Figure  8. Detai l  of  B a r t a r i f s c h e m a p l a n  m a p  

tariffzone 
. . \ zo2 
tafinzone \ line \zo 1 

tariffzone \ / \ 
tl 

IF ¢ a r i f f z o n e ( s ¢ l ,  zo),  t a r i f f zone ( sZ2 ,  zo),  ne ighbor(s t1 ,  s t 2 ) ,  
Za r i f f zone ( sZ l ,  zo l ) ,  Zar i f fzone(sZ2,  zo2) 
WITH zo2 /= zo, zol /= zo, zol /= zo2 

THEN used_Zar i f fzone(sZl , sZ2,zo) ;  

Figure 9. Predicate connection graph for fare computation 
farecomp 
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routestations farecomD2 

far~omp_n 2~,...,,~i farecomp-i 

useO:ar'   , l 
neighbor tariffzone 

us give an example for the conversion of one of the Bartarif-rules from the graphic 
to the logical formalism. 

Figure 8 presents a detail of the Bartarifschemaplan and a rule deduced from 
the graphical representation. This rule illustrates that a ride including station st1 
and its neighbor station st2 has to use zone zo, even though s t l  and st2 also 
belong to other zones zol and zo2. The predicate connection graph in Figure 9 
gives an impression of the variety and complexity of virtual relations needed to 
count the number of tariff zones for an MVV-ride. 

Altogether, the MVV-Expert consists of 13 base relations and 112 rules defining 
40 virtual relations. Eight of these rules use negation, 51 rules are direct-recursive, 
6 rules are mutually recursive, and 4 rules use aggregation. The smaller base 
relations (12 out of 13) were held in a local Relational-Lisp database. The largest 
base relation, containing about 10% of the full timetable information, consisted of 
approximately 40,000 tuples stored in an external Oracle database and connected 
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via the database adaptor mechanism. This pilot application ran on two different 
hardware systems, on a Xerox 1108 Interlisp-D workstation and on an 80386/16Mhz 
machine. All DECLARE rules were optimized and compiled into Relational-Lisp. 
Typical queries to the MVV-EXPert showed the following average response times: 

- Search the shortest connections between two arbitrary stations: 1 sec. 

- Show the fare for a tour: 1 - 4 sec. 

- Show the cost of a season ticket: 4 - 10 see. 

- Show the arrival time for a certain connection: 3 - 5 see. 

Only queries for arrival and departure times access the external Oracle database. 
Each such access can be split into three components: 

- Generate a SQL query and transmit it to Oracle: 0.1 sec. 

- Execute the query on Oracle: 0.6 see. 

- Send the results back to Relational-Lisp, including necessary format trans- 
formations: 0.1 see. 

We learned a great deal from this early exposure to a realistic application. We 
were surprised by the good response times which came very close to a usable system. 
On this outcome nobody would have bet because of the overly complicated tariff 
system. We also learned about the difficulty of transforming graphical rules into 
"vanilla" logic programs without the support of adequate geometric data types. 

Encouraging experiences have also been made by other in-house applications 
(e.g., a demo for inventory control, an air-travel study, and a leads-qualification 
system for marketing and sales support using a large external database) and from a 
pilot installation of DECLARE and SDS at a major company in Japan, where various 
industrial applications in the area of production control have been prototyped. 

7. Productization and Commercialization 

Initially, company strategy regarded CommonLisp not only as a technically suitable 
platform for DECLARE and SDS, but also as a marketable one. At that time 
a growing number of expert system applications (the marketable spin-offs of AI 
research) seemed to open the field for new technologies implemented in Lisp. As 
it turned out, however, a strong resistance against Lisp-based systems showed up 
among potential customers, because ComrnonLisp application programmers were 
not readily available. Consequently, application development had to take place 
in environments familiar to users of relational databases. This necessitated the 
migration of SDS into a conventional programming environment used for E-SQL 
and C-applications, and required that DECLARE be embedded into the C-language 
rather than CornmonLisp. 
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7.1 Transition to the C-World 

A slight transformation of the DECLARE syntax concerning the position of paren- 
theses and other syntactic sugar was probably the easiest part of this transition. 
DECLARE was embedded into the C programming language in the same style as 
Embedded SQL, which SDS actually used as a substitute for the update features of 
Relational-Lisp. The definition of virtual relations using DECLARE rules and the 
formulation of queries is embedded into so-called reasoning sections. These sections 
can be defined in separate source files. A specific precompiler extracts the reasoning 
sections and passes them to the rule compiler ORC. The access to the results of a 
DECLARE query is achieved through the cursor mechanism of E-SQL. DECLARE 
cursor definitions are transformed into SQL cursor definitions for the application 
program. A complete re-implementation of Relational-Lisp in C, however, would 
have needed much more time than the original Lisp implementation. As a welcome 
alternative, Relational-C was implemented in cooperation with TransAction Systems 
GmbH, a Munich-based system house for relational database software. TransAction 
Systems upgraded the kernel of their proprietary SQL database system TransBase 
with the necessary extensions: 

• A least fixpoint operator to compute recursive virtual relations. 
• A representation of lists using strings. 
• Intermediate temporary relations. 
• A call mechanism for host language functions embedded in DECLARE rules. 

The rule compiler ORC itself remained in CommonLisp, but this was completely 
hidden at the interface level. As DECLARE is a static compile-time language, the 
runtime system for a completed application did not need Lisp at all. Thus, we could 
essentially migrate DECLARE to the C-world by porting the runtime system from 
CommonLisp to C. 

Some other issues dealing with existing relational databases merit more study. 

Null values from SQL. Relations imported from existing external SQL-databases will 
inevitably contain null values, which now may participate in the deduction process. 
But current Datalog-systems are designed to deal with 2-valued logic only. The 
DECLARE system circumvented the well-known semantic traps simply by replacing 
each null value with a user-defined default value for the corresponding attribute 
type. The consequences of such a choice, however, cannot easily be determined in a 
complex deductions process, particularly when negation and grouping are involved. 

Rule management. A crucial decision was whether to store rules inside the deductive 
database system. From an academic point of view, managing rules by the deductive 
database system itself yields the advantages of sharing not only data, but also 
the entire rule-based knowledge. In a marketing-driven situation, however, quite 
different arguments prevail. Prospective customers from the conventional data 
processing enterprise, accustomed to imperative programming, already suffer a sort 
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of culture shock on their first confrontation with the declarative rule-based paradigm. 
This holds even for SQL programmers who regularly program in E-SQL. To mitigate 
this culture shock and to disturb their usual program development habits as little 
as possible, the conservative approach was to treat rules like ordinary programs, 
which are to be kept in files. This does not interfere with software engineering 
tools like make-files, etc., which are in action ever~vhere. Consequently, an early 
prototype of a rule management component as part of DECLARE was deliberately 
abandoned in favor of the traditional programming: approach. 

7.2 Software-Engineering Aspects 

DECLARE and SDS were engineered according to commercial practice for high- 
quality software development. Far more than 50 person years were invested into 
research and development time, let alone the expenditure for marketing and sales. 
At peak times the head count of the DECLARE team in Munich reached 16 R&D 
people. One of the most challenging aspects of this project was the need to provide 
a complete product to stand out in the marketplace, while the theory and necessary 
methods were evolving. To keep up with this process the development operation 
had to be laid out with special care. A relatively large portion of development time 
was spent on design and specification phases. The use of abstract data types and 
the separation of modules communicating only through specified interfaces proved 
particularly beneficial. This strict modularity and thorough documentation, not only 
of final results but also of the reasons behind design decisions, allowed the complete 
re-engineering of implementation modules, if required. Three reasons sometimes 
appearing together made such an effort necessary from time to time: addition of 
new features and optimization techniques, practical experiences with the current 
implementation, and shifting marketing requirements. 

A variety of tools was provided to inspect the global internal data structures of 
the ORC (e.g., tools to visualize and browse the PCG and the QEP). Concerning 
quality assurance, a test suite was implemented for ;automated regression testing of 
the entire DECLARE system and of single modules. Considerable manpower was 
put into test tools and test specifications. A steadily growing collection of test cases 
was generated to ensure the correctness of the entire system after each software 
change or extension. In addition to mere verification, the test tool was extended to 
collect sample performance data on the effect of program changes. For instance, 
the ERA-code was systematically tuned, paying special attention to low-level details 
like cons-consumption in CommonLisp. Also, after having observed from our 
applications that deductions often involve a large number of ERA-operations on 
rather small (intermediate) relations, hybrid algorithms for many ERA-operations 
were implemented, aiming to cut down the overhead for very small relations. 

This systematic approach enabled us to compare different optimizer configura- 
tions in detail. Implementation of the system itself was performed in several stages, 
characterized by an early realization of a basic operational system to which opti- 
mization techniques and strategies were added incrementally. This allowed the early 



VLDB Journal 3 (2) KieBling: DECLARE and SDS 233 

gathering of practical experiences. Some complex examples, like the MVV-expert, 
accompanied most of the development process. 

8. Adding Heuristic Knowledge and Control 

Now we report some results from applying DECLARE to problem areas that have 
not yet received much attention. Current deductive database systems offer a purely 
declarative framework; that is, the user specifies what results to compute, but the 
user can hardly affect how these results are computed. Narrowing the search space 
by clever methods like magic-sets is not always sufficient. But the user sometimes 
has additional heuristic knowledge for computing 'the answer to a query. 

In Section 8.1 we present theoretical and experimental work on combinatorial 
problems from the DECLARE project, not released with the product and done 
by only a few people from the DECLARE team. Section 8.2 addresses a general 
framework for an expert database system that was not prototyped. 

8.1 Combinatorial Problems in Deductive Databases 

Extending Datalog t o  Datalog neg+fune brings us into the realm of NP-complete 
problems. Sohdng these by breadth-first search algorithms (i.e., semi-naive iteration) 
or by depth-first search (i.e., SLD-resolution) is not feasible. Instead, best-first search 
algorithms like A* must be used. The A*-algorithm was originally introduced in AI to 
efficiently solve difficult search and planning problems that produced a combinatorial 
explosion. As shown by Schmidt et al. (1989), a generalized version of A*, called 
the DBA*-algorithm, can be implemented using the so-called sloppy-delta iteration 
scheme for differential goal-directed deduction introduced by G0ntzer et al. (1987) 
and Schmidt et al. (1987). Let us demonstrate its effectiveness by reporting some 
benchmark results gained from the familiar 15-puzzle problem. 3 The 15-puzzle 
consists of 15 numbered, movable tries set in a 4x4-frame. One cell of the frame is 
always empty, making it possible to move an adjacent numbered tile into the empty 
cell or to move the empty cell. The goal is to find a series of moves that end up 
in a predefined ordering of the tries in the 4x4-frame. 

The deductive database consists of the virtual relation puzzle ( s t a t e ,  row, co l ) .  
S t a t e  is a puzzle represented by a list of lists (with indices starting from 0). 
Ftow and col  give the position of the empty cell in s t a t e .  Given a puzzle state, 
up, down, l e f t  and r igh t  are user-defined functions that move the empty cell 
into the specified direction. The DECLARE rules, a sample start position, and a 
predefined goal position are depicted in Figure 10. 

To apply A*, heuristics estimating the cost of a path from a puzzle state to the 

3. The 15-puzzle is used here for demonstration purposes only, and is not intended to be a genuine deduc- 
tive database application. 
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F igure  10. 1 5 - p u z z l e  in D E C L A R E  

start 

3 6 14 1 

15 2 1 ~ 9  

11 13 5 10 

4 8 7 12 

finish 

1 2 3 4 

1:2 13 14 5 

11 [~]15 6 
10 9 8 7 

DEFINE VIRTUAL RELATION 
puzzle (p list, row integer, col in teger )  { 

ASSERT 

IF 
THEN 

IF 
THEN 

IF 
THEN 
IF 
THEN 

puzzle((( 3, 6, 14, 1), (15, 2, O, 9), 
(11, 13, 5, 10), ( 4, 8, 7, 12) 

puzzle(p,  row, col) WITH row /= 0 
puzzle(up(p) ,  row-l ,  co l ) ;  
puzzle(p,  row, col) WITH row /= 3 
puzzle(down(p), row+l, col ) ;  
puzzle(p,  row, col) WITH col /= 0 
p u z z l e ( l e f t ( p ) ,  row, co1-1); 
puzzle(p,  row, col) WITH col /= 3 
puzz l e ( r i gh t (p ) ,  row, co1+1); } 

CONFIRM puzz le ( ( (  1, 2, 3, 4),  (12, 13, 14, 5),  
(11, O, 15, 6), (10, 9, 8, 7) ), 2, 1); 

) ,  1 , 2 ) ;  

goal state is supplied. 4 Using an experimental version of DECLARE containing 
the DBA*-algorithm, we succeeded in solving randomly generated puzzles at an 
average time of about 80 seconds on a slow 80386/16Mhz machine. As in KieBling 
(1992) for the N-queens benchmark, we invite everybody to beat this result. Further 
extensions, implementing the BS*-algorithm for heuristic bidirectional search by 
fixpoint iteration with subsumption, can be found in K6stler et al. (1993). 

We experimented with other extensions in the area of monotonicity information. 
For example, consider a quadratic recursion with a fixpoint equation: 

F(S) = S*S + R 
Normally, the differential expression required for the semi-naive iteration is: 

dF(S) = z~x*S + ~*z~x + S*z~x 
Under certain monotonicity assumptions it can bc simplified considerably to: 

dF(S) ffi z~*~ 

4. We used the Manhattan distance heuristics and the sequencing score heuristics (Schmidt et al., 1989). 
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The solution to the N-queens problems in Kieflling (1992) describes such a case. 

8.2 Expert Database System Architecture 

Schmidt (1992) proposed an expert database system architecture that offers a general 
framework to the user for specifying application-specific control knowledge. This 
framework distinguishes between an object-level and a meta-level. At the object- 
level, the user specifies the logical aspects of a problem by a conventional deductive 
database language like DECLARE. At the meta-level, the user provides another 
deductive database containing control information about the object-level deduction 
process. The feedback from the meta-level to the object-level is specified by control 
predicates, which allow us to discard irrelevant tuples or rules, to prefer useful 
tuples or rules, and to prematurely terminate recursion, if desired. 

Let us discuss some features of this architecture by the Air-Travel Expert 
introduced by Freitag and Biernath (1988), which computes a flight connection 
between two airports: 

Mr-Travel Expert Database (Object-Level): 

• SR(f ,  g, h) : h is the smallest region geographically containing :~ and g. 

• SubR(g, h) : The region h geographically contains the region g. 

• DF(x, y) : There is a direct flight between x and y. 

• FC(x, y,  r ,  g) : There is a flight connection between x and y on the route 
r,  and g is the smallest geographic region containing all stops of this flight. 
This predicate is defined by the following rules. 

• A direct flight from x to y implies a flight connection from x to y: 
IF DF(x, y ) ,  SR(x, y ,  h) THEN FC(x, y ,  [y,  x ] ,  h ) ;  

• If there is a flight connection from x to z and a direct flight from z to y ,  
then there is a flight connection from x to y: 
IF FC(x, z, r, f), DF(z, y), SR(f, y, h), NOT Member(y, r) 
THEN FC(x, y,  [y I r ] ,  h ) ;  

Without any control, the bottom-up evaluation of this program generates a much 
too large search space. Common heuristics for this application, however, is not to 
leave the smallest geographic region, which contains both the start airport and the 
destination airport. 5 Again the sloppy-delta iteration scheme mentioned above can 
be used to prune the search space. The conditions that select the relevant tuples 
are specified at the meta-level by the control predicate Prefer(q ,  (([ql], nl), .  •., 
([q/~], nk))), where qi (1 < i < k) are object-level conditions and the optional value 
ni E IN specifies the number of iteration steps: 

5. E.g., when looking for a flight connection from Augsburg, Germany to London, consider only those 
flights not leaving Europe. 
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In the first n l  iteration steps prefer those tuples (deduced up to now) that fulfill 
ql, . . . ,  in the next n/¢ iteration steps prefer those tuples (deduced up to now) 
that fulfill qk. (If r~i is not given, the condition qi is used until no more tuples 
can be deduced.) 

Using this control predicate, we can specify the above heuristics by the following 
meta-rule. 6 

Air-Travel Expert Database (Meta-Level): 

If a query @q is looking for flight connections from @a to @b, and if @h is 
the smallest region containing both @a and @b, then don't leave @h. 

P r e f e r (  @q, ([FC( . . . . . .  g ) ,  SubR(g, @ h ) ] ) )  

Query ( @q, [FC( @a,  @b . . . .  ) ] ) ,  SR( @a,  @b, @h). 

Altogether, we claim that deductive databases need a handle for user knowledge. 
This view is also expressed by McCarthy (1987): "Reasoning and problem-solving 
programs must eventually allow the full use of quantifiers and sets, and have 
strong enough control methods to use them wit:hour combinatorial explosion." 
Such handles can be employed to enter heuristics, subsumption, or monotonicity 
information. Currently CORAL (Ramakrishnan et al., 1992) with its annotation 
mechanism already offers such features to a certain extent. 

9. Summary 

For every new idea there is always the dilemma of gain and pain to be first in the 
marketplace. While prospective customers were excited by the technical potential 
of DECLARE and SDS, their most recent (not yet depreciated) investments in 
relational technology prevented many from making a change. The lack of textbooks 
and Datalog programmers five years ago was certainly another retarding factor. 
Concerning Lisp vs. C, we found that--despite the bad reputation of Lisp-based 
systems---the efficiency of DECLARE/Lisp proved quite high (only the infamous 
garbage collector was felt disturbing at times). Thus, the choice of C as a host 
environment for DECLARE and SDS is more a matter of marketing. From our 
own experience and customer feedback it became apparent that the current Datalog 
model needs to be extended, most urgently towards non-stratified recursion (including 
aggregates as it happened lately), abstract data types, modules and handles to enter 
user knowledge for semantic optimizations and heuristic control. Moreover, dealing 
with incomplete knowledge (nulls) is a practical issue. 

6. For the meta-level we use a general Horn-clause syntax instead of DECLARE syntax. For distinguishing 
recta-level variables from object-level variables, recta-level variables start with @. 
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In 1989, DECLARE and SDS were certainly unique when compared with other 
available prototype systems. Concerning our modular and extensible optimizer archi- 
tecture, we have nothing but positive experiences to report. During the development 
the contemporary work done for LDL has caught most of our attention. 

Although never reaching a commercial breakthrough (a not so rare fate for start- 
up technologies) we believe that DECLARE and SDS have provided a feasibility 
proof for deductive database technology in full scale, even in a heterogeneous 
multi-database environment with global schema integration features. But deductive 
database technology as it stands does not seem to provide a full quantum leap 
justifying a major switch-over in industry. Nevertheless, it will make its way, if 
not in its present "Spartan" form, then enriched with the necessary ingredients for 
cost-effective application development and maintenance. 
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Appendix 

The subsequent figures contain QEPs for the case studies performed in Section 5.6. 

Figure 11. Optimized QEP for Uncle 
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Figure 13. Initial QEP for Same_generation 
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Figure 14. Optimized QEP for S a m e _ g e n e r a t i o n  
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