
VLDB Journal,2, 161-210 (1994), Kotagiri Ramamohanarao, Editor

@VLDB

161

The CORAL Deductive System

Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and

Praveen Seshadri

Received Aprig 1993; revised version accepted, December, 1993.

Abstract. CORAL is a deductive system that supports a rich declarative language,
and an interface to C+ +, which allows for a combination of declarative and im-
perative programming. A CORAL declarative program can be organized as a
collection of interacting modules. CORAL supports a wide range of evaluation
strategies, and automatically chooses an efficient strategy for each module in the
program. Users can guide query optimization by selecting from a wide range of
control choices. The CORAL system provides imperative constructs to update, in-
sert, and delete facts. Users can program in a combination of declarative CORAL
and C + + extended with CORAL primitives. A high degree of extensibility is pro-
vided by allowing C+ + programmers to use the class structure of C+ + to en-
hance the CORAL implementation. CORAL provides support for main-memory
data and, using the EXODUS storage manager, disk-resident data. We present a
comprehensive view of the system from broad design goals, the language, and the
architecture, to language interfaces and implementation details.

Key Words. Deductive database, query language, logic programming system.

1. Introduction

T h e C O R A L deduct ive system was in i t ia ted unde r the name Conlog, and an ini t ia l
overview was p r e sen t ed by R a m a k r i s h n a n et al. (1990). C O R A L provides a power fu l
dec la ra t ive l anguage tha t can be used to express complex quer ies o r view def ini t ions

Part of this article was presented at the International Conference on Very Large Databases, Vancouver,
Canada, 1992; and at the ACM SIGMOD International Conference on the Management of Data, San
Diego, California, 1993b.

Raghu Ramakrishnan, Ph.D., is Associate Professor, and Praveen Seshadri, M.S., is Research Assistant,
Computer Sciences Department, University of Wisconsin, Madison, WI 53706. Divesh Srivastava, Ph.D.,
and S. Sudarshan, Ph.D., are Technical Statfmembers, AT&T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, NJ 07974. When the work was performed, Dr. Srivastava and Dr. Sudarshan were Research
Assistants at the University of Wisconsin, Madison.

162

on databases. CORAL combines features of database query languages (e.g., efficient
treatment of large relations, aggregate operations and declarative semantics) with
features of a logic programming language (e.g., powerful inference capabilities and
support for structured and incomplete data). The CORAL declarative language
significantly extends the expressiveness of standard database query languages such
as SQL, and differs from logic programming languages such as Prolog in supporting
a declarative semantics.

Applications in which large amounts of data must be analyzed, and the analysis
is too complex to be performed using a less expressive language such as SQL, are
likely to benefit from the combination of features provided by CORAL. Examples
of such applications include sequence queries, such as stock market analysis queries
and DNA sequence analysis queries, and generalized transitive closure queries,
such as bill-of-materials queries. We discuss several applications of CORAL in this
article.

Queries written in a declarative language do not specify how they should be.
evaluated. Because the database on which the queries are evaluated may be quite
large, efficient execution of declarative queries is an important requirement of
any deductive database system. We believe that no one evaluation technique is
the best in all situations. Hence CORAL supports a wide range of evaluation
strategies and optimization techniques (e.g., Ramakrishnan, 1988; Naughton et al.,
1989; Kemp et al., 1990; Ramakrishnan and Sudarshan, 1991; Ramakrishnan et
al., 1992a, 1994). CORAL automatically chooses an efficient evaluation strategy
for each program but, given the rich set of constructs in the language, we believe
that some user guidance is critical for effective optimization of many sophisticated
programs. Several optimization techniques may be simultaneously applicable to the
same program. Further, different optimization and evaluation techniques may be
ideal for different parts of the program. A challenge faced by CORAL was how to
effectively combine different optimization and evaluation techniques, and to provide
users with the ability to choose, in a relatively orthogonal manner, from the suite
of optimizations supported by CORAL. The module structure, described below, is
the key to meeting this challenge.

A CORAL program is a collection of modules, each of which can be sepa-
rately compiled (into CORAL internal data structures). Modules are the units of
optimization and also the units of evaluation. Evaluation techniques can be chosen
on a per-module basis, and different modules with different evaluation techniques
can interact in a transparent fashion; the evaluation of each module is independent
of the techniques used to evaluate other modules. In addition, the user can op-
tionally specify high-level annotations at the level of each module, to guide query
optimization. The ability to mix and match different evaluation strategies and op-
timization techniques in different modules greatly enhances the practical utility of
the system, and reflects well on its modularity. CORAL is more flexible than other
deductive database and logic programming systems in this respect. We consider the
annotation-based approach to control, and some of the novel annotations supported,

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 163

to be important contributions of the CORAL project.
While declarative languages can provide considerable ease of expression, users

may want to code parts of their applications in an imperative language for reasons
of efficiency, or for performing inherently imperative actions such as updates or
user interaction. Hence, an important goal of the CORAL effort was to integrate
the deductive system with a general purpose programming language, with minimal
impedance mismatch. Since CORAL is implemented in C + + (Stroustrup, 1991),
this is the language with which CORAL has been interfaced. Users can program in
a combination of declarative CORAL and C+ +, and the interface is bi-directional:

¢

1. CORAL code can be embedded within C+ + code, and data in the database
can be manipulated from C+ + directly, using high-level abstractions provided
by the CORAL interface.

2. Declarative CORAL code can use predicates defined using C+ + procedures.

To provide efficient support for novel applications, CORAL allows the user to
create new C + + classes, and manipulate objects of these classes in the declarative
query language. New implementations of relations and indexes can also be added
easily. Thus the CORAL deductive system is extensible. Extensibility has proved
very useful in several CORAL applications.

The CORAL system uses the EXODUS client-server storage manager (Carey
et al., 1986) to provide support for disk-resident relations; however, it can run in
a stand-alone mode, if all data are in main memory. The CORAL architecture
thus supports an environment where one or more clients use copies of the CORAL
system to execute queries, accessing data from a shared EXODUS server. Since the
client-server interaction (including concurrency control, buffer management, and
recovery) is largely handled by EXODUS, much of the design effort has focused
on the architecture of the system of each client.

The CORAL deductive system is available from the University of Wisconsin
along with an extensive user manual and a large suite of sample programs. 1 The
actual implementation includes all the features described in this article, unless
otherwise stated.

The rest of this article is structured as follows. In Section 2, we present the
declarative features of CORAL; this is the primary focus of the system. We briefly
discuss the interactive environment of the CORAL system in Section 3, touching on
some interesting features like data organization capabilities, transaction facilities, and
debugging tools. Section 4 contains an overview of the CORAL system architecture.
Section 5 provides an overview of query evaluation and optimization. Section 6
covers the basic strategies used in evaluating a module, as well as several important
refinements. This section also addresses user guidance of query optimization via

1. CORAL is free software available by anonymous ftp from ftp.cs.wisc.edu.

164

annotations. Section 7 explains the underlying representation of data used in
CORAL. The CORAL/C+ + interface and support :for extensibility in CORAL are
discussed in Sections 8 and 9. In Section 10 we discuss the performance of the
CORAL system using a few representative programs. In Section 11 we mention
several applications that have been developed using the CORAL system, to illustrate
the utility of deductive database systems. We discuss related systems in Section 12.
Finally, we provide a retrospective discussion of the CORAL design and outline
future research directions in Section 13.

2. Declarative Language Features

We describe the declarative language provided by CORAL, informally presenting
some concepts such as constants, variables, terms, facts, and rules along the way.
Formal definitions of these concepts may be found in logic programming texts (e.g.,
Lloyd, 1987).

2.1 Syntax and Semantics

CORAL syntax is modeled largely after Prolog. Numbers, identifiers beginning with
lower-case letters, and quoted strings are constants. Identifiers that begin with an
upper-case letter are variables.

Consider a database with an employee relation having three attributes: name,
department and salary, and the following facts:

employee("John", "Toys for Tots", 35000)
employee("Joan", "Toys for Tots", 30000)

The first fact indicates that John is an employee in the Toys for Tots department
and has a salary of $35,000. The second fact indicates that Joan works for the same
department and has a salary of $30,000.

Constants and variables constitute simple terms. To express structured data,
complex terms are required. Complex terms are constructed using functors (i.e.,
nninterpreted function symbols as record constructors. Functors are represented
using identifiers beginning with a lower-case letter). Such terms can be arbitrarily
nested. The following fact illustrates the use of complex terms:

address (" John", residence ("Madison", street_add (" Oak Lane", 3202), 53606)).

The above fact indicates that John's residence is 3202 Oak Lane in the city of
Madison, and the zip is 53606. The function symbols res idence and s t r ee t_add
are used as record constructors.

Rules in CORAL take the form:

• • • , (<) .

The semantics of CORAL rules is based on a declarative reading of the rules, unlike
Prolog which has an operational reading of the rules. Informally, a rule is to be

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 165

to be read as an assertion that for all assignments of terms to the variables that
appear in the rule, the head is true if each literal in the body is true. (In particular,
a fact is just a rule with an empty body.) A CORAL program is a collection of
rules, which may be organized into modules (Section 2.2.)

It should be emphasized that a declarative language allows the programmer to
express the meaning of a program, but offers no guarantee of execution strategy or
order. This implies that declarative programs should not use features (e.g., updates)
that have side-effects. 2

In the deductive database literature, it is common to distinguish a set of facts
as the extensional database (EDB), and to refer to the collection of rules as the
intensional database (IDB). The significance of the distinction is that at compile
time, only the IDB, and possibly meta-information about the EDB (e.g., schema
and functional dependency information) are examined; the actual contents of the
EDB are assumed to be unavailable at compile time. Thus, the IDB is viewed as
a program and the EDB as the input to the program.

A principal attraction of the logic programming paradigm is that there is a
natural meaning associated with a program. As we have seen, each fact and rule
can be read as a statement of the form "if <something is t r u e> then <something
else is also t rue> . " In the absence of rules with negation, set-generation, and
aggregation, the meaning of a program can be understood by reading each of the
rules in the program in this manner, with the further understanding that the only
true facts are those that are either part of the input EDB or that follow from a
repeated use of program rules. More formally, the semantics of CORAL programs
is given by the least fixpoint (e.g., Lloyd, 1987) of the program, with the EDB as
the input to the program.

CORAL goes much further towards supporting this simple semantics than logic
programming languages like Prolog. For programs with only constants and variables
as terms and without negation, set-grouping or aggregation (i.e., DATALOG pro-
grams) this simple semantics is guaranteed. (More precisely, the default evaluation
strategy is sound, complete, and terminates for this class of programs.) It is possible
that the set of relevant inferences is infinite in the presence of terms with function
symbols; in this case, termination cannot be guaranteed, but the evaluation is still
sound; 3 evaluation is also complete if it terminates.

In subsequent sections, we discuss more advanced features of the CORAL
declarative language, such as non-ground facts, negation, set-generation, and ag-
gregation.

2. CORAL does offer an evaluation mode calledpipelining that offers an explicit guarantee of a fixed eval-
uation strategy, and thus permits a meaningful use of such features within a program (Section 6).

3. The "occur check" has been omitted from the current implementation of CORAL, as in all Prolog sys-
tems, for reasons of efficiency. This compromises soundness for programs with non-ground terms and func-
tors.

166

Figure 1. The Append program

module listroutines.
export append (bbf,bfb).

append([],L,L).
append([H I T],L,[H I El])

end_module.
: - a p p e n d (T , L , L 1) .

2.2 Modules

Coral users can organize sets of rules and facts into modules. We introduce the
module syntax using a program to append two lists (Figure 1). This program
illustrates the notion of modules, and CORAEs support for complex objects such
as lists. 4

Modules can export the predicates that they define; a predicate exported from
one module is visible to all other modules. The export statements also define
what forms of external queries are permitted on the module (b denotes an ar-
gument that must be bound in the query, and f an argument that can be free).
For example, one can ask the following queries on the l i s t r o u t i n e s module in
Figure 1: ? a p p e n d (f 1 , 2] , [3,4] ,X), which corresponds to the bbf adornment,
a n d ? a p p e n d ([1 , 2] , X, [1 , 2 , 3 , 4]) , w h i c h c o r r e s p o n d s to t h e b:fb a d o r n m e n t .

2.3 Non-Ground Facts

CORAL permits variables within facts. For example, consider Figure 1. It is possible
to query append as follows: 5

Ouery: ? -append([l ,2 ,3 ,4 ,X] , [Y,Z], ANS).

and get the answer (a fact with variables in it)

ANS = [1,2,3,4,X,Y,Z]

A fact with variables represents the (possibly infinite) set of ground facts obtained
by replacing each variable by a ground term. Facts with variables are often useful

4. The notation for list terms follows Prolog. A list is written in the form [elemlelem2 elemn] ; []
describes the empty list. Given an element e and a list 1, [e 11] denotes the list obtained by adding e to the
front of 1. A list [H I T] can be unified with a given non-empty list [elemlelem2 elemn] by binding H
to eleml, which is the head of the given list, and binding T to the list [elem2 elem,], which is the tail
of the given list. The tail of a list of the form [elem 1] is [].

5. The current CORAL implementation by default performs certain optimizations that assume the absence
of non-ground facts. These optimizations do not affect this query. In general, if non-ground facts might be
generated during the evaluation of a module, these optimizations should be disabled by adding an annota-
tion @ non_ground_facts + to the module.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 167

in knowledge representation, natural language processing, and particularly in a
database that stores (and possibly manipulates) rules. Non-ground facts may also
be useful to specify constraint facts (Ramakrishnan, 1988; Paris et al., 1990), although
they currently are not supported in CORAL. Because CORAL allows non-ground
facts, rules are not required to be range-restricted. 6 To the best of our knowledge,
CORAL is the only deductive database system, other than XSB (Sagonas et al.,
1994) to support non-ground facts.

2.4 Negation

CORAL supports a class of programs with negation that properly contains the class of
non-floundering left-to-right modularly stratified programs (Bry, 1989; Ross, 1990).
A program is non-floundering if all variables in a negative literal are ground before
the literal is evaluated (in the left-to-right rule order). Intuitively, a modularly
stratified program is one in which the answers and sub-queries generated during
program evaluation involve no cycles through negation. This class of programs
properly includes the class of programs with locally stratified negation (Przymusinski,
1988). For programs without negation, this semantics coincides with the least fixpoint
semantics.

The keyword not is used as a prefix to indicate a negative body fiteral. For
instance, given a predicate parent, we can test if a is not a parent of b by using
not pa ren t (a ,b) . Such a literal can be used in a query, or in the body of a rule.

The following example from Ros (1990) illustrates the use of modularly stratified
negation in a program. Suppose we have a complex mechanism constructed out
of a number of components that may themselves be constructed from smaller
components. Let the component-of relationship be expressed in the relation part .
A component is known to be working either if it has been (successfully) tested or
if it is constructed from smaller components, all of which are known to be working.
This is expressed by the following program.

working(X) • - tested(X).

working(X) • - part (X,Y), not has_suspect_part (X).

has_suspect_part(X) : - part(X,Y), not working(Y).

Note that the predicate working is defined negatively in terms of itself. However,
the par t relation is acyclic, and hence the working status of a component is
defined negatively in terms of sub-components, but not negatively in terms of itself.
CORAL provides an evaluation mechanism called Ordered Search (Ramakrishnan
et al., 1992a) that evaluates programs with left-to-right modularly stratified negation
efficiently (Section 6.5.1).

6. A rule is range-restricted if every variable in the head of the rule also appears in the body. Non-ground
facts in the database are actually a special case of non-range-restricted rules where the body is empty.

168

2.5 Sets and Multisets

Sets and multisets are allowed as values in CORAL. An example of a set is
{1, 2, 3, f (a , b) , a},while {1, f (a) , f (a) } is an example of a multiset. Sets
and multisets can contain arbitrary values as elements. Because CORAL allows
arbitrarily nested structures, the universe of discourse is an extended Herbrand
universe which includes sets (Beeri et al., 1991) as in LDL, and multisets, rather
than the Herbrand universe which is standard in logic programming.

There are two ways in which sets and multisets can be created using rules,
namely, set-enumeration ({ }) and set-grouping (< >) ; the syntax is borrowed from
LDL (Naqvi and Tsur, 1989), but there are some differences in semantics which we
discuss later.

The following fact illustrates the use of set-enumeration:

children(john,{mary, peter, paul})

The following rule illustrates the use of set-grouping:

p(X,<Y>) : - q(X,Y,Z).

This rule uses facts for q to generate a multiset S of instantiations for the variables
X, Y, and Z. For each value x of X in this set, it creates a fact p (z , 7ryox==S),
where Try is a multiset projection (i.e., it does not do duplicate elimination). Thus,
given facts q (1 , 2 , 3) , q (1 ,2 ,5) and q (1 ,3 ,4) the above rule derives the fact
p(i,{2,2,3}).

The use of the set-grouping construct in CORAL is similar to the grouping
construct in LDL--however, set-grouping in CORAL is defined to construct a
multiset, whereas it constructs a set in LDL. We can always obtain a set from the
multiset using the makeset operator. In fact, with the following rule, the evaluation
is optimized to create a set directly, rather than to first create a multiset and then
perform duplicate elimination to convert it to a set.

p(X,makeset(<Y>)) : - q(X,Y,Z).

In several programs, the number of copies of an element is important, and the
support for multiset semantics permits simple solutions. For example, to obtain the
amount spent on employee salaries, the salary column can be projected out and
grouped to generate the multiset of salaries, and then summed up. The projection
and grouping in LDL yields a set of salaries, and if several employees have the
same salary, the total amount spent on salaries is difficult to compute.

CORAL requires that the use of the set-grouping operator be left-to-right
modularly-stratified (in the same way as negation). This ensures that all derivable
q facts with a given value x for X can be computed before a fact p (x ,_) is created.
Without such a restriction, it is possible to write programs whose meaning is hard to
define, or whose evaluation would be ineflicient. 'The modularly stratified semantics
(Ross, 1990), although originally described for negation, can be easily extended to
set-generation.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 169

General matching or unification of sets (where one or both of the sets can have
variables) is not supported in CORAL. The evaluation mechanism for set-matching
in L D L generates a number of rules at compile t ime that is exponential in the
size of the largest set-term in the program text (Shmueli et al., 1992). The use of
set-matching in C O R A L is limited to avoid this problem. A set-term is restricted
to be ground (as in LDL) and to match either another (identical) ground set-term
or a variable.

We believe that most, if not all, uses of set matching can be implemented
naturally using the suite of functions (such as member), that C O R A L provides on
sets; we present an example in the next section.

2.6 Operations on Sets and Multisets

C O R A L provides several standard operations on sets and multisets as system-defined
predicates. These include member, union, intersection, difference, multi-
setunion, cardinality, subset, and makeset. For reasons of efficiency, most
of these arc restricted to testing, and will not permit generation (e.g., the subset
predicate can be used to test if a given set is a subset of another but cannot be
used to generate subsets of a set). The predicate member is an exception in that it
can be used to generate the members of a given set.

CORAL allows several aggregate operations to be used on sets and multiscts;
these include count, rain, max, sum, product, average, and any. Some of the
aggregate operations can be combined directly with the set-generation operations for
increased efficiency. For instance, the evaluation of the following rule is optimized
to store only the maximum value during the evaluation of the rule, instead of
generating a multiset and then selecting the maximum value.

maxgrade(Class, max(<Grade>)) : - student(S,Class), grade(S,Grade).

This optimization is also performed for count ,rain,sum and product.
The program in Figure 2 illustrates how to use aggregation to find shortest

paths in a graph with weighted edges. (The program as written is not efficient, and
may loop forever on some data sets; in Section 6.6.3 we describe how annotations
may be used to generate an efficient version of the program.)

The following example illustrates the use of member to generate the elements
of a set.

ok_team(S):-old_team(S), count(S,C), C<3, member(X,S),member(Y,S),
member(Z,S), engineer(X), pilot(Y), doctor(Z).

7. LDL imposes the more stringent restriction that uses of grouping be stratified. We note that while EKS-
V1 (Vieille ¢t al., 1990) does not support set-generation through grouping, it does support set-generation
in conjunction with aggregate operations such as count ,rain and sum. Indeed, EKS-V1 allows recursion
through uses of aggregation.

170

Figure 2. Program S h o r t e s t _ P a t h

module s h o r t e s t _ p a t h .
e x p o r t s h o r t e s t _ p a t h (b f f f , f f f f) .

shortest_path(X,Y,P,C) :

s_p_length(X,Y,min(<C>)) :
pa th (X,Y,P l ,C1)

path (X, Y, [edge (X, Y)], C)
end_module.

- s_p_length(X,Y,C) , p a th (X ,Y ,P ,C) .
- pa th (X,Y,P ,C) .
- pa th (X,Z ,P ,C) ,edge(Z,Y,EC) ,

append([edge (Z,Y)] ,P ,P1) ,CI=C+EC.
- edge(X,Y,C).

Each tuple in old_team consists of a set of people. An ok_team tuple additionally
must contain an engineer, a pilot, and a doctor. Note that a team containing a single
member who is an engineer, a pilot, and a doctor would qualify as an o k t e a m .
This program is a translation into CORAL of an LDL program from Shmueli et al.
(1992); the semantics of the original LDL program required that a team contain
at most three members. The literals in the body of the rule, c o u n t (S , C) , C < 3,
ensure this.

3. Interactive System Environment

CORAL presents users with an interactive environment for program development and
ad-hoc querying. 8 This interface resembles the interface provided by typical Prolog
interpreters. It also makes available a number of utility commands that manipulate
various system defaults which affect optimization and evaluation choices. We now
describe some of these features.

3.1 Update Facilities

The CORAL system permits updates to base relations via imperative rules that can
be evaluated at the command prompt. (Files containing a sequence of imperative
rules can also be consulted from the command prompt.) These rules can be of one
of the following forms:

• head : = body. : assigns all qualifying tuples to head relation.

• head + = body. : adds all qualifying tuples to head relation.

• head - = body. : deletes all qualifying tuples from head relation.

8. CORAL also can be accessed via its interface with C+ + (Section 8).

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 171

The syntax of the head and body of the rules is the same as in declarative rules
within modules.

If the head predicate also appears in the body of the rule, and head facts
corresponding to successful rule instantiations are immediately inserted/deleted, the
result of the application of the imperative rule could become order-dependent, which
is undesirable. To avoid this problem, CORAL uses a delayed update semantics:
the body is fully evaluated, and the multiset of all head tuples from successful
instantiations is inserted into, or deleted from, the appropriate relation.

CORAL supports transactions on disk-resident relations. Commands to initiate
and terminate a transaction can be invoked from the CORAL prompt; at any time,
only one transaction can be active within a single CORAL process.

3.2 Data Organization

In CORAL, data are stored as tuples in relations. Relations themselves can be
organized into named workspaces. A workspace is a collection of relations, which
can be either EDB relations or relations corresponding to predicates exported by
modules. A user can have several named workspaces, and can copy relations from
one workspace to another (or simply make a relation in one workspace visible
from another without copying), update relations in a workspace, or run queries
against a workspace. It is also possible to save a workspace as a text file between
executions. There is always a current workspace, and new workspaces can be created
interactively. Data can be loaded into the current workspace either by explicitly
inserting facts into relations or by consulting text files that hold the data (as in
Prolog systems).

Persistent relations exist in a special workspace and can be made visible to all
other workspaces without copying. When a workspace that refers to a persistent
relation is saved, only the name of the persistent relationmand not its current set
of tuplesmis saved.

3.3 Program Development

Some basic facilities are provided for debugging programs. A trace facility is provided
that does the following: (1) It lets the user know which rules are being evaluated. (2)
It prints out answers and sub-queries (of specified predicates) as they are generated
to let the user know how the computation is proceeding.

CORAL also provides some high-level profiling facilities. The unit of profiling is
the unification operation. Unification of two atomic terms counts as one unification,
while, for example, unification off(X,Y) and f(a,b) counts as three unifications, one
at the outer level and two at the inner level. Profiling also lets the user know
about the efficiency of indexing by keeping counts of the number of tuples that the
indexing operation tried to unify, and the number that successfully unified and were
retrieved. In addition, other counts such as the number of successful applications
of each rule, and the number of unsuccessful attempts at using a rule, are also

172

Figure 3. Architecture of the CORAL Deductive System

QUERY <

I~ .T.d3ATZON
8YBTIDI

aJ~wcrs

I ~Nlx.

~ a Y

O P T M Z B R

/ /
~ D O 8

~ n

\ \

] ~] l i & G n

Ooll .

F I L E S

/

maintained. All this information put together gives users a fair idea of where their
programs are spending the most time.

3.4 Explaining Program Execution

An explanation tool has been implemented that provides graphic explanations of
the executions of declarative programs. The basis of this tool is that one can
understand the meaning of a program in terms of the set of derivation trees of
computed facts. Derivation trees can be "grown" and "pruned" dynamically on the
screen, thereby providing a visual explanation of how facts were generated. The
explanation mechanism can be enabled or disabled on a per-module basis. The
explanation tool has been implemented as an application of the CORAL system
(Section 11).

We note that derivations are recorded in the exact form that they are carried
out. Thus, if the user's program was rewritten by the system optimizer, the recorded
derivations reflect the rewritten program, and it can sometimes be difficult to see the
mapping between the original and rewritten programs. However, with the default
rewriting (Supplementary Magic rewriting) used by the CORAL system the mapping
between the original program and the rewritten program is simple, and the user
should be able to reason in terms of the original program when presented with
derivations of the rewritten program.

4. Architecture of the CORAL System

The architecture of the CORAL deductive system is shown in Figure 3. CORAL
is designed primarily as a single-user database system, and can be used in a stand-
alone mode; however, data can be shared with other users via the EXODUS storage

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 173

manager (Carey et al., 1986). Persistent data are stored either in text files, or by using
the EXODUS storage manager, which has a client-server architecture. Each CORAL
process can act as an EXODUS client that accesses the common persistent data from
the server. Multiple CORAL processes could interact by accessing persistent data
stored using the EXODUS storage manager. Transactions and concurrency control
are supported by the EXODUS storage manager, and thus by CORAL. However,
within each CORAL process, all data that are not managed by the EXODUS storage
manager are strictly local to the process, and no transactions are supported on such
data.

Data stored in text files can be "consulted," at which point the data are converted
into main-memory relations; indexes can then be created. Data stored using the
EXODUS storage manager are paged into EXODUS buffers on demand, making use
of the indexing and scan facilities of the storage manager. The design of the system
does not require that this data be collected into main-memory CORAL structures
before being used; as is usual in database systems, the data can be accessed purely
out of pages in the EXODUS buffer pool.

The query processing system consists of two main parts: a query optimizer
and a query evaluation system. Simple queries (e.g., to select facts from a single
relation or multiple joined relations) can be typed in at the user interface. Such
simple queries do not require rewriting transformations. Complex queries typically
are defined in declarative "program modules" that export predicates (views) with
associated "query forms" (i.e., specifications of what kinds of queries, or selections,
are allowed on the predicate). The query optimizer takes a program module and a
query form as input, and generates a rewritten program that is optimized for the
specified query forms. In addition to performing source-to-source transformations 9
the optimizer adds several control annotations (to those, if any, specified by the
user). The rewritten program is stored as a text file (which is useful as a debugging
aid for the user), and also is converted into an internal representation that is used
by the query evaluation system.

The query evaluation system takes as input annotated declarative programs
(in an internal representation), and database relations. The annotations in the
declarative programs provide execution hints and directives. The query evaluation
system interprets the internal form of the optimized program. We also developed
a fully compiled version of CORAL, in which a C+ + program was generated from
each user program. (This is similar to the LDL approach; Naqvi and Tsur, 1989.)
We found that this approach took a significantly longer time to compile programs,
and the resulting gain in execution speed was minimal. 1° Therefore, we have focused
on the interpreted version: "compiling" a program to CORAL internal structures

9. The query optimizer invokes several different program rewriting filters, which we discuss later.

10. Note that the compiled version did not exploit various opportunities for optimization that do not exist
with the interpreted approach. A more aggressive version of the compiler probably would be faster.

174

takes very little time, and is comparable to Prolog systems. This makes CORAL
very convenient for interactive program development.

The query evaluation system has a well defined "get-next-tuple" interface with
the data manager for access to relations. This interface is independent of how
the relation is defined (as a base relation, declaratively through rules, or through
system-defined or user-defined C + + code), and is quite flexible. In conjunction
with the modular nature of the CORAL language, such a high-level interface is
very useful, since it allows the different modules to be evaluated using different
strategies. It is important to stress that the "get-next-tuple" interface is merely an
abstraction provided to support modularity in the language, and does not affect the
ability to perform set-oriented computations.

While fundamental decisions (e.g., using a bottom-up fixpoint computation) are
motivated by the potential for set-oriented evaluation, it is important to note that the
current implementation does not exploit this potential fully. For example, although
the interface to EXODUS does page-level I/O, the index nested-loops join is used
even for disk-resident data; unless the index on the inner relation is clustered,
performance may be poor. It would be a relatively straightforward matter to add
more efficient external join methods such as blocked nested-loops or sort-merge,
and we are currently working on such extensions. Further, the lack of a traditional
cost-based query optimizer (e.g., for choosing a good join order in each rule) is
another major gap in the current system, and again, this can be remedied with some
effort. However, some difficult issues remain little understood; for instance, should
the join order be determined afresh on each iteration? Derr (1993) suggests some
heuristics.

CORAL supports an interface to C+ +, and can be embedded in C+ +. C+ +
can be used to define new relations as well as to manipulate relations computed
using declarative CORAL rules. The CORAL/C++ interface is intended to be
used for the development of large applications.

5. Overview of Query Evaluation and Optimization

A number of query evaluation strategies have been developed for deductive databases,
and each technique is particularly efficient for some programs, but may perform
relatively poorly on others. Thus, any system that is tied to one evaluation strategy is
bound to perform poorly on some programs. Indeed, this is also the case for relational
systems such as SQL. However, given the greater complexity of a language like
CORAL, it is harder to design a system in which different optimization techniques can
be combined relatively orthogonally. Once this is done, a cost estimation package
can be used to determine a "good" optimized version of a program. CORAL
addresses the first task to a large extent, but currently uses heuristics instead of a
cost estimation package to make choices of evaluation alternatives.

It is our premise that in such a powerful language, completely automatic
optimization can only be an ideal; the programmer must be able to provide hints

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 175

or annotations and occasionally even override the system's decisions to obtain good
performance across a wide range of programs. Annotations control query evaluation
and guide query optimization. Since they are expressed at a high level, they give
the programmer the power to control optimization and evaluation in a relatively
abstract manner. A detailed description of the annotations provided by CORAL
may be found in Ramakrishnan et al. (1993a); we mention some of them when
discussing the query evaluation techniques.

The CORAL programmer decides (on a per-module basis) whether to use one
of two basic evaluation approaches, namely pipelining or materialization (Section
6). Many other optimizations are dependent on the choice of the basic evaluation
mode. The optimizer generates annotations that govern many run-time actions, and,
if materialization is chosen, does source-to-source rewriting of the user's program.
We discuss these two major tasks of the optimizer below.

5.1 Source-to-Source Rewriting Techniques

Materialized evaluation in CORAL is essentially a fixpoint evaluation using a bottom-
up iteration on the program rules. If this evaluation is done on the original program,
selections in a query are not used. Several program transformations have been
proposed to "propagate" such selections, and many of these are implemented in
CORAL.

The desired selection pattern is specified using a query form, where a "bound"
argument indicates that any binding in that argument position of the query is to
be propagated. It is possible that the query does not specify a ground binding in a
"bound" position (it may specify no value, or a term with variables). This simply
results in non-ground "magic facts." Thus, by specifying that all arguments are
bound, binding propagation similar to Prolog is achieved (i.e., all available bindings
are propagated). By specifying that all arguments are "free," in contrast, bindings
in the query are ignored, except for a final selection. Bindings in certain arguments
can be selectively propagated by choosing other query forms.

The default rewriting technique is Supplementary Magic Templates (Rohmer
et al., 1986; Beeri and Ramakrishnan, 1987; Ramakrishnan, 1988; Seki, 1989). The
rewriting can be tailored to propagate bindings across sub-queries in a rule body using
different body literal orderings; CORAL uses a left-to-right ordering within the body
of a rule by default. Other selection-propagating rewriting techniques supported
in CORAL include Magic Templates (Ramakrishnan, 1988), Supplementary Magic
With Goalld Indexing (Ramakrishnan and Sudarshan, 1991), and Context Factoring
(Naughton et al., 1989; Kemp et al., 1990). Supplementary Magic is a good choice
as a default, although each technique is superior to the rest on some programs (e.g.,
the GoaUd Indexing variant is good for programs with many complex, especially
non-ground, terms, and Context Factoring, while only applicable on some programs,
is usually superior when applicable). The user can choose the rewriting to be applied
through annotations. It may be appropriate to apply no rewriting, and the user can
specify this as well.

176

CORAL also supports Existential Query Rewrit~g (Ramakrishnan et al., 1988)
which seeks to propagate projections. This is applied by default in conjunction with
a selection-pushing rewriting. A fuller discussion of the relative merits of these
rewriting techniques is not possible here.

5.2 Decisions On Run-time Alternatives

In addition to choosing rewriting techniques for materialized evaluation, the opti-
mizer makes a number of decisions that affect execution. The optimizer analyzes
the (rewritten) program, and identifies some evaluation and optimization choices
that appear appropriate.

The default fixpoint evaluation strategy is called Basic Semi-Naive evaluation
(BSN), but a variant also is available--the Predicate Semi-Naive evaluation (PSN;
Ramakrishnan et al., in press), which is better for programs with many mutually
recursive predicates. With respect to semi-naive evaluation, the optimizer is re-
sponsible for: (1) join order selection, (2) index selection, (3) deciding what forms
of subsumption checks to use, and (4) deciding whether to refine the basic indexed
nested-loops join with intelligent backtracking. The optimizer also is responsible for
deciding whether to use variations of the fixpoint evaluation such as Lazy Evaluation
or Ordered Search. We discuss these issues in Section 6.

6. Module Evaluation Strategies

The evaluation of a declarative CORAL program is divided into a number of distinct
sub-computations by expressing the program as a collection of modules. Each module
is a unit of compilation and its evaluation strategies are independent of the rest of
the program. Since different modules may have widely varying evaluation strategies,
a relatively high-level interface is required for interaction between modules.

Two basic evaluation approaches are supported, namely materialization and
pipelining. Materialization stores facts and looks them up to avoid recomputation.
Several variants of materialized evaluation are supported: Basic Semi-Naive, Predi-
cate Semi-Naive (Ramakrishnan et al., in press), and Ordered Search (Ramakrishnan
et al., 1992a). Pipelining uses facts "on-the-fly" and does not store them, at the
potential cost of recomputation.

This section presents the interface between modules and the run-time data
structures used. The various modes of evaluation of a module, and the ways in
which the evaluation can be controlled by annotations from the user, are then
discussed.

6.1 Inter-Module Calls

Suppose that p is a predicate that appears, but is not defined, in the body of a rule
of module M2. During the evaluation of M2, queries may be generated on p. If p
is defined in module M1, then module M2 sets up an inter-module call on module

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 177

M1 to solve the query. The interface to predicates exported by a module makes no
assumptions about the evaluation of the module. Module M1 may contain only base
predicates, or may have rules that are evaluated in any of several different ways.
The module may choose to cache answers between calls, or choose to recompute
answers. All this is transparent to the calling module. Similarly, the evaluation of
the called module M1 makes no assumptions about the evaluation of calling module
M2. This orthogonality permits the free mixing of different evaluation techniques in
different modules in CORAL and is central to how different executions in different
modules are combined cleanly.

Inter-module calls are executed as follows: The calling module sets up a sub-
query on the called module, and waits until the called module returns answers to the
sub-query. The called module returns either no answer if the query has no answers,
or returns one or more answers to the query. The called module may or may
not return all answers immediately; repeated "get-next-tuple" calls must be used to
get all answers to the call. The above interface is independent of the evaluation
modes of the two modules involved. However, the order in which answers are
returned on the initial call and on subsequent "get-next-tuple" requests depends on
the evaluation mode of the called module.

The rationale behind the particular interface described above is as follows: the
calling module may require only one answer, or may use only one answer at a time
(e.g., if the inter-module call was generated by a literal involved in a nested-loops
join). Early returning of answers to the user via Lazy Evaluation is also supported
by this interface. The alternative interface of requiring all answers to be returned
is less flexible.

6.2 Module and Rule Data Structures

The compilation of a materialized module generates an internal module structure that
consists of a list of structures corresponding to the strongly connected components
(SCCs) of the module. 11 Each SCC structure consists of semi-naive rule structures
corresponding to semi-naive rewritten versions of the rules. These semi-naive rule
structures have fields that specify the argument lists of each body literal, and the
predicates to which they correspond. Each semi-naive rule structure also contains
evaluation order information, pre-computed backtrack points, and pre-computed
offsets into a table of relations. These structures are shown in Figure 4.

Offsets into a table of relations are used, instead of actual pointers to relations,
to keep rule and module evaluation re-entrant. This property is essential to support
multiple concurrent invocations of the same module, as can happen with a cycle
of inter-module invocations or Lazy Evaluation (Section 6.3.1). Information that
changes with each invocation therefore cannot be stored with the rule structure.
In particular, the actual relations involved change across invocations, and each

11. An SCC in a module is a maximal set of mutually recursive predicates.

178

Figure 4. Important run-time data structures;

RELATION TABLE

J query form module

I
T

SCC STRUCTURE

semi-naive rules

non--recumve [
u~ni-naive ml~

MODULE STRUCTURE

ofdexed pointer to
table of list

relation,
of~.ca

[dd~]

SEMI-NAIVE RULE STRUCTURE

head and body relations

(table offsets)

argument lists of

join ordering information

intelligent backtracking

profding iafotmatioa

l~ l locau~ l data ~raOtar~

module invocation has an associated table of (pointers to) relations. The order of
relations corresponding to different predicates in this table can be determined, and
the semi-naive rule structures refer to relations involved in the rule by offsets into
this table.

A module to be evaluated using pipelining is stored as a list of predicates defined
in the module. Associated with each predicate is a list of rules defining it (in the
order in which they occur in the module definition), each rule being represented
by structures like those used for semi-naive rules.

An attempt is made to compute all possible information at compile time, and
store it along with the rule structures to make rule evaluation efficient. In a manner
similar to Prolog, CORAL maintains a trail of variable bindings when a rule is
evaluated; this is used to undo variable bindings when the indexed nested-loops
join (or pipelining) considers the next tuple in any loop.

6.3 Materialization

The variants of materialization are all bottom-up fixpoint iteration methods, which
repeatedly evaluate the rules until a ffixpoint is reached. To perform incremental
evaluation of rules across multiple iterations, CORAL uses semi-naive evaluation
(Bancilhon, 1985; Bayer, 1985; Balbin and Ramamohanarao, 1987; Ramakrishnan
et al., in press). This technique consists of a rule rewriting part performed at compile
time, which creates versions of rules with delta relations, and an evaluation part.
(The delta relations contain changes to relations since the previous iteration.) The
evaluation part evaluates each rewritten rule once in each iteration, and performs

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 179

some updates to the relations at the end of each iteration. An evaluation terminates
when an iteration produces no new facts.

The join order used in CORAL is currently left-to-right in the rule, with a simple
reordering that moves delta relations to the front of the join order. The reordering
is done with the expectation that the delta relations have a smaller number of tuples
than the other relations. However, hooks have been provided to specify other join
orders, and the optimizer can be modified to find good join orders.

The optimizer also analyzes the semi-naive rewritten rules and generates anno-
tations to create any indices that may be useful during the evaluation phaseJ 2 The
basic join mechanism in CORAL is nested-loops with indexing, and this knowledge is
used by the index generation algorithm. For each semi-naive rule, index generation
proceeds left-to-right in the join order of rule evaluation, and creates argument-
form or pattern-form indexes based on variables bound earlier in the join order,
since these will act as selection arguments. For derived relations, these indexes
are created at module initialization time (run-time) and are destroyed, along with
the relation, when module execution is completed. Indexes can also be explicitly
requested by a CORAL user.

For declarative modules, CORAL materialized evaluation (with occur checks)
is guaranteed to be sound (i.e., if the system returns a fact as an answer to a
query, that fact indeed follows from the semantics of the declarative program). 13
The evaluation is also "complete" in a limited sensemas long as the execution
terminates, all answers to a query are actually generated. It is possible, however, to
write queries that do not terminate. It is desirable to add a compile time check, based
on sufficient conditions, 14 to determine if termination and completeness of CORAL
evaluation can be guaranteed for a given program, but the current implementation
does not support such a feature.

6.3.1 Lazy Evaluation. In the traditional approach to bottom-up evaluation, all
answers to a query are computed by iterating over rules until a fixpoint is reached,
and then returning all the answers. Lazy evaluation is the technique used by CORAL
to return answers at the end of every iteration, instead of just at the end of the
computation. The advantages of this approach are:

• It provides users with a steady stream of answers, instead of a burst of answers
at the end of the computation.

• It can be used in an interactive mode to look at the first few answers generated
by a computation, and then (possibly) abort the rest of the computation.

12. Index annotation generation also occurs for base relations used in pipelined modules, but at the level
of the original rules.

13. For reasons of efficiency, the current implementation does not perform occur checks by default.

14. Sufficient conditions are needed because checking for termination is undecidable in general.

180

A query on a relation has an iterator associated with it. Lazy evaluation is
implemented by storing in the iterator the state of the computation at the end of
an iteration of fixpoint evaluation, and returning to the iterator the answer tuples
generated in that iteration. The iterator then iterates over the tuples returned, and
when it has stepped through all the tuples, it reactivates the "frozen" computation
to get more answer tuples. This reactivation results; in the execution of one more
iteration of the rules, and the whole process is repeated until an iteration over the
rules produces no new tuples.

6.4 Pipelining

Pipelining in CORAL is similar to top-down evaluation like Prolog. The rule
evaluation code for pipelining is designed to work in a co-routining fashion--when
rule evaluation is invoked, using the get-next-tuple interface, an answer is generated
(if there is one) and control is transferred back to the consumer of the answers
(the caller). When more answers are desired, control is transferred back to the
(suspended) rule evaluation.

At module invocation, the first rule in the list associated with the queried
predicate is evaluated. This could involve recursive calls on other rules within
the module (which are also evaluated in a similar pipelined fashion). If the rule
evaluation of the queried predicate succeeds, the state of the computation is frozen,
and the generated answer is returned. A subsequent request for the next answer
tuple results in the reactivation of the frozen computation, and processing continues
until the next answer is returned. At any stage, if a rule fails to produce an answer,
the next rule in the rule list for the head predicate is tried. When there are no more
rules to try, the query on the predicate fails. When the topmost query fails, no
further answers can be generated, and the pipelined module execution is terminated.

An interesting aspect of pipelining in CORAL is the treatment of recursive
predicates. A sub-query on a recursive predicate is solved by a recursive invocation
of the same module, and each invocation pipelines the local results. The resulting
computation is close to the evaluation strategy of a top-down implementation such
as Prolog (although CORAL does not currently support all the extra-logical features
of Prolog). Of course, pipelined evaluation of recursive modules carries the risks
of potential incompleteness, and should be used with care.

We note that our implementation of pipelining handles recursive calls; in this,
it differs from the "pipelining" used in LDL. The latter is essentially indexed
nested-loops join without materialization within a bottom-up fixpoint iteration. Our
implementation of pipelining, however, can be improved upon; indeed, state-of-the-
art Prolog systems are much faster.

There are some important points to note regarding pipelining. First, the
implementation of pipelining, which is a radically different evaluation technique
from bottom-up fixpoint evaluation, demonstrates the modularity of the CORAL

• implementation. Second, from a language point of view, it demonstrates that the
module mechanism allows a user to combine bottom-up and top-down evaluation

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 181

techniques effectively in a single program. (Indeed, our implementation of pipelining
could be replaced by an interface to a Prolog system.) Third, pipelining guarantees
a particular evaluation strategy and order of execution. While the program is no
longer truly "declarative," programmers can exploit this guarantee and use predicates
like updates that involve side-effects.

Materialization and pipelining complement each other. If facts in a relation
are used many times, the cost of materialization (generating and storing facts)
is outweighed by the savings of avoiding recomputation. Pipelining avoids these
overheads of storing facts, and if sub-queries are not generated multiple times it is
cheaper than materialization.

6.5 Module Level Control Choices

At the level of the module, a number of choices exist with respect to the evaluation
strategy for the module, and the specific optimizations to be used. We have already
seen the issue of materialization versus pipelining.

6.5.1 Ordered Search. CORAL uses the Ordered Search evaluation mechanism to
order the use of generated sub-queries in a program (Ramakrishnan et al., 1992a).
Some of the features of Ordered Search are:

1. Information about dependencies between sub-queries is maintained, and can
be used to evaluate a large class of programs with negation, set-grouping
and aggregation.

2. An ordering to the computation is provided by "hiding" sub-queries. When
CORAL returns an answer, the user may terminate the computation, or
have the system continue to find more answers. When a single answer to
the query is all that is needed, there may be many sub-queries that are still
hidden when an answer is found, and the computation can terminate without
ever using these sub-queries; thus a lot of redundant computation may be
avoided.

In Ordered Search, sub-queries and answers to sub-queries are generated asyn-
chronously, as in bottom-up evaluation of programs rewritten using Magic (Beeri
and Ramakrishnan, 1987; Ramakrishnan, 1988). However, sub-queries are not made
available for use immediately; the order in which generated sub-queries are made
available for use is somewhat similar to a top-down evaluation. This is achieved
by maintaining a "context" that stores sub-queries in an ordered fashion, and by
deciding which sub-query to make available next at each stage in the evaluation.

Ordered Search provides an important evaluation strategy for programs with
negation, set-grouping, and aggregation that are left-to-right modularly stratified.
Without Ordered Search, evaluation proceeds by setting up inter-module calls
whenever a sub-query that has to be completely solved is encountered. This results
in computation of such sub-queries proceeding independently, with no sharing of
sub-computations. While this might be desired in some situations, it could result in

182

considerable repeated computation. Ordered Search is used to evaluate left-to-right
modularly stratified programs without inter-module calls; thus, sub-computations
are shared, eliminating repeated derivations. Intuitively, all queries and answers are
memoed, and enough dependency information between queries is maintained to
ensure that any sub-query (e.g., a negative sub-query) that must be fully evaluated
before any of its answers are used in further derivations, is indeed fully evaluated.

From an implementation perspective, in addition to maintaining the context,
two changes must be made. First, the rewriting pha=~e, which must use a version of
Magic in conjunction with Ordered Search fixpoint evaluation, must be modified to
introduce "done" literals guarding negative literals and rules that have grouping and
aggregation. Second, the evaluation must add a "magic" fact to the corresponding
"done" predicate when (and only when) all answers to it have been generated. (The
context mechanism is used to determine the point at which a query is considered
done.) These changes ensure that rules involving negation, for example, are not
applied until enough facts have been computed to reduce the negation to a set-
difference operation.

6.5.2 Save Module Facili~. The module facility in CORAL provides several impor-
tant advantages.

1. Predicates defined in an external module are treated just like base predicates
by the semi-naive rewriting algorithms----whenever there is a query (or set of
queries) on such a predicate, a call to the module is made, and all the answers
are evaluated. This enables efficient evaluation of programs with stratified
negation. Further, if many predicates can be treated as base predicates, this
considerably decreases the number of semi-naive rewritten rules.

2. In many cases, facts (other than answers to the query) computed during the
evaluation of a module are best discarded to save space (since bottom-up
evaluation stores many facts, space is generally at a premium). Module calls
provide a convenient unit for discarding intermediate answers. By default,
CORAL does precisely this it discards all intermediate facts and sub-queries
computed by a module at the end of a call to the module.

However, there are some eases where the second feature is not a benefit at
all, but instead leads to a significant amount of recomputation. This is especially
true in cases where the same sub-query in a module is generated in many different
invocations of the module. In such cases, the user can tell the CORAL system to
maintain the state of the module (i.e., retain generated facts) in between calls to
the module, and thereby avoid recomputation; we call this the save module facility.

To ensure that no derivations are repeated across multiple calls to the module
requires significant changes to semi-naive evaluation: rules defined only in terms
of base predicates must only be used in the first invocation of the module; certain
predicates that were treated as "base" in the semi-naive rewriting because they
appeared in lower SCCs must now be treated as derived predicates; and the

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 183

updating of relations using deltas has to be modified to take into account tuples
that were computed in previous calls to the module (Ramakrishnan et al., 1993c).
In the interest of efficient implementation, CORAL requires that a module that
uses the save module feature should not be invoked recursively. (Note that the
predicates defined in the module can be recursive; this does not cause recursive
invocations of the module).

6.6 Predicate Level Control

CORAL provides a variety of annotations at the level of individual predicates in a
module. These annotations could affect the set of atiswers returned to a query.

6.6.1 Duplicate Elimination. By default, duplicate elimination is performed when
inserting facts into a relation, so that a relation with only ground tuples consists of a
set of facts. 15 An annotation can be used to tell the system not to perform duplicate
checks for all predicates in the module. This can also be done on a per-predicate
basis. Further, a predicate in a program can be declared to be a multiset (i.e., with
as many copies of a tuple as there are derivations for it). 16 CORAL then guarantees
that the number of copies of tuples in the answer to a query on the predicate is
correct according to the multiset semantics of the program (Mumick et al., 1990).
This semantics is supported by carrying out duplicate checks only on the "magic"
predicates if any version of the Magic Templates rewriting is used.

6.6.2 Index Annotations. CORAL allows for the specification of two types of hash-
based indexes: (1) argument form indexes, and (2)pat tern form indexes. The first
form is the traditional multi-attribute hash index on a subset of the arguments of
a relation. The hash function chosen works well on ground terms; however, all
terms that contain variables are hashed to a special value. The second form is more
sophisticated, and allows the retrieval of precisely those facts that match a specified
pattern, where the pattern is a tuple of (possibly non-ground) terms. The "form" of
the pattern must be specified when constructing the index. Such indexes are useful
when dealing with complex objects created using functors. For example, suppose a
relation employee had two arguments, the first a name and the second a complex
term address(Street,City). A pattern-form index can be used as an efficient
means to retrieve employees named John who stay in Madison, without knowing
their street (Ramakrishnan and Sudarshan, 1991). The following annotation can be
used to create a pattern-form index as above:

@make_index employee (Name, address(Street, City)) (Name, City).

15. If facts contain variables, subsumption checking may be used, rather than just duplicate elimination.
CORAL performs some subsumption checking but, for efficiency reasons, does not guarantee that relations
are maintained as irredundant sets of facts (Maher and Ramakrishnan, 1989).

16. On non-recursive queries, this semantics is consistent with SQLwhen duplicate checks are omitted.

184

Figure 5. Program sho~est path
module shortest_path.
export shortest_path(bfff, ffff).
@aggregate_selection path(X,Y,P,C) (XDY) min(C).

shortest_path(X,Y,P,C) : - s_p_length(X,Y,C),path(X,Y,P,C).
s_p_length(X,Y,min(<C>)) : - path(X,Y,P,C).
path(X,Y,P1,C1) : - path(X,Z,P,C), edge(Z,Y,EC),

append([edge(Z,Y)],P,Pl) ,C1 = C + EC.
path(X,Y,[edge(X,Y)],C) : - edge(X,Y,C).
edge module.

Pattern-form indexes are implemented in CORAL using hash-indexes, and are almost
as fast as argument-form indexes.

A compile-time analysis of all rules is used to de, termine which indexes need to
be created for efficient rule evaluation. All such indexes on in-memory relations are
automatically created at run-time. However, indexes are not automatically created
on disk-resident relations. In addition, the user is allowed to specify indices using
annotations within a module or using commands from the CORAL prompt.

6.6.3 Aggregate Selections. Consider the shor tes t_pa th program in Figure 5.
This differs from the program in Figure 2 in that it has an additional annotation
of the form:

@ a g g r e g a t e _ s e l e c t i o n path(X,Y,P,C) (X,Y) min(C).

To compute shortest paths between points, the shortest paths between pairs
of points are sufficient--path facts that do not coxTespond to shortest paths are
irrelevant. CORAL therefore permits the user to specify an aggregate selection on
the predicate path in the manner shown. The system then retains, for each X, Y
pair, only the path facts with the lowest C value (among the currently known path
facts). Without this aggregate selection, the program may run forever, generating
cyclic paths of increasing length; with it, the program is guaranteed to terminate. In
the next section, we discuss how to further improve the efficiency of this program
using additional annotations.

6.6.4 Using Aggregate Selections to Express Choice. CORAEs aggregate selection
mechanism provides a version of the choice operator of LDL, but with a different
semantics (Ramakrishnan et al., 1990). Consider again the shortest path program
from Figure 5. If the user wishes to retain a single path for each pair of nodes and
each path cost, this can be specified using the following annotation:

@aggregate_selection path (X,Y,P,C) (X,Y,C) any (P).

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 185

The annotation says that for each value of the triple X, Y, C, one fact pa th (X, Y, P,
C) at most need be retained. If more than one fact pa th(X,Y,P,C) is generated
by the program for any triple X,Y,C, the system arbitrarily picks one of the facts
to retain, and discards the rest.

Using a combination of the above two aggregate selections on the shortest path
program (in conjunction with the default query evaluation technique using Magic
rewriting), a single source query on the program runs in time 0 (E • V), where there
are E edge facts and V nodes in the graph.

Unlike in LDL, the choice made is final---CORAL does not backtrack and try
different choices. We believe this semantics can be implemented more efficiently
in a bottom-up evaluation than the LDL semantics. Giannotti et al. (1991) have
investigated the connections between this "local" version of choice and stable models,
and Greco et al. (1992) have shown that it is useful in a variety of"greedy" algorithms.

6.6.5 Controlling the Order of Deductions. The use of facts computed during
bottom-up evaluation can be prioritized. 17 Consider the shortest path program from
Figure 5, which uses the predicate pa th (Sourco, Dost ±na t ion , P a t h _ l i n t , Cost) .
For this program, it is better to explore paths of lesser cost first by using p a th facts
of lesser cost in preference to pa th facts of greater cost. Path facts of greater cost
are "hidden" when they are derived, and each time a fixpoint is reached, the p a th
facts of lowest cost are exposed. This continues until there a re no more hidden
facts.

The user can specify that the evaluation prioritize facts in this fashion, using
this annotation:

@ prioritize path(X,Y,P,C) min(C).

Prioritized relations in CORAL are implemented as priority queues. Evaluation
with prioritized use of facts uses a simple extension of semi-naive evaluation,
described by Schmidt et al. (1987).

Using facts in a prioritized fashion reduces the cost of evaluation of a single
source shortest path problem from a worst case of 0 (E • V) to 0 (E • log (V)).18 This
illustrates the importance of aggregate selections and prioritizing the use of facts in
a bottom-up evaluation. Sudarshan and Ramakrishnan (1991) describe a technique
to generate such annotations automatically, but they could also be specified by the
user.

6.7 Rule Level Control

6. 7.1 Intelligent Backtracking. Both pipelining and materialization involve indexed

17. The priodtization of facts is relevant to the evaluation mechanism, and is not used to order the answers
returned to the used.

18. Assuming that the edge costs are non-negative.

186

nested-loops joins of relations. (For materialization, this is local to the joins in a
single rule; for pipelining, it is effectively global, and over the sequence of all rules
in the current execution path.) CORAL tries to perform intelligent backtracking
(e.g., Chang and Despain, 1985) during rule execution in both cases.

Get-first-failure (or, get-first) backtracking provides the ability to "jump back"
over several levels of nesting if no matching facts are found for a predicate in an
inner level of a nested-loops join. It is used when there is no valid instantiation of
a body literal the "first" time the literal is reached. At this stage, control within
the rule backtracks to the last body literal that could generate new bindings for the
literal that just failed. For example, consider the following rule with a left-to-right
join order:

p(X,Y) : - q (X , Z) , r (A,Y), s (Z ,B) , t (A,B) .

If s(Z,B) fails the first time it is reached with a particular binding for Z, the
"get-first backtrack point" is the literal q(X,Z), be, cause this is the last point at
which new bindings can be generated for Z.

Success backtracking provides the ability to "jurap back" over several levels of
nesting if an answer is generated and the number of times an answer is generated
is irrelevant--the idea is that the loops jumped over would only produce more
derivations of the same fact and not a new fact. When a rule execution is successful
(i.e., there are valid instantiations of all the literals in the body of a rule), a head
fact is generated. At this point, the control within the rule backtracks to the last
body literal that could generate new bindings for the head literal. Consider the rule
in the above example again. The "success-backtrack point" for this rule is the literal
r (A, Y), because s (Z, B) and t (A, B) cannot generate any bindings that will result
in a new head fact. The logic for success backtracking in CORAL takes advantage
of aggregate selections that express choice. For example, an annotation:

@ aggregate_selection p(X,Y) (X) any(Y).

could bc added, with the meaning that for a given X value, a value for Y is chosen
from a p tuplc with the given X value, and p tuples with other Y values can be
discarded. Adding the annotation would change the "success-backtrack point" of
the above-mentioned rule to q(X,Z).

CORAL automatically performs "get-first-failure" backtracking and "success"
backtracking, unless there are non-ground facts. (By default, CORAL assumes that
there are none; if it is possible that a program will generate non-ground facts, the
user should indicate this through an annotation.) The analysis used for intelligent
backtracking breaks down in the presence of such non-ground facts, although it can
be extended to detect argument positions that are guaranteed to be ground and to
take advantage of such argument positions.

Intelligent backtracking is implemented using an array of backtrack points, one
for each body literal, and one success backtrack point for each rule. Intelligent
backtracking for pipelined evaluation also is done on a per-rule basis, although there

VLDB Journal 3 (2) Ramakrishnan: The C O R A L Deductive System 187

is the potential for doing it on a global basis. We note that LDL also implements
a form of intelligent backtracking (Chimenti et al., 1989).

6.7.2 ,Join Orders. CORAL uses a default left-to-right join order, except that for
semi-naive rewritten rules the "delta" relation is moved to the beginning of the
join order. This is generally a good heuristic, especially when Supplementary Magic
rewriting has been used; in this case, moving the "delta" relation to the beginning
of the join order does not introduce a cross-product. The user can override this
default by specifying the join order on a per-rule or on a per-semi-naive-rewritten
rule basis. However, this has not been implemented yet in CORAL.

7. The Data Manager

The data manager (DM) is responsible for maintaining and manipulating the data
in relations. In discussing the DM, we also discuss the representation of the various
data types. While the representation of simple types is straightforward, complex
structural types and incomplete data present interesting challenges. The efficiency
with which such data can be processed depends in large part on the manner in
which they are represented in the system. This section therefore presents the data
representation at a fairly detailed level.

The CORAL system is implemented in C++, and all data types are defined as
C+ + classes. Extensibility is an important goal of the CORAL system. In particular,
we view support for user-defined data types as important. To provide this support,
CORAL provides the generic class Arg that is the root of all CORAL data types;
specific types such as integers and strings are sub-classes of Arg. The class Arg
defines a set of virtual member functions 1~ such as e q u a l s , h a s h , a n d p r i n t , which
must be defined for each derived class that is created.

The class Tuple defines tuples of Args. An object of the class Rela t ion is a
collection of tuples. The class Relat ion has a number of virtual member functions
defined on it. These include i n se r t (Tuple*), de le te (Tuple*), and an iterator
interface that allows tuples to be fetched from the relation, one at a time. 2° The
iterator is implemented using an object of a Tup le I t e ra to r class that is used to
store the state or position of a scan on the relation, and to allow multiple concurrent
scans over the same relation. We show the structure of a Tuplelterator in Figure 6.
The details of the figure become meaningful as the description of the data structures
proceeds.

19. In C++, a virtual member function in a class is one that can be redefined in derived sub-classes, and
further, when the member function is invoked on an object, the implementation corresponding to the most
specific class to which the object belongs is used.

20. This is analogous to the cursor notion in SQL.

188

Figure 6. Tuplelterator Structure

ITERATOR STRUCTURE

argument_list binding environment stackjnark

relation *

Plpelined Relatioas

<relation type dependent infonnalinn>

Base relations and
materialized derived relatleq~s

frozenstateComputation I delimiting 'marks' on
the relation

current lmsition of iterator

if evaluation is "lazy'
frozen computation sta~

Exodus Relations

file scan descriptor I
index scan descriptor I

7.1 Representation of Terms

The evaluation of rules in CORAL is based on the operation of unification that
generates bindings for variables based on patterns in the rule and the data. An
important feature of the CORAL implementation of data types is the support for
unique identifiers to make unification of large terms very efficient. Such support is
critical for efficient declarative program evaluation in the presence of large terms. In
CORAL, each new type constructor can define how it generates unique identifiers,
independent of how other type constructors construct their unique identifiers (if
any); because of this orthogonality, no further integration is needed to generate
unique identifiers for terms built using several different kinds of type constructors.
This is very important for supporting extensibility and the creation of new user-
defined data types. Specific issues on the construction of unique identifiers for
several system defined types are detailed later in this section.

7.1.1 Constants. Constants in CORAL can be of one of the primitive data types
provided in the CORAL system, such as integers, doubles, and strings. The current
implementation restricts data that are stored using the EXODUS storage manager
to be limited to these prim/tive types. Such data are stored on disk in their machine
representation, while in memory, the data types are implemented as sub-classes of
Arg. Extra information is kept with strings to provide for efficient equality checking.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 189

7.1.2 Functor Terms. An example of a term built from an uninterpreted function
symbol, or functor, is :~ (X, t0, Y). Such a term is represented by a record containing
(1) the function symbol :E, (2) an array of arguments, or pointers to the arguments,
and (3) extra information to make unification of such terms efficient. Functor terms
are important for representing structured information. For instance, lists (which
are a special type of functor term) can be used to represent DNA sequences or
stock quote sequences.

The current implementation of CORAL uses hash-consing (Goto, 1974) to
speed up unification of functor terms. LDL (Chimenti et al., 1990) also implements
hash-coming. Hash-coming assigns unique identifiers to each (ground) functor term,
such that two (ground) functor terms unify if and only if their unique identifiers
are the same. We note that such identifiers cannot be assigned to functor terms
that contain free variables.

CORAL makes two modifications to the basic hash-coming scheme. First,
it performs hash-consing in a lazy fashion, avoiding computation of the unique
identifiers if they are not used. Second, CORAL allows terms that contain variables,
and therefore cannot be assigned unique identifiers. Such terms are tagged after
the first attempt to assign them unique identifiers, and CORAL thereby avoids
repeated attempts to compute unique identifiers for them.

7.1.3 Variables and Non-Ground Terms. Variables constitute a primitive type in
CORAL, since CORAL allows facts (and not just rules) to contain variables; in
this, CORAL differs from most other deductive database systems. The semantics
of a variable in a fact is that the variable is universally quantified in the fact.

Although the basic representation of variables is fairly simple, the representation
is complicated by requirements of efficiency when using non-ground facts in rules.
We describe the problems briefly.

Suppose we want to make an inference using a rule. Variables in the rule
may get bound in the course of an inference. A naive scheme would replace
every reference to the variable by its binding. It is more efficient, however, to
record variable bindings in a binding environment, at least during the course of an
inference. A binding environment (often referred to as a bindenv) is a structure
that stores bindings for variables. Therefore, whenever a variable is accessed during
an inference, a corresponding binding environment must be accessed to find if the
variable has been bound. We show the representation of the term ~ (x, 10, Y), where
X is bound to 25 and Y is bound to Z, and Z is bound to 50 in a separate bindenv,
in Figure 7.

There is another complication to making inferences using facts that contain
variables. The problem is that two facts (or a fact and the rule) may have variables
of the same name, but the variables are independently universally quantified. To
make an inference, variables in facts have to be renamed to remove name conflicts.
Such a renaming could be expensive, and CORAL attempts to avoid renaming
or postpone renaming as long as possible. (In many cases, the renaming can be

190

Figure 7. Representation of an Example Term

elit

"t"

3

10

FUNCTOR
ARGUMI~NT

TERM STRUCTURE
binding]

environmelat *]

a~qpmaN ~ t ~ * binding e~tvlro~ae~t *

~JO 25 null
f

// #I /

i , i
/ i i | i VAR / I _l_. _ I

~[--'Y---~] VAR

I I I
I_ J i

E ~

arst~maats

f(X, I0, Y) X --~ 25, Y ~ Z, Z ~ 50

BINDING

I~NVIRONMENT

BINDING

ENVIRONMENT

avoided altogether if it is postponed.) To postpone renaming, CORAL maintains
a binding environment for each fact that contains a variable, as well as a binding
environment for the rule.

The top-down backtracking control strategy of Prolog permits optirnizations
whereby answers to sub-queries need not be renamed; such optimizations are not
applicable to evaluation techniques, such as bottom-up evaluation, that perform
memoization of facts. Techniques for avoiding renaming and optimizing unification
in bottom-up evaluation (Sudarshan and Ramakrishnan, 1993) are implemented in
CORAL.

7.1.4 Multisets. CORAL allows multiset-terms (and, as a special case, set-terms).
Multisets are represented using the same data structures as relations (Section 7.2). As
with strings and functor terms, CORAL creates unique identifiers for the unification
of multiset-terms; as with functor terms, this is done in a lazy fashion.

As noted earlier, the generation of unique identifiers for multisets is completely
orthogonal to the generation of unique identifiers for functor terms, and complex
terms built using both type constructors can be assigned unique identifiers without
any problems.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 191

7.2 Representation of Relations and Index Structures

Relations and indexes are implemented as C+ + classes that are sub-classes of Arg,
and thus can be used just like other terms. However, we have chosen to discuss
them separately because the interface between the query evaluation system and the
data manager is particularly important when it involves relations and indexes.

7.2. 7 Relations. CORAL currently supports in-memory hash-relations, as well as
disk-resident relations (the latter by using the EXODUS storage manager) (Carey
et al., 1986). Multiple indexes can be created on relations, and can be added to
existing relations. The relation interface is designed to make the addition of new
relation implementations (as sub-classes of the generic class Relat ion) relatively
easy.

CORAL relations (currently only the in-memory versions) support several fea-
tures that are not provided by typical database systems. The first and most important
extension is the ability to obtain marks 21 into a relation, and distinguish between
facts inserted before and facts inserted after the mark was obtained. This feature
is important for the implementation of variants of semi-naive evaluation (Section
6.3). The implementation of this extension involves creating subsidiary relations,
one corresponding to each interval between marks, and transparently providing the
union of the subsidiary relations corresponding to the desired range of marks. A
benefit of this organization is that it does not interfere with the indexing mechanisms
used for the relation (these mechanisms are used on each subsidiary relation).

CORAL can also "hide" facts in a relation and make them visible in a "prioritized"
fashion. Such a feature is important for efficient evaluation of some programs
(Section 6.6.5).

7.2.2 Index Structures. Hash-based indexes for in-memory relations and B-tree
indexes for disk-resident relations are currently available in the CORAL system.
New index implementations can be created as sub-classes of the generic class Index
and may be added to any relation implementation. For instance, pattern-form
indexes were added using this interface.

CORAL provides a uniform interface for the addition of any kind of index to
a relation; tuples already in the relation are added automatically to the index. Scan
operations on a relation optionally may specify an index to be used for the scan. 22
CORAL also has a mechanism for automatic selection of an index for a scan, in
case an index is not specified.

21. A mark is a mechanism that makes it possible to recognize which tuples in the relation were added after

the mark was obtained and which were already in the relation before the mark was obtained. If a relation

is conceptually viewed as a chain of tuples with new tuples appended to the end of the chain, obtaining a

mark corresponds to recording a pointer to the current end of the chain.

22. The current version of C O R A L does not support scan predicates such as X < 10, but this feature will

be supported in a future release of CORAL.

192

7.3 Persistent Relations

CORAL uses the EXODUS storage manager to support persistent (disk-resident)
relations. The schema of a CORAL disk-resident relation must be declared. For
example, the schema of the employee relation (Section 2.1) can be declared as
scheraa(employee(string, s t r i n g , g loa t)) . In the current CORAL implemen-
tation, tuples in a disk-resident relation are restricted to have fields of primitive types
only. One way of allowing objects of arbitrary classes in such tuples would be to
require the classes to provide member functions for encoding objects as bit-strings,
and corresponding decoding functions. Future releases of CORAL may provide
this facility.

Indexes can be maintained, and are implemented as B+ trees. Both base
relations as well as derived relations can be disk-resident. Derived relations that
are materialized on disk during the evaluation of a query reside on a temporary
disk volume so that they do not persist after the completion of the query. This is
in contrast to persistent relations that reside on disk across query invocations and
across invocations of CORAL.

The transaction mechanism provided by EXODUS is used to provide transac-
tion semantics for actions on persistent relations. EXODUS uses a client-server
architecture; CORAL is the client process, and maintains buffers for persistent
relations. If a requested tuple is not in the client buffer pool, a request is forwarded
to the EXODUS server and the page with the requested tuple is retrieved.

As an artifact of the basic implementation decision to share constants instead
of copying their values, there is some inefficient copying of data that occurs while
handling disk-resident data. We are in the process of modifying the implementation,
at least in the case of constants of primitive types like integers.

8. Interface with C + +

The CORAL system has been integrated with C+ + to support a combination of
declarative and imperative programming styles. The CORAL system provides a
collection of new C+ + classes (relations, tuples, args, and scan descriptors) and a
suite of associated member functions. In addition, there is a construct to embed
CORAL commands in C+ + code. This extended C+ + can be used in conjunction
with the declarative language features of CORAL in two distinct ways:

• Relations can be computed in a declarative style using declarative modules, and
then manipulated in imperative fashion in extended C+ + without breaking
the relation abstraction. In this mode of usage, there typically is a main
program written in C+ + that calls on CORAL for the evaluation of some
relations defined using CORAL modules. The main program is compiled
(after some pre-processing) and executed from the operating system command
prompt; the CORAL interactive interface is not used.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 193

• New predicates can be defined using extended C+ +. These predicates can
be used in declarative CORAL code and are incrementally loaded from the
CORAL interactive command interface. There are, however, some restrictions
on the types of arguments that can be passed to the newly defined predicates.

Thus, declarative CORAL code can call extended C+ + code and vice-versa.
The above two modes are further discussed in the following sections.

8.1 CORAL Classes Visible to C+ +

The C + + classes defined in the CORAL system that are visible to the C + +
programmer include:

Relation: This allows access to relations from C++. Relation values can be
constructed through a series of explicit inserts and deletes, or through a call to
a declarative CORAL module. The associated member functions allow manip-
ulation of relation values from C+ + without breaking the relation abstraction.

Tuple: A relation is a collection (set or multiset) of tuples.
Arg: A tuple, in turn, is a list of args (i.e., arguments). A number of functions are

provided to construct and take apart arguments and argument lists.
C_ScanDesc: This abstraction supports relational scans in C+ + code. A C_ScanDesc

object is essentially a cursor over a relation.

The following example illustrates several classes (Relat ion, C_ScanDesc, Tuple,
and Arg) and functions that form part of the CORAL interface to C+ +:

int sum_first_args(char* tel_name, int rel_arity)
{

Relation *rel = find_relation(rel_name, rel_arity);
C_ScanDesc *scan = new C_ScanDesc(rel);

Tuple *tuple; int sum = O;

/* Iterate over the tuples in the relation */
for (tuple=scan->next_tuple () ; ! (scan->no_match()) ;

tuple=scan->next_tuple ()) {
if (!is_int((*tuple) [0])) {

error("non-integer first field)"); /* Print error message */

exit 1 ;
}
sum+=make_int((*tuple) [0]) ;/*Sum up first argument of each fact*/

}

return (sum) ;
}

This example uses functions like find_relation and is_int, which are part
of the interface specification. The complete interface specification is provided in

194

the user manual (Ramakrishnan et al., 1993a). :However, this simple program
demonstrates the fact that the C_ScanDesc abstraction, along with the Relation,
Tuple, and Arg abstractions, gives the C+ + programmer a convenient way to access
data stored in CORAL relations. Scans can be set up in an identical fashion on
both base and derived relations. 23 A suite of routines is provided for converting
CORAL terms into C+ + values and vice-versa.

One restriction in the current interface is that a very limited abstraction of
variables is presented to the user. Variables can be, used as selections for a query
(say, via repeated variables) or in a scan, but variables cannot be returned as answers
(i.e., the presence of non-ground terms is hidden at the interface). Presenting the
abstraction of non-ground terms would require that binding environments be provided
as a basic abstraction, and this would make the interface rather complex.

8.2 Calling CORAL from C+ +

Any sequence of commands that can be typed in at the CORAL interactive command
interface can be embedded in C+ + code. However, the code must be bracketed
by special delimiters. A file containing C + + code with embedded CORAL code
must first be passed through the CORAL pre-processor and then compiled. The
following program illustrates how to call declarative CORAL from imperative C+ +:

main(int argc, char**argv)
{

int i = 2; double j = 4.23;
init_coral (argv [0]) ;

f o r (i = O; i < 3; i++) {
\ [

grows (($ i n t) $ i , 1).
fixed(2, ($double)$j).
?grows (X,Y).
?fixed(X,Y).

\]
}
exit_coral () ;

During the execution of the above program, each time through the loop, the
variable i which is passed to the declarative CORAL code takes on a new value,
and hence new facts are added to the relation grows on each iteration. The query
?grows(X,Y) prints out a set of answers on each iteration, and the set of answers
increases on successive iterations. Assuming duplicate elimination is performed, the
relation f ixed , and the set of answers to the query ?f ixed (X, Y), remain unchanged.

23. Note that it is easy to materialize a derived relation, if desired, by using an imperative rule with ":=".

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 195

8.3 Defining New Predicates in C+ +

As we have already seen, predicates exported from one CORAL module can be used
freely in other modules. Sometimes, it may be desirable to define a predicate using
extended C + + , rather than the declarative language supported within CORAL
modules. A _coral_expor t statement is used to declare the arguments of the
predicate being defined. The definition can use full extended C+ +. The source
file is pre-processed into a C+ + file, and compiled to produce a .o file. If this
file was consulted from the CORAL prompt, then it is incrementally loaded into a
newly allocated region in the data area of the executing CORAL system. It is also
possible to consult a pre-processed .C file or .o file directly, and avoid repeating
the pre-processing and compilation steps.

Consider the following example of defining CORAL predicates using C+ +.

_coral_export double myfunc(double);
double myfunc(double x)
{

return x*2 ;
}

The export statement defines a CORAL predicate myfunc based on the C+ +
function my:~unc. The return value of the C+ + function myfunc is automatically
mapped into the second argument of the CORAL predicate myftmc. This predicate
must be called with the first argument bound to a double; the second argument
can be free or bound. If the second argument is bound, the computed value is
compared with the given binding.

The CORAL primitive types are the only types that can be used in a _coral_export
declaration; user-defined types are not allowed. An alternative mechanism is avail-
able to define more complex predicates using C++; details may be found in the
CORAL manual (Ramakrishnan et al., 1993a). However, the export mechanism
makes it very easy to define simple predicates using C+ +.

9. Extensibility in CORAL

The implementation of the declarative language of CORAL is designed to be
extensible. The user can define new abstract data types, new relation implementations
and new indexing methods, and use the query evaluation system with no (or in a
few cases, minor) changes. The user's program will, of course, have to be compiled
and linked with the system code. CORAL assumes a set of standard operations on
data types is available, and all abstract data types must provide these operations
(as C+ + virtual member functions).

196

9.1 Extensibility of Data Types

The type system in CORAL is designed to be extensible; the class mechanism
and virtual member functions provided by C+ + help make extensibility clean and
local. "Locality" refers to the ability to extend the r.~e system by adding new code
without modifying existing system code--thus, the changes are local to the code
that is added. All abstract data types should have certain virtual member functions
defined in their interface, and all system code that manipulates objects operates only
via this interface. This ensures that the query evaluation system does not need to
be modified or recompiled when a new abstract data type is defined. The required
member functions include the member function equals, which is used to check if
two objects are equal, the member function p r in t for printing the object, hash to
return a hash value, and constructor and destructor functions. For a summary of
the virtual member functions that constitute the abstract data type interface, see
Ramakrishnan et al. (1992b, 1993a).

The user can define predicates (using C+ +) to manipulate (and possibly display
in novel ways) objects belonging to the abstract data types. These predicates must
be registered with the system and then can be accessed from CORAL; registration
is accomplished by a single command.

While the creation of new abstract data types in (;ORAL is quite straightforward,
the definition of predicates to manipulate the abstract data types is a little more
complicated since the creator must have some knowledge of the internal data
representation in CORAL. Given this knowledge, defining a predicate is easy as
well. For example, one of the authors implemented an array abstract data type
along with a set of predicates to manipulate it, with about half a day's effort. 24

9.2 Adding New Relation and Index Implementations

CORAL currently supports relations organized as linked lists, relations organized as
hash tables, relations defined by rules, and relations defined by C+ + functions. The
interface code to relations makes no assumptions about the structure of relations,
and is designed to make the task of adding new relation implementations easy. The
"get-next-tuple" interface between the query evaluation system and a relation is the
basis for adding new relation implementations and index implementations in a clean
fashion. The implementation of persistent relations using EXODUS illustrates the
utility of such extensibility (Section 7.3).

10. Performance Results

The wide range of evaluation techniques available in CORAL and the ability to

24. This is available as part of the CORAL system. The additional code involved is included and discussed
in the CORAL user manual (Raraakrishnan et al., 1993a).

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 197

Table 1. Ancestor timings

Program Dataset Rewriting Timing

Left Linear Ancestor

Right Linear Ancestor

Non Linear Ancestor

Treel l l0

Chainl60

Treel000

Chainl60

Treel000

Chain160

Supplementary Magic
Factoring

Supplementary Magic
Factoring

Supplementary Magic

Factoring

Supplementary Magic
Factoring

Supplementary Magic
Factoring

Supplementary Magic

Factoring

0.50s

0.40s

0.09s

0.07s

1.65s

0.77s

4.88s

0.11s

4.00s

0.74s

149.25s

0.14s

choose them in combination offers much greater flexibility than is available in other
systems. Here, we summarize a few of our performance results that underscore the
value of this flexibility. We performed measurements on a lightly loaded Sparcstation
10/51, using Unix user cpu times. The programs chosen represent "typical" building
blocks used in deductive applications: computing transitive closure and bill-of-
materials relationships, appending lists, aggregating over sequences, and simple
non-recursive rules that join several relations. We have not presented a comparison
of CORAL with other systems. Such comparisons need to be carefully designed
and are beyond the scope of this article.

10.1 Ancestor and Bill of Materials

The first program that we examined was the well known a n c e s t o r example. We
used a tree with a depth of 3 and a uniform fanout of 10 (having a total of 1110
edges), and a chain of length 160 as our data sets. The roots of the data sets were
used as the selections on the first argument for each of the queries; therefore all
nodes were present in the answers. The timings are shown in Table 1; they do not
include printing times. We present figures for three ways of writing the program (left-
linear, right-linear, and non-linear) in combination with two optimization techniques
(Supplementary Magic, which is used by default in CORAL, and Factoring, which
is applicable only to a certain class of programs and must be explicitly enabled).

The factoring rewrite of all of the above forms of the ancestor program results in
a program similar to (but slightly simpler than) the left-linear Supplementary Magic
version of the program; hence their timings are similar. The poor performance of

198

Table 2. Append timings

List Length I Supp. Magic Last-Call Pipelined

100 0.19s 13.13 0.03

200 0.36s 0.27 0.06

400 0.71s 0.53s 0.14s

the non-linear version of the program with Supplementary Magic rewriting indicates
that thought must be given to efficiency when writing declarative programs, unless
the optimizer is sufficiently smart.

We also ran a bill-of-materials program, which computed all the basic parts
needed to create an assembly, and summed up the total cost of the copies of each
basic part required. We used a synthetic database of 100 different basic parts, and
15000 facts for the assemblies (each assembly consisting of three sub-assemblies/basic
parts). A query on this database which resulted in all 100 basic parts being accessed
ran in 12.36 seconds.

10.2 Appending Lists

The second program we examined was the standard program for appending two
lists; it was used primarily to demonstrate CORAEs support for complex data such
as lists. We performed timing measurements for appending ground lists of different
sizes; three evaluation techniques were used: pipelining, materialization using Sup-
plementary Magic rewriting, and materialization using a version of Supplementary
Magic rewriting with last-call optimization (Ross, 1991). Factoring is not applicable
for this program.

The timings are shown in Table 2. Append runs in linear time on CORAL
with all three evaluation techniques. What is interesting is that the rewritten
program generated by the version of Supplementary Magic with last-caU optimization
actually generates non-ground facts, even though the append program itself does
not generate non-ground facts on the queries we use. Without the non-ground fact
related optimizations (Sudarshan, 1992; Sudarshan and Ramakrishnan, 1993), the
evaluation of the rewritten program would have taken quadratic time. With the
non-ground fact optimization, not only did the program run in linear time, but it
ran faster than the version of the program rewritten using Supplementary Magic
rewriting. The version of Supplementary Magic with last-call optimization has not
yet been implemented in the CORAL system, but we hand-coded the program
to demonstrate the benefits of the non-ground fact optimizations implemented in
CORAL, and the benefits of last-call optimization.

The timings for the append program clearly indicate that pipelining is the best
evaluation mechanism for append; however, the exercise demonstrates that programs
which need to be evaluated with materialization (for other reasons), can perform

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 199

list operations with acceptable asymptotic bounds.

10.3 Moving Average Over a Sequence

The third program we studied computed the N-day moving average over a daily
sequence of stock quotes. The average of the values of a sequence over a "window"
of days prior to the current day are computed for each day in the sequence. With
Supplementary Magic, on a sequence of length 1000, CORAL took about 0.74s
regardless of window size. This reflects the fact that the optimized program scans
the relation just once, independent of the window size. Performance is linear in
the size of the input sequence (e.g., CORAL takes 1.55 seconds on a sequence of
length 2000, and 3.37 seconds on a sequence of length 4000).

10.4 Indexing and Joins

We measured the time taken to build indexes on relations. For in-memory relations,
indexes could be constructed very efficiently; for example, creating an index on the
first two columns of a ternary relation with 15000 tuples took just 0.24 seconds.
This bears out our decision to construct indexes on in-memory relations whenever
the indexes are required for evaluating a rule.

To get a feel for the performance of low-level evaluation mechanisms, we
performed a simple join of the form parent (X,Y), parent (X,Z), parent (Z,W),
with the tree data set having 1110 edges used as the input. We timed two variants
of the program, both of which had an empty relation as the fourth relation in the
join, so no actual facts were generated (the cost of materializing facts dominates the
other join costs). The first variant had a relation with no arguments, and intelligent
backtracking on finding the relation was empty the first time it was accessed would
recognize that the rule would never generate any facts, and not perform the rest
of the join. The time for detecting this was just around 0.05 seconds. The second
variant was crafted to foil intelligent backtracking. Since the fanout of the tree data
set is 10, the literal placed after the three parent literals is reached about 100,000
times in a nested-loops join. This variant of the join took 1.25 seconds to execute.

When the parent facts were stored in an EXODUS (persistent) relation, all the
timings were approximately five times higher. This primarily is due to inefficiencies
in the interface between CORAL and EXODUS, and the system is currently being
modified to reduce some of the unnecessary overheads in this interface.

Based on our experience thus far, we can make a few observations: CORAL
is not very efficient in its low-level implementation. For example, it is nearly three
times slower than LDL on the basic join program, about eight to 10 times slower
than XSB, and about 25 times slower than WAM-based Prolog implementations.
We believe that the difference in speed is because LDL is compiled into C, whereas
CORAL is interpreted. However, CORAL performs better than LDL on many
more complicated programs; we believe this is because, in general, CORAL has
better program transformation and evaluation techniques. XSB and WAM-based

200

Prolog implementations have paid a great deal of attention to low-level optimization
techniques, such as unification and memory-management; this results in superior
performance. However, these systems provide a fixed control strategy and fixed
data types, unlike CORAL which has a number of different control strategies and
an extensible type system. We are currently studying how some of the WAM
optimizations (e.g., Ait-Kaci, 1991) can be extended to support these CORAL
features; this would require changes in, for example, internal representations of
terms, memory management, and code for rule evaluation. We believe that high-
level optimizations in CORAL, such as the program transformations and semi-
naive ffixpoint evaluation, would not be substantially affected by such low-level
optimizations.

11. Applications

It is widely accepted that developing significant applications currently represents
the major challenge for deductive systems. The CORAL system has been retrieved
by over 200 sites and has been used in research projects as well as in courses at
several universities. Some substantial research applications of CORAL, developed
by others, were described in the post-ILPS93 Workshop on Programming With Logic
Databases (Ramakrishnan, 1993). These include:

Support for visual querying of graph data: The Hy+/GraphLog group at the University
of Toronto is using CORAL as a back-end for a system that allows users to
pose queries through a visual interface (Vista and Wood, 1993). A rich class
of natural queries over graphs (e.g., flight queries, and class library dependency
queries) is supported, and queries are evaluated by translation into CORAL
queries.

Genome sequence analysis: Goodman et al. (1993) at MIT's Genome Lab are
considering the use of CORAL to maintain and query genome sequence data.
They report that deductive databases are well-suited for their application since
many of their queries are naturally recursive. They have used CORAL for
posing some queries on their data, and mention that CORAEs features and
performance in terms of speed are very good for their application.

In addition, several CORAL applications have been developed at the University
of Wisconsin. The CORAL group has developed two substantial applications of
CORAL: The Mimsy package, and the explanation and debugging package.

The Mimsy package (Roth et al., 1993) analyzes sequence data in the stock
market domain. Mimsy allows users to write queries using a menu-driven pseudo-
English language interface (with no knowledge of CORAL). Mimsy queries are
implemented by translating them into CORAL queries and passing them over a
socket to a server executing CORAL. Data are stored for distribution in Unix
files in the compressed format used by the Center for Research in Security Prices

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 201

(University of Chicago). The relations needed to answer a query are loaded into
memory on demand. Answers can be viewed as relations or as graphs; in addition
to CORAL, software such as Ghostview and IPL is used in Mimsy.

An important feature of Mimsy is the special implementation of relations
corresponding to stock histories. They are simply and efficiently implemented as
C + + arrays, and CORAEs extensibility is used to "register" this new relation
type. Adding such "array relations" was quite easy 25 and yielded a significant
performance improvement, underscoring the importance of extensibility. We have
tested the package on five year's worth of data on 100 stocks; over 20 year's worth
of data on about 1,600 stocks is available. It is therefore very important that the
data be stored in compressed form. Nonetheless, for virtually all queries of interest,
all the data fit easily into memory--the data for each stock can be represented in
one double word (there are about 250 data items per stock per year), and queries
rarely involve over 10 stocks. Since data for a query are loaded on demand, the
performance of a query is determined only by the data that it touches, rather than
by the total amount of available data.

It is worth noting that many queries that Mimsy is designed to deal with are
naturally recursive, and difficult to express in SQL (e.g., Find the N-day moving
average of IBM, and Find the longest increasing run in GM in 1993). Fur-

thermore, even queries that are non-recursive are more efficiently implemented than
in a typical SQL system due to the light-weight implementation of relations containing
stock series data. An example of a non-recursive query is: Find the 4-day average
of IBM whenever the price of DEC is up more than 57,.

The Mimsy system is inspired by MIM (Lewis, 1992; Logical Information
Machines, 1992), which is a commercial package for analyzing stock market data.
Mimsy has many of the features of MIM, which is a stand-alone package written
in C, but Mimsy is not as fast as MIM. Nonetheless, it offers good interactive
performance for typical queries. An important feature of Mimsy, not available in
MIM, is the extensibility that comes from having CORAL available underneath.
A sophisticated user can easily add new built-ins or predicate definitions using
the CORAL deductive language and make these accessible to naive users from
the pseudo-English language menu. This allows Mimsy to be customized with
complex analysis strategies by individual users, which is a very desirable feature
in an environment where many traders use sophisticated proprietary strategies for
buying and selling securities.

The second substantial CORAL application developed by the group at the
University of Wisconsin is an explanation and debugging package called Explain
(Arora et al., 1993), which is itself implemented using CORAL. The implemen-
tation of Explain uses the C+ + interface of CORAL extensively. However, the

25. A graduate student who was moderately familiar with CORAL added and fully tested this ccode in under
a week .

202

implementation of Explain does not use CORAEs deductive capabilities. Explain
allows a user to browse through all derivation trees for facts generated during a
CORAL run, using a graphical point-and-click interface. During a run, derivation
fragments (rule instantiations) are generated and stored in a file. Subsequently, the
browsing component of Explain can be invoked and the saved fragments are loaded
into CORAL relations. The Explain cornmands to grow and prune derivation trees
for interesting facts are implemented using these relations, and the implementa-
tion is greatly simplified by leaving the management of these relations (including
such concerns as indexing) to CORAL. Storing derivation fragments slows CORAL
execution by a factor of about five, and loading in the saved relations can take
tens of seconds for large dumps (some of our tests created over 60,000 fragments).
Response to browsing queries, once these relations are loaded, is very fast (much
less than a second).

CORAL has been used to implement algorithms for interproceduralslicing (Reps,
1994), a technique for identifying program statements that can affect the value of
a variable at a particular program point. An algorithm for slicing was reported by
Horowitz et al. (1990) and implemented in about 5~,000 lines of C in eight months.
The programs to be analyzed by slicing were encoded as a set of facts (corresponding
to edges in the program dependency graph) in CORAL, and the algorithm for slicing
was implemented in just about 100 lines of declarative CORAL code. A notable
feature of the CORAL code was that complex recursive rules were frequently used,
with the most common being variations of transitive closure. However, rules similar
to the well-known same-generation rules (but more complex!) were also used;
this is not surprising when one considers the need to match procedure calls and
returns. This application clearly shows the utility of a declarative language capable
of dealing with large numbers of facts; for example, one sample program of about
700 lines had an encoding consisting of over 10,000 base facts. The number of
recursive semi-naive rules in the largest recursive component was approximately 25,
and tens of thousands of intermediate facts were generated. The application also
brought out some limitations in the CORAL implementation. Memory management,
join ordering, and low-level rule implementation seem to be the main weaknesses,
although a more careful evaluation remains to be done.

12. Related Systems

A number of other deductive database systems have been developed in the past few
years. These include Aditi (Vaghani et al., 1991), ConceptBase (Jeusfeld and Staudt,
1993), EKS-V1 (Vieille et al., 1990), GIue-NAILI (Morris et al., 1986; Phipps et
al., 1991), LDL (Naqvi and Tsur, 1989; Chimenti et al., 1990), LDL+ + (Arni and
Ong, 1993), LOLA (Freitag et al., 1991), Starburst SQL (Mumick et al., 1990), and
XSB (Sagonas et al., 1994). There are many similarities between CORAL and these
systems. However, there are several important differences, and CORAL extends
the above systems in the following ways:

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 203

1. CORAL is extensible--new data and relation types and index implementations
can be added without modifying the rest of the system.

2. CORAL supports a wide range of evaluation techniques, and gives the user
considerable control over the choice of techniques.

3. CORAL supports a larger class of programs, including programs with non-
ground facts and non-stratified set-generation.

EKS-V1 supports integrity constraint checking, hypothetical reasoning, and
provides some support for non-stratified aggregation (Lefebvre, 1991, 1992). Con-
ceptBase supports several object-oriented features, integrity constraint checking,
and provides a one-way interface to C/Prolog (i.e., the imperative language can call
ConceptBase, but not vice versa). LOLA supports integrity constraints, several join
strategies, and some support for type information. The host language of LOLA
is Lisp, and it is linked to the TransBase relational database. Aditi gives primary
importance to disk-resident data and supports several join strategies.

In CORAL, modules serve as the units of compilation, and several evaluation
choices can be specified on a per-module basis. Unlike Glue-NAIL! and LDL, where
modules have only a compile-time meaning and no run-time meaning, modules in
CORAL have important run-time semantics. Several run-time optimizations are
done at the module level. Modules with run-time semantics also are available in
several production rule systems (e.g., RDL1; Kiernan et al., 1990).

LDL+ + (Arni and Ong, 1993), a successor to LDL, has moved in the direction
taken by CORAL in several respects. It is interpreted, supports abstract data types,
and uses a local semantics for choice (Carlo Zaniolo, personal communication).
XSB supports several features similar to CORAL, such as non-ground terms and
modularly stratified negation. Program evaluation in XSB uses OLDTNF resolution,
and has been implemented by modifying the WAM; this implementation performs
basic operations such as unification very efficiently.

Unlike most logic programming systems, such as various implementations of
Prolog, CORAL supports declarative semantics for all positive Horn clause programs,
and for a large class of programs with negation and aggregation as well, and provides
better indexing facilities and support for persistent data.

13. Conclusions

One version of the CORAL system has been released in the public domain, and
an enhanced version will be released soon. Looking back at the evolution of the
system, the effects of several design decisions are becoming increasingly evident.
On the positive side, most of the decisions we made seem to have paid off with
respect to simplicity and ease of efficient implementation:

Modules: The concept of modules in CORAL was in many ways the key to the
successful implementation of the system. Given the ambitious goal of combining

204

many evaluation strategies controlled by user hints in an orthogonal fashion, the
module mechanism appears to have been the ideal approach.

Annotations: It has been our experience that often the discerning user is able
to determine good control strategies that would be extremely difficult, if not
impossible, for a system to do automatically. Hence, the strategy of allowing
the users to express control choices was a convenient approach to solving an
otherwise difficult problem. It is important to emphasize that a good choice
of default decisions is essential to shield a naive user from the need to learn
about annotations. As the system becomes more sophisticated in making intel-
ligent optimization choices, the need for user-specified annotations decreases.
However, the ability to speciffij annotations when necessary is a valuable feature.
In retrospect, annotations such as a g g r e g a t e s e l e c t i o n s have proved to be
extremely useful, whereas other annotations such as p r i o r i t i z e have not been
used much.

Extensibility: The decision to design an extensible system seems to have helped
greatly in keeping our code clean and modular.

System Architecture: The architecture concentrated on the design of a single-user
database system, leaving issues like transaction management, concurrency control,
and recovery to be handled by the EXODUS storage manager. Thus, CORAL
could build on facilities that were already available, and focus instead on the
subtleties of deductive databases and logic rules. The overall architecture was
reasonably successful in breaking the problem of query processing into relatively
orthogonal tasks.

On the negative side, some poor decisions were made, and some issues were not
addressed adequately.

Type Information: CORAL makes no effort to use type information in its processing.
No type checking or inferencing is performed at compile-time, and errors due
to type mismatches lead to subtle run-time errors. 'Iyping is a desirable feature,
especially if the language is to be used to develop large applications. This is
one of the issues addressed by a proposed extension to CORAL (Srivastava et
al., 1993).

Memory Management: In an effort to make the system as efficient as possible for
main-memory operations, copying of data has largely been replaced by pointer
sharing, even for primitive data types such as integers. While this does make
evaluation more efficient, it requires extensive memory management and garbage
collection. This is, in retrospect, the worst of our design decisions, and is currently
being modified. It has implications for both garbage collection and the interface
to persistent data.

Low-level Optimizations: The focus of the CORAL implementation was high-level
optimizations such as rewriting algorithms and semi-naive evaluation. We have
not attempted to optimize fully the basic operations in evaluating a rule. In the
main-memory case, optimizations such as those pioneered in the Warren Abstract

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 205

Machine (WAM) for Prolog systems could significantly improve performance. For
disk-resident data, more efficient join methods and cost-based query optimization
would greatly improve the system.

On the whole, however, CORAL has incorporated many features that are unique
among deductive database systems:

1. As an architectural feature, the importance assigned to modules both as
compile-time and run-time units distinguishes CORAL from other deduc-
tive database systems (Section 12). The EXODUS-based architecture for
persistent data and the C+ + interface also are notable design decisions.

2. From a language viewpoint, CORAL supports a wide range of features that
set it apart from other languages. In particular, the support for non-stratified
negation and aggregation, non-ground facts, and the many control annotations
make for a rich and powerful language.

3. From an implementation viewpoint, many of the strategies that are supported
by CORAL were developed in the course of the project. These include pro-
gram evaluation strategies like Magic Templates, Factoring, Ordered Search,
and Predicate Semi-Naive evaluation, as well as optimization techniques
to handle non-ground facts efficiently, and techniques to implement Save
Modules.

There are a number of directions in which CORAL could be, and in some
cases needs to be, extended. This section discusses some issues that appear to be
important, and that will involve significant effort. The issues discussed initially are
those that involve enhancing the power or the performance of existing features of
CORAL. Some other desirable enhancements that require extensive changes to the
system are mentioned later.

• Further support of persistent data needs to be provided. Though CORAL
uses the indexed nested-loops join strategy as its default, there is no reason
to stick with this approach, especially for joins of persistent relations. The
design of the system makes no assumption about individual join methods,
and so persistent relations should be joined by the most efficient join method
available. While the current system permits the storage of only primitive
data types in EXODUS, this needs to be enhanced to allow the storage of
structured data as well. This is an interesting direction of future research.

• The management of memory is probably the biggest drawback of the first
version of the system. Extensive code modification is required to copy
constants instead of sharing them. This process is partially completed at the
time of publication of this article.

• The interface with C+ + needs to be enhanced with new abstractions that
allow programmers greater abilities to use the power of CORAL. In particular,
a more powerful abstraction of variables needs to be provided.

206

• While performance measurements of a prelitainary nature have been made,
an extensive performance evaluation of CORAL, both to evaluate various
aspects of the system and to compare it with other systems, needs to be
performed.

• At present, the system presents a command]prompt interactive interface, in
much the same manner as most Prolog systenas. There are many challenges
with respect to user interfaces for declarative language systems that could
be tackled in the CORAL context.

• Object-oriented features such as abstract data types, encapsulation, and
inheritance provide very rich data modeling capabilities. Incorporating such
features into CORAL (Srivastava et al., 1993)would be crucial in developing
large applications in CORAL. The key to this integration is the following
observation: object-oriented features are essentially extensions of the data
model, and a clean integration of these features into CORAL can be achieved
by allowing the language to draw values frora a richer set of domains.

• Currently, CORAL provides support for no:a-ground facts with universally
quantified variables. In several applications, variables in facts are typically
constrained by information from some domain. An important extension to
CORAL is to support such constraint facts (]KaneUakis et al., 1990), and we
are considering linear arithmetic constraints as one of the constraint domains
to incorporate into CORAL.

Acknowledgements

This work was supported by a David and Lucile Packard Foundation Fellowship in
Science and Engineering, a Presidential Young Investigator Award with matching
grants from DEC, Tandem and Xerox, and NSF grant IRI-9011563. We would like to
acknowledge our debt to Aditi, EKS-V1, LDL, NAIL!, SQL, Starburst, and various
implementations of Prolog from which we have borrowed numerous ideas. We
would like to acknowledge the contributions of the following people to the CORAL
system: Per Bothner, who was largely responsible for the initial implementation of
CORAL that served as the basis for subsequent development, was a major early
contributor. Joseph Albert worked on many aspects of the set-manipulation code;
Tarun Arora implemented several utilities and built-in/library routines in CORAL;
Tom Ball implemented an early prototype of the semi-naive evaluation system; Jeff
Cai provided developmental support; Lai-chong Chan did the initial implementation
of existential query optimization; Manuvir Das implemented the Ingres interface;
Sumeer Goyal implemented embedded CORAL constructs in C + + ; Vish Karra
implemented pipelining; Robert Netzer did the initial implementation of Magic
rewriting; and Bill Roth implemented the Mimsy system and helped build the
Explain system.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 207

References

Ait-Kaci, H. Warren's Abstract Machine: A Tutorial Reconstruction. Cambridge, MA:
MIT Press, 1991.

Arni, N. and Ong, K. The LDL++ User's Guide, 2.0 edition, January 1993. MCC
Technical Report Carnot-012-93(P), Austin, TX.

Arora, T., Ramakrishnan, R., Roth, W.G., Seshadri, E, and Srivastava, D. Explain-
ing program evaluation in deductive systems. Proceedings oft he International
Confere~:ce on Deductive and Object-Oriented Databases, Phoenix, AZ, 1993.

Balbin, I. and l~amamohanarao, K. A generalization of the differential approach
to recursive query evaluation. Journal of Logic Programming, 4(3):259-262, 1987.

Bancilhon, E Naive evaluation of recursively defined relations. In: Brodie, M.
and Mylopoulos, J., eds., On Knowledge Base Management Systems: Integrating
Database andAI Systems. Heidelberg, Germany: Springer-Verlag, 1985.

Bayer, R. Query evaluation and recursion in deductive database systems: Unpub-
lished Memorandum, 1985.

Beeri, C., Naqvi, S., Shmueli, O., and Tsur, S. Set constructors in a logic database
language. Journal ofLogieProgramming, 10(3/4):181-232, 1991.

Beeri, C. and Ramakrishnan, R. On the power of Magic. Proceedings oftheACM
Symposium on Principles of Database Systems, San Diego, CA, 1987.

Bry, E Logic programming as constructivism: A formalization and its application
to databases. Proceedings of the ACM SIGACT-SIGART-SIGMOD Symposium on
the Principles of Database Systems, Philadelphia, PA, 1989.

Carey, M., DeWitt, D., Richardson, J., and Shekitr], E. Object and file management
in the EXODUS extensible database system. Proceedings of the International
Conference on Very Large Databases, Kyoto, Japan, 1986.

Chang, J.H. and Despain, A.M. Semi-intelligent backtracking of Prolog based on
static data-dependency analysis. Proceedings of the Symposium on Logic Program-
ming, Boston, MA, 1985.

Chimenti, D., Gamboa, R., and Krishnamurthy, R. Abstract machine for LDL.
Technical Report ACT-ST-268-89, MCC, Austin, TX, 1989.

Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., and Zaniolo, C.
The LDL system prototype. IEEE Transactions on Knowledge and Data Engineer-
ing, 2(1):76--90, 1990.

Derr, M.A. Adaptive optimization in a deductive database system. Proceedings of
the Second International Conference on Information and Knowledge Management,
Arlington, VA, 1993.

Freitag, B., Schiitz, H., and Specht, G. LOLA: A logic language for deductive data-
bases and its implementation. Proceedings of the Second International Symposium
on Database Systems for Advanced Applications (DASFAA), Tokyo, Japan, 1991.

Giannotti, E, Pedreschi, D., Sacca, D., and Zaniolo, C. Non-determinism in deduc-
tive databases. Proceedings of the Second International Conference on Deductive
and Object-OrientedDatabases, Munich, Germany, 1991.

208

Goodman, N., Rozen, S., and Stein, L. Requirements for a deductive query lan-
guage in MapBase genome-mapping database. Proceedings of the Workshop on
Programming with Logic Databases, Vancouver, Canada, 1993.

Goto, E. Monocopy and associative algorithms in an extended lisp. Technical Report
74-03, Information Science Laboratory, University of Tokyo, Japan, May 1974.

Greco, S., Zaniolo, C., and Ganguly, S. Greedy by choice. Proceedings oftheACM
Symposium on the Principles of Database Systems, San Diego, CA, 1992.

Horowitz, S., Reps, T., Binkley, D. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems, 12(1):26-60, 1990.

Jeusfeld, M. and Staudt, M. Query optimization in deductive object bases. In:
Freytag, J.C., Vossen, G., and Maier, D., eds. Query Processing for Advanced
Database Applications. San Mateo, CA: Morgan-Kaufmann, 1993.

Kiernan, G., deMaindreville, C., and Simon, E. Ma~dng deductive database a prac-
tical technology: A step forward. Proceedings of the ACM SIGMOD Conference
on the Management of Data, Atlantic City, NJ, 1990.

Kanellakis, EC., Kuper, G.M., and Revesz, P.Z. Constraint query languages. Proceed-
ings of the Ninth ACM Symposium on the Principles of Database Systems, Nashville,
TN, 1990.

Kemp, D., Ramamohanarao, K., and Somogyi, Z. Right-, left-, and multi-linear rule
transformations that maintain context information. Proceedings of the International
Conference on l,~ry Large Databases, Brisbane, Australia, 1990.

Lefebvre, A. Recursive aggregates in the EKS-V1 system. Technical Report TR KB
34, ECRC, February 1991.

Lefebvre, A. Towards an efficient evaluation of rec, ursive aggregates in deductive
databases. Proceedings of the International Conference on Fifth Generation Com-
puterSystems, Tokyo, Japan, 1992.

Lewis, EH. A fast way to discover patterns in vast amounts of data. The New York
Times, pp. 16-17, August 1992.

Lloyd, J.W. Foundations of Logic Programming, 2nd ed. Heidelberg, Germany:
Springer-Verlag, 1987.

Logical Information Machines, 8920 Business Park Drive, Suite 372 Austin, TX
78759. The XMIM Reference Guide, 2.1.1 edition, July 1992.

Maher, M.J. and Ramakrishnan, R. D~jfifi vu in fixpoints of logic programs. Pro-
ceedings of the Symposium on Logic Programming, Cleveland, OH, 1989.

Morris, K., Ullman, J.D., and Van Gelder, A. Design overview of the NAIL! system.
Proceedings of the Third International Conference on Logic Programming, London,
1986.

Mumick, I.S., Pirahesh, H., and Ramakrishnan, R.. Duplicates and aggregates in
deductive databases. Proceedings of the Sixteenth International Conference on l,~ry
Large Databases, Brisbane, Australia, 1990.

Naughton, J.E, Ramakrishnan, R., Sagiv, Y., and Ullman, J.D. Argument reduction
through factoring. Proceedings of the Fifteenth International Conference on l~ry
Large Databases, Amsterdam, The Netherlands, 1989.

VLDB Journal 3 (2) Ramakrishnan: The CORAL Deductive System 209

Naqvi, S. and Tsur, S. A Logical Language for Data and Knowledge Bases. Principles
of Computer Science. New York: Computer Science Press, 1989.

Phipps, G., Derr, M.A., and Ross, K.A. Glue-NAIL!: A deductive database system.
Proceedings of the ACM SIGMOD Conference on Management of Data, Denver,
CO, 1991.

Przymusinski, T.C. On the declarative semantics of stratified deductive databases.
In: Minker, J., ed., Foundations of Deductive Databases and Logic Programming,
Washington, DC: Morgan Kaufmann, 1988, pp. 193-216.

Ramakrishnan, R. Magic templates: A spellbinding approach to logic programs.
Proceedings of the International Conference on Logic Programming, Seattle, WA,
1988.

Ramakrishnan, R., editor. Proceedings of the Workshop on Programming with Logic
Databases, Vancouver, BC, Canada, October 1993. Available as Technical Report
1183, Computer Sciences Department, University of Wisconsin-Madison.

Ramakrishnan, R., Beeri, C., and Krishnamurthy, R. Optimizing existential Datalog
queries. Proceedings of the ACM Symposium on Principles of Database Systems,
Austin, TX, 1988.

Ramakrishnan, R., Bothner, P., Srivastava, D., and Sudarshan, S. CORAL: A data-
base programming language. Proceedings of the NACLP Workshop on Deductive
Databases, Austin, TX, 1990. Available as Report TR-CS-90-14, Department of
Computing and Information Sciences, Kansas State University.

Ramakrishnan, R. and Sudarshan, S. Top-Down vs. Bottom-Up revisited. Proceed-
ings of the International Logic Programming Symposium, San Diego, CA, 1991.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. Controlling the search in
bottom-up evaluation. Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, Washington, DC, 1992a.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. CORAL: Control, Relations
and Logic. Proceedings of the International Conference on l~ty Large Databases,
Vancouver, Canada, 1992b.

Ramakrishnan, R., Seshadri, P., Srivastava, D., and Sudarshan, S. The CORAL user
manual: A tutorial introduction to CORAL. unpublished manuscript, 1993a.

Ramakrishnan, R., Srivastava, D., Sudarshan, S., and Seshadri, E Implementation
of the CORAL deductive database system. Proceedings of the ACM SIGMOD
Conference on the Management of Data, Washington, DC, 1993b.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. The Save Module facility in
CORAL. unpublished manuscript, 1993c.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. Rule ordering in bottom-up
fixpoint evaluation of logic programs. IEEE Transactions on Knowledge and Data
Engineering, in press (A shorter version appeared in VLDB, 1990).

Reps, T. Solving demand versions of interprocedural analysis problems. Proceedings
of the Fifth International Conference on Compiler Construction, Edinburgh, Scot-
land, 1994.

210

Rohmer, J., Lescoeur, R., and Kerisit, J.M. The Alexander method: A technique for
the processing of recursive axioms in deductive database queries. New Generation
Computing, 4:522-528, 1986.

Ross, K. Modular Stratification and Magic Sets tier DATALOG programs with
negation. Proceedings of the ACM Symposium on Principles of Database Systems,
Nashville, TN, 1990.

Ross, K. Modular acyclicity and tail recursion in logic programs. Proceedings of the
ACM Symposium on Principles of Database Systermr, Denver, CO, 1991.

Roth, W.G., Ramakrishnan, R., and Seshadri, P. MIMSY: A system for analyzing
time series data in the stock market domain. ,Proceedings of the Workshop on
Programming with Logic Databases, Vancouver, Canada, 1993.

Sagonas, K., Swift, T., and Warren, D.S. XSB as an efficient deductive database
engine. Proceedings of the ACM SIGMOD Confi;rence on Management of Data,
Minneapolis, MN, 1994.

Schmidt, H., Kiessling, W., Gfintzer, U., and Bayer, R. Compiling exploratory and
goal-directed deduction into sloppy delta iteration. IEEEInternationalSymposium
on Logic Programming, San Francisco, CA, 1987.

Seki, H. On the power of Alexander templates. Proceedings of the ACM Symposium
on the Principles of Database Systems, Philadelphia, PA, 1989.

Shmueli, O., Tsur, S., and Zaniolo, C. Compilation of set terms in the logic data
language (LDL). Joumal ofLogicProgramming, 12(1/2):89-120, 1992.

Srivastava, D., Ramakrishnan, R., Seshadri, P., and Sudarshan, S. Coral+ +: Adding
object-orientation to a logic database language. Proceedings of the International
Conference on l,~ty Large Databases, Dublin, Ireland, 1993.

Stroustrup, B. The C+ + Programming Language, (2nd Edition). Reading, MA:
Addison-Wesley, 1991.

Sudarshan, S. Optimizing Bottom-Up query evaluation for deductive databases.
PhD thesis, University of Wisconsin, Madison, WI 1992.

Sudarshan, S. and Ramakrishnan, R. Aggregation and relevance in deductive data-
bases. Proceedings of the Seventeenth International Conference on l~ry Large Data-
bases, Barcelona, Spain, 1991.

Sudarshan, S. and Ramakrishnan, R. Optimizations of bottom-up evaluation with
non-ground terms. Proceedings of the InternationaiLogic Programming Symposium,
Vancouver, Canada, 1993.

VieiUe, L., Bayer, E, Kiichenhoff, V., and Lefebvre, A. EKS-V1, a short overview.
AAAI-90 Workshop on Knowledge Base Management Systems, Boston, MA, 1990.

Vaghani, J., Ramamohanarao, K., Kemp, D.B., Somogyi, Z., and Stuckey, P.J.
Design overview of the Aditi deductive database system. Proceedings of the
Seventh International Conference on Data Engineering, Kobe, Japan, 1991.

Vista, D. and Wood, P. Efficient visual queries for deductive databases. Proceedings
of the Workshop on Programming with Logic Databases, Vancouver, Canada, 1993.

