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Abstract. CORAL is a deductive system that supports a rich declarative language, 
and an interface to C+ +, which allows for a combination of declarative and im- 
perative programming. A CORAL declarative program can be organized as a 
collection of interacting modules. CORAL supports a wide range of evaluation 
strategies, and automatically chooses an efficient strategy for each module in the 
program. Users can guide query optimization by selecting from a wide range of 
control choices. The CORAL system provides imperative constructs to update, in- 
sert, and delete facts. Users can program in a combination of declarative CORAL 
and C + + extended with CORAL primitives. A high degree of extensibility is pro- 
vided by allowing C+ + programmers to use the class structure of C+ + to en- 
hance the CORAL implementation. CORAL provides support for main-memory 
data and, using the EXODUS storage manager, disk-resident data. We present a 
comprehensive view of the system from broad design goals, the language, and the 
architecture, to language interfaces and implementation details. 
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1. Introduction 

T h e  C O R A L  deduct ive  system was in i t ia ted  unde r  the  name  Conlog,  and  an  ini t ia l  
overview was p r e sen t ed  by R a m a k r i s h n a n  et  al. (1990). C O R A L  provides  a power fu l  
dec la ra t ive  l anguage  tha t  can be  used  to express  complex  quer ies  o r  view def ini t ions  
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on databases. CORAL combines features of database query languages (e.g., efficient 
treatment of large relations, aggregate operations and declarative semantics) with 
features of a logic programming language (e.g., powerful inference capabilities and 
support for structured and incomplete data). The CORAL declarative language 
significantly extends the expressiveness of standard database query languages such 
as SQL, and differs from logic programming languages such as Prolog in supporting 
a declarative semantics. 

Applications in which large amounts of data must be analyzed, and the analysis 
is too complex to be performed using a less expressive language such as SQL, are 
likely to benefit from the combination of features provided by CORAL. Examples 
of such applications include sequence queries, such as stock market analysis queries 
and DNA sequence analysis queries, and generalized transitive closure queries, 
such as bill-of-materials queries. We discuss several applications of CORAL in this 
article. 

Queries written in a declarative language do not specify how they should be. 
evaluated. Because the database on which the queries are evaluated may be quite 
large, efficient execution of declarative queries is an important requirement of 
any deductive database system. We believe that no one evaluation technique is 
the best in all situations. Hence CORAL supports a wide range of evaluation 
strategies and optimization techniques (e.g., Ramakrishnan, 1988; Naughton et al., 
1989; Kemp et al., 1990; Ramakrishnan and Sudarshan, 1991; Ramakrishnan et 
al., 1992a, 1994). CORAL automatically chooses an efficient evaluation strategy 
for each program but, given the rich set of constructs in the language, we believe 
that some user guidance is critical for effective optimization of many sophisticated 
programs. Several optimization techniques may be simultaneously applicable to the 
same program. Further, different optimization and evaluation techniques may be 
ideal for different parts of the program. A challenge faced by CORAL was how to 
effectively combine different optimization and evaluation techniques, and to provide 
users with the ability to choose, in a relatively orthogonal manner, from the suite 
of optimizations supported by CORAL. The module structure, described below, is 
the key to meeting this challenge. 

A CORAL program is a collection of modules, each of which can be sepa- 
rately compiled (into CORAL internal data structures). Modules are the units of 
optimization and also the units of evaluation. Evaluation techniques can be chosen 
on a per-module basis, and different modules with different evaluation techniques 
can interact in a transparent fashion; the evaluation of each module is independent 
of the techniques used to evaluate other modules. In addition, the user can op- 
tionally specify high-level annotations at the level of each module, to guide query 
optimization. The ability to mix and match different evaluation strategies and op- 
timization techniques in different modules greatly enhances the practical utility of 
the system, and reflects well on its modularity. CORAL is more flexible than other 
deductive database and logic programming systems in this respect. We consider the 
annotation-based approach to control, and some of the novel annotations supported, 
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to be important contributions of the CORAL project. 
While declarative languages can provide considerable ease of expression, users 

may want to code parts of their applications in an imperative language for reasons 
of efficiency, or for performing inherently imperative actions such as updates or 
user interaction. Hence, an important goal of the CORAL effort was to integrate 
the deductive system with a general purpose programming language, with minimal 
impedance mismatch. Since CORAL is implemented in C + +  (Stroustrup, 1991), 
this is the language with which CORAL has been interfaced. Users can program in 
a combination of declarative CORAL and C+ +, and the interface is bi-directional: 

¢ 

1. CORAL code can be embedded within C+ + code, and data in the database 
can be manipulated from C+ + directly, using high-level abstractions provided 
by the CORAL interface. 

2. Declarative CORAL code can use predicates defined using C+ + procedures. 

To provide efficient support for novel applications, CORAL allows the user to 
create new C + +  classes, and manipulate objects of these classes in the declarative 
query language. New implementations of relations and indexes can also be added 
easily. Thus the CORAL deductive system is extensible. Extensibility has proved 
very useful in several CORAL applications. 

The CORAL system uses the EXODUS client-server storage manager (Carey 
et al., 1986) to provide support for disk-resident relations; however, it can run in 
a stand-alone mode, if all data are in main memory. The CORAL architecture 
thus supports an environment where one or more clients use copies of the CORAL 
system to execute queries, accessing data from a shared EXODUS server. Since the 
client-server interaction (including concurrency control, buffer management, and 
recovery) is largely handled by EXODUS, much of the design effort has focused 
on the architecture of the system of each client. 

The CORAL deductive system is available from the University of Wisconsin 
along with an extensive user manual and a large suite of sample programs. 1 The 
actual implementation includes all the features described in this article, unless 
otherwise stated. 

The rest of this article is structured as follows. In Section 2, we present the 
declarative features of CORAL; this is the primary focus of the system. We briefly 
discuss the interactive environment of the CORAL system in Section 3, touching on 
some interesting features like data organization capabilities, transaction facilities, and 
debugging tools. Section 4 contains an overview of the CORAL system architecture. 
Section 5 provides an overview of query evaluation and optimization. Section 6 
covers the basic strategies used in evaluating a module, as well as several important 
refinements. This section also addresses user guidance of query optimization via 

1. CORAL is free software available by anonymous ftp from ftp.cs.wisc.edu. 
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annotations. Section 7 explains the underlying representation of data used in 
CORAL. The CORAL/C+ + interface and support :for extensibility in CORAL are 
discussed in Sections 8 and 9. In Section 10 we discuss the performance of the 
CORAL system using a few representative programs. In Section 11 we mention 
several applications that have been developed using the CORAL system, to illustrate 
the utility of deductive database systems. We discuss related systems in Section 12. 
Finally, we provide a retrospective discussion of the CORAL design and outline 
future research directions in Section 13. 

2. Declarative Language Features 

We describe the declarative language provided by CORAL, informally presenting 
some concepts such as constants, variables, terms, facts, and rules along the way. 
Formal definitions of these concepts may be found in logic programming texts (e.g., 
Lloyd, 1987). 

2.1 Syntax and Semantics 

CORAL syntax is modeled largely after Prolog. Numbers, identifiers beginning with 
lower-case letters, and quoted strings are constants. Identifiers that begin with an 
upper-case letter are variables. 

Consider a database with an employee relation having three attributes: name, 
department and salary,  and the following facts: 

employee( "John", "Toys for Tots", 35000 ) 
employee( "Joan", "Toys for Tots", 30000 ) 

The first fact indicates that John is an employee in the Toys for Tots department 
and has a salary of $35,000. The second fact indicates that Joan works for the same 
department and has a salary of $30,000. 

Constants and variables constitute simple terms. To express structured data, 
complex terms are required. Complex terms are constructed using functors (i.e., 
nninterpreted function symbols as record constructors. Functors are represented 
using identifiers beginning with a lower-case letter). Such terms can be arbitrarily 
nested. The following fact illustrates the use of complex terms: 

address (" John", residence ("Madison", street_add (" Oak Lane", 3202), 53606) ). 

The above fact indicates that John's residence is 3202 Oak Lane in the city of 
Madison, and the zip is 53606. The function symbols res idence  and s t r ee t_add  
are used as record constructors. 

Rules in CORAL take the form: 

• • • ,  ( < ) .  

The semantics of CORAL rules is based on a declarative reading of the rules, unlike 
Prolog which has an operational reading of the rules. Informally, a rule is to be 
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to be read as an assertion that for all assignments of terms to the variables that 
appear in the rule, the head is true if each literal in the body is true. (In particular, 
a fact is just a rule with an empty body.) A CORAL program is a collection of 
rules, which may be organized into modules (Section 2.2.) 

It should be emphasized that a declarative language allows the programmer to 
express the meaning of a program, but offers no guarantee of execution strategy or 
order. This implies that declarative programs should not use features (e.g., updates) 
that have side-effects. 2 

In the deductive database literature, it is common to distinguish a set of facts 
as the extensional database (EDB), and to refer to the collection of rules as the 
intensional database (IDB). The significance of the distinction is that at compile 
time, only the IDB, and possibly meta-information about the EDB (e.g., schema 
and functional dependency information) are examined; the actual contents of the 
EDB are assumed to be unavailable at compile time. Thus, the IDB is viewed as 
a program and the EDB as the input to the program. 

A principal attraction of the logic programming paradigm is that there is a 
natural meaning associated with a program. As we have seen, each fact and rule 
can be read as a statement of the form "if <something is t r u e>  then <something 
else is also t rue> . "  In the absence of rules with negation, set-generation, and 
aggregation, the meaning of a program can be understood by reading each of the 
rules in the program in this manner, with the further understanding that the only 
true facts are those that are either part of the input EDB or that follow from a 
repeated use of program rules. More formally, the semantics of CORAL programs 
is given by the least fixpoint (e.g., Lloyd, 1987) of the program, with the EDB as 
the input to the program. 

CORAL goes much further towards supporting this simple semantics than logic 
programming languages like Prolog. For programs with only constants and variables 
as terms and without negation, set-grouping or aggregation (i.e., DATALOG pro- 
grams) this simple semantics is guaranteed. (More precisely, the default evaluation 
strategy is sound, complete, and terminates for this class of programs.) It is possible 
that the set of relevant inferences is infinite in the presence of terms with function 
symbols; in this case, termination cannot be guaranteed, but the evaluation is still 
sound; 3 evaluation is also complete if it terminates. 

In subsequent sections, we discuss more advanced features of the CORAL 
declarative language, such as non-ground facts, negation, set-generation, and ag- 
gregation. 

2. CORAL does offer an evaluation mode calledpipelining that offers an explicit guarantee of a fixed eval- 
uation strategy, and thus permits a meaningful use of such features within a program (Section 6). 

3. The "occur check" has been omitted from the current implementation of CORAL, as in all Prolog sys- 
tems, for reasons of efficiency. This compromises soundness for programs with non-ground terms and func- 
tors. 
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Figure 1. The Append program 

module listroutines. 
export append (bbf,bfb). 

append([],L,L). 
append([H I T],L,[H I El]) 

end_module. 
: - a p p e n d ( T , L , L 1 ) .  

2.2 Modules 

Coral users can organize sets of rules and facts into modules. We introduce the 
module syntax using a program to append two lists (Figure 1). This program 
illustrates the notion of modules, and CORAEs support for complex objects such 
as lists. 4 

Modules can export the predicates that they define; a predicate exported from 
one module is visible to all other modules. The export statements also define 
what forms of external queries are permitted on the module (b denotes an ar- 
gument that must be bound in the query, and f an argument that can be free). 
For example, one can ask the following queries on the l i s t r o u t i n e s  module in 
Figure 1: ? a p p e n d ( f 1 , 2 ] ,  [3,4] ,X), which corresponds to the bbf adornment, 
a n d  ? a p p e n d  ( [ 1 , 2 ] ,  X, [ 1 , 2 , 3 , 4 ]  ) ,  w h i c h  c o r r e s p o n d s  to  t h e  b:fb a d o r n m e n t .  

2.3 Non-Ground Facts 

CORAL permits variables within facts. For example, consider Figure 1. It is possible 
to query append as follows: 5 

Ouery: ? -append( [ l ,2 ,3 ,4 ,X] ,  [Y,Z], ANS). 

and get the answer (a fact with variables in it) 

ANS = [1,2,3,4,X,Y,Z] 

A fact with variables represents the (possibly infinite) set of ground facts obtained 
by replacing each variable by a ground term. Facts with variables are often useful 

4. The notation for list terms follows Prolog. A list is written in the form [elemlelem2 . . . . .  elemn] ; [] 
describes the empty list. Given an element e and a list 1, [e 11] denotes the list obtained by adding e to the 
front of 1. A list [H I T] can be unified with a given non-empty list [elemlelem2 . . . . .  elemn] by binding H 
to eleml, which is the head of the given list, and binding T to the list [elem2 . . . . .  elem, ], which is the tail 
of the given list. The tail of a list of the form [elem 1 ] is []. 

5. The current CORAL implementation by default performs certain optimizations that assume the absence 
of non-ground facts. These optimizations do not affect this query. In general, if non-ground facts might be 
generated during the evaluation of a module, these optimizations should be disabled by adding an annota- 
tion @ non_ground_facts + to the module. 
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in knowledge representation, natural language processing, and particularly in a 
database that stores (and possibly manipulates) rules. Non-ground facts may also 
be useful to specify constraint facts (Ramakrishnan, 1988; Paris et al., 1990), although 
they currently are not supported in CORAL. Because CORAL allows non-ground 
facts, rules are not required to be range-restricted. 6 To the best of our knowledge, 
CORAL is the only deductive database system, other than XSB (Sagonas et al., 
1994) to support non-ground facts. 

2.4 Negation 

CORAL supports a class of programs with negation that properly contains the class of 
non-floundering left-to-right modularly stratified programs (Bry, 1989; Ross, 1990). 
A program is non-floundering if all variables in a negative literal are ground before 
the literal is evaluated (in the left-to-right rule order). Intuitively, a modularly 
stratified program is one in which the answers and sub-queries generated during 
program evaluation involve no cycles through negation. This class of programs 
properly includes the class of programs with locally stratified negation (Przymusinski, 
1988). For programs without negation, this semantics coincides with the least fixpoint 
semantics. 

The keyword not is used as a prefix to indicate a negative body fiteral. For 
instance, given a predicate parent,  we can test if a is not a parent of b by using 
not pa ren t (a ,b ) .  Such a literal can be used in a query, or in the body of a rule. 

The following example from Ros (1990) illustrates the use of modularly stratified 
negation in a program. Suppose we have a complex mechanism constructed out 
of a number of components that may themselves be constructed from smaller 
components. Let the component-of relationship be expressed in the relation part .  
A component is known to be working either if it has been (successfully) tested or 
if it is constructed from smaller components, all of which are known to be working. 
This is expressed by the following program. 

working(X) • - tested(X). 

working(X) • - part (X,Y), not has_suspect_part (X). 

has_suspect_part(X) : - part(X,Y), not working(Y). 

Note that the predicate working is defined negatively in terms of itself. However, 
the par t  relation is acyclic, and hence the working status of a component is 
defined negatively in terms of sub-components, but not negatively in terms of itself. 
CORAL provides an evaluation mechanism called Ordered Search (Ramakrishnan 
et al., 1992a) that evaluates programs with left-to-right modularly stratified negation 
efficiently (Section 6.5.1). 

6. A rule is range-restricted if every variable in the head of the rule also appears in the body. Non-ground 
facts in the database are actually a special case of non-range-restricted rules where the body is empty. 
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2.5 Sets and Multisets 

Sets and multisets are allowed as values in CORAL. An example of a set is 
{1, 2, 3, f ( a , b ) ,  a},while {1, f ( a ) ,  f ( a ) }  is an example of a multiset. Sets 
and multisets can contain arbitrary values as elements. Because CORAL allows 
arbitrarily nested structures, the universe of discourse is an extended Herbrand 
universe which includes sets (Beeri et al., 1991) as in LDL, and multisets, rather 
than the Herbrand universe which is standard in logic programming. 

There are two ways in which sets and multisets can be created using rules, 
namely, set-enumeration ({ }) and set-grouping ( < > ) ;  the syntax is borrowed from 
LDL (Naqvi and Tsur, 1989), but there are some differences in semantics which we 
discuss later. 

The following fact illustrates the use of set-enumeration: 

children(john,{mary, peter, paul}) 

The following rule illustrates the use of set-grouping: 

p(X,<Y>) : - q(X,Y,Z). 

This rule uses facts for q to generate a multiset S of instantiations for the variables 
X, Y, and Z. For each value x of X in this set, it creates a fact p (z ,  7ryox==S), 
where Try is a multiset projection (i.e., it does not do duplicate elimination). Thus, 
given facts q ( 1 , 2 , 3 ) ,  q (1 ,2 ,5 )  and q (1 ,3 ,4 )  the above rule derives the fact 
p(i,{2,2,3}). 

The use of the set-grouping construct in CORAL is similar to the grouping 
construct in LDL--however,  set-grouping in CORAL is defined to construct a 
multiset, whereas it constructs a set in LDL. We can always obtain a set from the 
multiset using the makeset operator. In fact, with the following rule, the evaluation 
is optimized to create a set directly, rather than to first create a multiset and then 
perform duplicate elimination to convert it to a set. 

p(X,makeset(<Y>)) : - q(X,Y,Z). 

In several programs, the number of copies of an element is important, and the 
support for multiset semantics permits simple solutions. For example, to obtain the 
amount spent on employee salaries, the salary column can be projected out and 
grouped to generate the multiset of salaries, and then summed up. The projection 
and grouping in LDL yields a set of salaries, and if several employees have the 
same salary, the total amount spent on salaries is difficult to compute. 

CORAL requires that the use of the set-grouping operator be left-to-right 
modularly-stratified (in the same way as negation). This ensures that all derivable 
q facts with a given value x for X can be computed before a fact p (x ,_ )  is created. 
Without such a restriction, it is possible to write programs whose meaning is hard to 
define, or whose evaluation would be ineflicient. 'The modularly stratified semantics 
(Ross, 1990), although originally described for negation, can be easily extended to 
set-generation. 
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General  matching or unification of sets (where one or both of the sets can have 
variables) is not supported in CORAL. The evaluation mechanism for set-matching 
in L D L  generates a number  of rules at compile t ime that is exponential in the 
size of the largest set-term in the program text (Shmueli et al., 1992). The use of 
set-matching in C O R A L  is limited to avoid this problem. A set-term is restricted 
to be ground (as in LDL)  and to match either another (identical) ground set-term 
or a variable. 

We believe that most, if not all, uses of set matching can be implemented 
naturally using the suite of functions (such as member), that C O R A L  provides on 
sets; we present an example in the next section. 

2.6 Operations on Sets and Multisets 

C O R A L  provides several standard operations on sets and multisets as system-defined 
predicates. These include member, union, intersection, difference, multi- 
setunion, cardinality, subset, and makeset. For reasons of efficiency, most 
of these arc restricted to testing, and will not permit generation (e.g., the subset 
predicate can be used to test if a given set is a subset of another but cannot be 
used to generate subsets of a set). The predicate member is an exception in that it 
can be used to generate the members of a given set. 

CORAL allows several aggregate operations to be used on sets and multiscts; 
these include count, rain, max, sum, product, average, and any. Some of the 
aggregate operations can be combined directly with the set-generation operations for 
increased efficiency. For instance, the evaluation of the following rule is optimized 
to store only the maximum value during the evaluation of the rule, instead of 
generating a multiset and then selecting the maximum value. 

maxgrade(Class, max(<Grade>)) : - student(S,Class), grade(S,Grade). 

This optimization is also performed for count ,rain,sum and product. 
The program in Figure 2 illustrates how to use aggregation to find shortest 

paths in a graph with weighted edges. (The program as written is not efficient, and 
may loop forever on some data sets; in Section 6.6.3 we describe how annotations 
may be used to generate an efficient version of the program.) 

The following example illustrates the use of member to generate the elements 
of a set. 

ok_team(S):-old_team(S), count(S,C), C<3, member(X,S),member(Y,S), 
member(Z,S), engineer(X), pilot(Y), doctor(Z). 

7. LDL imposes the more stringent restriction that uses of grouping be stratified. We note that while EKS- 
V1 (Vieille ¢t al., 1990) does not support set-generation through grouping, it does support set-generation 
in conjunction with aggregate operations such as count ,rain and sum. Indeed, EKS-V1 allows recursion 
through uses of aggregation. 
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Figure 2. Program S h o r t e s t _ P a t h  

module s h o r t e s t _ p a t h .  
e x p o r t  s h o r t e s t _ p a t h  ( b f f f , f f f f ) .  

shortest_path(X,Y,P,C) : 

s_p_length(X,Y,min(<C>)) : 
pa th (X,Y,P l ,C1)  

path (X, Y, [edge (X, Y) ], C) 
end_module. 

- s_p_length(X,Y,C)  , p a th (X ,Y ,P ,C) .  
- pa th (X,Y,P ,C) .  
- pa th (X,Z ,P ,C)  ,edge(Z,Y,EC) ,  

append([edge  (Z,Y)] ,P ,P1)  ,CI=C+EC. 
- edge(X,Y,C). 

Each tuple in old_team consists of a set of people. An ok_team tuple additionally 
must contain an engineer, a pilot, and a doctor. Note that a team containing a single 
member who is an engineer, a pilot, and a doctor would qualify as an o k t e a m .  
This program is a translation into CORAL of an LDL program from Shmueli et al. 
(1992); the semantics of the original LDL program required that a team contain 
at most three members. The literals in the body of the rule, c o u n t ( S , C ) ,  C < 3, 
ensure this. 

3. Interactive System Environment 

CORAL presents users with an interactive environment for program development and 
ad-hoc querying. 8 This interface resembles the interface provided by typical Prolog 
interpreters. It also makes available a number of utility commands that manipulate 
various system defaults which affect optimization and evaluation choices. We now 
describe some of these features. 

3.1 Update Facilities 

The CORAL system permits updates to base relations via imperative rules that can 
be evaluated at the command prompt. (Files containing a sequence of imperative 
rules can also be consulted from the command prompt.) These rules can be of one 
of the following forms: 

• head : = body. : assigns all qualifying tuples to head relation. 

• head + = body. : adds all qualifying tuples to head relation. 

• head - = body. : deletes all qualifying tuples from head relation. 

8. CORAL also can be accessed via its interface with C+ + (Section 8). 
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The syntax of the head and body of the rules is the same as in declarative rules 
within modules. 

If the head predicate also appears in the body of the rule, and head facts 
corresponding to successful rule instantiations are immediately inserted/deleted, the 
result of the application of the imperative rule could become order-dependent, which 
is undesirable. To avoid this problem, CORAL uses a delayed update semantics: 
the body is fully evaluated, and the multiset of all head tuples from successful 
instantiations is inserted into, or deleted from, the appropriate relation. 

CORAL supports transactions on disk-resident relations. Commands to initiate 
and terminate a transaction can be invoked from the CORAL prompt; at any time, 
only one transaction can be active within a single CORAL process. 

3.2 Data Organization 

In CORAL, data are stored as tuples in relations. Relations themselves can be 
organized into named workspaces. A workspace is a collection of relations, which 
can be either EDB relations or relations corresponding to predicates exported by 
modules. A user can have several named workspaces, and can copy relations from 
one workspace to another (or simply make a relation in one workspace visible 
from another without copying), update relations in a workspace, or run queries 
against a workspace. It is also possible to save a workspace as a text file between 
executions. There is always a current workspace, and new workspaces can be created 
interactively. Data can be loaded into the current workspace either by explicitly 
inserting facts into relations or by consulting text files that hold the data (as in 
Prolog systems). 

Persistent relations exist in a special workspace and can be made visible to all 
other workspaces without copying. When a workspace that refers to a persistent 
relation is saved, only the name of the persistent relationmand not its current set 
of tuplesmis saved. 

3.3 Program Development 

Some basic facilities are provided for debugging programs. A trace facility is provided 
that does the following: (1) It lets the user know which rules are being evaluated. (2) 
It prints out answers and sub-queries (of specified predicates) as they are generated 
to let the user know how the computation is proceeding. 

CORAL also provides some high-level profiling facilities. The unit of profiling is 
the unification operation. Unification of two atomic terms counts as one unification, 
while, for example, unification off(X,Y) and f(a,b) counts as three unifications, one 
at the outer level and two at the inner level. Profiling also lets the user know 
about the efficiency of indexing by keeping counts of the number of tuples that the 
indexing operation tried to unify, and the number that successfully unified and were 
retrieved. In addition, other counts such as the number of successful applications 
of each rule, and the number of unsuccessful attempts at using a rule, are also 
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Figure 3. Architecture of the CORAL Deductive System 

QUERY < 

I~ .T.d3ATZON 
8YBTIDI  

aJ~wcrs 

I ~Nlx. 

~ a Y  

O P T M Z B R  

/ /  
~ D O 8  

~ n  

\ \  

] ~ ] l i & G n  

Ooll .  

F I L E S  

/ 

maintained. All this information put together gives users a fair idea of where their 
programs are spending the most time. 

3.4 Explaining Program Execution 

An explanation tool has been implemented that provides graphic explanations of 
the executions of declarative programs. The basis of this tool is that one can 
understand the meaning of a program in terms of the set of derivation trees of 
computed facts. Derivation trees can be "grown" and "pruned" dynamically on the 
screen, thereby providing a visual explanation of how facts were generated. The 
explanation mechanism can be enabled or disabled on a per-module basis. The 
explanation tool has been implemented as an application of the CORAL system 
(Section 11). 

We note that derivations are recorded in the exact form that they are carried 
out. Thus, if the user's program was rewritten by the system optimizer, the recorded 
derivations reflect the rewritten program, and it can sometimes be difficult to see the 
mapping between the original and rewritten programs. However, with the default 
rewriting (Supplementary Magic rewriting) used by the CORAL system the mapping 
between the original program and the rewritten program is simple, and the user 
should be able to reason in terms of the original program when presented with 
derivations of the rewritten program. 

4. Architecture of the CORAL System 

The architecture of the CORAL deductive system is shown in Figure 3. CORAL 
is designed primarily as a single-user database system, and can be used in a stand- 
alone mode; however, data can be shared with other users via the EXODUS storage 
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manager (Carey et al., 1986). Persistent data are stored either in text files, or by using 
the EXODUS storage manager, which has a client-server architecture. Each CORAL 
process can act as an EXODUS client that accesses the common persistent data from 
the server. Multiple CORAL processes could interact by accessing persistent data 
stored using the EXODUS storage manager. Transactions and concurrency control 
are supported by the EXODUS storage manager, and thus by CORAL. However, 
within each CORAL process, all data that are not managed by the EXODUS storage 
manager are strictly local to the process, and no transactions are supported on such 
data. 

Data stored in text files can be "consulted," at which point the data are converted 
into main-memory relations; indexes can then be created. Data stored using the 
EXODUS storage manager are paged into EXODUS buffers on demand, making use 
of the indexing and scan facilities of the storage manager. The design of the system 
does not require that this data be collected into main-memory CORAL structures 
before being used; as is usual in database systems, the data can be accessed purely 
out of pages in the EXODUS buffer pool. 

The query processing system consists of two main parts: a query optimizer 
and a query evaluation system. Simple queries (e.g., to select facts from a single 
relation or multiple joined relations) can be typed in at the user interface. Such 
simple queries do not require rewriting transformations. Complex queries typically 
are defined in declarative "program modules" that export predicates (views) with 
associated "query forms" (i.e., specifications of what kinds of queries, or selections, 
are allowed on the predicate). The query optimizer takes a program module and a 
query form as input, and generates a rewritten program that is optimized for the 
specified query forms. In addition to performing source-to-source transformations 9 
the optimizer adds several control annotations (to those, if any, specified by the 
user). The rewritten program is stored as a text file (which is useful as a debugging 
aid for the user), and also is converted into an internal representation that is used 
by the query evaluation system. 

The query evaluation system takes as input annotated declarative programs 
(in an internal representation), and database relations. The annotations in the 
declarative programs provide execution hints and directives. The query evaluation 
system interprets the internal form of the optimized program. We also developed 
a fully compiled version of CORAL, in which a C+ + program was generated from 
each user program. (This is similar to the LDL approach; Naqvi and Tsur, 1989.) 
We found that this approach took a significantly longer time to compile programs, 
and the resulting gain in execution speed was minimal. 1° Therefore, we have focused 
on the interpreted version: "compiling" a program to CORAL internal structures 

9. The query optimizer invokes several different program rewriting filters, which we discuss later. 

10. Note that the compiled version did not exploit various opportunities for optimization that do not exist 
with the interpreted approach. A more aggressive version of the compiler probably would be faster. 
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takes very little time, and is comparable to Prolog systems. This makes CORAL 
very convenient for interactive program development. 

The query evaluation system has a well defined "get-next-tuple" interface with 
the data manager for access to relations. This interface is independent of how 
the relation is defined (as a base relation, declaratively through rules, or through 
system-defined or user-defined C + +  code), and is quite flexible. In conjunction 
with the modular nature of the CORAL language, such a high-level interface is 
very useful, since it allows the different modules to be evaluated using different 
strategies. It is important to stress that the "get-next-tuple" interface is merely an 
abstraction provided to support modularity in the language, and does not affect the 
ability to perform set-oriented computations. 

While fundamental decisions (e.g., using a bottom-up fixpoint computation) are 
motivated by the potential for set-oriented evaluation, it is important to note that the 
current implementation does not exploit this potential fully. For example, although 
the interface to EXODUS does page-level I/O, the index nested-loops join is used 
even for disk-resident data; unless the index on the inner relation is clustered, 
performance may be poor. It would be a relatively straightforward matter to add 
more efficient external join methods such as blocked nested-loops or sort-merge, 
and we are currently working on such extensions. Further, the lack of a traditional 
cost-based query optimizer (e.g., for choosing a good join order in each rule) is 
another major gap in the current system, and again, this can be remedied with some 
effort. However, some difficult issues remain little understood; for instance, should 
the join order be determined afresh on each iteration? Derr (1993) suggests some 
heuristics. 

CORAL supports an interface to C+ +, and can be embedded in C+ +. C+ + 
can be used to define new relations as well as to manipulate relations computed 
using declarative CORAL rules. The CORAL/C++ interface is intended to be 
used for the development of large applications. 

5. Overview of Query Evaluation and Optimization 

A number of query evaluation strategies have been developed for deductive databases, 
and each technique is particularly efficient for some programs, but may perform 
relatively poorly on others. Thus, any system that is tied to one evaluation strategy is 
bound to perform poorly on some programs. Indeed, this is also the case for relational 
systems such as SQL. However, given the greater complexity of a language like 
CORAL, it is harder to design a system in which different optimization techniques can 
be combined relatively orthogonally. Once this is done, a cost estimation package 
can be used to determine a "good" optimized version of a program. CORAL 
addresses the first task to a large extent, but currently uses heuristics instead of a 
cost estimation package to make choices of evaluation alternatives. 

It is our premise that in such a powerful language, completely automatic 
optimization can only be an ideal; the programmer must be able to provide hints 
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or annotations and occasionally even override the system's decisions to obtain good 
performance across a wide range of programs. Annotations control query evaluation 
and guide query optimization. Since they are expressed at a high level, they give 
the programmer the power to control optimization and evaluation in a relatively 
abstract manner. A detailed description of the annotations provided by CORAL 
may be found in Ramakrishnan et al. (1993a); we mention some of them when 
discussing the query evaluation techniques. 

The CORAL programmer decides (on a per-module basis) whether to use one 
of two basic evaluation approaches, namely pipelining or materialization (Section 
6). Many other optimizations are dependent on the choice of the basic evaluation 
mode. The optimizer generates annotations that govern many run-time actions, and, 
if materialization is chosen, does source-to-source rewriting of the user's program. 
We discuss these two major tasks of the optimizer below. 

5.1 Source-to-Source Rewriting Techniques 

Materialized evaluation in CORAL is essentially a fixpoint evaluation using a bottom- 
up iteration on the program rules. If this evaluation is done on the original program, 
selections in a query are not used. Several program transformations have been 
proposed to "propagate" such selections, and many of these are implemented in 
CORAL. 

The desired selection pattern is specified using a query form, where a "bound" 
argument indicates that any binding in that argument position of the query is to 
be propagated. It is possible that the query does not specify a ground binding in a 
"bound" position (it may specify no value, or a term with variables). This simply 
results in non-ground "magic facts." Thus, by specifying that all arguments are 
bound, binding propagation similar to Prolog is achieved (i.e., all available bindings 
are propagated). By specifying that all arguments are "free," in contrast, bindings 
in the query are ignored, except for a final selection. Bindings in certain arguments 
can be selectively propagated by choosing other query forms. 

The default rewriting technique is Supplementary Magic Templates (Rohmer 
et al., 1986; Beeri and Ramakrishnan, 1987; Ramakrishnan, 1988; Seki, 1989). The 
rewriting can be tailored to propagate bindings across sub-queries in a rule body using 
different body literal orderings; CORAL uses a left-to-right ordering within the body 
of a rule by default. Other selection-propagating rewriting techniques supported 
in CORAL include Magic Templates (Ramakrishnan, 1988), Supplementary Magic 
With Goalld Indexing (Ramakrishnan and Sudarshan, 1991), and Context Factoring 
(Naughton et al., 1989; Kemp et al., 1990). Supplementary Magic is a good choice 
as a default, although each technique is superior to the rest on some programs (e.g., 
the GoaUd Indexing variant is good for programs with many complex, especially 
non-ground, terms, and Context Factoring, while only applicable on some programs, 
is usually superior when applicable). The user can choose the rewriting to be applied 
through annotations. It may be appropriate to apply no rewriting, and the user can 
specify this as well. 
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CORAL also supports Existential Query Rewrit~g (Ramakrishnan et al., 1988) 
which seeks to propagate projections. This is applied by default in conjunction with 
a selection-pushing rewriting. A fuller discussion of the relative merits of these 
rewriting techniques is not possible here. 

5.2 Decisions On Run-time Alternatives 

In addition to choosing rewriting techniques for materialized evaluation, the opti- 
mizer makes a number of decisions that affect execution. The optimizer analyzes 
the (rewritten) program, and identifies some evaluation and optimization choices 
that appear appropriate. 

The default fixpoint evaluation strategy is called Basic Semi-Naive evaluation 
(BSN), but a variant also is available--the Predicate Semi-Naive evaluation (PSN; 
Ramakrishnan et al., in press), which is better for programs with many mutually 
recursive predicates. With respect to semi-naive evaluation, the optimizer is re- 
sponsible for: (1) join order selection, (2) index selection, (3) deciding what forms 
of subsumption checks to use, and (4) deciding whether to refine the basic indexed 
nested-loops join with intelligent backtracking. The optimizer also is responsible for 
deciding whether to use variations of the fixpoint evaluation such as Lazy Evaluation 
or Ordered Search. We discuss these issues in Section 6. 

6. Module Evaluation Strategies 

The evaluation of a declarative CORAL program is divided into a number of distinct 
sub-computations by expressing the program as a collection of modules. Each module 
is a unit of compilation and its evaluation strategies are independent of the rest of 
the program. Since different modules may have widely varying evaluation strategies, 
a relatively high-level interface is required for interaction between modules. 

Two basic evaluation approaches are supported, namely materialization and 
pipelining. Materialization stores facts and looks them up to avoid recomputation. 
Several variants of materialized evaluation are supported: Basic Semi-Naive, Predi- 
cate Semi-Naive (Ramakrishnan et al., in press), and Ordered Search (Ramakrishnan 
et al., 1992a). Pipelining uses facts "on-the-fly" and does not store them, at the 
potential cost of recomputation. 

This section presents the interface between modules and the run-time data 
structures used. The various modes of evaluation of a module, and the ways in 
which the evaluation can be controlled by annotations from the user, are then 
discussed. 

6.1 Inter-Module Calls 

Suppose that p is a predicate that appears, but is not defined, in the body of a rule 
of module M2. During the evaluation of M2, queries may be generated on p. If p 
is defined in module M1, then module M2 sets up an inter-module call on module 
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M1 to solve the query. The interface to predicates exported by a module makes no 
assumptions about the evaluation of the module. Module M1 may contain only base 
predicates, or may have rules that are evaluated in any of several different ways. 
The module may choose to cache answers between calls, or choose to recompute 
answers. All this is transparent to the calling module. Similarly, the evaluation of 
the called module M1 makes no assumptions about the evaluation of calling module 
M2. This orthogonality permits the free mixing of different evaluation techniques in 
different modules in CORAL and is central to how different executions in different 
modules are combined cleanly. 

Inter-module calls are executed as follows: The calling module sets up a sub- 
query on the called module, and waits until the called module returns answers to the 
sub-query. The called module returns either no answer if the query has no answers, 
or returns one or more answers to the query. The called module may or may 
not return all answers immediately; repeated "get-next-tuple" calls must be used to 
get all answers to the call. The above interface is independent of the evaluation 
modes of the two modules involved. However, the order in which answers are 
returned on the initial call and on subsequent "get-next-tuple" requests depends on 
the evaluation mode of the called module. 

The rationale behind the particular interface described above is as follows: the 
calling module may require only one answer, or may use only one answer at a time 
(e.g., if the inter-module call was generated by a literal involved in a nested-loops 
join). Early returning of answers to the user via Lazy Evaluation is also supported 
by this interface. The alternative interface of requiring all answers to be returned 
is less flexible. 

6.2 Module and Rule Data Structures 

The compilation of a materialized module generates an internal module structure that 
consists of a list of structures corresponding to the strongly connected components 
(SCCs) of the module. 11 Each SCC structure consists of semi-naive rule structures 
corresponding to semi-naive rewritten versions of the rules. These semi-naive rule 
structures have fields that specify the argument lists of each body literal, and the 
predicates to which they correspond. Each semi-naive rule structure also contains 
evaluation order information, pre-computed backtrack points, and pre-computed 
offsets into a table of relations. These structures are shown in Figure 4. 

Offsets into a table of relations are used, instead of actual pointers to relations, 
to keep rule and module evaluation re-entrant. This property is essential to support 
multiple concurrent invocations of the same module, as can happen with a cycle 
of inter-module invocations or Lazy Evaluation (Section 6.3.1). Information that 
changes with each invocation therefore cannot be stored with the rule structure. 
In particular, the actual relations involved change across invocations, and each 

11. An SCC in a module is a maximal set of mutually recursive predicates. 
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Figure 4. Important run-time data structures; 
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module invocation has an associated table of (pointers to) relations. The order of 
relations corresponding to different predicates in this table can be determined, and 
the semi-naive rule structures refer to relations involved in the rule by offsets into 
this table. 

A module to be evaluated using pipelining is stored as a list of predicates defined 
in the module. Associated with each predicate is a list of rules defining it (in the 
order in which they occur in the module definition), each rule being represented 
by structures like those used for semi-naive rules. 

An attempt is made to compute all possible information at compile time, and 
store it along with the rule structures to make rule evaluation efficient. In a manner 
similar to Prolog, CORAL maintains a trail of variable bindings when a rule is 
evaluated; this is used to undo variable bindings when the indexed nested-loops 
join (or pipelining) considers the next tuple in any loop. 

6.3 Materialization 

The variants of materialization are all bottom-up fixpoint iteration methods, which 
repeatedly evaluate the rules until a ffixpoint is reached. To perform incremental 
evaluation of rules across multiple iterations, CORAL uses semi-naive evaluation 
(Bancilhon, 1985; Bayer, 1985; Balbin and Ramamohanarao, 1987; Ramakrishnan 
et al., in press). This technique consists of a rule rewriting part performed at compile 
time, which creates versions of rules with delta relations, and an evaluation part. 
(The delta relations contain changes to relations since the previous iteration.) The 
evaluation part evaluates each rewritten rule once in each iteration, and performs 
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some updates to the relations at the end of each iteration. An evaluation terminates 
when an iteration produces no new facts. 

The join order used in CORAL is currently left-to-right in the rule, with a simple 
reordering that moves delta relations to the front of the join order. The reordering 
is done with the expectation that the delta relations have a smaller number of tuples 
than the other relations. However, hooks have been provided to specify other join 
orders, and the optimizer can be modified to find good join orders. 

The optimizer also analyzes the semi-naive rewritten rules and generates anno- 
tations to create any indices that may be useful during the evaluation phaseJ 2 The 
basic join mechanism in CORAL is nested-loops with indexing, and this knowledge is 
used by the index generation algorithm. For each semi-naive rule, index generation 
proceeds left-to-right in the join order of rule evaluation, and creates argument- 
form or pattern-form indexes based on variables bound earlier in the join order, 
since these will act as selection arguments. For derived relations, these indexes 
are created at module initialization time (run-time) and are destroyed, along with 
the relation, when module execution is completed. Indexes can also be explicitly 
requested by a CORAL user. 

For declarative modules, CORAL materialized evaluation (with occur checks) 
is guaranteed to be sound (i.e., if the system returns a fact as an answer to a 
query, that fact indeed follows from the semantics of the declarative program). 13 
The evaluation is also "complete" in a limited sensemas long as the execution 
terminates, all answers to a query are actually generated. It is possible, however, to 
write queries that do not terminate. It is desirable to add a compile time check, based 
on sufficient conditions, 14 to determine if termination and completeness of CORAL 
evaluation can be guaranteed for a given program, but the current implementation 
does not support such a feature. 

6.3.1 Lazy Evaluation. In the traditional approach to bottom-up evaluation, all 
answers to a query are computed by iterating over rules until a fixpoint is reached, 
and then returning all the answers. Lazy evaluation is the technique used by CORAL 
to return answers at the end of every iteration, instead of just at the end of the 
computation. The advantages of this approach are: 

• It provides users with a steady stream of answers, instead of a burst of answers 
at the end of the computation. 

• It can be used in an interactive mode to look at the first few answers generated 
by a computation, and then (possibly) abort the rest of the computation. 

12. Index annotation generation also occurs for base relations used in pipelined modules, but at the level 
of the original rules. 

13. For reasons of efficiency, the current implementation does not perform occur checks by default. 

14. Sufficient conditions are needed because checking for termination is undecidable in general. 
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A query on a relation has an iterator associated with it. Lazy evaluation is 
implemented by storing in the iterator the state of the computation at the end of 
an iteration of fixpoint evaluation, and returning to the iterator the answer tuples 
generated in that iteration. The iterator then iterates over the tuples returned, and 
when it has stepped through all the tuples, it reactivates the "frozen" computation 
to get more answer tuples. This reactivation results; in the execution of one more 
iteration of the rules, and the whole process is repeated until an iteration over the 
rules produces no new tuples. 

6.4 Pipelining 

Pipelining in CORAL is similar to top-down evaluation like Prolog. The rule 
evaluation code for pipelining is designed to work in a co-routining fashion--when 
rule evaluation is invoked, using the get-next-tuple interface, an answer is generated 
(if there is one) and control is transferred back to the consumer of the answers 
(the caller). When more answers are desired, control is transferred back to the 
(suspended) rule evaluation. 

At module invocation, the first rule in the list associated with the queried 
predicate is evaluated. This could involve recursive calls on other rules within 
the module (which are also evaluated in a similar pipelined fashion). If the rule 
evaluation of the queried predicate succeeds, the state of the computation is frozen, 
and the generated answer is returned. A subsequent request for the next answer 
tuple results in the reactivation of the frozen computation, and processing continues 
until the next answer is returned. At any stage, if a rule fails to produce an answer, 
the next rule in the rule list for the head predicate is tried. When there are no more 
rules to try, the query on the predicate fails. When the topmost query fails, no 
further answers can be generated, and the pipelined module execution is terminated. 

An interesting aspect of pipelining in CORAL is the treatment of recursive 
predicates. A sub-query on a recursive predicate is solved by a recursive invocation 
of the same module, and each invocation pipelines the local results. The resulting 
computation is close to the evaluation strategy of a top-down implementation such 
as Prolog (although CORAL does not currently support all the extra-logical features 
of Prolog). Of course, pipelined evaluation of recursive modules carries the risks 
of potential incompleteness, and should be used with care. 

We note that our implementation of pipelining handles recursive calls; in this, 
it differs from the "pipelining" used in LDL. The latter is essentially indexed 
nested-loops join without materialization within a bottom-up fixpoint iteration. Our 
implementation of pipelining, however, can be improved upon; indeed, state-of-the- 
art Prolog systems are much faster. 

There are some important points to note regarding pipelining. First, the 
implementation of pipelining, which is a radically different evaluation technique 
from bottom-up fixpoint evaluation, demonstrates the modularity of the CORAL 

• implementation. Second, from a language point of view, it demonstrates that the 
module mechanism allows a user to combine bottom-up and top-down evaluation 
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techniques effectively in a single program. (Indeed, our implementation of pipelining 
could be replaced by an interface to a Prolog system.) Third, pipelining guarantees 
a particular evaluation strategy and order of execution. While the program is no 
longer truly "declarative," programmers can exploit this guarantee and use predicates 
like updates that involve side-effects. 

Materialization and pipelining complement each other. If facts in a relation 
are used many times, the cost of materialization (generating and storing facts) 
is outweighed by the savings of avoiding recomputation. Pipelining avoids these 
overheads of storing facts, and if sub-queries are not generated multiple times it is 
cheaper than materialization. 

6.5 Module Level Control Choices 

At the level of the module, a number of choices exist with respect to the evaluation 
strategy for the module, and the specific optimizations to be used. We have already 
seen the issue of materialization versus pipelining. 

6.5.1 Ordered Search. CORAL uses the Ordered Search evaluation mechanism to 
order the use of generated sub-queries in a program (Ramakrishnan et al., 1992a). 
Some of the features of Ordered Search are: 

1. Information about dependencies between sub-queries is maintained, and can 
be used to evaluate a large class of programs with negation, set-grouping 
and aggregation. 

2. An ordering to the computation is provided by "hiding" sub-queries. When 
CORAL returns an answer, the user may terminate the computation, or 
have the system continue to find more answers. When a single answer to 
the query is all that is needed, there may be many sub-queries that are still 
hidden when an answer is found, and the computation can terminate without 
ever using these sub-queries; thus a lot of redundant computation may be 
avoided. 

In Ordered Search, sub-queries and answers to sub-queries are generated asyn- 
chronously, as in bottom-up evaluation of programs rewritten using Magic (Beeri 
and Ramakrishnan, 1987; Ramakrishnan, 1988). However, sub-queries are not made 
available for use immediately; the order in which generated sub-queries are made 
available for use is somewhat similar to a top-down evaluation. This is achieved 
by maintaining a "context" that stores sub-queries in an ordered fashion, and by 
deciding which sub-query to make available next at each stage in the evaluation. 

Ordered Search provides an important evaluation strategy for programs with 
negation, set-grouping, and aggregation that are left-to-right modularly stratified. 
Without Ordered Search, evaluation proceeds by setting up inter-module calls 
whenever a sub-query that has to be completely solved is encountered. This results 
in computation of such sub-queries proceeding independently, with no sharing of 
sub-computations. While this might be desired in some situations, it could result in 
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considerable repeated computation. Ordered Search is used to evaluate left-to-right 
modularly stratified programs without inter-module calls; thus, sub-computations 
are shared, eliminating repeated derivations. Intuitively, all queries and answers are 
memoed, and enough dependency information between queries is maintained to 
ensure that any sub-query (e.g., a negative sub-query) that must be fully evaluated 
before any of its answers are used in further derivations, is indeed fully evaluated. 

From an implementation perspective, in addition to maintaining the context, 
two changes must be made. First, the rewriting pha=~e, which must use a version of 
Magic in conjunction with Ordered Search fixpoint evaluation, must be modified to 
introduce "done" literals guarding negative literals and rules that have grouping and 
aggregation. Second, the evaluation must add a "magic" fact to the corresponding 
"done" predicate when (and only when) all answers to it have been generated. (The 
context mechanism is used to determine the point at which a query is considered 
done.) These changes ensure that rules involving negation, for example, are not 
applied until enough facts have been computed to reduce the negation to a set- 
difference operation. 

6.5.2 Save Module Facili~. The module facility in CORAL provides several impor- 
tant advantages. 

1. Predicates defined in an external module are treated just like base predicates 
by the semi-naive rewriting algorithms----whenever there is a query (or set of 
queries) on such a predicate, a call to the module is made, and all the answers 
are evaluated. This enables efficient evaluation of programs with stratified 
negation. Further, if many predicates can be treated as base predicates, this 
considerably decreases the number of semi-naive rewritten rules. 

2. In many cases, facts (other than answers to the query) computed during the 
evaluation of a module are best discarded to save space (since bottom-up 
evaluation stores many facts, space is generally at a premium). Module calls 
provide a convenient unit for discarding intermediate answers. By default, 
CORAL does precisely this it discards all intermediate facts and sub-queries 
computed by a module at the end of a call to the module. 

However, there are some eases where the second feature is not a benefit at 
all, but instead leads to a significant amount of recomputation. This is especially 
true in cases where the same sub-query in a module is generated in many different 
invocations of the module. In such cases, the user can tell the CORAL system to 
maintain the state of the module (i.e., retain generated facts) in between calls to 
the module, and thereby avoid recomputation; we call this the save module facility. 

To ensure that no derivations are repeated across multiple calls to the module 
requires significant changes to semi-naive evaluation: rules defined only in terms 
of base predicates must only be used in the first invocation of the module; certain 
predicates that were treated as "base" in the semi-naive rewriting because they 
appeared in lower SCCs must now be treated as derived predicates; and the 
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updating of relations using deltas has to be modified to take into account tuples 
that were computed in previous calls to the module (Ramakrishnan et al., 1993c). 
In the interest of efficient implementation, CORAL requires that a module that 
uses the save module feature should not be invoked recursively. (Note that the 
predicates defined in the module can be recursive; this does not cause recursive 
invocations of the module). 

6.6 Predicate Level Control 

CORAL provides a variety of annotations at the level of individual predicates in a 
module. These annotations could affect the set of atiswers returned to a query. 

6.6.1 Duplicate Elimination. By default, duplicate elimination is performed when 
inserting facts into a relation, so that a relation with only ground tuples consists of a 
set of facts. 15 An annotation can be used to tell the system not to perform duplicate 
checks for all predicates in the module. This can also be done on a per-predicate 
basis. Further, a predicate in a program can be declared to be a multiset (i.e., with 
as many copies of a tuple as there are derivations for it). 16 CORAL then guarantees 
that the number of copies of tuples in the answer to a query on the predicate is 
correct according to the multiset semantics of the program (Mumick et al., 1990). 
This semantics is supported by carrying out duplicate checks only on the "magic" 
predicates if any version of the Magic Templates rewriting is used. 

6.6.2 Index Annotations. CORAL allows for the specification of two types of hash- 
based indexes: (1) argument form indexes, and (2)pat tern form indexes. The first 
form is the traditional multi-attribute hash index on a subset of the arguments of 
a relation. The hash function chosen works well on ground terms; however, all 
terms that contain variables are hashed to a special value. The second form is more 
sophisticated, and allows the retrieval of precisely those facts that match a specified 
pattern, where the pattern is a tuple of (possibly non-ground) terms. The "form" of 
the pattern must be specified when constructing the index. Such indexes are useful 
when dealing with complex objects created using functors. For example, suppose a 
relation employee had two arguments, the first a name and the second a complex 
term address(Street,City). A pattern-form index can be used as an efficient 
means to retrieve employees named John who stay in Madison, without knowing 
their street (Ramakrishnan and Sudarshan, 1991). The following annotation can be 
used to create a pattern-form index as above: 

@make_index employee (Name, address(Street, City)) (Name, City). 

15. If facts contain variables, subsumption checking may be used, rather than just duplicate elimination. 
CORAL performs some subsumption checking but, for efficiency reasons, does not guarantee that relations 
are maintained as irredundant sets of facts (Maher and Ramakrishnan, 1989). 

16. On non-recursive queries, this semantics is consistent with SQLwhen duplicate checks are omitted. 
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Figure 5. Program sho~est path 
module shortest_path. 
export shortest_path(bfff, ffff). 
@aggregate_selection path(X,Y,P,C) (XDY) min(C). 

shortest_path(X,Y,P,C) : - s_p_length(X,Y,C),path(X,Y,P,C). 
s_p_length(X,Y,min(<C>)) : - path(X,Y,P,C). 
path(X,Y,P1,C1) : - path(X,Z,P,C),  edge(Z,Y,EC), 

append([edge(Z,Y)],P,Pl) ,C1 = C + EC. 
path(X,Y,[edge(X,Y)],C) : - edge(X,Y,C). 
edge module. 

Pattern-form indexes are implemented in CORAL using hash-indexes, and are almost 
as fast as argument-form indexes. 

A compile-time analysis of all rules is used to de, termine which indexes need to 
be created for efficient rule evaluation. All such indexes on in-memory relations are 
automatically created at run-time. However, indexes are not automatically created 
on disk-resident relations. In addition, the user is allowed to specify indices using 
annotations within a module or using commands from the CORAL prompt. 

6.6.3 Aggregate Selections. Consider the shor tes t_pa th  program in Figure 5. 
This differs from the program in Figure 2 in that it has an additional annotation 
of the form: 

@ a g g r e g a t e _ s e l e c t i o n  path(X,Y,P,C) (X,Y) min(C). 

To compute shortest paths between points, the shortest paths between pairs 
of points are sufficient--path facts that do not coxTespond to shortest paths are 
irrelevant. CORAL therefore permits the user to specify an aggregate selection on 
the predicate path in the manner shown. The system then retains, for each X, Y 
pair, only the path facts with the lowest C value (among the currently known path 
facts). Without this aggregate selection, the program may run forever, generating 
cyclic paths of increasing length; with it, the program is guaranteed to terminate. In 
the next section, we discuss how to further improve the efficiency of this program 
using additional annotations. 

6.6.4 Using Aggregate Selections to Express Choice. CORAEs aggregate selection 
mechanism provides a version of the choice operator of LDL, but with a different 
semantics (Ramakrishnan et al., 1990). Consider again the shortest path program 
from Figure 5. If the user wishes to retain a single path for each pair of nodes and 
each path cost, this can be specified using the following annotation: 

@aggregate_selection path (X,Y,P,C) (X,Y,C) any (P). 
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The annotation says that for each value of the triple X, Y, C, one fact pa th  (X, Y, P, 
C) at most need be retained. If more than one fact pa th(X,Y,P,C)  is generated 
by the program for any triple X,Y,C, the system arbitrarily picks one of the facts 
to retain, and discards the rest. 

Using a combination of the above two aggregate selections on the shortest path 
program (in conjunction with the default query evaluation technique using Magic 
rewriting), a single source query on the program runs in time 0 (E • V), where there 
are E edge facts and V nodes in the graph. 

Unlike in LDL, the choice made is final---CORAL does not backtrack and try 
different choices. We believe this semantics can be implemented more efficiently 
in a bottom-up evaluation than the LDL semantics. Giannotti et al. (1991) have 
investigated the connections between this "local" version of choice and stable models, 
and Greco et al. (1992) have shown that it is useful in a variety of"greedy" algorithms. 

6.6.5 Controlling the Order of Deductions. The use of facts computed during 
bottom-up evaluation can be prioritized. 17 Consider the shortest path program from 
Figure 5, which uses the predicate pa th  (Sourco,  Dost ±na t ion ,  P a t h _ l i n t ,  Cost) .  
For this program, it is better to explore paths of lesser cost first by using p a th  facts 
of lesser cost in preference to pa th  facts of greater cost. Path  facts of greater cost 
are "hidden" when they are derived, and each time a fixpoint is reached, the p a th  
facts of lowest cost are exposed. This continues until there a re  no more hidden 
facts. 

The user can specify that the evaluation prioritize facts in this fashion, using 
this annotation: 

@ prioritize path(X,Y,P,C) min(C). 

Prioritized relations in CORAL are implemented as priority queues. Evaluation 
with prioritized use of facts uses a simple extension of semi-naive evaluation, 
described by Schmidt et al. (1987). 

Using facts in a prioritized fashion reduces the cost of evaluation of a single 
source shortest path problem from a worst case of 0 (E • V) to 0 (E • log  (V)).18 This 
illustrates the importance of aggregate selections and prioritizing the use of facts in 
a bottom-up evaluation. Sudarshan and Ramakrishnan (1991) describe a technique 
to generate such annotations automatically, but they could also be specified by the 
user. 

6.7 Rule Level Control 

6. 7.1 Intelligent Backtracking. Both pipelining and materialization involve indexed 

17. The priodtization of facts is relevant to the evaluation mechanism, and is not used to order the answers 
returned to the used. 

18. Assuming that the edge costs are non-negative. 
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nested-loops joins of relations. (For materialization, this is local to the joins in a 
single rule; for pipelining, it is effectively global, and over the sequence of all rules 
in the current execution path.) CORAL tries to perform intelligent backtracking 
(e.g., Chang and Despain, 1985) during rule execution in both cases. 

Get-first-failure (or, get-first) backtracking provides the ability to "jump back" 
over several levels of nesting if no matching facts are found for a predicate in an 
inner level of a nested-loops join. It is used when there is no valid instantiation of 
a body literal the "first" time the literal is reached. At this stage, control within 
the rule backtracks to the last body literal that could generate new bindings for the 
literal that just failed. For example, consider the following rule with a left-to-right 
join order: 

p(X,Y) : - q ( X , Z ) ,  r (A,Y),  s (Z ,B) ,  t (A,B) .  

If s(Z,B) fails the first time it is reached with a particular binding for Z, the 
"get-first backtrack point" is the literal q(X,Z), be, cause this is the last point at 
which new bindings can be generated for Z. 

Success backtracking provides the ability to "jurap back" over several levels of 
nesting if an answer is generated and the number of times an answer is generated 
is irrelevant--the idea is that the loops jumped over would only produce more 
derivations of the same fact and not a new fact. When a rule execution is successful 
(i.e., there are valid instantiations of all the literals in the body of a rule), a head 
fact is generated. At this point, the control within the rule backtracks to the last 
body literal that could generate new bindings for the head literal. Consider the rule 
in the above example again. The "success-backtrack point" for this rule is the literal 
r (A, Y), because s (Z, B) and t (A, B) cannot generate any bindings that will result 
in a new head fact. The logic for success backtracking in CORAL takes advantage 
of aggregate selections that express choice. For example, an annotation: 

@ aggregate_selection p(X,Y) (X) any(Y). 

could bc added, with the meaning that for a given X value, a value for Y is chosen 
from a p tuplc with the given X value, and p tuples with other Y values can be 
discarded. Adding the annotation would change the "success-backtrack point" of 
the above-mentioned rule to q(X,Z). 

CORAL automatically performs "get-first-failure" backtracking and "success" 
backtracking, unless there are non-ground facts. (By default, CORAL assumes that 
there are none; if it is possible that a program will generate non-ground facts, the 
user should indicate this through an annotation.) The analysis used for intelligent 
backtracking breaks down in the presence of such non-ground facts, although it can 
be extended to detect argument positions that are guaranteed to be ground and to 
take advantage of such argument positions. 

Intelligent backtracking is implemented using an array of backtrack points, one 
for each body literal, and one success backtrack point for each rule. Intelligent 
backtracking for pipelined evaluation also is done on a per-rule basis, although there 
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is the potential for doing it on a global basis. We note that LDL also implements 
a form of intelligent backtracking (Chimenti et al., 1989). 

6.7.2 ,Join Orders. CORAL uses a default left-to-right join order, except that for 
semi-naive rewritten rules the "delta" relation is moved to the beginning of the 
join order. This is generally a good heuristic, especially when Supplementary Magic 
rewriting has been used; in this case, moving the "delta" relation to the beginning 
of the join order does not introduce a cross-product. The user can override this 
default by specifying the join order on a per-rule or on a per-semi-naive-rewritten 
rule basis. However, this has not been implemented yet in CORAL. 

7. The Data Manager 

The data manager (DM) is responsible for maintaining and manipulating the data 
in relations. In discussing the DM, we also discuss the representation of the various 
data types. While the representation of simple types is straightforward, complex 
structural types and incomplete data present interesting challenges. The efficiency 
with which such data can be processed depends in large part on the manner in 
which they are represented in the system. This section therefore presents the data 
representation at a fairly detailed level. 

The CORAL system is implemented in C++,  and all data types are defined as 
C+ + classes. Extensibility is an important goal of the CORAL system. In particular, 
we view support for user-defined data types as important. To provide this support, 
CORAL provides the generic class Arg that is the root of all CORAL data types; 
specific types such as integers and strings are sub-classes of Arg. The class Arg 
defines a set of virtual member functions 1~ such as e q u a l s ,  h a s h ,  a n d  p r i n t ,  which 
must be defined for each derived class that is created. 

The class Tuple defines tuples of Args. An object of the class Rela t ion  is a 
collection of tuples. The class Relat ion has a number of virtual member functions 
defined on it. These include i n se r t  (Tuple*), de le te  (Tuple*), and an iterator 
interface that allows tuples to be fetched from the relation, one at a time. 2° The 
iterator is implemented using an object of a Tup le I t e ra to r  class that is used to 
store the state or position of a scan on the relation, and to allow multiple concurrent 
scans over the same relation. We show the structure of a Tuplelterator in Figure 6. 
The details of the figure become meaningful as the description of the data structures 
proceeds. 

19. In C++,  a virtual member function in a class is one that can be redefined in derived sub-classes, and 
further, when the member function is invoked on an object, the implementation corresponding to the most 
specific class to which the object belongs is used. 

20. This is analogous to the cursor notion in SQL. 
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Figure 6. Tuplelterator Structure 
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7.1 Representation of Terms 

The evaluation of rules in CORAL is based on the operation of unification that 
generates bindings for variables based on patterns in the rule and the data. An 
important feature of the CORAL implementation of data types is the support for 
unique identifiers to make unification of large terms very efficient. Such support is 
critical for efficient declarative program evaluation in the presence of large terms. In 
CORAL, each new type constructor can define how it generates unique identifiers, 
independent of how other type constructors construct their unique identifiers (if 
any); because of this orthogonality, no further integration is needed to generate 
unique identifiers for terms built using several different kinds of type constructors. 
This is very important for supporting extensibility and the creation of new user- 
defined data types. Specific issues on the construction of unique identifiers for 
several system defined types are detailed later in this section. 

7.1.1 Constants. Constants in CORAL can be of one of the primitive data types 
provided in the CORAL system, such as integers, doubles, and strings. The current 
implementation restricts data that are stored using the EXODUS storage manager 
to be limited to these prim/tive types. Such data are stored on disk in their machine 
representation, while in memory, the data types are implemented as sub-classes of 
Arg. Extra information is kept with strings to provide for efficient equality checking. 
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7.1.2 Functor Terms. An example of a term built from an uninterpreted function 
symbol, or functor, is :~ (X, t0, Y). Such a term is represented by a record containing 
(1) the function symbol :E, (2) an array of arguments, or pointers to the arguments, 
and (3) extra information to make unification of such terms efficient. Functor terms 
are important for representing structured information. For instance, lists (which 
are a special type of functor term) can be used to represent DNA sequences or 
stock quote sequences. 

The current implementation of CORAL uses hash-consing (Goto, 1974) to 
speed up unification of functor terms. LDL (Chimenti et al., 1990) also implements 
hash-coming. Hash-coming assigns unique identifiers to each (ground) functor term, 
such that two (ground) functor terms unify if and only if their unique identifiers 
are the same. We note that such identifiers cannot be assigned to functor terms 
that contain free variables. 

CORAL makes two modifications to the basic hash-coming scheme. First, 
it performs hash-consing in a lazy fashion, avoiding computation of the unique 
identifiers if they are not used. Second, CORAL allows terms that contain variables, 
and therefore cannot be assigned unique identifiers. Such terms are tagged after 
the first attempt to assign them unique identifiers, and CORAL thereby avoids 
repeated attempts to compute unique identifiers for them. 

7.1.3 Variables and Non-Ground Terms. Variables constitute a primitive type in 
CORAL, since CORAL allows facts (and not just rules) to contain variables; in 
this, CORAL differs from most other deductive database systems. The semantics 
of a variable in a fact is that the variable is universally quantified in the fact. 

Although the basic representation of variables is fairly simple, the representation 
is complicated by requirements of efficiency when using non-ground facts in rules. 
We describe the problems briefly. 

Suppose we want to make an inference using a rule. Variables in the rule 
may get bound in the course of an inference. A naive scheme would replace 
every reference to the variable by its binding. It is more efficient, however, to 
record variable bindings in a binding environment, at least during the course of an 
inference. A binding environment (often referred to as a bindenv) is a structure 
that stores bindings for variables. Therefore, whenever a variable is accessed during 
an inference, a corresponding binding environment must be accessed to find if the 
variable has been bound. We show the representation of the term ~ (x, 10, Y), where 
X is bound to 25 and Y is bound to Z, and Z is bound to 50 in a separate bindenv, 
in Figure 7. 

There is another complication to making inferences using facts that contain 
variables. The problem is that two facts (or a fact and the rule) may have variables 
of the same name, but the variables are independently universally quantified. To 
make an inference, variables in facts have to be renamed to remove name conflicts. 
Such a renaming could be expensive, and CORAL attempts to avoid renaming 
or postpone renaming as long as possible. (In many cases, the renaming can be 
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Figure 7. Representation of an Example Term 
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avoided altogether if it is postponed.) To postpone renaming, CORAL maintains 
a binding environment for each fact that contains a variable, as well as a binding 
environment for the rule. 

The top-down backtracking control strategy of Prolog permits optirnizations 
whereby answers to sub-queries need not be renamed; such optimizations are not 
applicable to evaluation techniques, such as bottom-up evaluation, that perform 
memoization of facts. Techniques for avoiding renaming and optimizing unification 
in bottom-up evaluation (Sudarshan and Ramakrishnan, 1993) are implemented in 
CORAL. 

7.1.4 Multisets. CORAL allows multiset-terms (and, as a special case, set-terms). 
Multisets are represented using the same data structures as relations (Section 7.2). As 
with strings and functor terms, CORAL creates unique identifiers for the unification 
of multiset-terms; as with functor terms, this is done in a lazy fashion. 

As noted earlier, the generation of unique identifiers for multisets is completely 
orthogonal to the generation of unique identifiers for functor terms, and complex 
terms built using both type constructors can be assigned unique identifiers without 
any problems. 
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7.2 Representation of Relations and Index Structures 

Relations and indexes are implemented as C+ + classes that are sub-classes of Arg, 
and thus can be used just like other terms. However, we have chosen to discuss 
them separately because the interface between the query evaluation system and the 
data manager is particularly important when it involves relations and indexes. 

7.2. 7 Relations. CORAL currently supports in-memory hash-relations, as well as 
disk-resident relations (the latter by using the EXODUS storage manager) (Carey 
et al., 1986). Multiple indexes can be created on relations, and can be added to 
existing relations. The relation interface is designed to make the addition of new 
relation implementations (as sub-classes of the generic class Relat ion)  relatively 
easy. 

CORAL relations (currently only the in-memory versions) support several fea- 
tures that are not provided by typical database systems. The first and most important 
extension is the ability to obtain marks 21 into a relation, and distinguish between 
facts inserted before and facts inserted after the mark was obtained. This feature 
is important for the implementation of variants of semi-naive evaluation (Section 
6.3). The implementation of this extension involves creating subsidiary relations, 
one corresponding to each interval between marks, and transparently providing the 
union of the subsidiary relations corresponding to the desired range of marks. A 
benefit of this organization is that it does not interfere with the indexing mechanisms 
used for the relation (these mechanisms are used on each subsidiary relation). 

CORAL can also "hide" facts in a relation and make them visible in a "prioritized" 
fashion. Such a feature is important for efficient evaluation of some programs 
(Section 6.6.5). 

7.2.2 Index Structures. Hash-based indexes for in-memory relations and B-tree 
indexes for disk-resident relations are currently available in the CORAL system. 
New index implementations can be created as sub-classes of the generic class Index 
and may be added to any relation implementation. For instance, pattern-form 
indexes were added using this interface. 

CORAL provides a uniform interface for the addition of any kind of index to 
a relation; tuples already in the relation are added automatically to the index. Scan 
operations on a relation optionally may specify an index to be used for the scan. 22 
CORAL also has a mechanism for automatic selection of an index for a scan, in 
case an index is not specified. 

21. A mark  is a mechanism that makes it possible to recognize which tuples in the  relation were added after 

the  mark  was obtained and which were already in the relation before the mark  was obtained. If a relation 

is conceptually viewed as a chain of tuples with new tuples appended to the  end of the chain, obtaining a 

mark  corresponds to recording a pointer to the  current end of the chain. 

22. The  current  version of C O R A L  does not  support  scan predicates such as X < 10, but  this feature will 

be supported in a future release of CORAL.  
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7.3 Persistent Relations 

CORAL uses the EXODUS storage manager to support persistent (disk-resident) 
relations. The schema of a CORAL disk-resident relation must be declared. For 
example, the schema of the employee relation (Section 2.1) can be declared as 
scheraa(employee(string, s t r i n g ,  g loa t ) ) .  In the current CORAL implemen- 
tation, tuples in a disk-resident relation are restricted to have fields of primitive types 
only. One way of allowing objects of arbitrary classes in such tuples would be to 
require the classes to provide member functions for encoding objects as bit-strings, 
and corresponding decoding functions. Future releases of CORAL may provide 
this facility. 

Indexes can be maintained, and are implemented as B+ trees. Both base 
relations as well as derived relations can be disk-resident. Derived relations that 
are materialized on disk during the evaluation of a query reside on a temporary 
disk volume so that they do not persist after the completion of the query. This is 
in contrast to persistent relations that reside on disk across query invocations and 
across invocations of CORAL. 

The transaction mechanism provided by EXODUS is used to provide transac- 
tion semantics for actions on persistent relations. EXODUS uses a client-server 
architecture; CORAL is the client process, and maintains buffers for persistent 
relations. If a requested tuple is not in the client buffer pool, a request is forwarded 
to the EXODUS server and the page with the requested tuple is retrieved. 

As an artifact of the basic implementation decision to share constants instead 
of copying their values, there is some inefficient copying of data that occurs while 
handling disk-resident data. We are in the process of modifying the implementation, 
at least in the case of constants of primitive types like integers. 

8. Interface with C +  + 

The CORAL system has been integrated with C+ + to support a combination of 
declarative and imperative programming styles. The CORAL system provides a 
collection of new C+ + classes (relations, tuples, args, and scan descriptors) and a 
suite of associated member functions. In addition, there is a construct to embed 
CORAL commands in C+ + code. This extended C+ + can be used in conjunction 
with the declarative language features of CORAL in two distinct ways: 

• Relations can be computed in a declarative style using declarative modules, and 
then manipulated in imperative fashion in extended C+ + without breaking 
the relation abstraction. In this mode of usage, there typically is a main 
program written in C+ + that calls on CORAL for the evaluation of some 
relations defined using CORAL modules. The main program is compiled 
(after some pre-processing) and executed from the operating system command 
prompt; the CORAL interactive interface is not used. 
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• New predicates can be defined using extended C+ +. These predicates can 
be used in declarative CORAL code and are incrementally loaded from the 
CORAL interactive command interface. There are, however, some restrictions 
on the types of arguments that can be passed to the newly defined predicates. 

Thus, declarative CORAL code can call extended C+ + code and vice-versa. 
The above two modes are further discussed in the following sections. 

8.1 CORAL Classes Visible to C+ + 

The C + +  classes defined in the CORAL system that are visible to the C + +  
programmer include: 

Relation:  This allows access to relations from C++.  Relation values can be 
constructed through a series of explicit inserts and deletes, or through a call to 
a declarative CORAL module. The associated member functions allow manip- 
ulation of relation values from C+ + without breaking the relation abstraction. 

Tuple: A relation is a collection (set or multiset) of tuples. 
Arg: A tuple, in turn, is a list of args (i.e., arguments). A number of functions are 

provided to construct and take apart arguments and argument lists. 
C_ScanDesc: This abstraction supports relational scans in C+ + code. A C_ScanDesc 

object is essentially a cursor over a relation. 

The following example illustrates several classes (Relat ion, C_ScanDesc, Tuple, 
and Arg) and functions that form part of the CORAL interface to C+ +: 

int sum_first_args(char* tel_name, int rel_arity) 
{ 

Relation *rel = find_relation(rel_name, rel_arity); 
C_ScanDesc *scan = new C_ScanDesc(rel); 

Tuple *tuple; int sum = O; 

/* Iterate over the tuples in the relation */ 
for (tuple=scan->next_tuple () ; ! (scan->no_match()) ; 

tuple=scan->next_tuple ()) { 
if (!is_int((*tuple) [0])) { 

error("non-integer first field )"); /* Print error message */ 

exit 1 ; 
} 
sum+=make_int((*tuple) [0]) ;/*Sum up first argument of each fact*/ 

} 

return (sum) ; 
} 

This example uses functions like find_relation and is_int, which are part 
of the interface specification. The complete interface specification is provided in 
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the user manual (Ramakrishnan et al., 1993a). :However, this simple program 
demonstrates the fact that the C_ScanDesc abstraction, along with the Relation, 
Tuple, and Arg abstractions, gives the C+ + programmer a convenient way to access 
data stored in CORAL relations. Scans can be set up in an identical fashion on 
both base and derived relations. 23 A suite of routines is provided for converting 
CORAL terms into C+ + values and vice-versa. 

One restriction in the current interface is that a very limited abstraction of 
variables is presented to the user. Variables can be, used as selections for a query 
(say, via repeated variables) or in a scan, but variables cannot be returned as answers 
(i.e., the presence of non-ground terms is hidden at the interface). Presenting the 
abstraction of non-ground terms would require that binding environments be provided 
as a basic abstraction, and this would make the interface rather complex. 

8.2 Calling CORAL from C+ + 

Any sequence of commands that can be typed in at the CORAL interactive command 
interface can be embedded in C+ + code. However, the code must be bracketed 
by special delimiters. A file containing C + +  code with embedded CORAL code 
must first be passed through the CORAL pre-processor and then compiled. The 
following program illustrates how to call declarative CORAL from imperative C+ +: 

main(int argc, char**argv) 
{ 

int i = 2; double j = 4.23; 
init_coral (argv [0] ) ; 

f o r  ( i  = O; i < 3; i++) { 
\ [  

grows ( ( $ i n t )  $ i ,  1). 
fixed(2, ($double)$j). 
?grows (X,Y). 
?fixed(X,Y). 

\] 
} 
exit_coral () ; 

During the execution of the above program, each time through the loop, the 
variable i which is passed to the declarative CORAL code takes on a new value, 
and hence new facts are added to the relation grows on each iteration. The query 
?grows(X,Y) prints out a set of answers on each iteration, and the set of answers 
increases on successive iterations. Assuming duplicate elimination is performed, the 
relation f ixed ,  and the set of answers to the query ?f ixed (X, Y), remain unchanged. 

23. Note that it is easy to materialize a derived relation, if desired, by using an imperative rule with ":=".  
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8.3 Defining New Predicates in C+ + 

As we have already seen, predicates exported from one CORAL module can be used 
freely in other modules. Sometimes, it may be desirable to define a predicate using 
extended C + + ,  rather than the declarative language supported within CORAL 
modules. A _coral_expor t  statement is used to declare the arguments of the 
predicate being defined. The definition can use full extended C+ +. The source 
file is pre-processed into a C+ + file, and compiled to produce a .o file. If this 
file was consulted from the CORAL prompt, then it is incrementally loaded into a 
newly allocated region in the data area of the executing CORAL system. It is also 
possible to consult a pre-processed .C file or .o file directly, and avoid repeating 
the pre-processing and compilation steps. 

Consider the following example of defining CORAL predicates using C+ +. 

_coral_export double myfunc(double); 
double myfunc(double x) 
{ 

return x*2 ; 
} 

The export statement defines a CORAL predicate myfunc based on the C+ + 
function my:~unc. The return value of the C+ + function myfunc is automatically 
mapped into the second argument of the CORAL predicate myftmc. This predicate 
must be called with the first argument bound to a double; the second argument 
can be free or bound. If the second argument is bound, the computed value is 
compared with the given binding. 

The CORAL primitive types are the only types that can be used in a _coral_export 
declaration; user-defined types are not allowed. An alternative mechanism is avail- 
able to define more complex predicates using C++;  details may be found in the 
CORAL manual (Ramakrishnan et al., 1993a). However, the export mechanism 
makes it very easy to define simple predicates using C+ +. 

9. Extensibility in CORAL 

The implementation of the declarative language of CORAL is designed to be 
extensible. The user can define new abstract data types, new relation implementations 
and new indexing methods, and use the query evaluation system with no (or in a 
few cases, minor) changes. The user's program will, of course, have to be compiled 
and linked with the system code. CORAL assumes a set of standard operations on 
data types is available, and all abstract data types must provide these operations 
(as C+ + virtual member functions). 
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9.1 Extensibility of Data Types 

The type system in CORAL is designed to be extensible; the class mechanism 
and virtual member functions provided by C+ + help make extensibility clean and 
local. "Locality" refers to the ability to extend the r.~e system by adding new code 
without modifying existing system code--thus, the changes are local to the code 
that is added. All abstract data types should have certain virtual member functions 
defined in their interface, and all system code that manipulates objects operates only 
via this interface. This ensures that the query evaluation system does not need to 
be modified or recompiled when a new abstract data type is defined. The required 
member functions include the member function equals,  which is used to check if 
two objects are equal, the member function p r in t  for printing the object, hash to 
return a hash value, and constructor and destructor functions. For a summary of 
the virtual member functions that constitute the abstract data type interface, see 
Ramakrishnan et al. (1992b, 1993a). 

The user can define predicates (using C+ +) to manipulate (and possibly display 
in novel ways) objects belonging to the abstract data types. These predicates must 
be registered with the system and then can be accessed from CORAL; registration 
is accomplished by a single command. 

While the creation of new abstract data types in (;ORAL is quite straightforward, 
the definition of predicates to manipulate the abstract data types is a little more 
complicated since the creator must have some knowledge of the internal data 
representation in CORAL. Given this knowledge, defining a predicate is easy as 
well. For example, one of the authors implemented an array abstract data type 
along with a set of predicates to manipulate it, with about half a day's effort. 24 

9.2 Adding New Relation and Index Implementations 

CORAL currently supports relations organized as linked lists, relations organized as 
hash tables, relations defined by rules, and relations defined by C+ + functions. The 
interface code to relations makes no assumptions about the structure of relations, 
and is designed to make the task of adding new relation implementations easy. The 
"get-next-tuple" interface between the query evaluation system and a relation is the 
basis for adding new relation implementations and index implementations in a clean 
fashion. The implementation of persistent relations using EXODUS illustrates the 
utility of such extensibility (Section 7.3). 

10. Performance Results 

The wide range of evaluation techniques available in CORAL and the ability to 

24. This is available as part of the CORAL system. The additional code involved is included and discussed 
in the CORAL user manual (Raraakrishnan et al., 1993a). 
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Table 1. Ancestor timings 

Program Dataset Rewriting Timing 

Left Linear Ancestor 

Right Linear Ancestor 

Non Linear Ancestor 

Treel l l0  

Chainl60 

Treel000 

Chainl60 

Treel000 

Chain160 

Supplementary Magic 
Factoring 

Supplementary Magic 
Factoring 

Supplementary Magic 

Factoring 

Supplementary Magic 
Factoring 

Supplementary Magic 
Factoring 

Supplementary Magic 

Factoring 

0.50s 

0.40s 

0.09s 

0.07s 

1.65s 

0.77s 

4.88s 

0.11s 

4.00s 

0.74s 

149.25s 

0.14s 

choose them in combination offers much greater flexibility than is available in other 
systems. Here, we summarize a few of our performance results that underscore the 
value of this flexibility. We performed measurements on a lightly loaded Sparcstation 
10/51, using Unix user cpu times. The programs chosen represent "typical" building 
blocks used in deductive applications: computing transitive closure and bill-of- 
materials relationships, appending lists, aggregating over sequences, and simple 
non-recursive rules that join several relations. We have not presented a comparison 
of CORAL with other systems. Such comparisons need to be carefully designed 
and are beyond the scope of this article. 

10.1 Ancestor and Bill of Materials 

The first program that we examined was the well known a n c e s t o r  example. We 
used a tree with a depth of 3 and a uniform fanout of 10 (having a total of 1110 
edges), and a chain of length 160 as our data sets. The roots of the data sets were 
used as the selections on the first argument for each of the queries; therefore all 
nodes were present in the answers. The timings are shown in Table 1; they do not 
include printing times. We present figures for three ways of writing the program (left- 
linear, right-linear, and non-linear) in combination with two optimization techniques 
(Supplementary Magic, which is used by default in CORAL, and Factoring, which 
is applicable only to a certain class of programs and must be explicitly enabled). 

The factoring rewrite of all of the above forms of the ancestor program results in 
a program similar to (but slightly simpler than) the left-linear Supplementary Magic 
version of the program; hence their timings are similar. The poor performance of 
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Table 2. Append timings 

List Length I Supp. Magic Last-Call Pipelined 

100 0.19s 13.13 0.03 

200 0.36s 0.27 0.06 

400 0.71s 0.53s 0.14s 

the non-linear version of the program with Supplementary Magic rewriting indicates 
that thought must be given to efficiency when writing declarative programs, unless 
the optimizer is sufficiently smart. 

We also ran a bill-of-materials program, which computed all the basic parts 
needed to create an assembly, and summed up the total cost of the copies of each 
basic part required. We used a synthetic database of 100 different basic parts, and 
15000 facts for the assemblies (each assembly consisting of three sub-assemblies/basic 
parts). A query on this database which resulted in all 100 basic parts being accessed 
ran in 12.36 seconds. 

10.2 Appending Lists 

The second program we examined was the standard program for appending two 
lists; it was used primarily to demonstrate CORAEs support for complex data such 
as lists. We performed timing measurements for appending ground lists of different 
sizes; three evaluation techniques were used: pipelining, materialization using Sup- 
plementary Magic rewriting, and materialization using a version of Supplementary 
Magic rewriting with last-call optimization (Ross, 1991). Factoring is not applicable 
for this program. 

The timings are shown in Table 2. Append runs in linear time on CORAL 
with all three evaluation techniques. What is interesting is that the rewritten 
program generated by the version of Supplementary Magic with last-caU optimization 
actually generates non-ground facts, even though the append program itself does 
not generate non-ground facts on the queries we use. Without the non-ground fact 
related optimizations (Sudarshan, 1992; Sudarshan and Ramakrishnan, 1993), the 
evaluation of the rewritten program would have taken quadratic time. With the 
non-ground fact optimization, not only did the program run in linear time, but it 
ran faster than the version of the program rewritten using Supplementary Magic 
rewriting. The version of Supplementary Magic with last-call optimization has not 
yet been implemented in the CORAL system, but we hand-coded the program 
to demonstrate the benefits of the non-ground fact optimizations implemented in 
CORAL, and the benefits of last-call optimization. 

The timings for the append program clearly indicate that pipelining is the best 
evaluation mechanism for append; however, the exercise demonstrates that programs 
which need to be evaluated with materialization (for other reasons), can perform 
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list operations with acceptable asymptotic bounds. 

10.3 Moving Average Over a Sequence 

The third program we studied computed the N-day moving average over a daily 
sequence of stock quotes. The average of the values of a sequence over a "window" 
of days prior to the current day are computed for each day in the sequence. With 
Supplementary Magic, on a sequence of length 1000, CORAL took about 0.74s 
regardless of window size. This reflects the fact that the optimized program scans 
the relation just once, independent of the window size. Performance is linear in 
the size of the input sequence (e.g., CORAL takes 1.55 seconds on a sequence of 
length 2000, and 3.37 seconds on a sequence of length 4000). 

10.4 Indexing and Joins 

We measured the time taken to build indexes on relations. For in-memory relations, 
indexes could be constructed very efficiently; for example, creating an index on the 
first two columns of a ternary relation with 15000 tuples took just 0.24 seconds. 
This bears out our decision to construct indexes on in-memory relations whenever 
the indexes are required for evaluating a rule. 

To get a feel for the performance of low-level evaluation mechanisms, we 
performed a simple join of the form parent  (X,Y), parent  (X,Z), parent  (Z,W), 
with the tree data set having 1110 edges used as the input. We timed two variants 
of the program, both of which had an empty relation as the fourth relation in the 
join, so no actual facts were generated (the cost of materializing facts dominates the 
other join costs). The first variant had a relation with no arguments, and intelligent 
backtracking on finding the relation was empty the first time it was accessed would 
recognize that the rule would never generate any facts, and not perform the rest 
of the join. The time for detecting this was just around 0.05 seconds. The second 
variant was crafted to foil intelligent backtracking. Since the fanout of the tree data 
set is 10, the literal placed after the three parent literals is reached about 100,000 
times in a nested-loops join. This variant of the join took 1.25 seconds to execute. 

When the parent facts were stored in an EXODUS (persistent) relation, all the 
timings were approximately five times higher. This primarily is due to inefficiencies 
in the interface between CORAL and EXODUS, and the system is currently being 
modified to reduce some of the unnecessary overheads in this interface. 

Based on our experience thus far, we can make a few observations: CORAL 
is not very efficient in its low-level implementation. For example, it is nearly three 
times slower than LDL on the basic join program, about eight to 10 times slower 
than XSB, and about 25 times slower than WAM-based Prolog implementations. 
We believe that the difference in speed is because LDL is compiled into C, whereas 
CORAL is interpreted. However, CORAL performs better than LDL on many 
more complicated programs; we believe this is because, in general, CORAL has 
better program transformation and evaluation techniques. XSB and WAM-based 
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Prolog implementations have paid a great deal of attention to low-level optimization 
techniques, such as unification and memory-management; this results in superior 
performance. However, these systems provide a fixed control strategy and fixed 
data types, unlike CORAL which has a number of different control strategies and 
an extensible type system. We are currently studying how some of the WAM 
optimizations (e.g., Ait-Kaci, 1991) can be extended to support these CORAL 
features; this would require changes in, for example, internal representations of 
terms, memory management, and code for rule evaluation. We believe that high- 
level optimizations in CORAL, such as the program transformations and semi- 
naive ffixpoint evaluation, would not be substantially affected by such low-level 
optimizations. 

11. Applications 

It is widely accepted that developing significant applications currently represents 
the major challenge for deductive systems. The CORAL system has been retrieved 
by over 200 sites and has been used in research projects as well as in courses at 
several universities. Some substantial research applications of CORAL, developed 
by others, were described in the post-ILPS93 Workshop on Programming With Logic 
Databases (Ramakrishnan, 1993). These include: 

Support for visual querying of graph data: The Hy+/GraphLog group at the University 
of Toronto is using CORAL as a back-end for a system that allows users to 
pose queries through a visual interface (Vista and Wood, 1993). A rich class 
of natural queries over graphs (e.g., flight queries, and class library dependency 
queries) is supported, and queries are evaluated by translation into CORAL 
queries. 

Genome sequence analysis: Goodman et al. (1993) at MIT's Genome Lab are 
considering the use of CORAL to maintain and query genome sequence data. 
They report that deductive databases are well-suited for their application since 
many of their queries are naturally recursive. They have used CORAL for 
posing some queries on their data, and mention that CORAEs features and 
performance in terms of speed are very good for their application. 

In addition, several CORAL applications have been developed at the University 
of Wisconsin. The CORAL group has developed two substantial applications of 
CORAL: The Mimsy package, and the explanation and debugging package. 

The Mimsy package (Roth et al., 1993) analyzes sequence data in the stock 
market domain. Mimsy allows users to write queries using a menu-driven pseudo- 
English language interface (with no knowledge of CORAL). Mimsy queries are 
implemented by translating them into CORAL queries and passing them over a 
socket to a server executing CORAL. Data are stored for distribution in Unix 
files in the compressed format used by the Center for Research in Security Prices 
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(University of Chicago). The relations needed to answer a query are loaded into 
memory on demand. Answers can be viewed as relations or as graphs; in addition 
to CORAL, software such as Ghostview and IPL is used in Mimsy. 

An important feature of Mimsy is the special implementation of relations 
corresponding to stock histories. They are simply and efficiently implemented as 
C + +  arrays, and CORAEs extensibility is used to "register" this new relation 
type. Adding such "array relations" was quite easy 25 and yielded a significant 
performance improvement, underscoring the importance of extensibility. We have 
tested the package on five year's worth of data on 100 stocks; over 20 year's worth 
of data on about 1,600 stocks is available. It is therefore very important that the 
data be stored in compressed form. Nonetheless, for virtually all queries of interest, 
all the data fit easily into memory--the data for each stock can be represented in 
one double word (there are about 250 data items per stock per year), and queries 
rarely involve over 10 stocks. Since data for a query are loaded on demand, the 
performance of a query is determined only by the data that it touches, rather than 
by the total amount of available data. 

It is worth noting that many queries that Mimsy is designed to deal with are 
naturally recursive, and difficult to express in SQL (e.g., Find the N-day moving 
average of IBM, and Find the longest increasing run in GM in 1993). Fur- 

thermore, even queries that are non-recursive are more efficiently implemented than 
in a typical SQL system due to the light-weight implementation of relations containing 
stock series data. An example of a non-recursive query is: Find the  4-day average 
of IBM whenever the price of DEC is up more than 57,. 

The Mimsy system is inspired by MIM (Lewis, 1992; Logical Information 
Machines, 1992), which is a commercial package for analyzing stock market data. 
Mimsy has many of the features of MIM, which is a stand-alone package written 
in C, but Mimsy is not as fast as MIM. Nonetheless, it offers good interactive 
performance for typical queries. An important feature of Mimsy, not available in 
MIM, is the extensibility that comes from having CORAL available underneath. 
A sophisticated user can easily add new built-ins or predicate definitions using 
the CORAL deductive language and make these accessible to naive users from 
the pseudo-English language menu. This allows Mimsy to be customized with 
complex analysis strategies by individual users, which is a very desirable feature 
in an environment where many traders use sophisticated proprietary strategies for 
buying and selling securities. 

The second substantial CORAL application developed by the group at the 
University of Wisconsin is an explanation and debugging package called Explain 
(Arora et al., 1993), which is itself implemented using CORAL. The implemen- 
tation of Explain uses the C+ + interface of CORAL extensively. However, the 

25. A graduate student who was moderately familiar with CORAL added and fully tested this ccode in under 
a week .  
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implementation of Explain does not use CORAEs deductive capabilities. Explain 
allows a user to browse through all derivation trees for facts generated during a 
CORAL run, using a graphical point-and-click interface. During a run, derivation 
fragments (rule instantiations) are generated and stored in a file. Subsequently, the 
browsing component of Explain can be invoked and the saved fragments are loaded 
into CORAL relations. The Explain cornmands to grow and prune derivation trees 
for interesting facts are implemented using these relations, and the implementa- 
tion is greatly simplified by leaving the management of these relations (including 
such concerns as indexing) to CORAL. Storing derivation fragments slows CORAL 
execution by a factor of about five, and loading in the saved relations can take 
tens of seconds for large dumps (some of our tests created over 60,000 fragments). 
Response to browsing queries, once these relations are loaded, is very fast (much 
less than a second). 

CORAL has been used to implement algorithms for interproceduralslicing (Reps, 
1994), a technique for identifying program statements that can affect the value of 
a variable at a particular program point. An algorithm for slicing was reported by 
Horowitz et al. (1990) and implemented in about 5~,000 lines of C in eight months. 
The programs to be analyzed by slicing were encoded as a set of facts (corresponding 
to edges in the program dependency graph) in CORAL, and the algorithm for slicing 
was implemented in just about 100 lines of declarative CORAL code. A notable 
feature of the CORAL code was that complex recursive rules were frequently used, 
with the most common being variations of transitive closure. However, rules similar 
to the well-known same-generation rules (but more complex!) were also used; 
this is not surprising when one considers the need to match procedure calls and 
returns. This application clearly shows the utility of a declarative language capable 
of dealing with large numbers of facts; for example, one sample program of about 
700 lines had an encoding consisting of over 10,000 base facts. The number of 
recursive semi-naive rules in the largest recursive component was approximately 25, 
and tens of thousands of intermediate facts were generated. The application also 
brought out some limitations in the CORAL implementation. Memory management, 
join ordering, and low-level rule implementation seem to be the main weaknesses, 
although a more careful evaluation remains to be done. 

12. Related Systems 

A number of other deductive database systems have been developed in the past few 
years. These include Aditi (Vaghani et al., 1991), ConceptBase (Jeusfeld and Staudt, 
1993), EKS-V1 (Vieille et al., 1990), GIue-NAILI (Morris et al., 1986; Phipps et 
al., 1991), LDL (Naqvi and Tsur, 1989; Chimenti et al., 1990), LDL+ + (Arni and 
Ong, 1993), LOLA (Freitag et al., 1991), Starburst SQL (Mumick et al., 1990), and 
XSB (Sagonas et al., 1994). There are many similarities between CORAL and these 
systems. However, there are several important differences, and CORAL extends 
the above systems in the following ways: 
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1. CORAL is extensible--new data and relation types and index implementations 
can be added without modifying the rest of the system. 

2. CORAL supports a wide range of evaluation techniques, and gives the user 
considerable control over the choice of techniques. 

3. CORAL supports a larger class of programs, including programs with non- 
ground facts and non-stratified set-generation. 

EKS-V1 supports integrity constraint checking, hypothetical reasoning, and 
provides some support for non-stratified aggregation (Lefebvre, 1991, 1992). Con- 
ceptBase supports several object-oriented features, integrity constraint checking, 
and provides a one-way interface to C/Prolog (i.e., the imperative language can call 
ConceptBase, but not vice versa). LOLA supports integrity constraints, several join 
strategies, and some support for type information. The host language of LOLA 
is Lisp, and it is linked to the TransBase relational database. Aditi gives primary 
importance to disk-resident data and supports several join strategies. 

In CORAL, modules serve as the units of compilation, and several evaluation 
choices can be specified on a per-module basis. Unlike Glue-NAIL! and LDL, where 
modules have only a compile-time meaning and no run-time meaning, modules in 
CORAL have important run-time semantics. Several run-time optimizations are 
done at the module level. Modules with run-time semantics also are available in 
several production rule systems (e.g., RDL1; Kiernan et al., 1990). 

LDL+ + (Arni and Ong, 1993), a successor to LDL, has moved in the direction 
taken by CORAL in several respects. It is interpreted, supports abstract data types, 
and uses a local semantics for choice (Carlo Zaniolo, personal communication). 
XSB supports several features similar to CORAL, such as non-ground terms and 
modularly stratified negation. Program evaluation in XSB uses OLDTNF resolution, 
and has been implemented by modifying the WAM; this implementation performs 
basic operations such as unification very efficiently. 

Unlike most logic programming systems, such as various implementations of 
Prolog, CORAL supports declarative semantics for all positive Horn clause programs, 
and for a large class of programs with negation and aggregation as well, and provides 
better indexing facilities and support for persistent data. 

13. Conclusions 

One version of the CORAL system has been released in the public domain, and 
an enhanced version will be released soon. Looking back at the evolution of the 
system, the effects of several design decisions are becoming increasingly evident. 
On the positive side, most of the decisions we made seem to have paid off with 
respect to simplicity and ease of efficient implementation: 

Modules: The concept of modules in CORAL was in many ways the key to the 
successful implementation of the system. Given the ambitious goal of combining 
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many evaluation strategies controlled by user hints in an orthogonal fashion, the 
module mechanism appears to have been the ideal approach. 

Annotations: It has been our experience that often the discerning user is able 
to determine good control strategies that would be extremely difficult, if not 
impossible, for a system to do automatically. Hence, the strategy of allowing 
the users to express control choices was a convenient approach to solving an 
otherwise difficult problem. It is important to emphasize that a good choice 
of default decisions is essential to shield a naive user from the need to learn 
about annotations. As the system becomes more sophisticated in making intel- 
ligent optimization choices, the need for user-specified annotations decreases. 
However, the ability to speciffij annotations when necessary is a valuable feature. 
In retrospect, annotations such as a g g r e g a t e  s e l e c t i o n s  have proved to be 
extremely useful, whereas other annotations such as p r i o r i t i z e  have not been 
used much. 

Extensibility: The decision to design an extensible system seems to have helped 
greatly in keeping our code clean and modular. 

System Architecture: The architecture concentrated on the design of a single-user 
database system, leaving issues like transaction management, concurrency control, 
and recovery to be handled by the EXODUS storage manager. Thus, CORAL 
could build on facilities that were already available, and focus instead on the 
subtleties of deductive databases and logic rules. The overall architecture was 
reasonably successful in breaking the problem of query processing into relatively 
orthogonal tasks. 

On the negative side, some poor decisions were made, and some issues were not 
addressed adequately. 

Type Information: CORAL makes no effort to use type information in its processing. 
No type checking or inferencing is performed at compile-time, and errors due 
to type mismatches lead to subtle run-time errors. 'Iyping is a desirable feature, 
especially if the language is to be used to develop large applications. This is 
one of the issues addressed by a proposed extension to CORAL (Srivastava et 
al., 1993). 

Memory Management: In an effort to make the system as efficient as possible for 
main-memory operations, copying of data has largely been replaced by pointer 
sharing, even for primitive data types such as integers. While this does make 
evaluation more efficient, it requires extensive memory management and garbage 
collection. This is, in retrospect, the worst of our design decisions, and is currently 
being modified. It has implications for both garbage collection and the interface 
to persistent data. 

Low-level Optimizations: The focus of the CORAL implementation was high-level 
optimizations such as rewriting algorithms and semi-naive evaluation. We have 
not attempted to optimize fully the basic operations in evaluating a rule. In the 
main-memory case, optimizations such as those pioneered in the Warren Abstract 
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Machine (WAM) for Prolog systems could significantly improve performance. For 
disk-resident data, more efficient join methods and cost-based query optimization 
would greatly improve the system. 

On the whole, however, CORAL has incorporated many features that are unique 
among deductive database systems: 

1. As an architectural feature, the importance assigned to modules both as 
compile-time and run-time units distinguishes CORAL from other deduc- 
tive database systems (Section 12). The EXODUS-based architecture for 
persistent data and the C+ + interface also are notable design decisions. 

2. From a language viewpoint, CORAL supports a wide range of features that 
set it apart from other languages. In particular, the support for non-stratified 
negation and aggregation, non-ground facts, and the many control annotations 
make for a rich and powerful language. 

3. From an implementation viewpoint, many of the strategies that are supported 
by CORAL were developed in the course of the project. These include pro- 
gram evaluation strategies like Magic Templates, Factoring, Ordered Search, 
and Predicate Semi-Naive evaluation, as well as optimization techniques 
to handle non-ground facts efficiently, and techniques to implement Save 
Modules. 

There are a number of directions in which CORAL could be, and in some 
cases needs to be, extended. This section discusses some issues that appear to be 
important, and that will involve significant effort. The issues discussed initially are 
those that involve enhancing the power or the performance of existing features of 
CORAL. Some other desirable enhancements that require extensive changes to the 
system are mentioned later. 

• Further support of persistent data needs to be provided. Though CORAL 
uses the indexed nested-loops join strategy as its default, there is no reason 
to stick with this approach, especially for joins of persistent relations. The 
design of the system makes no assumption about individual join methods, 
and so persistent relations should be joined by the most efficient join method 
available. While the current system permits the storage of only primitive 
data types in EXODUS, this needs to be enhanced to allow the storage of 
structured data as well. This is an interesting direction of future research. 

• The management of memory is probably the biggest drawback of the first 
version of the system. Extensive code modification is required to copy 
constants instead of sharing them. This process is partially completed at the 
time of publication of this article. 

• The interface with C+ + needs to be enhanced with new abstractions that 
allow programmers greater abilities to use the power of CORAL. In particular, 
a more powerful abstraction of variables needs to be provided. 
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• While performance measurements of a prelitainary nature have been made, 
an extensive performance evaluation of CORAL, both to evaluate various 
aspects of the system and to compare it with other systems, needs to be 
performed. 

• At present, the system presents a command ]prompt interactive interface, in 
much the same manner as most Prolog systenas. There are many challenges 
with respect to user interfaces for declarative language systems that could 
be tackled in the CORAL context. 

• Object-oriented features such as abstract data types, encapsulation, and 
inheritance provide very rich data modeling capabilities. Incorporating such 
features into CORAL (Srivastava et al., 1993)would be crucial in developing 
large applications in CORAL. The key to this integration is the following 
observation: object-oriented features are essentially extensions of the data 
model, and a clean integration of these features into CORAL can be achieved 
by allowing the language to draw values frora a richer set of domains. 

• Currently, CORAL provides support for no:a-ground facts with universally 
quantified variables. In several applications, variables in facts are typically 
constrained by information from some domain. An important extension to 
CORAL is to support such constraint facts (]KaneUakis et al., 1990), and we 
are considering linear arithmetic constraints as one of the constraint domains 
to incorporate into CORAL. 
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