
VLDB Journal3, 123-160 (1994), Kotgiri Ramamohanarao, Editor 123
(~)VLDB

The Glue-Nail Deductive Database System:
Design, Implementation, and Evaluation

Marcia A. Derr, Shinichi Morishita, and Geoffrey Phipps

Received April, 1993; revised version accepted December, 1993.

Abstract. We describe the design and implementation of the Glue-Nail deductive
database system. Nail is a purely declarative query language; Glue is a procedural
language used for non-query activities. The two languages combined are sufficient
to write a complete application. Nail and Glue code are both compiled into the
target language IGlue. The Nail compiler uses variants of the magic sets algo-
rithm and supports well-founded models. The Glue compiler's static optimizer
uses peephole techniques and data flow analysis to improve code. The IGlue in-
terpreter features a run-time adaptive optimizer that reoptimizes queries and au-
tomatically selects indexes. We also describe the Glue-Nail benchmark suite, a set
of applications developed to evaluate the Glue-Nail language and to measure the
performance of the system.

Key Words . Language, performance, query optimization.

1. Introduction

A current focus of database systems research is the design of programming languages
and systems to support non-traditional database applications such as computer aided
design, software engineering, and financial analysis. The Glue-Nail database system
(Phipps et al., 1991; Derr et al., 1993), which was developed at Stanford University,
provides two complementary languages for programming such applications. The
Glue procedural language (Phipps, 1990, 1992)augments relational-style queries

Part of this article was presented at the ACM SIGMOD International Conference on Management of Data,
Washington, DC, 1993.

Marcia A. Deft, Ph.D., is Technical Staffmember, AT&T Bell Laboratories, 600 Mountain Avenue, Room
2B430, Murray Hill, NJ 07974-0636 USA; Shinichi Morishita, Ph.D., is Advisory Researcher, IBM Japan,
Tokyo Research Laboratory, 5-19, Sanban-cho, Chiyoda-ku, Tokyo 102, Japan; Geoffrey Phipps, Ph.D., is
Technical Staffmember, Sun Microsystems Laboratories, Inc., 2550 Garcia Avenue, MTV 28-112, Mountain
View, CA 94043-1100 USA. Much of this research was done while the authors were at Stanford University,
Stanford, California, USA.

124

with control structures, update operations, and I/O. The Nail declarative language
(Morris et al., 1986, 1987) provides rules for expressing complex recursive queries
or views.

The purpose of this article is to describe the design and implementation of
the Glue-Nail database system. In particular we focus on how we optimized the
output or the performance of each major component of the system. We describe
a set of benchmark application programs and present performance results that
demonstrate the synergetic effects of these optimizations. We also compare a Glue-
Nail application with a version written in C and evaluate the design of Glue based
on our experiences with the system.

We begin by reviewing the background and underlying design philosophy of
the Glue-Nail system. Glue-Nail evolved from NAIL! (Morris et al., 1986, 1987), a
deductive database system that featured a logic-based query language, Nail. 1 Logic-
based query languages such as Nail have proved to be powerful query languages,
but have weaknesses as well as strengths. Because logic is side-effect free and
declarative (i.e., the execution order is unspecified), queries can be expressed
dearly and optimized easily. But the logical basis is also a weakness because there
are operations, such as updating the database and performing I/O, which do have
side effects, and hence require a procedural language (i.e., a language where the
execution order/s specified). To become a useful database language, Nail needs
procedural operations, yet these very same operations are at odds with the semantics
of Nail.

Our solution is the two language architecture of Glue-Nail. Nail provides all the
strengths of a logic-based query language. Glue complements Nail with procedural
features. The problem with this approach is that it involves the design of yet another
programming language. The new language must offer significant advantages over
existing languages, C/C+ + and Prolog being the main contenders. Glue (Phipps,
1992) was designed to offer such advantages by reducing the impedance mismatch
problem with Nail. Glue is much closer in semantics and syntax to Nail than
C+ +. Glue has one advantage over Prolog, notably that both Glue and Nail are
set-oriented, whereas Prolog is tuple-oriented.

A major part of Glue is the Nailog term syntax system (a variant of HiLog;
Chen et al., 1989). The Nailog term syntax allows a subgoal to have a variable as its
predicate name. For example, the term Z(X,Y) has the variable Z as its predicate
name. 2 In most other logic-based languages, the predicate name must be known
at compile time. The Nailog system gives the programmer additional power and
flexibility.

1. We use "NAIL!" to denote the system and "Nail" to denote the language.

2. We use the usual logic programming convention whereby variables begin with upper case letters, and
constants start with lower case letters.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 125

Another weakness of the original NAIL! system was the loose coupling between
the front end and the back end of the system. The front end of the system translated
a Nail program into an intermediate language called ICODE. The back end of the
system was an ICODE interpreter that generated SQL statements, which were
executed by an underlying commercial relational database system. Typical Nail
programs were compiled into code that created many temporary relations. These
temporary relations were managed by the same facilities that managed persistent
shared relations on disk. Consequently, temporary relations, which were usually
small, short-lived, and did not need to be shared, incurred the same overhead
as persistent relations. Another problem was that there was no way to control
query optimization in the commercial database system. Finally, the loosely-coupled
configuration was too slow, because it involved multiple levels of interpretation and
retrieved answers one tuple at a time.

Our solution to the architecture problem was to design a complete system
tailored to the characteristics of Glue and Nail. The three major components of
the system are the Glue compiler, the Nail compiler, and the IGlue interpreter. In
this approach, Nail rules and Glue code are both compiled into a target language
called IGlue. 3 IGlue code is executed by the IGlue interpreter, which manages all
relations and indexes in main memory. One of the advantages of this architecture
is the opportunity it provides for various kinds of optimizations. The Glue compiler
includes a static code optimizer that uses peephole techniques and data flow analysis.
The Nail compiler performs recursive query optimizations. The IGlue interpreter
provides an adaptive optimizer that optimizes queries at run time.

The remainder of this article is organized as follows. Section 2 describes the
Glue-Nail language pair. Section 3 gives an overview of the system architecture.
Sections 4, 5, and 6 describe the major components of the system: the Nail compiler,
the Glue compiler, and the IGlue interpreter. Section 7 describes the Glue-Nail
application benchmark and presents performance results and an evaluation of the
Glue language system. Section 8 compares Glue-Nail to several other deductive
database systems. Finally, Section 9 presents some conclusions.

2. The Glue-Nail Language

Glue and Nail are two complementary languages that together enable a pro-
gramrner to write a complete database application. We describe features of the
two languages. To facilitate the description we present an example Glue-Nail
program in Figure 1. This program computes a bill of materials; that is, for a
hierarchy of parts, it computes the quantity of each basic part required to build a
complex part. Basic parts are described by the persistent or Extensional Database

3. Pronounced "igloo."

126

Figure 1. Example Glue-Nail program that computes a bill of materials

O)
1)
2)
3)
4)
S)
6)
7)
s)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
2s)
26)
27)
28)
29)
3o)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)

module bill;
export main(:);
from io import read(:X), .rite(X:);

edb part_cost(BasicPart, Supplier, Cost, Time),
assembly(Part, SubPart, Qty);

........... Glue procedures

prog main(:)
r e l s answer ;

answer :=
read(P)
bom(P,B,Q) &

a = P / / ' \ t '
write(A).

r e t u r n (:) .

I I B II , \ t , I I Q II ' \ n '

end

proc bom(Root: Raw, Q)
rels unknown(P), p(P,SP,Q), notyet(P), anymore;

unknown(Root) := i n (b o m (R o o t)) .
unknown(P) += in (bom(Roo t)) & p a r t s t c (R o o t , P) .
p (P , P, 1) := unknown(P) k p a r t _ c o s t (P , ) & - -unknown(P) .
repeat

notyet(P) := unknown(P) & assembly(P,Child,Q) & unkno.n(Child).
p(P, Raw, Q) +=

unknown(P)
! notyet(P) &
assembly(P, SP, R)
p(SP, Raw, I) &
S = N*R &
group_by(P , Raw)
q = sum(S)
--unknown(P).

anymore := in(bom(Root)) & unknown(Root).
u n t i l !anymore;
return(Root: Raw, Q) := p(Root, Raw, ~).

end

. l a i l r u l e s

p a r t s t c (X , Y) : - a s s e m b l y (X , ¥ , _) .
p a r t s t c (X , Z) : - assembly(X,Y,_) & p a r t s t c (Y , Z) .

end

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 127

(EDB) relation par t_cos t (BasicPart , Supplier , Cost, Time). The EDB rela-
tion assembly(Part , SubPart, Qty) describes the part-subpart hierarchy. Each
tuple describes a complex part, one of its immediate subparts, and the quantity of
that subpart.

2.1 Nail Rules

Nail is a declarative language in which the user can define views or derived relations
in terms of logical rules. These views are also referred to as lntensional Database
(IDB) relations. For example, the recursive rules in lines 46--47 of Figure 1 define
the IDB relation, p a r t s t c (X, Y), which is the transitive closure of the EDB relation,
assembly(X,Y, Q). As with EDB relations, this relation can be queried in several
ways by providing a set of bindings for one or more variables. For example, one
may ask if the set of tuples { (b icyc le , spoke), (b icyc le , wheel)} is in the
par t s tc (X, Y) relation. In this case, both arguments are hound, and the query can
be described as p a r t s t c (X, y)bb. The Nail query p a r t s t c (Root, P) in line 25, asks
for all subparts P that are in the transitive closure of the bound argument Root.
Because the first argument is bound and the second argument is free, this query is
described as p a r t s t c (X, Y)bf. As will be described in Section 5, the Nail compiler
uses the binding pattern of a query to determine how to evaluate a set of Nail rules.

2.2 Glue Assignment Statements

The basic instruction element of Glue is the assignment statement. An assignment
statement performs joins over relations, Glue procedures, and Nail predicates,
and assigns the result to a relation. Glue assignment statements are not logical
rules, they are operational directives. Assignment statements do not define tuples,
they create or destroy tuples. Consider the example assignment statement in
line 28 of Figure 1. The effect of executing this statement is to join relations
unknown (P), as sembly (P, Child, Q), and unknown (Child) ; project the set of tuples
(P) from the result of the join; and assign this set to the relation no tye t (P).

In their basic form, Glue assignment statements have a single head relation,
and a conjunction 4 of subgoals in the body. The body of the assignment statement
is evaluated and produces a set of tuples over the variables in the body. The tuples
are used to modify the head relation. Glue allows subgoals to be negated. It also
allows update operators to be applied to subgoals. In Figure 1, line 31 is an example
of a negated subgoal, and lhae 37 is an example of a subgoal with a delete operator.

The semantics of the Glue assignment statement are defined by a left-to-fight
evaluation order, where all solutions are found for each subgoal before evaluating
the next subgoal. The evaluation order is fixed for purposes of side-effects and

4. The body can contain other control operators, such as OR and a form of implication, but space precludes
their inclusion in this paper.

128

aggregation. The underlying implementation of the system, however, is free to
reorder subgoals that have no side-effects.

There are three assignment operators in Glue:

[:=] Clearing assignment. The head relation is overwritten by the result of the
body.

[+=] Insertion assignment. The tuples from the body are added to the head
relation.

[-=] Deletion assignment. The tuples from the body are removed from the head
relation.

Several examples of clearing and insert assignment operations can be found in the
Glue code in Figure 1.

2.3 Relations and Terms

There are two kinds of relations in Glue: EDB relations and local relations. EDB
relations persist beyond the execution of any single program. Local relations are
defined within the scope of Glue procedures, and have a lifetime equal to the
lifetime of a procedure call stack frame.

An attribute of a tuple is represented by a ground (variable-free) Nailog term.
Nailog is an extension of the usual logic programming term syntax and semantics, and
is a subset of HiLog (Chen et al., 1989). HiLog and Nailog have second order syntax,
but first order semantics (Lloyd, 1984). While HiLog places no restrictions on the
use of terms as subgoals, Nailog does make restrictions for the sake of efficiency (see
below). Nailog provides an elegant computational model for meta-programming
and sets (see Section 2.4).

A Nailog term can denote a string, a number, a variable, or a compound term.
The functor of a compound can itself be an arbitrary term. A tuple that illustrates
a variety of Nailog terms is shown below.

(f o o , ' J a n e Doe' , 37, 14.5, f (a , b) , g (h) (1 , 2) , X(1), p(X)(Y), X(Y)(Z))

The first two terms are strings, the third and fourth terms are numbers, and
the remaining five are compound terms. The last four terms are not legal terms in
traditional logical term syntaxes.

Only tuples containing ground terms can be stored in Glue relations. In the
tuple above, only the first six terms are ground. The remaining three terms contain
variables and hence could not be stored in a relation. This ground-only restriction
allows the IGlue interpreter to use only matching when comparing subgoals against
a relation, rather than using full unification. When matching two terms, at most
one of the terms can contain variables, the other can only contain constants. Hence
only the variables in one term need to have their bindings updated. When unifying
two terms, both of the terms can contain variables. Hence both terms need to have

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 129

their bindings updated. Complex feedback loops can exist between the variables in
both terms, further complicating the process. Matching is (in general) much faster
than unification.

In Nailog, variables range over predicate names, not over predicate extensions
(values). This distinction is important, because the set of predicate names is finite,
whereas the set of possible predicate extensions is infinite. The scoping rules of
Glue's modules and procedures provide the compiler with a list of the predicate
names with which a subgoal variable could possibly unify, so most of the predicate
selection analysis can be done statically at compile time. Hence much of the cost
of meta-programming is avoided.

All Glue subgoals must have a completely bound predicate name at run time.
For example, the following are all legal Glue subgoals, assuming that variable Y
is bound: f (G , J) , Y(K), and f(Y)(K). There is one specific exception in Nailog:
a subgoal of a single variable (e.g., Y) is illegal. The meaning of such a subgoal
is ambiguous and the most obvious meanings are computationally very expensive.
These two restrictions are the only differences between HiLog and Nailog. They
are designed to allow programmers to write the programs that they need to write,
without paying the penalty for programs that never need to be written.

Notice that both compound terms and predicate terms can have arbitrary terms
as their functors, rather than being limited to atoms as in standard first order logic-
based languages. It is important that compound terms and predicate terms both
have the same syntax for two reasons. First, the language model is made cleaner
by the existence of a single syntax. Second, it would make it impossible to store
complicated Nailog predicate names as terms in a tuple. For example, the predicate
term wafer(metal)(layer2)(X,Y) has a Nailog term wafer (meta l) (layer2) as
its principal functor. If compound terms could not use Nailog syntax, then we could
not store the name of this predicate in a relation.

2.4 Sets and Meta-programming

The limitations of first normal form for representing attributes are widely recognized.
It is often more natural to express an attribute as a set than to flatten it into first
normal form (Wiederhold, 1986). Allowing set-valued attributes also solves many
null-value problems (Makinouchi, 1977).

A common problem with adding set-valued attributes to relational or deductive
databases is that sets are often introduced as an entirely new data type. The
new set data type needs special operators, such as set-membership, set-insertion,
set-deletion, and set-unification. While this approach may work, it unnecessarily
complicates the language model. A programmer should be able to use the relational
semantics to handle sets, because relations are nothing more than sets of tuples.
This is the approach taken by Glue and Nail.

Sets in Glue are manipulated by storing the name of a predicate (i.e., the name
of a set or relation), rather than the value (members) of a set. Sets are therefore
regular relations. Remember that subgoals may have variables for their predicate

130

Figure 2. Example of set construction in Glue

c la s s_ in fo (ID, Ins, Room, t as (ID) , s tudents(ID)):=
c l a s s _ i n s t r u c t o r (ID, Ins) &
c lass room(ID, Room).

tas(ID)(Grad_student) :=
c las s_sub jec t (ID, Subject) &
failed_exam(G r a d s t u d e n t , Subject) .

s tudents (ID)(S) :=
a t t ends (S, ID).

names. Therefore we can store the name of a relation in a tuple, then extract it
using a variable and use that variable as a subgoal name. For example:

dept_employees(toy , E_set) & E_set(Emp_name) & . . .

The second attribute of the dept employees relation is the name of the relation
which holds the employees in the toy department.

An example of set definition is shown in Figure 2. The relation class_ £nfo (. . . .
.) contains information about a class: its identifying code, instructor, set of
teaching assistants (TAs), and set of students. The relation tas (ID)(_) defines
the TAs for course ID, notably those graduate students who failed the graduate
qualifying exam in the course's subject area. Observe that the name of this relation
is a compound term. The relation s tudents(ID)(_) contains the names of the
students who are taking course ID. The other relations are defined elsewhere. A
typical use of the c lass_ in fo predicate might be:

c l a s s_ in fo (C , I ,R ,T ,S) & T(TA) & S(Student)

That is, c l a s s_ in fo provides bindings for variables T and S, which are names of
sets (i.e., relations).

The foregoing argument is only concerned with the language model that is
presented to the programmer. Note that nothing has been said about the im-
plementation of sets or relations. The arbitrary distinction between sets-of-tuples
(relations) and sets-of-other-things (sets) has been removed. The number of con-
cepts in the language has been reduced to have a cleaner computational model. A
cleaner model should lead to more efficient coding, and fewer errors. A system
with a computational model that distinguishes between sets-of-tuples and sets-of-
other-things could have special optimizations to deal with the latter. However, such
a design instantly raises the question: "Why not provide these optimizations for
sets-of-tuples as well?" On the other hand, if the two types of sets share the same
implementation, but are distinguished in the computational model, then nothing
has been gained by complicating the programmer's computational model.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 131

2.5 Aggregation

Aggregation in Glue occurs at the subgoal level. The aggregation operators are
Glue subgoals, and they operate over the tuples that have been produced in the
assignment statement body up to that point. For example, consider the following
statement that finds the shortest stick in a relation of sticks:

shortest(Name,L) := stick(Name,Length) & L = min(Length) & L = Length.

The relation stick(Name ,Length) contains the name and lengths of a set of sticks.
Suppose that its contents are:

Name Length

s t i ck_ l 12
s t ick_2 8
s t ick_3 9

If we evaluate the above statement, then the bindings for the variables after
each subgoal will be:

Name Length Name Length L Name Length L

s t i ck_ l 12 s t i ck_ l 12 8
s t ick_2 8 st ick_2 8 8
s t ick_3 9 st ick_3 9 8

st ick_2 8 8

Notice that the final subgoal joins variables L and Length, eliminating all but
the shortest sticks. The relation shor t e s t (Name, L) will be assigned the the single
tuple (s t ick_2,8) .

At first glance, it appears that our treatment of aggregation is inherently ineffi-
cient. In the example above, the aggregate L = m:i.n(Length) is appended to every
(Name, Length) tuple because all three values are needed later in the evaluation
of the query. This is a property of that particular Glue statement, not of the method
for computing aggregates. In the following variation

minlength(L) := stick(Name,Length) & L = min(Length).

the aggregate result L can be projected directly onto the head relation, and the set
of tuples (Name, Length, L) is never materialized.

The assignment statement in lines 29-37 of Figure 1 illustrates aggregation with
grouping. The term group_by (P, Raw) partitions the set of tuples (P, SP, M, Raw, N, S)
by the grouping key (P, Raw). Then for each partition, the aggregate operator aura (S)
computes the sum of variable S. The sum is assigned to variable Q.

132

2.6 Control Statements

Glue offers several control constructs, which have been borrowed from familiar
procedural languages. These include three different loop constructs and an if-then-
else construct. The condition tests for control statements are Glue assignment
statement bodies. A test is true if it returns at least one tuple; it is false otherwise.
In other words, condition tests are existence tests. Lines 27-39 in Figure 1 illustrate
a r e p e a t - u n t i l loop. The condition test is the subgoal body !anymore, which it
evaluates to true if local relation anymore is empty. The loop body always executes
at least once, because the condition test is evaluated after the loop body.

2.7 Glue Procedures

Glue procedures are analogous to Nail rules in that they compute a set of tuples
from the current state of the EDB. Glue procedures differ from Nail predicates
in two ways. First, the operational semantics of a Glue procedure are specified by
the programmer, whereas a set of Nail rules has no operational semantics, only
declarative semantics. Second, Nail rules can be called with any binding pattern,
whereas Glue procedures have a set of arguments which must be bound when the
procedure is called.

We will explain the structure of Glue procedures using the code in lines 21-41
of Figure 1. The name of this procedure is born(_:_,_). Informally, procedure
born(Root :Raw,0) computes the quantity 0 of each basic part Raw that is used to
construct complex part Root. The procedure's arity is one-to-two; given one bound
input argument, it produces ternary tuples. The colon is used to separate the
arguments that must be bound from the arguments that can be bound or free. The
arguments to the left of the colon must be bound. Whenever born(Root,Raw,O)
is used as a subgoal, its first argument must be bound. The second and third

. arguments may be either bound or free. More correctly, given a set of unary tuples
(over attribute Root), the procedure born(Root:Raw,O) extends these tuples to be
a set of ternary tuples (Root,Raw,Q), such that Raw is a basic part that appears Q
times in part Root.

The procedure has several local relations, which are declared in line 22. Proce-
dures may be called recursively. Each invocation of a procedure has its own copies
of its local relations. Declarations of local relations "hide" the declarations of other-
predicates with which they unify.

All procedures have two special relations, in and return. The relation in holds
the procedure's input tuples. The relation in contains a single term argument whose
functor is the name of the procedure and whose arity is equal to the bound arity of
the procedure (i.e., the arity to the left of the colon in the procedure definition).
The relation r e tu rn holds the procedure's output tuples. Assigning to this relation
also has the effect of exiting the procedure. The r e tu rn relation has the same
arity as the procedure. An assignment statement that assigns to the r e tu rn relation
has an implicit in subgoal as its first subgoal. For example, below we see line 40,

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 133

rewritten to include the implicit in relation:

re turn(Root :Raw,0) := in(bom(Root)) & p(Root,Raw,0).

The implicit in relation has a natural meaning; it restricts the return relation
to only those tuples which extend the input relation.

When a Glue procedure is used as a subgoal it is called once on all of the
bindings for its input arguments, rather than being called many times (i.e., once for
each tuple in the binding set).

2.8 Modules

Both logic programming and deductive database languages have had problems
"programming in the large," partly due to their lack of large scale code organization
structures. Hence, in common with several other languages, Glue-Nail has a module
system. Modules provide statically scoped naming contexts, as they do in languages
like Modula-3. Unlike CORAL modules, Glue modules do not have any dynamic
effect on scope. CORAL modules can be "called" with predicate arguments to
allow meta-programming. Glue and Nail achieve the same result by using Nailog,
where any procedure or rule can use variables for predicate names. Besides offering
the usual advantages of separate compilation and modularity, the module design of
Glue also gives the compiler valuable information concerning which predicates are
visible at any point in a program. This information can be used to perform much
of the predicate dereferencing at compile time instead of run time.

Modules have:
• A name,
• A list of imported EDB predicates,
• A list of imported Nail predicates and Glue procedures,

• A list of exported Nail predicates and Glue procedures, and

• Code, both for Glue procedures and Nail rules.

Notice that a module can contain both Glue procedures and Nail rules, thus
allowing the programmer to group predicates by function, rather than by language
type. Glue also provides a predefined input/output module from which procedures
can be imported. For example, in line 2 of Figure 1, module b i l l imports procedures
read(:X) and write(X:) from module io.

2.9 Using Nail without Glue

Although Glue was designed to be used with Nail, Nail could be embedded in
languages like C and COBOL. Huge amounts of legacy code exist in the world. The
embedding could be done in a similar fashion to embedded SQL. A Nail call would
reference existing database tables, and would return another table as its result.
Nailog term syntax would only be supported if the existing database supported
it, which is unlikely. Hence Nail would be reduced to just datalog (constants, no

134

function symbols). No attempt has been made to implement such a port, we mention
it merely for interest.

3. System Overview

The Glue-Nail database system was designed as a memory-resident system that
supports single-user applications. This design targets small to medium-sized ap-
plications where the database does not need to be shared or where portions of
database may be checked out for relatively long periods of time. All queries and
updates operate on main memory representations of relations. Between executions
of programs, the EDB relations reside on disk.

The Glue-Nail system architecture consists of the Glue compiler, the Nail com-
piler, the static optimizer, the linker, and the IGlue interpreter. The configuration
of these components is shown in Figure 3. The input to the system is a Glue-
Nail program, which consists of one or more code modules. Each module can be
compiled separately.

The Glue compiler separates the Glue code from the Nail rules in module. It
compiles the Glue code into the target language, IGlue, which will be described in
Section 6.1. The Glue compiler also passes each Nail query and its associated set of
rules to the Nail compiler. The Nail compiler transforms the Nail query and rules
into an IGlue procedure that computes the answer to the query. The linker collects
all relevant IGlue code into a single file. The IGlue code is optionally analyzed
and transformed by the static optimizer.

The IGlue interpreter reads the IGlue program, and loads into memory the
disk-resident EDB relations that the program will access. As the interpreter executes
the IGlue program, it calls the run-time optimizer to adapt query plans to changing
parameters of the database. When the interpreter halts, it writes to disk any EDB
relations that have been updated.

The Glue compiler is written in Prolog and C. The Nail compiler is written in
Prolog. The linker is written in C. The static optimizer and the IGlue interpreter are
written in C+ +. The system was developed on a DEC5000 and workstations with
16 to 32 megabytes of main memory. It has been ported to SPARC 2 and SPARC 10
workstations, running both SunOS 4.1.x and Solaris 2.x. While the current hardware
presents limitations on the size of programs this approach can handle, we believe
that trends toward larger main memories make this approach feasible for a variety
of applications. Departmental server machines with gigabytes of main memory are
now available.

4. The Glue Compiler

Compiling Glue into IGlue takes place in four phases: parsing, code generation,
linking, and static code optimization. Parsing and linking are straightforward and

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 135

Figure 3. Glue-nail system architecture

Glue-Nail Modules

Glue Compiler [Nall -[Nail Compiler
I 1
IGlue 1 IGlue

Linker]

IGlue

I Static Optimizer [

I IGlue

IGlue Interpreter

11 EDB

will not be discussed any further. Instead we will concentrate on how the code
generator and static optimizer produce quality IGlue code.

As with any compiler, the major technical problem faced in building the Glue
compiler was to be able to produce code that is both correct and efficient. The
Glue compiler is responsible for static optimization of Glue programs. One way
to provide for efficient execution is to reduce the number of IGlue operations
and relations. The Nailog semantics of Glue and Nail were particularly difficult to
handle efficiently, because in general the predicate to which a Glue subgoal refers
can only be determined at run time.

Three strategies are used by the Glue compiler: early identification of procedure
calls, reduction of compiler-generated storage space, and removal of redundant
operations. The first two problems were solved by careful design of the code
generator, the latter problem was solved by an IGlue-to-IGlue static optimizer.
This optimizer is also capable of improving the IGlue code produced by the Nail
compiler. We will elaborate on these compiler optimization strategies here.

136

4.10ptimizations in the Code Generator

Two optimizations are performed in the code generator. These optimizations were
not present in the first implementation of the code generator, but were added when
their need became apparent.

Predicate Class Analysis and Procedure Calls. As mentioned earlier, the Nailog term
system allows subgoals to have variables as their predicate names. Predicate selection
is the process of associating a subgoal term with a particular relation, or procedure,
or Nail predicate. Predicate selection for Nailog subgoals with variables can in
general only be resolved at run time. The simplest solution would be to perform
predicate selection at run time, when the functor is fully bound. However, that
would mean treating every subgoal as a potential procedure call, which is expensive.
Hence the Glue compiler does as much of the predicate name resolution as possible
at compile time. Subgoals are unified against the predicates that are visible in the
current scope. For subgoals with ground predicate names there can be at most
one match. For subgoals with variable predicate names, the number of possible
matches is usually reduced (and can never be increased). Hence the amount of
checking to be done at run time is reduced. In particular we can often prove that a
subgoal cannot match a procedure call, so the less expensive relation look-up can be
used. Compile-time predicate analysis was found to increase the speed of the PATH
benchmark (described in Section 7) by 315%. The unoptimized version of the code
treated all subgoals as potential procedure calls. The optimized code performed
compile-time analysis to distinguish between relation subgoals and procedure call
subgoals.

~mporary Relation Compression. Temporary relation compression involves analysis of
the variables that are stored in compiler-generated temporary relations. The compiler
uses these relations to store variable bindings between IGlue instructions. The simple
approach that was first implemented was to record all known variable bindings in
the temporary relations. Compression ensures that the only variable bindings that
are recorded in the temporary relations are those that will be subsequently used.
The effect of this optimization on programs from the benchmark suite is shown
in Table 1. The absolute error in the code speed improvements is one percentage
point. We note that this optimization has been present in most relational databases
since System R, but we mention it here because it was the most effective static
optimization performed by the Glue compiler. As so often happens in compiler
optimization, the obvious and simple ideas fix most of the problems.

4.2 Static Optimizatione

The Glue static optimizer is an IGlue to IGlue code transformer. It is a static
(compile time) optimizer and should not be confused with the dynamic (run time)
optimizer in the IGlue interpreter. A number of different optimization techniques
are used. The general algorithm is shown in Figure 4. Peephole analysis uses only

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 137

Table 1. Temporary relation compression

Program BILL CIFE SG SPAN CAR

Total arity, before 53 36 36 60 248

Total arity, after 29 31 8 42 121

% arity reduction 45 14 78 30 51

% speed-up 13.5 11.6 26 4.7 35

THORp THORs

1422 723

951 408

33 44

9.2 53

OAG

281

214

24

3.5

Figure 4. Static optimization algorithm

peephole();
do {

perform_data_flow_analysis();
constant_propagation();
copy_propagation();
peephole();

} while changes;

local information. Constant and copy propagation require data flow analysis. The
aim of these optimizations is to reduce the number of operations on relations, or
to remove a relation entirely.

In addition to the above optimizations, a cardinality analysis algorithm has been
developed. It identifies relations that contain at most one tuple (known as "singleton
relations"). These relations can be replaced by simpler data structures that can hold
only a single value. The required changes to the IGlue language and interpreter
have not been made, so performance numbers are not available. However, the
analysis algorithm is very effective at locating singleton relations. The algorithm
relies on the programmer's declaring that some relations are singleton. Abstract
interpretation using fixpoints is employed to compute the maximum cardinalities of
all the other relations. Relation sizes are limited to {0, 1, LARGE}. Arithmetic
over this set is closed, and repeated operations reach a fixpoint very quickly (usually
LARGE). Hence the algorithm as a whole terminates, because any relations involved
in loops reach their fixpoint cardinality very quickly. In one particular case in the
T H O R parser (described in Section 7), the analyzer algorithm was able to prove
that 65 out of 66 local and temporary relations were single-tuple relations after
being given one declaration by the programmer.

Peephole Techniques on Joins. Most of the work in a database takes place inside the
joins, so improving the join code is important. Glue static optimization can only
reduce the number of relations and variables within the join. The static optimizer

138

Table 2. Effect of DFA

[BILL CIFE SG SPAN CAR Program THORp

Code size before 60 151 41 49 78 938

Code size after 52 139 35 39 56 713

% size reduction ~ 13 7.9 9.8 20 28 24

% speed-up 3.8 2.4 3.5 5.4 14.1 5.5

THORs OAG

429 116

307 93

28 20

5.6 6.1

analyzes the use of variables within the join. The optimizer converts existential
variables into "don't care" variables, performs any unifications that can be done at
compile time, and removes joins that do not update any relation.

These peephole techniques are quick to execute because they use only local
information about a join. Note that the other optimizations may change the code so
that the peephole techniques may be reapplicable. Hence the peephole optimizer
is run after each pass through the main optimizer loop.

Contrary to expectations, it was found that peephole optimization had only a
marginal effect on execution speeds. Speed-ups for the application suite varied
between 0% and 3%.

Data Flow Analysis. Data Flow Analysis (DFA) of IGlue code is similar to DFA
in imperative languages with single-valued variables, but there are some important
differences. First, DFA in IGlue is concerned with relations, not variables. Second,
IGlue has more opportunities for aliasing than traditional three-address code.

The optimization techniques that depend on DFA are:

• Copy propagation,

• Constant propagation, and

• Reduction in strength of the join operation.

These three techniques are variants on their traditional forms. For example, DFA
can often prove that a relation has a known value at some point in an IGlue
program. Relations can be proven to be empty, or to contain a set of known tuples.
If a relation is provably empty, then references to it may be replaced by FALSE. If
a relation has a single known tuple, then the value of that tuple can replace the
uses of that relation at compile time. If the relation is known to possess more than
one tuple, then its uses can be replaced by the multiple tuples, although in practice
this has not proven to be cost effective. DFA also identifies operations that do not
change the value of a relation (such as clearing an empty relation).

The results of running the DFA optimizations on the benchmark suite (Section
7) are shown in Table 2. The absolute error in the code speed improvements is
one percentage point.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 139

This table shows the reduction in the number of IGlue statements achieved by
DFA. The speed improvements were not as large as expected. The reason that the
improvements in speed were much less marked than the improvements in code size
is that all IGlue statements are not created equally. The static optimizer is very
good at identifying redundant operations (such as unnecessary data copying and
movement). Unfortunately, these joins are usually quick to execute because they
a r e redundant. For example, the IGlue interpreter implements a _MOVE operation
by simple pointer changes, rather than tuple copying. Clearing an empty relation
is also very fast. Hence removing redundant operations does little to improve
program speed. Most of the IGlue interpreter's execution time is spent computing
nonredundant joins. The static optimizer can do very little to improve the internals
of these joins, so the peephole optimizations are all that apply. The static optimizer
can do more with small joins and copying operations.

For the reasons given above, the run-time optimizer (see Section 6.3) has proven
to be effective exactly when the static optimizer is ineffective, and vice versa. The
two optimizers achieve a useful synergy.

5. The Nail Compiler

The Nail compiler translates a Nail query and its associated set of rules into an
IGlue procedure. The research in developing the Nail compiler focused on efficiently
evaluating recursive queries.

Among query evaluation methods for deductive databases, the magic-sets trans-
formation (Beeri and Ramakrishnan, 1987; Ullman, 1989) is the most established
one, because of its generality and efficiency. The magic-sets transformation gener-
ates a program that simulates top-down evaluation with memoing and restricts the
search space of subgoals to a subspace of those relevant to the query. We employ
variants of the magic-sets transformation developed in the literature of deductive
databases.

To optimize recursive query evaluation, the Nail compiler applies one of two
variants of the magic-sets transformation to the Nail program. The compiler then
chooses a strategy to evaluate the transformed program, depending on whether the
program is negation-free, stratified or unstratified. Then the compiler generates the
IGlue code that encodes the selected evaluation strategy. The Nail compiler does
not choose join orders or select indexes for each IGlue query that it generates.
The best plan for evaluating each query may also vary, because the cardinality of
each relation may vary at run time. Hence, in Glue-Nail, query optimization is
performed adaptively at run time.

Now we give the details of the magic-sets transformation strategy and the
evaluation strategy. First the Nail compiler applies one of two variants of the
magic-sets transformation as follows:

140

if the input Nail program is negation-free and fight-linear then
apply the context fight-linear transformation (Kemp et al., 1990; Mumick and
Pirahesh, 1991);

else
apply the supplementary magic-sets transformation (Ramakrishnan, 1988;
Ullman, 1989);

Then the compiler chooses one of three evaluation strategies as follows:
if the transformed program is negation-free then

evaluate it using semi-naive bottom-up evaluation (Bancilhon, 1986);
else

if the transformed program is stratified then
evaluate it by Kerisit-Pugin's (1988) method;

else
evaluate it by the alternating ffixpoint tailored to magic programs (Morishita,
1993);

The Nail compiler makes these selections at compile time, because all conditions
in the above algorithms can be tested by checking only the program syntax. The
method proposed by Kerisit-Pugin (1988) and the alternating fixpoint technique both
perform bottom-up evaluation in a semi-naive fashion. The Nail compiler generates
the IGlue code that implements the selected evaluation strategy and passes it to
the static optimizer and the linker.

The previous Nail compiler applied the method of Ross (1990) to every Nail
program. We replaced the previous method with several better strategies for the
following reasons:

For negation-free programs it is more efficient to apply the supplementary
magic-sets transformation to the input and evaluate the transformed program
using the semi-naive bottom-up method. Furthermore, for the class of right-
linear programs, which includes many common recursions such as transitive
closure, the context right-linear transformation is much more efficient than
the magic-sets.

We can easily decide whether a set of rules is stratified just by looking at
the syntax of rules. For stratified programs, several methods that make use
of the stratification have been proposed. It is more efficient to evaluate
magic programs by using one of those methods. Because of its simplicity,
we employed the method of Kerisit-Pugin (1988).

The previous compiler handled only modularly stratified Datalog programs,
a subclass of general programs that have two-valued well-founded models.
The problem with modularly stratified programs is that it is recursively
unsolvable to determine for an arbitrary program whether that program
is modularly stratified for all EDBs (Ross, 1991). Put another way, it is

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 141

not possible to decide syntactically whether a set of rules with negation
is modularly stratified. Although there are some sufficient conditions for
modular stratification available (Ross, 1991), in general the programmer
must guarantee that the given program is modularly stratified to get correct
answers using methods for modularly stratified programs. Furthermore, it
could be a difficult task for the programmer to ensure this property for
complex programs.

The last limitation motivated us to look for a robust algorithm that works for fully
general Datalog with negation and with three-valued, well-founded models. In this
general setting, however, we discovered that the well-founded model of the magic
program may not agree with the well-founded model of the original program. To fix
this problem, Kemp et al. (1992) developed a method that tends to generate magic
facts and therefore may not restrict the search space well. By slightly tailoring
.the alternating fixpoint technique (a standard method to compute well-founded
models; Van Gelder, 1989), we created a novel method for magic programs. This
approach computes the correct answer to the query and always generates fewer
(and in some cases significantly fewer) magic facts than the method of Kemp et
al. (1992). Its formal presentation, correctness and theoretical properties can be
found in Morishita (1993). We implemented this method for fully general Datalog
with negation.

Now we show performance results of the new method. Let us use the following
win program as a test program, in which win is an IDB predicate and move is an
EDB predicate.

win(X) :- move(X,Y) & !win(Y).

First we consider modularly stratified instances of the win program and compare
the new method with the old one. The above program is modularly stratified if
the EDB for move is acyclic. We use two different move relations that are acyclic.
The first relation represents a linear list using tuples of the form: (1,2) ,(N-1,N).
The second represents a complete binary tree of height H. Given query win(l) ,
we compare the code generated by the new compiler with the code created by the
previous one. Both programs are executed by the IGlue interpreter under the same
optimization conditions. The programs were executed on a SPARC 10/41 with 128
megabytes of memory and running SunOS 4.1.3. Tables 3 and 4 show the evaluation
times.

The results show that, although one can write a modularly stratified program for
which the new method runs slower than the previous method does, this is not always
the case. There are cases where the previous compiler works better than the new
one, and cases where the new one is superior to the old, depending on the properties
of the EDB relations. The reader might feel that there is no advantage to employing
the new method for modularly stratified programs. It should be remembered that
methods for modularly stratified programs ask the programmer to guarantee that a

142

Table 3. Execution times (seconds) for acycllic linear lists

N 8 16 32 64 128 256

new compiler 0.13 0 .48 1 .58 6 .05 25.32 95.62

previous compiler 0.14 0.22 0.52 :l.49 4.94 17.34

Table 4.

H

new compiler

previous compiler

Execution times (seconds) for complete binary trees

6 7 8 9 10 11

0.54 1.23 2.32 5.87 1 1 . 9 6 27.84

1.49 3.80 10.89 34.41 121.05 453.75

Table 5. Execution times (seconds) for cyclic linear lists

N 8 16 32 64 128 256

new compiler 0 .03 0.06 0 .11 0..20 0.39 0.80

program is modularly stratified, while the new method frees the programmer from
this task. Furthermore, the new method can deal with non-modularly stratified
cases.

In Table 5 we also include performance results of non-modularly stratified cases
of the win program in which we use cyclic linear lists, i.e., (1,2),...,(N-1,N),(N,1).
Because the new compiler can handle three-valued well-founded models, it needs to
tell the calling Glue procedure that some queries are undefined. However, the Glue
language is based on two-valued logic. This discrepancy is resolved by introducing
a new Glue operator "?" for undefinedness. That is, for any Nail predicate ~2
?Q succeeds if Q is undefined in the well-founded model of the Nail program, !Q
succeeds if Q is false, and Q succeeds if Q is true.

6. The IGlue Language and Interpreter

In this section we describe the IGlue target language, its interpreter, and the adaptive
optimizer. In particular, we focus on join processing in IGlue.

6.1 The IGlue Target language
IGlue is the target language for both Glue and Nail. IGlue code is executed by
the back end of the Glue-Nail system, the IGlue interpreter. Using an example,
we will describe the most important features of the language. A more complete
description is found in Derr (1992).

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 143

Figure 5. Example IGlue code for transitive closure

O) _NODULE nai l_bi l l_par ts tc_bf_true
I) _EDBDECL assembly/3
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
2O)
21)
22)
23)
24)
25)
26)
27)
28)
29)
3O)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)

_PROCEDURE nail.bill.partstc_bf_true/l:l
_LOCALDECL context.magic/2, delta_context_magic/2,

old_delta_context.magic/2, answer/2, changed/O

_FORALL(
_IT(in(nail_bill_partstc_bf_true(VVl))),
+÷.LOCAL(delta.context_magic(~Vl, VVi)))

Perform semi-naive-evaluation until no inferences

repeat:

_FORALL(
_LOCAL(delta_context_magic(VV2, VVl)),
++_LOCAL(context_maglc(VV2, VVl)))

_MOVE(
_LOCAL(delta_context_magic(_, _)),
.LOCAL(old_delta_context_magic(_, _)))

_FORALL(".LOCAL(changed))

_FORALL(
_LOCAL(old_delta_context.magic(VV1, X)),
.EDB(assembly(X, Y, _)),
!.LOCAL(context_magic(VVl, Y)),
++_LOCAL(delta.context.magic(VVl, Y)),
++.LOCAL(changed))

. IF .EXlSTS(_LOCAL(changed)) _GOTO repeat

_FORALL(
_LOCAL(context_magic(VVl, X)),
_EDB(assembly(X, Y, _),
++_LOCAL(answer(VVl, Y)))

_FORALL(
_l~(in(nail_bi11.partstc_bf_true(VV2))),
_LOCAL(answer(VV2, VVl)),
++_0UT(out(nail_bill_partstc_bf.true(VV2), out(VVl))))

_RETUR|

144

Several kinds of IGlue instructions are illustrated in the code in Figure 5. This
code, generated by the Nail compiler, is the IGlue translation of the following Nail
rules:

partstc(X,Y) :- assembly(X,Y,_).
partstc(X,Z) :- assembly(X,Y,_) & partstc(Y,Z).

These rules compute the transitive closure of the as s embly (X, Y, 0) relation for the
bill of materials program in Figure 1. The Nail compiler first transformed the rules
using the context right-linear transformation. It then generated the IGlue code that
performs semi-naive evaluation of the rules. The semi-naive loop can be seen in
lines 10-32 of Figure 5.

The _FORALL instruction expresses a query in IGlue. Like Glue assignment
bodies, this instruction supports negation and provides operators for updating one
or more relations: ++ for insert, - - for delete, and .~,~ for clear. However, unlike
Glue assignment statements, IGlue _FORALL instructions have no "head" subgoal;
all updates are performed in the _FORALL body. In Figure 5, lines 25-30 illustrate
a _F01~ALL instruction. The first three subgoals form a query on three relations.
Using variable bindings that result from that query, the fourth and fifth subgoals
insert tuples into relations.

The _EXISTS instruction implements a special case of the _FISRALL instruction
by computing at most one solution to its arguments. It is intended to be used as
a condition in one of the IGlue branching instructions, as illustrated in the _IF
instruction in line 32. The _EXISTS instructions must be free of side-effects (i.e.,
no update operators).

The _HOVE instruction, illustrated in lines 19-21, performs a data movement
operation. Tuples of one relation (the source) are moved to a second relation (the
target), first deleting any previous contents of the target. After the move, the source
relation is empty. A similar operation, _TRANSFER, adds new tuples to the target
without clearing it first. These operators are implemented efficiently by copying
pointers to sets of tuples, instead of copying each tuple.

The Glue language offers a uniform syntax for referring to relations, Nail rules,
and procedures. For example, the Glue assignment statement in Figure 1, line 25
refers to input relation in(_) and Nail rule par ts 'ec(_ ,_) . IGlue, on the other
hand, treats procedure calls separately. Calls to IGlue procedures, which represent
compiled Glue procedures or Nail queries, are explicit. The syntax of a procedure
call is as follows:

_CALL (init ial-bindings, _PROC (call, [possible-procedures]),
f inal-bindings)

The first argument is a relation that holds the bindings for variables before the
procedure call. The third argument holds the bindings after the call. The second
argument gives the call with its arguments, and a list of all the possible procedure
references. Each entry in the list includes the module name, the procedure name,

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 145

and the pattern of input and output arguments. For example, the IGlue call to Nail
rule p a r t s c c (_ , _) , with the first argument bound and the second argument free,
is the following:

_CALL(
_IN(in(bom(Koot))) ,
_PROC(nail_bill_partstc_bf_true(Root, P),
[nail_bill_partstc_bf_true:nail_bill_partstc_bf_true/l:l]),
_TEMP(proc_sup4(P)))

There can be more than one possible procedure referent because the procedure call
might have a variable for its name. Thus we cannot know which procedure to call
until the variable is bound at run time. Procedure calls also require that relations
be materialized to hold the set of variable bindings immediately before and after
the call. So procedure calls are expensive to set up, execute, and recover from.

In the example IGlue code in Figure 5, and in the _CALL example above, we see
that relation and procedure predicates are annotated with predicate class descriptors:
_EDB, _LOCAL, _TEMP, _IN, _OUT, and _PI~0C. There are additional descriptors,
not shown, for Nailog predicate names that contain variables, and therefore refer
to sets of relations or procedures. As described in Section 4, the Glue compiler
analyzes the type of each predicate and determines the set of potential referents
for each predicate as early as possible.

6.2 The IGlue Interpreter

The IGlue interpreter is divided into three functional components: The relation
manager, the abstract machine, and the run-time optimizer. The relation manager
is responsible for loading EDB relations into main memory, for creating and
maintaining indexes, and for accessing and updating relations. The abstract machine
executes IGlue instructions. Below we describe how it processes the _FORALL
instruction. The run-time optimizer (Section 6.3) adapts query execution plans to
changing database parameters.

Join Processing. The IGlue _FORALL statement can be viewed as a join expression.
In the IGlue abstract machine, _FORALL statements are evaluated using the nested-
loop join algorithm with hash indexes on join and selection arguments. Thus,
a join of n subgoals is evaluated using n nested loops. Variations of this join
method have been used in other systems for processing joins in main memory (e.g.,
Whang and Krishnamurthy, 1990). The query processor assumes that the run-time
optimizer has selected access methods (index or scan) for each relation and an
order for computing a sequence of joins. During the nested-loop computation, the
query processor interacts with the relation manager to resolve incomplete relation
bindings, obtain access paths, fetch tuples, and update relations. For example, the
query in lines 34-37 of Figure 5, is computed by the following steps (assuming that
the query optimizer does not reorder subgoals):

146

Open an access path Pl to relation context_mag:i.c(W/1,X);
For each tuple obtained from Pl begin

Record the bindings for variables X and VVt;
Open an access path p2 to relation assembly(X,V,_);
For each tuple obtained from P2 begin

Record the binding for variable ¥;
Insert tuple (VVl ,Y) into relation artswer(VVl ,Y) ;

end;
end;

If the optimizer has chosen an index on the first argument of relation assembly (X, Y,
_) as the access path, then the join processor will direct the relation manager
to create the index if it does not already exist. Although the example above is
shown as a nested loop, the join processing algorithm is actually implemented as a
recursive procedure that can handle joins of an arbitrary number of subgoals. The
_EXISTS join is handled in a similar manner except that when the first result tuple
is generated the process terminates.

6.3 The Run-Time Optimizer

The IGlue interpreter employs a run-time optimizer that accommodates dynamic
characteristics of IGlue programs in two ways: (1) It reoptimizes query plans
adaptively; (2) It selects indexes dynamically. We describe each of these optimizer
tasks below.
Reoptimizing Queries. Query optimization is the problem of formulating an efficient
plan to evaluate a declarative query. This consists of ordering multiple join operations
and selecting among available access paths for each relation. Optimizers estimate
the cost of alternative query plans and select the plan with the lowest cost. Cost
estimates are derived using a cost model of join processing and statistical parameters
that characterize the relations involved in the query. In relational database systems,
query optimization is typically done at compile time. Some characteristics of
IGlue programs are problematic for conventional query optimization techniques. In
particular, IGlue programs refer to temporary relations more often than persistent
relations. Because the parameters (e.g., cardinality and domain size) of temporary
relations are not known until run time, it is difficult for a static, compile-time
optimizer to predict which query plan is most suitable. Moreover, because relations
are updated frequently in IGlue, their parameters change at run time and a query
plan that was optimal early in the computation may perform poorly later. To handle
this problem, the IGlue interpreter provides a run-time-optimizer that reoptimizes
queries whenever there is a significant change in relation cardinality. Optimizers
for some relational database systems will automatically invalidate queries based on
schema or index changes (Date, 1986). However, these systems do not reoptimize
queries when statistics change to avoid the overhead costs of optimization. Our
results in Section 7 show that for Glue-Nail programs, however, the benefit of

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 147

reoptimization is worth the overhead cost.
The IGlue run-time optimizer is based on the dynamic programming approach

used in System R (Selinger et al., 1979). The first time the optimizer encounters a
particular query, it selects and records a join order and access paths. Thereafter,
each time that query is to be executed, the optimizer must decide whether to
reoptimize it. An ideal criterion would trigger reoptimization exactly when the
current query plan is no longer optimal. We investigated several different criteria
for deciding when to reoptimize a query based on changes in relation cardinality
(Derr, 1993). The criterion that yielded the best performance on a suite of Glue
programs is the following:

Reoptimize a query when the cardinality of any relation in the query
increases by a factor of k or decreases by a factor of 1/k.

For our experiments we chose the value k = 2. This criterion was compared against
a no reoptimization strategy, a strategy that reoptimizes for every cardinality change,
and a strategy that reoptimizes when the rank order of relations by their cardinalities
changes. The results comparing the winning strategy with no reoptimization are
reported in Section 7.2.

Automatic lndex Selection. Index selection is the problem of determining which
relation indexes to create and maintain. A common approach to index selection is for
a database administrator to decide which indexes should exist, based on an expected
pattern of access and update. While Glue and Nail require a programmer to declare
EDB and local relations, the languages do not let the programmer define indexes on
relations. Consequently, all indexing decisions are made automatically by the system.
This feature is consistent with the Glue-Nail philosophy that the programmer should
have to give only a declarative specification of a query. Furthermore, automatic
indexing provides a way to select indexes on temporary relations that are introduced
by the Glue and Nail compilers.

One approach to automatic index selection would be to try to anticipate which
indexes would be the most useful. However, without knowing relation parameters
and join orders, this approach could select a large superset of the indexes that
are actually needed. We have chosen an alternative approach that defers index
selection until run time. The optimizer treats index selection as two subproblems:
(1) deciding when to create an index; and (2) deciding when to drop an index. Some
relational systems are able to dynamically create temporary indexes. However, these
indexes exist only for the duration of a query. The IGlue optimizer tries to be
smarter by determining if each index it creates can potentially be used again later
in the program.

The first subproblem, index creation, is handled when the query optimizer must
choose between scanning a relation and accessing a relation via an index on all
bound arguments. Suppose the optimizer determines that the best method is to
access a relation using an index. If the index already exists, the optimizer chooses

148

the index. However, if the index does not exist, how should the optimizer count
the overhead of creating, maintaining, and eventually deleting the index? Here the
optimizer considers two cases. If the indexing overhead is less than the benefit
of using the index the optimizer chooses to build the index. What if the indexing
overhead is greater than the benefit of using the index (as will happen when n
relation is scanned only once or twice)? If the query under consideration is executed
only once, then the best choice is to scan the relation. However, if the index can
be reused later in the program (perhaps in subsequent executions of of the same
query), then the overhead costs can be amortized over all uses of the index.

We compared several approaches (Derr, 1992) and found that the most effective
strategy for Glue-Nail programs was to ignore the overhead of indexing. This strategy
outperformed both a strategy that counted the overhead and an online algorithm that
monitored cost and benefit to determine when to switch from scanning a relation
to using an index. When the ignore strategy makes the right choice, the cost
benefits--avoiding multiple scansmare typically large. When it makes the wrong
choice, the penalty--an extra scan--is relatively small. Furthermore, the ignore
strategy has the advantage (over the online approach) of simplicity.

The second subproblem, deciding whether to drop or maintain an index, is
handled whenever a relation on which an index is defined is updated. Indexes
on temporary relations are dropped automatically when the temporary is deleted.
Indexes on EDB relations are dropped when the program halts. However, the
system may want to drop infrequently used indexes earlier to avoid the overhead of
maintaining them. We compared five different strategies (Derr, 1992) that evaluate
the cost of maintaining indexes and found two to be effective in the Glue-Nail
benchmark programs. One strategy always maintains an index instead of dropping
it. The other determines, based on definition-use information, whether an index
has any potential uses. If so, the index is maintained. Both strategies assume that
the future benefit of using an index will outweigh the cost of maintaining it. As it
turned out, the programs in the benchmark could not differentiate between these
two strategies because there were no cases in which the second strategy decided to
drop an index.

By combining automatic indexing with reoptimization, the run-time optimizer
is able to adapt to changes in the database. The combination enables the optimizer
to choose new join orders and create new indexes as needed. Performance results
presented in the next section demonstrate the advantages of adaptive optimization.

7. Applications, Performance, and Evaluation

A number of test applications have been written in Glue-Nail. They were written
for two reasons: first, to test the practical expressiveness of the Glue-Nail system;
and second, to provide a suite of programs for developing and testing the system.
These 11 applications are summarized in the next section.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 149

7.1 The Glue-Nail Benchmark Suite

The Glue-Nail benchmark contains 11 applications written by several different
programmers. When compiled into IGlue, the applications range in size from 13
instructions (TC) to 713 instructions THORp). The number of tuples contained in
EDB relations varies from 15 (CAR) to 15,100 (BILL). Some of the applications
were developed before there was a working Nail compiler and thus are written
entirely in Glue. Overall the benchmark suite contains 2,623 lines of Glue-Nail.

THOR The THOR application simulates a logic circuit. The application consists
of two programs: THORp parses a circuit description and converts it
into a set of relations; THORs simulates the circuit. The application
creates and manipulates 10 EDB relations containing about 1,600 tuples.
Together, the two programs contain 1550 lines of Glue and Nail.

BILL The BILL program (Figure 1) constructs a bill o f materials: the quantity
of each basic part required to build a complex object. The BILL program
accesses an EDB containing two relations that hold a total of 15,100
tuples. It is written in 54 lines of Glue and Nail.

SG The SG program solves the same generation problem: find all pairs of
persons at the same level in a family tree. The family tree consists of
4,798 nodes and represents eight generations, where each parent has
at most five children. It is written in 19 lines of Glue and Nail.

TC The TC program finds paths in a graph using recursive Nail rules for
transitive closure. The TC program was run on a variety of databases
described in Section 7.2. The TC program, written in Glue and Nail,
is 24 lines long.

WIN The WIN program contains a Nail rule with a negated recursive predicate
and is used to demonstrate how the Nail compiler handles both modularly
stratified and non-modularly stratified programs. The WIN program
was run on a variety of database instances as described in Section 5.
The program, written in Glue and Nail, is 25 lines long.

CIFE The CIFE program schedules tasks and allocates resources required for
constructing a building. The application uses an EDB that describes
an 8-floor, 16-room building. The EDB initially holds a total of 1066
tuples and grows to 2161 tuples. The CIFE program, written in Glue
and Nail, is 186 lines long.

SPAN The SPAN program finds the minimum spanning tree for a set of 50
points. The SPAN program consists of 106 lines of Glue.

150

OAG The OAG program searches for direct and connecting flights in an
airline database. The EDB defines seven relations, which hold a total
of 764 tuples. The OAG program is written in 223 lines of Glue.

CAR The CAR program simulates the movement of 14 cars around a circular
track. The simulation runs for 100 clock ticks. The database initially
holds 14 tuples and grows to 1516 tuples. The CAR application is
written in 104 lines of Glue and Nail.

CAD The CAD application is a simple 2D drafting system. This application
was written for a prototype version of Glue and uses features that are
not available in the current Glue-Nail system. The CAD program is
written in 252 lines of Glue and Nail.

PATH The PATH program is hand-written Glue version of the transitive closure
query. This program was used to experiment with different styles of
Nail compilers. It has 80 lines of Glue.

These applications were chosen with an eye to being representative of the code
we expect would be run in the Glue-Nail system. The THOR programs are intended
to represent a complete application. BILL, SG, OAG, and TC are typical deductive
database programs that depend on recursion. The remaining applications exercise
a variety of features of the Glue and language.

7.2 Performance Results

To demonstrate the advantage of the adaptive optimization techniques described
in Section 6.3, let us look at some performance results for the TC application.
Consider the following Nail rules for transitive closure:

tc(X,Y) :- arc(X,Y).
tc(X,Y) :- arc(X,Z) & tc(Z,Y).

and the query zc(X,Y) bf. The IGlue code that implements this Nail program is
almost identical to that shown in Figure 5 for the transitive closure rules in the
bill-of-materials example.

To measure program execution time for databases of different sizes and shapes,
we prepared two different arc (X, Z) relations. The first relation represents a cyclic
linear list using tuples of the form: (1,2),.. ,(N-1,N), (N,1). The second relation
represents a complete binary tree of height H. We compared the performance of
two versions of the run-time optimizer. The first version (adaptive) reoptimized
queries using the strategy described in Section 6.3. The second version (nonadaptive)
optimized each query only once. In both cases the optimizer performed automatic
index selection. The programs were executed on a SPARC 10/41 with 128 megabytes
of memory and running SunOS 4.1.3, as were the benchmarks described below.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 151

Table 6. Execution time (seconds) for transitive closure on cyclic linear
lists.

N 16] 32 ~ 64 128 256 512 1 0 2 4 2048 4096

Adaptive 0.03 0 .02 0.04 0.06 0 .15 0.26 1.12 2.05 4.39

Nonadaptive 0 . 0 1 0 .01 0.03 0.08 0 .21 0.62 6.99 26.21 102.49

Table 7. Execution time (seconds) for transitive closure on complete
binary trees

H 3 4 5 6 7 8 9 10 11

Adaptive 0.02 0.03 0.04 0 .10 0.18 0.37 0.69 1.37 2.89
i

Nonadaptive 0.02 0.03 0.05 0.14 [0.40 1 .28 4.52 17.02 65.77

Table 8. Execution time (seconds) for the Glue benchmark
applications

Program BILL CIFE SG SPAN CAR OAG

Adaptive 6.04 14 .43 1 1 . 1 3 1 7 . 9 9 61.86 26.10

Nonadaptive 18 .54 21 .68 104.86 22.31 130.71 26.76

THORp THORs

30.33 16.31

30.71 19.22

Tables 6 and 7 show the execution times, which include the cost of optimization.
These results clearly demonstrate the advantage of the adaptive query optimizer. In
the adaptive case, the growth of the evaluation times for linear and binary data is
almost linear in the size of the a rc (X, Z) relation. Note that the number of tuples
representing a complete binary tree with height H is 2H+1-1. When we examine
optimization traces, we find that the difference in performance occurred because
the adaptive optimizer, when it was reoptimizing a query, was able to create a new
index that wasn't needed in previous executions of the query.

We also compared the performance of adaptive and nonadaptive optimization
on other programs from the Glue-Nail benchmark suite. The executions times,
which include optimization costs, are presented in Table 8. Here we see that for six
of the programs, execution time was significantly faster using adaptive optimization.
Although the adaptive techniques did not improve performance for all programs,
neither did they degrade performance for any program.

7.3 Comparing Glue with C

It is all very well to think up small example programs, and to code them up; but such
programs are artificial examples. Unless we take a real application and code it up,
we do not know how the language will perform in practice. Therefore it was decided

152

to take an existing application, code a section of it in Glue, and compare it with a
version coded in C. The THOR circuit simulator (Alverson et al., 1988) was chosen
as an example application. We chose THOR because it is an application for which
deductive databases are well suited, and because much of THOR's development
took place at the Computer Systems Laboratory at Stanford, which gave us access
to the original C source code, and to many examples.

A problem with this experiment is that THOR, like any real application, is
very large. Hence a suitable subsection of THOR's functionality was chosen for
implementation. The choice of what to implement is important. To be a fair test,
the subsection chosen must include code representative of all of the problems found
in THOR. The Glue version of THOR (Glue-THOR) implements the Component
Simulation Language (CSL) of THOR. CSL is a gate and net descriptor language.
The Glue code includes a CSL parser (THORp) and a CSL circuit simulator
(THORs). They are run as separate passes. The parser is slow, because it works
with a single tuple at a time. Deductive databases systems, such as Glue-Nail, are
designed to work with large sets of data.

Glue-Nail is intended to be a prototyping or niche market language. For these
applications there is a strictly limited amount of time available for coding. Glue-Nail
emphasizes speed of coding over speed of execution. In this respect it is similar to
Prolog, Lisp, Scheme, etc. There are situations when one doesn't have the resources
(time and people) to write a full Cs-SQL implementation. These are the situations
for which Glue-Nail is expected to be especially well suited.

Designing a proper experiment to test whether we have achieved the goal of
increased programmer productivity would be difficult. One approach would be to
pick a suitable problem and then assign it to two groups of programmers. One
group would work in Glue-Nail and the other group in a standard language. Such an
experiment was outside the scope of this work. The THOR application is merely a
preliminary exploration of the field, and by no means a real experiment. However,
very few experiments have been conducted on the practical utility of deductive
database systems. 6 Programming languages need to be used for their strengths
and weaknesses to appear, and deductive databases have primarily been used for
research examples.

The Glue implementation of the THOR subset has 1,550 lines (including com-
ments), and took approximately one month to write. Much of the code is occupied
by the recursive descent parser. While the C version of THOR uses lex and yacc,
the Glue version had to write its own lexical analyzer and parser. The net-list code
section of C-THOR code is 9,702 lines long (including comments). As a ratio of
lines of code, this is 9,702/1,5650 or roughly 6:1. Given that author of the Glue

5. Or pick your favorite general purpose host language.

6. For a good selection, see Ramakrishnan (1993).

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 153

version of THOR can write 1,000 lines of debugged C code per month, the ratio of
coding time is (9.7 months)/(1 month) or roughly 10:1.

Execution times also were compared. A standard counter-adder example in
the THOR distribution was used. The Glue implementation was found to run
approximately 100 times more slowly than the C implementation, a disappointing
result, but not surprising given that C is compiled and Glue is interpreted.

7.4 Evaluating the Glue Language Design

Programming languages are not works of art to be admired, they are tools to be
used. Their utility can be judged only by using them for their designed purpose.
Accordingly, approximately 3,0007 lines of Glue-Nail application code were written
by several different authors. No formal usability experiments have been conducted,
but some general observations have been drawn. In a sense these observations are
the results of an experiment in language design. These observations are presented
below.

The Good. The major benefit that Glue coders experienced was the removal of the
barrier between the program and the database. In a conventional two-language
system, the computation is performed in some system language (like C), but the
data are stored in the database. Attaching to the database and pulling the data
over is tedious and error prone.

The implicit looping inherent in the set-oriented semantics of Glue was perceived
to be an advantage. Being able to deal with many elements simultaneously without
using multiply-nested loops was a useful simplification.

The high level nature of Glue was also advantageous, but no more so than in
Prolog. The major advantage over C is that programmers no longer have to worry
about pointers, which are definitely the most bug-inducing part of C. Unification
of compound terms is a very simple way of handling complex data structures. Glue
only has matching, not full unification, but this restriction was not found to be a
problem.

Nailog was especially useful in dealing with user defined complex graphical
objects in the CAD example.

The Bad. The major problem with Glue is the lack of a type system. This "feature"
was inherited from the logic programming paradigm. Type systems provide a
scaffolding for programmers, which is crucial if large systems are to be maintained.
Type systems are most useful when the program structure is too large to carry inside
one person's head, or when a programmer is maintaining code that was written by
someone else. Small programs can always be written without type errors because
they can be understood as a whole.

7. The benchmark suite, plus another 1,000 lines.

154

A type system could easily be added to Glue. A fairly simple scheme that
allowed strings, numbers, and compound terms would be enough.

A related problem is the declaration of EDB relations. In the present design
of Glue, each module defines its own set of EDB relations. It would probably be
better to have a special kind of module that defines the EDB, and let the other
(code-only) modules refer to this EDB module.

The other problems were much more minor. Some programs needed counters
(e.g., loop counters). The syntax and semantics of Glue are directed towards large
relations, so such counters are cumbersome. A way of defining constants (like 70
is needed. A scheme as simple as the #clef ine's of C would solve most of these
problems.

Iteration in Glue procedures can be implemented either as recursion or as
looping. Programmers found that recursion in Glue behaved a little strangely, and
felt more comfortable with repeat loops. In addition, procedure calls are expensive
in Glue, so loop code is more efficient than recursive code. Perhaps tail recursion
optimization could remove this efficiency difference.

Occasionally, it was necessary to operate on the tuples in a relation in some
particular order (e.g., printing the tuples of a relation in alphabetical order. It
is cumbersome to do this in the current version of Glue; either a repeat loop
or recursion is needed). By pushing Glue towards set-oriented semantics, it has
become difficult to work in a tuple-at-a-time fashion. It might be better to add
sor t as another aggregation operator. This operator would sort a set of tuples and
ensure that all side effecting operations use that order.

The scope system worked moderately well, but there were problems with dy-
namic binding of predicate names. Consider the general purpose transitive closure
predicate:

path(N,E,X,X):- N(X).
path(N,E,X,Z):- E(X,Y) & pa%h(N,E,Y,Z).

The first two arguments of path(.) are predicate names and will be
understood in the scope environment St of path. There are no problems if path
is called from within scope S1, but what if it is called from some other scope $2?
The passed arguments from scope $2 for N and E may make no sense in scope
$1. For this reason the "hat" operator ^ had to be added to Glue-Nail. The hat
operator is a run-time operator that means "dereference this term in the current
scope, and pass the referent." So a call to path from outside of path's module
would look like path(^node(_) ,^edge(_ ,_) , X, Y). The hat operator was rarely
used by programmers, because it was rarely needed and difficult to understand.

Another way to handle the imported predicate problem would have been to mark
the signature of path, indicating the arguments that could be predicate references.
In this scheme the caller would not have to provide a marking on each call, the
compiler would be able to insert it automatically. This design was not used because
it is the beginnings of a type system, and we did not want to worry about type
systems. As was mentioned above, it was a mistake not to have a type system.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 155

8. Related Work

Glue-Nail can be compared to several other experimental database languages and
systems. While these systems vary along several dimensions--language philosophy,
multi- versus single-user, disk- versus memory-residency, and hardware platforms----
they are all based on a deductive approach. There are no benchmarks available
with which to compare the performance of these systems, although various groups
are beginning to work on such benchmarks. Many of these systems have their own
private benchmarks.

LDL (Naqvi and Tsur, 1989; Chimenti et al., 1990) is a main memory, single
user deductive database system developed at MCC. Unlike Glue-Nail, LDL handles
both declarative queries and procedural operations in the same language. Hence
some rules in an LDL program must be read procedurally. Rules are compiled into
an AND/OR graph representing joins and unions. The system allows programmers
to define indexes on base relations. If no index is declared for a relation, then
by default, the system builds an index on the first argument. The LDL optimizer
chooses join orders and annotates the graph with access methods. The graph is
then translated into a C program which makes calls to an underlying database
management system. The decisions made by the optimizer are hardwired into the
target code. Thus, unlike Glue-Nail, query execution plans are not able to adapt
at run time.

CORAL (Ramakrishnan et al., 1992) is a database system prototype developed
at the University of Wisconsin-Madison. Like Glue-Nail, CORAL employs a two-
language paradigm. The declarative language, which is similar to LDL, is based on
Horn clauses with extensions for handling left-to-right modularly-stratified negation,
non-ground facts, set and multi-sets, and aggregation. The imperative language is
C+ + extended with a relation and tuple class library. Using annotations, the user
can control the evaluation of CORAL in various ways, such as indexing relations,
choosing only one answer, and prioritizing execution paths for aggregations. By
default, CORAL selects a left to right join order. For semi-naive evaluation,
CORAL uses a heuristic that moves any delta predicates to the left. The user can
also specify join order for each (rewritten) rule. CORAEs optimization philosophy
contrasts sharply with that of Glue-Nail. Using CORAL, a programmer must
understand how and when to use a variety of optimization strategies. Using Glue-
Nail, the programmer is not allowed to control optimization. All strategy selection
is automatic.

Aditi (Vaghani et al., 1990) is a multi-user, disk-based, deductive database
system developed at the University of Melbourne. Aditi's language philosophy is
that applications and queries should be written in a single logic-based language.
Aditi queries can be embedded in Nu-Prolog (Thorn and Zobel, 1990), which serves
as the procedural support language. They did not create a new language like Glue.
Aditi programs are written in a variant of Prolog augmented with mode declarations,
compiler directives for specifying evaluation strategies, and well-founded negation
(Kemp et al., 1992). The mode declarations specify which adornment patterns

156

are legal for a predicate. Nail does not have this restriction, although built-in
Nail predicates (such as arithmetic) do have limited modes. Aditi programs are
compiled into a low level procedural relational language called RL. RL programs
are assembled into bytecodes and interpreted by the database back end. Because
RL supports only binary join operations, the join order for multi-joins must be
determined at the time the RL code is generated. This differs from the IGlue
interpreter, which can adaptively optimize the join order for joins with up to fifteen
relations.

The EKS-V1 system (ECRC Knowledge Base System) (Vieille et al., 1990)
is similar to the Aditi system in that a pure logic: query language is embedded
in a variant of Prolog called MEGALOG. MEGALOG, designed to handle large
numbers of facts efficiently, is based on the BANG file system (Freeston, 1987) for
storing both facts and code. Unlike IGlue, Megalog can use secondary storage. The
execution strategy for EKS rules is Query-Subquery (QSQ) (VieiUe, 1986), which is
a "top-down" method. Nail uses a "bottom-up" method. The EKS-V1 system has a
static (compile-time) optimizer, which chooses the join order, and identifies common
subexpressions and tail recursion. Query evaluation is performed by BANG, which
uses relation deltas to avoid repeatedly joining the same tuples.

The LOLA system (Freitag et al., 1991) is a deductive database system designed
and implemented at the Technische Universit~it of Munich. The LOLA language of-
fers clear declarative semantics based on minimal model semantics. LOLA programs
are evaluated using semi-naive fixpoint iteration. The LOLA system is implemented
in CommonLisp and provides an interface to an external relational DBMS as well as
to a Lisp-based main memory database. Like Glue-Nail, LOLA provides multiple
levels of optimization. The source-level optimizer performs selection propagation,
magic sets transformation, and projection optmization. The operator graph optimizer
detects common subexpressions and selects indexes. However, unlike Glue-Nail,
there is no fully automatic control for the selection and ordering of optimizations.

We also compare the Glue language to other procedural languages that support
relations or sets. Pascal/R (Schmidt, 1977) was an early attempt to reconcile
databases with procedural languages (in this case Pascal). Relations (of Pascal
records) were added as a fundamental data type. A looping construct over relations
was provided; it was more powerful than a simple cursor into a relation, but less
powerful than an SQL join operation. Hence, it accessed relations at a lower level
than either SQL, Glue-Nail, or any of the other systems mentioned above.

The proposed SQL3 standard (Melton, 1993) is expected to include a control
language for the implementation of abstract data types. This language includes
procedures, assignment statements, case and if-then-else statements, and looping
constructs. This extension will provide some of the advantages of object-oriented
database programming languages. Programmers may still embed SQL in host
programming languages. However, the control language makes it possible to write
procedural code that is handled directly by an SQL server, just as Glue code is
handled directly by the IGlue interpreter.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 157

9. Conclusion

We have presented an overview of the design and implementation of the Glue-
Nail database system. We began by describing features of the Glue-Nail language
pair. The declarative features of Nail and the procedural features of Glue combine
to enable a programmer to write complete applications. We also described the
architecture and implementation of the system. In particular, we focused on the
optimization techniques. The Nail compiler selects appropriate transformation and
evaluation strategies based on syntactic properties of the Nail program. The Glue
compiler, after generating target IGlue code, performs static code optimizations
using peephole techniques and data flow analysis. The IGlue interpreter optimizes
queries at run time to adapt query execution plans to dynamic database parameters.
The combination of these optimization techniques results in a system that executes
Glue-Nail programs efficiently.

We then described some applications that demonstrate feasibility of Glue-Nail
as a programming language for writing complete database applications. With the
THOR application, we demonstrated the programmer productivity advantage of the
Glue language. The applications also served as a benchmark for testing the effects
of our optimization strategies.

The Glue-Nail system could be improved in several ways. Glue and IGlue both
support Nailog and function symbols. However, the current Nail compiler supports
only Datalog with negation, and needs to be extended to handle function symbols
and Nailog. The performance of the system could be enhanced by providing
the Nail compiler with additional strategies for evaluating special cases of Nail
programs. Performance could also be improved by executing compiled code instead
of interpreting IGlue. A compiled system would have to be able to dynamically
recompile query plans selected by the adaptive optimizer.

Acknowledgments

Geoffrey Phipps was supported by grants AFOSR-88-0266, IST-87-12791, AFOSR
90-0066, and Army DAAL03-91-G-0177. We would like to acknowledge the contri-
butions of Ashish Gupta, Kate Morris, and Ken Ross, who developed code used in
the previous and current versions of the Nail compiler. Kathleen Fisher wrote the
CAR application. David Chang wrote a statistical package in Glue. Ashish Gupta
and Sanjai Tiwari wrote the CIFE application. We are grateful to Jeff Ullman for
his comments on earlier versions of this article.

158

References

Alverson, R., Blank, T., Choi, K., Hwang, S.Y., Salz, A., Soule, L., and Rokicki, T.
THOR user's manual: Tutorial and commands. 'Technical Report CSL-TR-88-
348, Computer Systems Laboratory, Stanford University, 1988.

Bancilhon, E Naive evaluation of recursively defined relations. In: Brodie, M.L.
and Mylopoulos, J., eds. On Knowledge Base Management Systems, New York:
Springer-Verlag, 1986, pp. 165-178.

Beeri, C. and Ramakrishnan, R. On the power of magic. Proceedings of the 1987ACM
SIGA CT-SIGMOD-SIGART Symposium on the Principles of Database Systems, San
Diego, California, 1987.

Chen, W., Kifer, M., and Warren, D.S. HiLog: A first-order semantics of higher-
order logic programming constructs. Logic Programming: Proceedings of North
American Conference, Cleveland, 1989.

Chimenti, D., Gamboa, R., and Krishnamurthy, R. Abstract machine for LDL. Pro-
ceedings of the International Conference on Extending Database Technology, Venice,
Italy, 1990.

Date, C.J. An Introduction to Database Systems, vol. 1. Reading, MA: Addison
Wesley, 1986.

Derr, M.A. Adaptive optimization in a database programming language. PhD thesis,
Department of Computer Science Report No. STAN-CS-92-1460, Stanford
University, Stanford, California, December 1992.

Derr, M.A. Adaptive optimization in a deductive database system. Proceedings of
the Second International Conference on Information and Knowledge Management,
Washington, DC, 1993.

Derr, M.A., Morishita, S., and Phipps, G. Design and implementation of the
Glue-Nail database system. Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC, 1993.

Freeston, M. The BANG file: A new kind of grid file. Proceedings oftheACM
SIGMODAnnual Conference, San Francisco, CA, 1987.

Freitag, B., Schiitz, H., and Specht, G. LOLA a logic language for deductive data-
bases and its implementation. Proceedings of the Second International Symposium
on Database Systems forAdvancedApplications, Tokyo, Japan, 1991.

Kemp, D.B., Ramamohanarao, K., and Somogyi, Z. Right-, left-, and multi-linear
rule transformations that maintain context information. Proceedings oft he Six-
teenth International Conference on l~ry Large Databases, Brisbane, Australia, 1990.

Kemp, D.B., Stuckey, EJ., and Srivastava, D. Query restricted bottom-up evaluation
of well-founded models. Proceedings of the 1992 Joint Conference and Symposium
on Logic Programming, Washington DC, 1992.

Kerisit, J.-M. and Pugin, J.-M. Efficient query answering on stratified databases.
Proceedings of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, 1988.

VLDB Journal 3(2) Derr: The Glue-Nail Deductive Database System 159

Lloyd, J.W. Foundations of Logic Programming. New York: Springer-Verlag, 1984.
Makinouchi, A. A consideration on normal form of not-necessarily-normalized re-

lations in the relational data model. Proceedings of the International Conference
on ~ry Large Data Bases, Tokyo, Japan, 1977.

Melton, J., ed. ISO-ANSI Working Draft Database Language SQL (SQL3), 1993.
ANSI X3H2-93-091 and ISO DBL-YOK 003.

Morishita, S. An alternating fixpoint tailored to magic programs. Proceedings of the
1993 ACM SIGACT-SIGMOD-SIGART Symposium on the Principles of Database
Systems, Washington DC, 1993.

Morris, K., Naughton, J.E, Saraiya, Y., Ullman, J.D., and Van Gelder, A. YAWN!
(Yet Another Window on NAIL!). Data Engineering, 10(4):28--43, 1987.

Morris, K., UUman, J.D., and Van Gelder, A. Design overview of the NAIL! system.
Proceedings of the International Conference on Logic Programming, Location? 1986.

Mumick, I.S. and Pirahesh, H. Extending the right-linear transformation. Research
Report RJ 7938, IBM Research Division, Computer Science, Almaden Research
Center, January 1991.

Naqvi, S. and Tsur, S. A Logical Language for Data and Knowledge Bases. New York:
Computer Science Press, 1989.

Phipps, G. Glue: A deductive database programming language. Proceedings of the
NACLP Workshop on Deductive Databases. Kansas State University Technical
Report TR-CS-90-14, 1990.

Phipps, G. Glue: A deductive database programming language. PhD thesis, Depart-
ment of Computer Science Report No. STAN-CS-92-1437, Stanford University,
Stanford, California, July 1992.

Phipps, G., Derr, M.A., and Ross, K.A. Glue-Nail: A deductive database system.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Denver, Colorado, 1991.

Ramakrishnan, R. Magic templates: A spellbinding approach to logic programs.
Logic Programming: Proceedings of the Fifth International Conference and Sympo-
sium, Seattle, WA, 1988.

Ramakrishnan, ed., Proceedings of the Workshop on Programming with Logic Data-
bases, Vancouver, BC, Canada, October 1993. Computer Sciences Department
Technical Report #1183, University of Wisconsin-Madison.

Ramakxishnan, R., Srivastava, D., and Sudarshan, S. CORAL: Control relations
and logic. Proceedings of the Eighteenth International Conference on l~ry Large Data
Bases, Vancouver, Canada, 1992.

Ross, K. Modularly stratification and magic sets for datalog programs with negation.
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on the Principles
of Database Systems, Nashville, TN, 1990.

Ross, K. Modular acyclicity and tail recursion in logic programs. Proceedings of the
ACM SIGACT-SIGMOD-SIGART Symposium on the Principles of Database Sys-
tems, Denver, CO, 1991.

160

Schmidt, J.W. Some high level language constructs for data of type relation. ACM
Transactions on Database Systems, 2(3):247-261, 1977.

Selinger, EG., Atrahan, M.M., Chamberlin, D.D., Lorie, R.A., and Price, T.G. Access
path selection in a relational database management system. Proceedings of the
ACM SIGMOD International Conference on the Management of Data, Washington,
DC, 1979.

Thom, J.A. and Zobel, J. Nu-Prolog Reference Manual, version 1.5.24. Techni-
cal Report 86/10, Department of Computer Science, University of Melbourne,
Australia 1990.

Ullman, J.D. Principles of Database and Knowledge-Base Systems, vol. 2. Rockville,
MD: Computer Science Press, 1989.

Vaghani, J., Ramamohanarao, K., Kemp, D.B., Somogyi, Z., and Stuckey, P.J.
The Aditi deductive database system. Proceedings of the NACLP Workshop on
Deductive Databases. Kansas State University 'I~chnical Report TR-CS-90-14,
1990.

Van Gelder, A. The alternating fixpoint of logic programs with negation. Proceed-
ings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on the Principles
of Database Systems, Philadelphia, PA, 1989.

Vieille, L. Recursive axioms in deductive databases: The query/sub-query approach.
Proceedings of the First International Conference on Expert Database Systems, Char-
leston, SC, 1986.

Vieille, L., Bayer, E, Kiichenhoff, V., and Lefebvre, A. EKS-V1, a short overview.
AAAI Workshop on Knowledge Base Management $)stems, Boston, MA, 1990.

Whang, K.-Y. and Krishnamurthy, R. Query optimization in a memory-resident do-
main relational calculus database system. ACM Transactions on Database Systems,
15(1):67-95, 1990.

Wiederhold, G. Views, Objects, and Databases. IEEE Computer, 19(12):37--44,
1986.

