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Abstract. We describe the design and implementation of the Glue-Nail deductive 
database system. Nail is a purely declarative query language; Glue is a procedural 
language used for non-query activities. The two languages combined are sufficient 
to write a complete application. Nail and Glue code are both compiled into the 
target language IGlue. The Nail compiler uses variants of the magic sets algo- 
rithm and supports well-founded models. The Glue compiler's static optimizer 
uses peephole techniques and data flow analysis to improve code. The IGlue in- 
terpreter features a run-time adaptive optimizer that reoptimizes queries and au- 
tomatically selects indexes. We also describe the Glue-Nail benchmark suite, a set 
of applications developed to evaluate the Glue-Nail language and to measure the 
performance of the system. 

Key Words .  Language, performance, query optimization. 

1. Introduction 

A current focus of database systems research is the design of programming languages 
and systems to support non-traditional database applications such as computer aided 
design, software engineering, and financial analysis. The Glue-Nail database system 
(Phipps et al., 1991; Derr et al., 1993), which was developed at Stanford University, 
provides two complementary languages for programming such applications. The 
Glue procedural language (Phipps, 1990, 1992)augments relational-style queries 
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with control structures, update operations, and I/O. The Nail declarative language 
(Morris et al., 1986, 1987) provides rules for expressing complex recursive queries 
or views. 

The purpose of this article is to describe the design and implementation of 
the Glue-Nail database system. In particular we focus on how we optimized the 
output or the performance of each major component of the system. We describe 
a set of benchmark application programs and present performance results that 
demonstrate the synergetic effects of these optimizations. We also compare a Glue- 
Nail application with a version written in C and evaluate the design of Glue based 
on our experiences with the system. 

We begin by reviewing the background and underlying design philosophy of 
the Glue-Nail system. Glue-Nail evolved from NAIL! (Morris et al., 1986, 1987), a 
deductive database system that featured a logic-based query language, Nail. 1 Logic- 
based query languages such as Nail have proved to be powerful query languages, 
but have weaknesses as well as strengths. Because logic is side-effect free and 
declarative (i.e., the execution order is unspecified), queries can be expressed 
dearly and optimized easily. But the logical basis is also a weakness because there 
are operations, such as updating the database and performing I/O, which do have 
side effects, and hence require a procedural language (i.e., a language where the 
execution order/s  specified). To become a useful database language, Nail needs 
procedural operations, yet these very same operations are at odds with the semantics 
of Nail. 

Our solution is the two language architecture of Glue-Nail. Nail provides all the 
strengths of a logic-based query language. Glue complements Nail with procedural 
features. The problem with this approach is that it involves the design of yet another 
programming language. The new language must offer significant advantages over 
existing languages, C/C+ + and Prolog being the main contenders. Glue (Phipps, 
1992) was designed to offer such advantages by reducing the impedance mismatch 
problem with Nail. Glue is much closer in semantics and syntax to Nail than 
C+ +. Glue has one advantage over Prolog, notably that both Glue and Nail are 
set-oriented, whereas Prolog is tuple-oriented. 

A major part of Glue is the Nailog term syntax system (a variant of HiLog; 
Chen et al., 1989). The Nailog term syntax allows a subgoal to have a variable as its 
predicate name. For example, the term Z(X,Y) has the variable Z as its predicate 
name. 2 In most other logic-based languages, the predicate name must be known 
at compile time. The Nailog system gives the programmer additional power and 
flexibility. 

1. We use "NAIL!" to denote the system and "Nail" to denote the language. 

2. We use the usual logic programming convention whereby variables begin with upper case letters, and 
constants start with lower case letters. 
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Another weakness of the original NAIL! system was the loose coupling between 
the front end and the back end of the system. The front end of the system translated 
a Nail program into an intermediate language called ICODE. The back end of the 
system was an ICODE interpreter that generated SQL statements, which were 
executed by an underlying commercial relational database system. Typical Nail 
programs were compiled into code that created many temporary relations. These 
temporary relations were managed by the same facilities that managed persistent 
shared relations on disk. Consequently, temporary relations, which were usually 
small, short-lived, and did not need to be shared, incurred the same overhead 
as persistent relations. Another problem was that there was no way to control 
query optimization in the commercial database system. Finally, the loosely-coupled 
configuration was too slow, because it involved multiple levels of interpretation and 
retrieved answers one tuple at a time. 

Our solution to the architecture problem was to design a complete system 
tailored to the characteristics of Glue and Nail. The three major components of 
the system are the Glue compiler, the Nail compiler, and the IGlue interpreter. In 
this approach, Nail rules and Glue code are both compiled into a target language 
called IGlue. 3 IGlue code is executed by the IGlue interpreter, which manages all 
relations and indexes in main memory. One of the advantages of this architecture 
is the opportunity it provides for various kinds of optimizations. The Glue compiler 
includes a static code optimizer that uses peephole techniques and data flow analysis. 
The Nail compiler performs recursive query optimizations. The IGlue interpreter 
provides an adaptive optimizer that optimizes queries at run time. 

The remainder of this article is organized as follows. Section 2 describes the 
Glue-Nail language pair. Section 3 gives an overview of the system architecture. 
Sections 4, 5, and 6 describe the major components of the system: the Nail compiler, 
the Glue compiler, and the IGlue interpreter. Section 7 describes the Glue-Nail 
application benchmark and presents performance results and an evaluation of the 
Glue language system. Section 8 compares Glue-Nail to several other deductive 
database systems. Finally, Section 9 presents some conclusions. 

2. The Glue-Nail Language 

Glue and Nail are two complementary languages that together enable a pro- 
gramrner to write a complete database application. We describe features of the 
two languages. To facilitate the description we present an example Glue-Nail 
program in Figure 1. This program computes a bill of  materials; that is, for a 
hierarchy of parts, it computes the quantity of each basic part required to build a 
complex part. Basic parts are described by the persistent or Extensional Database 

3. Pronounced "igloo." 
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Figure 1. Example Glue-Nail program that computes a bill of materials 
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module bill; 
export main(:); 
from io import read(:X), .rite(X:); 

edb part_cost(BasicPart, Supplier, Cost, Time), 
assembly(Part, SubPart, Qty); 

........... Glue procedures ........... 

prog  main(:) 
r e l s  answer ;  

answer := 
read(P) 
bom(P,B,Q) & 

a = P / /  ' \ t '  
write(A). 

r e t u r n ( : ) .  

I I  B II  , \ t ,  I I  Q II  ' \ n '  

end 

proc bom(Root: Raw, Q) 
rels unknown(P), p(P,SP,Q), notyet(P), anymore; 

unknown(Root) := i n ( b o m ( R o o t ) ) .  
unknown(P) += in (bom(Roo t ) )  & p a r t s t c ( R o o t ,  P) .  
p (P ,  P, 1) := unknown(P) k p a r t _ c o s t ( P ,  . . . . .  ) & - -unknown(P) .  
repeat 

notyet(P) := unknown(P) & assembly(P,Child,Q) & unkno.n(Child). 
p(P, Raw, Q) += 

unknown(P) 
! notyet(P) & 
assembly(P, SP, R) 
p(SP, Raw, I) & 
S = N*R & 
group_by(P ,  Raw) 
q = sum(S) 
--unknown(P). 

anymore := in(bom(Root)) & unknown(Root). 
u n t i l  !anymore; 
return(Root: Raw, Q) := p(Root, Raw, ~). 

end 

. . . . . . . . . . .  l a i l  r u l e s  . . . . . . . . . . . .  

p a r t s t c ( X , Y )  : -  a s s e m b l y ( X , ¥ , _ ) .  
p a r t s t c ( X , Z )  : -  assembly(X,Y,_)  & p a r t s t c ( Y , Z ) .  

end 
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(EDB) relation par t_cos t  (BasicPart ,  Supplier ,  Cost, Time). The EDB rela- 
tion assembly(Part ,  SubPart, Qty) describes the part-subpart hierarchy. Each 
tuple describes a complex part, one of its immediate subparts, and the quantity of 
that subpart. 

2.1 Nail Rules 

Nail is a declarative language in which the user can define views or derived relations 
in terms of logical rules. These views are also referred to as lntensional Database 
(IDB) relations. For example, the recursive rules in lines 46--47 of Figure 1 define 
the IDB relation, p a r t s t c  (X, Y), which is the transitive closure of the EDB relation, 
assembly(X,Y, Q). As with EDB relations, this relation can be queried in several 
ways by providing a set of bindings for one or more variables. For example, one 
may ask if the set of tuples { (b icyc le ,  spoke), (b icyc le ,  wheel)} is in the 
par t  s tc  (X, Y) relation. In this case, both arguments are hound, and the query can 
be described as p a r t s t c  (X, y)bb. The Nail query p a r t s t c  (Root, P) in line 25, asks 
for all subparts P that are in the transitive closure of the bound argument Root. 
Because the first argument is bound and the second argument is free, this query is 
described as p a r t s t c  (X, Y)bf. As will be described in Section 5, the Nail compiler 
uses the binding pattern of a query to determine how to evaluate a set of Nail rules. 

2.2 Glue Assignment Statements 

The basic instruction element of Glue is the assignment statement. An assignment 
statement performs joins over relations, Glue procedures, and Nail predicates, 
and assigns the result to a relation. Glue assignment statements are not logical 
rules, they are operational directives. Assignment statements do not define tuples, 
they create or destroy tuples. Consider the example assignment statement in 
line 28 of Figure 1. The effect of executing this statement is to join relations 
unknown (P), as sembly (P, Child, Q), and unknown (Child) ; project the set of tuples 
(P) from the result of the join; and assign this set to the relation no tye t  (P). 

In their basic form, Glue assignment statements have a single head relation, 
and a conjunction 4 of subgoals in the body. The body of the assignment statement 
is evaluated and produces a set of tuples over the variables in the body. The tuples 
are used to modify the head relation. Glue allows subgoals to be negated. It also 
allows update operators to be applied to subgoals. In Figure 1, line 31 is an example 
of a negated subgoal, and lhae 37 is an example of a subgoal with a delete operator. 

The semantics of the Glue assignment statement are defined by a left-to-fight 
evaluation order, where all solutions are found for each subgoal before evaluating 
the next subgoal. The evaluation order is fixed for purposes of side-effects and 

4. The body can contain other control operators, such as OR and a form of implication, but space precludes 
their inclusion in this paper. 
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aggregation. The underlying implementation of the system, however, is free to 
reorder subgoals that have no side-effects. 

There are three assignment operators in Glue: 

[ := ] Clearing assignment. The head relation is overwritten by the result of the 
body. 

[ += ] Insertion assignment. The tuples from the body are added to the head 
relation. 

[ -= ] Deletion assignment. The tuples from the body are removed from the head 
relation. 

Several examples of clearing and insert assignment operations can be found in the 
Glue code in Figure 1. 

2.3 Relations and Terms 

There are two kinds of relations in Glue: EDB relations and local relations. EDB 
relations persist beyond the execution of any single program. Local relations are 
defined within the scope of Glue procedures, and have a lifetime equal to the 
lifetime of a procedure call stack frame. 

An attribute of a tuple is represented by a ground (variable-free) Nailog term. 
Nailog is an extension of the usual logic programming term syntax and semantics, and 
is a subset of HiLog (Chen et al., 1989). HiLog and Nailog have second order syntax, 
but first order semantics (Lloyd, 1984). While HiLog places no restrictions on the 
use of terms as subgoals, Nailog does make restrictions for the sake of efficiency (see 
below). Nailog provides an elegant computational model for meta-programming 
and sets (see Section 2.4). 

A Nailog term can denote a string, a number, a variable, or a compound term. 
The functor of a compound can itself be an arbitrary term. A tuple that illustrates 
a variety of Nailog terms is shown below. 

( f o o , ' J a n e  Doe' ,  37, 14.5, f ( a , b ) ,  g ( h ) ( 1 , 2 ) ,  X(1), p(X)(Y), X(Y)(Z)) 

The first two terms are strings, the third and fourth terms are numbers, and 
the remaining five are compound terms. The last four terms are not legal terms in 
traditional logical term syntaxes. 

Only tuples containing ground terms can be stored in Glue relations. In the 
tuple above, only the first six terms are ground. The remaining three terms contain 
variables and hence could not be stored in a relation. This ground-only restriction 
allows the IGlue interpreter to use only matching when comparing subgoals against 
a relation, rather than using full unification. When matching two terms, at most 
one of the terms can contain variables, the other can only contain constants. Hence 
only the variables in one term need to have their bindings updated. When unifying 
two terms, both of the terms can contain variables. Hence both terms need to have 
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their bindings updated. Complex feedback loops can exist between the variables in 
both terms, further complicating the process. Matching is (in general) much faster 
than unification. 

In Nailog, variables range over predicate names, not over predicate extensions 
(values). This distinction is important, because the set of predicate names is finite, 
whereas the set of possible predicate extensions is infinite. The scoping rules of 
Glue's modules and procedures provide the compiler with a list of the predicate 
names with which a subgoal variable could possibly unify, so most of the predicate 
selection analysis can be done statically at compile time. Hence much of the cost 
of meta-programming is avoided. 

All Glue subgoals must have a completely bound predicate name at run time. 
For example, the following are all legal Glue subgoals, assuming that variable Y 
is bound: f (G , J ) ,  Y(K), and f(Y)(K). There is one specific exception in Nailog: 
a subgoal of a single variable (e.g., Y) is illegal. The meaning of such a subgoal 
is ambiguous and the most obvious meanings are computationally very expensive. 
These two restrictions are the only differences between HiLog and Nailog. They 
are designed to allow programmers to write the programs that they need to write, 
without paying the penalty for programs that never need to be written. 

Notice that both compound terms and predicate terms can have arbitrary terms 
as their functors, rather than being limited to atoms as in standard first order logic- 
based languages. It is important that compound terms and predicate terms both 
have the same syntax for two reasons. First, the language model is made cleaner 
by the existence of a single syntax. Second, it would make it impossible to store 
complicated Nailog predicate names as terms in a tuple. For example, the predicate 
term wafer(metal)( layer2)(X,Y) has a Nailog term wafer (meta l ) ( layer2)  as 
its principal functor. If compound terms could not use Nailog syntax, then we could 
not store the name of this predicate in a relation. 

2.4 Sets and Meta-programming 

The limitations of first normal form for representing attributes are widely recognized. 
It is often more natural to express an attribute as a set than to flatten it into first 
normal form (Wiederhold, 1986). Allowing set-valued attributes also solves many 
null-value problems (Makinouchi, 1977). 

A common problem with adding set-valued attributes to relational or deductive 
databases is that sets are often introduced as an entirely new data type. The 
new set data type needs special operators, such as set-membership, set-insertion, 
set-deletion, and set-unification. While this approach may work, it unnecessarily 
complicates the language model. A programmer should be able to use the relational 
semantics to handle sets, because relations are nothing more than sets of tuples. 
This is the approach taken by Glue and Nail. 

Sets in Glue are manipulated by storing the name of a predicate (i.e., the name 
of a set or relation), rather than the value (members) of a set. Sets are therefore 
regular relations. Remember that subgoals may have variables for their predicate 
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Figure 2. Example of set construction in Glue 

c la s s_ in fo (  ID, Ins,  Room, t as ( ID) ,  s tudents(ID) ):= 
c l a s s _ i n s t r u c t o r (  ID, Ins ) & 
c lass  room( ID, Room ). 

tas( ID)(Grad_student) :=  
c las s_sub jec t (  ID, Subject ) & 
failed_exam( G r a d s t u d e n t ,  Subject ) .  

s tudents ( ID)(S) :=  
a t t ends (  S, ID ).  

names. Therefore we can store the name of a relation in a tuple, then extract it 
using a variable and use that variable as a subgoal name. For example: 

dept_employees( toy ,  E_set ) & E_set( Emp_name ) & . . .  

The second attribute of the dept employees relation is the name of the relation 
which holds the employees in the toy department. 

An example of set definition is shown in Figure 2. The relation class_ £nfo ( . . . .  
. . . . .  ) contains information about a class: its identifying code, instructor, set of 
teaching assistants (TAs), and set of students. The relation tas ( ID)(_)  defines 
the TAs for course ID, notably those graduate students who failed the graduate 
qualifying exam in the course's subject area. Observe that the name of this relation 
is a compound term. The relation s tudents( ID)(_)  contains the names of the 
students who are taking course ID. The other relations are defined elsewhere. A 
typical use of the c lass_ in fo  predicate might be: 

c l a s s_ in fo (C , I ,R ,T ,S)  & T(TA) & S(Student) 

That is, c l a s s_ in fo  provides bindings for variables T and S, which are names of 
sets (i.e., relations). 

The foregoing argument is only concerned with the language model that is 
presented to the programmer. Note that nothing has been said about the im- 
plementation of sets or relations. The arbitrary distinction between sets-of-tuples 
(relations) and sets-of-other-things (sets) has been removed. The number of con- 
cepts in the language has been reduced to have a cleaner computational model. A 
cleaner model should lead to more efficient coding, and fewer errors. A system 
with a computational model that distinguishes between sets-of-tuples and sets-of- 
other-things could have special optimizations to deal with the latter. However, such 
a design instantly raises the question: "Why not provide these optimizations for 
sets-of-tuples as well?" On the other hand, if the two types of sets share the same 
implementation, but are distinguished in the computational model, then nothing 
has been gained by complicating the programmer's computational model. 
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2.5 Aggregation 

Aggregation in Glue occurs at the subgoal level. The aggregation operators are 
Glue subgoals, and they operate over the tuples that have been produced in the 
assignment statement body up to that point. For example, consider the following 
statement that finds the shortest stick in a relation of sticks: 

shortest(Name,L) := stick(Name,Length) & L = min(Length) & L = Length. 

The relation stick(Name ,Length) contains the name and lengths of a set of sticks. 
Suppose that its contents are: 

Name Length 

s t i ck_ l  12 
s t ick_2 8 
s t ick_3 9 

If we evaluate the above statement, then the bindings for the variables after 
each subgoal will be: 

Name Length Name Length L Name Length L 

s t i ck_ l  12 s t i ck_ l  12 8 
s t ick_2 8 st ick_2 8 8 
s t ick_3 9 st ick_3 9 8 

st ick_2 8 8 

Notice that the final subgoal joins variables L and Length, eliminating all but 
the shortest sticks. The relation shor t e s t  (Name, L) will be assigned the the single 
tuple (s t ick_2,8) .  

At first glance, it appears that our treatment of aggregation is inherently ineffi- 
cient. In the example above, the aggregate L = m:i.n(Length) is appended to every 
(Name, Length) tuple because all three values are needed later in the evaluation 
of the query. This is a property of that particular Glue statement, not of the method 
for computing aggregates. In the following variation 

minlength(L) := stick(Name,Length) & L = min(Length). 

the aggregate result L can be projected directly onto the head relation, and the set 
of tuples (Name, Length, L) is never materialized. 

The assignment statement in lines 29-37 of Figure 1 illustrates aggregation with 
grouping. The term group_by (P, Raw) partitions the set of tuples (P, SP, M, Raw, N, S) 
by the grouping key (P, Raw ). Then for each partition, the aggregate operator aura (S) 
computes the sum of variable S. The sum is assigned to variable Q. 
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2.6 Control Statements 

Glue offers several control constructs, which have been borrowed from familiar 
procedural languages. These include three different loop constructs and an if-then- 
else construct. The condition tests for control statements are Glue assignment 
statement bodies. A test is true if it returns at least one tuple; it is false otherwise. 
In other words, condition tests are existence tests. Lines 27-39 in Figure 1 illustrate 
a r e p e a t - u n t i l  loop. The condition test is the subgoal body !anymore, which it 
evaluates to true if local relation anymore is empty. The loop body always executes 
at least once, because the condition test is evaluated after the loop body. 

2.7 Glue Procedures 

Glue procedures are analogous to Nail rules in that they compute a set of tuples 
from the current state of the EDB. Glue procedures differ from Nail predicates 
in two ways. First, the operational semantics of a Glue procedure are specified by 
the programmer, whereas a set of Nail rules has no operational semantics, only 
declarative semantics. Second, Nail rules can be called with any binding pattern, 
whereas Glue procedures have a set of arguments which must be bound when the 
procedure is called. 

We will explain the structure of Glue procedures using the code in lines 21-41 
of Figure 1. The name of this procedure is born(_:_,_). Informally, procedure 
born(Root :Raw,0) computes the quantity 0 of each basic part Raw that is used to 
construct complex part Root. The procedure's arity is one-to-two; given one bound 
input argument, it produces ternary tuples. The colon is used to separate the 
arguments that must be bound from the arguments that can be bound or free. The 
arguments to the left of the colon must be bound. Whenever born(Root,Raw,O) 
is used as a subgoal, its first argument must be bound. The second and third 

. arguments may be either bound or free. More correctly, given a set of unary tuples 
(over attribute Root), the procedure born(Root:Raw,O) extends these tuples to be 
a set of ternary tuples (Root,Raw,Q), such that Raw is a basic part that appears Q 
times in part Root. 

The procedure has several local relations, which are declared in line 22. Proce- 
dures may be called recursively. Each invocation of a procedure has its own copies 
of its local relations. Declarations of local relations "hide" the declarations of other- 
predicates with which they unify. 

All procedures have two special relations, in and return.  The relation in holds 
the procedure's input tuples. The relation in contains a single term argument whose 
functor is the name of the procedure and whose arity is equal to the bound arity of 
the procedure (i.e., the arity to the left of the colon in the procedure definition). 
The relation r e tu rn  holds the procedure's output tuples. Assigning to this relation 
also has the effect of exiting the procedure. The r e tu rn  relation has the same 
arity as the procedure. An assignment statement that assigns to the r e tu rn  relation 
has an implicit in subgoal as its first subgoal. For example, below we see line 40, 
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rewritten to include the implicit in relation: 

re turn(Root  :Raw,0) := in(bom(Root)) & p(Root,Raw,0). 

The implicit in relation has a natural meaning; it restricts the return relation 
to only those tuples which extend the input relation. 

When a Glue procedure is used as a subgoal it is called once on all of the 
bindings for its input arguments, rather than being called many times (i.e., once for 
each tuple in the binding set). 

2.8 Modules 

Both logic programming and deductive database languages have had problems 
"programming in the large," partly due to their lack of large scale code organization 
structures. Hence, in common with several other languages, Glue-Nail has a module 
system. Modules provide statically scoped naming contexts, as they do in languages 
like Modula-3. Unlike CORAL modules, Glue modules do not have any dynamic 
effect on scope. CORAL modules can be "called" with predicate arguments to 
allow meta-programming. Glue and Nail achieve the same result by using Nailog, 
where any procedure or rule can use variables for predicate names. Besides offering 
the usual advantages of separate compilation and modularity, the module design of 
Glue also gives the compiler valuable information concerning which predicates are 
visible at any point in a program. This information can be used to perform much 
of the predicate dereferencing at compile time instead of run time. 

Modules have: 
• A name, 
• A list of imported EDB predicates, 
• A list of imported Nail predicates and Glue procedures, 

• A list of exported Nail predicates and Glue procedures, and 

• Code, both for Glue procedures and Nail rules. 

Notice that a module can contain both Glue procedures and Nail rules, thus 
allowing the programmer to group predicates by function, rather than by language 
type. Glue also provides a predefined input/output module from which procedures 
can be imported. For example, in line 2 of Figure 1, module b i l l  imports procedures 
read(:X) and write(X:) from module io. 

2.9 Using Nail without Glue 

Although Glue was designed to be used with Nail, Nail could be embedded in 
languages like C and COBOL. Huge amounts of legacy code exist in the world. The 
embedding could be done in a similar fashion to embedded SQL. A Nail call would 
reference existing database tables, and would return another table as its result. 
Nailog term syntax would only be supported if the existing database supported 
it, which is unlikely. Hence Nail would be reduced to just datalog (constants, no 
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function symbols). No attempt has been made to implement such a port, we mention 
it merely for interest. 

3. System Overview 

The Glue-Nail database system was designed as a memory-resident system that 
supports single-user applications. This design targets small to medium-sized ap- 
plications where the database does not need to be shared or where portions of 
database may be checked out for relatively long periods of time. All queries and 
updates operate on main memory representations of relations. Between executions 
of programs, the EDB relations reside on disk. 

The Glue-Nail system architecture consists of the Glue compiler, the Nail com- 
piler, the static optimizer, the linker, and the IGlue interpreter. The configuration 
of these components is shown in Figure 3. The input to the system is a Glue- 
Nail program, which consists of one or more code modules. Each module can be 
compiled separately. 

The Glue compiler separates the Glue code from the Nail rules in module. It 
compiles the Glue code into the target language, IGlue, which will be described in 
Section 6.1. The Glue compiler also passes each Nail query and its associated set of 
rules to the Nail compiler. The Nail compiler transforms the Nail query and rules 
into an IGlue procedure that computes the answer to the query. The linker collects 
all relevant IGlue code into a single file. The IGlue code is optionally analyzed 
and transformed by the static optimizer. 

The IGlue interpreter reads the IGlue program, and loads into memory the 
disk-resident EDB relations that the program will access. As the interpreter executes 
the IGlue program, it calls the run-time optimizer to adapt query plans to changing 
parameters of the database. When the interpreter halts, it writes to disk any EDB 
relations that have been updated. 

The Glue compiler is written in Prolog and C. The Nail compiler is written in 
Prolog. The linker is written in C. The static optimizer and the IGlue interpreter are 
written in C+ +. The system was developed on a DEC5000 and workstations with 
16 to 32 megabytes of main memory. It has been ported to SPARC 2 and SPARC 10 
workstations, running both SunOS 4.1.x and Solaris 2.x. While the current hardware 
presents limitations on the size of programs this approach can handle, we believe 
that trends toward larger main memories make this approach feasible for a variety 
of applications. Departmental server machines with gigabytes of main memory are 
now available. 

4. The Glue Compiler 

Compiling Glue into IGlue takes place in four phases: parsing, code generation, 
linking, and static code optimization. Parsing and linking are straightforward and 
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Figure 3. Glue-nail system architecture 
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will not be discussed any further. Instead we will concentrate on how the code 
generator and static optimizer produce quality IGlue code. 

As with any compiler, the major technical problem faced in building the Glue 
compiler was to be able to produce code that is both correct and efficient. The 
Glue compiler is responsible for static optimization of Glue programs. One way 
to provide for efficient execution is to reduce the number of IGlue operations 
and relations. The Nailog semantics of Glue and Nail were particularly difficult to 
handle efficiently, because in general the predicate to which a Glue subgoal refers 
can only be determined at run time. 

Three strategies are used by the Glue compiler: early identification of procedure 
calls, reduction of compiler-generated storage space, and removal of redundant 
operations. The first two problems were solved by careful design of the code 
generator, the latter problem was solved by an IGlue-to-IGlue static optimizer. 
This optimizer is also capable of improving the IGlue code produced by the Nail 
compiler. We will elaborate on these compiler optimization strategies here. 
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4.10ptimizations in the Code Generator 

Two optimizations are performed in the code generator. These optimizations were 
not present in the first implementation of the code generator, but were added when 
their need became apparent. 

Predicate Class Analysis and Procedure Calls. As mentioned earlier, the Nailog term 
system allows subgoals to have variables as their predicate names. Predicate selection 
is the process of associating a subgoal term with a particular relation, or procedure, 
or Nail predicate. Predicate selection for Nailog subgoals with variables can in 
general only be resolved at run time. The simplest solution would be to perform 
predicate selection at run time, when the functor is fully bound. However, that 
would mean treating every subgoal as a potential procedure call, which is expensive. 
Hence the Glue compiler does as much of the predicate name resolution as possible 
at compile time. Subgoals are unified against the predicates that are visible in the 
current scope. For subgoals with ground predicate names there can be at most 
one match. For subgoals with variable predicate names, the number of possible 
matches is usually reduced (and can never be increased). Hence the amount of 
checking to be done at run time is reduced. In particular we can often prove that a 
subgoal cannot match a procedure call, so the less expensive relation look-up can be 
used. Compile-time predicate analysis was found to increase the speed of the PATH 
benchmark (described in Section 7) by 315%. The unoptimized version of the code 
treated all subgoals as potential procedure calls. The optimized code performed 
compile-time analysis to distinguish between relation subgoals and procedure call 
subgoals. 

~mporary Relation Compression. Temporary relation compression involves analysis of 
the variables that are stored in compiler-generated temporary relations. The compiler 
uses these relations to store variable bindings between IGlue instructions. The simple 
approach that was first implemented was to record all known variable bindings in 
the temporary relations. Compression ensures that the only variable bindings that 
are recorded in the temporary relations are those that will be subsequently used. 
The effect of this optimization on programs from the benchmark suite is shown 
in Table 1. The absolute error in the code speed improvements is one percentage 
point. We note that this optimization has been present in most relational databases 
since System R, but we mention it here because it was the most effective static 
optimization performed by the Glue compiler. As so often happens in compiler 
optimization, the obvious and simple ideas fix most of the problems. 

4.2 Static Optimizatione 

The Glue static optimizer is an IGlue to IGlue code transformer. It is a static 
(compile time) optimizer and should not be confused with the dynamic (run time) 
optimizer in the IGlue interpreter. A number of different optimization techniques 
are used. The general algorithm is shown in Figure 4. Peephole analysis uses only 
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Table 1. Temporary relation compression 

Program BILL CIFE SG SPAN CAR 

Total arity, before 53 36 36 60 248 

Total arity, after 29 31 8 42 121 

% arity reduction 45 14 78 30 51 

% speed-up 13.5 11.6 26 4.7 35 

THORp THORs 

1422 723 

951 408 

33 44 

9.2 53 

OAG 

281 

214 

24 

3.5 

Figure 4. Static optimization algorithm 

peephole(); 
do { 

perform_data_flow_analysis(); 
constant_propagation(); 
copy_propagation(); 
peephole(); 

} while changes; 

local information. Constant and copy propagation require data flow analysis. The 
aim of these optimizations is to reduce the number of operations on relations, or 
to remove a relation entirely. 

In addition to the above optimizations, a cardinality analysis algorithm has been 
developed. It identifies relations that contain at most one tuple (known as "singleton 
relations"). These relations can be replaced by simpler data structures that can hold 
only a single value. The required changes to the IGlue language and interpreter 
have not been made, so performance numbers are not available. However, the 
analysis algorithm is very effective at locating singleton relations. The algorithm 
relies on the programmer's declaring that some relations are singleton. Abstract 
interpretation using fixpoints is employed to compute the maximum cardinalities of 
all the other relations. Relation sizes are limited to {0, 1, LARGE}. Arithmetic 
over this set is closed, and repeated operations reach a fixpoint very quickly (usually 
LARGE). Hence the algorithm as a whole terminates, because any relations involved 
in loops reach their fixpoint cardinality very quickly. In one particular case in the 
T H O R  parser (described in Section 7), the analyzer algorithm was able to prove 
that 65 out of 66 local and temporary relations were single-tuple relations after 
being given one declaration by the programmer. 

Peephole Techniques on Joins. Most of the work in a database takes place inside the 
joins, so improving the join code is important. Glue static optimization can only 
reduce the number of relations and variables within the join. The static optimizer 
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Table 2. Effect of DFA 

[ BILL CIFE SG SPAN CAR Program THORp 

Code size before 60 151 41 49 78 938 

Code size after 52 139 35 39 56 713 

% size reduction ~ 13 7.9 9.8 20 28 24 

% speed-up 3.8 2.4 3.5 5.4 14.1 5.5 

THORs OAG 

429 116 

307 93 

28 20 

5.6 6.1 

analyzes the use of variables within the join. The optimizer converts existential 
variables into "don't care" variables, performs any unifications that can be done at 
compile time, and removes joins that do not update any relation. 

These peephole techniques are quick to execute because they use only local 
information about a join. Note that the other optimizations may change the code so 
that the peephole techniques may be reapplicable. Hence the peephole optimizer 
is run after each pass through the main optimizer loop. 

Contrary to expectations, it was found that peephole optimization had only a 
marginal effect on execution speeds. Speed-ups for the application suite varied 
between 0% and 3%. 

Data Flow Analysis. Data Flow Analysis (DFA) of IGlue code is similar to DFA 
in imperative languages with single-valued variables, but there are some important 
differences. First, DFA in IGlue is concerned with relations, not variables. Second, 
IGlue has more opportunities for aliasing than traditional three-address code. 

The optimization techniques that depend on DFA are: 

• Copy propagation, 

• Constant propagation, and 

• Reduction in strength of the join operation. 

These three techniques are variants on their traditional forms. For example, DFA 
can often prove that a relation has a known value at some point in an IGlue 
program. Relations can be proven to be empty, or to contain a set of known tuples. 
If a relation is provably empty, then references to it may be replaced by FALSE. If 
a relation has a single known tuple, then the value of that tuple can replace the 
uses of that relation at compile time. If the relation is known to possess more than 
one tuple, then its uses can be replaced by the multiple tuples, although in practice 
this has not proven to be cost effective. DFA also identifies operations that do not 
change the value of a relation (such as clearing an empty relation). 

The results of running the DFA optimizations on the benchmark suite (Section 
7) are shown in Table 2. The absolute error in the code speed improvements is 
one percentage point. 
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This table shows the reduction in the number of IGlue statements achieved by 
DFA. The speed improvements were not as large as expected. The reason that the 
improvements in speed were much less marked than the improvements in code size 
is that all IGlue statements are not created equally. The static optimizer is very 
good at identifying redundant operations (such as unnecessary data copying and 
movement). Unfortunately, these joins are usually quick to execute because they 
a r e  redundant. For example, the IGlue interpreter implements a _MOVE operation 
by simple pointer changes, rather than tuple copying. Clearing an empty relation 
is also very fast. Hence removing redundant operations does little to improve 
program speed. Most of the IGlue interpreter's execution time is spent computing 
nonredundant joins. The static optimizer can do very little to improve the internals 
of these joins, so the peephole optimizations are all that apply. The static optimizer 
can do more with small joins and copying operations. 

For the reasons given above, the run-time optimizer (see Section 6.3) has proven 
to be effective exactly when the static optimizer is ineffective, and vice versa. The 
two optimizers achieve a useful synergy. 

5. The Nail Compiler 

The Nail compiler translates a Nail query and its associated set of rules into an 
IGlue procedure. The research in developing the Nail compiler focused on efficiently 
evaluating recursive queries. 

Among query evaluation methods for deductive databases, the magic-sets trans- 
formation (Beeri and Ramakrishnan, 1987; Ullman, 1989) is the most established 
one, because of its generality and efficiency. The magic-sets transformation gener- 
ates a program that simulates top-down evaluation with memoing and restricts the 
search space of subgoals to a subspace of those relevant to the query. We employ 
variants of the magic-sets transformation developed in the literature of deductive 
databases. 

To optimize recursive query evaluation, the Nail compiler applies one of two 
variants of the magic-sets transformation to the Nail program. The compiler then 
chooses a strategy to evaluate the transformed program, depending on whether the 
program is negation-free, stratified or unstratified. Then the compiler generates the 
IGlue code that encodes the selected evaluation strategy. The Nail compiler does 
not choose join orders or select indexes for each IGlue query that it generates. 
The best plan for evaluating each query may also vary, because the cardinality of 
each relation may vary at run time. Hence, in Glue-Nail, query optimization is 
performed adaptively at run time. 

Now we give the details of the magic-sets transformation strategy and the 
evaluation strategy. First the Nail compiler applies one of two variants of the 
magic-sets transformation as follows: 
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if the input Nail program is negation-free and fight-linear then 
apply the context fight-linear transformation (Kemp et al., 1990; Mumick and 
Pirahesh, 1991); 

else 
apply the supplementary magic-sets transformation (Ramakrishnan, 1988; 
Ullman, 1989); 

Then the compiler chooses one of three evaluation strategies as follows: 
if the transformed program is negation-free then 

evaluate it using semi-naive bottom-up evaluation (Bancilhon, 1986); 
else 

if the transformed program is stratified then 
evaluate it by Kerisit-Pugin's (1988) method; 

else 
evaluate it by the alternating ffixpoint tailored to magic programs (Morishita, 
1993); 

The Nail compiler makes these selections at compile time, because all conditions 
in the above algorithms can be tested by checking only the program syntax. The 
method proposed by Kerisit-Pugin (1988) and the alternating fixpoint technique both 
perform bottom-up evaluation in a semi-naive fashion. The Nail compiler generates 
the IGlue code that implements the selected evaluation strategy and passes it to 
the static optimizer and the linker. 

The previous Nail compiler applied the method of Ross (1990) to every Nail 
program. We replaced the previous method with several better strategies for the 
following reasons: 

For negation-free programs it is more efficient to apply the supplementary 
magic-sets transformation to the input and evaluate the transformed program 
using the semi-naive bottom-up method. Furthermore, for the class of right- 
linear programs, which includes many common recursions such as transitive 
closure, the context right-linear transformation is much more efficient than 
the magic-sets. 

We can easily decide whether a set of rules is stratified just by looking at 
the syntax of rules. For stratified programs, several methods that make use 
of the stratification have been proposed. It is more efficient to evaluate 
magic programs by using one of those methods. Because of its simplicity, 
we employed the method of Kerisit-Pugin (1988). 

The previous compiler handled only modularly stratified Datalog programs, 
a subclass of general programs that have two-valued well-founded models. 
The problem with modularly stratified programs is that it is recursively 
unsolvable to determine for an arbitrary program whether that program 
is modularly stratified for all EDBs (Ross, 1991). Put another way, it is 
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not possible to decide syntactically whether a set of rules with negation 
is modularly stratified. Although there are some sufficient conditions for 
modular stratification available (Ross, 1991), in general the programmer 
must guarantee that the given program is modularly stratified to get correct 
answers using methods for modularly stratified programs. Furthermore, it 
could be a difficult task for the programmer to ensure this property for 
complex programs. 

The last limitation motivated us to look for a robust algorithm that works for fully 
general Datalog with negation and with three-valued, well-founded models. In this 
general setting, however, we discovered that the well-founded model of the magic 
program may not agree with the well-founded model of the original program. To fix 
this problem, Kemp et al. (1992) developed a method that tends to generate magic 
facts and therefore may not restrict the search space well. By slightly tailoring 
.the alternating fixpoint technique (a standard method to compute well-founded 
models; Van Gelder, 1989), we created a novel method for magic programs. This 
approach computes the correct answer to the query and always generates fewer 
(and in some cases significantly fewer) magic facts than the method of Kemp et 
al. (1992). Its formal presentation, correctness and theoretical properties can be 
found in Morishita (1993). We implemented this method for fully general Datalog 
with negation. 

Now we show performance results of the new method. Let us use the following 
win program as a test program, in which win is an IDB predicate and move is an 
EDB predicate. 

win(X) :- move(X,Y) & !win(Y). 

First we consider modularly stratified instances of the win program and compare 
the new method with the old one. The above program is modularly stratified if 
the EDB for move is acyclic. We use two different move relations that are acyclic. 
The first relation represents a linear list using tuples of the form: (1,2) . . . .  ,(N-1,N). 
The second represents a complete binary tree of height H. Given query win(l ) ,  
we compare the code generated by the new compiler with the code created by the 
previous one. Both programs are executed by the IGlue interpreter under the same 
optimization conditions. The programs were executed on a SPARC 10/41 with 128 
megabytes of memory and running SunOS 4.1.3. Tables 3 and 4 show the evaluation 
times. 

The results show that, although one can write a modularly stratified program for 
which the new method runs slower than the previous method does, this is not always 
the case. There are cases where the previous compiler works better than the new 
one, and cases where the new one is superior to the old, depending on the properties 
of the EDB relations. The reader might feel that there is no advantage to employing 
the new method for modularly stratified programs. It should be remembered that 
methods for modularly stratified programs ask the programmer to guarantee that a 
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Table 3. Execution times (seconds) for acycllic linear lists 

N 8 16 32 64 128 256 

new compiler 0.13 0 .48  1 .58  6 .05  25.32 95.62 

previous compiler 0.14 0.22 0.52 :l.49 4.94 17.34 

Table 4. 

H 

new compiler 

previous compiler 

Execution times (seconds) for complete binary trees 

6 7 8 9 10 11 

0.54 1.23 2.32 5.87 1 1 . 9 6  27.84 

1.49 3.80 10.89 34.41 121.05 453.75 

Table 5. Execution times (seconds) for cyclic linear lists 

N 8 16 32 64 128 256 

new compiler 0 .03  0.06 0 .11  0..20 0.39 0.80 

program is modularly stratified, while the new method frees the programmer from 
this task. Furthermore, the new method can deal with non-modularly stratified 
cases. 

In Table 5 we also include performance results of non-modularly stratified cases 
of the win program in which we use cyclic linear lists, i.e., (1,2),...,(N-1,N),(N,1). 
Because the new compiler can handle three-valued well-founded models, it needs to 
tell the calling Glue procedure that some queries are undefined. However, the Glue 
language is based on two-valued logic. This discrepancy is resolved by introducing 
a new Glue operator "?" for undefinedness. That is, for any Nail predicate ~2 
?Q succeeds if Q is undefined in the well-founded model of the Nail program, !Q 
succeeds if Q is false, and Q succeeds if Q is true. 

6. The IGlue Language and Interpreter 

In this section we describe the IGlue target language, its interpreter, and the adaptive 
optimizer. In particular, we focus on join processing in IGlue. 

6.1 The IGlue Target language 
IGlue is the target language for both Glue and Nail. IGlue code is executed by 
the back end of the Glue-Nail system, the IGlue interpreter. Using an example, 
we will describe the most important features of the language. A more complete 
description is found in Derr (1992). 
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Figure 5. Example IGlue code for transitive closure 

O) _NODULE nai l_bi l l_par ts tc_bf_true  
I) _EDBDECL assembly/3 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

10) 
11) 
12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
2O) 
21) 
22) 
23) 
24) 
25) 
26) 
27) 
28) 
29) 
3O) 
31) 
32) 
33) 
34) 
35) 
36) 
37) 
38) 
39) 
40) 
41) 
42) 
43) 
44) 

_PROCEDURE nail.bill.partstc_bf_true/l:l 
_LOCALDECL context.magic/2, delta_context_magic/2, 

old_delta_context.magic/2, answer/2, changed/O 

_FORALL( 
_IT(in(nail_bill_partstc_bf_true(VVl))), 
+÷.LOCAL(delta.context_magic(~Vl, VVi))) 

Perform semi-naive-evaluation until no inferences 

repeat: 

_FORALL( 
_LOCAL(delta_context_magic(VV2, VVl)), 
++_LOCAL(context_maglc(VV2, VVl))) 

_MOVE( 
_LOCAL(delta_context_magic(_, _)), 
.LOCAL(old_delta_context_magic(_, _))) 

_FORALL(".LOCAL(changed)) 

_FORALL( 
_LOCAL(old_delta_context.magic(VV1, X)), 
.EDB(assembly(X, Y, _)), 
!.LOCAL(context_magic(VVl, Y)), 
++_LOCAL(delta.context.magic(VVl, Y)), 
++.LOCAL(changed)) 

. IF .EXlSTS(_LOCAL(changed)) _GOTO repeat 

_FORALL( 
_LOCAL(context_magic(VVl, X)), 
_EDB(assembly(X, Y, _), 
++_LOCAL(answer(VVl, Y))) 

_FORALL( 
_l~(in(nail_bi11.partstc_bf_true(VV2))), 
_LOCAL(answer(VV2, VVl)), 
++_0UT(out(nail_bill_partstc_bf.true(VV2), out(VVl)))) 

_RETUR| 
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Several kinds of IGlue instructions are illustrated in the code in Figure 5. This 
code, generated by the Nail compiler, is the IGlue translation of the following Nail 
rules: 

partstc(X,Y) :- assembly(X,Y,_). 
partstc(X,Z) :- assembly(X,Y,_) & partstc(Y,Z). 

These rules compute the transitive closure of the as s embly (X, Y, 0) relation for the 
bill of materials program in Figure 1. The Nail compiler first transformed the rules 
using the context right-linear transformation. It then generated the IGlue code that 
performs semi-naive evaluation of the rules. The semi-naive loop can be seen in 
lines 10-32 of Figure 5. 

The _FORALL instruction expresses a query in IGlue. Like Glue assignment 
bodies, this instruction supports negation and provides operators for updating one 
or more relations: ++ for insert, - - for delete, and .~,~ for clear. However, unlike 
Glue assignment statements, IGlue _FORALL instructions have no "head" subgoal; 
all updates are performed in the _FORALL body. In Figure 5, lines 25-30 illustrate 
a _F01~ALL instruction. The first three subgoals form a query on three relations. 
Using variable bindings that result from that query, the fourth and fifth subgoals 
insert tuples into relations. 

The _EXISTS instruction implements a special case of the _FISRALL instruction 
by computing at most one solution to its arguments. It is intended to be used as 
a condition in one of the IGlue branching instructions, as illustrated in the _IF 
instruction in line 32. The _EXISTS instructions must be free of side-effects (i.e., 
no update operators). 

The _HOVE instruction, illustrated in lines 19-21, performs a data movement 
operation. Tuples of one relation (the source) are moved to a second relation (the 
target), first deleting any previous contents of the target. After the move, the source 
relation is empty. A similar operation, _TRANSFER, adds new tuples to the target 
without clearing it first. These operators are implemented efficiently by copying 
pointers to sets of tuples, instead of copying each tuple. 

The Glue language offers a uniform syntax for referring to relations, Nail rules, 
and procedures. For example, the Glue assignment statement in Figure 1, line 25 
refers to input relation in(_) and Nail rule par ts 'ec(_ ,_) .  IGlue, on the other 
hand, treats procedure calls separately. Calls to IGlue procedures, which represent 
compiled Glue procedures or Nail queries, are explicit. The syntax of a procedure 
call is as follows: 

_CALL (init ial-bindings, _PROC (call, [possible-procedures] ), 
f inal-bindings) 

The first argument is a relation that holds the bindings for variables before the 
procedure call. The third argument holds the bindings after the call. The second 
argument gives the call with its arguments, and a list of all the possible procedure 
references. Each entry in the list includes the module name, the procedure name, 
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and the pattern of input and output arguments. For example, the IGlue call to Nail 
rule p a r t s c c ( _ , _ ) ,  with the first argument bound and the second argument free, 
is the following: 

_CALL( 
_IN(in(bom(Koot))) ,  
_PROC(nail_bill_partstc_bf_true(Root, P), 
[nail_bill_partstc_bf_true:nail_bill_partstc_bf_true/l:l]), 
_TEMP(proc_sup4(P))) 

There can be more than one possible procedure referent because the procedure call 
might have a variable for its name. Thus we cannot know which procedure to call 
until the variable is bound at run time. Procedure calls also require that relations 
be materialized to hold the set of variable bindings immediately before and after 
the call. So procedure calls are expensive to set up, execute, and recover from. 

In the example IGlue code in Figure 5, and in the _CALL example above, we see 
that relation and procedure predicates are annotated with predicate class descriptors: 
_EDB, _LOCAL, _TEMP, _IN, _OUT, and _PI~0C. There are additional descriptors, 
not shown, for Nailog predicate names that contain variables, and therefore refer 
to sets of relations or procedures. As described in Section 4, the Glue compiler 
analyzes the type of each predicate and determines the set of potential referents 
for each predicate as early as possible. 

6.2 The IGlue Interpreter 

The IGlue interpreter is divided into three functional components: The relation 
manager, the abstract machine, and the run-time optimizer. The relation manager 
is responsible for loading EDB relations into main memory, for creating and 
maintaining indexes, and for accessing and updating relations. The abstract machine 
executes IGlue instructions. Below we describe how it processes the _FORALL 
instruction. The run-time optimizer (Section 6.3) adapts query execution plans to 
changing database parameters. 

Join Processing. The IGlue _FORALL statement can be viewed as a join expression. 
In the IGlue abstract machine, _FORALL statements are evaluated using the nested- 
loop join algorithm with hash indexes on join and selection arguments. Thus, 
a join of n subgoals is evaluated using n nested loops. Variations of this join 
method have been used in other systems for processing joins in main memory (e.g., 
Whang and Krishnamurthy, 1990). The query processor assumes that the run-time 
optimizer has selected access methods (index or scan) for each relation and an 
order for computing a sequence of joins. During the nested-loop computation, the 
query processor interacts with the relation manager to resolve incomplete relation 
bindings, obtain access paths, fetch tuples, and update relations. For example, the 
query in lines 34-37 of Figure 5, is computed by the following steps (assuming that 
the query optimizer does not reorder subgoals): 
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Open an access path Pl to relation context_mag:i.c(W/1,X); 
For each tuple obtained from Pl begin 

Record the bindings for variables X and VVt; 
Open an access path p2 to relation assembly(X,V,_); 
For each tuple obtained from P2 begin 

Record the binding for variable ¥; 
Insert tuple (VVl ,Y) into relation artswer(VVl ,Y) ; 

end; 
end; 

If the optimizer has chosen an index on the first argument of relation assembly (X, Y, 
_) as the access path, then the join processor will direct the relation manager 
to create the index if it does not already exist. Although the example above is 
shown as a nested loop, the join processing algorithm is actually implemented as a 
recursive procedure that can handle joins of an arbitrary number of subgoals. The 
_EXISTS join is handled in a similar manner except that when the first result tuple 
is generated the process terminates. 

6.3 The Run-Time Optimizer 

The IGlue interpreter employs a run-time optimizer that accommodates dynamic 
characteristics of IGlue programs in two ways: (1) It reoptimizes query plans 
adaptively; (2) It selects indexes dynamically. We describe each of these optimizer 
tasks below. 
Reoptimizing Queries. Query optimization is the problem of formulating an efficient 
plan to evaluate a declarative query. This consists of ordering multiple join operations 
and selecting among available access paths for each relation. Optimizers estimate 
the cost of alternative query plans and select the plan with the lowest cost. Cost 
estimates are derived using a cost model of join processing and statistical parameters 
that characterize the relations involved in the query. In relational database systems, 
query optimization is typically done at compile time. Some characteristics of 
IGlue programs are problematic for conventional query optimization techniques. In 
particular, IGlue programs refer to temporary relations more often than persistent 
relations. Because the parameters (e.g., cardinality and domain size) of temporary 
relations are not known until run time, it is difficult for a static, compile-time 
optimizer to predict which query plan is most suitable. Moreover, because relations 
are updated frequently in IGlue, their parameters change at run time and a query 
plan that was optimal early in the computation may perform poorly later. To handle 
this problem, the IGlue interpreter provides a run-time-optimizer that reoptimizes 
queries whenever there is a significant change in relation cardinality. Optimizers 
for some relational database systems will automatically invalidate queries based on 
schema or index changes (Date, 1986). However, these systems do not reoptimize 
queries when statistics change to avoid the overhead costs of optimization. Our 
results in Section 7 show that for Glue-Nail programs, however, the benefit of 
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reoptimization is worth the overhead cost. 
The IGlue run-time optimizer is based on the dynamic programming approach 

used in System R (Selinger et al., 1979). The first time the optimizer encounters a 
particular query, it selects and records a join order and access paths. Thereafter, 
each time that query is to be executed, the optimizer must decide whether to 
reoptimize it. An ideal criterion would trigger reoptimization exactly when the 
current query plan is no longer optimal. We investigated several different criteria 
for deciding when to reoptimize a query based on changes in relation cardinality 
(Derr, 1993). The criterion that yielded the best performance on a suite of Glue 
programs is the following: 

Reoptimize a query when the cardinality of any relation in the query 
increases by a factor of k or decreases by a factor of 1/k. 

For our experiments we chose the value k = 2. This criterion was compared against 
a no reoptimization strategy, a strategy that reoptimizes for every cardinality change, 
and a strategy that reoptimizes when the rank order of relations by their cardinalities 
changes. The results comparing the winning strategy with no reoptimization are 
reported in Section 7.2. 

Automatic lndex Selection. Index selection is the problem of determining which 
relation indexes to create and maintain. A common approach to index selection is for 
a database administrator to decide which indexes should exist, based on an expected 
pattern of access and update. While Glue and Nail require a programmer to declare 
EDB and local relations, the languages do not let the programmer define indexes on 
relations. Consequently, all indexing decisions are made automatically by the system. 
This feature is consistent with the Glue-Nail philosophy that the programmer should 
have to give only a declarative specification of a query. Furthermore, automatic 
indexing provides a way to select indexes on temporary relations that are introduced 
by the Glue and Nail compilers. 

One approach to automatic index selection would be to try to anticipate which 
indexes would be the most useful. However, without knowing relation parameters 
and join orders, this approach could select a large superset of the indexes that 
are actually needed. We have chosen an alternative approach that defers index 
selection until run time. The optimizer treats index selection as two subproblems: 
(1) deciding when to create an index; and (2) deciding when to drop an index. Some 
relational systems are able to dynamically create temporary indexes. However, these 
indexes exist only for the duration of a query. The IGlue optimizer tries to be 
smarter by determining if each index it creates can potentially be used again later 
in the program. 

The first subproblem, index creation, is handled when the query optimizer must 
choose between scanning a relation and accessing a relation via an index on all 
bound arguments. Suppose the optimizer determines that the best method is to 
access a relation using an index. If the index already exists, the optimizer chooses 
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the index. However, if the index does not exist, how should the optimizer count 
the overhead of creating, maintaining, and eventually deleting the index? Here the 
optimizer considers two cases. If the indexing overhead is less than the benefit 
of using the index the optimizer chooses to build the index. What if the indexing 
overhead is greater than the benefit of using the index (as will happen when n 
relation is scanned only once or twice)? If the query under consideration is executed 
only once, then the best choice is to scan the relation. However, if the index can 
be reused later in the program (perhaps in subsequent executions of of the same 
query), then the overhead costs can be amortized over all uses of the index. 

We compared several approaches (Derr, 1992) and found that the most effective 
strategy for Glue-Nail programs was to ignore the overhead of indexing. This strategy 
outperformed both a strategy that counted the overhead and an online algorithm that 
monitored cost and benefit to determine when to switch from scanning a relation 
to using an index. When the ignore strategy makes the right choice, the cost 
benefits--avoiding multiple scansmare typically large. When it makes the wrong 
choice, the penalty--an extra scan--is relatively small. Furthermore, the ignore 
strategy has the advantage (over the online approach) of simplicity. 

The second subproblem, deciding whether to drop or maintain an index, is 
handled whenever a relation on which an index is defined is updated. Indexes 
on temporary relations are dropped automatically when the temporary is deleted. 
Indexes on EDB relations are dropped when the program halts. However, the 
system may want to drop infrequently used indexes earlier to avoid the overhead of 
maintaining them. We compared five different strategies (Derr, 1992) that evaluate 
the cost of maintaining indexes and found two to be effective in the Glue-Nail 
benchmark programs. One strategy always maintains an index instead of dropping 
it. The other determines, based on definition-use information, whether an index 
has any potential uses. If so, the index is maintained. Both strategies assume that 
the future benefit of using an index will outweigh the cost of maintaining it. As it 
turned out, the programs in the benchmark could not differentiate between these 
two strategies because there were no cases in which the second strategy decided to 
drop an index. 

By combining automatic indexing with reoptimization, the run-time optimizer 
is able to adapt to changes in the database. The combination enables the optimizer 
to choose new join orders and create new indexes as needed. Performance results 
presented in the next section demonstrate the advantages of adaptive optimization. 

7. Applications, Performance, and Evaluation 

A number of test applications have been written in Glue-Nail. They were written 
for two reasons: first, to test the practical expressiveness of the Glue-Nail system; 
and second, to provide a suite of programs for developing and testing the system. 
These 11 applications are summarized in the next section. 
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7.1 The Glue-Nail Benchmark Suite 

The Glue-Nail benchmark contains 11 applications written by several different 
programmers. When compiled into IGlue, the applications range in size from 13 
instructions (TC) to 713 instructions THORp). The number of tuples contained in 
EDB relations varies from 15 (CAR) to 15,100 (BILL). Some of the applications 
were developed before there was a working Nail compiler and thus are written 
entirely in Glue. Overall the benchmark suite contains 2,623 lines of Glue-Nail. 

THOR The THOR application simulates a logic circuit. The application consists 
of two programs: THORp parses a circuit description and converts it 
into a set of relations; THORs simulates the circuit. The application 
creates and manipulates 10 EDB relations containing about 1,600 tuples. 
Together, the two programs contain 1550 lines of Glue and Nail. 

BILL The BILL program (Figure 1) constructs a bill o f  materials: the quantity 
of each basic part required to build a complex object. The BILL program 
accesses an EDB containing two relations that hold a total of 15,100 
tuples. It is written in 54 lines of Glue and Nail. 

SG The SG program solves the same generation problem: find all pairs of 
persons at the same level in a family tree. The family tree consists of 
4,798 nodes and represents eight generations, where each parent has 
at most five children. It is written in 19 lines of Glue and Nail. 

TC The TC program finds paths in a graph using recursive Nail rules for 
transitive closure. The TC program was run on a variety of databases 
described in Section 7.2. The TC program, written in Glue and Nail, 
is 24 lines long. 

WIN The WIN program contains a Nail rule with a negated recursive predicate 
and is used to demonstrate how the Nail compiler handles both modularly 
stratified and non-modularly stratified programs. The WIN program 
was run on a variety of database instances as described in Section 5. 
The program, written in Glue and Nail, is 25 lines long. 

CIFE The CIFE program schedules tasks and allocates resources required for 
constructing a building. The application uses an EDB that describes 
an 8-floor, 16-room building. The EDB initially holds a total of 1066 
tuples and grows to 2161 tuples. The CIFE program, written in Glue 
and Nail, is 186 lines long. 

SPAN The SPAN program finds the minimum spanning tree for a set of 50 
points. The SPAN program consists of 106 lines of Glue. 
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OAG The OAG program searches for direct and connecting flights in an 
airline database. The EDB defines seven relations, which hold a total 
of 764 tuples. The OAG program is written in 223 lines of Glue. 

CAR The CAR program simulates the movement of 14 cars around a circular 
track. The simulation runs for 100 clock ticks. The database initially 
holds 14 tuples and grows to 1516 tuples. The CAR application is 
written in 104 lines of Glue and Nail. 

CAD The CAD application is a simple 2D drafting system. This application 
was written for a prototype version of Glue and uses features that are 
not available in the current Glue-Nail system. The CAD program is 
written in 252 lines of Glue and Nail. 

PATH The PATH program is hand-written Glue version of the transitive closure 
query. This program was used to experiment with different styles of 
Nail compilers. It has 80 lines of Glue. 

These applications were chosen with an eye to being representative of the code 
we expect would be run in the Glue-Nail system. The THOR programs are intended 
to represent a complete application. BILL, SG, OAG, and TC are typical deductive 
database programs that depend on recursion. The remaining applications exercise 
a variety of features of the Glue and language. 

7.2 Performance Results 

To demonstrate the advantage of the adaptive optimization techniques described 
in Section 6.3, let us look at some performance results for the TC application. 
Consider the following Nail rules for transitive closure: 

tc(X,Y) :- arc(X,Y). 
tc(X,Y) :- arc(X,Z) & tc(Z,Y). 

and the query zc(X,Y) bf. The IGlue code that implements this Nail program is 
almost identical to that shown in Figure 5 for the transitive closure rules in the 
bill-of-materials example. 

To measure program execution time for databases of different sizes and shapes, 
we prepared two different arc (X, Z) relations. The first relation represents a cyclic 
linear list using tuples of the form: (1,2),.. ,(N-1,N), (N,1). The second relation 
represents a complete binary tree of height H. We compared the performance of 
two versions of the run-time optimizer. The first version (adaptive) reoptimized 
queries using the strategy described in Section 6.3. The second version (nonadaptive) 
optimized each query only once. In both cases the optimizer performed automatic 
index selection. The programs were executed on a SPARC 10/41 with 128 megabytes 
of memory and running SunOS 4.1.3, as were the benchmarks described below. 
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Table 6. Execution time (seconds) for transitive closure on cyclic linear 
lists. 

N 16 ] 32 ~ 64 128 256 512 1 0 2 4  2048 4096 

Adaptive 0.03 0 .02  0.04 0.06 0 .15  0.26 1.12 2.05 4.39 

Nonadaptive 0 . 0 1  0 .01  0.03 0.08 0 .21  0.62 6.99 26.21 102.49 

Table 7. Execution time (seconds) for transitive closure on complete 
binary trees 

H 3 4 5 6 7 8 9 10 11 

Adaptive 0.02 0.03 0.04 0 .10  0.18 0.37 0.69 1.37 2.89 
i 

Nonadaptive 0.02 0.03 0.05 0.14 [ 0.40 1 .28  4.52 17.02 65.77 

Table 8. Execution time (seconds) for the Glue benchmark 
applications 

Program BILL CIFE SG SPAN CAR OAG 

Adaptive 6.04 14 .43  1 1 . 1 3  1 7 . 9 9  61.86 26.10 

Nonadaptive 18 .54  21 .68  104.86 22.31 130.71 26.76 

THORp THORs 

30.33 16.31 

30.71 19.22 

Tables 6 and 7 show the execution times, which include the cost of optimization. 
These results clearly demonstrate the advantage of the adaptive query optimizer. In 
the adaptive case, the growth of the evaluation times for linear and binary data is 
almost linear in the size of the a rc  (X, Z) relation. Note that the number of tuples 
representing a complete binary tree with height H is 2H+1-1. When we examine 
optimization traces, we find that the difference in performance occurred because 
the adaptive optimizer, when it was reoptimizing a query, was able to create a new 
index that wasn't needed in previous executions of the query. 

We also compared the performance of adaptive and nonadaptive optimization 
on other programs from the Glue-Nail benchmark suite. The executions times, 
which include optimization costs, are presented in Table 8. Here  we see that for six 
of the programs, execution time was significantly faster using adaptive optimization. 
Although the adaptive techniques did not improve performance for all programs, 
neither did they degrade performance for any program. 

7.3 Comparing Glue with C 

It is all very well to think up small example programs, and to code them up; but such 
programs are artificial examples. Unless we take a real application and code it up, 
we do not know how the language will perform in practice. Therefore it was decided 
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to take an existing application, code a section of it in Glue, and compare it with a 
version coded in C. The THOR circuit simulator (Alverson et al., 1988) was chosen 
as an example application. We chose THOR because it is an application for which 
deductive databases are well suited, and because much of THOR's development 
took place at the Computer Systems Laboratory at Stanford, which gave us access 
to the original C source code, and to many examples. 

A problem with this experiment is that THOR, like any real application, is 
very large. Hence a suitable subsection of THOR's functionality was chosen for 
implementation. The choice of what to implement is important. To be a fair test, 
the subsection chosen must include code representative of all of the problems found 
in THOR. The Glue version of THOR (Glue-THOR) implements the Component 
Simulation Language (CSL) of THOR. CSL is a gate and net descriptor language. 
The Glue code includes a CSL parser (THORp) and a CSL circuit simulator 
(THORs). They are run as separate passes. The parser is slow, because it works 
with a single tuple at a time. Deductive databases systems, such as Glue-Nail, are 
designed to work with large sets of data. 

Glue-Nail is intended to be a prototyping or niche market language. For these 
applications there is a strictly limited amount of time available for coding. Glue-Nail 
emphasizes speed of coding over speed of execution. In this respect it is similar to 
Prolog, Lisp, Scheme, etc. There are situations when one doesn't have the resources 
(time and people) to write a full Cs-SQL implementation. These are the situations 
for which Glue-Nail is expected to be especially well suited. 

Designing a proper experiment to test whether we have achieved the goal of 
increased programmer productivity would be difficult. One approach would be to 
pick a suitable problem and then assign it to two groups of programmers. One 
group would work in Glue-Nail and the other group in a standard language. Such an 
experiment was outside the scope of this work. The THOR application is merely a 
preliminary exploration of the field, and by no means a real experiment. However, 
very few experiments have been conducted on the practical utility of deductive 
database systems. 6 Programming languages need to be used for their strengths 
and weaknesses to appear, and deductive databases have primarily been used for 
research examples. 

The Glue implementation of the THOR subset has 1,550 lines (including com- 
ments), and took approximately one month to write. Much of the code is occupied 
by the recursive descent parser. While the C version of THOR uses lex and yacc, 
the Glue version had to write its own lexical analyzer and parser. The net-list code 
section of C-THOR code is 9,702 lines long (including comments). As a ratio of 
lines of code, this is 9,702/1,5650 or roughly 6:1. Given that author of the Glue 

5. Or pick your favorite general purpose host language. 

6. For a good selection, see Ramakrishnan (1993). 
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version of THOR can write 1,000 lines of debugged C code per month, the ratio of 
coding time is (9.7 months)/(1 month) or roughly 10:1. 

Execution times also were compared. A standard counter-adder example in 
the THOR distribution was used. The Glue implementation was found to run 
approximately 100 times more slowly than the C implementation, a disappointing 
result, but not surprising given that C is compiled and Glue is interpreted. 

7.4 Evaluating the Glue Language Design 

Programming languages are not works of art to be admired, they are tools to be 
used. Their utility can be judged only by using them for their designed purpose. 
Accordingly, approximately 3,0007 lines of Glue-Nail application code were written 
by several different authors. No formal usability experiments have been conducted, 
but some general observations have been drawn. In a sense these observations are 
the results of an experiment in language design. These observations are presented 
below. 

The Good. The major benefit that Glue coders experienced was the removal of the 
barrier between the program and the database. In a conventional two-language 
system, the computation is performed in some system language (like C), but the 
data are stored in the database. Attaching to the database and pulling the data 
over is tedious and error prone. 

The implicit looping inherent in the set-oriented semantics of Glue was perceived 
to be an advantage. Being able to deal with many elements simultaneously without 
using multiply-nested loops was a useful simplification. 

The high level nature of Glue was also advantageous, but no more so than in 
Prolog. The major advantage over C is that programmers no longer have to worry 
about pointers, which are definitely the most bug-inducing part of C. Unification 
of compound terms is a very simple way of handling complex data structures. Glue 
only has matching, not full unification, but this restriction was not found to be a 
problem. 

Nailog was especially useful in dealing with user defined complex graphical 
objects in the CAD example. 

The Bad. The major problem with Glue is the lack of a type system. This "feature" 
was inherited from the logic programming paradigm. Type systems provide a 
scaffolding for programmers, which is crucial if large systems are to be maintained. 
Type systems are most useful when the program structure is too large to carry inside 
one person's head, or when a programmer is maintaining code that was written by 
someone else. Small programs can always be written without type errors because 
they can be understood as a whole. 

7. The benchmark suite, plus another 1,000 lines. 
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A type system could easily be added to Glue. A fairly simple scheme that 
allowed strings, numbers, and compound terms would be enough. 

A related problem is the declaration of EDB relations. In the present design 
of Glue, each module defines its own set of EDB relations. It would probably be 
better to have a special kind of module that defines the EDB, and let the other 
(code-only) modules refer to this EDB module. 

The other problems were much more minor. Some programs needed counters 
(e.g., loop counters). The syntax and semantics of Glue are directed towards large 
relations, so such counters are cumbersome. A way of defining constants (like 70 
is needed. A scheme as simple as the #clef ine's of C would solve most of these 
problems. 

Iteration in Glue procedures can be implemented either as recursion or as 
looping. Programmers found that recursion in Glue behaved a little strangely, and 
felt more comfortable with repeat loops. In addition, procedure calls are expensive 
in Glue, so loop code is more efficient than recursive code. Perhaps tail recursion 
optimization could remove this efficiency difference. 

Occasionally, it was necessary to operate on the tuples in a relation in some 
particular order (e.g., printing the tuples of a relation in alphabetical order. It 
is cumbersome to do this in the current version of Glue; either a repeat  loop 
or recursion is needed). By pushing Glue towards set-oriented semantics, it has 
become difficult to work in a tuple-at-a-time fashion. It might be better to add 
sor t  as another aggregation operator. This operator would sort a set of tuples and 
ensure that all side effecting operations use that order. 

The scope system worked moderately well, but there were problems with dy- 
namic binding of predicate names. Consider the general purpose transitive closure 
predicate: 

path(N,E,X,X):- N(X). 
path(N,E,X,Z):- E(X,Y) & pa%h(N,E,Y,Z). 

The first two arguments of path(  . . . . . . .  ) are predicate names and will be 
understood in the scope environment St of path. There are no problems if path 
is called from within scope S1, but what if it is called from some other scope $2? 
The passed arguments from scope $2 for N and E may make no sense in scope 
$1. For this reason the "hat" operator ^ had to be added to Glue-Nail. The hat 
operator is a run-time operator that means "dereference this term in the current 
scope, and pass the referent." So a call to path from outside of path's module 
would look like path(^node(_) ,^edge(_ ,_) ,  X, Y). The hat operator was rarely 
used by programmers, because it was rarely needed and difficult to understand. 

Another way to handle the imported predicate problem would have been to mark 
the signature of path, indicating the arguments that could be predicate references. 
In this scheme the caller would not have to provide a marking on each call, the 
compiler would be able to insert it automatically. This design was not used because 
it is the beginnings of a type system, and we did not want to worry about type 
systems. As was mentioned above, it was a mistake not to have a type system. 
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8. Related Work 

Glue-Nail can be compared to several other experimental database languages and 
systems. While these systems vary along several dimensions--language philosophy, 
multi- versus single-user, disk- versus memory-residency, and hardware platforms---- 
they are all based on a deductive approach. There are no benchmarks available 
with which to compare the performance of these systems, although various groups 
are beginning to work on such benchmarks. Many of these systems have their own 
private benchmarks. 

LDL (Naqvi and Tsur, 1989; Chimenti et al., 1990) is a main memory, single 
user deductive database system developed at MCC. Unlike Glue-Nail, LDL handles 
both declarative queries and procedural operations in the same language. Hence 
some rules in an LDL program must be read procedurally. Rules are compiled into 
an AND/OR graph representing joins and unions. The system allows programmers 
to define indexes on base relations. If no index is declared for a relation, then 
by default, the system builds an index on the first argument. The LDL optimizer 
chooses join orders and annotates the graph with access methods. The graph is 
then translated into a C program which makes calls to an underlying database 
management system. The decisions made by the optimizer are hardwired into the 
target code. Thus, unlike Glue-Nail, query execution plans are not able to adapt 
at run time. 

CORAL (Ramakrishnan et al., 1992) is a database system prototype developed 
at the University of Wisconsin-Madison. Like Glue-Nail, CORAL employs a two- 
language paradigm. The declarative language, which is similar to LDL, is based on 
Horn clauses with extensions for handling left-to-right modularly-stratified negation, 
non-ground facts, set and multi-sets, and aggregation. The imperative language is 
C+ + extended with a relation and tuple class library. Using annotations, the user 
can control the evaluation of CORAL in various ways, such as indexing relations, 
choosing only one answer, and prioritizing execution paths for aggregations. By 
default, CORAL selects a left to right join order. For semi-naive evaluation, 
CORAL uses a heuristic that moves any delta predicates to the left. The user can 
also specify join order for each (rewritten) rule. CORAEs optimization philosophy 
contrasts sharply with that of Glue-Nail. Using CORAL, a programmer must 
understand how and when to use a variety of optimization strategies. Using Glue- 
Nail, the programmer is not allowed to control optimization. All strategy selection 
is automatic. 

Aditi (Vaghani et al., 1990) is a multi-user, disk-based, deductive database 
system developed at the University of Melbourne. Aditi's language philosophy is 
that applications and queries should be written in a single logic-based language. 
Aditi queries can be embedded in Nu-Prolog (Thorn and Zobel, 1990), which serves 
as the procedural support language. They did not create a new language like Glue. 
Aditi programs are written in a variant of Prolog augmented with mode declarations, 
compiler directives for specifying evaluation strategies, and well-founded negation 
(Kemp et al., 1992). The mode declarations specify which adornment patterns 



156 

are legal for a predicate. Nail does not have this restriction, although built-in 
Nail predicates (such as arithmetic) do have limited modes. Aditi programs are 
compiled into a low level procedural relational language called RL. RL programs 
are assembled into bytecodes and interpreted by the database back end. Because 
RL supports only binary join operations, the join order for multi-joins must be 
determined at the time the RL code is generated. This differs from the IGlue 
interpreter, which can adaptively optimize the join order for joins with up to fifteen 
relations. 

The EKS-V1 system (ECRC Knowledge Base System) (Vieille et al., 1990) 
is similar to the Aditi system in that a pure logic: query language is embedded 
in a variant of Prolog called MEGALOG. MEGALOG, designed to handle large 
numbers of facts efficiently, is based on the BANG file system (Freeston, 1987) for 
storing both facts and code. Unlike IGlue, Megalog can use secondary storage. The 
execution strategy for EKS rules is Query-Subquery (QSQ) (VieiUe, 1986), which is 
a "top-down" method. Nail uses a "bottom-up" method. The EKS-V1 system has a 
static (compile-time) optimizer, which chooses the join order, and identifies common 
subexpressions and tail recursion. Query evaluation is performed by BANG, which 
uses relation deltas to avoid repeatedly joining the same tuples. 

The LOLA system (Freitag et al., 1991) is a deductive database system designed 
and implemented at the Technische Universit~it of Munich. The LOLA language of- 
fers clear declarative semantics based on minimal model semantics. LOLA programs 
are evaluated using semi-naive fixpoint iteration. The LOLA system is implemented 
in CommonLisp and provides an interface to an external relational DBMS as well as 
to a Lisp-based main memory database. Like Glue-Nail, LOLA provides multiple 
levels of optimization. The source-level optimizer performs selection propagation, 
magic sets transformation, and projection optmization. The operator graph optimizer 
detects common subexpressions and selects indexes. However, unlike Glue-Nail, 
there is no fully automatic control for the selection and ordering of optimizations. 

We also compare the Glue language to other procedural languages that support 
relations or sets. Pascal/R (Schmidt, 1977) was an early attempt to reconcile 
databases with procedural languages (in this case Pascal). Relations (of Pascal 
records) were added as a fundamental data type. A looping construct over relations 
was provided; it was more powerful than a simple cursor into a relation, but less 
powerful than an SQL join operation. Hence, it accessed relations at a lower level 
than either SQL, Glue-Nail, or any of the other systems mentioned above. 

The proposed SQL3 standard (Melton, 1993) is expected to include a control 
language for the implementation of abstract data types. This language includes 
procedures, assignment statements, case and if-then-else statements, and looping 
constructs. This extension will provide some of the advantages of object-oriented 
database programming languages. Programmers may still embed SQL in host 
programming languages. However, the control language makes it possible to write 
procedural code that is handled directly by an SQL server, just as Glue code is 
handled directly by the IGlue interpreter. 
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9. Conclusion 

We have presented an overview of the design and implementation of the Glue- 
Nail database system. We began by describing features of the Glue-Nail language 
pair. The declarative features of Nail and the procedural features of Glue combine 
to enable a programmer to write complete applications. We also described the 
architecture and implementation of the system. In particular, we focused on the 
optimization techniques. The Nail compiler selects appropriate transformation and 
evaluation strategies based on syntactic properties of the Nail program. The Glue 
compiler, after generating target IGlue code, performs static code optimizations 
using peephole techniques and data flow analysis. The IGlue interpreter optimizes 
queries at run time to adapt query execution plans to dynamic database parameters. 
The combination of these optimization techniques results in a system that executes 
Glue-Nail programs efficiently. 

We then described some applications that demonstrate feasibility of Glue-Nail 
as a programming language for writing complete database applications. With the 
THOR application, we demonstrated the programmer productivity advantage of the 
Glue language. The applications also served as a benchmark for testing the effects 
of our optimization strategies. 

The Glue-Nail system could be improved in several ways. Glue and IGlue both 
support Nailog and function symbols. However, the current Nail compiler supports 
only Datalog with negation, and needs to be extended to handle function symbols 
and Nailog. The performance of the system could be enhanced by providing 
the Nail compiler with additional strategies for evaluating special cases of Nail 
programs. Performance could also be improved by executing compiled code instead 
of interpreting IGlue. A compiled system would have to be able to dynamically 
recompile query plans selected by the adaptive optimizer. 
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