
VLDB JournaL3, 77-106 (1994), Peter Scheuermann, Editor 77
@VLDB

Versioning and Configuration Management in an
Object-Oriented Data Model

Edward Sciore

Received July 29, 1991; revised version received June 11, 1992; accepted June 25, 1993.

Abstract. Many database applications require the storage and manipulation of
different versions of data objects. To satisfy the diverse needs of these applica-
tions, current database systems support versioning at a very low level. This arti-
cle demonstrates that application-independent versioning can be supported at a
significantly higher level. In particular, we extend the EXTRA data model and
EXCESS query language so that configurations can be specified conceptually and
non-procedurally. We also show how version sets can be viewed multidimension-
ally, thereby allowing configurations to be expressed at a higher level of abstrac-
tion. The resulting model integrates and generalizes ideas in CAD systems, CASE
systems, and temporal databases.

Key Words. EXTRA/EXCESS data models, query language, generic and specific
references, semantically based configuration specifications.

1. Introduction

In an object-oriented database system, the objects model entities in the real world.
Often it is useful for a database to store information about different aspects of an
entity; this information is stored as versions of the corresponding object. There are
two broad version categories: system-level versions and user-level versions. System-
level versions are created and maintained by the database system. Such versions
are used for concurrency control, transaction support (Agrawal and Jagadish, 1989),
and redundancy in distributed databases. In contrast, user-level versions are created
by applications for specific purposes. Examples of such versions include alternative
designs for the object, previous states of the object, and so on.

This article is concerned exclusively with user-level versions. Our contention
is that such versions are different aspects of the same conceptual idea, and should

Edward Sciore, Ph.D., is Associate Professor, Computer Science Department, Boston College, Chestnut
Hill, MA 02167.

78

be treated uniformly in a database system. Users should be able to access any
subset of versions of an object or to choose a version based on specified properties;
users should also be able to configure an object based on specified properties of its
components. System-level versions do not fit into this framework, because they have
no semantic meaning and are often invisible to user applications. Consequently, in
the rest of this article we refer to user-level versions simply as versions.

There is a substantial literature on versioning. Unfortunately, most of this
research is limited in scope, being focused on a specific application. There are three
application domains which have seen a lot of work: historical databases, CASE
systems, and CAD databases. We discuss each of them in turn.

A historical database is one in which the information about the entities in the
database is a function of time. For example, a database may store the history of
its employees: their previous salaries, job titles, awards, and so on. A historical
database system should be able to retrieve the state of an employee as of a specified
time, or to find the instances when an employee's state satisfied certain properties.
Research into historical databases has centered primarily on the relational model
(Tansel, 1986; Clifford and Croker, 1987; Snodgrass, 1987; Gadia, 1988), although
some work has been done for object-oriented systems (Copeland and Maier, 1984;
Caruso and Sciore, 1988; Rose and Segev, 1991; Wu and Dayal, 1992).

Computer-Aided Software Engineering (CASE) systems comprise the second
area of versioning research. CASE systems support the development and mainte-
nance of software. A CASE database typically contains information about program
modules and their relationships. A module might have several versions, corre-
sponding to previous releases of the module or alternative implementations of it.
CASE systems must provide the support necessary to allow a user to configure the
modules of a program consistently; examples of such systems are Adele (Belkhatir
and Estublier, 1986), DSEE (Leblang and Chase, 1984), Gypsy (Cohen et al., 1988),
and Shape (Mahler and Lampen, 1988).

CASE systems typically are language tools. They are not based on an explicit
data model. They are developed specifically for software databases, and their
configuration languages make sense only for that application. There have been
efforts to apply database techniques to CASE systems (Beech and Mahbod, 1988;
Hudson and King, 1988), but the treatments of versioning in these systems are much
poorer than in specialized CASE systems.

The third area in which versioning is prominent is computer-aided design
(CAD). CAD systems support the design of engineering objects. As an object is
being designed, it might be revised several times and have different alternative
versions created for it. A designer might want to compare the properties of two
different versions, or to check a proposed version against a set of design rules. The
goal of research in this area has been to develop a general, all-purpose mechanism
which can support the production and manipulation of design versions. Early work
was based on files (Katz and Lehman, 1984; Katz et al., 1986) or relational systems
(Batory and Kim, 1985; Dittrich and Lorie, 1988), but current research is almost

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 79

exclusively based on object-oriented database systems (Atwood, 1985; Chou and
Kim, 1986, 1988; Klahold et al., 1986; Banerjee et al., 1987; Biliris, 1989; Kim et
al., 1989.)

Research on CAD databases has focused on understanding the systems-level
requirements of versioning. In particular, questions regarding the support of long
transactions and control access to versions have received substantial attention.
However, the data modeling and user interface issues have barely been touched.
In current systems, for example, the only way to find a version of an object with a
particular property is by navigating its version hierarchy, and the language constructs
for specifying configurations are primitive in comparison with those of CASE systems.

Each of these three areas has solved different aspects of the versioning problem.
However, it is not obvious how these different solutions can be combined, because
the assumptions made in each case are incompatible. The many proposals for
CAD versioning systems were shown to be very similar, and a unified terminology
was given (Katz, 1990). However, this unification extends only partially to CASE
systems and not at all to historical databases. In fact, Katz concluded with the
statement that the problem of unifying all kinds of versioning is both important and
challenging.

We attacked this problem in two previous articles (Sciore, 1991a), arguing that
there is no fundamental incompatibility among the different kinds of versioning.
In the first article, we showed how annotations could be used to model versioning
in CAD, CASE, and historical databases. The approach of that article was not
completely satisfactory, however, because the resulting data model was still low-level
and the query language was procedural. In the second article, we showed how the
different kinds of versioning result from differences in their level of abstraction, and
indicated how a non-procedural query language could be possible. In this article we
solidify these ideas and extend them to a concrete data model, namely the EXTRA
object-oriented model of Carey et al. (1988).

This article is organized as follows. Section 2 reviews the EXTRA model and
EXCESS query language, and shows how to implement the standard CAD versioning
ideas in it. Section 3 introduces an extension of EXTRA called EXTRA-V and the
EXCESS-V query language. Section 4 examines the notion of frozen configurations,
and shows how this feature corresponds to views in EXTRA-V. In Section 5 we
examine the semantics of versioning in some common applications, and show in
each case how the version set of any object can be viewed as a multidimensional
space. Section 6 presents our conclusions and some discussion of future research
areas.

2. Object-Oriented Versioning

In this section we describe the basics of object-oriented versioning. Because there
is no standard object-oriented data model, we have chosen the EXTRA data model
(Carey et al., 1988) (as extended in the Pegasus system; Biliris, 1990) as the basis

80

of our study. EXTRas simplicity and conceptual elegance allow us to focus on
versioning issues and ignore aspects of the data model unrelated to versioning.
However, the results of this article should be applicable to other, more "complete"
object-oriented models.

2.1 Objects and Types

An object is defined to be an instance of a given type. A type defines a set of
attributes for each of its instances, and a set of operations on these instances. The
set of attributes and operations is called the scheme of the type. Each attribute of
an object may contain either a value or a reference to another object. Reference
attributes are specified using the ref keyword. 1

The set of types is organized into a type hierarchy. If T2 is a subtype of T1 in the
hierarchy, then T2 inherits the scheme of T1; that is, the attributes and operations
of T1 can be accessed by instances of T2 as if they were defined locally. There are
two ways in which inheritance can occur: refinement and extension (Biliris, 1990).
Refinement models the common notion of ISA relationship. Objects of type T2
are "special cases" of Tl-objects, and thus can be used whenever objects of type
T1 are expected. Extension, on the other hand, is related to the idea of prototypes
(Sciore, 1991a). Each T2-object has an associated Tl-object; references to attributes
or operations that are not defined in T2 are delegated to its associated Tl-object.

Typically, refinement is implemented by including the scheme of T1 in each
T2-object, and extension is implemented by storing a pointer to a Tl-object in
each T2-object. In general, a type can have more than one parent in the type
hierarchy, and each parent/child relationship can be either by refinement or extension.
Implementation details and a proposal for resolving name conflicts were presented
by Biliris (1990).

2.2 Versions

The notion of versioning can be modeled using pairs of types, each pair consisting of
a generic type and a version type. Each versioned entity has a single associated generic
object and zero or more associated version objects. A generic object contains the
information which is common to all of its versions. The versions of a generic object
all have the same scheme, so they differ only in the values for their attributes.
These different attributes reflect the different desi~,m choices that caused the version
to be created. It is useful for a version object to be able to access the values in
its associated generic object directly (Biliris, 1990). This property is modeled by
declaring the version type to be an extension of the generic type.

1. Actually, there are different forms of reference, based on questions of ownership and sharability. The
keywords own ref are used for this purpose by Carey et al. (1988), and exclusive ref and dependent refare used
by Biliris (1990). These issues have already been addressed with respect to versioning (Kim et al., 1989),
and so for simplicity we ignore them in this article.

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 81

The schema declaration of Figure i illustrates the above concepts. Each instance
of Bicycle models a CAD design project, and has an associated project name, client
and due date. The type BicycleVersion models versions of a given bicycle design, and
contains attributes whose values may differ in different versions. These attributes
include the style, number of speeds, frame, and so on. Some attributes (such as
style) contain primitive values, whereas others (such as frame) contain references to
other objects. The attribute designDate records the date when a version was added
to the database, and the attribute derivedFrom references the version (if any) that
was used to create it.

The semantic connection between these types is modeled by the attributes
versions and defaultVersion in Bicycle, and generic in BicycleVersion. The attribute
generic associates a version object with its generic object. 2 The attribute versions
associates a generic object with all of its versions, and the attribute defaultVersion
associates a generic object with a reference to a single one of these versions. This
default version is used in converting generic references to specific ones, as we shall
see in the next section. The specification of which version is to be the default
is usually based on semantic considerations, such as being the most recent or the
current best. We therefore postpone our discussion of default selection until Section
5.3, where we examine the semantics of versioning in more detail.

The declarations of the type-pairs Frame/FrameVersion and Wheel/WheelVersion
are similar to that of Bicycle/BicycleVersion. Note that material is an attribute of
Frame, and is intended as a key. That is, the version set of a Frame-object consists
of all frame designs corresponding to a particular material. Unlike in relational
databases, a type definition does not automatically create a corresponding collection.
Instead, these collections are created explicitly. In Figure 1 the collections bikes
and frames hold references to objects of type Bicycle and Frame, respectively. Note
that there is no defined collection of Wheel-objects.

Each generic and version object in a database should be uniquely identifiable
somehow. In this article we assume that each generic object has the attribute genericld
and each version object has the attribute versionld. Version identifiers need only be
unique within a version set, so that the combination (genericld, versionId) uniquely
identifies any version object.

2.3 Data Retrieval

The non-procedural query language for the EXTRA model is called EXCESS.
EXCESS is an extension of Q U E L in the spirit of GEM (Zaniolo, 1983), DAPLEX
(Shipman, 1981), and POSTGRES (Rowe and Stonebraker, 1987). We illustrate
the EXTRA syntax by means of example; more formal definitions were made by
Carey et al. (1988). The following EXCESS query for Figure 1 retrieves the costs

2. The keywordproto refis taken from Biliris (1990), and indicates the attribute to be used for implementing
extension inheritance.

82

Figure 1. An EXTRA scheme

define type Bicycle:
(projectName: char[10],

client: char[20],
dueDate: Date,
versions: { ref Bicycle Version } ,
defaultVersion: ref BicycleVersion

)
define type BicycleVersion:

(style: char[10],
numSpeeds: int4,
frame: ref Frame,
frontWheel: ref Wheel,
rearWheeh ref Wheel,
cost: int4,
designDate: date,
derivedFrom: ref BicycleVersion
generic: proto ref Bicycle,

) extends Bicycle

define type Frame:
(material: char[15]

versions: {ref FrameVersion } ,
defaultVersion: ref FrameVersion

)
define type FrameVersion:

(color: char[10],
designDate: date,
derivedFrom: ref FrameVersion
generic: proto ref Frame,

) extends Frame

define type Wheel:
(versions: {refWheelVersion},

defaultVersion: ref WheelVersion
)

define type WheelVersion:
(material: char[15],

size: int4
designDate: date,
derivedFrom: ref WheelVersion
generic: proto ref Wheel,

) extends Wheel

create bikes: (ref Bicycle } ;
create frames: {ref Frame } ;

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 83

of all versions of the BMX design project:

retrieve V.cost
from B in bikes, V in B.versions
where B.projectName ="BMX"

The from clause defines a set of bindings for each listed variable. Each possible
combination of variable bindings is called a configuration of the query. One tuple
is returned for each configuration that satisfies the where clause.

EXCESS supports the standard aggregation operators. The following query
for Figure 1 illustrates the syntax, retrieving the project name of the lowest-cost
ten-speed bicycle design.

retrieve B.projectName
from B in bikes, V in B.versions
where V.numSpeeds = 10 and

V.cost = min(retrieve V2.cost
from B2 in bikes, V2 in B2.versions
where V2.numSpeeds = V.numSpeeds)

.

Because each versioned entity is modeled by objects from two different types,
there are two different ways to refer to the entity. A generic reference refers
to its generic object, and a specific reference refers to one of its version objects.
In Figure 1, the attributes frame, frontWheel, and rearWheel of BicycleVersion are
generic references, whereas the attribute derivedFrom is a specific reference. Generic
references have a special interpretation--they refer to a default version of the design
object, not the design object itself. The attribute defaultVersion is used to transform
the generic reference into the desired specific reference. For example, the following
query retrieves the default color of the default version of those bicycles designed
for client "Schwinn":

retrieve EdefaultVersion.color
from B in bikes, F in B.defaultVersion.frame
where B.client = "Schwinn"

2.4 Updates

There are many ways to create, destroy, and modify objects in EXCESS. In this
article we discuss the operations most relevant to database applications, namely the
operations to insert, delete, and modify objects in a collection.

A new object is added to a collection with the copy command. The following
commands on the scheme of Figure 1 create a new Bicycle object having a single
version:

84

copy to B (projectName = "BMX",

client = "Schwinn", dueDate = 9/9/99)

from B in bikes

copy to B.versions (style = "racing", numSpeeds = 12, frame = F,

. . . , derivedFrom = nil, generic = B)

from B in bikes, F in frames

where B.projectName = "BMX" and Ematerial = "alloy"

Additional versions can be added to the version set of Bikes similarly.

Versions are modified using the replace command. For example, the following
command increases the cost of all racing bicycle versions of the BMX project:

replace V (cost = V.cost + 100)

from B in bikes, V in B.versions

where B.projectName = "BMX" and V.style = "racing"

Versions are deleted using the delete command. The following command deletes all
sufficiently old BMX versions:

delete V

from B in bikes, V in B.versions
where B.projectName = "BMX" and V.designDate < 12/31/89

3. A Versioning Data Model

Section 2 showed how a versioned entity can be implemented using two types:
its generic type and its version type. Although versioned information can be
stored in this way, it is important to note that the model knows nothing about
versioning. That is, the conceptual notion of a "versioned entity" is lost, and
conceptual operations on versioned entities must be translated into operations on
the underlying implementation.

Previous research has recognized this problem, but has focused primarily on
facilitating the creation and manipulation of versions. For example, ORION provides
a new-version operation, which derives a new version from the current default,
checks it out of the project database, and initializes its variables appropriately. Such
operations are useful, but are only part of what is needed. In this section we show
how a fully conceptual view of versioning can be built into the data model, and
how it can be mapped automatically into the structures of Section 2.

3.1 Data Definition

Standard data models such as EXTRA are what we call non-versioning. In a non-
versioning model, attributes that are modified lose their previous values. To avoid

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 85

losing information, a user must explicitly create new version objects containing the
new values.

In contrast, an object in a versioning model can have two kinds of attributes:
versioned attributes and unversioned attributes. Unversioned attributes are version-
independent. That is, changes to unversioned attributes will be done in place,
and all versions of the object see the same values for these attributes. Values for
versioned attributes are stored with the versions of the object. Changes to any of
these attributes cause a new version to be created.

We now define a versioning model called EXTRA-V. Syntactically, EXTRA-
V is identical to EXTRA, except that it contains additional keywords. One of
these keywords is versioned. Attributes appearing after this keyword in a type
declaration are versioned, and those appearing before the keyword are unversioned.
If the keyword does not appear in a type declaration, then all attributes are
unversioned. For clarity in comparison with EXTRA, we call types declared in
EXTRA-V conceptual types, and their instances conceptual objects.

Figure 2 shows how the scheme of Figure 1 can be defined in EXTRA-V. Each
conceptual Bicycle-object corresponds to a different design project. The attributes
projectName and dueDate are unversioned because they contain information about
the design project as a whole; that is, if the due date of a Bicycle-object is changed,
then all of its versions should see the change. Each Bicycle-object can have several
versions, each one corresponding to a possible design. Each version of the conceptual
object has its own values of the versioned attributes.

EXTRA-V schemes can be mapped to EXTRA schemes, using the type-pair
strategy of Section 2. In particular, each conceptual EXTRA-V type has a corre-
sponding EXTRA generic type and version type. The generic type has the same
name as the conceptual type name, and contains all unversioned attributes, as well
as the attributes genericld, versions and defaultVersion. The version type name is
the concatenation of the string "Version" to the conceptual type name; this type
contains the versioned attributes as well as the attributes versionld and generic. Note
how this technique maps the declarations of Figure 2 to those of Figure 1.

Subtyping in EXTRA-V is handled as follows. Let T1 and T2 be two conceptual
types such that T2 is a subtype of T1. Then, in the mapping, the generic type of
T2 will be a subtype of the generic type of T1 and the version type of T2 will be a
subtype of the version type of T1. We note two things about this definition. First, a
type can inherit versioned attributes, even though it defines no versioned attributes
itself. For example, suppose in Figure 2 that we declare the type childBicycle to
be a subtype of Bicycle, having only the unversioned attribute intendedAge. Then
this type inherits the versioned attributes of Bicycle. Second, because attributes in
a supertype can be overridden by redefining them in a subtype, an unversioned
attribute can be declared to be versioned in a subtype (or vice versa).

86

Figure 2. A conceptual scheme

define type Bicycle:
(projectName: char[10],

client: char[20],
dueDate: Date

versioned
style: char[10],
numSpeeds: int4,
frame: ref Frame,
frontWheel: ref Wheel,
rearWheel: ref Wheel,
cost: int4,
designDate: Date,
derivedFrom: specific ref Bicycle

)
define type Frame:

(material: char[15]
versioned

color: char[10],
designDate: Date,
derivedFrom: specific ref Frame

)
define type Wheel:

(versioned
material: char[15],
size: int4,
designDate: Date,
derivedFrom: specific ref Wheel

)
create bikes: {ref Bicycle } ;
create frames: (ref Frame } ;

Our mapping from EXTRA-V schemes to E X T R A schemes requires that each
conceptual type map to both a generic and a version type. In particular, if a
conceptual type T has no versioned attributes then all versions of an instance of
T will have exactly the same information, namely the values of the unversioned
attributes. Consequently, EXTRA-V is an extension of EXTRA. Types that do
not involve versioning can be declared in EXTRA-V exactly the same way as in
EXTRA, and will have exactly the same semantics. 3

3. Our mapping from EXTRA-V schemes to EXTRA defines the semantics of EXTRA-V schemes. It also
simplifies many of the mappings in the rest of this article. A real implementation of EXTRA-V could, of
course, employ more efficient mappings.

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 87

Figure 3. Historical database scheme

define type Person:
(name: char[20]
versioned

address: char[20],
occurredAt: Date

)
define type Employee:

(employeeNum: int4
versioned

salary: int4,
position: char[10],
worksFor: ref Company

) refines Person
define type Company:

(name: char[10],
industry: char[10]

versioned
sales: int4,
cceo: ref Employee,
occurredAt: Date

)
create employees: { ref Employee } ;
create companies: {refCompany};

Our bicycle-design scheme is an example of a CAD application. Figure 3
illustrates an historical database in EXTRA-V. This scheme has three conceptual
types: Person, Employee, and Company. A version of a conceptual object denotes
a previous or current state of the object. Each time a versioned attribute changes,
a new version is created corresponding to the new state. The attribute occurred,It
recQrds the time at which the change logically took place.

3.2 Generic and Specific References

Another keyword unique to EXTRA-V is specific ref, which is needed to distinguish
generic references from specific ones. Conceptually, a generic reference points to
an object and all of its versions, whereas a specific reference points to a single
version only. In EXTRA-V, the keyword ref denotes a generic reference and the
keyword specific ref denotes a specific reference.

Generic references are often more appropriate than specific references. For
example, consider the generic references worksFor and ceo in Figure 3. Each
Employee version contains the information about an employee during some time
interval. If the employee worked for some company (say, IBM) during that interval,
then worksFor would refer to the complete history of IBM, not just the value of
IBM during that interval. There are two advantages to this approach. First, a

88

new version of the employee does not have to be created each time a new version
of the company is created, which would be the case if worksFor were a specific
reference. Second, it is possible to bind the generic :reference to any version of the
company, so that information about an employee's current company at a previous
time (or current information about an employee's previous company) can be easily
requested.

Note in Figure 2 that Frame is one of the versioned attributes of Bicycle.
Consequently, different versions of a Bicycle-object can have frames made of different
materials. Had this attribute been declared as unversioned, then two versions of a
bicycle project could not be configured with frames made of different materials.

3.3 Data Manipulation

We now define the language EXCESS-V, which extends EXCESS to versioned
databases. Our principle is that versioning should be as transparent as possible, so
that users can interact with versioned data as if it were unversioned. That is, we
want a standard EXCESS query on a versioned scheme to behave as if each object
had only one version. Which version of each referenced object should be used? In
an unversioned database, the most recent "version" of-the object is always used,
because it is the only one available. In a versioned database we use the default
version when answering queries.

The binding of default versions to variables occurs in the from clause. In
EXCESS, the expression 'Kin S" binds variable X to each member of the set S. We
modify this definition in EXCESS-V so that X is bound to the default version of
each member of S. Note that if the objects in S are unversioned, then EXCESS-V
behaves exactly like EXCESS; thus EXCESS-V is an extension of EXCESS.

For example, consider a database for Figure 3 where the default version of each
object is defined to be the most current one. Then the following query retrieves the
name of all employees who currently make more than their current CEO currently
does.

retrieve El .name

from E1 in employees, C in El.worksFor, E2 in C.ceo
where El.salary > E2.salary

EXCESS (as well as many other languages) provides an extended dot notation to
reduce the number of explicit variable declarations in a query. Using this notation,
the above query can be written equivalently as follows:

retrieve El .name

from E1 in employees
where El.salary > El.worksFor.ceo.salary

The system interprets extended dot expressions by generating implicit variable
declarations in the from clause of the query, using the keyword in. Consequently,

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 89

using such expressions on versioned databases causes the default versions of the
generic references to be chosen.

We use the new keyword inall in EXCESS-V to access non-default versions of
objects. The expression '3inall S" binds X to all versions of each member of S.
For example, the following query using Figure 3 retrieves the names of all current
salespersons and their highest salaries:

retrieve El.name, El.salary
from E1 in employees
where El.position = "salesperson" and

El.salary = max(retrieve E2.salary
from E2 inall employees
where E2.name = El.name)

The expression "E2.name = El.name" in the aggregation portion of the above query
guarantees that E2 will be bound only to versions belonging to the same version
set as El. The expression 'SE2.genericld = El.genericld" would have had the same
effect.

Given an EXCESS-V query Q there is a straightforward translation of Q into
an equivalent EXCESS query Q~. Each expression '7~in S" of Q is translated into
'~Xin S.default" in Q~, and each expression 'Tfinall S" of Q is translated into 'Win
S.versions" in Q~.

3.4 Updates

In Section 2.4 we described the EXCESS update commands copy, delete, and replace.
As with retrievals, the increased understanding of version semantics in EXTRA-V
also allows update operations to be much simpler.

The copy command creates a new object and inserts it into a collection. In
our versioning model, each conceptual object has both a generic and versioned
part. Thus, this command is interpreted in EXCESS-V as creating a new generic
object having a single version. For example, in Figure 2 the following EXCESS-V
command creates a new Bicycle-object:

copy to B (projectName="BMX2", client="Fuji",
dueDate=6/6/96, style = "racing",
. . . , designDate = 7/13/92)

from B in bikes

The delete command removes an object from a collection, including all of its versions.
For example, in Figure 2 the command:

delete B
from B in bikes
where B.style = "mountain"

90

deletes any project in bikes whose default version is a mountain bike. Had the
keyword in been inall in this command, then all projects having any mountain bike
version would be deleted.

The above behavior of delete is necessary for the command to be an extension
of deletion on unversioned databases. In an unversioned database, executing a
command such as "Delete the BMX project" would cause all information about
the project to disappear (or at least cause it to be unavailable). Similar behavior
is necessary in EXCESS-V. Thus, for example, it would not be appropriate for the
above command to delete only the current default version of the project, because
other versions would then become visible.

The notion of deleting individual versions of a conceptual object is somewhat
out of place in a versioning model, because versions are usually considered to
be archival information. However, there are situations when version deletion is
necessary, and we introduce the command delete w~rsion to this end. For example,
the command

delete version B
from B inall bikes
where B.style = "mountain"

deletes all mountain-bike versions from all projects.
The replace command is used in EXCESS to modify objects. We extend this

meaning in EXCESS-V as follows. Updates to the unversioned attributes of an
object are done in place and are seen by all of its versions. Updates to versioned
attributes, however, cause the creation of a new ve, rsion. For example, in Figure 3
the following command conceptually changes the salary and job of Joe Smith:

replace E (salary = 30, worksFor = C, occurredAt = 3/3/93)
from E in employees, C in companies
where C.name = "IBM" and E.name = "Joe Smith"

Formally, this command selects the object in employees corresponding to Mr. Smith,
and chooses a default version for it. It then creates a new version derived from this
default; that is, the new version contains the specified values for salary, worksFor
and occurredAt, and the values of the default version for the other attributes.

For another example, the following command using Figure 2 increases the cost
of all racing bike versions by $100:

replace B (cost = B.cost + 100)
from B inall bikes
where B.style = "racing"

Formally, this command is evaluated as follows. First, there is a binding of variable
B for each racing bike version of any project in bikes. Second, a new version is
created for each binding, whose attribute values are derived from the corresponding
version. Finally, the cost attribute of these new versions are incremented by 100.

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 91

Occasionally it is necessary for a user to modify a versioned attribute in place,
without creating a new version. Consequently, we introduce the replace version
command. The meaning of this command is the same as replace, except that new
versions are not created.

3.5 Relationship to Configuration Management

In Section 2 we defined a query as constructing a configuration of the database
objects. Our use of the term configuration is meant to suggest that EXCESS-V is a
configuration management language when applied to versioned databases. That is,
the body of an EXCESS-V query configures a specified set of objects by determining
which versions are associated. This view is quite different from previous approaches
to configuration management in CAD and CASE applications. In these systems,
a configuration is specified by giving a list of version objects. Whenever a generic
reference needs to be resolved, the appropriate version object from the specified
list is used.

The chief difference between these other systems is the way in which this list of
version objects is specified. In ORION (Banerjee et al., 1987), the list is explicitly
given, and each version is specified by its unique version number. Gypsy also requires
an explicit list of versions (Cohen et al., 1988), but a version can be specified in
several ways: by its version number, by giving a predicate on its attributes, or by
invoking system-defined rules (such as "choose the most recent version"). In Shape
(Mahler and Lampen, 1988), the list is specified implicitly using a sequence of
design rules. Each design rule defines a predicate, and the first version of a generic
object satisfying a design rule is chosen. Finally, Adele (Belkhatir and Estublier,
1986) allows both implicit and explicit specification of versions, using a specification
language that allows complex predicates to be defined.

There are several problem areas caused by these approaches to configuration
management. The first area concerns expressive power. The ways in which selection
predicates are expressed in these languages are ad hoc, and are less expressive
than EXCESS-V. For example, EXCESS-V allows arbitrary Boolean predicates
(as opposed to Gypsy, which supports positive conjunctions only), and nested
queries involving grouping and aggregation. Thus the query "Find the lowest-cost
configuration of each style of bicycle, and choose the configuration having the largest
number of speeds" is impossible to express in the above systems.

The second area concerns the fact that constraints on configurations cannot
involve multiple objects. This liability stems from the use of version-lists to specify
configurations. Each version object is specified independently, so there is no way
to make coordinated choices. 4 For example, the following EXCESS-V query selects
all bicycle configurations so that the front and rear wheels have the same size:

4. Except for synchronization, but that is another issue. See Section 5.3.

92

retrieve B
from B inall bikes, FW inall B.frontWheel,

RW inall B.rearWheel
where FWsize = RW.size

Again, such a configuration specification is impossible to write in CAD and CASE
systems.

The third area also stems from the use of version-lists, and from the fact that
all generic references to an object must be resolved in the same way. In our
CAD example application, this restriction implies that there is no way to define a
configuration for bikes in which the front and rear wheels are different versions of
the same Wheel-object. In CASE applications, this restriction implies that programs
cannot use more than one implementation of a module generically. So for example, a
program that needs different kinds of sorting routines cannot use generic references
to the sort module, but must use specific references to the individual vers ions--
which, of course, means that the program will not be able to automatically take
advantage of new versions of the sorting routines.

Finally, all configuration-management system,,; known to us return a single
configuration only. That is, there is no construct analogous to our inall keyword
that allows a query to return multiple configurations satisfying a given condition.

4. Views and Freezing

One feature missing in EXTRA is the support for view definitions. Views in object-
oriented systems are more complex than in the relational model, primarily because
of problems with the class hierarchy and object identity. A discussion of these issues
and a proposed view definition language for 02 appear in Abiteboul and Bonner
(1991). For the purposes of this article, we only need views that define subsets of
objects from a collection. We adopt the following syntax:

define view tenspeeds as
retrieve B
from B in bikes
where B.numSpeeds = 10

This definition defines a virtual collection named tenspeeds, containing references
to those objects in bikes whose default version has ten speeds. Because tenspeeds
is defined as a view, its contents may change as new versions are added or other
default mechanisms are used.

Queries involving views can be evaluated by query substitution, so that no new
objects need be materialized. That is, the query

retrieve T.cost
from T in tenspeeds
where T.frame.color = "red"

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 93

is equivalent to

retrieve B.cost
from B in bikes
where B.frame.color = "red" and B.numSpeeds = 10

View definitions are important for versioning systems, because they can be used to
freeze objects in particular configurations. Traditionally, a frozen object has a single
configuration that never changes. Frozen objects allow important configurations to
be saved for future reference, such as a public release of a program, a proposed
bicycle design sent to a client, or the state of a particular company in 1984. For
example, in the following view definition

define view proposedBike as
retrieve B
from B inall bicycles, F inall B.frame,

RW inall B.rearWheel, FW inall B.frontWheel
where B.versionNum = 3 and

F.versionNum = 1 and
RW.versionNum = 20 and
FW.versionNum = 20 and
B.projectName = "BMX"

the single virtual object in proposedBike has a single frozen configuration.
In other configuration management systems, freezing is performed by convert-

ing all generic references reachable from an object into specific references, and
consequently is an expensive operation. View definitions eliminate the need to
materialize the frozen configuration. Instead, the configuration is constructed when
it is needed.

An important additional benefit of view definitions is that objects can be partially
frozen. A partially frozen object is constrained, but the constraint may not determine
a unique configuration or the specified configuration may change over time. For
example, in a CASE application we might want to freeze a module according to
a specific time, but allow other considerations (such as which operating system
version) to be unfrozen. In such a case, the partially frozen object encodes all of
the alternative design versions that were most recent as of this date. Similarly, a
module might be frozen with respect to a particular design decision; in this case it
would encode the history of revisions for that design decision.

In our bicycle database, we might define a view that specifies the current most
lightweight bicycle configuration. This view defines a partially frozen configuration,
which changes as new frames or wheels are designed.

Although a view definition may currently determine a unique configuration,
future events might cause that configuration to change or new configurations to be
added. The only way to completely freeze an object in a specific configuration is
to restrict each generic reference on an immutable key, such as a version number.

94

The above view definition is such an example. However, it is not necessary for
the user to explicitly write such restrictions. Instead, the system should provide a
way in which a given configuration specification can be "precompiled" into a frozen
version of this specification. We introduce the keyword frozen for this purpose. For
example, suppose that at this moment the following view happens to define the
same configuration as the previous view definition:

define view bike2 as
retrieve B
from B in bikes
where B.projectName = "BMX" and

B.frame.material = "alloy" and
B.frontWheel.size > 27 and
B.rearWheel = B.frontWheel

If the first line of this definition is changed to begin define frozen view, then the
system will precompile it, automatically creating the previous view definition. A
similar feature exists in DSEE (Leblang and Chase, 1984).

5. Multi-Dimensional Versioning

5.1 Version Semantics

In the previous sections we have treated the version set of an object as being
conceptually unstructured. However, the semantics of a type usually imposes a
particular logical structure on the version sets of its member objects. In this section
we examine this idea in the context of two different application domains.

5.1.1 CAD and CASE Databases Each conceptual object in a CAD or CASE ap-
plication corresponds to a design project whose versions are the various designs for
that project. There are two reasons why new versions are added to a version set
(Katz, 1990). The new version might be the result of a bug fix, in which case it is
a revision of a previous version. Or it might be the result of trying out a different
implementation strategy, in which case it is an ahernative version.

Each alternative implementation strategy is defined by the values of some set
of attributes, which we call alternative attributes. All versions of an object having
the same values for these attributes are considered to belong to the same design
alternative. For example, in a CASE application we might declare the attribute opSys
to be an alternative attribute; this choice would specify a design alternative for each
possible target operating system. In Figure 2, the attributes style and numSpeeds
might be used as alternative attributes for the type Bicycle. Under this assumption,
the version set of Figure 4 has three design alternatives: 10-speed racing bikes,
3-speed racing bikes, and 10-speed mountain bikes.

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 95

Figure 4. Version set for a Bicycle Object

style numSpeeds designDate i derivedFrom

vl racing

v2 mountain

v3 racing

v4 racing

v5 mountain

10

10

3

10

10

1981

1983

1985

1987

1989

nil

vl

vl

v3

v2

If the semantics of alternative versions is to partition the version set into its
different design alternatives, then the semantics of revisions is to organize the
versions within a particular design alternative. In particular, a version is considered
to be a revision of another if they both belong to the same design alternative and
the first was created after the second. The attribute designDate is used for this
purpose in Figure 2. Thus, in Figure 4 version v4 is a revision of vl, and v5 is a
revision of v2.

Note that this definition of revision is a logical concept, and is unrelated to the
information kept in the attribute derivedFrom. For example, in Figure 4 version v4
is a revision of vl but is derived from v3. Presumably in this example, the designer
of v4 decided to redo version v3 for a different design alternative; the result is a
revision of vl.

The attribute derivedFrom structures the version set of an object into what
is called a version hierarchy. Version hierarchies have a different semantics from
revisions. In particular, the former structures a version set according to how its
versions were created; the latter structures a version set according to the values
of its versions. All versioning systems that we know of (with the exception of
Dittrich and Lorie, 1988) support only the semantics of version hierarchies. The
concept of revision is then shoehorned into this narrow context, which makes certain
configurations difficult to express.

The advantage of our definition of revision is that it allows versions to be
accessed simply by mentioning the desired design alternative and effective revision
date. In our bicycle-design example, a user might ask for the most recent ten-speed
touring bikes as of 1986. Such a specification can be expressed naturally as bikes(lO,
touring, 1986). Intuitively, the semantics of alternatives and revisions organizes a
version set into a multidimensional space; versions can be accessed by giving the
desired coordinates in this space.

5.f.2 Historical Databases. Historical databases form the second application do-
main in which we examine version semantics. In Figure 3, we saw how each version
of Employee records a change to its associated object, using the attribute occurredAt
to store the time at which the change took place. This attribute can be thought of

96

Figure 5. Temporal version set

salary position

vl 20 clerk

v2 25 clerk

v3 22 clerk

v4 35 vp

v5 99 ceo

occurredAt recordedAt

1981

1982

1981

1985

1988

1981

1982

1983

1984

1988

as defining a one-dimensional time line, and allows the version set to be viewed as
a function from times to versions. For example, the expression employees(1985) is
a natural way of specifying the most current version of each member of employees
as of 1985.

The attribute occurredAt holds what is known as logical time--that is, the time at
which the changes took place in the real world. Another form of time is known as
physical time, which models the time at which the changes took place in the database.
A system which supports both logical and physical time is called a temporal database
system (Snodgrass, 1987). Physical time can be supported by the addition of the
attribute recordedAt to the types in Figure 3. Figure 5 shows a version set using this
revised scheme for an example employee sue. Versions vl and v2 assert that Sue
was hired as a clerk in 1981 and given a pay raise a year later. In 1983 her starting
salary was changed retroactively, probably due to a clerical error. In 1984 it was
announced (and recorded in the database) that she would be promoted to VP in
1985. Finally, she was promoted to CEO in 1988, at which time the information
was also recorded.

Logical and physical time are orthogonal concepts, and define a two-dimensional
version space. That is, a particular version can be identified by giving two coordinates:
the logical time of the change and the physical time of the change. A user can specify
a particular version of an object simply by giving its (logical-time, physical-time)
coordinates. Using Figure 5 as an example, sue(1981, 1982) specifies vl, sue(1981,
1986) specifies v3, and sue(1988, 1987) specifies v4.

5.2 Dimension Types

The previous section showed that the semantics of both CAD and historical databases
imposes a multidimensional structure on version sets. In this section we examine
how these ideas translate to our versioning data model. We discuss the following
issues:

• How the dimensions for a given type can be declared in the scheme;

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 97

Figure 6. Some dimension types
define type BikeStyle:

dimension style = #
(versioned

style: char[10]
)

define type BikeSpeeds:
dimension numSpeeds = #
(versioned

numSpeeds: int4
)

define type PhysicalTime:
dimension max(recordedAt < #)
(versioned

recordedAt: Date
)

• How queries can access versions by specifying coordinates;

• How the system can interpret such queries.

5.2.1 Dimension Declaration. We define a dimension predicate to be a Boolean
expression which uses the designated symbol # as a constant, and which may be
surrounded by an optional aggregation operator. A dimension predicate can be
declared for an EXTRA-V type by using the new keyword dimension. A type
containing a dimension predicate is called a dimension type.

Figure 6 contains definitions for the dimension types BikeStyle, BikeSpeeds, and
PhysicalTime. Each dimension predicate encodes the semantics of its dimension.
Intuitively, the designated symbol represents an unspecified coordinate value of the
dimension; the predicate tells what versions to return given that coordinate. For
example, the predicate for BikeStyle says to choose the versions having the given
style-value. The predicate for PhysicalTime says to choose the versions having the
highest value of recordedAt which is not greater than the given value.

Dimension types can be inherited. Although this inheritance can be declared
using standard EXTRA syntax, it seems more appropriate to separate inherited
dimension types from other inherited types. We therefore declare inherited di-
mension types after the versioned keyword. Figure 7 shows a revised definition of
Bicycle from Figure 2. Note that under this new definition, instances of Bicycle have
exactly the same attributes as before (except that designDate has been renamed to
recordedAt). The difference is that three of the attributes have been designated as
defining a three-dimensional version space.

One of the advantages of our approach is that each type can independently
declare its version dimensions. For example, in Figure 3 the types Employee and

98

Figure 7. Defining a 3-dimensional version space
define type Bicycle:

(projectName: char[10],
dueDate: Date

versioned by BikeSpeeds, BikeStyle, PhysicalTime
frame: ref Frame,
frontWheel: ref Wheel,
rearWheel: ref Wheel,
cost: int4

)

Company could be specified as two-dimensional temporal databases by including
"versioned by LogicalTime, PhysicalTime" in their type declarations. Alternatively,
Employee could be versioned according to LogicaITime only; in this case, the previous
values of the database for each logical time would be kept for Company but not
Employee. It is even possible for Employee to be versioned according to LogicalTime
only, and Company to be versioned according to PhysicalTime only. This flexibility
also allows different kinds of versioning to be used :for different parts of a database.
That is, there need not be just "design databases" or "historical databases"; any
mixture is possible. Moreover, dimensions are not hard-coded into the system, so
new dimensions can be declared by an application as needed.

The choice of dimensions in Figure 7 was totally arbitrary on our part. We
could just as easily have declared Bicycle to have fewer (or more) dimensions, or
changed the semantics of the dimension types in Figure 6. Our model provides a
powerful and flexible way for a database designer to specify the logical structure of
version sets; it is up to the designer to ensure that it corresponds to her intuition
of the application.

5.2.2 Multidimensional Coordinates. The existence of dimension specifications does
not change the meaning of the queries and updates of Section 3, because the
conceptual scheme of each type has not changed. However, their existence does
provide added semantics that can lead to significantly shorter and more natural
queries. In particular, a desired version of an object can be specified by giving its
coordinates in the multidimensional space defined by its type.

Coordinate specification occurs in the from clause. For example, the following
query returns the cost of the most recent 5-speed racing bicycle for the BMX project
as of 1986:

retrieve B.cost
from B in bikes(5, "racing", 1986)
where B.projectName = "BMX"

Note that the order of the coordinate values is determined by the order of their
declaration in Bicycle. If a type has many dimensions, this positional coordinate
notation can become difficult to use. We therefore also support coordinate spec-

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 99

ification by giving the name of the dimension attribute. For example, the above
coordinates could be equivalently specified by the expression

bikes (numSpeeds = 5, style= "racing'; rec ordedAt =1986)

In addition to avoiding the need to know the position of each dimension, this
notation allows a user to specify only a portion of the dimensions. The unspecified
dimensions are given default values, as described in Section 5.3.

For another example, suppose that the scheme of Figure 3 has been declared
so that both types are versioned along the single dimension LogicalTime. Then the
following query returns the 1989 salaries of all employees who worked for IBM in
1983:

retrieve E.salary
from E in employees(1989), E ~ in employees(1983)
where E.genericld = E~.genericld and

Et.worksFor.name = "IBM"

The following query returns the names of all employees who were the CEO in 1989
of the same company that they worked for in 1983:

retrieve E.name
from E in employees(1983), C in E.worksFor(1989)
where C.ceo.genericld = E.genericld

5.2.3 Coordinate Interpretation We now describe how coordinate specifications are
interpreted by the system. We do this by showing how a query containing coordinate
specifications can be translated into an equivalent query with the syntax of Section
3.

The query translation process is best understood by considering some specific
examples first. Consider the above query involving the bicycle-design scheme. The
expression "B in bikes(5, racing 1986)" should be translated into "B inall bikes"
together with some additional predicates in the where clause specifying the required
bindings for B. In particular, the following three predicates are needed:

B.numSpeeds = 5 and
B.style = "racing" and
B.recordedAt = max(retrieve B2.recordedAt

from B2 inall bikes
where B2.genericld = B.genericld and

B2.numSpeeds = B.numSpeeds and
B2.style = B.style and
B2.recordedAt < 1986)

Each predicate corresponds to a dimension of B. The predicates for the first two
dimensions are straightforward. The third dimension's predicate involves aggrega-

100

returns the
translation

tion; the versions to be aggregated are those versions which belong to the same
version set as B and are 5-speed racing bikes.

The next query in Section 5.2.2 involved the employee-company scheme, and
is translated as follows:

retrieve E.salary
from E, E I inall employees
where E.genericld = EI.genericld and

E~.worksFor.name = "IBM" and
E.occurredAt = max(retrieve E2.occurredAt

from E2 inall employees
where E2.genericld = E.genericld and

E2.occurredAt < 1989) and
Et.occurredAt = max(retrieve E3.occurredAt

from E3 inall ,employees
where E3.genericld = E~.genericld and

E3.occurredAt < 1983)

Note how the predicates generated for each variable are independent of each other.
One must be careful in translating coordinates having multiple aggregation

dimensions, because the order in which aggregation is performed is important. For
an example, suppose that Figure 3 is a temporal database; that is, the types Employee
and Company are dimensioned according to both LogicalTime and PhysicalTime.
Then the query

retrieve E.salary
from E in employees(1986,1988)

salary of all employees in 1986 as they were known in 1988. The proper
of this query is as follows:

retrieve E.salary
from. E inall employees
where E.occurredAt = max(retrieve

from
where

E.recordedAt = max(retrieve
from
where

E2.occun:edAt
E2 inall employees
E2.genericld = E.genericld and
E2.occur:redAt < 1986 and
E2.recordedAt _< 1988) and
E3.recordedAt
E3 inall employees
E3.genericld = E.genericld and
E3.occurredAt = E.occurredAt and
E3.recordedAt < 1988)

The first aggregation chooses the versions with the latest possible logical date.
If there are several such versions, then the second aggregation chooses the one

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 101

with the latest possible physical date. Note how the second aggregation depends
on the binding generated by the first aggregation; these two predicates are thus not
independent of each other.

To define the general translation algorithm, we use the following notation. Let
D be a dimension type and V be a variable• Then:

• att(D, V) is the attribute declared in D qualified by V;

cond(D, x, V) is the condition part of the predicate declared in D, where the
designated symbol # is replaced by x and each expression is qualified by V;
and

• aggOp(D) is the aggregation operator declared in the predicate of D (or null
if no aggregation was declared).

A query is translated as follows. Let the expression "V in e(xl, • • • , Xn)" be
specified in the from clause of a query, where e is an expression of type T, and T
inherits the dimension types D1, • • •, Dn. Then this specification becomes "Vinall
e" in the new from clause, and n predicates {P1, • • •, Pn } are added to the where
clause. Each Pi is defined as follows:

(a) If aggOp(Di) is null, then Pi = cond(Di, xi, V);

(b) if aggOp(Di) is not null, then Pi is

att(Di, V) = aggOp(Di) (retrieve 1/
from 1/inall e
where V.genericId = V.genericld and

att(D1, V) = art(D1, V) and
• . . and
att(Di-1, V) -- att(Di_l, V) and
cond(Di, xi, l /) and
• • • and
condOm xn, l /))

The aggregation expression for a Pi has n + 1 subpredicates within it. The
first subpredicate restricts the aggregation so that only versions from the same
version set as V are used. The next i - 1 subpredicates require that the aggregated
versions respect the variable bindings established byP1 throughPi_l . The remaining
subpredicates constrain the remaining dimensions of the version space appropriately.

5.3 Contexts

We now deal with the issue of how default versions of objects are chosen. We assume
that there is a global variable associated with each dimension type; by convention,

102

this variable has the same name as the type. The values of all of these variables is
called the current context.

When a query or update command is issued, the current context is used to
choose the necessary default versions. Recall that defaults are specified in the
from clause via the in keyword. Consider the declaration "V in e", where e is
an expression of type T If T has dimensions { D r , . . . , Dn}, then the n global
variables corresponding to each Di determines a coordinate in the version space of
T This coordinate is used to choose the default version. In other words, the above
declaration is equivalent to "Vin e (x l , . . . , Xn)", where each xi is the value of the
appropriate global variable.

It is often useful to be able to evaluate a query in a particular context. Instead
of requiring the user to manually change the appropriate context variables, execute
the query, and restore the old context values, we introduce new syntax. The incontext
clause in EXCESS-V specifies a context, to be effective only for the duration of the
query. For example, suppose that the types of Figure 3 have the two dimensions
(LogicalTime, PhysicaITime), and that both context variables have the value 1990.
Then the query

retrieve E.salary
from E in employees, C in E.worksFor
where C.name = "IBM"
incontext LogicalTime = 1976

returns the 1976 salary of all employees working for IBM in 1976, as it was known
in 1990.

Contexts provide the way to synchronize the way defaults are chosen for multiple
objects. In the above example, every generic reference was evaluated using the
coordinates (1976, 1990). In general, if two objects share a common dimension,
then the system will use the same coordinate value when choosing defaults. The
need for this form of synchronization is prominent :in CASE systems. For example,
one could configure a program as it existed in 1986 for the UNIX system with the
clause

incontext PhysicalTime = 1986, OpSys = "UNIX".

The use of contexts provides a synchronous way of accessing previous versions
of objects. It is also possible to create a "partially synchronous" configuration by
combining contexts and explicit references to versions. For example, in a CASE
system one could configure a program in a particular context, but substitute a test
version of some module. In our historical database of Figure 3, this ability allows
the following query to be expressed:

retrieve E.salary, C.sales, C.ceo.salary
from E in employees, C in E.worksFor(1980, 1990)
where C.name = "IBM"

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 103

incontext LogicalTime = 1976

Here the generic references employees and C.ceo are evaluated in the context 1976,
whereas the generic reference E.worksFor is evaluated in the context 1980. Thus
the query returns the 1976 salary of all employees who worked for IBM in 1976,
the 1980 sales of IBM, and the 1976 salary of whoever was the CEO of IBM in
1980.

We note that the specification of default versions in other systems is significantly
less expressive than what we have described here. CAD systems typically provide a
fixed set of choice heuristics, such as "most recent" and "latest release". In ORION,
for example, this set is built-in to the system and is not extendible. Moreover, these
heuristics are always applied to the current date; it is not possible to specify a
configuration as of a previous date. Biliris has proposed additions to the ORION
model that would allow such a possibility (Biliris, 1990); however, his approach
is somewhat contorted and only allows time-based dimensions to be synchronized.
The TQuel temporal query language uses defaults in a very limited way: Only the
current time can be used as a context value.

Our use of global variables for synchronization is similar to the way compiler
switches are used in CASE systems. The results of this section show how these
CASE features can be added to a data model and be made aplSlication-independent.

6. Conclusions

We have shown how versioning and configuration management can be added
to the EXTRA/EXCESS data model. The resulting versioning model, EXTRA-
V/EXCESS-V, has the following features:

• A small number of new constructs are added, which can be ignored by people
who do not need or want to know about versioning.

• The constructs are all conceptual; that is, they do not depend on how versions
are implemented at the physical level.

The constructs are application-independent. Constructs which are specific to
a particular application domain (such as CASE) have either been generalized
(e.g. synchronization and context), or omitted.

• The constructs are high-level, allowing users to access versioned data in
exactly the same non-procedural way as unversioned data.

We also considered the semantics of versioning applications, and saw that version
sets often form a multidimensional space. We then showed how such semantics can
be declared using dimension types, and accessed by giving the desired coordinates
in that space. This approach led to semantically-based configuration specification
and a framework for specifying how default versions are chosen.

104

There are several issues that require further exploration. Query optimization
strategies have not yet been examined. For example, configuration specification can
involve a substantial amount of aggregation, and a straightforward evaluation of
such queries may not be efficient. Can the standard relational techniques (such as
magic sets) be used, or are other strategies necessary?

We also need to examine the physical strategies used to store versions. CASE
systems store versions as differential files based on the version hierarchy; historical
database systems use techniques based on the semantics of time intervals; and CAD
systems use still other techniques. A more careful study of these implementation
strategies is necessary. In particular, we need to understand better when a given
storage strategy is useful and the extent to which different strategies can be combined.
The possibility of using indexes also needs consideration. Ultimately, we would like
a database designer to be able to declare storage: strategies for versioned types
similarly to the way it is done with relations.

This article has been concerned with encoding the basic ideas of versioning and
configuration management into a data model. There are many features related to
versioning that we have not had the time to examine. For example, CAD systems
provide change notification, schema evolution, and checkin/checkout; CASE systems
provide incremental compilation; and historical systems provide operators on time
intervals. Each of these features needs to be reexamined in the light of our model.
Are the ideas application-independent, or do they involve some special properties
of the application? Are there general concepts that are missing from our current
model? For example, do schema versions have special requirements that are not
handled by dimension types? For that matter, what would it mean for a dimension
type to be versioned?

References

Abiteboul, S. and Bonner, A. Objects and views. Proceedings of the ACM-SIGMOD
Conference, Denver, 1991.

Agrawal, R. and Jagadish, H. On correctly configuring versioned objects. Proceedings
of the Fifth VLDB Conference, Amsterdam, 1989.

Atwood, T. An object-oriented DBMS for design support applications. Proceedings
of the IEEE Computer Aided Technologies Conference, 1985.

Banerjee, J., Chou, H., Garza, J., Kim, W., Woelk, D., Ballou, N., and Kim, H.
Data model issues for object-oriented applications. ACM Transactions on Office
Information Systems 5(1):3-26, 1987.

Batory, D. and Kim, W. Modelling concepts for VLSI CAD objects. ACM Transac-
tions on Database Systems 10(3):322-346, 1985.

Beech, D. and Mahbod, B. Generalized version control in an object-oriented data-
base. Proceedings of the Fourth IEEE Data Engineering Conference, (Los Angeles
CA, Feb. 1988), pp. 14-22.

VLDB Journal 3 (1) Sciore: Versioning and Configuration Management 105

Belkhatir, N. and Estublier, J. Experience with a data base of programs. Proceedings
of the ACM SIGSOFT-SIGPLAN Symposium on Practical Software Development
Environments, 1986.

Biliris, A. Database support for evolving design objects. Proceedings oftheACM/
IEEE Design Automation Conference, 1989.

Biliris, A. Modeling design object relationships in PEGASUS. Proceedings of the
Sixth IEEE Data Engineering Conference, Los Angeles, 1990.

Carey, M., DeWitt, D., and Vandenberg, S. A data model and query language for
EXODUS. Proceedings of the ACM-SIGMOD Conference, Chicago, 1988.

Caruso, M. and Sciore, E. Meta-functions and contexts in an object-oriented database
language. Proceedings of the ACM-SIGMOD Conference, Chicago, 1988.

Chou, H.T. and Kim, W. A unifying framework for versions in a CAD environment.
Proceedings of the Twelfth VLDB Conference, Kyoto, Japan, 1986.

Chou, H.T. and Kim, W. Versions and change notification in an object-oriented
database system. Proceedings of the ACM/IEEE Design Automation Conference,
1988.

Clifford, J. and Croker, A. The historical relation data model (HRDM) and al-
gebra based on lifespans. Proceedings of the Thirteenth IEEE Data Engineering
Conference, Los Angeles, 1987.

Cohen, E., Soni, D., Gluecker, R., Hasling, W., Schwanke, R., and Wagner, M.
Version management in Gypsy. Proceedings of the ACM SIGSOFT-SIGPLAN
Symposium on Practical Software Development Environments, Boston, 1988.

Copeland, G. and Maier, D. Making smalltalk a database system. Proceedings of
the ACM-SIGMOD Conference, Boston, 1984.

Dittrich, K. and Lorie, R. Version support for engineering database systems. IEEE
Transactions on Software Engineering 14(4):429-437, 1988.

Gadia, S. A homogeneous relational model and query languages for temporal
databases. ACM Transactions on Database Systems, 13(4):418-448, 1988.

Hudson, S. and King, R. The cactis project: Database support for software envi-
ronments. IEEE Transactions on Software Engineering, 14(6):709-719, 1988.

Katz, R. Toward a unified framework for version modeling in engineering databases.
ACM Computing Surveys, 22(4):375-408, 1990.

Katz, R. and Lehman, T. Database support for versions and alternatives of large de-
sign files. Proceedings of the IEEE Transactions on Sof~ware Engineering, 10(2):191-
200, 1984.

Katz, R., Chang, E. and Bhateja, R. Version modelling concepts for computer-aided
design databases. Proceedings oftheACM-SIGMOD Conference, Washington D.C.,
1986.

Kim, W., Bertino, E. and Garza, J. Composite Objects Revisited. Proceedings of the
ACM-SIGMOD Conference, Portland, OR, 1989.

Klahold, P., Schlageter, G. and Wilkes, W. A general model for version management
in databases. Proceedings of the Twelfth VLDB Conference, Kyoto, Japan, 1986.

106

Leblang, D. and Chase, R. Computer-aided software engineering in a distributed
workstation environment. Proceedings of the ACM SIGSOFT-SIGPLAN Sympo-
sium on Practical Sofflware Development Environments, Pittsburgh, PA, 1984.

Mahler, A. and Lampen, A. An integrated toolset for engineering software con-
figurations. Proceedings of the ACM SIGSOFT-SIGPLAN Symposium on Practical
Software Development Environments, Boston, MA, 1988.

Rose, E. and Segev, A. TOODM--A temporal object-oriented data model with
temporal constraints. Proceedings of the E/R Institute Conference on the Entity
Relationship Approach, San Mateo, CA, 1991.

Rowe, L. and Stonebraker, M. The POSTGRES Data Model. Proceedings of the
Thirteenth VLDB Conference, Brighton, England, 1987.

Sciore, E. Using annotations to support multiple kinds of versioning in an object-
oriented database system. A CM Transactions on Database Systems 16(3):417-438,
1991a.

Sciore, E. Multidimensional versioning for object-oriented databases. Proceedings
of the Second International Conference on Deductive and Object-Oriented Databases,
Munich, 1991b.

Shipman, D. The functional data model and the data langauge DAPLEX. ACM
Transactions on Database Systems, 6(1):140-173, 1981.

Snodgrass, R. The temporal query language TQUE, L. ACM Transactions on Database
Systems, 12(2):247-298, 1987.

Tansel, A. Adding time dimension to relational model and extending relational
algebra. Information Systems, 11(4):343-355, 1986.

Wu, G. and Dayal, U. A uniform model for temporal object-oriented databases.
Proceedings of the Eighteenth IEEE Data Engineering Conference Kyoto, Japan,
1992.

Zaniolo, C. The database language GEM. Proceedings of the ACM-SIGMOD Con-
ference, San Jose, CA, 1983.

