
VLDBJournal,3, 1-28 (1994), Walter A. Burkhard, Editor 1

QVLDB

Chronological Scheduling of Transactions
with Temporal Dependencies

Dimitrios Georgakopoulos, Marek Rusinkiewicz, and Witold Litwin

Received December 30, 1990; revised version received October 5, 1992; accepted August
13, 1993.

Abstract. Database applications often impose temporal dependencies between
transactions that must be satisfied to preserve data consistency. The extant cor-
rectness criteria used to schedule the execution of concurrent transactions are ei-
ther time independent or use strict, difficult to satisfy real-time constraints. On
one end of the spectrum, serializability completely ignores time. On the other
end, deadline scheduling approaches consider the outcome of each transaction ex-
ecution correct only if the transaction meets its real-time deadline. In this article,
we explore new correctness criteria and scheduling methods that capture temporal
transaction dependencies and belong to the broad area between these two extreme
approaches. We introduce the concepts of succession dependency and chronolog-
ical dependency and define correctness criteria under which temporal dependen-
cies between transactions are preserved even if the dependent transactions execute
concurrently. We also propose a chronological scheduler that can guarantee that
transaction executions satisfy their chronological constraints. The advantages of
chronological scheduling over traditional scheduling methods, as well as the main
issues in the implementation and performance of the proposed scheduler, are dis-
cussed.

Key Words. Transaction ordering, synchronization, execution correctness, concur-
rent succession, partial rollbacks.

1. Introduction

The concept of time is fundamental because it allows us to describe the order in
which events occur. We use time to determine the order of past events, synchronize

Dimitrios Georgakopoulos, Ph.D., is Senior Member of Technical Staff, Distributed Object computing
Department, GTE Laboratories Incorporated, 40 Sylvan Road, MS-62, Waltham, MA 02254. Marek
Rusinkiewicz, Ph.D., is Professor, Department of computer Science, University of Houston, Houston, TX
77204-3475. Witold Litwin, Ph.D., is Professor, University Paris 9, Place du Mal de Lattre de Tassigny, Paris,
France.

our current activities, and plan for future actions.. As the success of many of the
actions we perform depends on the earlier completion of other actions, database
applications often require transactions to be executed in a particular order to produce
correct results. However, this is not always easy to enforce (e.g., when transactions
are submitted by different users) and, more importantly, it rules out concurrent
execution of transactions that have temporal dependencies.

Many time-independent correctness criteria have been proposed in the literature
to assure the correctness of the execution of concurrent transactions. While transac-
tion management models based on such criteria successfully determine and resolve
value dependencies between transactions, they do not capture temporal transaction
dependencies. Time-independent correctness criteria guarantee consistency by (1)
defining what constitutes a conflict between transactions and (2) specifying how
conflicts should be resolved. Conflicts are defined differently, depending on the se-
mantic information captured by each transaction management model. Serializability
(Papadimitriou, 1986) allows transactions to issue only read and write operations
and assumes that two transactions conflict if they issue operations on the same data
item and at least one of these operations is a write. If a transaction reads a data
item a and later writes b, a value dependency betweerr a and b is assumed. Hence,
serializability does not take into account any application-specific information. Se-
mantic transaction models have been proposed to take into account the semantics of
the operations in defining and resolving value dependencies (Garcia-Molina, 1983;
Schwarz, 1984; Weihl, 1988, 1989; Korth and Speegle, 1988; Kumar and Stone-
braker, 1988; Farrag and Ozsu, 1989; Herlihy, 1990). These models assume that
transactions can issue operations semantically richer than reads and writes. Conflicts
are usually defined by providing an operation compatibility table that specifies all
possible value dependencies between transactions.

One of the basic reasons why most of the known correctness criteria cannot
capture temporal dependencies is that temporal transaction dependencies are not
always related to value dependencies. For example, consider two transactions T1
and T2 that have no value dependencies and do not access common data items. If,
due to a consistency constraint, the result of T2 is not useful unless T1 is successfully
completed before T2, such transactions have a temporal dependency but no value
dependencies (see the example in Section 2.1).

Another reason why most of the proposed correctness criteria cannot satisfy
temporal dependencies is due to the way they resolve conflicts. Most models
require that, for each pair of conflicting transactions, all operations issued by
the one transaction should precede the conflicting operations issued by the other
transaction, or vice versa. This is insufficient to satisfy temporal dependencies. For
example, if a temporal dependency requires a transaction T2 to be executed after
T1, all operations of T1 must precede the operations of T2. Schedules in which the
operations of T2 precede the operation of T1 should not be allowed.

Some issues related to temporal dependencies have been discussed in the
literature. The synchronization of site clocks and ordering of events in distributed

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 3

systems has been addressed by Lamport (1978). Rusinkiewicz et al. (1990), Leu et
al. (1990), and Ngu (1990) proposed approaches for the specification of temporal
transaction dependencies. Both of these methods construct a precedence graph
that reflects the ordering of transactions as defined by their temporal dependencies
and then determine the execution order of the depended transactions. Dayal et
al. (1990) proposed a transaction model that uses rules to specify the ordering of
transactions. For example, if a transaction S must be executed after the end of a
transaction T, this is specified by a rule that explicitly delays the execution of S
until the end of T. The basic limitation of the above methods is that all related
transactions must be known in advance. Furthermore, the problem of the concurrent
execution of transactions that have temporal dependencies was not addressed.

In this article, we introduce a new paradigm for transaction management that
captures both temporal dependencies and value dependencies between concurrent
transactions. To relax the requirement that temporally dependent transactions must
be known in advance, we associate with each transaction T a real time value
that indicates its order in time, called the value date of T. Because time provides
an external ordering mechanism, the transaction value dates specify the relative
order of the transactions in time. As long as new transactions are assigned value
dates that are later than the current time, they can be submitted even after the
execution of transactions with which they have temporal dependencies has begun. A
practical scheduler is proposed to guarantee that transaction executions satisfy their
temporal dependencies. Transaction value dates are generated by the applications
(i.e., externally to the scheduler). Temporally dependent transactions are assigned
value dates that reflect the temporal semantics of the application. On the other hand,
the value dates of transactions that have no temporal dependencies are selected to
optimize response times and scheduler throughput.

The proposed paradigm has many advantages over other traditional transaction
management approaches, even in applications in which transactions have no tempo-
ral dependencies. In addition to the absence of deadlocks and transaction restarts,
the chronological scheduling paradigm allows transaction cooperation and can cope
with long-lived transactions. Because these are basic requirements for support-
ing many non-traditional applications, the chronological scheduling paradigm can
be used to support such applications in database systems (DBSs) and distributed
object management systems (DOMSs) (Manola et al., 1992). In heterogeneous
multidatabase systems (MDBSs) (Litwin, 1988) and DOMSs that integrate multiple
autonomous systems by representing their data and functionality as objects, chrono-
logical scheduling does not violate the autonomy of the participating systems and
ensures consistency in many applications.

This article is organized as follows: Temporal transaction dependencies are clas-
sified and discussed in Section 2. In Section 3 we define the class of succession
dependencies and provide a theoretical framework to describe the concurrent ex-
ecution of transactions having such dependencies. Chronological dependencies and
value dates are defined in Section 4. In Section 5 we describe the chronological

scheduler, a mechanism that satisfies application-defined succession and chrono-
logical dependencies between concurrent transactions. In Section 6 we discuss
the implementation and performance of the chronological scheduler. In Section
7 we discuss the advantages of the chronological scheduling paradigm over other
traditional scheduling methods in the context of 'various applications.

2. Temporal dependencies

Temporal transaction dependencies are constraints on the execution of transactions
with respect to time or to the order in time. If temporal dependencies impose
constraints that explicitly refer to time, they are real-time dependencies. Temporal
dependencies of a single transaction can be only real-time dependencies. For
example, a constraint to start the execution of a transaction at 10:15, is a real-time
dependency. On the other hand, succession dependencies are temporal dependencies
that do not impose real-time constraints on the execution of transactions. They are
constraints on the ordering of transactions. In this sense, succession dependencies
only implicitly refer to time.

2.1 Succession Dependencies

Transactions that have succession dependencies may or may not access common
data items. For example, consider a situation in which a travel agent submits
two transactions (possibly to different reservation databases) to make flight and
hotel reservations for a customer. Such transactions have no value dependencies.
However, a succession dependency exists between them, because the hotel reservation
is useless if the flight reservation is not made. Dependent transactions in this
category usually carry out successive steps that accomplish a single logical task
that, for various reasons, cannot be executed as a single transaction. Succession
dependencies ensure correctness by preventing an out-of-order execution of these
steps. A succession dependency between two value-dependent transactions exists if
one of the transactions needs to use the effects of the other transaction to produce
correct results. For example, the transactions in a banking system that set a new
interest rate, compute the earned interest, and deposit it to the bank accounts must
be executed in this order to accomplish their objectives correctly. While succession
dependencies can impose an arbitrary collection of non-conflicting constraints on
the ordering of transactions, in a particular application they are defined by the
application semantics. If a succession dependency between transactions is not
satisfied, dependent transactions may produce invalid results in the same way that
the violation of serializability can produce inconsistent retrievals (e.g., an invalid
interest rate may be used to compute and display the interest earned by an account).
Furthermore, it is also possible that the violation of a succession dependency may
introduce inconsistencies in the database (e.g., the earned interest deposited in a
bank account may be based on an invalid interest rate).

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 5

We can argue that succession dependencies can be satisfied if all succession-
dependent transactions are grouped together in a single transaction or if we require
the user to submit them serially. These solutions are not always adequate for the
following reasons:

Succession-dependent transactions may be submitted by different users. For
example, the transaction that sets the interest rate and the transactions
that compute and deposit the earned interest in bank accounts are usually
submitted by different departments of a banking organization.

Succession-dependent transactions may be submitted to different database
systems. For example, if the access to the flight and hotel reservation systems
is controlled by independent database systems that do not participate in the
same MDBS, the transactions that make hotel and flight reservations cannot
be grouped in a single transaction. If the reservation databases participate in
the same MDBS, the MDBS has to submit the flight and hotel reservations
as different subtransactions and must deal with their temporal dependencies.

Predefined sets of fixed transactions may have succession dependencies.
To increase performance and security, many systems (e.g., automatic teller
machines, military systems, service ordering and provisioning systems) allow
the user to execute a limited number of predefined transactions. In such
Systems, logical units of work have to be composed by successive executions
of temporally dependent transactions.

The composition of succession-dependent transactions may result in long-lived
transactions (Gray et al., 1981; Garcia-Molina and Salem, 1987). Long-lived
transactions are undesirable because of their poor completion rate, their large
deadlock probability and the increased number of abortions and restarts they
cause to other transactions. Therefore, instead of grouping transactions with
succession dependencies into large long-lived transactions, it is more likely
that long-lived transactions will be broken down to a number of transactions
with succession dependencies (e.g., sagas; Garcia-Molina and Salem, 1987)
or activities of causally dependent, detached transactions (Dayal et al, 1990).

In many cases, succession-dependent transactions do not need to be exe-
cuted serially. For example, the transactions that perform flight and hotel
reservations can be interleaved. The only restriction is that the hotel reserva-
tion transaction should be committed after (and only if) the flight reservation
transaction is successfully committed. Similarly, the transaction that computes
the earned interest of bank accounts can be interleaved with the transaction
that sets the interest rate. To guarantee correctness in this case we only need
to make sure that the transaction that computes the earned interest sees the
interest rate produced by the transaction that sets it.

6

2.2 Chronological dependencies

Because time provides an external ordering mechanism, succession dependencies can
be always replaced by real-time dependencies. For example, consider the transactions
that set the interest rate and compute the earned interest of bank accounts as
described (Section 2.1). To satisfy the succession dependency of these transactions
it is sufficient to ensure that the transaction that sets the interest rate finishes its
execution at time t, and the transaction that computes the interest begins at time t I
t. Based on this approach, succession dependencies can be effectively transformed
into real-time dependencies. However, such real-time dependencies are not always
easy to enforce. In particular, while it is relatively easy to ensure that transactions
are started on time, there are serious theoretical and practical problems in ensuring
that transactions meet their real-time deadlines. Deadline scheduling problems have
been investigated, by Abbott and Garcia-Molina (1992), among others, and we do
not address them here. The difficulties in scheduling real-time transactions make
it desirable to define a new subclass of real-time dependencies that do not impose
hard deadline constraints on the transaction execution, and in addition can replace
succession dependencies. We call such dependencies chronological dependencies.

A chronological dependency is defined by specifying the start time and the
expected completion time of a transaction. For example, let us assume that the
bank interest changes every week at time t. The chronological dependency of
the transaction that sets the interest rate is defined by specifying t as its expected
completion time. The start time of the transaction depends on its expected duration.
In a chronological dependency, the expected completion time of a transaction
determines its relative (chronological) order with respect to other transactions having
chronological dependencies. Thus, chronological dependencies define a succession
dependency. Succession dependencies defined by chronological dependencies are
called chronological succession dependencies and they are satisfied only if transactions
produce their effects in the chronological order specified by their expected completion
time. Therefore, chronological dependencies are satisfied even if transactions do
not complete by their expected completion time.

Succession dependencies between transactions can be reduced to a chronological
dependency. Consider again the transactions that set and compute the interest of
bank accounts. By specifying t as the expected completion time of the transaction
that sets the interest rate and any time after t as the expected completion time
of the transactions that must use the new interest rate, we reduce the succession
dependency between these transactions to a chronological dependency. If the
chronological dependencies are satisfied, the transactions that compute the interest
use the new interest rate and the succession dependency is also satisfied.

In addition to replacing succession dependencies, chronological dependencies
specify constraints on the start time of transactions and can be extended to capture

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 7

any other real-time dependency that does not impose hard deadline constraints
on the transaction execution. With the exception of real-time control systems, it
is possible to reduce most temporal dependencies to chronological dependencies,
particularly in applications where deadline constraints are less stringent.

3. Theory of Concurrent Successions

A theory to analyze the concurrent execution of transactions with succession de-
pendencies can be formulated similarly to the serializability theory (Papadimitriou,

1986). A succession dependency SD: T1 ~ T2 _L~ . . . ~ Tk imposes a total order
on the execution of the transactions T1 , . . . , Tk.

Definition 1. Transaction Ti succeeds transaction Zi_ 1 in SD (Ti-1 ~ Ti, 1 < i <
k), if Ti-1 performs its write operations earlier in time than Ti. Furthermore, if
Ti reads data items which Ti-1 writes, T i succeeds Ti-1 only if Ti reads all such
data items after Ti-1 writes them.

A schedule satisfies a succession dependency SD if it preserves the "succeeds"
relationship among the transactions in SD. Schedules that satisfy SD are called
successions with respect to SD.

Definition 2. A succession (S SD) with respect to a succession dependency SD: T1
8 S

T2 ---~ . . . ~ Tk is a schedule that preserves the "succeeds" relationship among
the transactions in SD.

A serial schedule that is also a succession is called a serial succession.

Definition 3. A serial succession (SS SD) with respect to a succession dependency

SD: T1 ~ T2 ~ . . . ~ Tk is a serial schedule in which the transactions in SD
issue their operations as follows: T1 issues its operations earlier in time than T2, T2
issues its operations earlier in time than T3 , . . . , Tk-1 issues its operations earlier
in time than Tk.

To ensure the "succeeds" relationship when the transactions in a succession
dependency SD are interleaved, a correctness criterion stronger than serializability is
required for the following reasons:

• not all serial schedules of the transactions in SD are serial successions with
respect to SD; and

• concurrent schedules exist that are conflict equivalent I (Bernstein et al., 1987)
to a serial succession with respect to SD, but they do not satisfy SD (i.e.,
they are not successions with respect to SD).

To illustrate these problems consider the following :serial succession with respect to

a succession dependency T1 ~ T2:

saT1 -ff-~T2; WT 1 (a) WT1 (b) wT~ (c)

Consider also the following schedules of the transactions in SS TI-~T2:
HI: WT 2 (C) WT1 (a) wT1 (b)
H2: WTl(a) wT2(c) WTx(b)

Hi is serial. However, since T2 performs its operations before T1, H i is not
8 s

a succession with respect to T1 ---~T2. H2 is conflict equivalent to SS T ~ T2.

However, T2 writes before T1. Therefore, the succession dependency T1 ~ T2 is
not satisfied. The basic problem here is that the conflict equivalence relation as
defined in serializability theory is not sufficient to ensure that a succession dependency
is satisfied even if a schedule is equivalent to a serial succession. Therefore, we
introduce a stronger equivalence relationship:

Definition 4. We define two schedules H and H ~ to be s-equivalent (succession
equivalent) if:

1. They are defined over the same set of transactions that have issued the same
operations.

. The order of conflicting operations issued by non-aborted transactions is the
same in both schedules. That is, for any pair of conflicting operations oi and
oj issued by non-aborted transactions Ti and Tj respectively, if oi precedes
oj in H then oi precedes oj in H I.

. The order of the non-conflicting write operations issued by non-aborted
transactions is the same in both schedules. That is, for any pair of such
operations oi and oj issued by non-aborted transactions Ti and Tj respectively,
if oi precedes oj in H then oi precedes oj in H I.

In the definition above, condition 2 ensures serializability. Condition 3 is needed
to preserve the "succeeds" relationship among the transactions in a succession that
issue non-conflicting write operations. Using the definition of succession equivalence
we can now state the requirements to satisfy a succession dependency by defining
a succession as follows:

1. As defined by the serializability theory.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 9

Definition 5. A concurrent schedule is a succession S SD with respect to a succession

dependency SD: T1 --% 7"2 --% • • • ~ Tk, if its committed projection 2 is s-equivalent
to a serial succession SS SD with respect to SD.

4. Chronological Dependencies, Successions, Value Dates

In Section 2.2 we described chronological dependencies as a class of real-time
dependencies that do not place hard deadline constraints on transaction execution.
In this section, we formally define chronological dependencies using value dates. We
also discuss how value dates reduce arbitrary non-conflicting succession dependencies
to a chronological succession dependency.

A chronological dependency CDi of a transaction Ti is defined by a pair of
real-time values (di, vdi). The first of these values specifies the expected duration
di of Ti. A good estimate of di, is the time required to execute Ti in the absence
of any concurrency control. The second value CDi associates with Ti is called the
value date vdi (Litwin and Tirri, 1988, 1989; Litwin and Shan, 1991) of Ti and
indicates the expected completion time of Ti. Given a transaction Ti with value
date vd i there is no guarantee that Ti will complete its execution before vdi. The
only information vdi provides is that the execution of Ti is likely to last until vdi.
Given the start t ime si of Ti (i.e., the time on which Ti should start its execution),
the simplest way to determine vdi is to compute si + di.3

In addition to placing the above constraints on transactions, chronological
dependencies CD1, CD2, . . . , CDk of transactions T1, 7"2, . . . , Tk also define a
succession dependency among these transactions as follows:

Definition 6. L e t v d (T 1) < vd(T2) < . . . < vd(Tk) , k > 1. To satisfythe chronological
dependencies CD1, C D 2 , . . . , CDk we must also satisfy the succession dependency

CSD: T 1 --% T2 --% . •. - ~ Tk. We call CSD the chronological succession dependency
of T1, T2, . . . , Tk with respect to CD1, CD2, . . . , CDk.

Hence, the value date of each chronologically dependent transaction determines
its order in the chronological succession dependency. This is similar to the way
timestamps specify the serialization order of the transaction in timestamp ordering
(Bernstein et al., 1987). However, value dates are different from timestamps in the
following aspects:

1. they define the order in which transactions should be completed;

2. Given a schedule H, its committed projection is the schedule obtained from Hby deleting all operations
that do not belong to transactions committed in H (Bernstein et al., 1987).

3. An alternative way to define CDi is by specifying (si, vdi). Given vdi and si, we can easily determine di
= vd i - s i. Therefore, either d i or s i can be used to define CD i and both definitions are equivalent.

10

2. they are specified by the applications, not by the scheduler;

3. they carry additional information about the expected duration of each trans-
action.

The basic difference between a succession dependency SD: T1 ~ T2 ~ . . .
Tk and a chronological succession dependency CSD is in the way they are specified.
Succession dependencies can be specified by explicitly providing the precedence
graph of the dependent transactions (Leu et al.:, 1990; Ngu, 1990). The main
disadvantage of having to provide a precedence graph of the transactions with
succession dependencies is that all such transactions must be known in advance.
On the other hand, a chronological succession dependency is specified by simply
providing the value dates of the transactions. Because chronological successions
are specified by referring to the order that is defined externally by time, there is
no need to know all dependent transactions in adv~mce. A chronological succession
dependency can be extended at any time by specifying new dependent transactions.
The only requirement is that transactions cannot be assigned value dates that are
earlier than the current time.

Given an acyclic precedence graph of transactions with succession dependencies,
it is always possible to derive a transaction execution sequence that satisfies them.
This is essentially a problem of topological sorting and it can be solved in several
ways, including:

• Leu et al. (1990) proposed a method that uses Petri-nets to determine the
execution order of transactions.

Ngu (1990) proposed a synthesis procedure, called the tableau method.
This method generates a dependency graph that gives all possible execution
sequences of transactions.

• Dynamic programming methods, such as PERT charts, can be also used.

Given a transaction execution sequence, it is relatively simple to ensure that the
value dates of the transactions are generated according to it. Therefore, arbitrary non-
conflicting succession dependencies can always be expressed as a chronological succession
dependency.

Because succession dependencies can be reduced to a chronological succession
dependency, we investigate how chronological succession dependencies can be sat-
isfied in the following discussion. In particular, we describe a transaction scheduler
based on the correctness criterion proposed in Section 3. The basic requirements
for such a scheduler are the following:

1. Because transactions in a chronological succession may be started before the
previous transactions in the succession are completed, the transactions in a
chronological succession have to be interleaved.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 11

2. Independently of their actual start and completion times, concurrent transac-
tions in a chronological succession must perform their conflicting operations
and their non-conflicting write operations in the order determined by their
value dates.

In Section 1, we discussed that most correctness criteria used to provide concurrency
control do not satisfy the above requirements. Therefore, none of the traditional
schedulers (Eswaran et al., 1976; Bemstein et al., 1987; Kung and Robinson, 1981)
can satisfy chronological succession dependencies.

5. The Chronological Scheduler

The chronological scheduler or chrono-scheduler is a transaction management mech-
anism capable of enforcing application-defined chronological dependencies between
concurrent transactions. While there may be transactions that do not actually
have any such dependencies, the chrono-scheduler views a priori all transactions
as being part of a "global" chronological succession. This is similar to the order-
ing of elementary events according to their occurrence in time, even if in some
cases the order of a particular event in time is not important. The order of each
transaction in the "global" chronological succession dependency assumed by the
chrono-scheduler is specified by its value date. Clearly, if all transactions issue
their conflicting operations and their non-conflicting write operations in value date
order, the "global" chronological succession assumed by the chrono-scheduler and
the application-defined chronological succession dependencies are all satisfied (i.e.,
correctness is assured). However, there is no guarantee that transactions will issue
their operations in value date order and transactions are not required to predeclare
the data items they access. Thus, there is no way to determine if a particular
operation can be processed next. To deal with this problem the chrono-scheduler
uses the same transaction synchronization approach as the time warp mechanism
(TWM) (Jefferson and Motro, 1986).

TWM has been proposed first for controlling the sequence of events in distributed
discrete event simulations (Jefferson, 1985a, 1985b) and was later extended for
operating systems (Jefferson et al., 1987), process synchronization, and concurrency
control in database systems (Jefferson and Motro, 1986). The database variation
of TWM views transactions and data items as objects that encapsulate sequential
processes and communicate through timestamped messages. A data object in TWM
is a simple program that processes read and write messages concurrently. Transaction
objects have a much more complex behavior. They execute arbitrary transaction
programs, accept messages from the application and send read and write messages
to data objects. TWM uses partial transaction and data object rollback for the
synchronization of concurrent transactions. To implement partial rollback, objects
in TWM maintain an input queue, an output queue, and a state queue. Messages
received by an object are inserted in its input queue. Objects process input messages

12

in timestamp order. When a message changes the state 4 of an object, the new
state is recorded in the object state queue. In addition to changing the state of
the object, the processing of an input message may cause one or more messages
to be sent to other objects. Before sending such a message, the object creates
and inserts a corresponding ant imessage (Jefferson and Motro, 1986) in its output
queue. Antimessages are sent only as a part of an object rollback. Whenever an
object receives the antimessage of a message m it undoes the effects of m.

A transaction execution begins when a transaction object receives an invocation
message from the application. TWM stamps the message with a timestamp that
becomes the timestamp of the transaction. Subsequent messages originating from
the same transaction carry the transaction timestamp. Objects process messages
they have received in timestamp order. A synchronization conflict in TWM arises
when a new message arrives out of order, that is, has a timestamp ts that is less
than the timestamp of the last message the object has already processed. TWM
neither delays read and write operations so they can be processed in timestamp
order, nor aborts and restarts transactions when they issue out-of-order operations.
Whenever a new message with timestamp ts arrives at a data object out of order,
TWM performs a t ime warp that consists of the" following actions: First, the object
that received the out-of-order message finds the state associated with the largest
timestamp that is less than ts and discards all states with greater timestamp from
its state queue. This action rolls back the object to a time just before ts. Next,
the object sends all antimessages that have been recorded earlier in its output
queue and have timestamps greater than ts. These antimessages cancel the effects
of messages incorrectly sent to other objects. Canceling the effects of an incorrect
message at some object may also require a partial object rollback there. Finally, the
object processes the new message and starts re-executing messages with timestamps
greater than ts, again in timestamp order. When transactions complete all their
operations they are committed in timestamp order.

The primary concern about TWM is that the number of rollbacks may be large
and very costly. In particular, situations where TWM will allow a large number
of operations to be executed and then re-execute them, in effect making ten steps
forward and nine backward, are possible in principle. However, such situations can
be predicted and the circumstances under which they occur will cause performance
problems to most concurrency control mechanisms. For example, a large number
of rollbacks may occur in TWM if many short transactions conflict with a long
transaction. Under the same circumstances a 2PL scheduler will either force short
transactions to wait until the long transaction finishes its execution or the long
transaction will get into deadlock problems. On the other hand, schedulers that
use timestamp ordering or optimistic concurrency control will repeatedly abort and
restart the conflicting transactions until the long transaction is able to commit.

4. The state of a transaction object is the state of its process, while the state of a data object is its value.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 13

Because TWM and most other schedulers do not take into account the transaction
duration, they cannot deal with these problems. These concerns have been addressed
in the design and implementation of the chrono-scheduler.

The main difference between the chrono-scheduler and TWM is that in the
chrono-scheduler transactions are assigned value dates by the application, while
TWM transactions are assigned timestamps that are generated by the scheduler.
This allows the chrono-scheduler to satisfy chronological transaction dependencies
and to take into account the expected duration of transactions to avoid unnecessary
rollbacks. (The use of value dates in reducing the number of rollbacks in the
chrono-scheduler is discussed further in Section 6.) Another difference is that the
chrono-scheduler does not assume that transactions and data items are objects
that encapsulate processes. The chrono-scheduler and TWM also differ in several
implementation aspects. The chrono-scheduler does not keep a record of all
input and output messages, and requires simpler data structures than TWM to
support partial rollback. To minimize the cost of partial transaction rollbacks, the
chrono-scheduler implementation takes into account the process requirements of the
transaction programs. (Optimizations of checkpointing are discussed in Section 6.)
However, despite their differences, both schedulers use the basic time warp principle
to resolve synchronization conflicts, the same way different locking schedulers use
blocking to assure database consistency.

5.1 Chrono-scheduler model

To support time warps, the chrono-scheduler uses t ime warp stub processes. For
simplicity we assume that a transaction time warp stub (TTWS) is associated with
every uncommitted transaction and that a data item time warp stub (DTWS) is
associated with each data item. ~ The chrono-scheduler does not allow transactions
to read and write data items directly. Instead, transactions issue their operations on
their corresponding TTWSs, the TTWSs forward the operations to the appropriate
DTWSs and only DTWSs access the data. The transaction processing model of the
chrono-scheduler is shown in Figure 1.

A data item time warp stub which is associated with a data item a (DTWSa)
maintains the following data structures:

• an operation queue to record the read and write operations on a that have
been issued by uncommitted transactions,

• a version queue to store uncommitted versions of a, and

• a t ime warp vector to keep track of the transactions that must be rolled back
in the event of a time warp.

5. For efficiency reasons, several transactions or several data items can be associated with a single time warp
stub.

14

Figure 1. Chrono-sch,~duler transaction processing model

u s e r f i b e r

,I

I I process ~- data transfer

Q ~ rollback to committed data
checkpoint

The operation queue and the version queue of the data stubs are similar to the
input and state queue of the data objects in TWM. Unlike objects in TWM, data
stubs do not keep track of output messages and do not maintain output queues.
The time warp vector is used to record the IDs of transactions that must be rolled
back during a time warp. All data stub queues are maintained in ascending value
date order.

A transaction time warp stub associated with an uncommitted transaction Ti
(TTWSi) maintains the following information:

• an operation log to keep a record of the operations issued by Ti,

• a state queue to record checkpoints of the transaction process, and

• a t ime warp vector to keep track of all data items that must be rolled back in
the event of a time warp.

Transaction stubs append checkpoints of the transaction process in the state
queue in the order they take them. "ITWSs maintain no input queue; unlike
TWM, the chrono-scheduler assumes that it has no control over transaction input.
Operations are inserted in the operation log according to the order they are issued
by the transaction.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 15

5.2 Processing On-Time Operations

To illustrate the processing of an operation, suppose that a transaction Ti issues
an operation oi on a data item a. To process oi, the transaction time warp stub
TTWSi of Ti sends a message containing oi to the time warp stub DTWSa that
is associated with a. On receiving the message, DTWSa inserts oi in its operat ion
queue in a position determined by the value date vdi of the transaction Ti that
issued it. Because we assume here that Ti issued oi in value date order, DTWSa
appends oi at the end of the queue. If oi is a read operation, DTWSa simply returns
the latest version of a to Ti. If oi is a write operation, it causes the creation of a
new version of a. Because all messages that arrive at DTWSa carry operations on a,
we use rT~ and WT~ (vai) to denote read and write operations issued by a transaction
Ti. The new version of a that is created by a write operation of Ti is denoted by
vai.

Figure 2 shows the effects of a write operation WTs(VaS) which is issued by
transaction Ts and arrives at DTWSa in a correct value date order. We assume that
transactions T1, T2, T3, T5 and T7 with value dates Vdl < vd2 < vd3 < vd5 <
vd7 have performed their operations and have created versions val, va3 and va7
before the arrival of WTs(vas). If T8 issues a read operation instead of wTs(vas),
then va8 is not created and vaT, the latest version of a, is returned to T8.

5.3 Processing Late Operations

Let us assume that a transaction Ti with value date vdi issues an operation oi on a
data i tem a that arrives out of value date order at DTWSa. Depending on whether
oi is a read or a write operation there are two possible cases. If oi is a read
operation, DTWSa returns the latest version of a with value date earlier than vdi.
This is similar to the multiversion concurrency control (Reed, 1983). For example,
if a read operation rT4 with value date vd4 arrives at the data stub depicted in
Figure 2, DTWSa returns va3 to T4.

If oi arrives late at DTWSa and it is a write operation WT~(vai), it triggers a
time warp. A time warp in the chrono-scheduler consists of partial rollbacks of
data items and transactions. Data items are rolled back by their data stubs while
transaction rollbacks are performed by the transaction stubs. To carry out the time
warp that is caused by a late write operation WTi(vai), the data and transaction
stubs perform the following actions:

1. Partial data item rollback: DTWSa rolls back the data item a to its latest
version with value date earlier than vdi. Next, DTWSa performs WT~ (vai) and
resumes the processing of new operations on a in value date order. If any
other transaction Tj with value date vdj > vdi has read or created a version
of a that was discarded during the the rollback of a, Tj must be rolled back.
To initiate the rollback of Tj, DTWSa sends a rollback message to TTWSj,
The data i tem stub actions that rollback a data i tem are described in Section
5.3.1.

16

Figure 2. Operation wr8 (va8) in correct value date order at DTWSa

DTW~
i !

! I
transaction rollbacks i s

. J i

. J

t ime warp

vector

L

operations

I
I

I
I

vds i u~r,(vas

vdr I
!

vds ~ rT.
i

vda ' wr,(vas)
I
I

v d ~ z r T 3
=

vdt ~ U,T,(val)
I

operation queue

"'x
m II

committed
data

read data

data

versions

vd8 vas

vdr vat
m

vds vas

v d z v a z

@
. Partial transaction rollback: On receiving a rollback message from DTWSa,

TTWSj rolls back the process of transaction Tj to its latest state immediately
before it issued its first operation on a. If Tj has performed a write operation
on another data item b after performing its operation on a, b must be also
rolled back to its latest version immediately before vdj (i.e., its value before
it received the write operation from Tj). To initiate the rollback of b, TTWSj
sends a rollback message to DTWSb. The rollback of a transaction by its
transaction stub is explained further in Section 5.3.2.

. Cascading partial rollbacks: Transaction stubs that receive rollback messages
behave like TTWSj in item 2, while the data item stubs behave like TTI¥Sa
in item 1.

A clarification must be made here. When a message arrives at a data- or a
transaction time warp stub it causes an interrupt. If no other operation is currently
executed there, the newly arrived message is processed immediately. Otherwise,
the value date of the operation currently being serviced is compared with the value
date of the operation in the message. If the value date of the new operation is

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 17

Figure 3. Operation WT4 (va4) Arrives Out of Value Date Order at DTWSa

t n ' w s , A
! !

! !

transaction rollbacks i s
. - - J |

time warp
vector

T5

Tr

rs

operat ions

- , I
vd~ rT3 I

', I "
operation queue

read data

data
versions

vd,t va4

ud3 va3

vd, va,

committed ~
data

found to be later, or the new operation is a read, the interrupted execution resumes.
Otherwise, the new operation is a late write and a time warp begins immediately.
This is required to avoid waiting for the completion of unnecessary computations.

5.3.1 Partial Rollback of Data Items. To describe in detail how DTWSa rolls back
data item a to its latest version with value date earlier than vdi, let us assume that
the version queue of DTWSa contains versions val,va2, . . . , yam, with value dates
vdl < v d 2 . . . < vdm, 1 < m. Whenever a message containing a write operation
WT~(vai) with value date vdi arrives at DTWSa and vdl < rti vd2 • • • < vdt < vdi <
vdt+l . . • < vdm, 1 < l < m, DTWSa discards all versions of a with value dates
greater than vdi, i.e., vat+b val+2, • . . , vain are removed from the version queue.
This makes at (the version of a with the latest value date that is earlier than vdi)
the current version of a. Similarly, all operations with value dates greater than vdi
are removed from the operation queue. Next, DTWSa performs wT~(vai) on a and
resumes the processing of new operations in value date order. Figure 3 illustrates
the effects of a write operation wT4 (va4) after it has been processed by the DTWSa
(DTWSa before the processing of wT4(va4) is depicted in Figure 2).

18

Now assume that transactions T1, T2, . •., Tn, with value dates later than Ti's,
have performed operations on a before Ti issues WT~ (vai). To undo the performed
computation, all these transactions must be rolled back to their state immediately
before they issued their first operation on a. To initiate the rollback, DTWSa places
the identifiers of the transactions T1, T2, . . . , Tn in its time warp vector, discards
their operations from the operation queue and then sends rollback messages to their
time warp stubs to inform them about the expected rollback. For example, after
the data stub depicted in Figure 3 rolls back a and processes WT4(va4), DTWSa
places the identifiers of the transactions Ts, TT, and T8 in its time warp vector and
sends rollback messages to their time warp stubs. The actual rollback of each of
these transactions is accomplished by its time warp stub.

5.3.2 Partial Rollback of Transactions

To explain the actions of transaction stubs in the event they receive a rollback
message from a data stub, let us assume that TTWSj (the transaction stub of Tj)
receives a rollback message from DTWSa. To support a unit of rollback smaller
than a transaction, the time warp stub of each transaction takes a checkpoint of the
transaction process every time the transaction issues an operation on a data item
for the first time. More specifically, when a transaction Tj issues its first operation
oj on a data item a, TTWSj takes a checkpoint C] of Tj and then forwards oj to the
DTWSa. Hence, the number of checkpoints taken per transaction is equal to the
number of data items it accessed. In the event TTWSj receives a rollback message
from DTWSa, TTWSj finds C~ in its state queue and restores it as the current state
of the transaction process (the state of a transaction process is discussed further
in Section 6.2). This rolls back Tj to its state immediately before it accessed a.
However, rolling back the transaction process is not sufficient to undo the effects
that the write operation Tj has performed on other data items from the time it
issued its first operation on a until the time TTWSj received a rollback message
from DTWSa. To determine all such write operations, TTWSj keeps a log of the
operations issued by Tj. To undo their effects, TTWSj sends rollback messages to
all data stubs that have processed them. Rollback messages carry the value date
vdj of Tj. On receiving a rollback message from the transaction stub of Tj, data
stubs roll back the data items to their version immediately before they perform any
write operation issued by Tj, that is, to their latest version with value date earlier
than vdj. The behavior of data stubs that receive a rollback message is similar to
the behavior of DTWSa when it receives a late write operation.

To illustrate the behavior of a transaction stub in the event of a time warp,
consider a transaction T7 that reads the value of tile data item a and then writes b
and reads c. Before processing each of these operations the transaction time warp
stub of T7 (TTWS7), takes a checkpoint of the process of T7 and records it in its
state queue. In addition, TTWS7 records all operations of T7 in its operation log.
Figure 4 illustrates TTWS7 after the completion of these actions. On receiving the
rollback message from DTWSa (Figure 3), TTWS7 searches its state queue and finds

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 19

Figure 4. TTWS7 After Processing Operations on Data Items a, b and c.

TrWS7
current
state

I -
state
queue

time warp
vector

log

(1'
!

C 17"7

b ',w7(vbr)
G It7

read data operations data~/~ro:lbacks

C~, the checkpoint of T7 taken immediately before T7 issued its first operation on
a. TTWS7 discards all checkpoints taken after C~ and restores C~ as the current
state of TT. This rolls back T7 to its state immediately before it accessed a. Before
resuming the processing of TT, TTWS7 searches its log to determine whether T7 has
performed any write operations after reading a. It discovers the write on b, places
the ID of b in its time warp vector, and sends a rollback message to DTWSb with
value date vdT. Figure 5 illustrates TTWS 7 after the completion of these actions.

While undoing write operations may require additional data and transaction
rollbacks, undoing read operations is accomplished by the rollback of the transaction
process. If Tj has performed read operations after it issued its first operation on
a, it "forgets" the values of data items it read when its process is rolled back to
checkpoint C~. If, after resuming its execution from C~, Tj needs the values of
data items that were discarded during the rollback to Cj, Tj must issue new read
operations.

5.4 Implicit Commitment and Correctness

Transactions in the chrono-scheduler are implicitly committed as they get older without
the explicit negotiation and agreement of the participants that is required by 2PC
(Gray, 1978) and other traditional commitment protocols (Skeen, 1982a, 1982b).
The commitment time of transactions in the chrono-scheduler depends on the global
value date (GVD). If the chronological scheduler uses a single real-time clock (e.g.,
in a centralized system), then the GVD is its current value. In distributed systems
in which all site clocks are kept precisely synchronized, the GVD can be defined as
the current value of any site clock. One way to keep the site clocks synchronized is
to use a variant of Lamport's scheme (providing that value dates are not used in any
way to set the values of the local site clocks) (Lamport, 1978). Alternatively, the

20

Figure 5. TTWS7 Immediately After a Rollback by DTWS~

TTWSr

time warp]
state current log vector I

- V 2 read data opi~rations data ro acks

site clocks can be kept aligned by using the clock synchronization utilities available
in many operating systems. In distributed environments in which clocks cannot be
synchronized (because of site autonomy or geographical time difference), the GVD
is the earliest of the values of all the real-time clocks used by the chrono-scheduler to
determine whether transactions have reached their value dates. The GVD becomes
similar to the global virtual time in TWM (Jefferson and Motro, 1986) if it is defined
as the instance of real time that is the minimum of:

• The earliest value date assigned to an uncommitted transaction.

• The earliest possible value of all the real time clocks that can be used as
transaction value dates.

Because no operation can cause a rollback to a time earlier than its value date
and no new transaction can have an earlier value date than GVD, it is guaranteed
that no data item or transaction will ever be rolled back to a value date earlier
than the earliest value date assigned to an active transaction. Therefore, assuming
that active transactions terminate normally, the chrono-scheduler makes progress.
A similar claim was proven by Jefferson (1985b) and Jefferson and Motro (1986).

The chrono-scheduler commits a transaction Ti with value date vdi if it satisfies
the following requirements:

• Ti has finished its execution,

• GVD > vdi, and

• all transactions with value dates earlier than vdi are already committed.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 21

To support implicit commitment, the chrono-scheduler must keep track of all
active transactions. When a transaction Ti is committed, the data item versions
it produces overwrite the previously committed values and become visible to the
outside world. Furthermore, all records related to Ti are no longer needed and can
be discarded. As long as Ti is uncommitted its effects are buffered in the version
queues of the appropriate time warp stubs and are not visible to the outside world.

The chrono-scheduler satisfies chronological and succession dependencies for
the following reasons:

• Conflicting operations are executed and re-executed by the time warp stubs
until they are performed in value date order.

• Although non-conflicting write operations may be performed in an order
different than their value date order, their results do not become visible before
the transactions that issued them commit. Thus, the implicit commitment
of transactions in value-date order guarantees that non-conflicting write
operations appear to the outside world as if they have been performed in
value date order.

6. Implementation and Performance of Chrono-scheduler

A prototype of a distributed chrono-scheduler has been developed as an object-based
component of a DOMS at GTE Laboratories Incorporated. The chrono-scheduler
prototype runs on several UNIX platforms. Transactions and stubs run as UNIX
processes in a network of workstations and communicate by exchanging TCP/IP
messages. Below, we will discuss the main issues affecting the performance of the
chrono-scheduler, namely the choice of the value dates for transactions and the
checkpointing of the transaction processes.

6.1 Choice of Transaction Value Dates

A performance analysis of TWM is presented by Berry (1986). Assuming that
transactions have no chronological dependencies and their value dates are selected
the same way as timestamps, the behavior and performance characteristics of TWM
and the chrono-scheduler are identical.

While the correctness of the chrono-scheduler is not affected if timestamps
are used as value dates of transactions that have no chronological dependencies,
the commitment of younger, shorter transactions must wait until older, longer
transactions have committed. Furthermore, younger, shorter transactions are subject
to rollbacks triggered by conflicting older, longer transactions. To reduce rollbacks
and transaction waiting in these situations, value dates should reflect the duration of
the transactions. For example, if transactions have no chronological dependencies
and the value date of each transaction is generated by adding a relatively accurate

22

Figure 6. Effects of Value Date Assignmenlts on Transaction Execution

D

q t2 t3 t4 tz t ime

~ 2 (.)

, .~(.) , , , '~(.)

!
!
!
!
!

t5 te

estimate of its duration to the time it begins its execution, the chrono-scheduler
performs better than TWM.

To illustrate this, consider the concurrent execution that is depicted in Figure 6.
Transaction T1 starts its execution at time tl and finishes all its operations at time t4.
Transactions T2 and T 3 start their execution at time t2 and t3, respectively. At time
t5, T3 finishes all its operations while T2 continues-its execution. Assuming that
the transaction value dates are selected the same way as timestamps (i.e., vdl = tl,
vd2 = t2 and vd3 = t3), the chrono-scheduler behaves like TWM. In particular, T3
cannot commit until T2 commits. Furthermore, any write operation that is issued
by T2 after t5 and conflicts with an operation performed earlier by T3, causes a
transaction time warp that partially rolls back ~... For example, if T3 performs
r3(a) before ts, and T2 issues w2(a) at time t 6 ~ t5, the write operation triggers a
time warp and the chrono-scheduler partially rolls back T3 to its state immediately
before it issued r3(a) for the first time. When the time warp is completed, T3 starts
re-executing from the point it issues r3(a).

Suppose now that the value dates of the transactions reflect their duration (i.e.,
vdl = t4, vd2 = t7, and vd3 = ts). In this case, r3(a) and we(a) are executed in
value date order, there is no time warp, and T 3 commits at time ts. Therefore, if
the value date of each transaction reflects its duration, the chrono-scheduler never
rolls back transactions after they finish all their operations. Furthermore, there is
no transaction waiting. Since the chrono-scheduler requires fewer rollbacks and less
transaction waiting than TWM, its throughput and response times are better than
TWM.

Further improvements in the throughput and response times of the chrono-
scheduler can be achieved if transactions that have chronological dependencies are
also assigned value dates that reflect their duration. This basic principle is satisfied
if the application generates unique transaction value dates as follows:

• For transactions having an application-defined chronological succession de-

pendency T1 -~ T2 ~ • • • --~ Tk, the value date vdi of each transaction Ti,

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 23

1 < i < k, must be set as follows. If Ti can be started at time si and si +
di > vd i -1 then vdi = si + di. Otherwise, vdi = vdi -1 + dt, where dt is a
small quantity of time.

• For a transaction Ti that has no chronological dependencies, a good choice
of value date is vdi = si + di.

6.2 Optimization of Checkpointing

The performance of the chrono-scheduler in the UNIX environment can be sub-
stantially improved by reducing the information that must be saved when the
chrono-scheduler takes a checkpoint of a transaction process. Transaction check-
points are expensive because the transaction stub must stop the transaction process
and make a copy of its process address space. The address space of a process com-
prises a data part and a process control information part. The data part consists
of five separate areas: the text area that stores the executable code of the process,
the initialized and uninitialized global variables, the data portion of the stack that
contains parameters for function calls and the local variables of each function, the
heap that contains the dynamic data structures, and the general-purpose registers.
The process control information consists of the contents of the control registers,
for example, program counter, stack pointer, and the return address of the process
which is recorded in the first stack frame.

Clearly, the checkpoint of a process must always contain the process control
part. However, there is no need to save the entire data part of the process address
space. For example, because the transaction program does not change in the various
states of its execution, there is no need to save the text area of the process address
space. The space allocated for global variables is relatively small and it is not
expensive to keep a copy of it. Furthermore, individual variables can be located
and saved only if their value has been changed. The most expensive task in taking
a process checkpoint is saving the process heap.

Unlike the area for global variables, the heap can be very large, and locating,
saving, and restoring dynamic data structures can be very expensive. The latter is due
to the space allocation policy of the dynamic memory allocation procedure. When
a dynamic data structure is extended, the dynamic memory allocation procedure
allocates the first available slot in the heap without any consideration to where
the other components of the data structure reside. Thus, locating the components
of a dynamic data structure requires a traversal. Furthermore, in most cases the
restoration of a dynamic data structure in the heap requires its reconstruction.

One solution that avoids saving and restoring the entire heap area is to restrict
transaction programs from using dynamic data structures. Since there are cases in
which this may be too restrictive, another solution is to implement a new dynamic
memory allocation procedure that uses a policy that reduces the cost of locating,
storing, and restoring updated data structures, (e.g., one that keeps the components

24

of dynamic data structures together in clearly identifiable and continuous areas of
the heap).

Stack recovery is another area in which it is possible to reduce the cost of
checkpoints. In the event of a checkpoint the process stack contains the parameters
and local variables of all functions/procedures currently being executed. Since
checkpoints are taken before a transaction performs it first operation on a data
item, we can eliminate the need to save the stack by requiring transactions to
issue all data manipulation operations from their main programs. By taking the
issues above into account, we have introduced several classes of transactions that
require increasingly less information to be saved when the chrono-scheduler takes
their checkpoint. Maximum checkpointing efficiency is achieved for the class of
transactions that do not require the chrono-scheduler to save the stack and heap
of their process.

7. Conclusion

In addition to satisfying succession and chronologicaI dependencies, the chronological
scheduling paradigm has many advantages over traditional transaction management
approaches. Compared to two-phase locking, timestamp ordering, and the opti-
mistic concurrency control schemes used in traditional DBSs, the chrono-scheduler
neither blocks nor aborts transactions to resolve synchronization conflicts. Thus,
chronological scheduling does not suffer from deadlocks and starvation. Unlike
most traditional schedulers the chrono-scheduler takes into account the duration of
the transactions and can deal more effectively with problems caused by long-lived
transactions. Another significant advantage of the chrono-scheduler over traditional
schedulers is that it does not enforce transaction isolation. Since transactions are
allowed to observe the effects of uncommitted transactions concurrency is increased
and becomes possible to support applications that require close cooperation of
transactions accessing common data items. The chrono-scheduler effectively deals
with cascading aborts by allowing transactions to commit only in value date order.
These are highly desirable for non-traditional applications, such as CAD/CAM,
where long-lived transactions manipulate a relatively small number of complex data
objects. By viewing interdependent design steps as a collection of transactions that
have chronological succession dependencies, the chronological scheduling paradigm
allows design steps to share uncommitted data (i.e., the drafts of the objects being
designed, without violating serializability). Because the chronological scheduling
paradigm copes with long-lived transactions and allows transaction cooperation, it
can be used in DBSs and DOMSs to provide transaction support for non-traditional
applications.

Another significant application of the chronological scheduling paradigm is the
synchronization of multidatabase transactions in heterogeneous MDBSs (Breitbart
and Silberschatz, 1988; Breitbart et al., 1991; Georgakopolous et al., 1991) and
DOMSs (Manola et al., 1992). In such environments, multidatabase transactions

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 25

access data items stored in multipl e autonomous local database systems. Whenever
a multidatabase transaction issues an operation on a data item for the first time,
and no other uncommitted multidatabase transaction has accessed it before, the
chrono-scheduler associates a time warp stub to the data item and the copies
its value from the appropriate local database into the version queue of the stub.
Operations performed by uncommitted multidatabase transactions read and create
uncommitted versions of data items under the control of the chrono-scheduler.
When a multidatabase transaction commits, the chrono-scheduler overwrites the
values of the data items in the local databases with their new versions that have been
created by the transaction. Chronological scheduling in a multidatabase environment
assures that the subtransactions of all multidatabase transactions satisfy the same
chronological succession dependency in every participating database system. Thus, it
guarantees quasi-serializability (Du and Elmagarmid, 1989) and global committativity
(Elmagarmid et al., 1991). Furthermore, if we assume that all participating local
database system use rigorous schedulers (Breitbart et al., 1991), chronological
scheduling enforces global serializability.

In distributed environments, such as distributed DBSs, MDBSs, and DOMSs, the
chronological scheduler needs no additional mechanisms to deal with the distribution
of the scheduler. Like timestamps in timestamp ordering, value dates in the
chrono-scheduler carry all information necessary to perform concurrency control
in a distributed environment. Furthermore, chronological scheduling allows the
individual sites of a distributed system to decide independently whether to commit
the subtransactions of a distributed transaction, by comparing their value dates to
the value of the local site clock. This significantly reduces the explicit negotiation
and agreement of the participants required to reach a decision about the outcome of
each transaction by commitment protocols such as 2PC (Gray, 1978), 3PC (Skeen,
1982a, 1982b) and their variations.

Acknowledgments

We thank Raj Batra, Mark Hornick, Ole Anfindsen, and Piotr Krychniak for their
helpful comments and reviews.

References

Abbott, R. and Garcia-Molina, H. Scheduling real-time transactions: A performance
evaluation. ACM Transactions on Database Systems, 17(3):513-560, 1992.

Bernstein, EA., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery
in Database Systems. Reading, MA: Addison-Wesley, 1987.

Berry, O. Performance Evaluation of the Time Warp Distributed Simulation Mechanism.
PhD thesis, University of Southern California, 1986.

26

Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., and Silberschatz, A. On rigor-
ous transaction scheduling. IEEE Transactions on Software Engineering, 17(9):954-
960, 1991.

Breitbart, Y. and Silberschatz, A. Multidatabase update issues. Proceedings of ACM
SIGMOD International Conference on Management of Data, Chicago, 1988.

Dayal, U., Hsu, U., and Ladin, R. Organizing long-running activities with triggers
and transactions. Proceedings of the ACM SIGMOD Conference on Management of
Data, Atlantic City, NJ, 1990.

Du, W. and Elmagarmid, A. QSR: A correctness criterion for global concurrency
control in InterBase. Proceedings of the 15th International Conference on Very Large
Databases, Amsterdam, 1989.

Elmagarmid, A., Jing, J., and Kim, W. Global commitment in multidatabase systems.
Technical Report CSD-TR-91-017, Department of Computer Science, Purdue
University, 1991.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L. The notions of consistency
and predicate locks in a database system. Communications oftheACM, 19(11):624-
633, 1976.

Farrag, A. and Ozsu, T. Using semantic knowledge of transactions to increase
concurrency. ACM Transactions on Database Systems, 14(4):503-525, 1989.

Garcia-Molina, H. Using semantic knowledge for transaction processing in a dis-
tributed database. ACM Transactions on Database Systems, 8(2):186-213, 1983.

Garcia-Molina, H. and Salem, K. SAGAS. Proceedings of the ACM SIGMOD Con-
ference on Management of Data, San Francisco, 1987.

Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A. On serializability of multi-
database transactions through forced localL conflicts. 1EEE Proceedings of the
7th International Conference on Data Engineering, Kobe, Japan, 1991.

Gray, J.N. Operating Systems: An Advanced Course, Lecture Notes in Computer Sci-
ence. New York: Springer-Verlag, 1978.

Gray, J.N. The transaction concept: Virtues and limitations. Proceedings of the 7th
International Conference on VLDB, Cannes, France, 1981.

Gray, J., Homan, E, Korth, H., and Obermark, R. A straw man analysis of the
probability of waiting and deadlock in a database system. Technical Report
RJ3066, IBM Research, San Jose, February, 1981.

Herlihy, M. Apologizing versus asking permission: Optimistic concurrency control
for abstract data types. ACM Transactions on Database Systems, 15(1):96-124,
1990.

Jefferson, D. Fast concurrent simulation using the time warp mechanism. SCS
Simulation, 15(2):96-124, 1985a.

Jefferson, D. Virtual time. ACM Transactions on Programming Languages and Sys-
tems, 7(3):96-124, 1985b.

Jefferson et al. Distributed simulation and time warp operating system. Operating
Systems Review, 21(5):96-124, 1987.

VLDB Journal 3 (1) Georgakopoulos: Chronological Scheduling of Transactions 27

Jefferson, D. and Motro, A. The time warp mechanism for database concurrency
control. Proceeding of the IEEE International Conference on Data Engineering, Los
Angeles, 1986.

Korth, H.E and Speegle, G.D. Formal model of correctness without serializability.
Proceedings of ACM SIGMOD International Conference on Management of Data,
Chicago, 1988.

Kumar, A. and Stonebraker, M. Semantics based transaction management tech-
niques for replicated data. Proceedings of ACM SIGMOD International Conference
on Management of Data, Chicago, 1988.

Kung, H.T. and Robinson, J.T. On optimistic methods for concurrency control. ACM
TODS, 6(2):213-226, June 1981.

Lamport, L. Time, clocks, and the ordering of events in a distributed system.
Communications of ACM, 21(7):558-565, July 1978.

Leu, Y., Elmagarmid, A., Rusinkiewicz, M., and Litwin, W. Exterding the transac-
tion model in a multidatabse environment. Proceedings of the 16th International
Conference on l~ry Large Databases, Brisbane, Australia, 1990.

Litwin, W. From database systems to multidatabase systems: Why and how. British
National Conference on Databases. Cambridge Press, 1988.

Litwin, W. and Shan, M.C. Value dates for concurrency colatrol and transaction man-
agement in interoperable systems. Proceedings of the First International Workshop
on lnteroperability in Multidatabase Systems, Kyoto, Japan, 1991.

Litwin, W. and Tirri, H. Flexible concurrency control using value dates. Technical
Report 845, INRIA, May 1988.

Litwin, W. and Tirri, H. Flexible concurrency control using value dates. In:
Gupta, A., ed., Integration of Information Systems--Bridging Heterogeneous Data-
bases. Washington, DC: IEEE Press, 1989.

Manola, E, Heiler, S., Georgakopoulos, D., Hornick, M., and Brodie, M. Dis-
tributed object management. International Journal of Intelligent and Cooperative
Information Systems, 1(1):5-42, March 1992.

Ngu, A.H.H. Specification and verification of temporal relationships in transaction
modeling. Information Systems, 15(2):257-267, 1990.

Papadimitriou, C.H. The Theory of Concurrency Control. Rockville, MD: Computer
Science Press, 1986.

Reed, D.E Implementing atomic actions on decentralized data. ACM Transactions
on Computer Systems, 1(1) 1983.

Rusinkiewicz, M., Elmagarmid, A., Leu, Y., and Litwin, W. Extending the transaction
model to capture more meaning. SIGMOD record, 19(1):3-7, 1990.

Schwarz, P.M. Transactions on Typed Objects. PhD thesis, Camegie-Mellon Univer-
sity, December 1984.

Skeen, D. Nonblocking commit protocols. Proceedings oftheACM SIGMOD Inter-
national Conference on Management of Data, Orlando, FL, 1982a.

Skeen, D. A quorum based commit protocol. Proceedings of the 6th Berkeley Workshop
on Distributed Data Management and Computer Networks, Berkeley, CA, 1982b.

28

Weihl, W. Commutativity-based concurrency control for abstract data types. IEEE
Transactions on Computers, 37(12):205-218, 1988.

Weihl, W. Local atomicity properties: Modular concurrency control for abstract data
types. A CM Transactions on Programming Languages and Systems, 11(2):249-282,
1989.

