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Abstract. Multi-level transactions are a variant of open-nested transactions in 
which the subtransactions correspond to operations at different levels of a lay- 
ered system architecture. They allow the exploitation of semantics of high-level 
operations to increase concurrency. As a consequence, undoing a transaction re- 
quires compensation of completed subtransactions. In addition, multi-level re- 
covery methods must take into consideration that high-level operations are not 
necessarily atomic if multiple pages are updated in a single subtransaction. This 
article presents algorithms for multi-level transaction management that are im- 
plemented in the database kernel system (DASDBS). In particular, we show that 
multi-level recovery can be implemented in an efficient way. We discuss perfor- 
mance measurements using a synthetic benchmark for processing complex objects 
in a multi-user environment. We show that multi-level transaction management 
can be extended easily to cope with parallel subtransactions within a single trans- 
action. Performance results are presented with varying degrees of inter- and intra- 
transaction parallelism. 

Key Words. Atomicity, complex objects, inter- and intratransaction parallelism, 
multi-level transactions, performance, persistence, recovery. 

1. Introduction 

Multi-level transactions are a variant of  open-nested transactions in which the 
subtransact ions correspond to operat ions at different levels of  a layered system 
architecture (Beeri et al., 1988). The  purpose  of  multi-level transactions is to allow 
the exploitation of  the semantics of  high-level operat ions to increase concurrency.  
For  example, two "deposit"  operat ions on a bank  account  are commutat ive  and 
therefore  could be admit ted concurrently, such as transactions t ransferred on behalf  
of  two funds. However,  executing such high-level operat ions  in parallel requires 
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that a low-level synchronization mechanism take care of possible low-level con- 
flicts (e.g., on indexes or data pages). In relational database management systems 
(DBMSs) in which records do not span pages, this low-level synchronization is 
usually implemented by page latches--cheap semaphores that are held while a page 
is accessed. For advanced DBMSs with complex high-level operations that may 
access many pages in a dynamically determined (i.e., not pre-defined) order, the 
simple latching method is not feasible because it cannot ensure the indivisibility 
of arbitrary multi-page update operations. Rather, high-level operations must be 
executed as subtransactions that are dealt with by a general concurrency control 
mechanism at the lower level. This principle, which can be applied to an arbitrary 
number of levels, ensures that the semantic concurrency control at the top level is 
independent of lower-level conflicts. 

In this article, we address multi-level transaction management in advanced 
DBMSs that manage complex objects, by applying multi-level transaction manage- 
ment to the following two levels: 

• At the object leveIL1, semantic locks are dynamically acquired and held until 
end-of-transaction (EOT) according to the strict two-phase locking protocol. 
The semantics of the high-level operations are exploited in the lock modes 
and the lock mode compatibility table, which is in turn derived from the 
commutativity properties or semantic compatibility (Garcia-Molina, 1983; 
Skarra and Zdonik, 1989) of the operations. In principle, one could even 
exploit state-dependent commutativity (O'Neil, 1986; Weihl, 1988), but this 
is beyond the scope of this article. 

• At the page level LO, page locks are dynamically acquired during the execution 
of a subtransaction and are released at end-of-subtransaction (EOS). Note 
that, unlike the locks of conventional nested transactions (Moss, 1985), the 
locks of a subtransaction are not inherited by the parent. Releasing the 
low-level locks as early as possible while retaining only a semantically richer 
lock at a higher level is exactly why multi-level transaction management allows 
more concurrency than single-level protocols. 

An example of a (correct) parallel execution of two multi-level transactions is shown 
in Figure 1. Assume an office document filing system where documents have a 
complex structure and can span many pages. Users modify documents by specific 
high-level operations such as (1) "change the font of all instances of a particular 
component type (e.g., text paragraphs)" and (2) "change the contents of a figure." 
These two Change operations on the same document are commutative; however, 
because they may access many subobjects of the document (e.g., when the layout of 
the entire document is recomputed), the potential conflicts at the lower level must 
be reconciled. In Figure 1, this is done by acquiring locks on the underlying pages 
that are released at the end of subtransactions Tl l ,  T12, and T21, respectively. 

Similar examples arise in advanced business applications with large amounts 
of derived data. In foreign exchange transactions, a forward transaction (e.g., a 



VLDB Journal 2 (4) Weikum: Multi-Level Transaction Management 409 

Figure 1. Parallel  execut ion of two mult i - level  t ransact ions 
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currency swap) may have to compute a large number of future positions for risk 
assessment, such as how many Japanese Yen a bank will hold at a particular date. 
In such an application, the potential data contention can be reduced by updating 
the derived data within subtransactions that release low-level locks early. 

An inherent consequence of multi-level locking is that transactions can no 
longer be undone by simple state-oriented recovery methods at the page level. 
Because page locks have been released at EOS, completed subtransactions must be 
compensated by inverse high-level operations. These operations are in turn executed 
as so-called compensating subtransactions (Garcia-Molina, 1983; Moss et al., 1986; 
Garcia-Molina and Salem, 1987; Weikum, 1987; Beeri et al., 1988; Weihl, 1989; 
Korth et al., 1990; Shrivastava et al., 1991; Weikum, 1991; Gray and Reuter, 1993). 
In Figure 1, undoing transaction T1 would require two inverse Change operations 
on y and x, i.e., two additional subtransactions that compensate the completed 
subtransactions T12 and T l l  (reversing the order of the original subtransactions). 

Compensating subtransactions are necessary for both handling transaction aborts 
and crash recovery after a system failure. An important prerequisite is that both 
regular subtransactions and compensating subtransactions are atomic. Otherwise, 
the recovery after a crash may be faced with a database state that is not sufficiently 
consistent to perform the necessary high-level undo steps. For example, the storage 
structures of a complex object may contain dangling pointers, or some derived 
data may reflect only partially the primary updates. If a subtransaction modifies 
multiple pages (Figure 1), a low-level recovery mechanism at the page level is 
necessary to provide subtransaction atomicity. This problem is challenging in that a 
straightforward implementation of multi-level recovery may cause excessive logging 
and could thus diminish the benefits of the enhanced concurrency of multi-level 
transactions. 

Theoretical and practical issues of multi-level transaction management have been 
addressed (Weikum and Schek, 1984, 1991, 1992; Shasha, 1985; Moss et al., 1986; 
Weikum, 1986, 1987, 1991; Martin, 1987; Garcia-Molina and Salem, 1987; Beeri et 
al., 1988, 1989; von Bueltzingsloewen et al., 1988; Fekete et al., 1988; nadzilacos 
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and Hadzilacos, 1988; Shasha and Goodman, 1988; Broessler and Freisleben, 1989; 
Badrinath and Ramamritham, 1990; Cart and Ferrie, 1990; Rakow et al., 1990; 
Weikum et al., 1990; Muth and Rakow, 1991; Shrivastava et al., 1991; Muth et 
al., 1993.) However, to our knowledge, none of the previous work has presented 
a full implementation. Furthermore, only two articles have presented performance 
figures. Weikum (1991) reported performance measurements with a multi-level 
transaction manager built on top of the commercial Codasyl database system UDS; 
the results were strongly affected by the fact that UDS could not be changed in 
these experiments. Badrinath and Ramamritham (1990) reported simulation results 
on multi-level concurrency control only; i.e., disregarding recovery issues. 

Our article makes the following novel contributions: 

It shows how multi-level transaction management can be implemented ef- 
ficiently. The implementation is integrated in the database kernel system 
(DASDBS) (Schek et al., 1990). 

• It presents performance measurements of the implemented system, based on 
a synthetic benchmark for complex-object processing. 

It shows how multi-level transaction management can be extended so that 
subtransactions of the same transaction can be executed in parallel. Perfor- 
mance results are presented with varying degrees of inter- and intra-transaction 
parallelism. 

Parts of this article have been published (Hasse and Weikum, 1991). Here we 
discuss the implementation of multi-level recovery in much more detail, we discuss 
additional performance experiments, and we add the issue of intra-transaction 
parallelism including preliminary performance results. Our discussion of recovery 
covers transaction aborts, subtransaction aborts (i.e., partial rollbacks of transactions), 
and crash recovery from system failures (which implies losing all memory-resident 
data). For these cases, we assume that crash-resilient stable storage is available, and 
that writes to this stable storage persist beyond system failures. We do not discuss 
media recovery (i.e., recovery from media failures such as unreadable disk pages), 
because this issue does not require anything specific to multi-level transactions. Media 
recovery can be achieved for both flat and (open or closed) nested transactions by 
log-based techniques (Haerder and Reuter, 1983; Mohan et al., 1992; Gray and 
Reuter, 1993) or by RAID-like redundancy at the disk level (Patterson et al., 1988; 
Copeland and Keller, 1989; Gibson, 1992). 

The rest of this article is organized as follows. Section 2 presents our implemen- 
tation of multi-level transaction management, with emphasis on the performance- 
critical recovery component. Section 3 discusses the simple extensions that we have 
made to cope with intra-transaction parallelism. Section 4 discusses the results of a 
comprehensive series of performance experiments. Section 5 compares our imple- 
mentation with related work, especially the ARIES recovery method (Mohan et al., 
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1992). Section 6 discusses several options for further improving the performance 
of multi-level transaction management. 

2. Implementation of Multi-level Transaction Management in DASDBS 

2.1 Lock Management 

Our lock manager can manage multiple lock tables that are specified to handle 
particular types of lockable items (e.g., pages, objects, objects of different object types, 
index keys, keys of different indexes, simple conjunctive predicates, etc.). Dynamic 
allocation of lock control blocks is implemented by a tunable shared-memory heap 
manager that is optimized toward frequent disposals and reallocations of memory 
fragments of particular sizes. Deadlock detection is implemented by using an 
algorithm for partial transitive closures, which is invoked on each lock conflict. This 
algorithm operates on an m*m wait-for matrix where m is the maximum degree of 
multiprogramming that was specified at system startup time. 

In addition to the usual "shared" and "exclusive" lock modes, semantic lock 
modes such as "increment" can be incorporated by specifying the lock mode com- 
patibility matrix at the creation time of a lock table (Schwarz and Spector, 1984). 
In the performance experiments (Section 4), this feature was not exploited; rather, 
shared and exclusive locks were acquired on sets of object identifiers. 

2.2 Recovery Management 

This subsection contains an in-depth discussion of our implementation of multi-level 
recovery. The implemented algorithms are based on the methodical framework 
of Weikum et al. (1990); here we give an implementation-oriented algorithmic 
description. In Subsection 2.2.1, we present a simple "strawman" algorithm that is 
based on applying the DB Cache method (Elhardt and Bayer, 1984) to page-level 
subtransactions. The strawman algorithm provides correctness but has potential 
performance problems in that it may cause excessive log I/Os. Therefore, the 
algorithm is refined in Subsection 2.2.2 by adding the concept of deferred log 
writes. Note that deferring log writes may be straightforward in a single-level 
recovery method with page locking, but this incurs significant problems in multi- 
level transaction management where multi-page update subtransactions of incomplete 
(i.e., uncommitted) transactions may have modified common pages. In Subsections 
2.2.2 and 2.2.3, we show how our implementation solves these problems, thus 
saving a substantial amount of log I/Os. Finally, in Subsection 2.2.4, we discuss the 
idempotence problem that arises during the warmstart, and present our approach 
to coping with non-idempotent high-level operations. 

2.2.1 Requirements and OverallApproach. A method for multi-level recovery must 
satisfy the following requirements: 
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Figure 2. Architecture of the DASDBS multi-level transaction 
management 
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1. It must ensure that transactions are atomic. 

2. It must ensure that transactions are persistent. 

. It must ensure that subtransactions are atomic. (Note that subtransactions 
need not be persistent before the commitment of their parent. In addition to 
the above requirements for correctness, the following performance require- 
ment is reasonable to guarantee an acceptable recovery time and hence high 
availability of the DBMS.) 

. During a warmstart, redo (of committed transactions) should be performed 
at the bottom level L0 (i.e., by reconstructing pages rather than re-executing 
potentially resource-intensive high-level operations). 

An architecture that meets the above requirements is shown in Figure 2. For 
requirement 1, undo log records are written at the object level L1. Each of these 
log records contains information about the compensating subtransaction that is 
necessary to undo an executed high-level operation. The log records of a transaction 
are chained together in a backward chain for handling transaction aborts and for 
performing transaction undo after a crash. In addition to the L1 operation log 
records, EOT log records are written for completed (i.e., committed or aborted) 
transactions. 

For requirements 2 and 4, redo log records are written to an L0 log file. 
Requirement 4 can be implemented either by logging page modifications (i.e., 
modified bytes; Lindsay et al., 1979; Crus, 1984; Moss et al., 1987; Mohan et al., 
1992), or by writing entire page after-images as in the DB Cache method (Elhardt 
and Bayer, 1984). The first option, which is usually referred to as "entry logging," 
causes less log volume (i.e., it saves log space) and may thus have shorter log I/Os. 
Note, however, that after-image logging does not cause a higher number of log I/Os, 
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given that multiple pages can be sequentially written in a single set-oriented I/O. On 
the other hand, during a warmstart, a recovery method with entry logging is slower 
than a method with after-image logging. This is because pages have to be fetched 
from the database before the update that is described in a log record can be installed, 
whereas after-images can be directly written into the database right after they have 
been read from the log. Thus, after-image logging saves a substantial number of 
random I/Os during the warmstart. For this reason and for simplicity, we assume 
in the following that after-image logging is used, as it is actually implemented in 
DASDBS by applying the DB Cache method to page-level subtransactions. Note, 
however, that most considerations of this article fit with entry logging as well. 

Ensuring SubtransactionAtomicity. Requirement 3, subtransaction atomicity, is the 
one that makes multi-level recovery difficult. Essentially, it is handled by using page 
before-images as the L0 undo information. Because these before-images are needed 
only for incomplete subtransactions, they are kept in main memory as temporary 
page versions in the buffer pool. This provides an efficient method for undoing a 
subtransaction (e.g., to resolve a page-level deadlock between subtransactions). 

Unfortunately, a complete solution for subtransaction atomicity is not quite 
that simple. If a dirty (i.e., modified) page were replaced in the buffer pool and 
written back to the database before a subtransaction completes, the before-image 
of the  page would have to be written to disk first, according to the write-ahead 
logging (WAL) rule (Bernstein et al., 1987). This problem is circumvented in our 
implementation by assuming (and having implemented) a No-Steal buffer manager 
(Haerder and Reuter, 1983) that does not replace a dirty page before EOS. Note 
that a No-Steal policy for subtransactions is feasible because subtransactions usually 
have bounded length, whereas the same assumption for arbitrarily long transactions 
may be debatable (Elhardt and Bayer, 1984). 

A more severe problem is that replacing a dirty page is critical even after the 
completion of the subtransaction that has modified the page. Again, this is a violation 
of the WAL rule. Moreover, this would violate the atomicity of a subtransaction if 
it has modified multiple pages. One solution could be to keep the before-images of 
a subtransaction beyond EOS. Because transactions become persistent upon EOT 
and are no longer eligible for rollback after EOT, it seems to be sufficient to keep 
the before-images of a subtransaction until the EOT of its transaction. However, 
even this approach is not sufficient for ensuring subtransaction atomicity. To verify 
this claim, consider the following scenario. 

Consider again the example in Figure 1. Assume that the dirty page p is 
replaced in the buffer pool and written back to disk at time tl, and that the system 
fails right after this point. Writing p back to the database violates the atomicity 
of subtransaction Tl l ,  because T l l  has modified two pages, p and q. Because all 
memory-resident before-images would be lost after the crash, it would be impossible 
to undo the partial effect that T l l  leaves on the permanent database. 
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Figure 3. Log contents for the example of Figure 1 
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To overcome this problem, one might consider writing before-images to stable 
storage immediately upon their generation. Unfortunately, even this fairly inefficient 
method cannot solve the general problem of subtransaction atomicity. Assume that 
page p (Figure 1) is replaced in the buffer pool at time t6. If a crash occurred right 
after t6, using the before-images of T l l  to reestablish the atomicity of T l l  would 
incidentally undo the updates of T21 on page p. This in turn would violate the 
atomicity of T21, and, even worse, would violate the persistence of T2, which is already 
committed at time t6. This example shows that a subtransaction cannot be undone 
in an isolated manner by means of page before-images once the subtransaction is 
completed and its modified pages become visible to and may be overwritten by 
other transactions. 

Our solution for ensuring the atomicity of a subtransaction when a dirty page is 
replaced after EOS is to force the L0 redo information of the subtransaction to the 
L0 log file. The after-images of a subtransaction are written atomically, by including 
a special EOS flag in the header of the last page of the written after-images. This 
flag serves as an EOS log record. 

So far, we have not discussed when the after-images of a subtransaction are 
written to disk. In fact, this is the most critical point of our recovery method. 
Because of its importance, this issue is discussed separately in Subsections 2.2.2 and 
2.2.3. For now, we assume that a subtransaction's after-images are forced to the log 
file immediately after EOS. While this is obviously inefficient, it is a correct multi- 
level recovery method and was in fact the first method implemented in (a former 
version of) DASDBS. It is worthwhile to note that this method is essentially the 
DB Cache method (Elhardt and Bayer, 1984) applied to subtransactions. The DB 
Cache method is one of the most efficient recovery methods, and has nice properties 
with respect to how the log space is managed (i.e., dynamically compacted without 
having to take checkpoints; Elhardt and Bayer, 1984). Its main drawback is that it 
works only in combination with page locking. This disadvantage does not hold for 
our multi-level transaction management, because we employ the DB Cache method 
only to handle subtransactions at the page level. 

The log records that are written for the example of Figure 1 are shown in Figure 
3. Operations with an overbar denote inverse operations. For reasons discussed 
in Subsection 2.2.4, the L1 log records and the after-images that are written at L0 
include a subtransaction identifier in a special header field. 
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Transaction aborts are implemented by scanning the backward chain of the L1 
undo log records (starting from a memory-resident anchor not shown in Figure 
3), and applying the recorded high-level undo operations to the database. This 
method is directly applicable if the aborted transaction does not have any incomplete 
subtransactions. If there is an incomplete subtransaction, then this subtransaction 
must be undone first by means of the before-images (not shown in Figure 3) that are 
kept in memory until EOS, and then the completed subtransactions are undone as 
described above. The memory-resident before-images also serve to abort individual 
subtransactions (e.g., when an L0 deadlock occurs); such aborted subtransactions 
may be re-executed automatically. 

The warmstart after a crash consists of the following two steps: 

. Redopass: Determine the relevant starting point in the L0 redo log by looking 
up a special master record (Elhardt and Bayer, 1984), and perform a forward 
pass on the L0 redo log. During this pass, after-images are loaded into 
the buffer pool and written into the database at the discretion of the buffer 
manager. The redo pass ensures transaction persistence and subtransaction 
atomicity at acceptable performance (i.e., requirements 2, 3, and 4). After- 
images after the latest EOS-flagged after-image are ignored since they belong 
to incomplete writes at EOS. 

. Undopass: After the redo pass, a backward pass is performed on the L1 undo 
log. The undo pass ensures transaction atomicity. Transactions for which 
EOT log records are found are winners and thus do not need any processing. 
For loser transactions, compensating subtransactions are performed according 
to the contents of their log records. 

2.2.2 Deferred Log Writes. The multi-level recovery algorithm of the previous 
subsection was implemented in a former version of DASDBS (Schek et al., 1990). 
This algorithm has a potential performance problem in that it may cause excessive 
log I/Os for ensuring the atomicity of subtransactions. This is because after-images 
of a subtransaction are forced to disk immediately at EOS (which in turn requires 
forcing the L1 undo log before, so as to observe the WAL rule). In the example 
of Figure 1, this means that an after-image of page p is written to disk at the EOS 
of T l l  and the EOS of T21, as shown in Figure 3. 

While there are generic techniques to reduce these I/O costs, such as batching 
log I/Os of multiple transactions (Gawlick and Kinkade, 1985; Helland et al., 1987), 
there is a more fundamental way to cut down the log I/O costs of multi-level 
transactions. The general idea is to defer the writing of a subtransaction's after- 
images until EOT rather than forcing them at EOS. This would be a significant 
gain in terms of the number of log I/Os, even if the number of after-images written 
for the entire transaction is not reduced (i.e., if the writesets of all subtransactions 
are disjoint). However, often it may be the case that subsequent subtransactions of 
the same transaction modify the same page. In this case, only the latest after-image 
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should be written at all. These optimizations would make multi-level logging as 
efficient as conventional single-level logging (e.g., the original DB Cache method; 
Elhardt and Bayer, 1984). The optimization to write only the latest after-image of 
a page has the additional benefit that after-images can be embedded in the regular 
buffers rather than in a separate L0 log buffer. So, for each page p, the latest 
after-image of p resides in a regular buffer frame, and there are no other versions 
ofp  in memory as long as none of the active subtransactions requests to modify p. 
When a subtransaction requests to modify p, then p is copied into a second buffer 
frame, and the updates are made on the copy, so that the previous after-image 
serves as the temporary before-image of p while the subtransaction is in progress. 
At EOS, the previous after-image (i.e., the current before-image) is discarded, and 
the newly modified copy becomes the latest after-image ofp. There are never more 
than two versions of a page at the same time, since page locks are kept for the 
duration of a subtransaction. 

Unfortunately, deferring all L0 log writes until EOT is not a correct solution. 
There may be subtransactions of different transactions so that the after-image sets 
of the subtransactions are overlapping (i.e., they have a page in common). This 
is possible because page locks are released at EOS. In such a situation, forcing 
the after-images of one subtransaction at the EOT of its parent may violate the 
atomicity of the other subtransaction. 

Ideally, we would not want to write the latest after-images of the writesets of 
T l l  and T12 before the EOT of T1 (Figure 1). The EOT of T2 requires writing 
the latest after-images of the writeset of T21 (i.e., pages p and r) as of the EOT 
time of T2. Writing these pages to the L0 log, however, would implicitly write the 
modifications that T l l  made on p, too. Then, if the system crashed before the 
EOT of T1 (i.e., before the latest after-images of the writeset of T l l  are written), 
the redo pass of the warmstart would violate the atomicity of T l l  by restoring the 
update on p while disregarding T11's update on q. Note that this problem would 
arise also with entry logging, because subtransactions of different transactions may 
have modified a common byte through commutative high-level update operations. 
The same problem arises with respect to subtransaction T12. At the EOT of T2, 
only one version of page r resides in the buffer pool. This version contains the 
updates of the completed subtransaction T12. Thus, writing this after-image of r 
to the L0 log file would violate the atomicity of T12. 

These and other related problems have been discussed more rigorously by 
Weikum et al. (1990) and have led to a solution based on the notion of persistence 
spheres. The basic idea to ensure subtransaction atomicity is that the writing of a 
page to the log (or to the database) causes other pages to be forced to the log. 
The set of pages that need to be forced to the L0 log when one of the pages 
in the writeset of a subtransaction Tij is written is called the persistence sphere 
of Tij. The definition of a persistence sphere PS(Tij) of a subtransaction Tij is 
based on the following "forces" relationship ~ between completed subtransactions. 
Tij ~ Tkl (pronounced: Tij forces Tkl) if Tij has modified a page that has been 
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modified by Tkl but has not been written to the L0 log or to the database since 
these modifications, or if Tij reads a page that was previously modified by Tkl and 
was not yet written to the L0 log or to the database. So we have the relationship 
that Tij ~ Tkl if there is a write-write or write-read dependency from Tkl to Tij. 

Note that the relationship ~ is asymmetric and is defined dynamically (in the 
sense that it varies with the progress of the transaction execution and also depends 
on the log I/Os and buffer replacements that take place). The relation --% which is 
defined between subtransactions, can be extended to pages in the following way. For 
pagesp and q, we havep ~ q if (1)p and q have been modified by subtransactions 
Tij and Tkl, respectively, such that Tij ~ Tkl and (2) neither of the two pages has 
been written to the L0 log or back into the database since these modifications. 

It is fairly obvious to see why subtransactions with overlapping writesets must 
be forced to the log together (i.e., combined into the same persistence sphere). 
This is the key to solving the problem of subtransaction atomicity discussed above. 
Write-read dependencies need to be considered, too, because the implementation 
of Tij (i.e., the read and write actions issued by Tij) may depend on the fact that 
Tkl performed a particular update. If Tij needs to be redone after a crash, this 
update of Tkl must be redone as well (Weikum et al., 1990; see also Mohan et al., 
1992, for a discussion of the "repeating of history" paradigm). 

The notion of a persistence sphere is defined as follows. The persistence sphere 
PS(Tij) of a completed subtransaction Tij is the smallest set of pages that satisfies 
both of the following two properties: 

1. PS(Tij) contains all pages that have been modified by Tij and have not yet 
been written to the L0 log since the EOS of Tij, and 

2. PS(Tij) is transitively closed with respect to the "forces" relationship ---~. 

The second condition simply states that, if a subtransaction Tij "forces" the sub- 
transaction Tkl, then the persistence sphere of Tij contains the persistence sphere 
of Tkl. Finally, the persistence sphere PS(Ti) of a transaction Ti is defined as the 
union of the persistence spheres of its subtransactions. 

Our solution to the deferred log write problem is the following. At the EOT 
of a transaction Ti, all pages in the persistence sphere of Ti must be written to the 
L0 log. In addition, replacing a dirty page p in the buffer pool requires forcing to 
the log all pages in the persistence sphere of the last completed subtransaction that 
modifiedp. So writing a dirty page to the database and writing its after-image to the 
log are equivalent steps as far as the atomicity (and persistence) of subtransactions 
is concerned. At time t5 in Figure 1, the subtransaction T21 "forces" both T l l  and 
T12. Thus, at the EOT of T2, the persistence sphere of T2 contains the pages p 
and r that were modified by T2's own subtransaction T21 and the pages q and s 
that were modified by T l l  and T12, respectively. 

Persistence spheres are written atomically to the L0 log file by setting a flag in 
the header of the last page (Subsection 2.2.1). A persistence sphere may contain 
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Figure 4. Log contents of the multi-level recovery method with 
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updates of completed subtransactions that belong to incomplete transactions. These 
subtransactions will have to be compensated if the system crashes before the EOT 
of their parent. To be able to do so, the L1 undo log must be forced before the L0 
log I/O (thus observing the WAL rule). In addition, immediately after the writing of 
the persistence sphere is completed, another L1 log I/O is often necessary in order 
to force the EOT log record of the committing transaction that caused the writing 
of the persistence sphere. Fortunately, this second L1 log I/O can be avoided by 
including an additional EOT flag and the number of the committing transaction 
in the header of the last page of the persistence sphere. An EOT log record is 
nevertheless created in the L1 log buffer pool, but need not be forced before the 
next compaction of the L0 log file that would discard the after-image that contains 
the EOT flag. On the other hand, it may turn out, at the EOT of a transaction, that 
all after-images of that transaction have already been written to the L0 log as parts 
of the persistence spheres of other transactions. In this case, the EOT log record 
of the committing transaction is forced to the L1 log disk, rather than performing 
an additional L0 log write. The log records for Figure 1 are shown in Figure 4. 

2.2.3 Managing Persistence Spheres. In DASDBS, persistence spheres are imple- 
mented by means of the following types of control blocks: 

• For each active transaction, a transaction controlblock (TCB) contains pointers 
to the subtransaction control blocks of its own subtransactions. 

For each subtransaction of an active transaction, a subtransaction control block 
(STCB) contains writeset pointers to the buffer frame control blocks of the 
pages that were modified by the subtransaction, and a readset list of the pages 
that were only read. The writeset pointers have backward pointers associated 
with them; i.e., the frame control block of a page points to the STCBs of 
all subtransactions that modified the page. The readset list is needed only 
for active subtransactions and can be discarded upon EOS (i.e., when the 
locks are released). An STCB is discarded as soon as the subtransaction's 
after-images are written to the L0 redo log file. 
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• For each buffer frame, a frame control block (FCB) contains status information 
about the page that is held in the buffer frame. The status can be 

1. "modified," which means that an incomplete (i.e., running) subtrans- 
action has modified the page, 

2. "dirty," which means that a completed subtransaction has modified the 
page but the modified page has not yet been written to the L0 log or 
to the database, 

3. "forced," which means that a completed subtransaction has modified 
the page and this page has already been written to the L0 log, or 

4. "clean," which means that no incomplete transaction has modified the 
page and an identical version of the page resides in the database. 

FCBs with status "modified" contain a pointer (referred to as brim) to another 
FCB that points to a before-image frame. For frequently modified pages, 
the before-image FCB is usually a "dirty" FCB of a previously completed 
subtransaction. 

Finally, for each persistence sphere, a persistence sphere control block (PSCB) 
points to the STCBs of those subtransactions that constitute the persistence 
sphere. These pointers have backward pointers associated with them (i.e., an 
STCB also points to its PSCB). Note that each STCB belongs to exactly one 
PSCB (see below). A PSCB and the STCBs that it points to are discarded 
as soon as the persistence sphere has been written to the log. 

To keep track of pages that belong to a persistence sphere, we have chosen to 
use a simplified variant of the notion of a persistence sphere. The definition of 
a persistence sphere is based on the transitive closure of the "forces" relation 
between subtransactions. In our implementation, we actually use the symmetric 
and transitive closure of the "forces" relation. The advantage of using a symmetric 
relation between subtransactions is that we can now simply merge the persistence 
spheres of two subtransactions whenever they have a page in common that is 
modified by one or both subtransactions. A consequence of this simplification is 
that some persistence spheres may become larger than they need to be. However, 
this disadvantage is outweighed by the simplification and the reduction of the 
bookkeeping overhead. 

Managing persistence spheres by means of the control blocks introduced above 
is illustrated in Figure 5 (based on Figure 1). Figure 5 shows snapshots of the 
necessary control blocks at different points of time. Figure 6 shows pseudocode 
for the complete handling of BOT, BOS, page reads (i.e., fixing a page for read), 
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Figure 5. Snapshots of control blocks for the scenario of Figure 1 
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page modifications (i.e., fixing a page for write), EOS, EOT, and dirty page buffer 
replacements. Note that these procedures ensure that, at each point of time, a 
"dirty" page belongs to exactly one PSCB, but possibly to multiple STCBs, which are 
necessarily attached to the same PSCB. That is, if the page had been modified by 
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multiple completed subtransactions, then the persistence spheres of these subtrans- 
actions would already have been merged by the corresponding EOS procedure calls. 
Further note that the persistence spheres of a transaction's subtransactions are not 
merged before EOT or the occurrence of a page dependency (as checked at EOS). 
This "just-in-time" merging of persistence spheres aims to minimize the impact of 
transitive dependencies between subtransactions. This in turn keeps the number of 
pages in a persistence sphere as small as possible, and thus avoids excessively long 
log writes that might adversely affect transaction response time. Finally, note that 
the maintenance of the various lists and, especially, the managing of persistence 
spheres requires latching to protect critical sections. Note, however, that all of 
these critical sections have fairly short path lengths. 

2.2.4 Warmstart Procedure. A nice property of our multi-level recovery algorithm 
is that, even with deferred log writes, the warmstart procedure after a crash is fairly 
simple. In fact, the warmstart processing can be directly adopted from the multi-level 
recovery algorithm without deferred log writes (Subsection 2.2.1). During the redo 
pass, the after-images of the L0 redo log are loaded into the buffer pool and are 
written into the database according to the buffer manager's write policy. Thus, all 
completed transactions and all subtransactions that were in the persistence sphere 
of a completed transaction are redone. During the subsequent backward pass on the 
L1 undo log, compensating subtransactions are invoked for those subtransactions 
that belong to loser transactions. 

During the undo pass, a problem arises because the high-level undo log record 
of a subtransaction is always forced to the L1 log file before the subtransaction's 
after-images are written to the L0 log file. Because these two write operations are 
not performed separately, the undo pass during a warmstart may encounter an undo 
log record of a subtransaction, the after-images of which were not yet written to 
the L0 log file when the crash hit. For example, in Figure 4, assume that the system 
crashes right after the undo log record for T12 was written to theL1 log file. Then, 
since Tl l ,  T21, and T12 will not be redone during the warmstart, we must take care 
that the inverse high-level operations for these subtransactions will have no effect on 
the database. To guarantee this property even for arbitrary high-level operations, the 
recovery manager itself must figure out which high-level log records must be skipped 
during the undo pass. Note that this problem is essentially the problem of ensuring 
idempotence for non-idempotent operations such as "increment" operations. If we 
consider that a subtransaction's updates were lost in a crash as a fictitious undo 
operation, then we must guarantee that a "second" execution of the undo operation 
is prohibited or has no effect. 
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Figure 6. Pseudocode for multi-level logging 

! BOT(T,): 
Create TCB 

BOS('r~: 
Create STCB 
Attach STCB(Tij) to TCB('I'i) 

Rx_for Read(Til, q): 
Add q to STCB(Tij).readset 

Fix_for_Write(Tii, q): 
Allocate a new buffer frame with FCB f 
Copy q into the new frame 
Attach the original FCB of q to f 
Set the status of f to "modified" 
Attach f to STCB(Tij).writeset 

EOS('rq): 
Initialize L, a list of PSCBs, to be empty 
J.0J~ each 

FCB f in STCB(Tij).writeset 
d.Q 

each STCB s that points to brim(f) 
d.q 

Add the PSCB of s to the list L 

Set the status of FCB f to "dirty" 
Drop the FCB bfim(0 

each 
page r in STCB(l"lj).readset 

d.q 
Jt there is an FCB f for r such that 

the status of f is "dirty" 
t ~  

each STCB s that points to f 
d_Q 

Add the PSCB of s to the list L 
~_d 

J] 
~d 
if L is not empty 
then 

MergePersistence_Spheres(L) 
Let p be the resulting PSCB 

Create a new PSCB p 
n 
Attach STCB(Tij) to PSCB p 

Replace_Dirty_Page(q): 
Determine an (arbitrary) STCB s that 

points to FCB(q) 
Determine the PSCB p that s points to 
Write persistence sphere p 
Write page q back into the database 
Set the status of FCB(q) to "clean" 

EOT(T,): 
Initialize L, a list of PSCBs, to be empty 
JDL each STCB s that points to TCB(Ti) 
d.Q 

.it s points to a PSCB 

Add this PSCB to the list L 
n 

gd 
jf L is not empty 

MergePersistence_Spheres(L) 
Let p be the resulting PSCB 
Write_Persistence_Sphere(p) 

Drop TCB(Ti) 

Wr'de Persistence_Sph ere(p): 
Force the L1 log buffer 
Collect a list L of "dirty" FCBs 

by traversing all FCBs of all STCBs 
that are attached to PSCB p 

Write the pages that are pointed to 
by the FCBs in L to the L0 log, 
and set the status of the FCBs to "forced 

Drop all STCBs that point to p 
Drop PSCB p 

Merge_PersistenceSpheres(L):  
Merge all PSCBs in L by attaching all 

STCBs of the 2nd through last PSCB in L 
to the first PSCB p in L 

Drop the 2nd through last PSCB in L 

Fig.6: Pseudocode for Multi-level Logging 
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Our solution to the described problem is to store the numbers of the executed 
subtransactions in both the L0 redo log records and the L1 undo log records (Figures 
3 and 4). These subtransaction numbers can be viewed as log sequence numbers 
(LSNs) of the L1 log. Recall the original reason for using LSNs in log-based database 
recovery: Assume that the L0 log is based on entry logging with entries of the 
type "shift 100 bytes by 10 bytes to the right" describing non-idempotent page-level 
operations. Because we do not know which of these operations is reflected in the 
database after a crash, an additional handshake is needed between the L0 log and 
the database itself to provide idempotent redo. This additional handshake is usually 
implemented by storing the highest LSN of a page's L0 update log records in the 
header of the page (Gray, 1978; Crus, 1984; Mohan et al., 1992). By comparing 
the LSN of a log record with the LSN of the page, the warmstart procedure can 
decide whether the log record must be skipped or not. 

Implementing the handshake between the L0 log and the L1 log in our case 
is a bit more difficult, because the order of the subtransactions' after-images in 
the L0 redo log may be different from the order of the same subtransactions' log 
records in the L1 undo log. Thus, during the redo pass of the warmstart, it is not 
sufficient to keep track of the highest subtransaction number (i.e., L1 LSN) that is 
contained in the L0 log. Rather we must collect a list of "winner subtransactions" 
that is afterwards used by the undo pass for checking the applicability of the L1 
log records. 

In the multi-level recovery method without deferred log writes, each after- 
image in the L0 log belongs to exactly one subtransaction. With deferred log writes, 
each after-image belongs to one persistence sphere, which may consist of multiple 
subtransactions. Hence, we actually record a list of subtransaction numbers that is 
spread across the headers of a persistence sphere's after-images rather than merely a 
single subtransaction number. If this list becomes unusually long, an additional page 
with such bookkeeping information is included in the set-oriented I/O that writes 
the persistence sphere. The header of the last after-image of a persistence sphere 
contains a flag to mark the end of the persistence sphere so that the writing of the 
entire persistence sphere is made atomic, and it contains, in a separate header field, 
the number of the committing transaction that caused the writing of the persistence 
sphere. The committed transaction numbers are also collected during the redo 
pass, and are needed by the undo pass to handle the case of non-forced (and thus 
missing) EOT log records in the L1 log (Section 2.2.2). 

Logging During the Warmstart. During the redo phase of a warmstart, no logging is 
necessary because restoring page after-images is idempotent and can therefore be 
repeated as often as necessary. During the undo phase, however, the problem arises 
that a compensating subtransaction is neither atomic nor idempotent. Hence, a crash 
in the middle of the undo phase makes it impossible to know which compensating 
subtransactions have been executed and should not be repeated; also, it is possible 
that some compensating subtransactions were executed only partially. Therefore, L0 
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Figure 7. Operations during the warmstart 
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redo logging must be in effect again during the undo phase, to ensure the atomicity 
of the executed compensating subtransactions. To keep track of the progress during 
the undo phase and to handle repeated warmstarts, L1 undo log records are written 
for the executed compensating subtransactions. 

In our approach, compensating subtransactions and regular subtransactions are 
treated uniformly for simplicity. Thus, undoing a transaction is actually not distin- 
guishable from performing forward recovery. For each compensating subtransaction, 
L0 redo log records are written, and an L1 undo log record is written that describes 
the inverse of the compensating subtransaction (i.e., the inverse of an inverse op- 
eration). At the end of undoing a transaction, an EOT log record is written as 
though the transaction were normally completed. 

Figures 7 and 8 show the operations that are executed and the log records that 
are written during the warmstart for the scenario of Figures 1 and 4. Operations 
with a double overbar denote the inverses of inverse operations. If the system 
crashed once more just before the EOT(T1) log record is written (Figure 8), then 
the following warmstart would redo the subtransactions T l l  through T14. Because 
the after-images of T13 and T14 did not include the EOT flag (because the rollback 
was not yet complete), our recovery manager would undo both the compensating 
subtransactions T14 and T13 and the regular subtransactions T12 and T l l  by 
following the "transaction backward chain" of L1 log records. 

An optimization of the described implementation would be to apply the technique 
of Mohan et al. (1992), which avoids undoing an undo operation (i.e., compensating 
a compensating subtransaction) by following an additional "compensation backward 
chain" between the L1 log records of a transaction. This technique guarantees that 
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repeated crashes do not cause increasingly longer warmstarts, and allows resolving 
top-level deadlocks by partially rolling back a transaction. Note, however, that 
page-level deadlocks can be handled more easily by rolling back and restarting one 
or more subtransactions (i.e., by exploiting the nested transaction structure). 

Incorporating the optimization of Mohan et al. (1992) in our implementation 
would be fairly straightforward, accomplished by simply adding the compensation 
backward chain (Figure 8). The L1 log record of T13 would point to T l l  (i.e., 
the predecessor of the subtransaction that is compensated by T13) and T14 would 
have a nil pointer because it compensates T l l  and T l l  is the transaction's first 
subtransaction. The processing of the L1 undo log would follow this additional 
compensation backward chain until a log record is encountered that corresponds to 
a subtransaction that is not among the "winner subtransactions" of the redo phase. 
As this log record is skipped, we also ignore its compensation backward pointer 
and follow the regular transaction backward chain. 

3. Adding Intra-Transaction Parallelism 

Advanced DBMS applications such as engineering or document management have 
a high potential for parallelism within a single transaction (Duppel et al., 1987; 
Haerder et al., 1989; DeWitt and Gray, 1992; Haerder et al., 1992). Such intra- 
transaction parallelism is a key technology for speeding up both retrieval and 
set-oriented update operations on complex objects. Similarly, applications that 
update large amounts of derived data and/or check complex integrity constraints 
can substantially benefit, too (Hudson and King, 1989) (Section 1). We have 
extended our implementation of multi-level transaction management also to parallel 
subtransactions of a single transaction. Implementing these extensions has been 
fairly straightforward. Multi-level transaction management, by its modular nature, 
is uniformly effective for subtransactions at the page level, regardless of whether 
two subtransactions belong to different transactions or to the same transaction. 
Thus, adding intra-transaction parallelism required only one additional component 
for scheduling the subtransactions within a transaction, and it required changes 
to the process architecture of DASDBS. In the following two subsections, these 
modifications are briefly discussed. 

3.1 Scheduling of Subtransactions 

The newly-implemented scheduling component requires that the programmer of a 
transaction program specify the precedence orders between the subtransactions of 
a transaction. Generally, two subtransactions have no precedence order if there 
is neither a control flow- nor a data flow-dependency between them and if they 
do not potentially conflict at the object level. However, subtransactions that are 
"independent" in the above sense are allowed to have potential conflicts at the page 
level. It is still reasonable to execute such subtransactions in parallel, because a 
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potential conflict does not necessarily mean that a lock conflict actually will occur. 
Even if there is a page-level lock conflict between two parallel subtransactions 
of the same transaction, it may still be beneficial, in terms of response time, to 
exploit the possible parallelism to the largest possible extent rather to serialize the 
subtransactions in advance. In the worst case, a page-level deadlock can involve two or 
more subtransactions of the same transaction. This is recognized by the lock manager 
and handled in the same way as a page-level deadlock between subtransactions that 
belong to different transactions. That is, one or more subtransactions are rolled 
back and (automatically) restarted; it is not necessary to abort the entire transaction. 
(This advantage would, of course, hold for any other nested transaction model as 
well; Moss, 1985, Haerder et al., 1992.) If the deadlock could be foreseen before 
the subtransactions start executing (i.e., if the probability of a deadlock is estimated 
to be high), the critical subtransactions should be serialized better in advance. 

From the specification of the precedence orders between subtransactions, a Petri- 
net-like precedence graph is constructed. This graph is used for driving the parallel 
execution of the subtransactions. That is, a subtransaction is invoked by the scheduler 
when all its predecessors in the precedence graph are successfully completed. It 
is planned to enhance the scheduler so that it takes into account estimates about 
the resource consumption and the locking behavior of a subtransaction. The goal 
is to schedule eligible subtransactions so that the utilization of processors and 
disks is approximately balanced (cf. Pirahesh et al., 1990; Murphy and Shan, 
1991). Furthermore, the scheduling of subtransactions should avoid data-contention 
bottlenecks and especially deadlocks that can be predicted in advance. 

3.2 Process Architecture 

DASDBS has a process-per-transaction architecture; that is, each transaction is 
executed in a separate process, with newly arriving transactions reusing existing 
processes. All global data structures (e.g., buffer frames, control blocks for buffer 
management, locking, logging, etc.) are allocated in shared memory. In the 
original implementation, each process had only one thread of control for sequentially 
executing all subtransactions of a transaction. This has been extended by spawning 
a light-weight process for each subtransaction that is to be executed. These light- 
weight processes are provided by the #System parallel programming library (Buhr 
and Stroobosscher, 1990) that we used in the implementation. Light-weight processes 
are called /ztasks in the /zSystem; we will refer to them simply as "tasks." Such 
tasks are executed within a "cluster" of one or more heavy-weight processes. The 
processes within a cluster are called "virtual processors" in the #System. All 
processes of all clusters share the same heap, for which the ~System provides the 
memory management. 

Because we have to deal with both inter- and intra-transaction parallelism, 
we generate a cluster of processes for each concurrently executing transaction, in 
accordance with the original process-per-transaction architecture. The new process 
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Figure 9. New process architecture of DASDBS 
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architecture is illustrated in Figure 9. The number of processes in a cluster is 
dynamically adjusted so that it is always equal to the number of simultaneously 
active tasks (i.e., parallel subtransactions within a transaction). Because of the high 
costs of process creation and destruction associated with this dynamic mechanism, 
we also support an alternative in which the number of processes in a cluster is set 
to the maximum number of tasks that can be simultaneously active. This number 
of processes is set already at the beginning of a transaction, and all processes are 
kept until the transaction completes. 

A major point of the described process architecture is that it also allows using 
fewer processes in a cluster than there are concurrently executing tasks. This option, 
which is provided by the/zSystem for each cluster individually, is useful if some of 
the tasks are I/O-intensive so that the number of tasks that require processors is 
less than the number of executing tasks. In addition, the combination of inter- and 
intra-transaction parallelism may require limiting the total number of processes in 
the process clusters of the concurrently executing transactions. This sort of load 
control or throttling is essential for avoiding excessive context-switching (of heavy- 
weight processes) as well as other thrashing-like situations like excessive memory 
contention and data contention. The goal that we are pursuing in the long run is 
to adjust the number of processes in the clusters of the transactions to the current 
load situation dynamically and automatically. 

4. Performance Evaluation 

4.1 Description of the Experiments 

In this subsection, we describe the experiments that were performed to evaluate 
the performance of our algorithms for multi-level transaction management. We 
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Figure 10. Log I/0 costs of different recovery strategies 
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compared the following three strategies, all of which are implemented in DASDBS: 

• strategy $1, page-oriented single-level transaction management, using strict 
two-phase locking on pages and the DB Cache method for recovery, 

• strategy $2, two-level transaction management with log writes at each EOS, 
and 

• strategy S2/PS, two-level transaction management with deferred log writes 
based on the notion of persistence spheres (Section 2). 

Because the logging overhead is one of the main aspects that we wanted to investigate, 
we summarize the principal log I/O costs of the above three strategies in Figure 10. 

Our performance evaluation is based on a synthetic benchmark which follows 
some ideas proposed in the complex-object benchmarks of Anderson et al. (1990) 
and DeWitt et al. (1990). The benchmark has the following characteristics, as 
illustrated in Figure 11. 

• Our test database consists of 1,000 complex objects (COs) each of which 
consists of 1,000 "own" subobjects (SOs) and 100 references to "foreign" 
subobjects (i.e., subobjects that are owned by other complex objects). Thus, 
SOs can be referentially shared by multiple COs; however, each SO is owned 
by exactly one CO. The foreign SO references of a CO are generated by 
selecting a CO according to an 80-20 rule and an SO within the selected CO 
according to a 50-50 rule. That is, 80% of the foreign SO references point 
to SOs that are owned by 20% of the COs in the database. This reflects 
the skewed distribution of object relationships in most real-life applications. 
In our benchmark, the 80-20 and 50-50 rules were implemented by applying 
a linear transformation to a normal distribution of random numbers. The 
1,000 "own" SOs of a CO constitute a storage cluster of 10 contiguous pages, 
with a page size of 2KBytes. The first page of each storage cluster contains 
the CO header (i.e., a directory of SO references). The total database size 
is 10,000 pages or 20 MBytes. 
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F igure  11.  D a t a b a s e  and  w o r k l o a d  of  the  p e r f o r m a n c e  e x p e r i m e n t s  
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The workload of our benchmark consists of a single transaction type which 
performs c complex high-level operations each on a different CO. Each of 
these synthetic high-level operations accesses o own subobjects and f foreign 
subobjects of a CO. A subobject is modified with probability u. These updates 
do not affect the CO header; that is, the header page of a CO is read-only to 
avoid an obvious data-contention bottleneck in the benchmark. The COs that 
are processed by a transaction are selected according to an 80-20 rule, the 
own SOs within a CO are selected according to a 50-50 rule, and the foreign 
SOs are selected to a uniform distribution as the references themselves are 
already non-uniformly distributed (see above). According to Haerder  (1987), 
this skewed distribution is rather conservative compared to the access skew 
of many real-life applications. In the multi-level transaction management 
strategies $2 and S2/PS, each high-level operation on a CO corresponds to a 
subtransaction. At the object level, each high-level operation acquires shared 
locks on the set of accessed SOs, using object identifiers as the actual lock 
items. For modified SOs, these locks are acquired in exclusive mode. At the 
page level, all accessed pages are locked in shared mode, with conversions 
to exclusive locks for modified pages. In the strategies $2 and S2/PS, all 
page locks are released at EOS (i.e., when a high-level operation completes), 
whereas in the single-level transaction management strategy S1, all page locks 
are held until EOT. 

The experiments were designed as a stress test for transaction management on 
complex objects, with a small database and fairly long update transactions. All 
measurements were performed with DASDBS running on a 12-processor Sequent 
Symmetry shared-memory computer, with a page buffer pool of 2 MBytes. Each run 
of the experiments was driven by a fixed number of processes that execute transactions. 
This number of processes restricts the maximum number of transactions that can 
be concurrently executing, and is referred to as the degree of multiprogramming 
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(DMP). So our experimental setup models a closed queueing system (i.e., arrival 
rate equals throughput). In the experiments, the DMP was systematically varied 
for different runs. 

4.2 Performance Results for Disjoint Complex Objects 

In this section, we discuss the performance results for the case without accesses to 
foreign subobjects (i.e., f was set to 0). We first discuss the results of a "baseline 
experiment" with c = 12 complex-object operations per transaction, o = 10 own- 
subobject accesses per complex-object operation, and update probability u = 20%. 
We have also performed a sensitivity analysis of these parameters, as discussed 
below. In the following, we discuss the key observations from these experiments. 

Overallperformance: In all experiments, both two-level strategies $2 and S2/PS 
clearly outperformed the one-level strategy S1. Transaction throughput and 
response time were improved by factors of up to 2.5 (more than two times 
higher throughput) and 2.4 (more than two times shorter response time). 
Figures 12a and 12b show throughput and response time as a function of the 
DMP, where the DMP was varied between 1 and 20. Maximum throughput 
was reached at a DMP of 12. Detailed figures for this case are given in 
Figure 12f. 

Lock conflicts: The performance gains of the two-level strategies result from 
the fact that the performance of $1 is limited by data contention, whereas 
$2 and S2/PS have relatively few lock conflicts (Figure 12f, DMP 12). The 
observed conflict rate of 1.6% for strategy $1 at DMP 12 may appear acceptably 
low. However, the specific page reference pattern of our benchmark, with 
high locality within a complex object, seems to underrate the impact of the 
lock conflict probability. In fact, the total time that a transaction, on average, 
spent waiting for a lock is a more significant metric in this experiment. For 
example, with strategy $1 and a DMP of 12, an average transaction spent 
about 36 seconds waiting for locks, which is about 60% of a transaction's 
response time. With strategies $2 and S2/PS, on the other hand, this lock 
wait time was reduced to less than 3 seconds per transaction. Figure 12c 
shows the total lock wait time of all three strategies as a function of the 
DME 

Log I/Os: Because the simple two-level strategy $2 performed log I/Os for 
each update subtransaction, its log I/O rate was dramatically higher than that 
of strategy S1 (Figure 12d). This disadvantage of $2 was almost completely 
eliminated by strategy S2/PS. For example, at a DMP of 12, strategy S2/PS 
had about 2.7 times more page-level log I/Os than strategy S1; however, 
as it achieved 2.5 times the throughput of S1, the log I/O rates of the 
single-level strategy and the improved two-level strategy are actually quite 
comparable. Note that these results reflect the relative I/O performance of 
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the investigated strategies. As for absolute performance, the log I/O rate did 
not have a significant effect on throughput or response time in any of our 
experiments, which was in contrast to our expectations. In fact, the costs of 
log I/Os was our main concern in the design of the deferred logging approach 
of Section 2.2.2. However, even with strategy $2, the excessive number of 
log I/Os caused only about 5% utilization of each of the L0 log disk and the 
L1 log disk. Keep in mind, however, that with more or faster CPUs, log I/O 
would eventually become a performance-limiting factor. Then the savings in 
log I/Os that strategy S2/PS achieved would become a crucial performance 
advantage. 

Strategy S2/PS was even superior to strategy $1 in terms of the number of 
pages written in one page-level log I/O. Because update subtransactions are 
dynamically combined into persistence spheres, it was often the case that a 
page that was modified by multiple subtransactions of different transactions 
was written to the log only once. This main feature of our improved multi- 
level logging approach led to an effect similar to group commit. With strategy 
S2/PS, on average only 19.9 pages rather than 22.3 pages were written in 
one L0 log I/O, at a DMP of 12. As the decreasing average persistence 
sphere size in Figure 12e shows, this effect increases with the DME Note, 
that, in contrast to group commit, our method does not impose any delays 
on transaction commits other than the log I/O itself. In fact, group commit 
and our deferred log write approach are orthogonal steps toward reducing 
log I/O costs. 

Performance impact of internal latches: As the throughput and response time 
curves in Figures 12a and 12b show, strategy S2/PS performs slightly better 
than strategy $2. Even though one might think that this is the effect of the 
savings in log I/Os, the absolute costs of log I/O are actually negligible in 
both strategies. Rather the performance difference is because strategy S2/PS 
saves calls to the buffer manager as it defers the writing of after-images. This 
reduces some CPU overhead, and decreases the contention on internal latches 
that are used to synchronize the access to the buffer manager's frame control 
blocks (Graefe and Thakkar, 1992). Such latch contention is also the major 
reason for the drop of performance that both $2 and S2/PS suffer when the 
DMP exceeds 12 (i.e., the number of processors). Because we implemented 
latches by spin locks (Graunke and Thakkar, 1990), latch contention actually 
led to wasted CPU cycles; and because the CPU utilization was almost 100% 
at DMP 12, increasing the DMP beyond 12 caused a significant decrease of 
performance. 
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Figure 12. Results of baseline experiment with disjoint complex 
objects 
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Sensitivity of  baselineparameters: We performed additional experiments to 
study the sensitivity of the various parameters of our baseline experiment. In 
particular, we varied the update probability u, the number o of own-subobject 
accesses per complex-object operation, and the number c of complex-object 
operations per transaction. The results are shown in Figure 13. These 
experiments essentially confirmed the observations discussed above. In inter- 
preting the slope of the curves, note that the number of modified pages per 
complex-object operation increases only slowly with the number of updated 
subobjects because of the high locality within a complex object. 

4.3 Complex Objects with Referentially Shared Subobjects. 

In this section, we discuss the performance results for the case with accesses to 
foreign subobjects. We first discuss the performance when all subobjects accessed 
by a complex-object operation are foreign subobjects (i.e., subobjects physically 
clustered with other complex objects). In the discussed experiments, f = 10 foreign 
subobjects were accessed per complex-object operation with update probability u = 
20%. We have also performed a sensitivity analysis of the f parameter, by keeping 
the sum o + f (i.e., the total number of SO accesses per CO operation) constantly 
at 10 and varying f from 0 to 10. In the following, we discuss to what extent 
foreign-subobject accesses changed the results obtained in Section 4.2. Strategy $2 
is no longer considered here because it was always outperformed by S2/PS. 

• Overallperformance and lock conflicts: As shown in Figure 14, the performance 
difference of S1 and S2/PS became even bigger, compared to the case without 
foreign-subobject accesses. For example, at a DMP of 12, S2/PS achieved 16 
times higher throughput and 10 times shorter response time than S1. This 
performance difference is mostly caused by data contention (Figures 14c and 
14 0. For strategy S1, both the total lock wait time and the conflict rate were 
substantially higher than in the experiment of Section 4.2. In addition, the 
number of deadlocks increased considerably. 

With foreign-subobject accesses, the subobjects that are accessed by a sub- 
transaction are scattered across the entire database. Compared to the results 
of Section 4.2, this fact destroyed the locality in the page accesses of a 
subtransaction. Thus, the total number of pages that are accessed within a 
transaction was increased, and the page access pattern was better random- 
ized. For example, the first SO access within each complex-object operation 
(Section 4.2) had a higher probability of getting blocked than the other SO 
accesses within the same CO, as the latter benefit from the already acquired 
locks because of the high locality of subobject (and hence page) accesses. 
(The net effect is similar to preclaiming, even though no preclaiming is ac- 
tually performed.) Destroying this locality led to the disastrous performance 
of strategy $1. 
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Figure 13. Sensitivity of baseline parameters with disjoint complex 
objects 
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Figure 14. Results of the experiment with foreign-subobject accesses 
(f = 10) 

O.5 

0.3 / 
/ 

/ 

o 
0 2 4 6 8 10 12 14 16 18 20 

4o0 

3o0 
. ~ o  

~150 
l(x) 

m 50 
o 

DMP 
e) Throughput 

/ / °° 
 j,,l / 1° 

0 2 4 6 8 10 12 14 16 18 20 
DMP 

C) Total Lock Wait T ime 

2 4 6 8 10 12 14 16 18 2 0  
DMP 

b) Response Time 

//////f"~'%~',~,\% 
// // 

2 4 6 8 10 12 14 16 18 20 

d) LO Log I/0 Rate 

c = 12 (numberoI 
co ope,=~:,n4) 

no-o (~m=,=~ 
I =vm so = : ¢ m )  
i t = 1 0  (ru,~o~ d 
I foreign SO a c c ~ )  

DMP 

m $1 

~ l  s2/ps 

h s l  
m B - -  s~jps 

z 
) . . . . . . . . . .  J 
DMP DMP 

e) Persistence Sphere Size 

~ a v g .  
U m a ~ .  

$1 

[PUT I RT | #Lock I #Lock Lock Conflict I #Deadlocks I #Log I/Os I #Pages per 
('rAs [eac] | Requests I Waits Probability I per min. I per mine I Log l/O 

.s~) I I per ran. per mn.  [%%] I I I 

m n m , ; u  - - , - , = -  - - - - - - - B L ~ B n - - l U n  
~nuznn U]~mnm~..~-- - ' " = -  - - * - ' -unu~nun~.nN 
~"~ln ~ e',;:;'~ln~'~'~:~l nP'~qf~N mE ~ a  mm,~n mu,. m a , u m  n ~ IL~";lr~N ~ NF'J[1 

f) Performance Compar ison at DMP 12 



436 

• LogI/Os: The most interesting aspect of the experiment with foreign-subobject 
accesses is the relationship between the DMP and the size of persistence 
spheres (Figure 14e). Whereas the average size of persistence spheres was not 
much affected by the DMP, the maximum persistence sphere size increased 
quite significantly with increasing DMP. This effect can be quite beneficial 
(Section 4.2), for it amounts to more batching of log I/Os (i.e., fewer but longer 
log I/Os). However, batching log I/Os is desirable only up to a certain point. If 
persistence spheres become too large, then the writing of a persistence sphere 
adds a significant delay to the response time of the committing transaction 
that caused the log I/O. In our experiments, the maximum persistence sphere 
at a DMP of 12 contained about 95 pages (each of size 2K). Writing this 
persistence sphere to a single log disk takes about 100 milliseconds, which 
is still negligible in our experiment but may be unacceptable in a different 
environment (e.g., with much faster CPUs). 

Of course, writing the after-images in a persistence sphere is unavoidable in 
order to commit a transaction. In fact, our deferred write approach minimizes 
the number of pages that need to be written. The point, however, is that 
our method may cause unpredictable delays. The reason is that a large 
amount of log I/O work may be imposed on a transaction that has not done 
much work itself but happens to have a large persistence sphere constituted 
mostly by subtransactions of other active transactions. These unpredictable 
delays should be avoided in a high performance environment with response- 
time constraints. Note, however, that the delay caused by writing a large 
persistence sphere is still much shorter and therefore less severe than the 
delay that a synchronous checkpoint mechanism would cause (Gray et al., 
1981). 

There are two ways to eliminate or alleviate the described effect (none of which 
is currently implemented in DASDBS). The first is to prevent the formation 
of large persistence spheres. This can be achieved by asynchronously writing 
persistence spheres whenever their size exceeds a certain threshold, even 
if the log I/O could be further deferred. Such a mechanism may actually 
increase the total amount of work because it may write more pages, but it 
can distribute the log I/O load more evenly over time. The second way to 
cope with large persistence spheres is to make their writing more efficient. 
This can be achieved by striping the log over multiple disks in a round-robin 
fashion (i.e., RAID-like striping) with a sufficiently large striping unit (e.g., a 
track). By exploiting the I/O parallelism of such a multi-disk log (cf. Seltzer 
and Stonebraker, 1990), the response time penalty of the deferred write 
approach could be eliminated, even with much larger persistence spheres 
than we observed in our experiments. 

• Sensitivity of  the number offoreign-subobjeet accesses: The performance results 
with varying numbers of foreign-subobject accesses per complex-object op- 
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eration are shown in Figure 15. These results essentially confirm the above 
observations. That is, with an increasing number of foreign-subobject ac- 
cesses, transactions loose locality which leads to more conflicts with S1 and 
potentially larger persistence spheres with S2/PS. 

4.4 CPU Overhead 

In this section, we discuss the additional CPU costs that are incurred by our multi- 
level recovery algorithm. For this purpose, we reran a number of experiments using 
the UNIX profiling tool gprof. We restricted ourselves to the case of disjoint complex 
objects, i.e., the workload parameter setting of the base experiment of Section 4.2: 
c = 12 complex-object operations per transaction, o = 10 own-subobject accesses 
per complex-object operation, no foreign-subobject access (f = 0), and update 
probability u = 20%. Figure 16 shows the CPU time per transaction for the DMP 
values 1 (i.e., single-user mode), 4, 8, and 12, comparing the strategies S1 and 
S2/PS. The total CPU time is broken down into the following components: 

• OM: object management, which includes the management of complex records 
and object buffers and the query processing (see Schek et al., 1990, for these 
components of DASDBS), 

• PM: page management, which includes the buffer manager, free place ad- 
ministration, and I/O services, 

• TM-I:  the object-level transaction management, which includes the L1 lock 
and log management and the transaction bookkeeping, and 

• TM-O: the page-level transaction management, which includes the L0 lock 
and log management, the management of persistence spheres, and the sub- 
transaction bookkeeping. 

The breakdown of the CPU costs is shown in Figure 16. The total figures show 
that the two-level transaction management incurs an overhead of up to about 14%. 
This overhead is mostly caused by the object-level locking and logging. Note, 
however, that our experiments are based on a university prototype which has a large 
potential for code fine-tuning. In addition to the overhead at level L1, there is also 
a noticeable overhead at the page level L0. The total increase of CPU time in the 
page management and the page-level transaction management, for S2/PS versus S1, 
is almost 50%, but note that the absolute page-level CPU time of S2/PS constitutes 
less than 10% of a transaction's total CPU time. 

The page-level CPU overhead of S2/PS can be attributed to the following factors, 
ordered by descending fraction of costs: 

• releasing and re-requesting page locks within a transaction (included in TM-0), 
which is by far the largest factor within TM-0, 
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Figure 15. Sensitivity of number of foreign-subobject accesses (f) 
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• additional page copying and before-image management in cases where the 
same page is modified by multiple subtransactions of the same transaction 
(included in PM, since this is integrated into the buffer manager), 

• wasted CPU cycles due to latch waits (included in both TM-0 and PM), and 

• bookkeeping for subtransactions and persistence spheres (included in TM-0). 

Note that the strategy $1 suffered substantially fewer latch waits (not explicitly 
shown in Figure 16), since the data-contention bottleneck for this strategy led to 
a large fraction of blocked transactions which in turn reduced the contention for 
latches. 

We also measured the CPU costs for other experiments, including a scenario in 
which data contention was not a performance-limiting factor. These measurements 
confirmed that the CPU overhead of our multi-level method is acceptable. In all 
cases, the overhead of S2/PS was on the order of 10%, mostly due to the logging 
and locking at the object level L1. This is a modest price for the benefit of increased 
concurrency whenever data contention is of concern. Note that similar costs would 
inevitably arise with every kind of object-level concurrency control and recovery. 
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Figure 16. CPU costs of $1 and S2/PS 

D M P  1 D M P  4 D M P  8 D M P  12 

$1 S2/PS $1 S2/PS $1 S2/PS $1 I S2/PS 

OM 10.65 10.65 10.65 10.65 10.65 i 10.65 10.651 10.65 

PM ! 0.67 0.76 0.70 0.76 0.74 0.83 0.68 0.84 

TM - 1 - - 0 . 8 9  - - 0 . 9 3  - - 1 . 0 1  - - 1 . 1 9  

TM-O ~ 0.03 0.06 0.03 0.09 0.03 0.16 0.93 0.25 

T o t a l  11.35 12.36 : 11.38 12.43 11.42 12.65 i 11.36 12.93 

Costs in CPU seconds for the baseline experiment with disjoint complex objects. 

4.5 Preliminary Performance Results for Intra-Transaction Parallelism 

In a final series of experiments, we studied the impact of intra-transaction parallelism 
on multi-level transaction management. We concentrated on evaluating the strategy 
S2/PS because it always outperformed $2. Note that intra-transaction parallelism 
requires some form of subtransactions and is therefore not feasible with strategy 
S1 as it was implemented. In our benchmark, we assumed that all subtransactions 
of a transaction can indeed be executed in parallel (i.e., there is no precedence 
order between the complex-object operations of a transaction). In the experiments, 
the effective degree of intra-transaction parallelism (DIP) was varied between 1 
and 6. For example, with a DIP of 6, the first through sixth subtransaction of a 
transaction were executed in parallel, and subsequently the seventh through twelfth 
subtransaction were in parallel. We varied the DMP orthogonally to the DIP, to 
investigate how inter- and intra-transaction parallelism affect each other. Some 
preliminary results are discussed in the following. 

Overallperformance: Figures 17 and 18 show the performance results with 
and without foreign-subobject accesses, respectively. In the following, we 
concentrate on discussing the more interesting case with foreign-subobject 
accesses. The performance impact of the DIP was highly dependent on 
the DME With a low DMP, a relatively high DIP reduces the transaction 
response time and improves throughput; with a high DMP, however, the 
potential benefits of intra-transaction parallelism clearly are outweighed by 
the additional costs. The main bottleneck was the CPU capacity, as we had 
only 12 processors available but generated DMP * DIP processes with a 
CPU-intensive workload. 

• Lock conflicts and latch conflicts: As  Figure 18c shows, the contention for 
locks, especially page locks at level L0, increased drastically with increasing 
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values of the product DMP * DIP. For example, at DMP 12 and DIP 4, 
about 25% of a transaction's response time was spent waiting for a lock. This 
observation is remarkable as the same workload under the same strategy S2/PS 
showed almost no data contention in the previous experiments without intra- 
transaction parallelism even at a high DMP (Figure 14). The phenomenon 
has two explanations. First, the execution time of a transaction increases 
considerably with the product DMP * DIP, and therefore the potential for 
data contention increases. Second, intra-transaction parallelism increases the 
number of concurrently active subtransactions and hence the data contention 
at level L0. Thus, if the product DMP * DIP is not properly controlled, then 
short-term page locks become a performance-critical factor even though they 
are released at EOS. 

Finally, the contention for internal latches became a severe performance 
problem at high values of DMP * DIP (Section 4.1). Even though this 
problem could be alleviated by tuning the code within the critical sections 
(which may include redesigning some of the buffer manager's and the lock 
manager's internal data structures), it cannot be completely eliminated if the 
number of concurrently active subtransactions is unrestricted. 

These problems clearly show the need for load control for inter- and intra- 
transaction parallelism. We are pursuing an approach that dynamically adjusts 
the DMP and the DIP of the admitted transactions to the current load in 
terms of lock and latch contention as well as resource contention (cf. Carey 
et al., 1990; Moenkeberg and Weikum, 1991, 1992; Thomasian, in press). 

Log I/Os: As far as the log I/O rate is concerned, the results with intra- 
transaction parallelism were no different from the results of Sections 4.2 
and 4.3. That is, the number of log I/Os per time interval (Figure 18d) 
was approximately proportional to the achieved transaction throughput. We 
observed an interesting effect concerning the maximum size of persistence 
spheres at different DMP and DIP values. Persistence spheres became larger 
with increasing DMP for all DIP values (Figure 18e). The gradient of 
this increase, however, was smaller for high DIP values than for low ones. 
This may indicate that intra-transaction parallelism is beneficial for keeping 
persistence spheres small and thus making the execution time of the commit 
processing more predictable. 

As an explanation of this phenomenon we offer the following hypothesis: 
The probability that two persistence spheres are merged increases with the 
product of the number of concurrently active subtransactions (i.e., DMP * 
DIP) and the average time between a subtransaction's EOS and the EOT of 
its transaction, or actually, with the integral of the number of completed but 
not yet forced subtransactions over time. The reason for this relationship is 
that a subtransaction is eligible for joining a persistence sphere only after its 
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Figure 17. Inter- and intra-transaction paral lel ism for disjoint complex  

objects 
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EOS, and is forced to the log file at EOT at the latest. 

When we compare, for example, DMP = 12 and DIP = 1 with DMP = 2 
and DIP = 6, the average time for which a subtransaction may join another  
transaction's persistence sphere can be estimated in a simplified way as follows. 
In the first case, the first subtransaction of a transaction consisting of 12 

11 subtransactions stays for ~ of the transaction's response time (RT1) between 
10 EOS and EOT, the second subtransaction for ~ of RT1, and so on. This 

calculation yields an average of ( ( ~  + . . .-F ~ ) *  RT1)/12 = 1 1  RT1 for the 
time interval during which a subtransaction may join a persistence sphere. 
In the second case, the first through sixth subtransaction of a transaction 

1 stay for 7 of the transaction's response time (RT2) in the state between 
EOS and EOT; the seventh through twelfth subtransaction spend virtually 
no time between EOS and EOT if we assume ideal scheduling. This yields 
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Figure 18. Inter- and intra-transaction parallelism with 

foreign-subobject accesses 
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an average of ((6 * ½) * RT2)/12 = ~ for the critical time interval. Of 4 
course, this strawman calculation disregards lock wait time and scheduling 
effects. Nevertheless, we believe that it can be considered as an argument that 
intra-transaction parallelism is indeed beneficial for keeping (the variance 
of) persistence spheres small. 

5. Comparison with Related Work 

Multi-level transaction management methods are implemented in the commercial 
database system SQL/DS, which is essentially System R (Gray et al., 1981), Synapse 
(Ong, 1984), and Informix-Turbo (Curtis, 1988). These systems deal with transaction 
management at two levels: the record level and the page level. Their recovery 
methods use record-level redo, which slows down recovery at a warmstart; and 
they ensure the atomicity of record-level operations (including index updates) by 
periodically taking operation-consistent checkpoints that write all dirty pages back 
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into the database. Such checkpoints adversely affect transaction response time, and 
become increasingly unacceptable with evergrowing buffer pool sizes. 

An interesting unconventional multi-level recovery architecture has been imple- 
mented in the research prototype Kardamom (von Bueltzingsloewen et al., 1988). 
In this system, high-level update operations are performed on an object cache, and 
the propagation of updates onto pages is deferred until EOT. Thus, no high-level 
undo log records are needed, at the expense of performing redo at the object level. 
This approach may be well suited for a server-workstation environment where data 
is exchanged at the object level (Iochpe, 1989). However, it is not clear from the 
description of the algorithm if and how the approach can ensure the atomicity of 
high-level updates that are propagated onto pages during a transaction's commit 
phase. 

Our method of multi-level recovery is most closely related to the ARIES method 
(Mohan and Pirahesh, 1991; Mohan et al., 1992; Mohan and Levine, 1992). Even 
though the two methods were independently developed with very different design 
objectives, they have quite a few properties in common, as discussed in the following. 

1. Both methods perform redo at the page level (i.e., "physical redo" in the terms 
of Mohan et al., 1992), thus minimizing the redo costs during a warmstart. 

. Both methods support semantic concurrency control in that they allow commu- 
tative update operations on the same object to be performed concurrently. 
In such a case, both methods consequently perform transaction undo by 
compensation rather than restoring previous object states. 

. As an unavoidable consequence of properties (1) and (2), both methods may 
have to redo updates of "loser transactions" that are afterwards undone by 
compensation during a warmstart. This principle is called the "repeating of 
history" paradigm (Mohan et al., 1992). 

. To keep track of the modifications made by compensating (subtrans-) actions, 
both methods write a high-level log record when performing a compensating 
(subtrans-) action. These log records are called "compensation log records" 
(CLRs; Mohan et al., 1992). 

Given these common properties, a simplified comparative view of our multi-level 
recovery method and the ARIES method is the following. Our method could 
"emulate" ARIES by (1) performing entry logging rather than after-image logging 
at the page level, (2) combining the L1 log and the L0 log into a single physical log 
file, (3) adding a compensation backward chain between L1 log records to avoid 
undoing undo operations (Mohan et al., 1992), and (4) simply flushing all buffered 
log records whenever a persistence sphere has to be written. While the first three of 
these points would be (relatively simple) modifications or extensions of our method, 
the fourth point would be actually a simplification at the expense of writing more 
log records (see below). 
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The similarity of ARIES and our method is especially remarkable because the 
two methods have been developed with very different design goals in mind. ARIES 
is an industrial-strength recovery method for relational DBMSs that is tailored to 
the prevalent storage structures of relational systems. The multi-level recovery 
method, however, evolved from a theoretically well-founded but relatively puristic 
framework, aiming at high modularity and generality that would allow handling 
arbitrarily complex high-level operations. 

A difference between ARIES and our method is the amount of redo processing 
during a warmstart. The difference has only minor practical relevance, but it provides 
insight into the different behavior of the two methods. Persistence spheres, as used 
in our method, are the minimal sets of redo log records that must be written to 
ensure transaction persistence by page-level redo while observing subtransaction 
atomicity. ARIES, on the other hand, writes all generated log records to disk, 
which is much simpler. During the warmstart, ARIES redoes all updates up to 
the point of the crash. The enhanced version called ARIES/RRH (Mohan and 
Pirahesh, 1991) avoids some of this redo work by determining, during the redo pass, 
if a redo log record of a loser transaction is followed by a redo log record of a 
winner transaction that refers to the same page. The update of the loser transaction 
need not be redone if (and, in ARIES/RRH, only if) this is not the case. In our 
method, such a check (which may even require look-ahead in the log; Mohan and 
Pirahesh, 1991) is unnecessary because the critical redo log record would have been 
written to the log file only if the subtransaction that generated the log record was 
followed by a winner transaction that modified the critical page or if the dirty page 
was written back into the database before the crash occured. 

Another closely related recovery method is the MLR method by Lomet (1992). 
This method aims to combine the industrial-strength properties of ARIES with the 
modular structure of our multi-level approach. MLR essentially takes the original 
multi-level recovery method of Weikum (1991) as a conceptual starting point, and 
then adds a number of optimizations. In particular, MLR uses entry logging, 
merges the high-level undo log and the low-level log into a single log file, and is 
able to combine the writes of a high-level undo log record and multiple redo log 
records into a single atomic event to ensure the atomicity of subtransactions. These 
optimizations are similar to some of the ARIES features. In fact, ARIES would 
ensure the atomicity of multi-page updates also by writing several log records to 
a single log file in an atomic manner (even though this is not explicitly discussed 
in the ARIES papers). Several similar techniques have been used in Tandem's 
commercial database systems (Gray and Reuter, 1993), but were not published in 
the academic community. 

6. Further Performance Improvements 

The performance of our implementation, within the research prototype DASDBS, is 
encouraging despite an obvious lack of fine-tuning at the code level. Nevertheless, 
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we are investigating various issues for improving the performance under specifically 
heavy load situations. These issues are briefly discussed in the following. 

• "Light Weight" Subtransactions: For particular types of high-level operations, 
the resulting reference pattern at the page level may have specific properties 
(e.g., pages are accessed in a specific order), so that it may be possible 
to guarantee deadlock-freedom between the corresponding subtransactions. 
Because the conflict rate at the page level is usually low, we may also 
simplify the queue management at virtually no risk of starvation. Under 
these conditions, it would be feasible to implement the page-level concurrency 
control between the eligible subtransaction types by latches rather than full- 
fledged locks. This would substantially reduce the CPU costs of multi-level 
concurrency control. Of course, the ultimate goal of such an approach would 
be to automatically generate the necessary latching protocol, based on the 
analysis of the possible page reference patterns of the particular types of 
subtransactions. 

Multi-Granularity Locking: Another approach to reducing the CPU costs of 
multi-level concurrency control on complex objects is to incorporate multi- 
granularity locking at the object level. Unfortunately, while this is relatively 
simple and actually implemented in our system for the case of disjoint 
complex objects, it seems that the case of complex objects with referentially 
shared subobjects has not yet been completely solved (Garza and Kim, 1988; 
Herrmann et al., 1990; Haerder et al., 1992). 

Organization of Log Buffers and Log Files: For subtransactions for which the L0 
log write can be deferred until EOT, it is not necessary to write the L1 undo 
log records before the L0 after-images because the L0 write is atomic. Thus, 
the transaction's L1 log records could actually be discarded from the L1 log 
buffer after the successful L0 log write I/O. This would save log I/Os at the 
expense of having to change the L1 log buffer organization from a sequential 
ring buffer to a heap-like organization with direct addressing of log records. 
Note that the selective writing of after-images, which minimizes the amount of 
L0 redo log records (Section 5), is also based on the fact that after-images are 
kept in the regular page buffer pool with directly addressable buffer frames 
rather than in a separate sequentially organized log buffer. An orthogonal 
way of further reducing the amount of log I/Os could be to write the L1 undo 
log records also into the L0 log file, i.e., to combine the two logs into a single 
physical file. It seems that this could be done without major changes to the 
organization of the L0 log file so that the efficient log compaction technique 
of Elhardt and Bayer (1984) would still be applicable. The merging of the 
two logs would result in less (but slightly larger) set-oriented I/Os. 

Log File Partitioning: Even though our measurements did not show a log 
I/O bottleneck, the dramatically increasing speed of CPUs (due to RISC 
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processors and/or multiprocessor systems) may eventually lead to a situation 
in which the transaction throughput is limited by the bandwidth of the (L1 
or L0 or combined) log disk. Such a bottleneck could only be eliminated by 
partitioning the log file(s) and distributing the partitions across multiple disks. 
This could be done transparently to the DBMS, by using RAIDs as a high- 
speed log device (cf. Seltzer and Stonebraker, 1990), or by explicitly dealing 
with multiple log partitions. The latter approach has the potential advantage 
that, during a warmstart, the partitions of the log could be processed in 
parallel and independently (King et al., 1991). Unlike previous approaches 
to parallel logging (Agrawal, 1985), our method can indeed achieve this 
advantage by partitioning the L1 log by transaction numbers and the L0 log 
by subtransaction numbers or page numbers. 

Partitioning the L0 log by subtransaction numbers is only feasible with after- 
image logging. In this case, we can use timestamps in the headers of 
after-images and apply the Thomas write rule (Bernstein et al., 1987) to 
ensure that an after-image will not overwrite a more recent after-image of 
the same page during the parallel processing of the L0 log partitions. 

Partitioning the L0 log by page numbers, on the other hand, leads to the 
problem that the after-images of a persistence sphere may be distributed 
across multiple partitions yet have to be written atomically. Rather than 
employing a full-fledged two-phase commit for this case, a cheaper solution 
could be to include in the header of each after-image an identification and 
the cardinality of the persistence, sphere to which the after-image belongs. 
Then, during the parallel redo phase, a determination can be made whether 
a persistence sphere is complete or if the distributed log I/O failed on one 
of the partitions. 

7. Conclusions 

7.1 Major Lessons 

The implemented method of multi-level transaction management has the following 
advantages. 

• It allows the exploitation of the semantics of high-level operations to enhance 
concurrency. 

Our algorithms can direct complex high-level operations on arbitrarily com- 
plex objects. In particular, our method ensures the atomicity of high-level 
operations that modify multiple pages. This is a fundamental prerequisite 
for correctly dealing with compensation of high-level operations. 

• These advantages are achieved at about the same log I/O costs that an 
efficient page-oriented single-level recovery method has. Our method does 
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not require a costly checkpoint mechanism, and it provides fast recovery after 
a crash. 

• Our implementation also supports parallelism within a transaction. 

The presented performance evaluation basically confirmed the expected benefits 
in terms of high concurrency and low log I/O costs. In addition, we obtained 
the following, more specific insights into the impact of multi-level transaction 
management on various performance factors. 

LogI/O: For the class of complex-object databases that we modeled and with 
computing resources that are comparable to our benchmark platform, log 
I/O is not a bottleneck in multi-level transaction management. We believe 
that this observation holds for a fairly large spectrum of object-oriented 
database workloads. This situation may change with dramatically increasing 
CPU speed and only gradually improving disk performance. However, the 
presented deferred logging approach aims to minimize log I/O costs and is 
scalable in the sense that log files can be distributed across multiple disks 
and processed largely independently (Section 6). Therefore, it is unlikely 
that log I/O will cause performance problems in the near future. Note that 
this observation holds for both transaction throughput and response time. 
The additional latency that is incurred by the writing of persistence spheres 
seems to have a minor impact on response time. 

Data contention: Data contention is likely to cause performance problems 
in complex-object applications. Thus, some form of multi-level concurrency 
control that is able to deal with semantic high-level operations and fine- 
grained data access is absolutely necessary. Because of the complex nature 
of such high-level operations, the lower-level concurrency control cannot be 
implemented by simple page latching, especially if high-level operations could 
be user-defined and have unpredictable page access patterns (as would be 
the case in an extensible database system). The inevitable consequence is 
that the CPU costs of multi-level locking and logging are higher than, for 
example, the costs of record locking in a relational database system (see 
below). Another consequence that should be recalled is that conventional 
page-level logging and recovery methods do not work correctly in combination 
with concurrency control methods beyond page locking. 

CPU costs: The additional CPU costs of the multi-level transaction manage- 
ment are fairly low, but are nevertheless noticeable. For the complex-object 
workload of our performance evaluation, the CPU costs of a transaction 
were increased by up to 14% under multi-level transaction management. To 
a large extent, this reflects a lack of code fine-tuning of our prototype. How- 
ever, even with improved code, the CPU costs of the multi-level transaction 
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management method are sensitive to the number of subtransactions into 
which a transaction is decomposed. Particularly in situations where several 
subsequent subtransactions access essentially the same set of pages, the CPU 
costs of releasing and re-requesting page locks are a noticeable factor. 

A general recommendation, based on these findings, could be the following. 
Multi-level transaction management is well-suited for complex-object applications 
with relatively long transactions and potential data-contention problems. For ap- 
plications with very short transactions, the gain in concurrency may not be worth 
the additional CPU overhead, so that simple page-level transaction management or 
conventional record-level transaction management (without support for multi-page 
object accesses) could be a better choice. Note, however, that this would not allow 
exploiting the semantics of high-level operations that access more than one page. 
Finally, for applications with virtually no data-contention problems, simple page 
locking and logging are, of course, sufficient. 

7.2 Future Work 

For applications that do not have data-contention problems, multi-level transaction 
management incurs unnecessary overhead. For such applications, standard page 
locking and logging are sufficient, at lower CPU costs and reduced code complexity. 
However, many applications may face occasional data-contention problems (e.g., 
due to load peaks or under a specific mix of transactions). In this case, it would be 
desirable to switch dynamically from page-oriented single-level transaction manage- 
ment to multi-level transaction management. This idea is similar to the de-escalation 
technique that is used to switch from coarse-grained (e.g., page) locking to fine- 
grained (e.g., record) locking (Joshi, 1991). Unfortunately, semantic locking for 
arbitrary high-level operations cannot be easily incorporated into the de-escalation 
approach or other forms of multigranularity locking (Muth et al., 1993). 

The implemented prototype system will serve as a testbed for further studies, 
especially on the tuning problems that arise with the coexistence of inter- and intra- 
transaction parallelism. This coexistence leads to more contention for resources (i.e., 
processors, memory, I/O bandwidth, locks, latches), compared to a conventional 
database system with inter-transaction parallelism alone. Therefore, the decision 
on how much intra-transaction parallelism should be exploited in an individual 
transaction is dependent on the overall system load. Our long-term goal is to 
develop load control (i.e., transaction and subtransaction admission) and scheduling 
strategies that adjust the degree of inter-transaction parallelism and the degrees 
of intra-transaction parallelism of the individual transactions to the current load 
dynamically and automatically. 

This and further tuning problems are being addressed as part of the COMFORT 
project at ETH Zurich (Weikum et al., 1993). The ultimate goal of COMFORT is 
to automate tuning decisions for transaction processing in parallel database systems, 
thus simplifying the tricky job of system administrators and human tuning experts. 
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