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Abstract. A consensus on parallel architecture for very large database manage- 
ment has emerged. This architecture is based on a shared-nothing hardware or- 
ganization. The computation model is very sensitive to skew in tuple distribu- 
tion, however. Recently, several parallel join algorithms with dynamic load bal- 
ancing capabilities have been proposed to address this issue, but none of them 
consider multi-way join problems. In this article we propose a dynamic load bal- 
ancing technique for multi-way joins, and investigate the effect of load balancing 
on query optimization. In particular, we present a join-ordering strategy that takes 
load-balancing issues into consideration. Our performance study indicates that the 
proposed query optimization technique can provide very impressive performance 
improvement over conventional approaches. 

Key Words. Parallel-database computer, load balancing, multi-way join, query op- 
timization. 

1. Intl'oduction 

Parallelism has been recognized as the only way to handle projected increases in data 
size and query complexity in future database applications. Various multiprocessor 
architectures can be used for database management.  However, a consensus has 
emerged that shared-nothing structure (Stonebraker, 1986) is most scalable to 
support  very large databases (Su, 1983; Teradata Corp., 1988; Boral et al., 1990; 
DeWitt  et al., 1990; Englert et al., 1990; Hua  and Young, 1990; Lode  et al., 1991). 
This hardware organization consists of a set of processing nodes (PNs) interconnected 
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through a communication network. Each PN consists of its own memory and local 
disk drives. Communication among PNs is carried out by message passing. In 
this computation model, each relation is partitioned into disjoint fragments and 
distributed across some number of PNs. Since each PN can independently process a 
portion of the database on its disks, a high degree of parallelism is achievable. This 
strategy, however, is very sensitive to skew in tuple distribution. When skewed tuple 
distribution occurs, load balancing is necessary to ensure good system performance. 
Since it has not been demonstrated that severe join product skew happens in practice, 
this article emphasizes redistribution skew (Walton et al., 1991). 

The join operation has been the most intensively studied among relational 
operations for shared-nothing architecture. In recent years, several parallel join 
algorithms with dynamic load balancing capabilities have been proposed to address 
the skewed tuple distribution problem (Hua and Lee, 1990, 1991; Kitsuregawa 
and Ogawa, 1990; Wolf et al., 1990, 1991a, 1991b; DeWitt et al., 1992; Swami 
et al., 1992). Performance studies indicate that these techniques can provide 
very significant performance improvement over conventional parallel join strategies. 
However, none of these works considered the multi-way join problem. Although 
these join algorithms can be used in a system in which a multi-way join query is 
executed as a sequence of 2-way joins, a good query optimizer for the shared-nothing 
environment should exploit inter-join parallelism where several joins are performed 
concurrently (Lu et al., 1991). Depending on the sizes of the operand relations and 
join selectivity factors, the execution of each join operation can be centralized to a 
few PNs or to as many PNs as is appropriate to minimize the response time of the 
query. Furthermore, in this article, we introduce data skew as a new factor for query 
optimization. We will show that load balancing is more difficult for a shared-nothing 
system with many PNs. When skew is severe, one can employ inter-join parallelism 
to reduce the effect. With inter-join parallelism, a smaller subset of PNs is used to 
perform a join; hence a balanced load is easier to achieve. 

Recently, several interesting techniques have been proposed to optimize queries 
for parallel execution. Schneider and DeWitt (1990) studied the behavior of query 
plans with different type of structures (left-deep, right-deep, and bushy) in process- 
ing multi-way join queries. Their study demonstrated that right-deep scheduling 
strategies can provide significant performance advantages in large shared-nothing 
systems under many circumstances. Chen et al. (1992) proposed a technique that 
uses a segmented right-deep tree (a bushy tree of right-deep subtrees) for query 
execution tree selection. Two heuristics were developed to determine the query 
execution plan in this scheme. The objective of the minimal work heuristic is to 
select relations in the current segment to minimize the total amount of work. This 
is a greedy heuristic and tends to include small relations in the first few pipeline 
segments. Another heuristic, balanced consideration, considers both the penalty (join 
work) and the benefit (join size reduction) to determine which relation to include 
in the current segment in order to avoid the tendency to select small relations. Lu 
et al. (1991) modeled the execution of a multi-way join query by dividing the join 
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operations into synchronized iterations. For each iteration, a number of joins are 
executed concurrently, and the joins of the next iteration will not start to execute 
until all joins in the current iteration have been completed. This scheme tries to 
join as many pairs of relations as possible in parallel for each execution step. A 
greedy algorithm is used to decide the optimal degree of inter-join parallelism to 
exploit for each iteration. Stonebraker (1988) and Hong and Stonebraker (1991) 
proposed a 2-step optimization technique for shared memory systems, in which a set 
of good sequential plans is first generated based on the possible buffer pool sizes, 
and the parallelization of these plans are done in step 2. The outcome is a collection 
of plans and a memory range over which each should be run. Since inter-query 
parallelism is also allowed at the time of execution (Stonebraker, 1988), the query 
executor must call on the buffer pool manager to determine space availability and 
to choose one of the optimized execution plans. 

In this article, we propose a new multi-way join optimization algorithm, called 
Load Balancing Optimization (LBO), based on the parallel join strategy presented 
in Hua and Lee (1991). Our technique is different from the existing ones in that 
load balancing also is considered in determining the degree of inter-join parallelism 
for each execution iteration. To investigate the efficiency of the proposed scheme, 
we developed a performance model and compared its performance to the following 
three strategies: 

. Linear Tree With Load Balancing (L_LB) Strategy: In this scheme, a multi-way 
join query is treated as a sequential order of two-way or single joins. At 
least one operand of a join operation is a base relation. We ordered the 
join operations by the increasing sizes of their intermediate relations, and 
dynamic load balancing was performed for each join operation of the query 
without exploiting inter-join parallelism. 

. Bushy Tree Without Load Balancing (B_NLB) Strategy: This scheme is similar 
to the technique presented by Lu et al. (1991). We exploited inter-join 
parallelism, but did not perform load balancing. 

. No Load Balancing Optimization (NLBO) Strategy: In this scheme, the query 
is optimized using B_NLB, and dynamic load balancing is performed at 
runtime for each join operation. Although this strategy exploits inter-join 
parallelism and also performs load balancing, it is different from LBO in 
that the load balancing issue is not considered during query optimization. 

The performance comparison of NLBO and L_LB demonstrates the advantages of 
exploiting inter-join parallelism, whereas the comparison of NLBO and B_NLB shows 
the importance of load balancing in multi-way join execution. The comparison of 
LBO and NLBO confirms the need to consider load balancing in query optimization 
to achieve the best performance. We will discuss these query processing strategies 
in more detail in Section 4. 
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The rest of this article is organized as follows. In Section 2, the effect of skewed 
tuple distribution is discussed, and a load balancing strategy based on the partition 
tuning concept is described. The proposed LBO algorithm, along with L_LB, B_NLB 
and NLBO, is presented in Section 3. In Section 4, we introduce a simulation model 
and discuss the performance comparison of the proposed scheme with the other 
three techniques. We offer our conclusions in Section 5. 

2. Skew Effect and Dynamic Load Balancing 

The performance of conventional parallel hash join algorithms relies on the ran- 
domizing hash function to redistribute the tuples of the join relations evenly across 
all PNs in the system. Their performance degrades when the join attribute values 
of the relations are non-uniformly distributed (Kitsuregawa et al., 1983; Lakshmi 
and Yu, 1988, 1989). That is, some PNs have more tuples to process than the 
remaining PNs in the system. The concept of data skew was described by Lakshmi 
and Yu (1988) as the phenomenon in which certain values for a given attribute 
occur more frequently than other values. The effect of data skew, however, needs 
to be clarified. 

A partition is a set of hash buckets assigned to a PN. We use the term bucket to 
mean the tuples hashed to the same bucket for distribution purposes, which should 
not be confused with the bucket chain of a hash table. If we know the distribution 
of the relation, we can always design a hash function to minimize fluctuation in 
the size of the hash buckets, provided that the skew is not too severe. In this case, 
if every PN is allocated the same number of hash buckets, then the data load is 
balanced for all PNs (i.e., the sizes of all the partitions are the same). Unfortunately, 
we usually do not know the distributions of the relations. The general approach 
is to assume that they are uniform, and employ a randomizing hash function to 
hash the relations into matching join buckets. When the uniformity assumption is 
violated, imbalanced buckets occur and consequently the size of the partitions will 
not be uniform. 

It is important to distinguish among data skew, bucket skew, and partition skew. 
From the above discussion, we define bucketskew as the phenomenon in which some 
hash buckets have more tuples than other buckets due to non-uniformity in the 
distribution of the join attribute. Similarly, partition skew can be defined as the 
phenomenon in which some partitions have more tuples than others due to the 
non-uniformity in the size of the join buckets. We note that data skew may not 
cause any negative effect. One such example is given in Figure 1, where the values 
2, 7, and 12 occur significantly more frequently than the other values (i.e., data 
skew). Nevertheless, the randomizing hash function produces perfectly balanced 
hash buckets. Similarly, depending on how the imbalanced buckets are mapped 
to the PNs, bucket skew may not cause any negative effect either. Partition skew, 
however, implies load imbalance and the problem must be rectified for good system 
performance. We determined the size of a hash bucket by the Zipf-like distribution 
(Zipf, 1949; Sacco, 1986; Turbyfill, 1987). This will be discussed in more detail in 
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Figure 1. 
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Section 4. 
When the hashing phase of a join operation results in skewed partitions, one can 

rehash the relations using a better hash function design based on the distribution 
information collected during the first hashing process. The redistribution of the 
relations, however, is very costly. Alternatively, one can use a finer grain hash 
function to decluster the relations into smaller buckets so that these uneven hash 
buckets can be combined to form balanced partitions for the PNs. This process is 
referred to as partition tuning (Hua and Lee, 1990, 1991). A Best Fit Decreasing 
strategy for partition tuning is illustrated in Figure 2. In this scheme, the hash 
buckets are first sorted by size in decreasing order. In each iteration, the currently 
largest bucket is assigned to the currently smallest partition (or PN). This process 
is repeated until all the buckets have been allocated. Similar strategies for load 
balancing have been proposed (Wolf et al., 1990, 1991a, 1991b; Swami et al., 1992). 

A parallel join algorithm, Extended Adaptive Load Balancing Parallel Hash 
Join (ABJ+), based on the partition tuning concept, was presented by Hua and Lee 
(1991). A simplified version of that algorithm is given below: 

1. Split Phase: Each PN partitions its portion of each relation into small sub- 
buckets and stores them back to its own disks. 
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Figure 2. Best Fit Decreasing partition tuning strategy 
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2. Partition Tuning Phase: Each PN reports the sizes of its subbuckets to a 
designated coordinating PN. The coordinator adds up the sizes of the matching 
subbuckets distributed across the PNs to derive the sizes of the corresponding 
buckets. The coordinator then allocates the buckets to the PNs using the 
Best Fit Decreasing strategy. 

3. Bucket Tuning Phase: Each PN combines the small buckets to form optimally 
sized join buckets that fit the memory capacity. 

4. Join Phase: Each PN performs the local joins of respectively matching buckets. 

3. Multi-Way Join Optimization Techniques 

In this section, we discuss the multi-way join execution strategies in more detail. In 
this article, we consider queries of the form of conjunctions of equi-join predicates. 
This class of queries covers most joins. A join query graph is denoted by G = 
(V, E), where V is the set of vertices and E is the set of edges. Each vertex in a 
join query graph represents a relation. Two vertices are connected by an edge if 
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there is a join predicate on some attribute of the two corresponding relations. The 
execution of a query is denoted by a query execution tree. In a query execution 
tree, a leaf vertex represents an input (or base) relation and an internal vertex 
represents the relation that results from joining the two relations of its two child 
vertices. The query execution tree is executed in a bottom up (from leaf to root) 
manner and can be one of three forms: left-deep tree, right-deep tree, or bushy 
tree. For both the left-deep tree and the right-deep tree, the execution order is 
uniquely determined by the query execution tree and inter-join parallelism cannot 
be achieved. Pipelining is possible for query execution and is an important factor 
to be considered by the query optimizer. However, to avoid mixing the advantages 
of pipelining and those of the proposed scheme, we do not consider pipelining in 
our study. Regardless of the shape of the query execution tree, the intermediate 
result of each join is written back to disk before next execution iteration. 

For either the left-deep tree or the right-deep tree, the number of iterations to 
complete the join is equal to the depth of the query execution tree. A single join 
is carried out in an iteration by all PNs. For a bushy tree, it is possible to perform 
several joins within the same iteration and a subset of PNs is used by each join. 

We implemented four optimizers for multi-way join queries. They accept a 
query graph as input and generate an optimized query execution tree as output. 
When the query execution tree is a bushy tree, they also determine which joins are 
executed in the same iteration (i.e., degree of inter-join parallelism) and the degree 
of parallelism for each join operation (i.e., degree of intra-join parallelism). The 
details of the optimizers are described in the following subsections. 

3.1 Linear Tree With Load Balancing (L_LB) Strategy 

In this strategy, a multi-way join query is treated as a sequential order of two- 
way joins. A simple static query optimization algorithm is used to order the join 
operations by the increasing sizes of their intermediate relations. At execution time, 
ABJ + is used to execute each join operation according to the optimized join order. 

Although partition tuning is very effective in balancing skewed tuple distribution, 
it becomes increasingly difficult to balance the workload as the number of PNs 
increases (or as the sizes of the relations decrease). Let average size be the number 
of tuples each PN should have if the workload is evenly distributed across the PNs. 

average size = size of  two relations 
number o f  PNs 

Obviously, if there is a pair of matching join buckets that is larger than the average 
size, then partition tuning using Best Fit Decreasing strategy will fail to balance 
the workload perfectly. When this happens, one can increase the average size by 
decreasing the number of PNs used for the join operation. In other words, inter-join 
parallelism can be used to alleviate skew. Because L_LB strategy always uses all 
the PNs for each join, its performance suffers when severe skew is encountered. 
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3.2 Bushy Tree Without Load Balancing (B_NLB) Strategy 

This scheme was proposed by Lu et al. (1991). In this strategy, the execution of a 
multi-way join query is divided into synchronized iterations. For each iteration, a 
number of joins are executed concurrently, and the joins of the next iteration cannot 
start executing until all joins in the current iteration have finished. This scheme 
tries to join as many pairs of relations as possible in parallel for each execution 
iteration. The detail of the algorithm is given in the following. 

Algorithm B_NLB 

Input: A join graph G = (V,E) 
where vertex set V is a set of relations and edge set E represents the join 
predicates. 

Output: S, the query execution tree. 

begin 
s ~ 0  
while Size(V) > 3 do 

R ~ Select_reLpairs(G); 
S ~-- S U R; 
G ~ G with each pair of relations in R replaced by their join results; 

end-while 
R ~-- Two_way_seq(G); 

S ~---- S U R; 
end 

Algorithm Select_tel_pairs 
selects a set of relation pairs to be joined in the current iteration. 

Input: G, a join graph 
Output: R, a set of relation pairs to be joined concurrently in the same iteration 

begin 
k ~-- 0; 
repeat 

k ~-- k + 1; 
Ck ~ Minimum_cost(G,k,Rk); 
if (Rk does not contain all relations in G) then 
Ck+l ~-- Minimum_cost(G,k+l,Rk+l); 

until Ck+l > Ck or Rk+l contains all pairs in G; 
if Ck+l > Ck then 

return R k 
else 

return Rk + l 
end 
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Function Minimum_cost is the core part of B_NLB. It takes a joingraph G, and the 
number of joins to be performed concurrently, k, as input, and returns the minimum 
cost of those plans that join k pairs first. In addition, it determines those k pairs 
of relations and returns them in Rk. We note in B_NLB that when the number 
of relations in the join graph is less than four, we cannot perform two or more 
joins in parallel, and function Two_way_seq is called to determine the sequence of 
joining those relations. To perform the individual join operations, one can consider 
using either GRACE or Hybrid Hash Join. Brief descriptions of these algorithms 
are given in the following paragraphs. 

GRACE Hash Join was presented by Kitsuregawa et al. (1983). This join method 
consists of two distinct phases: split phase and join phase. In the Split Phase, each 
of the operand relations is partitioned in parallel. Each PN independently declusters 
its local portion of the relations into buckets by hashing on the join attribute of 
each tuple in the relations. If a tuple belongs to a bucket allocated to the local 
PN, it is written back to the local disk. Otherwise, it is transferred to the PN that 
corresponds to the bucket ID, and is stored in that PN's disk. In the join phase, 
each PN performs joins of the allocated buckets in its local disk. Because tuples 
of a relation in one bucket join only with tuples of a respective matching bucket 
from the other relation, there is no communication among the PNs during the join 
phase. The whole join operation completes when all the PNs have finished their 
local joins. 

Hybrid Hash Join (Schneider and DeWitt, 1989), is another popular parallel 
hash-based join algorithm. This method combines the GRACE Hash Join technique 
with the simple hash join algorithm (DeWitt et al., 1984). This method can also 
be viewed as having two phases: split phase and join phase. In the split phase, 
the operand relations are partitioned into buckets in parallel as in the GRACE 
Hash Join. However, as a bucket of relation R is being formed in a PN, another 
hash function is used to further decluster the bucket into subbuckets so that each 
subbucket can fit individually in the memory. As the local subbuckets are being 
formed in a PN, a hash table is built for one of the subbuckets while tuples belonging 
to the remaining subbuckets are written to the local disk. Buckets of relation S 
are also further declustered into subbuckets in the same way. As these subbuckets 
are being formed, the tuples that belong to the subbuckets corresponding to the 
in-memory hash table are used immediately to probe the hash table for matches. 
During the join phase, each PN reads the next subbucket from relation R to build 
an in-memory hash table. The respective matching subbucket from relation S is 
then read and its tuples are used to probe the hash table. This process continues 
until all matching subbuckets are joined in all PNs. 

In the GRACE Hash Join, the split phase is completely separated from the 
join phase. Both operand relations must be written back to disks before beginning 
the join phase of the algorithm. The Hybrid Hash Join algorithm overlaps the 
split phase with the join phase. The first two subbuckets are immediately joined 
during the split phase to save disk I/O's. The savings can be significant when the 
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memory capacity is large. Nevertheless, without loss of generality, we assume that 
the GRACE algorithm is used because it has a simpler cost function. 

3.3 No Load Balancing Optimization (NLBO) Strategy 

In this scheme, although we perform dynamic load balancing for each join operation 
at run time, the load balancing issue is not considered in query optimization. The 
query processing strategy consists of the following steps: 

1. Compilation: We optimize the multi-way join query using B_NLB. 

2. Execution: We execute the join operations in accordance with the schedule 
generated by B_NLB. We used ABJ + to perform each join operation. 

Due to the dynamic load balancing feature, we can expect NLBO to outperform 
B_NLB, particularly when skew is severe. However, the advantage of load balancing is 
not fully exploited here because the degree of inter-join parallelism is fixed by B_NLB, 
which does not consider the load balancing issue. When severe skew is encountered, 
it is advantageous to reduce the degree of intra-join parallelism to minimize the 
effect of skewed tuple distribution. Unfortunately, this dynamic reconfiguration of 
the PN allocation is not allowed in this scheme. In the next subsection, we will 
present a query optimization algorithm that addresses this deficiency. 

3.4 Load Balancing Optimization (LBO) Strategy 

In general, a query may be optimized at different times relative to the actual time 
of query execution. Optimization can be done statically before executing the query 
(e.g., System R, Selinger et al., 1979) or dynamically as the query is executed (e.g., 
Ingres, Wong and Youssefi, 1976). Without loss of generality, we choose to present 
LBO as a dynamic optimization algorithm for the sake of clarity. The proposed 
strategy can easily be adapted for static optimization. LBO consists of the following 
phases: 

. Hash Phase: Each PN partitions its portion of each operand relation into 
considerably smaller subbuckets. Each subbucket is stored back in the local 
disks. 

. Optimization Phase: The algorithm Select_relation_pairs is called to deter- 
mine the pairs of relations to be joined at the current iteration. Function 
Select_relation_pairs includes as many joins in the current iteration as is ben- 
eficial. 

Algorithm Select_relation_pairs 
Input: G, a join graph 
Output: S, a set of relation pairs to be joined concurrently 
begin 
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R ~-- ~; 
s h e ;  
C2 ~ very large value; 
repeat 

C1 ~-- C2;/* save previous cost */ 
S ~-- S U R; 
R ~ Search_smallest(G)i/* select relation pair with smallest join result */ 
if R 5~ ~ then 
T ~-- G with the relations in (SUR) replaced by their join results; 
C2 ~ Par4oin-costskew(SUR) + Seq4oin-cost(T);/* compute new cost */ 

end-if 
until C2 > C1 or R = ~; 
return S 

end 
The following functions are used in the algorithm Select_relation_pairs: 

• Search_smallest: This procedure accepts a join graph as input. It 
determines, from the unmarked relations, the relation pair whose join 
result is smallest. It then marks the selected pair, and returns it to 
Select_relation_pairs. 

• Par_join_costskew: This procedure accepts a set of relation pairs as 
input, and returns the cost of joining those relation pairs in parallel. It 
also performs the processor allocation function. Since the information 
on tuple distribution is available for these concurrent join operations, 
this procedure is able to take skew into consideration in the estimation 
of the execution cost. That is, it simulates the partition tuning process 
(without actually moving the tuples) to determine the most heavily 
loaded PN, and the estimated join costs are dictated by the execution 
times at this bottleneck PN. We noted that, because the joins performed 
concurrently in the same iteration are (data) independent, we can view 
them collectively as a single larger join operation. Therefore, partition 
tuning can be applied to this set of joins as if they are a single join 
operation. In other words, a PN can participate in more than one join 
operation during an execution step. This strategy allows a maximum 
flexibility for load balancing. It also minimizes the communication cost 
because we do not have to migrate the tuples of the operand relations 
to concentrate the concurrent join operations to different disjoint sets 
of the PNs. A similar technique was independently proposed for 
shared-disk architectures (Tan and Lu, 1992). 

• Seq_join_cost: This procedure accepts a join graph as input. It orders 
the join operations by the increasing sizes of their join results, and 
returns the total cost of the execution plan. In other words, this function 
returns the cost to execute the remaining joins sequentially. 
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3 Execution Phase: 

Stage I : ABJ + is used to execute the join operations selected by the opti- 
mizationphase for concurrent processing. As we have explained in the 
optimization phase, ABJ + can treat all these joins as a single larger 
join operation. Furthermore, because the relations have already been 
hashed into join buckets, the split phase of ABJ + can be omitted here. 
In addition, because the partition tuning process has been simulated 
during optimization phase, the PNs only need to collect the join buckets 
in accordance with the simulation results during the partition tuning 
phase of the ABJ + algorithm. 

Stage 2 : The join graph G is updated by replacing the relations joined in 
Stage 1 by their result relations and merging the join edges accordingly. 
If there are remaining join operations, they go to the optimization phase. 

We observe that load balancing in LBO is integrated into the query opti- 
mization process. When severe skew occurs in some k-th join during the 
optimization phase, and because skew is considered in the cost estimation, 
adding the (k + 1)-st join to the current iteration (i.e. trading some intra- 
join parallelism for additional inter-join parallelism) is likely to result in a 
better execution plan. Thus, unlike conventional techniques (e.g., Lu et al., 
1991), we introduce skew effect as a new parameter for query optimization 
in addition to the traditional factors (e.g., relation sizes, selectivity factors, 
etc.). In other words, severe skew in tuple distribution plays a decisive role 
in determining the optimal level for inter-join parallelism. 

4. Performance Analysis 

In general, the cost of a parallel join method is a function of the relation sizes and 
the number of processors participating in the join operation. In this section, we 
develop a simulation model for the performance analysis of the parallel multi-way 
join query processing strategies presented in Section 3. 

4.1 Simulation Model 

In our model, the parallel execution of the multi-way join queries is simulated 
on a Sun SPARCstation 1 + to obtain the size information of the work load, disk 
accesses, and data communication at each PN. The cost functions presented in 
the next subsection are then used to calculate the response times of the queries 
according to the simulation results. 

We assume that each operand relation of the multi-way join is initially partitioned 
horizontally, and distributed evenly across all PNs. During the split phase of the 
join algorithms, a relation, say R, is hashed into b buckets, B1, B2,...,Bb where b 



VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 315 

is several times that of the number of PNs. Assuming that the relations are not 
uniformly distributed, the sizes of these buckets are determined by the Zipf-like 
distribution (Zipf, 1949; Sacco, 1986; Turbyfill, 1987) as follows: 

IRI 
1 IB, I = izb E _-i z-Z 

In this article, bucket skew is Zb • When Zb = 1, the equation becomes a Zipf 
distribution, and when Zb = 0, it is a uniform distribution. Similarly, the sizes of 
the base relations are also assumed to follow the Zipf-like distribution. 

Also note that our simulator is a bucket-level simulator. That is, we do not 
actually compare the tuples of the operand relations. Instead, the time for joining 
a pair of matching join buckets is estimated using a cost function. We assume that 
this cost is proportional to the sum of the sizes of the two buckets involved. This 
cost function is based on the assumption that joining two hash buckets is done in 
two sequential steps (DeWitt et al., 1984): 

Step 1: One bucket is used to build a hash table in the memory. 

Step 2: The other bucket then is scanned and its tuples are used to probe the 
in-memory hash table. 

Because the building of an in-memory hash table and the succeeding probing process 
are typically I/O bound for today's processor technology, we assume that the join 
cost is proportional to the size of the sum of the two buckets in terms of disk 
accesses. In any case, should the task time be large, the savings due to the balanced 
workload will be even larger. That is, our assumption is without bias in favor of 
load balancing schemes. We avoid using a tuple-level simulator here because it is 
extremely slow and does not provide us any additional information. 

The following parameters are designed for cost evaluation. They are similar to 
those used by Hua and Lee (1991) and Lakshmi and Yu (1988). 

• WorkloadParameters: 

Nr : Total number of relations to be joined. In other words, it is an Nr-way 
join. 

[RI : Total number of tuples in all the relations of a multi-way join. 

Js : Join selectivity factor. 

Zb : The degree of bucket skew according to Zipf-like function. 

Zr : The degree of variation in relation sizes according to Zipf-like func- 
tion. That is, the relation sizes of a multi-way join follow a Zipf-like 
distribution. 
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t : Size in bytes of each tuple. 

System Parameters 

N : Number of PNs in the system. 

/z : CPU processing rate in million-instructions-per-second (MIPS). 

Wio : I/O bandwidth in Mbytes/sec between a PN and its secondary storage. 

O)comra : Effective communication channel bandwidth in Mbytes/sec per PN. 

Icpu : CPU pathlength for processing a tuple in any step of a join operation. 

Measurement Parameters Determined by Simulation. We have explained that 
we can treat joins of the same execution iteration of a multi-way join as a 
single larger join operation when applying the GRACE or ABJ + algorithm. 
In discussing cost functions, we will refer to the set of tuples associated with 
the relations relevant to a particular execution iteration and reside at the 
same PN as a partition. 

]emax_init[ : The largest partition before data redistribution. 

[Pmax_io [ : Number of tuples being loaded and stored by the busiest PN 
(in terms of disk accesses) during a particular execution iteration of a 
join strategy. 

[Pmax_comm[ : Number of tuples being transmitted and received by the 
busiest PN (in terms of communication) during a particular execution 
iteration of a multi-way join operation. 

[Pmax_finat[ : The largest partition after data redistribution. 

[Pmaz_resutt[ : Size in tuples of the largest partition after a particular exe- 
cution iteration of a multi-way join operation. 

Computed Parameters Determined by Cost Functions: 

Tsplit : Time cost in seconds due to a split phase. 

Zpart i : Time cost in seconds due to a partition tuning phase. 

Tbucket : Time cost in seconds due to a bucket tuning phase. 

Tjoin : Time cost in seconds due to a join phase. 

Tsplit_io : Time cost in seconds for disk accesses during a split phase. 

Tsplit_ep u : Time cost in seconds for processing tuples during a split phase. 

Tparti_io : Time cost in seconds for disk accesses during a partition tuning 
phase. 
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Zparti_comm : Time cost in seconds for transferring data among PNs during 
a partition tuning phase. 

Tjoin_cpu : Time cost in seconds for building hash table and probing the 
hash table during the join phase of GRACE or ABJ + algorithm. 

Tjoin_io : Time cost in seconds due to disk accesses during a join phase of 
GRACE or ABJ + algorithm. 

TGRAC E : Time cost for performing one iteration of the parallel multi-way 
join operation using GRACE algorithm (Kitsuregawa et al., 1983). 

TAB J+ : Time cost for performing one iteration of the parallel multi-way 
join operation using ABJ + algorithm. 

TL_LB : Time cost for the execution plan generated by L_LB. 

TB_NLB : Time cost for the execution plan generated by B_NLB. 

TNLBO : Time cost for the execution plan generated by NLBO. 

TLBO : Time cost for the execution plan generated by LBO. 

4.2 Cost Functions 

In this subsection, cost functions are presented for the multi-way join query processing 
strategies based on the SN architecture and the described workload. Since partial 
overlap between the phases of the join algorithms is possible, the total join cost 
Ttotal is bounded by: 

max(Tphase_l, Tphase_2,..., Tpha  _m) _< 
Ttotal Zphase_l + Zphase_2 + ' ' "  + Zphase_rn 

where max represents the maximum function. Similarly, each phase consists of 
several steps (disk accesses, tuple processing, and communication). Overlap of 
those steps also is achievable. A performance upper bound and lower bound for the 
phases can be derived accordingly. In our study, we made the following assumptions: 

The overlap within each phase is perfect. The system is assumed to include a 
separate I/O processor and a separate communication processor which allow 
the overlap among disk I/O, CPU computation, and data communication 
(Hua and Young, 1990). 

The overlap between two phases is not allowed, i.e., a simple barrier-type 
synchronization (Jordan, 1978) is used between the join phases to guarantee 
the correct parallel execution. 

Therefore the total join time can be computed as: 

T o al = + Tpha  _2 + ' ' "  + Tpha  _m 
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Similarly, we assume that the overlap between any two execution iterations during 
the execution of a multi-way join is not allowed. Thus, the cost functions for the 
query processing strategies presented in Section 3 can be computed as follows: 

TL_LB = Ei%1 TAB;+ (i) TB_NLB = Ein=l TGRACE ( i )  

TNLBO = Ei"----1 TABJ+ (i) TLBO = Ein-1 TAB J* (i) 

where n's are the numbers of execution iterations for the respective query processing 
schemes. The derivation of TGRAC E and TAB j+ is presented in the following 
subsection. The cost equations for algorithms L_LB, NLBO, and LBO are the 
same, but the total execution times may differ because they generally generate 
different query execution trees. 

4.2.1 Time Cost of One Execution Iteration Using GRACE. In this subsection, we 
derive the cost function for one execution iteration of a parallel multi-way join using 
the GRACE algorithm. As we have described briefly in Section 3.2, this algorithm 
has two distinct phases: split phase and join phase. Its cost function, therefore, can 
be written as follows: 

TGRACE = Tsplit "4- Tjoin 

Zspli t and Zjoin a r e  computed below: 

Tsplit = max(Tsplit_io, Tsplit_cpu, Tsplit_comm) 
Zspt~t_~o = Iemax_,ol" ._t_ Z,p,it_cpu = [ ema x  ~nit[ " z°e~ Wio - I z  

Tsplit_com m = [emax_cornrnl. t 
OJcomrr~ 

In the above equations [Pmaz_io] is the measurement of the number of tuples 
being loaded from disk and stored to disk by the busiest PN (in terms of disk 
accesses) during the split phase of the algorithm. This parameter is determined by 
the simulator (i.e., a monitor was included in our simulator to measure Iema~_~ol). 

• To compute the I/O cost due to split phase (i.e., Tsptit_io), we convert IemaxAo I into 
bytes, and divide it by the I/O bandwidth. Tsptit_cpu is derived similarly. Tsptit_comm 
is obtained in the same way, in which [Pmax_~omm[ is the total number of tuples 
being transmitted and received by the busiest PN in terms of data communication 
during split phase of the algorithm. Likewise, IPmax_comml is determined by the 
simulator. Thus, the effect of skew on Tsplit_io and Zsplit_comm depends on the 
initial distribution of the tuples among the PNs. 

During the join phase, the busiest PN must process Ie~_Zin~t I tuples (i.e., 
building in-memory hash tables and probing the hash structures). We assume that 
this PN, which processes the largest number of tuples, also will generate the largest 
intermediate result of [Pmax_resutt[ tuples. Thus, the I/O cost and the computation 
cost of the join phase are determined by this bottleneck PN, and can be computed 
as follows: 
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Tjoin = max(Tjoin_io, Tjoin_cpu) 
= ]P . . . .  Ii,~l['Icp,, Tjoin_io [P . . . .  lln~tlt + [P . . . . . . . .  tt[t Tjoin_cpu = 

~ i o  tOio 

4.2.2 Time Cos t  o f  One  Execution Iteration Using ABd  +. As  shown in Section 2, 
ABJ + consists of four phases. The time cost for computing one execution iteration 
of the multi-way join operation using ABJ + (i.e., TAB J+) can be derived as follows: 

TAB J+ = Tsplit + Tparti + Tbucket + Tjoin 

Tsptit = max(Tsplit_io, Zsplit_cpu, Zsplit_comm) Zsplit_io = 2 . I e m a x  i=it[ " .d_  
- O.~io 

Tsptit_cpu = [Pmax init[ " I c p ~  Tsptit_comm = 0 - # 

Because PNs do not exchange data during the split phase, the partition sizes remain 
unchanged at each PN after hashing. The "largest" PN, therefore, has to read 
and write Iemo _i  tl tuples. The number 2 in the expression for Zsplit_io indicates 
that each tuple must be loaded from disk for hashing, and then stored back to the 
appropriate subbucket on the same disk system. 

Because the bucket tuning phase manipulates only the directory information, it 
does not involve tuple processing and its time cost is negligible compared to those 
of the other phases. Therefore we make the following approximation: Tbucket ~ O. 

At the beginning of the partition tuning phase, the coordinating PN consults 
the directory and allocates the buckets to the PNs. Again, since this process does 
not involve tuple manipulation, its time cost is negligible (i.e., the CPU time is 
negligible and only the disk I/O time and communication time are shown in Tparti. 

Tparti = max( Tparti_io,Tparti_comm ) 
t 

Zp~rti_io = Iemax_iol  " A_ Zparti_comm = Iemox_comml " . . . .  
o.~io 

The cost function for the join phase is similar to that derived for the GRACE 
algorithm, and is given below: 

Tjoin = max(T oin_io, Tjoi._  ) 
= [ P  . . . .  [ i n a t l ' I e p u  Tjoln_io IP . . . .  li,~tl t + [P . . . . . . . .  ult Tjoin_cpu = 

Win nolo 

4.3 Sensitivity Analysis 

With our model we are able to do the performance sensitivity analyses with respect 
to different system and workload parameters. We have run a large number of 
experiments, but we are able to show only the representative and non-obvious 
results here. The values of the parameters used in those experiements are listed in 
the following: 

1. Workload Parameters: 

• Total number of relations (Nr): 8. 

• Total relation size (JR[): 8,000,000 tuples. The size of each relation is 
determined by the Zipf-like function 
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• Tuple size (t): 200 bytes per tuple. 

• Join selectivity (Js): varied from 0.0000002 to 0.000002. 

• Degree of bucket skew (Zb): varied from 0 to 1. 

• Degree of relation skew (Zr): varied from 0 to 1. 

2. System Parameters: 

• Number of PNs (N): varied from 32 to 256. 

• CPU processing rate (#): 20 MIPS. 

• I/O bandwidth (wio): varied from 0.8 to 4.8 Mbytes/Second per PN. 

• Effective communication channel bandwidth (wcomm): varied from 0.8 
to 4.8 Mbytes/second per PN. 

• Instruction pathlength (Icpu): 1,000 instructions. 

Among these parameters, we select degree of bucket skew, degree of relation skew, 
join selectivity, number of processors, disks, I/O bandwidth, and communication 
bandwidth for the sensitivity analyses. 

When a parameter is not under investigation, its value is fixed as follows. The 
I/O bandwidth is set to 4 Mbytes/second which is typical for the industry standard 
SCSI bus. The communication bandwidth for each port of the communication 
network also is set to 4 Mbytes/second to match the data transfer rate of the disk 
controller. To prevent the processor from becoming a bottleneck, the processing 
rate of each PN is set to 20 MIPS which is derived as ~ = Icpu • ~ In addition, 

t " 

the number of PNs is 256. In the following subsections, we present the results of 
the sensitivity analyses. In our study, we used 8-way join queries with the following 
characteristic. Their join graphs form a chain (i.e., each relation can be joined with 
exactly two "neighboring" relations, except that the two relations at the two ends 
can only be joined with a single "neighboring" relation). 

4.3.1 Effect of Bucket Skew. The 8-way join queries selected for the study of bucket 
skew effects can be grouped into three types (Figure 3) which are optimized using 
B_NLB (i.e., skew is not considered). We studied a much larger number of queries, 
but we present only representative cases to illustrate the effect various system and 
workload parameters have on the behavior of the query processing strategies. 

The effect of bucket skew on the query processing strategies is depicted in 
Figure 4. We explain the behavior of the performance curves as follows: 

Figure 4(a): Because B_NLB generates a right-deep query tree in this case and 
it does not perform dynamic load balancing, its performance is worse than 
L i B .  Because NLBO exploits inter-join parallelism in addition to performing 
load balancing at run time, we would expect it to outperform L_LB. However, 
both NLBO and L_LB generate the same right-deep tree for this particular 
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query, and they perform identically in this study. LBO is the best performer 
for a wide range of bucket skews. When Zb = 0, LBO generates the same 
right-deep tree as those generated by L_LB and NLBO. Therefore, all three 
approaches have the same performance. However, as the degree of bucket 
skew increases beyond .35, LBO trades intra-join parallelism for inter-join 
parallelism in an attempt to reduce skew (i.e., LBO generates bushier trees as 
the bucket skew increases. As a result, it exhibits a better performance than 
any of the other approaches). For very mild skew, none of the load balancing 
strategies perform as well as B_NLB due to the load balancing overhead. 
Nevertheless, the slight degradation in performance due to load balancing 
when skew is mild is within the acceptable level for most parallel database 
environments; whereas, the serious degradation in performance when skew 
is severe and load balancing is not performed is likely to be intolerable for 
most applications. 

• Figure 4(b): In this case, we observe a distinct performance curve for each of 
the processing strategies. Again, we see that B_NLB is the worst performer for 
Zb > 0.2. Unlike Figure 4(a), NLBO performs better than L_LB because 
it generates a bushy tree for this particular query. Unintentionally, the 
inter-join parallelism helps to reduce some degree of skew effect on NLBO. 
Nevertheless, since LBO is able to generate a bushier tree as the degree of 
bucket skew increases, it is the overall winner in handling the skewed tuple 
distribution problem. 

• Figure 4(c): The performance curves behave similarly in this case, except that 
NLBO and LBO perform identically. This is due to the fact that NLBO 
generates a very bushy tree for these particular queries, and there is no more 
inter-join parallelism that can be exploited by LBO. 

In the following subsections, we will not show the query execution trees. However, 
we will refer to them as right-deep trees, bushier trees, and bushiest trees, etc., 
when we explain the behavior of the corresponding performance curves. 

4.3.2 Effect of Relation Skew. As we mentioned, although the total number of base 
tuples involved in the multi-way join is fixed at 8,000,000, the size of each of the 
eight operand relations is randomly assigned one of the eight numbers computed 
by the Zipf-like function as follows: 

= IRI 
IR, I 1 

In this article, relation skew is Zr. 
The results of the study on relation skew are shown in Figure 5. When the 

relation skew is zero, all the operand relations have the same size, and each has 
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Figure 3. Structures of query execution trees generated by B_NLB 

7 
(a,) Type I: Right-deep tree (b) Type 'e Bushy tree 

W / 

(e) Type & Bushier tree 

Figure  4. Effect  of  bucke t  s k e w  

, , , , i 

~ i #1 l i |  ~ I , | , |  I 
i l l / i l  : I 
i o l i : ~  
! II i l i i  ' I.I / 

i = i l l  = I.IIIIII I 
i ~ i l l  i : i l l t l i / l i¢  / 

l l i : l l  i 

? 

I . l  I.I I.I I.I 1 

(a) Type 1 queries 

N 

311 

I lu 
l 

IN  

! 

Inlir II t i l l l l l  : i . l l l ,  llll /t 

=:I~.':~, I 
of r l l l  illi l i  : I.~ / 

~11 I d t i ~ i l  = I . t l  / 
/ i ~ i l  / = I f i l l  / 
i l l :  I I I  [ 

I I I I I 

I. l LI t.I I.I 1 

(b) Type 2 queries 

m ol t l l lhl : I , l t ,  l [ 

/ 
~ilil l i l l~ i l i~  : I.lUUl ] 

"=// 

I . l  |.I |. i I.| | 
l i  l l  

(c) Type 3 queries 



VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 323 

Figure 5. Effect of relation skew 
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1,000,000 tuples. Because the join selectivity factor was fixed at 0.000001, the 
size of the join results of any relation pair remains at 1,000,000 tuples for any 
execution iteration. Under this condition, any parallel execution plan will result 
in the same response time assuming bucket skew is zero. Since B_NLB employs 
a greedy algorithm to gradually increase the number of concurrent joins for each 
execution step (as long as the increase in inter-join parallelism does not worsen 
performance), the query tree generated by B_NLB is a bushiest tree. For this reason, 
NLBO performs as well as the plan generated by LBO when Zr = 0. It does not 
perform as well for L_LB as the other load balancing schemes because inter-join 
parallelism is not exploited. As we increase the relation skew, the deviation in 
the sizes of the relations increases. As a result, the query generated by B_NLB 
becomes less bushy as the relation skew increases. A less bushy tree results in 
poorer performance under the bucket skew effect (i.e., Zb = 0.5). Consequently, 
the performance curves of NLBO rise for 0.1 _< Zr _< 0.2. However, they fall 
for 0.2 < Z,. < 0.3 since the relation skew becomes severe and the rate of data 
reduction becomes more rapid. This increase in data reduction rate also forces 
NLBO to generate a right-deep tree for Zr > 0.5. Therefore, NLBO and L_LB 
perform identically for larger relation skews. 

4.3.3 Effect of Join Selectivi~. Join selectivity factors have a strong influence on 
multi-way join query optimization. In general, query execution trees tend to be less 
bushy for smaller join selectivity factors in order to speed up the data reduction 
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Figure 6. Effect of join selectivity 
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rate during query execution. However, if we consider the data skew issue in query 
optimization as in LBO, using a bushier tree (i.e., increasing the degree of inter-join 
parallelism) might be necessary to achieve best performance. This phenomenon 
can be observed in Figure 6. 

In this study, we assumed that all the join operations have the same selectivity 
factor. When the selectivity factor is small, NLBO generates a right-deep tree, and 
its performance is identical to that of L_LB. For selectivity factors greater than 
8 x 10 -7, the trees generated by NLBO become bushier as the selectivity factor 
increases. Consequently, NLBO outperforms L_LB for larger selectivity. When this 
factor becomes sufficiently large, the query tree generated by NLBO becomes very 
bushy, and its performance matches that of LBO. Again, we observe that LBO 
exhibits the best performance, and B_NLB shows the worst performance for this 
workload because it does not perform load balancing. 

4.3.4 Effect of Number o/P/Vs. To compare the performance of LBO to the other 
schemes under various number of PNs, we introduce the following relativeperformance 
ratios (RPRs): 

RPRi - COST'~-'dY'Idl RPR2 = c o s ~  RPR3 = COSTIyLBO 
COSTLBo COSTLBo COSTLBO 

The effect of number of PNs on the multi-way join strategies is shown in Figure 
7. For the same degree of bucket skew, we observe that RPR1 increases with the 
increase in the number of PNs. This again exemplifies the importance of load 
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Figure 7. Effect of number of PNs 
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balancing in larger shared-nothing systems. The curve for RPR1, however, does 
not increase monotonously. At N = 160, the curve falls because LBO generates a 
bushier tree that has little inter-join parallelism to exploit after the second execution 
iteration. Thus, LBO suffers from the increase in the number of PNs. We observed 
that when N > 224, LBO generates the bushiest tree and it regains its advantage 
from the increase in the degree of inter-join parallelism. In general, the curve 
strictly increases if the number of operand relations is sufficiently large relative to 
the number of PNs in the system (e.g., when the number of relations is eight, RPR1 
strictly increases for 32 < N < 160) (Figure 7). 

The benefit of LBO (compared to other load balancing schemes) increases with 
the increase in system size. However, it does not provide any advantage in smaller 
systems for this particular workload. For other workloads with smaller relations 
or more severe skew, we observed that LBO provided savings for smaller system 
configurations. 

4.3.5 Effect of l[O Bandwidth. In the previous studies, we assumed that the hardware 
design was "balanced"--the processors, the I/O subsystems, and the communication 
processors were tuned for the join operations. In this and the following subsections, 
we are interested in a system environment that is less than ideal. Here we consider 
how the performance of the I/O subsystems affects the algorithms; in particular, 
how the overhead due to dynamic load balancing is related to the I/O bandwidth 
(Figure 8). 
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Figure 8. Effect of I /0 bandwidth 
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LBO provides very significant savings compared to B.NLB for any I/O bandwidth. 
The cost of B_NLB is three times that of LBO. L_LB and NLBO also can provide 
very impressive savings. However, LBO remains the overall winner. 

4.3.6 Effect of Communication Bandwidth. We also studied the effect of the com- 
munication bandwidth on the multi-way join algorithms. The results are plotted in 
Figure 9. These performance curves behave similarly to those in Figure 8. However, 
dynamic load balancing is more critical in a system with inadequate communica- 
tion capability than in a system with limited I/O performance, because the relative 
performance ratio between B_NLB and LBO is higher for small communication 
bandwidth than for small I/O bandwidth. 

5. Conclusion 

We have discussed dynamic load balancing issues in multi-way join operations. In 
particular, we implemented four multi-way join query optimizers, and developed a 
simulator to investigate the effect of skewed tuple distribution on these techniques. 
From our study, we can draw the following conclusions: 

• Dynamic load balancing is very critical to the performance of shared-nothing 
systems, particularly when the system is large. 

• Because load balancing becomes more difficult for larger systems, one should 
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Figure 9. Effect of communication bandwidth 
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exploit inter-join parallelism to limit the number of PNs used for each join 
operation within manageable size. 

• Although dynamic load balancing provides very impressive savings, considering 
the skew issue during query optimization is necessary to achieve the best 
performance. 

Although we limited our discussion to intra-query parallelism, the load balancing 
techniques proposed for multi-way join can be extended easily to support inter-query 
parallelism in a multiuser environment. 

Finally, we note that an interesting technique was recently proposed by DeWitt 
et al. (1992) to estimate skew in tuple distribution. In this scheme, a sample of 
the relations being joined is used to estimate the skew. Therefore, an appropriate 
join algorithm can be determined for a particular degree of skew. This technique 
can be adapted to improve the hash phase of the LBO algorithm. In the modified 
scheme, instead of hashing all the relations and writing them back to the local disks, 
we can hash the relation samples to save disk I/Os. Partition tuning then can be 
performed based on the statistics obtained from those samples. This modification 
should provide some performance improvement over the original LBO algorithm. 
Furthermore, we are currently enhancing the LBO optimizer to allow a pair of 
oversized matching buckets to be joined by more than one PN (i.e., broadcast-based 
join.) The new optimizer is capable of trading between the degrees of multicast 
and inter-join parallelism in determining the best join strategy for a query. 
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