
VLDB Journal,2, 303-330 (1993), Michael Carey and Patrick Valduriez, Editors

(~)VLDB

303

Considering Data Skew Factor in Multi-Way Join
Query Optimization for Parallel Execution

Kien A. Hua, Yo-Lung Lo, and Honesty C. Young

Received December 1, 1992; revised version received February 1, 1993; accepted March
15, 1993.

Abstract. A consensus on parallel architecture for very large database manage-
ment has emerged. This architecture is based on a shared-nothing hardware or-
ganization. The computation model is very sensitive to skew in tuple distribu-
tion, however. Recently, several parallel join algorithms with dynamic load bal-
ancing capabilities have been proposed to address this issue, but none of them
consider multi-way join problems. In this article we propose a dynamic load bal-
ancing technique for multi-way joins, and investigate the effect of load balancing
on query optimization. In particular, we present a join-ordering strategy that takes
load-balancing issues into consideration. Our performance study indicates that the
proposed query optimization technique can provide very impressive performance
improvement over conventional approaches.

Key Words. Parallel-database computer, load balancing, multi-way join, query op-
timization.

1. Intl'oduction

Parallelism has been recognized as the only way to handle projected increases in data
size and query complexity in future database applications. Various multiprocessor
architectures can be used for database management. However, a consensus has
emerged that shared-nothing structure (Stonebraker, 1986) is most scalable to
support very large databases (Su, 1983; Teradata Corp., 1988; Boral et al., 1990;
DeWitt et al., 1990; Englert et al., 1990; Hua and Young, 1990; Lode et al., 1991).
This hardware organization consists of a set of processing nodes (PNs) interconnected

An earlier version of this article was presented at the 1993 International Conference on Parallel and Dis-
tributed Information Systems in San Diego, California, U.S.A.

Kien A. Hua, Ph.D., is Assistant Professor, and Yu-Lung Lo is Ph.D. candidate, Department of Computer
Science, University of Central Florida, Orlando, FL 32816-2362. Honesty C. Young, Ph.D., is Research
Staff Member, IBM Research Division, Almaden Research Center, San Jose, CA 95120-6099.

304

through a communication network. Each PN consists of its own memory and local
disk drives. Communication among PNs is carried out by message passing. In
this computation model, each relation is partitioned into disjoint fragments and
distributed across some number of PNs. Since each PN can independently process a
portion of the database on its disks, a high degree of parallelism is achievable. This
strategy, however, is very sensitive to skew in tuple distribution. When skewed tuple
distribution occurs, load balancing is necessary to ensure good system performance.
Since it has not been demonstrated that severe join product skew happens in practice,
this article emphasizes redistribution skew (Walton et al., 1991).

The join operation has been the most intensively studied among relational
operations for shared-nothing architecture. In recent years, several parallel join
algorithms with dynamic load balancing capabilities have been proposed to address
the skewed tuple distribution problem (Hua and Lee, 1990, 1991; Kitsuregawa
and Ogawa, 1990; Wolf et al., 1990, 1991a, 1991b; DeWitt et al., 1992; Swami
et al., 1992). Performance studies indicate that these techniques can provide
very significant performance improvement over conventional parallel join strategies.
However, none of these works considered the multi-way join problem. Although
these join algorithms can be used in a system in which a multi-way join query is
executed as a sequence of 2-way joins, a good query optimizer for the shared-nothing
environment should exploit inter-join parallelism where several joins are performed
concurrently (Lu et al., 1991). Depending on the sizes of the operand relations and
join selectivity factors, the execution of each join operation can be centralized to a
few PNs or to as many PNs as is appropriate to minimize the response time of the
query. Furthermore, in this article, we introduce data skew as a new factor for query
optimization. We will show that load balancing is more difficult for a shared-nothing
system with many PNs. When skew is severe, one can employ inter-join parallelism
to reduce the effect. With inter-join parallelism, a smaller subset of PNs is used to
perform a join; hence a balanced load is easier to achieve.

Recently, several interesting techniques have been proposed to optimize queries
for parallel execution. Schneider and DeWitt (1990) studied the behavior of query
plans with different type of structures (left-deep, right-deep, and bushy) in process-
ing multi-way join queries. Their study demonstrated that right-deep scheduling
strategies can provide significant performance advantages in large shared-nothing
systems under many circumstances. Chen et al. (1992) proposed a technique that
uses a segmented right-deep tree (a bushy tree of right-deep subtrees) for query
execution tree selection. Two heuristics were developed to determine the query
execution plan in this scheme. The objective of the minimal work heuristic is to
select relations in the current segment to minimize the total amount of work. This
is a greedy heuristic and tends to include small relations in the first few pipeline
segments. Another heuristic, balanced consideration, considers both the penalty (join
work) and the benefit (join size reduction) to determine which relation to include
in the current segment in order to avoid the tendency to select small relations. Lu
et al. (1991) modeled the execution of a multi-way join query by dividing the join

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 305

operations into synchronized iterations. For each iteration, a number of joins are
executed concurrently, and the joins of the next iteration will not start to execute
until all joins in the current iteration have been completed. This scheme tries to
join as many pairs of relations as possible in parallel for each execution step. A
greedy algorithm is used to decide the optimal degree of inter-join parallelism to
exploit for each iteration. Stonebraker (1988) and Hong and Stonebraker (1991)
proposed a 2-step optimization technique for shared memory systems, in which a set
of good sequential plans is first generated based on the possible buffer pool sizes,
and the parallelization of these plans are done in step 2. The outcome is a collection
of plans and a memory range over which each should be run. Since inter-query
parallelism is also allowed at the time of execution (Stonebraker, 1988), the query
executor must call on the buffer pool manager to determine space availability and
to choose one of the optimized execution plans.

In this article, we propose a new multi-way join optimization algorithm, called
Load Balancing Optimization (LBO), based on the parallel join strategy presented
in Hua and Lee (1991). Our technique is different from the existing ones in that
load balancing also is considered in determining the degree of inter-join parallelism
for each execution iteration. To investigate the efficiency of the proposed scheme,
we developed a performance model and compared its performance to the following
three strategies:

. Linear Tree With Load Balancing (L_LB) Strategy: In this scheme, a multi-way
join query is treated as a sequential order of two-way or single joins. At
least one operand of a join operation is a base relation. We ordered the
join operations by the increasing sizes of their intermediate relations, and
dynamic load balancing was performed for each join operation of the query
without exploiting inter-join parallelism.

. Bushy Tree Without Load Balancing (B_NLB) Strategy: This scheme is similar
to the technique presented by Lu et al. (1991). We exploited inter-join
parallelism, but did not perform load balancing.

. No Load Balancing Optimization (NLBO) Strategy: In this scheme, the query
is optimized using B_NLB, and dynamic load balancing is performed at
runtime for each join operation. Although this strategy exploits inter-join
parallelism and also performs load balancing, it is different from LBO in
that the load balancing issue is not considered during query optimization.

The performance comparison of NLBO and L_LB demonstrates the advantages of
exploiting inter-join parallelism, whereas the comparison of NLBO and B_NLB shows
the importance of load balancing in multi-way join execution. The comparison of
LBO and NLBO confirms the need to consider load balancing in query optimization
to achieve the best performance. We will discuss these query processing strategies
in more detail in Section 4.

306

The rest of this article is organized as follows. In Section 2, the effect of skewed
tuple distribution is discussed, and a load balancing strategy based on the partition
tuning concept is described. The proposed LBO algorithm, along with L_LB, B_NLB
and NLBO, is presented in Section 3. In Section 4, we introduce a simulation model
and discuss the performance comparison of the proposed scheme with the other
three techniques. We offer our conclusions in Section 5.

2. Skew Effect and Dynamic Load Balancing

The performance of conventional parallel hash join algorithms relies on the ran-
domizing hash function to redistribute the tuples of the join relations evenly across
all PNs in the system. Their performance degrades when the join attribute values
of the relations are non-uniformly distributed (Kitsuregawa et al., 1983; Lakshmi
and Yu, 1988, 1989). That is, some PNs have more tuples to process than the
remaining PNs in the system. The concept of data skew was described by Lakshmi
and Yu (1988) as the phenomenon in which certain values for a given attribute
occur more frequently than other values. The effect of data skew, however, needs
to be clarified.

A partition is a set of hash buckets assigned to a PN. We use the term bucket to
mean the tuples hashed to the same bucket for distribution purposes, which should
not be confused with the bucket chain of a hash table. If we know the distribution
of the relation, we can always design a hash function to minimize fluctuation in
the size of the hash buckets, provided that the skew is not too severe. In this case,
if every PN is allocated the same number of hash buckets, then the data load is
balanced for all PNs (i.e., the sizes of all the partitions are the same). Unfortunately,
we usually do not know the distributions of the relations. The general approach
is to assume that they are uniform, and employ a randomizing hash function to
hash the relations into matching join buckets. When the uniformity assumption is
violated, imbalanced buckets occur and consequently the size of the partitions will
not be uniform.

It is important to distinguish among data skew, bucket skew, and partition skew.
From the above discussion, we define bucketskew as the phenomenon in which some
hash buckets have more tuples than other buckets due to non-uniformity in the
distribution of the join attribute. Similarly, partition skew can be defined as the
phenomenon in which some partitions have more tuples than others due to the
non-uniformity in the size of the join buckets. We note that data skew may not
cause any negative effect. One such example is given in Figure 1, where the values
2, 7, and 12 occur significantly more frequently than the other values (i.e., data
skew). Nevertheless, the randomizing hash function produces perfectly balanced
hash buckets. Similarly, depending on how the imbalanced buckets are mapped
to the PNs, bucket skew may not cause any negative effect either. Partition skew,
however, implies load imbalance and the problem must be rectified for good system
performance. We determined the size of a hash bucket by the Zipf-like distribution
(Zipf, 1949; Sacco, 1986; Turbyfill, 1987). This will be discussed in more detail in

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 307

Figure 1.
SIm

qo.

Iio,

70

~o,

40

20

10

Data skew example

!:!:!:i:i:

ii!i!i!i!ii
iiiiiiiiiil

iiii!i!i!i
iiiiiiiiii:, ,.
i!!!iiiiii

ii!iiiiiii :+:,:,:.

iiiiililil
iiiii!i!ii

1 2 3 4 5 6 7

Hash Function:

h(Ai) = Ai mod 4

8 9 tO I I 12 ~ 14 1.5 16
Aztr ibute V a l u e

]
IL

0 l 2 3
BUCket ID

Section 4.
When the hashing phase of a join operation results in skewed partitions, one can

rehash the relations using a better hash function design based on the distribution
information collected during the first hashing process. The redistribution of the
relations, however, is very costly. Alternatively, one can use a finer grain hash
function to decluster the relations into smaller buckets so that these uneven hash
buckets can be combined to form balanced partitions for the PNs. This process is
referred to as partition tuning (Hua and Lee, 1990, 1991). A Best Fit Decreasing
strategy for partition tuning is illustrated in Figure 2. In this scheme, the hash
buckets are first sorted by size in decreasing order. In each iteration, the currently
largest bucket is assigned to the currently smallest partition (or PN). This process
is repeated until all the buckets have been allocated. Similar strategies for load
balancing have been proposed (Wolf et al., 1990, 1991a, 1991b; Swami et al., 1992).

A parallel join algorithm, Extended Adaptive Load Balancing Parallel Hash
Join (ABJ+), based on the partition tuning concept, was presented by Hua and Lee
(1991). A simplified version of that algorithm is given below:

1. Split Phase: Each PN partitions its portion of each relation into small sub-
buckets and stores them back to its own disks.

308

Figure 2. Best Fit Decreasing partition tuning strategy

clrml~I)

P I

m

I - - - I m

Ilall~ ~mclml

2. Partition Tuning Phase: Each PN reports the sizes of its subbuckets to a
designated coordinating PN. The coordinator adds up the sizes of the matching
subbuckets distributed across the PNs to derive the sizes of the corresponding
buckets. The coordinator then allocates the buckets to the PNs using the
Best Fit Decreasing strategy.

3. Bucket Tuning Phase: Each PN combines the small buckets to form optimally
sized join buckets that fit the memory capacity.

4. Join Phase: Each PN performs the local joins of respectively matching buckets.

3. Multi-Way Join Optimization Techniques

In this section, we discuss the multi-way join execution strategies in more detail. In
this article, we consider queries of the form of conjunctions of equi-join predicates.
This class of queries covers most joins. A join query graph is denoted by G =
(V, E), where V is the set of vertices and E is the set of edges. Each vertex in a
join query graph represents a relation. Two vertices are connected by an edge if

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 309

there is a join predicate on some attribute of the two corresponding relations. The
execution of a query is denoted by a query execution tree. In a query execution
tree, a leaf vertex represents an input (or base) relation and an internal vertex
represents the relation that results from joining the two relations of its two child
vertices. The query execution tree is executed in a bottom up (from leaf to root)
manner and can be one of three forms: left-deep tree, right-deep tree, or bushy
tree. For both the left-deep tree and the right-deep tree, the execution order is
uniquely determined by the query execution tree and inter-join parallelism cannot
be achieved. Pipelining is possible for query execution and is an important factor
to be considered by the query optimizer. However, to avoid mixing the advantages
of pipelining and those of the proposed scheme, we do not consider pipelining in
our study. Regardless of the shape of the query execution tree, the intermediate
result of each join is written back to disk before next execution iteration.

For either the left-deep tree or the right-deep tree, the number of iterations to
complete the join is equal to the depth of the query execution tree. A single join
is carried out in an iteration by all PNs. For a bushy tree, it is possible to perform
several joins within the same iteration and a subset of PNs is used by each join.

We implemented four optimizers for multi-way join queries. They accept a
query graph as input and generate an optimized query execution tree as output.
When the query execution tree is a bushy tree, they also determine which joins are
executed in the same iteration (i.e., degree of inter-join parallelism) and the degree
of parallelism for each join operation (i.e., degree of intra-join parallelism). The
details of the optimizers are described in the following subsections.

3.1 Linear Tree With Load Balancing (L_LB) Strategy

In this strategy, a multi-way join query is treated as a sequential order of two-
way joins. A simple static query optimization algorithm is used to order the join
operations by the increasing sizes of their intermediate relations. At execution time,
ABJ + is used to execute each join operation according to the optimized join order.

Although partition tuning is very effective in balancing skewed tuple distribution,
it becomes increasingly difficult to balance the workload as the number of PNs
increases (or as the sizes of the relations decrease). Let average size be the number
of tuples each PN should have if the workload is evenly distributed across the PNs.

average size = size of two relations
number o f PNs

Obviously, if there is a pair of matching join buckets that is larger than the average
size, then partition tuning using Best Fit Decreasing strategy will fail to balance
the workload perfectly. When this happens, one can increase the average size by
decreasing the number of PNs used for the join operation. In other words, inter-join
parallelism can be used to alleviate skew. Because L_LB strategy always uses all
the PNs for each join, its performance suffers when severe skew is encountered.

310

3.2 Bushy Tree Without Load Balancing (B_NLB) Strategy

This scheme was proposed by Lu et al. (1991). In this strategy, the execution of a
multi-way join query is divided into synchronized iterations. For each iteration, a
number of joins are executed concurrently, and the joins of the next iteration cannot
start executing until all joins in the current iteration have finished. This scheme
tries to join as many pairs of relations as possible in parallel for each execution
iteration. The detail of the algorithm is given in the following.

Algorithm B_NLB

Input: A join graph G = (V,E)
where vertex set V is a set of relations and edge set E represents the join
predicates.

Output: S, the query execution tree.

begin
s ~ 0
while Size(V) > 3 do

R ~ Select_reLpairs(G);
S ~-- S U R;
G ~ G with each pair of relations in R replaced by their join results;

end-while
R ~-- Two_way_seq(G);

S ~---- S U R;
end

Algorithm Select_tel_pairs
selects a set of relation pairs to be joined in the current iteration.

Input: G, a join graph
Output: R, a set of relation pairs to be joined concurrently in the same iteration

begin
k ~-- 0;
repeat

k ~-- k + 1;
Ck ~ Minimum_cost(G,k,Rk);
if (Rk does not contain all relations in G) then
Ck+l ~-- Minimum_cost(G,k+l,Rk+l);

until Ck+l > Ck or Rk+l contains all pairs in G;
if Ck+l > Ck then

return R k
else

return Rk + l
end

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 311

Function Minimum_cost is the core part of B_NLB. It takes a joingraph G, and the
number of joins to be performed concurrently, k, as input, and returns the minimum
cost of those plans that join k pairs first. In addition, it determines those k pairs
of relations and returns them in Rk. We note in B_NLB that when the number
of relations in the join graph is less than four, we cannot perform two or more
joins in parallel, and function Two_way_seq is called to determine the sequence of
joining those relations. To perform the individual join operations, one can consider
using either GRACE or Hybrid Hash Join. Brief descriptions of these algorithms
are given in the following paragraphs.

GRACE Hash Join was presented by Kitsuregawa et al. (1983). This join method
consists of two distinct phases: split phase and join phase. In the Split Phase, each
of the operand relations is partitioned in parallel. Each PN independently declusters
its local portion of the relations into buckets by hashing on the join attribute of
each tuple in the relations. If a tuple belongs to a bucket allocated to the local
PN, it is written back to the local disk. Otherwise, it is transferred to the PN that
corresponds to the bucket ID, and is stored in that PN's disk. In the join phase,
each PN performs joins of the allocated buckets in its local disk. Because tuples
of a relation in one bucket join only with tuples of a respective matching bucket
from the other relation, there is no communication among the PNs during the join
phase. The whole join operation completes when all the PNs have finished their
local joins.

Hybrid Hash Join (Schneider and DeWitt, 1989), is another popular parallel
hash-based join algorithm. This method combines the GRACE Hash Join technique
with the simple hash join algorithm (DeWitt et al., 1984). This method can also
be viewed as having two phases: split phase and join phase. In the split phase,
the operand relations are partitioned into buckets in parallel as in the GRACE
Hash Join. However, as a bucket of relation R is being formed in a PN, another
hash function is used to further decluster the bucket into subbuckets so that each
subbucket can fit individually in the memory. As the local subbuckets are being
formed in a PN, a hash table is built for one of the subbuckets while tuples belonging
to the remaining subbuckets are written to the local disk. Buckets of relation S
are also further declustered into subbuckets in the same way. As these subbuckets
are being formed, the tuples that belong to the subbuckets corresponding to the
in-memory hash table are used immediately to probe the hash table for matches.
During the join phase, each PN reads the next subbucket from relation R to build
an in-memory hash table. The respective matching subbucket from relation S is
then read and its tuples are used to probe the hash table. This process continues
until all matching subbuckets are joined in all PNs.

In the GRACE Hash Join, the split phase is completely separated from the
join phase. Both operand relations must be written back to disks before beginning
the join phase of the algorithm. The Hybrid Hash Join algorithm overlaps the
split phase with the join phase. The first two subbuckets are immediately joined
during the split phase to save disk I/O's. The savings can be significant when the

312

memory capacity is large. Nevertheless, without loss of generality, we assume that
the GRACE algorithm is used because it has a simpler cost function.

3.3 No Load Balancing Optimization (NLBO) Strategy

In this scheme, although we perform dynamic load balancing for each join operation
at run time, the load balancing issue is not considered in query optimization. The
query processing strategy consists of the following steps:

1. Compilation: We optimize the multi-way join query using B_NLB.

2. Execution: We execute the join operations in accordance with the schedule
generated by B_NLB. We used ABJ + to perform each join operation.

Due to the dynamic load balancing feature, we can expect NLBO to outperform
B_NLB, particularly when skew is severe. However, the advantage of load balancing is
not fully exploited here because the degree of inter-join parallelism is fixed by B_NLB,
which does not consider the load balancing issue. When severe skew is encountered,
it is advantageous to reduce the degree of intra-join parallelism to minimize the
effect of skewed tuple distribution. Unfortunately, this dynamic reconfiguration of
the PN allocation is not allowed in this scheme. In the next subsection, we will
present a query optimization algorithm that addresses this deficiency.

3.4 Load Balancing Optimization (LBO) Strategy

In general, a query may be optimized at different times relative to the actual time
of query execution. Optimization can be done statically before executing the query
(e.g., System R, Selinger et al., 1979) or dynamically as the query is executed (e.g.,
Ingres, Wong and Youssefi, 1976). Without loss of generality, we choose to present
LBO as a dynamic optimization algorithm for the sake of clarity. The proposed
strategy can easily be adapted for static optimization. LBO consists of the following
phases:

. Hash Phase: Each PN partitions its portion of each operand relation into
considerably smaller subbuckets. Each subbucket is stored back in the local
disks.

. Optimization Phase: The algorithm Select_relation_pairs is called to deter-
mine the pairs of relations to be joined at the current iteration. Function
Select_relation_pairs includes as many joins in the current iteration as is ben-
eficial.

Algorithm Select_relation_pairs
Input: G, a join graph
Output: S, a set of relation pairs to be joined concurrently
begin

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 313

R ~-- ~;
s h e ;
C2 ~ very large value;
repeat

C1 ~-- C2;/* save previous cost */
S ~-- S U R;
R ~ Search_smallest(G)i/* select relation pair with smallest join result */
if R 5~ ~ then
T ~-- G with the relations in (SUR) replaced by their join results;
C2 ~ Par4oin-costskew(SUR) + Seq4oin-cost(T);/* compute new cost */

end-if
until C2 > C1 or R = ~;
return S

end
The following functions are used in the algorithm Select_relation_pairs:

• Search_smallest: This procedure accepts a join graph as input. It
determines, from the unmarked relations, the relation pair whose join
result is smallest. It then marks the selected pair, and returns it to
Select_relation_pairs.

• Par_join_costskew: This procedure accepts a set of relation pairs as
input, and returns the cost of joining those relation pairs in parallel. It
also performs the processor allocation function. Since the information
on tuple distribution is available for these concurrent join operations,
this procedure is able to take skew into consideration in the estimation
of the execution cost. That is, it simulates the partition tuning process
(without actually moving the tuples) to determine the most heavily
loaded PN, and the estimated join costs are dictated by the execution
times at this bottleneck PN. We noted that, because the joins performed
concurrently in the same iteration are (data) independent, we can view
them collectively as a single larger join operation. Therefore, partition
tuning can be applied to this set of joins as if they are a single join
operation. In other words, a PN can participate in more than one join
operation during an execution step. This strategy allows a maximum
flexibility for load balancing. It also minimizes the communication cost
because we do not have to migrate the tuples of the operand relations
to concentrate the concurrent join operations to different disjoint sets
of the PNs. A similar technique was independently proposed for
shared-disk architectures (Tan and Lu, 1992).

• Seq_join_cost: This procedure accepts a join graph as input. It orders
the join operations by the increasing sizes of their join results, and
returns the total cost of the execution plan. In other words, this function
returns the cost to execute the remaining joins sequentially.

314

3 Execution Phase:

Stage I : ABJ + is used to execute the join operations selected by the opti-
mizationphase for concurrent processing. As we have explained in the
optimization phase, ABJ + can treat all these joins as a single larger
join operation. Furthermore, because the relations have already been
hashed into join buckets, the split phase of ABJ + can be omitted here.
In addition, because the partition tuning process has been simulated
during optimization phase, the PNs only need to collect the join buckets
in accordance with the simulation results during the partition tuning
phase of the ABJ + algorithm.

Stage 2 : The join graph G is updated by replacing the relations joined in
Stage 1 by their result relations and merging the join edges accordingly.
If there are remaining join operations, they go to the optimization phase.

We observe that load balancing in LBO is integrated into the query opti-
mization process. When severe skew occurs in some k-th join during the
optimization phase, and because skew is considered in the cost estimation,
adding the (k + 1)-st join to the current iteration (i.e. trading some intra-
join parallelism for additional inter-join parallelism) is likely to result in a
better execution plan. Thus, unlike conventional techniques (e.g., Lu et al.,
1991), we introduce skew effect as a new parameter for query optimization
in addition to the traditional factors (e.g., relation sizes, selectivity factors,
etc.). In other words, severe skew in tuple distribution plays a decisive role
in determining the optimal level for inter-join parallelism.

4. Performance Analysis

In general, the cost of a parallel join method is a function of the relation sizes and
the number of processors participating in the join operation. In this section, we
develop a simulation model for the performance analysis of the parallel multi-way
join query processing strategies presented in Section 3.

4.1 Simulation Model

In our model, the parallel execution of the multi-way join queries is simulated
on a Sun SPARCstation 1 + to obtain the size information of the work load, disk
accesses, and data communication at each PN. The cost functions presented in
the next subsection are then used to calculate the response times of the queries
according to the simulation results.

We assume that each operand relation of the multi-way join is initially partitioned
horizontally, and distributed evenly across all PNs. During the split phase of the
join algorithms, a relation, say R, is hashed into b buckets, B1, B2,...,Bb where b

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 315

is several times that of the number of PNs. Assuming that the relations are not
uniformly distributed, the sizes of these buckets are determined by the Zipf-like
distribution (Zipf, 1949; Sacco, 1986; Turbyfill, 1987) as follows:

IRI
1 IB, I = izb E _-i z-Z

In this article, bucket skew is Zb • When Zb = 1, the equation becomes a Zipf
distribution, and when Zb = 0, it is a uniform distribution. Similarly, the sizes of
the base relations are also assumed to follow the Zipf-like distribution.

Also note that our simulator is a bucket-level simulator. That is, we do not
actually compare the tuples of the operand relations. Instead, the time for joining
a pair of matching join buckets is estimated using a cost function. We assume that
this cost is proportional to the sum of the sizes of the two buckets involved. This
cost function is based on the assumption that joining two hash buckets is done in
two sequential steps (DeWitt et al., 1984):

Step 1: One bucket is used to build a hash table in the memory.

Step 2: The other bucket then is scanned and its tuples are used to probe the
in-memory hash table.

Because the building of an in-memory hash table and the succeeding probing process
are typically I/O bound for today's processor technology, we assume that the join
cost is proportional to the size of the sum of the two buckets in terms of disk
accesses. In any case, should the task time be large, the savings due to the balanced
workload will be even larger. That is, our assumption is without bias in favor of
load balancing schemes. We avoid using a tuple-level simulator here because it is
extremely slow and does not provide us any additional information.

The following parameters are designed for cost evaluation. They are similar to
those used by Hua and Lee (1991) and Lakshmi and Yu (1988).

• WorkloadParameters:

Nr : Total number of relations to be joined. In other words, it is an Nr-way
join.

[RI : Total number of tuples in all the relations of a multi-way join.

Js : Join selectivity factor.

Zb : The degree of bucket skew according to Zipf-like function.

Zr : The degree of variation in relation sizes according to Zipf-like func-
tion. That is, the relation sizes of a multi-way join follow a Zipf-like
distribution.

316

t : Size in bytes of each tuple.

System Parameters

N : Number of PNs in the system.

/z : CPU processing rate in million-instructions-per-second (MIPS).

Wio : I/O bandwidth in Mbytes/sec between a PN and its secondary storage.

O)comra : Effective communication channel bandwidth in Mbytes/sec per PN.

Icpu : CPU pathlength for processing a tuple in any step of a join operation.

Measurement Parameters Determined by Simulation. We have explained that
we can treat joins of the same execution iteration of a multi-way join as a
single larger join operation when applying the GRACE or ABJ + algorithm.
In discussing cost functions, we will refer to the set of tuples associated with
the relations relevant to a particular execution iteration and reside at the
same PN as a partition.

]emax_init[: The largest partition before data redistribution.

[Pmax_io [: Number of tuples being loaded and stored by the busiest PN
(in terms of disk accesses) during a particular execution iteration of a
join strategy.

[Pmax_comm[: Number of tuples being transmitted and received by the
busiest PN (in terms of communication) during a particular execution
iteration of a multi-way join operation.

[Pmax_finat[: The largest partition after data redistribution.

[Pmaz_resutt[: Size in tuples of the largest partition after a particular exe-
cution iteration of a multi-way join operation.

Computed Parameters Determined by Cost Functions:

Tsplit : Time cost in seconds due to a split phase.

Zpart i : Time cost in seconds due to a partition tuning phase.

Tbucket : Time cost in seconds due to a bucket tuning phase.

Tjoin : Time cost in seconds due to a join phase.

Tsplit_io : Time cost in seconds for disk accesses during a split phase.

Tsplit_ep u : Time cost in seconds for processing tuples during a split phase.

Tparti_io : Time cost in seconds for disk accesses during a partition tuning
phase.

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 317

Zparti_comm : Time cost in seconds for transferring data among PNs during
a partition tuning phase.

Tjoin_cpu : Time cost in seconds for building hash table and probing the
hash table during the join phase of GRACE or ABJ + algorithm.

Tjoin_io : Time cost in seconds due to disk accesses during a join phase of
GRACE or ABJ + algorithm.

TGRAC E : Time cost for performing one iteration of the parallel multi-way
join operation using GRACE algorithm (Kitsuregawa et al., 1983).

TAB J+ : Time cost for performing one iteration of the parallel multi-way
join operation using ABJ + algorithm.

TL_LB : Time cost for the execution plan generated by L_LB.

TB_NLB : Time cost for the execution plan generated by B_NLB.

TNLBO : Time cost for the execution plan generated by NLBO.

TLBO : Time cost for the execution plan generated by LBO.

4.2 Cost Functions

In this subsection, cost functions are presented for the multi-way join query processing
strategies based on the SN architecture and the described workload. Since partial
overlap between the phases of the join algorithms is possible, the total join cost
Ttotal is bounded by:

max(Tphase_l, Tphase_2,..., Tpha _m) _<
Ttotal Zphase_l + Zphase_2 + ' ' " + Zphase_rn

where max represents the maximum function. Similarly, each phase consists of
several steps (disk accesses, tuple processing, and communication). Overlap of
those steps also is achievable. A performance upper bound and lower bound for the
phases can be derived accordingly. In our study, we made the following assumptions:

The overlap within each phase is perfect. The system is assumed to include a
separate I/O processor and a separate communication processor which allow
the overlap among disk I/O, CPU computation, and data communication
(Hua and Young, 1990).

The overlap between two phases is not allowed, i.e., a simple barrier-type
synchronization (Jordan, 1978) is used between the join phases to guarantee
the correct parallel execution.

Therefore the total join time can be computed as:

T o al = + Tpha _2 + ' ' " + Tpha _m

318

Similarly, we assume that the overlap between any two execution iterations during
the execution of a multi-way join is not allowed. Thus, the cost functions for the
query processing strategies presented in Section 3 can be computed as follows:

TL_LB = Ei%1 TAB;+ (i) TB_NLB = Ein=l TGRACE (i)

TNLBO = Ei"----1 TABJ+ (i) TLBO = Ein-1 TAB J* (i)

where n's are the numbers of execution iterations for the respective query processing
schemes. The derivation of TGRAC E and TAB j+ is presented in the following
subsection. The cost equations for algorithms L_LB, NLBO, and LBO are the
same, but the total execution times may differ because they generally generate
different query execution trees.

4.2.1 Time Cost of One Execution Iteration Using GRACE. In this subsection, we
derive the cost function for one execution iteration of a parallel multi-way join using
the GRACE algorithm. As we have described briefly in Section 3.2, this algorithm
has two distinct phases: split phase and join phase. Its cost function, therefore, can
be written as follows:

TGRACE = Tsplit "4- Tjoin

Zspli t and Zjoin a r e computed below:

Tsplit = max(Tsplit_io, Tsplit_cpu, Tsplit_comm)
Zspt~t_~o = Iemax_,ol" ._t_ Z,p,it_cpu = [ema x ~nit[" z°e~ Wio - I z

Tsplit_com m = [emax_cornrnl. t
OJcomrr~

In the above equations [Pmaz_io] is the measurement of the number of tuples
being loaded from disk and stored to disk by the busiest PN (in terms of disk
accesses) during the split phase of the algorithm. This parameter is determined by
the simulator (i.e., a monitor was included in our simulator to measure Iema~_~ol).

• To compute the I/O cost due to split phase (i.e., Tsptit_io), we convert IemaxAo I into
bytes, and divide it by the I/O bandwidth. Tsptit_cpu is derived similarly. Tsptit_comm
is obtained in the same way, in which [Pmax_~omm[is the total number of tuples
being transmitted and received by the busiest PN in terms of data communication
during split phase of the algorithm. Likewise, IPmax_comml is determined by the
simulator. Thus, the effect of skew on Tsplit_io and Zsplit_comm depends on the
initial distribution of the tuples among the PNs.

During the join phase, the busiest PN must process Ie~_Zin~t I tuples (i.e.,
building in-memory hash tables and probing the hash structures). We assume that
this PN, which processes the largest number of tuples, also will generate the largest
intermediate result of [Pmax_resutt[tuples. Thus, the I/O cost and the computation
cost of the join phase are determined by this bottleneck PN, and can be computed
as follows:

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 319

Tjoin = max(Tjoin_io, Tjoin_cpu)
=]P Ii,~l['Icp,, Tjoin_io [P lln~tlt + [P tt[t Tjoin_cpu =

~ i o tOio

4.2.2 Time Cos t o f One Execution Iteration Using ABd +. As shown in Section 2,
ABJ + consists of four phases. The time cost for computing one execution iteration
of the multi-way join operation using ABJ + (i.e., TAB J+) can be derived as follows:

TAB J+ = Tsplit + Tparti + Tbucket + Tjoin

Tsptit = max(Tsplit_io, Zsplit_cpu, Zsplit_comm) Zsplit_io = 2 . I e m a x i=it[" .d_
- O.~io

Tsptit_cpu = [Pmax init[" I c p ~ Tsptit_comm = 0 - #

Because PNs do not exchange data during the split phase, the partition sizes remain
unchanged at each PN after hashing. The "largest" PN, therefore, has to read
and write Iemo _i tl tuples. The number 2 in the expression for Zsplit_io indicates
that each tuple must be loaded from disk for hashing, and then stored back to the
appropriate subbucket on the same disk system.

Because the bucket tuning phase manipulates only the directory information, it
does not involve tuple processing and its time cost is negligible compared to those
of the other phases. Therefore we make the following approximation: Tbucket ~ O.

At the beginning of the partition tuning phase, the coordinating PN consults
the directory and allocates the buckets to the PNs. Again, since this process does
not involve tuple manipulation, its time cost is negligible (i.e., the CPU time is
negligible and only the disk I/O time and communication time are shown in Tparti.

Tparti = max(Tparti_io,Tparti_comm)
t

Zp~rti_io = Iemax_iol " A_ Zparti_comm = Iemox_comml "
o.~io

The cost function for the join phase is similar to that derived for the GRACE
algorithm, and is given below:

Tjoin = max(T oin_io, Tjoi._)
= [P [i n a t l ' I e p u Tjoln_io IP li,~tl t + [P ult Tjoin_cpu =

Win nolo

4.3 Sensitivity Analysis

With our model we are able to do the performance sensitivity analyses with respect
to different system and workload parameters. We have run a large number of
experiments, but we are able to show only the representative and non-obvious
results here. The values of the parameters used in those experiements are listed in
the following:

1. Workload Parameters:

• Total number of relations (Nr): 8.

• Total relation size (JR[): 8,000,000 tuples. The size of each relation is
determined by the Zipf-like function

320

• Tuple size (t): 200 bytes per tuple.

• Join selectivity (Js): varied from 0.0000002 to 0.000002.

• Degree of bucket skew (Zb): varied from 0 to 1.

• Degree of relation skew (Zr): varied from 0 to 1.

2. System Parameters:

• Number of PNs (N): varied from 32 to 256.

• CPU processing rate (#): 20 MIPS.

• I/O bandwidth (wio): varied from 0.8 to 4.8 Mbytes/Second per PN.

• Effective communication channel bandwidth (wcomm): varied from 0.8
to 4.8 Mbytes/second per PN.

• Instruction pathlength (Icpu): 1,000 instructions.

Among these parameters, we select degree of bucket skew, degree of relation skew,
join selectivity, number of processors, disks, I/O bandwidth, and communication
bandwidth for the sensitivity analyses.

When a parameter is not under investigation, its value is fixed as follows. The
I/O bandwidth is set to 4 Mbytes/second which is typical for the industry standard
SCSI bus. The communication bandwidth for each port of the communication
network also is set to 4 Mbytes/second to match the data transfer rate of the disk
controller. To prevent the processor from becoming a bottleneck, the processing
rate of each PN is set to 20 MIPS which is derived as ~ = Icpu • ~ In addition,

t "

the number of PNs is 256. In the following subsections, we present the results of
the sensitivity analyses. In our study, we used 8-way join queries with the following
characteristic. Their join graphs form a chain (i.e., each relation can be joined with
exactly two "neighboring" relations, except that the two relations at the two ends
can only be joined with a single "neighboring" relation).

4.3.1 Effect of Bucket Skew. The 8-way join queries selected for the study of bucket
skew effects can be grouped into three types (Figure 3) which are optimized using
B_NLB (i.e., skew is not considered). We studied a much larger number of queries,
but we present only representative cases to illustrate the effect various system and
workload parameters have on the behavior of the query processing strategies.

The effect of bucket skew on the query processing strategies is depicted in
Figure 4. We explain the behavior of the performance curves as follows:

Figure 4(a): Because B_NLB generates a right-deep query tree in this case and
it does not perform dynamic load balancing, its performance is worse than
L i B . Because NLBO exploits inter-join parallelism in addition to performing
load balancing at run time, we would expect it to outperform L_LB. However,
both NLBO and L_LB generate the same right-deep tree for this particular

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 321

query, and they perform identically in this study. LBO is the best performer
for a wide range of bucket skews. When Zb = 0, LBO generates the same
right-deep tree as those generated by L_LB and NLBO. Therefore, all three
approaches have the same performance. However, as the degree of bucket
skew increases beyond .35, LBO trades intra-join parallelism for inter-join
parallelism in an attempt to reduce skew (i.e., LBO generates bushier trees as
the bucket skew increases. As a result, it exhibits a better performance than
any of the other approaches). For very mild skew, none of the load balancing
strategies perform as well as B_NLB due to the load balancing overhead.
Nevertheless, the slight degradation in performance due to load balancing
when skew is mild is within the acceptable level for most parallel database
environments; whereas, the serious degradation in performance when skew
is severe and load balancing is not performed is likely to be intolerable for
most applications.

• Figure 4(b): In this case, we observe a distinct performance curve for each of
the processing strategies. Again, we see that B_NLB is the worst performer for
Zb > 0.2. Unlike Figure 4(a), NLBO performs better than L_LB because
it generates a bushy tree for this particular query. Unintentionally, the
inter-join parallelism helps to reduce some degree of skew effect on NLBO.
Nevertheless, since LBO is able to generate a bushier tree as the degree of
bucket skew increases, it is the overall winner in handling the skewed tuple
distribution problem.

• Figure 4(c): The performance curves behave similarly in this case, except that
NLBO and LBO perform identically. This is due to the fact that NLBO
generates a very bushy tree for these particular queries, and there is no more
inter-join parallelism that can be exploited by LBO.

In the following subsections, we will not show the query execution trees. However,
we will refer to them as right-deep trees, bushier trees, and bushiest trees, etc.,
when we explain the behavior of the corresponding performance curves.

4.3.2 Effect of Relation Skew. As we mentioned, although the total number of base
tuples involved in the multi-way join is fixed at 8,000,000, the size of each of the
eight operand relations is randomly assigned one of the eight numbers computed
by the Zipf-like function as follows:

= IRI
IR, I 1

In this article, relation skew is Zr.
The results of the study on relation skew are shown in Figure 5. When the

relation skew is zero, all the operand relations have the same size, and each has

322

Figure 3. Structures of query execution trees generated by B_NLB

7
(a,) Type I: Right-deep tree (b) Type 'e Bushy tree

W /

(e) Type & Bushier tree

Figure 4. Effect of bucke t s k e w

, , , , i

~ i #1 l i | ~ I , | , | I
i l l / i l : I
i o l i : ~
! II i l i i ' I.I /

i = i l l = I.IIIIII I
i ~ i l l i : i l l t l i / l i¢ /

l l i : l l i

?

I . l I.I I.I I.I 1

(a) Type 1 queries

N

311

I lu
l

IN

!

Inlir II t i l l l l l : i . l l l , llll /t

=:I~.':~, I
of r l l l illi l i : I.~ /

~11 I d t i ~ i l = I . t l /
/ i ~ i l / = I f i l l /
i l l : I I I [

I I I I I

I. l LI t.I I.I 1

(b) Type 2 queries

m ol t l l lhl : I , l t , l [

/
~ilil l i l l~ i l i~ : I.lUUl]

"=//

I . l |.I |. i I.| |
l i l l

(c) Type 3 queries

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 323

Figure 5. Effect of relation skew

6 0 ; i , J i i , i i i

20 "~ ~ 9 '

' ~ : a l r m ~ " o t t u p l ~ = 8 , 0 0 0 , 0 0 0
~ o f ~ l a t i ~ l s = 8 ~

1 0 ~ of processors = 256
Degree ot 10uck~ s k ~ = 0.5
dora se lec t i v i t y : 0.000001
e c m a n i c a t i o n b a n d v i d t h : 4) l B y t d / s e c
vo ~uhadth : 4 ~t~/,ee

0 M i I I I | |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relat ion ~ev

1,000,000 tuples. Because the join selectivity factor was fixed at 0.000001, the
size of the join results of any relation pair remains at 1,000,000 tuples for any
execution iteration. Under this condition, any parallel execution plan will result
in the same response time assuming bucket skew is zero. Since B_NLB employs
a greedy algorithm to gradually increase the number of concurrent joins for each
execution step (as long as the increase in inter-join parallelism does not worsen
performance), the query tree generated by B_NLB is a bushiest tree. For this reason,
NLBO performs as well as the plan generated by LBO when Zr = 0. It does not
perform as well for L_LB as the other load balancing schemes because inter-join
parallelism is not exploited. As we increase the relation skew, the deviation in
the sizes of the relations increases. As a result, the query generated by B_NLB
becomes less bushy as the relation skew increases. A less bushy tree results in
poorer performance under the bucket skew effect (i.e., Zb = 0.5). Consequently,
the performance curves of NLBO rise for 0.1 _< Zr _< 0.2. However, they fall
for 0.2 < Z,. < 0.3 since the relation skew becomes severe and the rate of data
reduction becomes more rapid. This increase in data reduction rate also forces
NLBO to generate a right-deep tree for Zr > 0.5. Therefore, NLBO and L_LB
perform identically for larger relation skews.

4.3.3 Effect of Join Selectivi~. Join selectivity factors have a strong influence on
multi-way join query optimization. In general, query execution trees tend to be less
bushy for smaller join selectivity factors in order to speed up the data reduction

324

Figure 6. Effect of join selectivity

l , | , , ' ,
180 ~ t a l nml~r of tup l~ = 9,000,000 .

Ilma~er of relations = 8 [
Itmd~r of pracesnors = 256 /

160 I- Oe;ree of bucket skw = 0.5 /

/ I:~lrt~ of relation i ~ = 0,5 /
I10 bandwidth = I ID/teslsec [

i 1'°[! 100[

~ u~
60

4O

20

0 1 I I I I I I I I

2 4 6 ° 10 12 14 l& 19
selectivity (e-7)

rate during query execution. However, if we consider the data skew issue in query
optimization as in LBO, using a bushier tree (i.e., increasing the degree of inter-join
parallelism) might be necessary to achieve best performance. This phenomenon
can be observed in Figure 6.

In this study, we assumed that all the join operations have the same selectivity
factor. When the selectivity factor is small, NLBO generates a right-deep tree, and
its performance is identical to that of L_LB. For selectivity factors greater than
8 x 10 -7, the trees generated by NLBO become bushier as the selectivity factor
increases. Consequently, NLBO outperforms L_LB for larger selectivity. When this
factor becomes sufficiently large, the query tree generated by NLBO becomes very
bushy, and its performance matches that of LBO. Again, we observe that LBO
exhibits the best performance, and B_NLB shows the worst performance for this
workload because it does not perform load balancing.

4.3.4 Effect of Number o/P/Vs. To compare the performance of LBO to the other
schemes under various number of PNs, we introduce the following relativeperformance
ratios (RPRs):

RPRi - COST'~-'dY'Idl RPR2 = c o s ~ RPR3 = COSTIyLBO
COSTLBo COSTLBo COSTLBO

The effect of number of PNs on the multi-way join strategies is shown in Figure
7. For the same degree of bucket skew, we observe that RPR1 increases with the
increase in the number of PNs. This again exemplifies the importance of load

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 325

Figure 7. Effect of number of PNs

3

2.5

2

1.5

1

0.5

w , ,

/ at92 : te0~l, . . l~/¢0S1Ll~0

R~3 : te0,~l'Jn,B01¢0S?_l~0

. ;
~ ~ . ~ ~ , 1 1 " - R~3

'rota! nmuber ot tuples : 8,000,000
Nmaber of r e l a t i o n s = 8
Degree o t bucket skew = 0.5
Degree o~ r e l a t i o n skew : 0.5
Jo in se lec t i v i t y ~ O. O0000l
C c m n i c a t i o n bandwidth : 4 l, IByt.esllee
I / 0 b n n ~ i d t h = 4 IIBlftes/see

I I I I I I i i

32 E4 96 128 160 192 224 256
Iludc~r of processors

balancing in larger shared-nothing systems. The curve for RPR1, however, does
not increase monotonously. At N = 160, the curve falls because LBO generates a
bushier tree that has little inter-join parallelism to exploit after the second execution
iteration. Thus, LBO suffers from the increase in the number of PNs. We observed
that when N > 224, LBO generates the bushiest tree and it regains its advantage
from the increase in the degree of inter-join parallelism. In general, the curve
strictly increases if the number of operand relations is sufficiently large relative to
the number of PNs in the system (e.g., when the number of relations is eight, RPR1
strictly increases for 32 < N < 160) (Figure 7).

The benefit of LBO (compared to other load balancing schemes) increases with
the increase in system size. However, it does not provide any advantage in smaller
systems for this particular workload. For other workloads with smaller relations
or more severe skew, we observed that LBO provided savings for smaller system
configurations.

4.3.5 Effect of l[O Bandwidth. In the previous studies, we assumed that the hardware
design was "balanced"--the processors, the I/O subsystems, and the communication
processors were tuned for the join operations. In this and the following subsections,
we are interested in a system environment that is less than ideal. Here we consider
how the performance of the I/O subsystems affects the algorithms; in particular,
how the overhead due to dynamic load balancing is related to the I/O bandwidth
(Figure 8).

326

Figure 8. Effect of I /0 bandwidth

250

200

150

100

~ of re la t ions : 8 4

! lC ~ t Degree of ~ l a t i a n s skew :0.,~
dola s e l e c t i v i t y : O.O0000I]

~LB \ t

I I I I I i I i i i i /

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
I /0 l~rdwiflth (l~/tes/se¢)

LBO provides very significant savings compared to B.NLB for any I/O bandwidth.
The cost of B_NLB is three times that of LBO. L_LB and NLBO also can provide
very impressive savings. However, LBO remains the overall winner.

4.3.6 Effect of Communication Bandwidth. We also studied the effect of the com-
munication bandwidth on the multi-way join algorithms. The results are plotted in
Figure 9. These performance curves behave similarly to those in Figure 8. However,
dynamic load balancing is more critical in a system with inadequate communica-
tion capability than in a system with limited I/O performance, because the relative
performance ratio between B_NLB and LBO is higher for small communication
bandwidth than for small I/O bandwidth.

5. Conclusion

We have discussed dynamic load balancing issues in multi-way join operations. In
particular, we implemented four multi-way join query optimizers, and developed a
simulator to investigate the effect of skewed tuple distribution on these techniques.
From our study, we can draw the following conclusions:

• Dynamic load balancing is very critical to the performance of shared-nothing
systems, particularly when the system is large.

• Because load balancing becomes more difficult for larger systems, one should

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 327

Figure 9. Effect of communication bandwidth

160

140

120

100

80

60

40

20

\ ~ ot relations : 8
\ ~ of ~ooesson = 2%
\ l~egree of: bucket skev : 0.5
\ Degree of relatiaas slt~ =0.5

,Join selectivity = 0.000001
B--lll~ ~ I / 0 bandwidth : 4 ISy t~ lsec

~ ~,._',,.~

I I I I I I I I I I

0,8 1.2 l.l; 2 2.4 2.8 3.2 3.6 4 4.4 4.8
emmnication banduidth (l lBytulsec)

exploit inter-join parallelism to limit the number of PNs used for each join
operation within manageable size.

• Although dynamic load balancing provides very impressive savings, considering
the skew issue during query optimization is necessary to achieve the best
performance.

Although we limited our discussion to intra-query parallelism, the load balancing
techniques proposed for multi-way join can be extended easily to support inter-query
parallelism in a multiuser environment.

Finally, we note that an interesting technique was recently proposed by DeWitt
et al. (1992) to estimate skew in tuple distribution. In this scheme, a sample of
the relations being joined is used to estimate the skew. Therefore, an appropriate
join algorithm can be determined for a particular degree of skew. This technique
can be adapted to improve the hash phase of the LBO algorithm. In the modified
scheme, instead of hashing all the relations and writing them back to the local disks,
we can hash the relation samples to save disk I/Os. Partition tuning then can be
performed based on the statistics obtained from those samples. This modification
should provide some performance improvement over the original LBO algorithm.
Furthermore, we are currently enhancing the LBO optimizer to allow a pair of
oversized matching buckets to be joined by more than one PN (i.e., broadcast-based
join.) The new optimizer is capable of trading between the degrees of multicast
and inter-join parallelism in determining the best join strategy for a query.

328

References

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart,
B., Smith, M., and Valduriez, E Prototyping Bubba, a highly parallel database
system. IEEE Transactions on Knowledge and Data Engineering~ 2(1):4-24, 1990.

Chen, M.-S., Lo, M., Yu, ES., and Young, H.C. Using segmented right-deep trees for
the execution of pipelined hash joins. Proceedings of the Eighteenth International
Conference on PZDB, Vancouver, British Columbia, 1992.

DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H.-I., and
Rasmussen, R. The Gamma database machine project. IEEE Transactions on
Knowledge and Data Engineering 2(1):44-62, 1990.

DeWitt, D.J., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., and Wood, D.
Implementation techniques for main memory database systems. Proceedings of
the 1984 SIGMOD Conference, Boston, Mass., USA, 1984.

DeWitt, D.J., Naughton, J.E, Schneider, D.A., and Seshadri, S. Practical skew
handling in parallel joins. Proceedings of the Eighteenth International Conference
on FLDB, Vancouver, British Columbia, 1992.

Englert, S., Gray, J., Kocher, T., and Shah, E A benchmark of NonStop SQL
release 2 demonstrating near-linear speedup and scaleup on large databases.
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems,
Boulder, Colorado, 1990.

Hong, W. and Stonebraker, M. Optimization of parallel query execution plans
in XPRS. Proceedings of the International Conference on Parallel and Distributed
Information Systems, Miami Beach, Florida, 1991.

Hua, K.A., and Lee, C. An adaptive data placement scheme for parallel database
computer systems. Proceedings of the Sixteenth International Conference on VLDB,
Brisbane, Australia, 1990.

Hua, K.A., and Lee, C. Handling data skew in multiprocessor database comput-
ers using partition tuning. Proceedings of the International Conference on VLDB,
Barcelona, Spain, 1991.

Hua, K.A., Lo, Y.-L, and Young, H.C. Including the load balancing issue in the
optimization of multi-way join queries for shared-nothing database computers.
Proceedings of the International Conference on Parallel and Distributed Information
Systems, San Diego, California, 1993.

Hua, K.A. and Young, H.C. Designing a highly parallel database server using off-the-
shelf components. Proceedings of the International Computer Symposium, Hsinchu,
Taiwan, 1990.

Jordan, H.F. A special purpose architecture for finite element analysis. Proceedings
of the International Conference on Parallel Processing, Bellaire, Michigan, 1978.

Kitsuregawa, M. and Ogawa, Y. Bucket spreading parallel hash: A new, robust,
parallel hash join method for data skew in the super database computer (SDC).
Proceedings of the Sixteenth International Conference on VLDB, Brisbane, Australia,
1990.

VLDB Journal 2 (3) Hua: Data Skew in Multi-Way Join Query Optimization 329

Kitsuregawa, M., Tanaka, H., and Moto-oka, T. Application of hash to database
machine and its architecture. New Generation Computing 1(1):66-74, 1983.

Lakshmi, S. and Yu, ES. Effect of skew on join performance in parallel architectures.
Proceedings of the International Symposium on Databases in Parallel and Distributed
Systems, Austin, Tex., USA, 1988.

Lakshmi, S. and Yu, P.S. Limiting factors of join performance on parallel processors.
Proceedings of the Fifth International Conference on Data Engineering~ ??, 1989.

Lorie, R.A., Daudenarde, J.-J., Stamos, J.W., and Young, H.C. Exploiting database
parallelism in a message-passing multiprocessor. IBM Journal of Research and
Development, 35(5/6):681-695, 1991.

Lu, H., Shan, M.-C., and Tan, K.-L. Optimization of multi-way join queries for par-
allel execution. Proceedings of the Seventeenth International Conference on VLDB,
Barcelona, 1991.

Sacco, G.M. Fragmentation: A technique for efficient query processing. ACM
Transactions on Database Systems, 11(2):113-133, 1986.

Schneider, D.A. and DeWitt, D.J. A performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor environment. Proceedings of the
SIGMOD Conference, Portland, Oregon, 1989.

Schneider, D.A. and DeWitt, D.J. Tradeoffs in processing complex join queries via
hashing in multiprocessor database machine. Proceedings of the Sixteenth VLDB
Conference, Brisbane, Australia, 1990.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., and Price, T.G.
Access path selection in a relational database management system. Proceedings
of the ACM SIGMOD International Conference on Management of Data, Boston,
Mass., USA, 1979.

Stonebraker, M. The case for shared nothing. IEEEDatabase Engineering 9(1):4-9,
1986.

Stonebraker, M. The design of XPRS. Proceedings of the Fourteenth International
Conference on VLDB, Los Angeles, Calif., USA, 1988.

Su, S.Y.W. A microcomputer network system for distributed relational databases:
Design, implementation, and analysis. Journal of Telecommunication Networks,
2(3):307-334, 1983.

Swami, A., Young, H.C., and Gupta, A. Algorithms for handling skew in parallel task
scheduling. Journal of Parallel and Distributed Computing 16(4):363-377, 1992.

Tan, K.-L. and Lu, H. Processing multi-join query in parallel systems. Proceedings
of the 1992 Symposium on Applied Computing Kansas City, Okla., USA, 1992.

Teradata Corporation, Los Angeles, California. Teradata DBC/1012 Data Base Com-
puter Concepts and Facilities, release 3.1 edition, 1988.

Turbyfill, C. Comparative Benchmark of Relational Database Systems., Ph.D. Thesis,
Cornell University, 1987.

Walton, C.B., Dale, A.G., and Jenevein, R.M. A taxonomy and performance model
of data skew effects in parallel joins. Proceedings of the International Conference
on VLDB, Barcelona, Spain, 1991.

330

Wolf, J.L., Dias, D.M., and Yu, ES. An efficient algorithm for parallelizing sort-merge
joins in presence of data skew. Proceedings of the SecondIntemational Symposium
on Databases in Parallel and Distributed Systems, Dublin, Ireland, 1990.

Wolf, J.L., Dias, D.M., Yu, P.S., and Turek, J. An efficient algorithm for parallelizing
hash joins in presence of data skew. Proceedings of the International Conference
on Data Engineering Kobe, Japan, 1991a.

Wolf, J.L., Dias, D.M., Yu, ES., and Turek, J. Comparative performance of par-
allel join algorithms. Proceedings of the International Conference on Parallel and
Distributed Information Systems, Miami, Flor., USA, 1991b.

Wong, E. and Youssefi, K. Decomposition: A strategy for query processing. A C M
Transactions Database Systems, 1(3):223-241, 1976.

Zipf, G.K. Human Behavior and the Principle of Lease Effort: An Introduction to Hu-
man Ecology. Reading, MA: Addison-Wesley, 1949.

