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Abstract. In this article, we describe our approach to the compile-time optimiza- 
tion and parallelization of queries for execution in DBS3 or EDS. DBS3 is a 
shared-memory parallel database system, while the EDS system has a distributed- 
memory architecture. Because DBS3 implements a parallel dataflow execution 
model, this approach applies to both architectures. Using randomized search 
strategies enables the exploration of a search space large enough to include zigzag 
trees, which are intermediate between left-deep and right-deep trees. Zigzag trees 
are shown to provide better response time than right-deep trees in case of limited 
memory. Performance measurements obtained using the DBS3 prototype show 
the advantages of zigzag trees under various conditions. 
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1. Introduction 

A Database System on Shared Store (DBS3) is a shared-memory parallel database 
system (Bergsten et al., 1991) being developed by Bull Research Center and Institut 
National de Recherche en Informatique et en Automatique (INRIA) in the context 
of an Esprit project. The goal of DBS3 is to provide high-performance for queries 
expressed in ESQL (Gardarin and Valduriez, 1992), a conservative extension of 
SQL with object and deductive capabilities. It is optimized towards both on- 
line transaction processing (OLTP) and decision-support (more complex) queries. 
OLTP queries require high-throughput, while decision-support queries require good 

response times. 
Two important considerations have guided the design of DBS3. First, DBS3 

implements a parallel dataflow execution model based on fragmented data placement 
similar to distributed-memory (shared-nothing) systems like BUBBA (Boral et al., 
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1990) and GAMMA (DeWitt and Gray, 1990). This allows us to take advantage 
of automatic load balancing while reducing access conflicts to the shared memory. 
Second, the ESQL compiler translates a query into an optimized parallel program 
that exploits both inter- and intra-operation parallelism and yields decentralized 
execution control. 

In this article, we describe our approach to parallel query processing in DBS3, 
which relies on the compile-time optimization and parallelization of execution plans. 
As in centralized query processing (Selinger et al., 1979), the major problem to be 
addressed is that of dealing with a large space of parallel execution plans. In the 
centralized case, the search space gets larger as the query becomes more complex; 
e.g., it includes many joins (Swami, 1989), it deals with complex objects (Lanzelotte 
and Valduriez, 1991), or it includes recursion (Lanzelotte, 1992). 

Even for a reasonable query (e.g., < 10 joins), a parallel dataflow execution 
model with fragmented data placement yields a very large range of alternative 
execution strategies. We believe that considering a large search space, rather than 
relying on restrictive heuristics, is important because a large variety of parallel 
execution plans provides a superior trade-off between response time minimization 
and throughput maximization. 

Optimizing queries for parallel execution is considered an open problem (DeWitt 
and Gray, 1990). Hong and Stonebraker (1991) drastically restricted the optimization 
search space by adopting two heuristic assumptions: the buffer size independent 
hypothesis and the two-phase hypothesis. However, these assumptions rely on a 
restricted execution model (left-deep trees only, no inter-operation parallelism). 
Ganguly et al. (1992) addressed the problem of minimizing response time subject to 
constraints on throughput, and extended a dynamic programming search algorithm 
to cope with dependencies among optimization choices. However, the authors 
considered only left-deep trees and did not mention any experimentation. 

Our approach explores a search space large enough to include intermediate 
formats between left-deep and right-deep trees (Schneider and DeWitt, 1990). These 
formats, called zigzag trees, can lead to a better response time than those of right- 
deep trees in cases of limited memory. To avoid a prohibitive optimization time, we 
use randomized search strategies (Lanzelotte and Valduriez, 1991). Our approach 
applies both to shared-memory and distributed-memory architectures, avoids the 
need for a centralized scheduler, and enables compile-time optimization of data flow 
control (Borla-Salamet et al., 1991). Performance measurements obtained using the 
DBS3 prototype show the advantages of zigzag trees under various conditions. 

This article is an extended version of Ziane et al. (1993). The main additions are: 
(1) a comparison to segmented right-deep trees (Section 2.3), (2) a more detailed 
execution model (Section 3.2), (3) a description of the compilation process (Section 
4.1), (4) a discussion of the dependencies among optimization choices (Section 
4.2.3), and (5) one more experiment varying the size of intermediate results. 

This article is organized as follows. Section 2 analyzes alternative approaches to 
parallelism and shows the advantages of zigzag trees. Section 3 describes our parallel 
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data and execution models. Section 4 presents our query processing approach, 
including our cost model and search strategies. The experiments are detailed in 
Section 5. Section 6 concludes the work. 

2. Shape and Scheduling of Operator Trees 

After analyzing alternative approaches to parallelism, we show that zigzag trees can 
lead to better response time than sliced right-deep trees (Schneider and DeWitt, 
1990) under some conditions. We discuss the use of bushy trees, and compare 
zigzag trees to segmented right-deep trees (Chen et al., 1992a). 

2.1 Alternative Approaches to Parallelism 

Hong and Stonebraker (1991) suggested that a parallel query execution plan 
is a parallelization of some sequential plan. Graefe (1990) was able to create 
parallelism in a sequential plan without modifying the sequential algorithms by 
adding an exchange operator. Such approaches ease the adaptation of sequential 
techniques to parallel environments. However, using a sequential (intermediate) 
plan might induce arbitrary restrictions. Our approach directly exploits the potential 
parallelism of queries. 

Although the input query of an optimizer typically is represented by a graph 
of operations, such graphs impose only very loose constraints on their execution. 
The execution of a plan is described in terms of atomic actions which are, in our 
context, tuple productions or consumptions. An operation graph imposes only a 
partial order on the set of actions, and such freedom introduces parallelism in 
plan execution. The partial order reflects the obvious constraint that a tuple must 
be produced before it is consumed, as well as other constraints imposed by the 
semantics of some operations (e.g., the difference operation cannot produce any 
tuple before its second argument has been completely consumed, unless it is sorted). 

Execution models usually constrain further the execution of operation graphs. 
For example, most of them limit the possibility of being consumed in pipeline to 
one operand. Most (sequential or parallel) algorithms require that one operand be 
completely produced before any tuple of the other operand can be consumed. This 
is the case for hash-based join algorithms, which typically consist of two consecutive 
phases: build and probe. Note that some constraints are introduced by the algorithms 
while the semantics of the operations would allow more freedom. For example, a 
hash-join algorithm was proposed only recently that allows both join operands to 
be consumed in pipeline (Wilschut and Apers, 1991). 

We consider only non-recursive queries, which are typically represented by 
operator trees. We concentrate on trees of join operations and consider only 
hash-based algorithms because they have been shown to be the most efficient for 
equi-joins (Schneider and DeWitt, 1989). Schneider and DeWitt (1990) adopted a 
convenient notation for capturing trees of hash-join algorithms in which the right 
operand is consumed in pipeline while the left operand is blocked. We explicitly 
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denote such constraints in our parallel execution plans by annotating arcs with pipe 
or seq. 

Most execution models require that plans be sliced into sequential phases. In 
such models, each operation of the execution plan is completely executed during 
one specific phase, thereby requiring that the execution of an operation cannot over- 
lap with two phases. Consequently, a slicing strategy determines non-overlapping 
fragments (subtrees) of the execution plan, whose operations are executed simul- 
taneously. For linear trees, i.e., trees in which at least one argument of each join 
operation is a base relation (as opposed to an intermediate relation), specifying a 
pipe or a seq annotation for each arc is enough to determine a slicing strategy. 
Schneider and DeWitt (1990) compared two extreme cases among the different 
slicing strategies of linear trees, namely the strategies associated with left-deep and 
right-deep trees. In this article, we also consider intermediate cases which we call 
zigzag trees. 

In a left-deep tree, each pipe operand is a base relation, which means that 
a pipeline is only possible between a hash-join and a selection operation. In this 
strategy, plans are sliced into fragments that consist roughly of a join and a selection 
(Hong and Stonebraker, 1991). To be more precise, in hash-based join algorithms, 
the seq annotation is indicated on an arc between the build node and the probe node. 
Thus, a fragment may include the probe part of one join and the build part of the 
next one. Note that in Hong and Stonebraker (1991) a fragment may also consist of 
two selection nodes consumed by a nestloop node, itself consumed by a probe node. 
A pipeline is not restricted to a single operand for nestloop nodes because XPRS 
actually implements such a "pipeline" execution by a single operation, i.e., without 
real parallelism. Finally, considering only left-deep trees (Hong and Stonebraker, 
1991) is consistent with the decision to avoid inter-operation parallelism, because 
each fragment is made of a single operation. 

In a right-deep tree, each blocked operand (annotated with seq) is a base 
relation. Thus, all the intermediate relations can be consumed in pipeline if enough 
resources (memory and processors) are available (Schneider and DeWitt, 1990). 
This means that right-deep trees can be executed in only two phases, while bushy 
trees often need more phases. If the usual constraint, which requires that only one 
operand of an operation be consumed in pipeline, does not hold, then a right-deep 
tree may be consumed in a single phase. However, it is possible to execute a 
right-deep tree with more phases, e.g., in case of limited memory, using static right 
deep scheduling (Schneider and DeWitt, 1990). This technique is expressed easily 
in our model by transforming some pipe annotations into seq annotations. 

2.2 Advantages of Using Zigzag Trees 

Static right deep scheduling slices a right-deep tree into phases, so that each resulting 
fragment is expected to fit in memory, and spools to disk the temporary results 
between two phases. In this section, we propose an alternative approach which 
avoids spooling intermediate results to disk using zigzag trees. 
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It is sometimes possible to avoid unnecessary I/Os, by keeping in memory the 
temporary relation resulting from each subtree (but the last one) of a sliced right- 
deep tree. This implies taking into account the size of the temporary relation when 
deciding where to cut the fight-deep tree. While saving I/Os, the disadvantage of 
this approach is that less permanent relations can fit into memory together; thus 
the right-deep tree has to be sliced into more pieces. This technique sacrifices some 
parallelism, possibly at the expense of response time, to avoid unnecessary I/Os. The 
advantages can outweigh the costs, depending on the I/O system contention, and the 
technique can be used to help balance I/O and CPU utilization. Furthermore, it is 
possible to better exploit the idea by using zigzag trees instead of sliced right-deep 
trees. 

With the preceding technique, intermediate relations are used in a fight-deep 
tree as probing relations. This makes their presence in memory not very useful, 
because probing relations are consumed in pipeline. By using these temporary 
relations as building relations, we transform fight-deep trees into zigzag trees. In 
Schneider and DeWitt (1990), the intermediate formats considered between fight- 
deep and left-deep trees are bushy trees. However, right-deep and left-deep trees 
are two extreme formats for linear trees. Bushy trees capture the same level of 
abstraction as linear trees, while zigzag trees are strategies for linear trees in which 
base relations are either blocked or consumed in pipeline. 

Zigzag trees may be more advantageous than sliced right-deep trees in cases of 
limited memory, especially when temporary relations are not staged to disk. The 
rationale is to "turn fight" instead of simply slicing the right-deep trees. Turning 
right means that the temporary relation produced by the already-built right-deep 
subtree will be used as a building relation in the following hash-join operation, 
rather than as a probing relation, as it would if the right-deep tree had simply been 
sliced. Note that choosing a temporary relation as a building relation is particularly 
useful when the build phase can be avoided, i.e., when it is already hashed on the 
attribute of the next join. Then another fight-deep subtree is built in the same way 
and possibly turns fight again if it runs out of memory. The process is repeated 
the same way, building fight-deep subtrees and turning fight, as many times as 
necessary to fit each fight-deep subtree into memory. 

When a temporary relation is kept in memory, the memory occupation of the 
zigzag trees is better than the memory occupation of sliced right-deep trees. This is 
because zigzag trees use the next permanent relation to join as a probing relation 
which does not have to be loaded in memory. Instead, the temporary relation is 
actually traded with a permanent relation. If we compare the right-deep tree of 
Figure 1 and the zigzag tree of Figure 2, we see that the memory necessary to 
execute these plans is the maximum memory requirement of each phase, i.e., of 
each subtree. If we denote the memory space used to hold a relation and its hash 
table in memory by the relation name itself, we get the following formula for the 
memory occupation of the right-deep tree of Figure 1: 
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Figure 1. Sliced right-deep tree with n+l  subtrees 

Result A 

R(il)+l R i l A .  

1t2 111 

il i2 in+l 

rnax(Tl + ( ~  Rj),Tl + T2 + ( ~ Rj),...,T~ + ( ~ Rj)) 
j=2 j=i l+l  j=in+l 

and the following formula for memory occupation of the zigzag tree of Figure 2." 

il i2 in+l 

max(Ti + ( ~  Rj),Ti + T2 + ( ~ Rj),...,T~ + ( ~ Rj)) 
j=2 j=i1+2 j=in+2 

For each phase but the first one, the right-deep subtree needs to load one more 
relation than the corresponding zigzag subtree. In cases of queries with many joins 
or accessing large relations, this memory savings may lead to a zigzag tree with 
fewer phases than a right-deep tree, and possibly a better response time. This holds 
if the temporary relations of right-deep trees are not spooled to disk. If they are, 
less memory is necessary but at the expense of additional I/Os. 

The impact of available memory is neglected in Hong and Stonebraker (1991) 
who formulated the following buffer size independent hypothesis: the choice of the 
best sequential plan is insensitive to the amount of buffer space available, as long as 
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Figure 2. Zigzag tree with n + l  subtrees 

Result 

Ri(n+l)' . .  

Tn ~ R(in)+l 

T 2 ~  R(i2)+l 

Ri2 

T I ~ R ( i l ) + I  

Ril • 

R2 R1 

the buffer space is above the hash-join threshold. This assumption is combined with 
the twophase hypothesis, which states that the best parallel plan is a parallelization 
of the best sequential plan. These are heuristic simplifications which make sense 
in a restricted model (i.e., left-deep trees only and no inter-operation parallelism). 
However, when pipeline parallelism is allowed, the choice between a left-deep, a 
right-deep, and a zigzag tree depends on the amount of available memory and should 
be decided at runtime. We plan to implement such a strategy with choose-plan 
operators (Graefe and Ward, 1989). However, in our current prototype, an upper 
bound is statically set to the amount of memory available for a query. 

2.3 Bushy and Segmented Right-Deep Trees 

Bushy trees comprise all tree formats that are not linear, i.e., trees in which at least 
one node has both operands that are intermediate relations. Using bushy trees is 
problematic for at least two reasons. First, their search space is much larger and 
thus might be untractable to explore, especially with a parallel execution model. 
Consequently, we use randomized search strategies, and Ioannidis and Cha Kang 
(1991) showed that exploring a search space with bushy trees can be easier than a 
space of left-deep trees alone, at least for some cost functions. The second problem, 
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as Schneider (1990) pointed out is that, unlike linear trees, bushy trees still allow 
different slicing strategies once pipeline and blocked operands are specified. To 
avoid this open problem, we have adopted a default strategy to slice bushy trees 
into phases: operations are executed in the first possible phase. This provisional 
simplification avoids further explicit slicing of bushy trees, until their scheduling is 
better understood. 

Chen et al. (1992a) proposed interesting heuristic schemes to determine the 
execution of segmented right-deep trees. Those formats are very similar to our 
zigzag trees. Schneider (1990) also briefly mentioned a format identical to zigzag 
trees. However, note that segmented right-deep trees are a bit more general because 
each right-deep segment can be attached not only at the first join operation of the 
next segment, but also in the middle of it. If all segments are attached to the 
first operation of the next segment, segmented-right trees reduce to zigzag trees, 
otherwise they are bushy trees. Also note that Chen et al. (1992a) did not consider 
the possibility of avoiding writing to disk the intermediate results of each pipeline 
segment. We think that this decision is important in cases of limited memory to 
get a minimum number of phases and thus possibly reduce execution time. It is 
precisely with this combination of techniques that we have run experiments on the 
DBS3 prototype. 

3. Data and Execution Models 

The data and execution models represent the way the optimizer sees data and 
execution. They are an abstraction of the actual data representation and low- 
level execution. At this level, concurrency control and recovery mechanisms are 
transparent; thus, we consider only intra-query parallelism. 

3.1 Distributed and Shared-Memory Models 

We chose a distributed memory (DM) execution model for shared-memory (SM) 
because (a) our database system could work on both the shared-memory architecture 
of the DBS3 prototype and the distributed memory architecture of the EDS machine 
with minimal effort; (b) code fragmentation, mandatory in DM, reduces data conflicts 
in SM; (c) cache coherency control in SM shares similarities with message passing 
in DM; (d) the mapping from DM to SM takes advantage of efficient SM features 
(fast communication through shared memory, synchronization points via shared 
variables); and (e) this mapping, when performed at compile time, leaves enough 
latitude for the execution system to make good runtime decisions, e.g., for dynamic 
load balancing. 

In both DM and SM models, data are horizontally fragmented and operations 
are cloned into several threads to allow intra-operation parallelism. In a DM 
system, a Processing Element (PE) includes a processor and its memory, while it is 
a processor in SM. A DM model imposes static links between data fragments, PEs 
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and threads: (1) a data fragment is linked to a PE where it is stored; (2) a thread 
is linked to a PE which will execute it; and thus, (3) a data fragment is linked 
to a thread that will consume it. In the SM model, any PE can access any data 
fragment, because memory is shared, and the system dynamically assigns threads 
to PEs to favor load balancing. Thus, any thread can access any fragment, thereby 
creating access conflicts. 

With the DM model, the mapping between the tuples of a relation and the 
PEs where they are stored is called the physical home of the relation. The home of 
a relation does not change at runtime but data can be transferred, which creates 
intermediate data with a different home. With the SM model, no static information 
regarding fragmentation need be attached to a relation, because re-fragmentation 
is supposed to be much less expensive than data transfers in DM. However, if a 
relation does not hold in main memory, re-fragmentation actually can be quite 
expensive. 

With our DM model, the logical home of a relation is the mapping between its 
tuples and its data fragments. A mapping between the fragments and the PEs will link 
the logical and physical homes. When implementing our DM model on a SM system, 
relations are statically fragmented and information regarding such fragmentation 
is kept in a catalog. The link between data fragments and PEs disappears in our 
SM system, but data fragments still are linked to threads. Although the execution 
system can allocate any thread to any PE, a thread can only access some specified 
data fragments. This method allows us to keep the advantages of automatic load 
balancing while reducing access conflicts. In the following sections, home denotes 
logical home. 

3,2 Execution model 

The Execution Model is a parallel dataflow execution model that supports local data 
operators, transfer operators, and control operators. These operators are embedded 
in a parallel algebraic language, called Parallel LERA (Borla-Salamet et al., 1991), 
that enables sophisticated combinations to support complex queries (e.g., multiple 
joins, division, fixpoint, aggregation). A program in this language embeds its own 
parallel execution control using control operators. An alternative way to coordinate 
a parallel execution is to rely on a distributed coordinator which is part of the 
system and not of the program. This coordinator has to be general enough to deal 
with all situations, and therefore suffers in performance for specific cases where 
tuned optimizations are possible. A detailed description of how a control code is 
added to the program in DBS3 can be found in Borla-Salamet (1991). 

An execution plan is represented initially as a directed graph of operators. Note 
that trees are needed to support multi-join queries, but more general queries may be 
translated into operator graphs. An operator operates on fragmented relations via 
operator instances. A data fragment is accessed only by one operator instance at a 
time. Thus, no specific concurrency control is needed within a parallel transaction. 
Each arc is labeled with the kind of synchronization that exists between the operators, 
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say Opl and Op2. There are mainly two such synchronizations: pipe and seq. Pipe 
specifies that two operators are executed in a producer-consumer mode with Opl 
producing messages to be consumed by Op2. Seq specifies that Op2 waits until Opl 
completes before starting its own execution. Finally, each of these synchronizations 
may be local or global. Local means that the synchronization of Opl and Op2 
results in the independent synchronization of each couple of operator instances < 
Opli, Op2i > and global means that a global synchronization mechanism for all the 
operator instances is needed. 

The control associated with a global pipe execution is ensured by means of 
control operators. When a producer operator instance completes, a single end-of- 
stream message is sent to a centralized control operator that waits for the completion 
of all the active producer operator instances. When this condition becomes true, 
the centralized control operator broadcasts an end-of-stream message to all active 
consumer operator instances, indicating that they will not receive any more messages. 

The control associated with a global seq execution is very similar to that of 
global pipe. The difference is that the centralized control operator that detects the 
completion of the first operator must broadcast a trigger message instead of an 
end-of-stream message to all the second operator instances. This trigger message 
will activate all these operators. 

Global control operators are similar to the well-known barrier in SM architectures. 
In our implementation, however, all operator instances are not always active (not all 
data fragments are accessed), and also several operator instances may be supported 
by a single thread. Our control takes these differences into account and optimizes 
control for each specific case. 

For simplicity, we note a local synchronization with a single arrow (e.g., 
s e q ~  

Opl P-~+eop2 and a global synchronization with a double arrow (e.g., Opl ::::'~(JP2" 

All queries start and end with the following global sequential synchronization: s~=~t 

and e=~. If two or more operators are running locally, they are glued together by 
the code generator into a single code fragment. We illustrate the operators that are 
combined into a single code fragment with an underbrace. Vertical braces denote 
a parallel execution. We now illustrate the execution model with some examples. 

Selection. If relation R is declustered in n fragments, the operation Select(R) 
is equivalent to the union of n operations Select(Ri), with i = 1,n, where each 
individual operation can be done in parallel. However, if the select predicate 
contains placement attributes, fewer nodes than n (ideally one) need be involved. 
The associated execution graph is very simple: 

s~t  Select R p~e Store Res e~ 

If the result has to be stored where it is produced (co-located with the home 
of R), then the last global pipe becomes a local one, and the two last operators 
may be glued together in a single code fragment, as follows: 
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s~=~t Select R pipe Store Res e~  
Y 

Joins. Parallelizing binary operations is more complex because, for optimal paral- 
lelism, each operand relation must be declustered the same way. For example, if 
R and S both are declustered in n fragments using the same function on the join 
attribute, the operation Join(R,S) is equivalent to the union of n parallel operations 
Join(Ri, Si), with i = Ln. We call this an "ideal join, " and its execution graph is: 

s ~ t  NestedJoin R,S p~e ,Store Res 
Y 

The following join strategies all are based on the hash-join algorithm. The 
generic operator Join(A,B) means: (1) redistribute (if necessary) A on the join 
attributes and build, on the fly, a partial index IA per data fragment, and (2), 
redistribute B (if necessary) on the join attributes and, in pipeline mode, probe 
each tuple of B using the index IA. Note that Join(A,B) does not produce the same 
implementation as Join(B,A). 

If the compiler chooses to use such an algorithm for the previous query, the 
produced execution graph will be: 

s~=~t Scan R pipe Build lR ~ ScanS pipe Probe lR p~e ,Store Res e~  

Note that the local algorithm "nested join" in the first example may be imple- 
mented as the combination of the local operators of the second example. If the 
"ideal" condition is not satisfied, parallel join algorithms (Gardarin and Valduriez, 
1984; DeWitt and Gerber, 1985) attempt to make such a condition available by 
reorganizing the relations. A reorganization means dynamically creating a secondary 
home of a permanent relation. Since this reorganization is performed for a subse- 
quent operation, we create on the fly a partial index per data fragment to accelerate 
local processing. If S is not declustered on the join attribute, but R is, we obtain 
what we call an '~Assoc-Join." The corresponding graph is: 

pipe . . . . .  seq " " s ~ t  ScanR ~ ,utta,1~ ~ ScanS p~e Probeln p~e `store Res e~  

If none of the relations is declustered on the join attribute, and it becomes 
necessary to reorganize both relations, then this join algorithm is called "hash-join." 
In this case, each basic operator is implemented as an independent code fragment. 

4. Query Processing 

4.1 Overview of the Compiler 

The ESQL compiler transforms an ESQL query (Gardarin and Valduriez, 1992) 
into an object module optimized for execution on the parallel execution system. The 
compiler proceeds in several subsequent translation phases that progressively add 
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Figure 3. Compiler architecture 

lower level details regarding the execution environment. Therefore, the compilation 
process is divided among semantic analysis, rewriting, optimization, parallelization, 
and code generation. The purpose of this architecture is to perform compile- 
time optimization and parallelization while keeping the run-time system simple and 
hopefully very efficient. Within the compiler (Figure'3), the five layers use different 
variants of an algebraic language (Language for Extended Relations Algebra, LERA) 
(Borla-Salamet, 1993) to express their output. 

The analyzer performs syntaxic and semantic analysis of the input ESQL query 
and produces the corresponding algebraic program, i.e., a graph of relational oper- 
ations. The data definition statements are directly executed by the catalog manager, 
while the data manipulation statements must go through the remaining layers of the 
compiler. The rewriter simplifies and transforms the algebraic program to facilitate 
optimization. For instance it eliminates common sub-expressions and groups select- 
project-join operations in N-ary nodes. The optimizer takes all final decisions for 
executing the program in the parallel execution system and integrates them in an 
annotated algebraic program expressed on physical data. These decisions concern 
primarily the ordering of operations, the selection of the best method to access each 
relation and the choice of the best parallel algorithm per operation. The optimizer 
implements the techniques previously described. 
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The parallelizer translates an optimized program into a parallel program ac- 
cording to the execution model (Section 3). This translation has two goals. First, 
it must guarantee the correct execution of the parallel program by adding control 
operations for synchronizing data operations and detecting terminations. Second, it 
must yield decentralized scheduling of the programs to increase throughput. Similar 
to BUBBA (Boral et al., 1990) and Volcano (Graefe, 1989b), our approach to par- 
allelization avoids using a centralized scheduler. Furthermore, it allows peep-hole 
optimization that can yield significant reduction of the number of control messages 
(Borla-Salamet et al., 1991). Following the optimizer directives, the parallelizer 
proceeds by expressing the parallel algorithms, deciding the necessary scheduling of 
the program, and introducing the control operations to implement the correspond- 
ing schedule. Thus, the parallelizer generates a self-scheduling parallel program, 
avoiding the need for a run-time scheduler. 

The code generator produces the final executable object module for the parallel 
execution system. This involves producing a number of object code fragments, each 
one corresponding to one or more operations. This module can be compiled and 
linked in the usual way. 

4.2 Cost model 

In this section, we define the cost of a plan and the cost functions for the most 
important operators that compose a query execution plan, namely Select and Join. 
Note that we make an important simplifying assumption, namely that the set of 
processors assigned to operations does not overlap. 

4.2.1 Cost Model for DM and SM. In the preceding section, we pointed out the 
main differences between the execution models of SM and DM and established 
the principles for mapping DM to SM. In this section, we exploit this analysis to 
define a cost model. However, we give both the SM and DM cost formulas when 
necessary, i.e., when the system differences matter. If we ignore concurrency issues, 
only the cost functions for data reorganization and memory consumption differ. 
Indeed, reorganizing a relation's tuples in DM implies transfers of data across the 
interconnect, whereas it reduces to hashing in SM. Memory consumption in DM 
is complicated by inter-operation parallelism. In SM, all operations read and write 
data through a global memory, and it is easy to test whether there is enough space 
to execute them in parallel, i.e., the sum of the memory consumption of individual 
operations is less than the available memory. In DM, each processor has its own 
memory, and it becomes important to know which operations are executed in parallel 
on the same processor. Thus, for simplicity, we assume that the set of processors 
assigned to operations to execute does not overlap. This will simplify the formula 
for response time with DM. It is possible, however, that two distinct operations 
have the same home, a case which the formula takes into account. For example, in 
our prototype, the catalog specifies that two relations are declustered on the same 
home. In SM, the execution system is expected to dynamically balance the load 
among processors. 
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Figure 4. Cost Model Parameters 
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4.2.2 Cost Functions. We define the cost of a plan as having three components: 
total work, response time, and memory consumption• The first two components 
express a trade-off between response time and throughput. The third component 
represents the size of memory needed to execute the plan. The cost function is a 
combination of the first two components, and plans that need more memory than 
available are discarded. Another approach (Ganguly et al., 1992) uses a parameter 
specified by the system administrator, by which the maximum throughput is degraded 
to decrease response time. 

In the following, Ri refers to a base relation of the physical schema, O refers to 
a relational operator, and degree(O) refers to the degree of parallelism of operator 
O. 

We use the following functions: 

1 if the output of operation O is materialized 
isMat(O) : 0 otherwise 

send_cost(data_size): the cost of sending data of size data_size across the 
interconnect, i.e., send_cost(data.size) = round (data_size~mess.size) * mess_time 
+ corn_st_up 
The function round() rounds up its parameter to the next largest integer. 

decluster_cost(Ri, n ): 
• D M :  the tuples of relation Ri are declustered on a target home composed 
of n nodes, with cost: 
decluster_cost(Ri, n) = n *send_cost(I [ Ri [I / (nodes(Ri) * n)) 
• SM: the tuples of relation Ri are reorganized into n fragments with cost: 
decluster_cost(Ri, n) = build.time* I Ri [ * log2([ Ri l) 
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This function computes the response time of the decluster operation. We 
assume that the operations of each home node are perfectly overlapped. 

Cost functions for global algorithms. The parallelization of simple operations, such as 
Select and Join, is based on a global and a local algorithm. The global algorithm 
specifies the home of the operation, 1 the reorganization and the transfer of input 
relations if necessary, and the mode of consumption of each operand (pipelined or 
materialized). The local algorithm specifies the implementation of the operation 
at each node, such as a join method for Join. These decisions are expressed as 
annotations attached to the operation. 

The cost of a global algorithm represents the cost of reorganizing input relations 
(in DM, it is the cost of transfers to the consumer nodes). The cost of a local 
algorithm represents the access and processing cost on one node of the operation 
home. We give only cost functions for some global algorithms; the cost for local 
algorithms and the remaining global algorithms are given in Zaxt (1990). Let us 
denote cost(al~Ri) as the cost of global algorithm alg to reorganize relation Ri, and 
cost(local) as the cost of the local operation algorithm. 

• Ideal: tuples of the input relations are distributed on their join attributes 
and, in DM, share the same home. Thus, no reorganization is needed, i.e., 

V Ri cost(Ideal, Ri) = 0 

• Assoc: one input is declustered on its join attribute and the other must be 
reorganized (and, in DM, sent to the home of the first one, which is also 
the operation home). So, the cost of reorganizing Ri is: 

f 0 ifRiis already organized 
cost (Assoc, Ri) 

I decluster_cost(Ri, nodes(Rj ) ) otherwise 

• Hash: the two inputs are reorganized on their join attributes using the 
same distribution function (and, in DM, sent to the home of their consumer 
operation). So, the cost of reorganizing Ri into n buckets (and, in DM, 
sending it to a home composed of n nodes) is: 

V Ri cost(Hash, Ri) = decluster_cost(Ri, n) 

1. Referred to as cloning annotation in Ganguly et al., 1992. 
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Cost Functions for Operations. For each operation the optimizer chooses the best 
global algorithm and the best local algorithm. We give the cost for only two operations 
of the target language, i.e., selection and join. Let us denoterespTime(O), totWork(O), 
and memCons(O) as the response time, total work, and memory consumption of 
operation O, respectively, and local (respectively global) the local (respectively 
global) algorithm of an operation. The computation of total work is the same for 
all operations: 

totWork(O) = degree(O) * cost(local) + ~Rieinput(O) nodes(Ri) * cost(globa~Ri) 

• Selselpred(Ri): the cost of performing a selection, using predicate selpred, 
on tuples of Rim is 

resp Time( Selselpred(Ri ) ) = max(cost(local), cost(global, Ri ) ) 
memCons( Selselpred(Ri ) )=nodes(Ri ) * page_size 

We assume that the operand Ri is consumed in pipe mode and, thus, one 
page of each R i fragment needs to be present in memory. The reorganization 
of Ri, if needed, is performed simultaneously to the selection processing. 

• Joinpred(Ri, Rj ): Ri and Rj are respectively outer and inner operands of the 
join operation that satisfy predicate pred. The cost of joining the tuples of 
Ri and Rj is: 

respTime(Joinpred(Ri, Rj)) = cost(global, Rj) + max(cost(local), cost(global, 
Rd) 

memCons(Joinprea(Ri, Rj)) = nodes(Ri) * page_size + II II 

We assume that, to perform the join operation, the inner operand must be 
materialized, if it is not a base relation, whereas the outer is consumed in pipeline 
mode. The reorganization of Ri is performed simultaneously with the join processing, 
after the reorganization of Rj has completed. 

Given a plan rooted at operation O, denoted O(childo, chi ld1, '"  ,childk_l), 
the cost of a plan p is computed as follows: 

k-1 totWork(p) = totWork(O) + ~i=0 totWork(childi) 

resp Time(p ) = max(resp Time(N), max ik_So 1 (resp Time( childi ) * ( 1 - isMat( childi ) ) ) 
+ maxik__-d (respTime(childi) * isMat(childi)) 

k-1 memCons(p) = memCons(O) + ~i=0 memCons(childi) * (1 - isMat(childi)) 
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Figure 5. Query execution plan 
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4.2.3 Fragmentation and Dependencies Among Optimization Choices. Some pro- 
posals (e.g., Hong and Stonebraker, 1991), assume that a build node always is 
necessary before each probe node for hash-join algorithms. In our system, if two 
consecutive joins are on the same attribute, we are able to avoid the build node of the 
second hash-join, because the intermediate result is already hashed on the proper 
attribute. This is possible only when the intermediate relation is the building relation 
in the next join. The second build node can be avoided because the temporary 
relation, temp, is already hashed on R2.B (Figure 5). Not only is redistribution not 
necessary but, due to the way our execution model is implemented, the intermediate 
relation is already in (the equivalent of) a hash table. 

The ability to avoid such nodes is an important aspect of an execution model. 
First, the use of a temporary relation as a building relation (in left-deep or zigzag 
trees) is particularly interesting when it is already hashed. But more important is 
the impact on the cost model: if a subplan avoids a build node it may be better 
than cheaper subplans that do not, i.e., the principle of optimality (Ganguly et al., 
1992) is violated. The way an intermediate result is hashed introduces what we 
call a global dependency, i.e., a dependency between the choice of a subplan and 
other optimization choices. Other global dependencies are the following: the order 
of tuples in intermediate results when sorting algorithms are used (Selinger et al., 
1979); the site of intermediate relations in distributed systems (Lohman et al., 1985); 
and resource contentions (Ganguly et al., 1992). In shared-memory systems such as 
XPRS (Stonebraker et al., 1988), the way a relation is hashed, or more generally 
fragmented, is much less important than it is in distributed-memory systems because 
it does not imply data transfers. However, the mere cost of hashing may not be 
negligible and the fact that processors usually access shared-memory through caches 
may raise problems similar to those of distributed-memory architectures. 
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4.3 Search Strategies 

Given an input query, the optimizer search strategy explores the space of possible 
execution plans that implement the input query, and seeks one that minimizes a 
cost function. If the search space is too large, however, it would be prohibitive 
to explore it exhaustively. Thus, the strategy must balance optimization effort 
with the quality of the resulting execution plan. As the solution space gets larger 
when parallel execution of a query is considered, the choice of a search strategy 
becomes an important issue. Several search strategies have been proposed for 
query optimization to deal with different query types (simple vs. complex) and 
with different requirements (ad-hoc vs. repetitive). Enumerative strategies consider 
many points in the solution space, but try to reduce the solution space by applying 
heuristics (Selinger et al., 1979). This approach can lead to the best possible solution, 
but faces a combinatorial explosion when the search space is composed of parallel 
plans. To investigate large search spaces, randomized strategies have been proposed 
that try to improve a start solution until obtaining a local optimum, or until meeting 
some other stopping condition (Swami, 1989). 

Our optimizer search strategies (Lanzelotte and Valduriez, 1991) are variations of 
several known strategies: dynamic programming, simulated-annealing, and iterative- 
improvement. Thus, instead of statically cutting off the search space because of its 
size, we implemented several search strategies to cope with the different sizes of 
search spaces, and let the optimizer choose the appropriate one, according to the 
query type (ad-hoc vs repetitive and simple vs. complex). We definitely think that 
compiling heuristics, as proposed in Chen et al. (1992a, b) is essential. However, 
the fanout of parallel architectures and execution models is quite large and it is 
difficult to find general heuristics. This problem is especially true with our approach 
because our optimizer is targeted for both shared-memory and distributed-memory 
architectures. Thus, we chose to rely on randomized strategies as long as general 
heuristics have not emerged. 

5. Performance Measurements 

In this section, we show the advantages of zigzag trees over right-deep trees under 
various conditions through experiments on the DBS3 prototype. Our results, how- 
ever, should be considered as preliminary due to the limitations of our hardware, 
especially the fact that we used only one disk. 

The target machine for the testbed was the multiprocessor Encore MULTIMAX 
520. This machine was configured with 10 NS32532 processors (8.5 Mips, each having 
256 KB cache memory), 96 MB main memory and 1 GB disk storage. Processors, 
memory and I/O boards were interconnected by a 100 MB/s bus. 

We used a database composed of eighteen relations, generated automatically 
following the specifications of the standard Wisconsin Benchmark (Bitton et al., 
1983). Tuples were 208 bytes long, and relation cardinality was fixed to 10,000 tuples 
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Figure 6. Sliced-RD trees vs. zigzag trees for varying sizes of available 
memory 
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(except for the probing relation of the first join, which had 1000 tuples). The size 
of the intermediate relation of each join was the size of smaller operand relation, 
due to the join predicate. Thus, the size of intermediate relations is determined 
by the size of the first probing relation. Relations were declustered by hashing on 
their first attribute and the number of fragments was 30. However, in the next to 
last series of experiments (Figure 9) we let the number of fragments vary. Also, in 
the last series of experiments (Figure 10) we let the cardinality of the first relation 
vary; consequently we had a cardinality of intermediate results. Several of our 
experiments were made with more tuples on a previous version of our prototype 
and led to similar behavior. With the new version of prototype, we decided it was 
more interesting to experiment with different values of the parameters than using 
bigger relations. 

We conducted our experiments using join queries with eight to eighteen relations. 
We chose a chain form for the query, i.e, each relation but the first and the last 
is connected to exactly two other relations by one join predicate. This allows 
comparison of execution plans even if they are of different formats (zigzag vs. sliced 
right-deep), because the optimizer always produced the same join ordering. In these 
experiments we were interested only in the response time component of the cost 
function. 

Right-deep trees can lead to a better response time than left-deep trees under 
different assumptions (Schneider and DeWitt, 1990). If relations are fully declustered 
and the disks are not fully utilized, right-deep trees have a better response time 
because scans (as well as build nodes) can be done in parallel. We expected a similar 
advantage for zigzag trees over sliced fight-deep trees because zigzag trees allow 
the execution to be done in fewer phases. However, because our prototype has 
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Figure 7. Sliced-RD trees vs. zigzag trees for varying numbers of 
threads/operation 
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only one disk at the moment, we have concentrated on different assumptions. The 
other case in which right-deep trees yield a faster response time is when relations 
are partially fragmented without overlap in a DM system. In such a case, right-deep 
trees yield an almost constant response time when the number of joins in the query 
increases, as long as enough memory is available. The reason why the probe nodes 
can also be done in parallel is that the physical homes of the operations do not 
overlap, allowing pipeline parallelism to occur without time sharing. 

In a SM system, inter-operation parallelism is mainly useful to help balance 
CPU-bound and I/O-bound operations (Hong, 1992). However, that work does not 
take into account the case in which the number of processors is high compared 
to the size of the relations to join. This can happen when selectivities of select 
operations are very high. In such a case, the overhead of intra-operation parallelism 
limits the number of processors that should be used for each join. On the other 
hand, pipeline and independent parallelism should be included in the optimization 
search space. 

To reproduce conditions in which pipelining can be effective on a shared-memory 
prototype with ten processors, we artificially restricted intra-operation parallelism 
by reducing the number of threads of each operation. In five series of experiments 
we took into account five parameters: the size of available main memory, the 
number of relations in the query, the number of threads per operation, the number 
of fragments per relation, and the size of intermediate results. For each series of 
experiments, one of the parameters varied on the x axis while the others were fixed. 
The values for the fixed parameters were the following: the memory can hold one 
hashed base relation (plus the intermediate result), thus the number of joins is 
seven. To avoid time sharing, the number of threads per operation was set to two 
for the first and the fifth experiment and to five for the third and fourth ones. 
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Figure 8. Sliced-RD trees vs. zigzag trees for varying numbers of 
query relations 
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In each series of experiments we saw how a zigzag tree can take advantage of 
its smaller number of phases to yield a better response time than a sliced right-deep 
tree (sliced-RD tree). Figure 6 illustrates the case in which the x axis was the number 
of base relations that can be held in memory (with their hash table). To be more 
precise, a number N on this axis means that N base relations and the intermediate 
relation, can be held in main memory. We see that the sliced-RD tree often needs 
one more phase than the zigzag tree, and thus more time to complete. In Figure 
7, the number of threads varies from one to ten. With such limited memory the 
sliced-RD can execute only one join at a time while the zigzag tree can execute 
two joins in parallel. As a result the zigzag tree yields a better response time, but 
not, however, one that is exactly half the time of the sliced RD. The reason is that, 
when the number of threads exceeds 5, time sharing occurs during the execution of 
the zigzag tree, and the phases of each tree are not similar. The first phase of the 
zigzag tree contains only one join operation. In Figure 8, the number of relations in 
the query varies from eight to eighteen. The response time of both curves increases 
linearly because of the memory limitations: for each additional two joins, two more 
phases are necessary with a sliced-RD and one for the zigzag tree. 

In the fourth experiment (Figure 9), response time decreased when the number 
of fragments increased, because the local algorithm used to join the fragments 
was nestloop. When the number of fragments increases, they get smaller and the 
benefit of hashing is higher. In our execution model, however, a pipeline queue was 
associated with each fragment, which introduced some overhead. Zigzag trees seem 
to take less advantage of an increasing number of fragments, probably because 
they have a higher degree of pipeline. In the last experiment (Figure 10), the 
size of the first probing relation varied from 1000 to 20,000. However, since the 
size of each intermediate relation was the size of the smaller join operand, the size of 
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Figure 9. Sliced-RD trees vs. zigzag trees for varying numbers of 
fragments/relation 
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Figure 10. Sliced-RD trees vs. zigzag trees for varying first relation 
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intermediate results actually varied from 1000 to 10,000. We had decided that the 
available memory could hold one relation and the intermediate result, therefore 
it could have been possible that the optimizer chose a different plan according to 
the size of the intermediate results. However, for simplicity, we assumed that the 
available memory could hold just one base relation and one intermediate relation 
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but not two base relations. Thus, we could keep the same plan, and the size of the 
intermediate result should actually be understood as being just less than 10,000. Of 
course, such a situation is very favorable to zigzag trees and should be considered 
as a limit case. While it is not easy to see (Figure 10), the ratio of the execution 
time of the right-deep tree to the time of the zigzag tree does not change very much 
up to 10,000 tuples. After that point, the size of the intermediate results does not 
change any more, and only the first join takes more time. However, this additional 
time is proportionally bigger for the zigzag tree. 

In summary, when pipeline parallelism occurs without time-sharing, zigzag trees 
can yield a better response time than sliced right-deep trees. This advantage, 
obtained on our SM prototype, is probably even higher on a DM machine with 
several disks and partial declustering. 

6. Conclusion 

We have described our approach to the compile-time optimization and parallelization 
of queries for execution in DBS3, a shared-memory parallel database system. Our 
approach enables exploring a search space large enough to include zigzag trees 
which are intermediate between left-deep and right-deep trees. The problem of 
efficiently searching a large search space is solved by using randomized search 
strategies (Lanzelotte and Valduriez, 1991). 

Unlike the XPRS approach (Hong and Stonebraker, 1991), which essentially 
reduces the optimization search space, our approach is more general. Because 
DBS3 implements a parallel dataflow execution model, this approach applies to 
both shared-memory and distributed-memory architectures. Furthermore, it avoids 
the need for a centralized scheduler and enables compile-time optimization of 
dataflow control. 

Performance measurements run using the DBS3 prototype have shown that, in 
cases of limited memory and when temporary results are not spooled to disk, zigzag 
trees can yield a better response time than sliced right-deep trees. Our results, 
however, should be considered preliminary due to the limitations of our hardware. 
Similar experiments should be run on a distributed memory system for which zigzag 
trees are expected to be even more advantageous. 
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