
VLDB Journal, 2,277-301(1993), Michael Carey and Patrick Valduriez, Editors
(~)VLDB

277

Parallel Query Processing With Zigzag Trees

Mikal Ziane, Mohamed Za'it, and Pascale Borla-Salamet

Received December 1, 1992; revised version received February 1, 1993; accepted March
15, 1993.

Abstract. In this article, we describe our approach to the compile-time optimiza-
tion and parallelization of queries for execution in DBS3 or EDS. DBS3 is a
shared-memory parallel database system, while the EDS system has a distributed-
memory architecture. Because DBS3 implements a parallel dataflow execution
model, this approach applies to both architectures. Using randomized search
strategies enables the exploration of a search space large enough to include zigzag
trees, which are intermediate between left-deep and right-deep trees. Zigzag trees
are shown to provide better response time than right-deep trees in case of limited
memory. Performance measurements obtained using the DBS3 prototype show
the advantages of zigzag trees under various conditions.

Key Words. Search space, pipeline, fragmentation, cost function.

1. Introduction

A Database System on Shared Store (DBS3) is a shared-memory parallel database
system (Bergsten et al., 1991) being developed by Bull Research Center and Institut
National de Recherche en Informatique et en Automatique (INRIA) in the context
of an Esprit project. The goal of DBS3 is to provide high-performance for queries
expressed in ESQL (Gardarin and Valduriez, 1992), a conservative extension of
SQL with object and deductive capabilities. It is optimized towards both on-
line transaction processing (OLTP) and decision-support (more complex) queries.
OLTP queries require high-throughput, while decision-support queries require good

response times.
Two important considerations have guided the design of DBS3. First, DBS3

implements a parallel dataflow execution model based on fragmented data placement
similar to distributed-memory (shared-nothing) systems like BUBBA (Boral et al.,

Mikal Ziane, Ph.D., is Assistant Professor, Universit6 Paris 5, Paris, France, and Researcher, Projet Rodin,
Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt, F-78153 Le
Chesnay Cedex, France; Mohamed Zalt, is a Ph.D. student, Projet Rodin, INRIA; Pascale Borla-Salamet,
Ph.D., is Researcher, Bull Research Center, Les Clayes sous Bois, France.

278

1990) and GAMMA (DeWitt and Gray, 1990). This allows us to take advantage
of automatic load balancing while reducing access conflicts to the shared memory.
Second, the ESQL compiler translates a query into an optimized parallel program
that exploits both inter- and intra-operation parallelism and yields decentralized
execution control.

In this article, we describe our approach to parallel query processing in DBS3,
which relies on the compile-time optimization and parallelization of execution plans.
As in centralized query processing (Selinger et al., 1979), the major problem to be
addressed is that of dealing with a large space of parallel execution plans. In the
centralized case, the search space gets larger as the query becomes more complex;
e.g., it includes many joins (Swami, 1989), it deals with complex objects (Lanzelotte
and Valduriez, 1991), or it includes recursion (Lanzelotte, 1992).

Even for a reasonable query (e.g., < 10 joins), a parallel dataflow execution
model with fragmented data placement yields a very large range of alternative
execution strategies. We believe that considering a large search space, rather than
relying on restrictive heuristics, is important because a large variety of parallel
execution plans provides a superior trade-off between response time minimization
and throughput maximization.

Optimizing queries for parallel execution is considered an open problem (DeWitt
and Gray, 1990). Hong and Stonebraker (1991) drastically restricted the optimization
search space by adopting two heuristic assumptions: the buffer size independent
hypothesis and the two-phase hypothesis. However, these assumptions rely on a
restricted execution model (left-deep trees only, no inter-operation parallelism).
Ganguly et al. (1992) addressed the problem of minimizing response time subject to
constraints on throughput, and extended a dynamic programming search algorithm
to cope with dependencies among optimization choices. However, the authors
considered only left-deep trees and did not mention any experimentation.

Our approach explores a search space large enough to include intermediate
formats between left-deep and right-deep trees (Schneider and DeWitt, 1990). These
formats, called zigzag trees, can lead to a better response time than those of right-
deep trees in cases of limited memory. To avoid a prohibitive optimization time, we
use randomized search strategies (Lanzelotte and Valduriez, 1991). Our approach
applies both to shared-memory and distributed-memory architectures, avoids the
need for a centralized scheduler, and enables compile-time optimization of data flow
control (Borla-Salamet et al., 1991). Performance measurements obtained using the
DBS3 prototype show the advantages of zigzag trees under various conditions.

This article is an extended version of Ziane et al. (1993). The main additions are:
(1) a comparison to segmented right-deep trees (Section 2.3), (2) a more detailed
execution model (Section 3.2), (3) a description of the compilation process (Section
4.1), (4) a discussion of the dependencies among optimization choices (Section
4.2.3), and (5) one more experiment varying the size of intermediate results.

This article is organized as follows. Section 2 analyzes alternative approaches to
parallelism and shows the advantages of zigzag trees. Section 3 describes our parallel

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 279

data and execution models. Section 4 presents our query processing approach,
including our cost model and search strategies. The experiments are detailed in
Section 5. Section 6 concludes the work.

2. Shape and Scheduling of Operator Trees

After analyzing alternative approaches to parallelism, we show that zigzag trees can
lead to better response time than sliced right-deep trees (Schneider and DeWitt,
1990) under some conditions. We discuss the use of bushy trees, and compare
zigzag trees to segmented right-deep trees (Chen et al., 1992a).

2.1 Alternative Approaches to Parallelism

Hong and Stonebraker (1991) suggested that a parallel query execution plan
is a parallelization of some sequential plan. Graefe (1990) was able to create
parallelism in a sequential plan without modifying the sequential algorithms by
adding an exchange operator. Such approaches ease the adaptation of sequential
techniques to parallel environments. However, using a sequential (intermediate)
plan might induce arbitrary restrictions. Our approach directly exploits the potential
parallelism of queries.

Although the input query of an optimizer typically is represented by a graph
of operations, such graphs impose only very loose constraints on their execution.
The execution of a plan is described in terms of atomic actions which are, in our
context, tuple productions or consumptions. An operation graph imposes only a
partial order on the set of actions, and such freedom introduces parallelism in
plan execution. The partial order reflects the obvious constraint that a tuple must
be produced before it is consumed, as well as other constraints imposed by the
semantics of some operations (e.g., the difference operation cannot produce any
tuple before its second argument has been completely consumed, unless it is sorted).

Execution models usually constrain further the execution of operation graphs.
For example, most of them limit the possibility of being consumed in pipeline to
one operand. Most (sequential or parallel) algorithms require that one operand be
completely produced before any tuple of the other operand can be consumed. This
is the case for hash-based join algorithms, which typically consist of two consecutive
phases: build and probe. Note that some constraints are introduced by the algorithms
while the semantics of the operations would allow more freedom. For example, a
hash-join algorithm was proposed only recently that allows both join operands to
be consumed in pipeline (Wilschut and Apers, 1991).

We consider only non-recursive queries, which are typically represented by
operator trees. We concentrate on trees of join operations and consider only
hash-based algorithms because they have been shown to be the most efficient for
equi-joins (Schneider and DeWitt, 1989). Schneider and DeWitt (1990) adopted a
convenient notation for capturing trees of hash-join algorithms in which the right
operand is consumed in pipeline while the left operand is blocked. We explicitly

280

denote such constraints in our parallel execution plans by annotating arcs with pipe
or seq.

Most execution models require that plans be sliced into sequential phases. In
such models, each operation of the execution plan is completely executed during
one specific phase, thereby requiring that the execution of an operation cannot over-
lap with two phases. Consequently, a slicing strategy determines non-overlapping
fragments (subtrees) of the execution plan, whose operations are executed simul-
taneously. For linear trees, i.e., trees in which at least one argument of each join
operation is a base relation (as opposed to an intermediate relation), specifying a
pipe or a seq annotation for each arc is enough to determine a slicing strategy.
Schneider and DeWitt (1990) compared two extreme cases among the different
slicing strategies of linear trees, namely the strategies associated with left-deep and
right-deep trees. In this article, we also consider intermediate cases which we call
zigzag trees.

In a left-deep tree, each pipe operand is a base relation, which means that
a pipeline is only possible between a hash-join and a selection operation. In this
strategy, plans are sliced into fragments that consist roughly of a join and a selection
(Hong and Stonebraker, 1991). To be more precise, in hash-based join algorithms,
the seq annotation is indicated on an arc between the build node and the probe node.
Thus, a fragment may include the probe part of one join and the build part of the
next one. Note that in Hong and Stonebraker (1991) a fragment may also consist of
two selection nodes consumed by a nestloop node, itself consumed by a probe node.
A pipeline is not restricted to a single operand for nestloop nodes because XPRS
actually implements such a "pipeline" execution by a single operation, i.e., without
real parallelism. Finally, considering only left-deep trees (Hong and Stonebraker,
1991) is consistent with the decision to avoid inter-operation parallelism, because
each fragment is made of a single operation.

In a right-deep tree, each blocked operand (annotated with seq) is a base
relation. Thus, all the intermediate relations can be consumed in pipeline if enough
resources (memory and processors) are available (Schneider and DeWitt, 1990).
This means that right-deep trees can be executed in only two phases, while bushy
trees often need more phases. If the usual constraint, which requires that only one
operand of an operation be consumed in pipeline, does not hold, then a right-deep
tree may be consumed in a single phase. However, it is possible to execute a
right-deep tree with more phases, e.g., in case of limited memory, using static right
deep scheduling (Schneider and DeWitt, 1990). This technique is expressed easily
in our model by transforming some pipe annotations into seq annotations.

2.2 Advantages of Using Zigzag Trees

Static right deep scheduling slices a right-deep tree into phases, so that each resulting
fragment is expected to fit in memory, and spools to disk the temporary results
between two phases. In this section, we propose an alternative approach which
avoids spooling intermediate results to disk using zigzag trees.

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 281

It is sometimes possible to avoid unnecessary I/Os, by keeping in memory the
temporary relation resulting from each subtree (but the last one) of a sliced right-
deep tree. This implies taking into account the size of the temporary relation when
deciding where to cut the fight-deep tree. While saving I/Os, the disadvantage of
this approach is that less permanent relations can fit into memory together; thus
the right-deep tree has to be sliced into more pieces. This technique sacrifices some
parallelism, possibly at the expense of response time, to avoid unnecessary I/Os. The
advantages can outweigh the costs, depending on the I/O system contention, and the
technique can be used to help balance I/O and CPU utilization. Furthermore, it is
possible to better exploit the idea by using zigzag trees instead of sliced right-deep
trees.

With the preceding technique, intermediate relations are used in a fight-deep
tree as probing relations. This makes their presence in memory not very useful,
because probing relations are consumed in pipeline. By using these temporary
relations as building relations, we transform fight-deep trees into zigzag trees. In
Schneider and DeWitt (1990), the intermediate formats considered between fight-
deep and left-deep trees are bushy trees. However, right-deep and left-deep trees
are two extreme formats for linear trees. Bushy trees capture the same level of
abstraction as linear trees, while zigzag trees are strategies for linear trees in which
base relations are either blocked or consumed in pipeline.

Zigzag trees may be more advantageous than sliced right-deep trees in cases of
limited memory, especially when temporary relations are not staged to disk. The
rationale is to "turn fight" instead of simply slicing the right-deep trees. Turning
right means that the temporary relation produced by the already-built right-deep
subtree will be used as a building relation in the following hash-join operation,
rather than as a probing relation, as it would if the right-deep tree had simply been
sliced. Note that choosing a temporary relation as a building relation is particularly
useful when the build phase can be avoided, i.e., when it is already hashed on the
attribute of the next join. Then another fight-deep subtree is built in the same way
and possibly turns fight again if it runs out of memory. The process is repeated
the same way, building fight-deep subtrees and turning fight, as many times as
necessary to fit each fight-deep subtree into memory.

When a temporary relation is kept in memory, the memory occupation of the
zigzag trees is better than the memory occupation of sliced right-deep trees. This is
because zigzag trees use the next permanent relation to join as a probing relation
which does not have to be loaded in memory. Instead, the temporary relation is
actually traded with a permanent relation. If we compare the right-deep tree of
Figure 1 and the zigzag tree of Figure 2, we see that the memory necessary to
execute these plans is the maximum memory requirement of each phase, i.e., of
each subtree. If we denote the memory space used to hold a relation and its hash
table in memory by the relation name itself, we get the following formula for the
memory occupation of the right-deep tree of Figure 1:

282

Figure 1. Sliced right-deep tree with n+l subtrees

Result A

R(il)+l R i l A .

1t2 111

il i2 in+l

rnax(Tl + (~ Rj),Tl + T2 + (~ Rj),...,T~ + (~ Rj))
j=2 j=i l+l j=in+l

and the following formula for memory occupation of the zigzag tree of Figure 2."

il i2 in+l

max(Ti + (~ Rj),Ti + T2 + (~ Rj),...,T~ + (~ Rj))
j=2 j=i1+2 j=in+2

For each phase but the first one, the right-deep subtree needs to load one more
relation than the corresponding zigzag subtree. In cases of queries with many joins
or accessing large relations, this memory savings may lead to a zigzag tree with
fewer phases than a right-deep tree, and possibly a better response time. This holds
if the temporary relations of right-deep trees are not spooled to disk. If they are,
less memory is necessary but at the expense of additional I/Os.

The impact of available memory is neglected in Hong and Stonebraker (1991)
who formulated the following buffer size independent hypothesis: the choice of the
best sequential plan is insensitive to the amount of buffer space available, as long as

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 283

Figure 2. Zigzag tree with n + l subtrees

Result

Ri(n+l)' . .

Tn ~ R(in)+l

T 2 ~ R(i2)+l

Ri2

T I ~ R (i l) + I

Ril •

R2 R1

the buffer space is above the hash-join threshold. This assumption is combined with
the twophase hypothesis, which states that the best parallel plan is a parallelization
of the best sequential plan. These are heuristic simplifications which make sense
in a restricted model (i.e., left-deep trees only and no inter-operation parallelism).
However, when pipeline parallelism is allowed, the choice between a left-deep, a
right-deep, and a zigzag tree depends on the amount of available memory and should
be decided at runtime. We plan to implement such a strategy with choose-plan
operators (Graefe and Ward, 1989). However, in our current prototype, an upper
bound is statically set to the amount of memory available for a query.

2.3 Bushy and Segmented Right-Deep Trees

Bushy trees comprise all tree formats that are not linear, i.e., trees in which at least
one node has both operands that are intermediate relations. Using bushy trees is
problematic for at least two reasons. First, their search space is much larger and
thus might be untractable to explore, especially with a parallel execution model.
Consequently, we use randomized search strategies, and Ioannidis and Cha Kang
(1991) showed that exploring a search space with bushy trees can be easier than a
space of left-deep trees alone, at least for some cost functions. The second problem,

284

as Schneider (1990) pointed out is that, unlike linear trees, bushy trees still allow
different slicing strategies once pipeline and blocked operands are specified. To
avoid this open problem, we have adopted a default strategy to slice bushy trees
into phases: operations are executed in the first possible phase. This provisional
simplification avoids further explicit slicing of bushy trees, until their scheduling is
better understood.

Chen et al. (1992a) proposed interesting heuristic schemes to determine the
execution of segmented right-deep trees. Those formats are very similar to our
zigzag trees. Schneider (1990) also briefly mentioned a format identical to zigzag
trees. However, note that segmented right-deep trees are a bit more general because
each right-deep segment can be attached not only at the first join operation of the
next segment, but also in the middle of it. If all segments are attached to the
first operation of the next segment, segmented-right trees reduce to zigzag trees,
otherwise they are bushy trees. Also note that Chen et al. (1992a) did not consider
the possibility of avoiding writing to disk the intermediate results of each pipeline
segment. We think that this decision is important in cases of limited memory to
get a minimum number of phases and thus possibly reduce execution time. It is
precisely with this combination of techniques that we have run experiments on the
DBS3 prototype.

3. Data and Execution Models

The data and execution models represent the way the optimizer sees data and
execution. They are an abstraction of the actual data representation and low-
level execution. At this level, concurrency control and recovery mechanisms are
transparent; thus, we consider only intra-query parallelism.

3.1 Distributed and Shared-Memory Models

We chose a distributed memory (DM) execution model for shared-memory (SM)
because (a) our database system could work on both the shared-memory architecture
of the DBS3 prototype and the distributed memory architecture of the EDS machine
with minimal effort; (b) code fragmentation, mandatory in DM, reduces data conflicts
in SM; (c) cache coherency control in SM shares similarities with message passing
in DM; (d) the mapping from DM to SM takes advantage of efficient SM features
(fast communication through shared memory, synchronization points via shared
variables); and (e) this mapping, when performed at compile time, leaves enough
latitude for the execution system to make good runtime decisions, e.g., for dynamic
load balancing.

In both DM and SM models, data are horizontally fragmented and operations
are cloned into several threads to allow intra-operation parallelism. In a DM
system, a Processing Element (PE) includes a processor and its memory, while it is
a processor in SM. A DM model imposes static links between data fragments, PEs

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 285

and threads: (1) a data fragment is linked to a PE where it is stored; (2) a thread
is linked to a PE which will execute it; and thus, (3) a data fragment is linked
to a thread that will consume it. In the SM model, any PE can access any data
fragment, because memory is shared, and the system dynamically assigns threads
to PEs to favor load balancing. Thus, any thread can access any fragment, thereby
creating access conflicts.

With the DM model, the mapping between the tuples of a relation and the
PEs where they are stored is called the physical home of the relation. The home of
a relation does not change at runtime but data can be transferred, which creates
intermediate data with a different home. With the SM model, no static information
regarding fragmentation need be attached to a relation, because re-fragmentation
is supposed to be much less expensive than data transfers in DM. However, if a
relation does not hold in main memory, re-fragmentation actually can be quite
expensive.

With our DM model, the logical home of a relation is the mapping between its
tuples and its data fragments. A mapping between the fragments and the PEs will link
the logical and physical homes. When implementing our DM model on a SM system,
relations are statically fragmented and information regarding such fragmentation
is kept in a catalog. The link between data fragments and PEs disappears in our
SM system, but data fragments still are linked to threads. Although the execution
system can allocate any thread to any PE, a thread can only access some specified
data fragments. This method allows us to keep the advantages of automatic load
balancing while reducing access conflicts. In the following sections, home denotes
logical home.

3,2 Execution model

The Execution Model is a parallel dataflow execution model that supports local data
operators, transfer operators, and control operators. These operators are embedded
in a parallel algebraic language, called Parallel LERA (Borla-Salamet et al., 1991),
that enables sophisticated combinations to support complex queries (e.g., multiple
joins, division, fixpoint, aggregation). A program in this language embeds its own
parallel execution control using control operators. An alternative way to coordinate
a parallel execution is to rely on a distributed coordinator which is part of the
system and not of the program. This coordinator has to be general enough to deal
with all situations, and therefore suffers in performance for specific cases where
tuned optimizations are possible. A detailed description of how a control code is
added to the program in DBS3 can be found in Borla-Salamet (1991).

An execution plan is represented initially as a directed graph of operators. Note
that trees are needed to support multi-join queries, but more general queries may be
translated into operator graphs. An operator operates on fragmented relations via
operator instances. A data fragment is accessed only by one operator instance at a
time. Thus, no specific concurrency control is needed within a parallel transaction.
Each arc is labeled with the kind of synchronization that exists between the operators,

286

say Opl and Op2. There are mainly two such synchronizations: pipe and seq. Pipe
specifies that two operators are executed in a producer-consumer mode with Opl
producing messages to be consumed by Op2. Seq specifies that Op2 waits until Opl
completes before starting its own execution. Finally, each of these synchronizations
may be local or global. Local means that the synchronization of Opl and Op2
results in the independent synchronization of each couple of operator instances <
Opli, Op2i > and global means that a global synchronization mechanism for all the
operator instances is needed.

The control associated with a global pipe execution is ensured by means of
control operators. When a producer operator instance completes, a single end-of-
stream message is sent to a centralized control operator that waits for the completion
of all the active producer operator instances. When this condition becomes true,
the centralized control operator broadcasts an end-of-stream message to all active
consumer operator instances, indicating that they will not receive any more messages.

The control associated with a global seq execution is very similar to that of
global pipe. The difference is that the centralized control operator that detects the
completion of the first operator must broadcast a trigger message instead of an
end-of-stream message to all the second operator instances. This trigger message
will activate all these operators.

Global control operators are similar to the well-known barrier in SM architectures.
In our implementation, however, all operator instances are not always active (not all
data fragments are accessed), and also several operator instances may be supported
by a single thread. Our control takes these differences into account and optimizes
control for each specific case.

For simplicity, we note a local synchronization with a single arrow (e.g.,
s e q ~

Opl P-~+eop2 and a global synchronization with a double arrow (e.g., Opl ::::'~(JP2"

All queries start and end with the following global sequential synchronization: s~=~t

and e=~. If two or more operators are running locally, they are glued together by
the code generator into a single code fragment. We illustrate the operators that are
combined into a single code fragment with an underbrace. Vertical braces denote
a parallel execution. We now illustrate the execution model with some examples.

Selection. If relation R is declustered in n fragments, the operation Select(R)
is equivalent to the union of n operations Select(Ri), with i = 1,n, where each
individual operation can be done in parallel. However, if the select predicate
contains placement attributes, fewer nodes than n (ideally one) need be involved.
The associated execution graph is very simple:

s~t Select R p~e Store Res e~

If the result has to be stored where it is produced (co-located with the home
of R), then the last global pipe becomes a local one, and the two last operators
may be glued together in a single code fragment, as follows:

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 287

s~=~t Select R pipe Store Res e~
Y

Joins. Parallelizing binary operations is more complex because, for optimal paral-
lelism, each operand relation must be declustered the same way. For example, if
R and S both are declustered in n fragments using the same function on the join
attribute, the operation Join(R,S) is equivalent to the union of n parallel operations
Join(Ri, Si), with i = Ln. We call this an "ideal join, " and its execution graph is:

s ~ t NestedJoin R,S p~e ,Store Res
Y

The following join strategies all are based on the hash-join algorithm. The
generic operator Join(A,B) means: (1) redistribute (if necessary) A on the join
attributes and build, on the fly, a partial index IA per data fragment, and (2),
redistribute B (if necessary) on the join attributes and, in pipeline mode, probe
each tuple of B using the index IA. Note that Join(A,B) does not produce the same
implementation as Join(B,A).

If the compiler chooses to use such an algorithm for the previous query, the
produced execution graph will be:

s~=~t Scan R pipe Build lR ~ ScanS pipe Probe lR p~e ,Store Res e~

Note that the local algorithm "nested join" in the first example may be imple-
mented as the combination of the local operators of the second example. If the
"ideal" condition is not satisfied, parallel join algorithms (Gardarin and Valduriez,
1984; DeWitt and Gerber, 1985) attempt to make such a condition available by
reorganizing the relations. A reorganization means dynamically creating a secondary
home of a permanent relation. Since this reorganization is performed for a subse-
quent operation, we create on the fly a partial index per data fragment to accelerate
local processing. If S is not declustered on the join attribute, but R is, we obtain
what we call an '~Assoc-Join." The corresponding graph is:

pipe seq " " s ~ t ScanR ~ ,utta,1~ ~ ScanS p~e Probeln p~e `store Res e~

If none of the relations is declustered on the join attribute, and it becomes
necessary to reorganize both relations, then this join algorithm is called "hash-join."
In this case, each basic operator is implemented as an independent code fragment.

4. Query Processing

4.1 Overview of the Compiler

The ESQL compiler transforms an ESQL query (Gardarin and Valduriez, 1992)
into an object module optimized for execution on the parallel execution system. The
compiler proceeds in several subsequent translation phases that progressively add

288

Figure 3. Compiler architecture

lower level details regarding the execution environment. Therefore, the compilation
process is divided among semantic analysis, rewriting, optimization, parallelization,
and code generation. The purpose of this architecture is to perform compile-
time optimization and parallelization while keeping the run-time system simple and
hopefully very efficient. Within the compiler (Figure'3), the five layers use different
variants of an algebraic language (Language for Extended Relations Algebra, LERA)
(Borla-Salamet, 1993) to express their output.

The analyzer performs syntaxic and semantic analysis of the input ESQL query
and produces the corresponding algebraic program, i.e., a graph of relational oper-
ations. The data definition statements are directly executed by the catalog manager,
while the data manipulation statements must go through the remaining layers of the
compiler. The rewriter simplifies and transforms the algebraic program to facilitate
optimization. For instance it eliminates common sub-expressions and groups select-
project-join operations in N-ary nodes. The optimizer takes all final decisions for
executing the program in the parallel execution system and integrates them in an
annotated algebraic program expressed on physical data. These decisions concern
primarily the ordering of operations, the selection of the best method to access each
relation and the choice of the best parallel algorithm per operation. The optimizer
implements the techniques previously described.

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 289

The parallelizer translates an optimized program into a parallel program ac-
cording to the execution model (Section 3). This translation has two goals. First,
it must guarantee the correct execution of the parallel program by adding control
operations for synchronizing data operations and detecting terminations. Second, it
must yield decentralized scheduling of the programs to increase throughput. Similar
to BUBBA (Boral et al., 1990) and Volcano (Graefe, 1989b), our approach to par-
allelization avoids using a centralized scheduler. Furthermore, it allows peep-hole
optimization that can yield significant reduction of the number of control messages
(Borla-Salamet et al., 1991). Following the optimizer directives, the parallelizer
proceeds by expressing the parallel algorithms, deciding the necessary scheduling of
the program, and introducing the control operations to implement the correspond-
ing schedule. Thus, the parallelizer generates a self-scheduling parallel program,
avoiding the need for a run-time scheduler.

The code generator produces the final executable object module for the parallel
execution system. This involves producing a number of object code fragments, each
one corresponding to one or more operations. This module can be compiled and
linked in the usual way.

4.2 Cost model

In this section, we define the cost of a plan and the cost functions for the most
important operators that compose a query execution plan, namely Select and Join.
Note that we make an important simplifying assumption, namely that the set of
processors assigned to operations does not overlap.

4.2.1 Cost Model for DM and SM. In the preceding section, we pointed out the
main differences between the execution models of SM and DM and established
the principles for mapping DM to SM. In this section, we exploit this analysis to
define a cost model. However, we give both the SM and DM cost formulas when
necessary, i.e., when the system differences matter. If we ignore concurrency issues,
only the cost functions for data reorganization and memory consumption differ.
Indeed, reorganizing a relation's tuples in DM implies transfers of data across the
interconnect, whereas it reduces to hashing in SM. Memory consumption in DM
is complicated by inter-operation parallelism. In SM, all operations read and write
data through a global memory, and it is easy to test whether there is enough space
to execute them in parallel, i.e., the sum of the memory consumption of individual
operations is less than the available memory. In DM, each processor has its own
memory, and it becomes important to know which operations are executed in parallel
on the same processor. Thus, for simplicity, we assume that the set of processors
assigned to operations to execute does not overlap. This will simplify the formula
for response time with DM. It is possible, however, that two distinct operations
have the same home, a case which the formula takes into account. For example, in
our prototype, the catalog specifies that two relations are declustered on the same
home. In SM, the execution system is expected to dynamically balance the load
among processors.

290

Figure 4. Cost Model Parameters

IRil
II II
nodes(Ri)

page _size
mess_size

mess_time

corn_st_up

buiM_time

number of tuples of relation Ri

size of relation Ri in Kbytes

number of nodes (or fragments, for SM) of relation Ri

size of a memory page in Kbytes

size of a message in Kbytes

time needed to send one message

communication start up

time to insert a tuple into a hash table

4.2.2 Cost Functions. We define the cost of a plan as having three components:
total work, response time, and memory consumption• The first two components
express a trade-off between response time and throughput. The third component
represents the size of memory needed to execute the plan. The cost function is a
combination of the first two components, and plans that need more memory than
available are discarded. Another approach (Ganguly et al., 1992) uses a parameter
specified by the system administrator, by which the maximum throughput is degraded
to decrease response time.

In the following, Ri refers to a base relation of the physical schema, O refers to
a relational operator, and degree(O) refers to the degree of parallelism of operator
O.

We use the following functions:

1 if the output of operation O is materialized
isMat(O) : 0 otherwise

send_cost(data_size): the cost of sending data of size data_size across the
interconnect, i.e., send_cost(data.size) = round (data_size~mess.size) * mess_time
+ corn_st_up
The function round() rounds up its parameter to the next largest integer.

decluster_cost(Ri, n):
• D M : the tuples of relation Ri are declustered on a target home composed
of n nodes, with cost:
decluster_cost(Ri, n) = n *send_cost(I [Ri [I / (nodes(Ri) * n))
• SM: the tuples of relation Ri are reorganized into n fragments with cost:
decluster_cost(Ri, n) = build.time* I Ri [* log2([Ri l)

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 291

This function computes the response time of the decluster operation. We
assume that the operations of each home node are perfectly overlapped.

Cost functions for global algorithms. The parallelization of simple operations, such as
Select and Join, is based on a global and a local algorithm. The global algorithm
specifies the home of the operation, 1 the reorganization and the transfer of input
relations if necessary, and the mode of consumption of each operand (pipelined or
materialized). The local algorithm specifies the implementation of the operation
at each node, such as a join method for Join. These decisions are expressed as
annotations attached to the operation.

The cost of a global algorithm represents the cost of reorganizing input relations
(in DM, it is the cost of transfers to the consumer nodes). The cost of a local
algorithm represents the access and processing cost on one node of the operation
home. We give only cost functions for some global algorithms; the cost for local
algorithms and the remaining global algorithms are given in Zaxt (1990). Let us
denote cost(al~Ri) as the cost of global algorithm alg to reorganize relation Ri, and
cost(local) as the cost of the local operation algorithm.

• Ideal: tuples of the input relations are distributed on their join attributes
and, in DM, share the same home. Thus, no reorganization is needed, i.e.,

V Ri cost(Ideal, Ri) = 0

• Assoc: one input is declustered on its join attribute and the other must be
reorganized (and, in DM, sent to the home of the first one, which is also
the operation home). So, the cost of reorganizing Ri is:

f 0 ifRiis already organized
cost (Assoc, Ri)

I decluster_cost(Ri, nodes(Rj)) otherwise

• Hash: the two inputs are reorganized on their join attributes using the
same distribution function (and, in DM, sent to the home of their consumer
operation). So, the cost of reorganizing Ri into n buckets (and, in DM,
sending it to a home composed of n nodes) is:

V Ri cost(Hash, Ri) = decluster_cost(Ri, n)

1. Referred to as cloning annotation in Ganguly et al., 1992.

292

Cost Functions for Operations. For each operation the optimizer chooses the best
global algorithm and the best local algorithm. We give the cost for only two operations
of the target language, i.e., selection and join. Let us denoterespTime(O), totWork(O),
and memCons(O) as the response time, total work, and memory consumption of
operation O, respectively, and local (respectively global) the local (respectively
global) algorithm of an operation. The computation of total work is the same for
all operations:

totWork(O) = degree(O) * cost(local) + ~Rieinput(O) nodes(Ri) * cost(globa~Ri)

• Selselpred(Ri): the cost of performing a selection, using predicate selpred,
on tuples of Rim is

resp Time(Selselpred(Ri)) = max(cost(local), cost(global, Ri))
memCons(Selselpred(Ri))=nodes(Ri) * page_size

We assume that the operand Ri is consumed in pipe mode and, thus, one
page of each R i fragment needs to be present in memory. The reorganization
of Ri, if needed, is performed simultaneously to the selection processing.

• Joinpred(Ri, Rj): Ri and Rj are respectively outer and inner operands of the
join operation that satisfy predicate pred. The cost of joining the tuples of
Ri and Rj is:

respTime(Joinpred(Ri, Rj)) = cost(global, Rj) + max(cost(local), cost(global,
Rd)

memCons(Joinprea(Ri, Rj)) = nodes(Ri) * page_size + II II

We assume that, to perform the join operation, the inner operand must be
materialized, if it is not a base relation, whereas the outer is consumed in pipeline
mode. The reorganization of Ri is performed simultaneously with the join processing,
after the reorganization of Rj has completed.

Given a plan rooted at operation O, denoted O(childo, chi ld1, '" ,childk_l),
the cost of a plan p is computed as follows:

k-1 totWork(p) = totWork(O) + ~i=0 totWork(childi)

resp Time(p) = max(resp Time(N), max ik_So 1 (resp Time(childi) * (1 - isMat(childi)))
+ maxik__-d (respTime(childi) * isMat(childi))

k-1 memCons(p) = memCons(O) + ~i=0 memCons(childi) * (1 - isMat(childi))

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 293

Figure 5. Query execution plan

(Q 0)

1t3

R1 R2

loin((R1,R2,R3), (R1.A = R2.B) and (R2.B = R3.C))

4.2.3 Fragmentation and Dependencies Among Optimization Choices. Some pro-
posals (e.g., Hong and Stonebraker, 1991), assume that a build node always is
necessary before each probe node for hash-join algorithms. In our system, if two
consecutive joins are on the same attribute, we are able to avoid the build node of the
second hash-join, because the intermediate result is already hashed on the proper
attribute. This is possible only when the intermediate relation is the building relation
in the next join. The second build node can be avoided because the temporary
relation, temp, is already hashed on R2.B (Figure 5). Not only is redistribution not
necessary but, due to the way our execution model is implemented, the intermediate
relation is already in (the equivalent of) a hash table.

The ability to avoid such nodes is an important aspect of an execution model.
First, the use of a temporary relation as a building relation (in left-deep or zigzag
trees) is particularly interesting when it is already hashed. But more important is
the impact on the cost model: if a subplan avoids a build node it may be better
than cheaper subplans that do not, i.e., the principle of optimality (Ganguly et al.,
1992) is violated. The way an intermediate result is hashed introduces what we
call a global dependency, i.e., a dependency between the choice of a subplan and
other optimization choices. Other global dependencies are the following: the order
of tuples in intermediate results when sorting algorithms are used (Selinger et al.,
1979); the site of intermediate relations in distributed systems (Lohman et al., 1985);
and resource contentions (Ganguly et al., 1992). In shared-memory systems such as
XPRS (Stonebraker et al., 1988), the way a relation is hashed, or more generally
fragmented, is much less important than it is in distributed-memory systems because
it does not imply data transfers. However, the mere cost of hashing may not be
negligible and the fact that processors usually access shared-memory through caches
may raise problems similar to those of distributed-memory architectures.

294

4.3 Search Strategies

Given an input query, the optimizer search strategy explores the space of possible
execution plans that implement the input query, and seeks one that minimizes a
cost function. If the search space is too large, however, it would be prohibitive
to explore it exhaustively. Thus, the strategy must balance optimization effort
with the quality of the resulting execution plan. As the solution space gets larger
when parallel execution of a query is considered, the choice of a search strategy
becomes an important issue. Several search strategies have been proposed for
query optimization to deal with different query types (simple vs. complex) and
with different requirements (ad-hoc vs. repetitive). Enumerative strategies consider
many points in the solution space, but try to reduce the solution space by applying
heuristics (Selinger et al., 1979). This approach can lead to the best possible solution,
but faces a combinatorial explosion when the search space is composed of parallel
plans. To investigate large search spaces, randomized strategies have been proposed
that try to improve a start solution until obtaining a local optimum, or until meeting
some other stopping condition (Swami, 1989).

Our optimizer search strategies (Lanzelotte and Valduriez, 1991) are variations of
several known strategies: dynamic programming, simulated-annealing, and iterative-
improvement. Thus, instead of statically cutting off the search space because of its
size, we implemented several search strategies to cope with the different sizes of
search spaces, and let the optimizer choose the appropriate one, according to the
query type (ad-hoc vs repetitive and simple vs. complex). We definitely think that
compiling heuristics, as proposed in Chen et al. (1992a, b) is essential. However,
the fanout of parallel architectures and execution models is quite large and it is
difficult to find general heuristics. This problem is especially true with our approach
because our optimizer is targeted for both shared-memory and distributed-memory
architectures. Thus, we chose to rely on randomized strategies as long as general
heuristics have not emerged.

5. Performance Measurements

In this section, we show the advantages of zigzag trees over right-deep trees under
various conditions through experiments on the DBS3 prototype. Our results, how-
ever, should be considered as preliminary due to the limitations of our hardware,
especially the fact that we used only one disk.

The target machine for the testbed was the multiprocessor Encore MULTIMAX
520. This machine was configured with 10 NS32532 processors (8.5 Mips, each having
256 KB cache memory), 96 MB main memory and 1 GB disk storage. Processors,
memory and I/O boards were interconnected by a 100 MB/s bus.

We used a database composed of eighteen relations, generated automatically
following the specifications of the standard Wisconsin Benchmark (Bitton et al.,
1983). Tuples were 208 bytes long, and relation cardinality was fixed to 10,000 tuples

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 295

Figure 6. Sliced-RD trees vs. zigzag trees for varying sizes of available
memory

80

2o " " o - -
• • •

. I

¢ z igzag
I

- - o slicacl R D '
I

i i i i i J

2 3 4 S 6 7

size of available memory

(except for the probing relation of the first join, which had 1000 tuples). The size
of the intermediate relation of each join was the size of smaller operand relation,
due to the join predicate. Thus, the size of intermediate relations is determined
by the size of the first probing relation. Relations were declustered by hashing on
their first attribute and the number of fragments was 30. However, in the next to
last series of experiments (Figure 9) we let the number of fragments vary. Also, in
the last series of experiments (Figure 10) we let the cardinality of the first relation
vary; consequently we had a cardinality of intermediate results. Several of our
experiments were made with more tuples on a previous version of our prototype
and led to similar behavior. With the new version of prototype, we decided it was
more interesting to experiment with different values of the parameters than using
bigger relations.

We conducted our experiments using join queries with eight to eighteen relations.
We chose a chain form for the query, i.e, each relation but the first and the last
is connected to exactly two other relations by one join predicate. This allows
comparison of execution plans even if they are of different formats (zigzag vs. sliced
right-deep), because the optimizer always produced the same join ordering. In these
experiments we were interested only in the response time component of the cost
function.

Right-deep trees can lead to a better response time than left-deep trees under
different assumptions (Schneider and DeWitt, 1990). If relations are fully declustered
and the disks are not fully utilized, right-deep trees have a better response time
because scans (as well as build nodes) can be done in parallel. We expected a similar
advantage for zigzag trees over sliced fight-deep trees because zigzag trees allow
the execution to be done in fewer phases. However, because our prototype has

296

Figure 7. Sliced-RD trees vs. zigzag trees for varying numbers of
threads/operation

150

A 120
Im

i i 90

D,,

. 1

R D I

I I i i

2 4 6 8

number of threads per operation

0
i

10

only one disk at the moment, we have concentrated on different assumptions. The
other case in which right-deep trees yield a faster response time is when relations
are partially fragmented without overlap in a DM system. In such a case, right-deep
trees yield an almost constant response time when the number of joins in the query
increases, as long as enough memory is available. The reason why the probe nodes
can also be done in parallel is that the physical homes of the operations do not
overlap, allowing pipeline parallelism to occur without time sharing.

In a SM system, inter-operation parallelism is mainly useful to help balance
CPU-bound and I/O-bound operations (Hong, 1992). However, that work does not
take into account the case in which the number of processors is high compared
to the size of the relations to join. This can happen when selectivities of select
operations are very high. In such a case, the overhead of intra-operation parallelism
limits the number of processors that should be used for each join. On the other
hand, pipeline and independent parallelism should be included in the optimization
search space.

To reproduce conditions in which pipelining can be effective on a shared-memory
prototype with ten processors, we artificially restricted intra-operation parallelism
by reducing the number of threads of each operation. In five series of experiments
we took into account five parameters: the size of available main memory, the
number of relations in the query, the number of threads per operation, the number
of fragments per relation, and the size of intermediate results. For each series of
experiments, one of the parameters varied on the x axis while the others were fixed.
The values for the fixed parameters were the following: the memory can hold one
hashed base relation (plus the intermediate result), thus the number of joins is
seven. To avoid time sharing, the number of threads per operation was set to two
for the first and the fifth experiment and to five for the third and fourth ones.

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 297

Figure 8. Sliced-RD trees vs. zigzag trees for varying numbers of
query relations

80

A

4O

J
2o

zz/gzag o s//ced RD

i i I i i

8 10 12 14 16 18

number of relations in the q u e r y

In each series of experiments we saw how a zigzag tree can take advantage of
its smaller number of phases to yield a better response time than a sliced right-deep
tree (sliced-RD tree). Figure 6 illustrates the case in which the x axis was the number
of base relations that can be held in memory (with their hash table). To be more
precise, a number N on this axis means that N base relations and the intermediate
relation, can be held in main memory. We see that the sliced-RD tree often needs
one more phase than the zigzag tree, and thus more time to complete. In Figure
7, the number of threads varies from one to ten. With such limited memory the
sliced-RD can execute only one join at a time while the zigzag tree can execute
two joins in parallel. As a result the zigzag tree yields a better response time, but
not, however, one that is exactly half the time of the sliced RD. The reason is that,
when the number of threads exceeds 5, time sharing occurs during the execution of
the zigzag tree, and the phases of each tree are not similar. The first phase of the
zigzag tree contains only one join operation. In Figure 8, the number of relations in
the query varies from eight to eighteen. The response time of both curves increases
linearly because of the memory limitations: for each additional two joins, two more
phases are necessary with a sliced-RD and one for the zigzag tree.

In the fourth experiment (Figure 9), response time decreased when the number
of fragments increased, because the local algorithm used to join the fragments
was nestloop. When the number of fragments increases, they get smaller and the
benefit of hashing is higher. In our execution model, however, a pipeline queue was
associated with each fragment, which introduced some overhead. Zigzag trees seem
to take less advantage of an increasing number of fragments, probably because
they have a higher degree of pipeline. In the last experiment (Figure 10), the
size of the first probing relation varied from 1000 to 20,000. However, since the
size of each intermediate relation was the size of the smaller join operand, the size of

298

Figure 9. Sliced-RD trees vs. zigzag trees for varying numbers of
fragments/relation

50

4O

.j~o
• 20

10

. 1

¢ zigzag
,

O. sliced RD I

0 I I I I I I I I

20 25 3O 35 4O 45 ,5O 55 6O

number of fragments

Figure 10. Sliced-RD trees vs. zigzag trees for varying first relation
cardinality

J

~m0

0
1000

= zigzag 1

~ : ~ , , ,

5000 9000 13000 17(1(30 210(10

cardinaHty of the first relation

intermediate results actually varied from 1000 to 10,000. We had decided that the
available memory could hold one relation and the intermediate result, therefore
it could have been possible that the optimizer chose a different plan according to
the size of the intermediate results. However, for simplicity, we assumed that the
available memory could hold just one base relation and one intermediate relation

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 299

but not two base relations. Thus, we could keep the same plan, and the size of the
intermediate result should actually be understood as being just less than 10,000. Of
course, such a situation is very favorable to zigzag trees and should be considered
as a limit case. While it is not easy to see (Figure 10), the ratio of the execution
time of the right-deep tree to the time of the zigzag tree does not change very much
up to 10,000 tuples. After that point, the size of the intermediate results does not
change any more, and only the first join takes more time. However, this additional
time is proportionally bigger for the zigzag tree.

In summary, when pipeline parallelism occurs without time-sharing, zigzag trees
can yield a better response time than sliced right-deep trees. This advantage,
obtained on our SM prototype, is probably even higher on a DM machine with
several disks and partial declustering.

6. Conclusion

We have described our approach to the compile-time optimization and parallelization
of queries for execution in DBS3, a shared-memory parallel database system. Our
approach enables exploring a search space large enough to include zigzag trees
which are intermediate between left-deep and right-deep trees. The problem of
efficiently searching a large search space is solved by using randomized search
strategies (Lanzelotte and Valduriez, 1991).

Unlike the XPRS approach (Hong and Stonebraker, 1991), which essentially
reduces the optimization search space, our approach is more general. Because
DBS3 implements a parallel dataflow execution model, this approach applies to
both shared-memory and distributed-memory architectures. Furthermore, it avoids
the need for a centralized scheduler and enables compile-time optimization of
dataflow control.

Performance measurements run using the DBS3 prototype have shown that, in
cases of limited memory and when temporary results are not spooled to disk, zigzag
trees can yield a better response time than sliced right-deep trees. Our results,
however, should be considered preliminary due to the limitations of our hardware.
Similar experiments should be run on a distributed memory system for which zigzag
trees are expected to be even more advantageous.

Acknowledgements

This work was partially funded by the Esprit projects, EDS and IDEA. The authors
are grateful to Patrick Valduriez for his constant supervision and detailed comments
on this work.

300

References

Bergsten, B., Couprie, M., and Valduriez, P. Prototyping DBS3, a shared-memory
parallel database system. Proceedings of the International Conference on Parallel
and Distributed Information Systems, Miami Beach, Florida, 1991.

Bitton, D., DeWitt, D.J., and Turbyfill, C. Benchmarking database systems--A
systematic approach. Proceedings of the International Conference on l~ly Large
Databases, Florence, Italy, 1983.

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart,
B., Smith, M., and Valduriez, P. Prototyping BUBBA, a highly parallel database
system. IEEE Transactions on Knowledge and Data Engineering, 2(1):4-24, 1990.

Borla-Salamet, P., Chachaty, C., and Dageville, B. Compiling control into queries
for parallel execution management. Proceedings of the International Conference
on Parallel and Distributed Information Systems, Miami Beach, Florida, 1991.

Chen, M.-S., Lo, M., Yu, ES., and Young, H.C. Using segmented right-deep trees for
the execution of pipelined hash joins. Proceedings of the International Conference
on l~ty Large Databases, Vancouver, British Columbia, 1992a.

Chen, M.-S., Yu, ES., and Wu, K.-L. Scheduling and processor allocation for parallel
execution of multi-join queries. Proceedings of the International Conference on Data
Engineerin& Tempe, Arizona, 1992b.

DeWitt, D.J. and Gerber, R. Multiprocessor hash-based join algorithms. Proceedings
of the lnternational Conference on l,~ry Large Databases, Stockholm, Sweden, 1985.

DeWitt, D.J. and Gray, J. Parallel database systems. The future of database pro-
cessing or a passing fad? ACMSIGMODRecor~ 19(4):104-112, 1990.

Ganguly, S., Hasan, W., and Krishnamurty, R. Query optimization for parallel
execution. Proceedings of the ACM SIGMOD, San Diego, California, 1992.

Gardarin, G. and Valduriez, E ESQL2: An extended SQL2 with f-logic semantics.
Proceedings of the International Conference on Data Engineering, Tempe, Arizona,
1992.

Gardarin, G. and Valduriez, P. Join and semijoin algorithms for a multiprocessor
database machine. ACM Transactions on Database Systems, 9(1):133-161, 1984.

Graefe, G. Volcano: An extensible and parallel dataflow query processing sys-
tem. Computer Science Technical Report, Oregon Graduate Center, Beaverton,
Oregon, June, 1989.

Graefe, G. Encapsulation of parallelism in the Volcano query processing system.
Proceedings of the ACM SIGMOD, Atlantic City, New Jersey, 1990.

Graefe, G. and Ward, K. Dynamic query evaluation plans. Proceedings oftheACM
SIGMOD, Portland, Oregon, 1989.

Hong, W. Exploiting inter-operation parallelism in XPRS. Proceedings oftheACM
SIGMOD, San Diego, California, 1992.

Hong, W. and Stonebraker, M. Optimization of parallelism query execution plans
in XPRS. Proceedings of the International Conference on Parallel and Distributed
Information Systems, Miami Beach, Florida, 1991.

VLDB Journal 2 (3) Ziane: Parallel Query Processing With Zigzag Trees 301

Ioannidis, Y. and Cha Kang, Y. Left-deep vs. bushy trees: An analysis of strategy
spaces and its implications for query optimization. Proceedings of the ACM
SIGMOD, Denver, Colorado, 1991.

Lanzelotte, R.S.G. and Valduriez, E Extending the search strategy in a query
optimizer. Proceedings of the International Conference on Very Large Databases,
Barcelona, Spain, 1991.

Lanzelotte, R.S.G., Valduriez, P., and Za~t, M. Optimization of object-oriented re-
cursive queries using cost-controlled strategies. Proceedings oftheA CM SIGMOD,
San Diego, California, 1992.

Lohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B., Selinger, P., Wilms,
P. Query processing in R*. In: Kim, W., Reiner, D.S., and Batory, D.S., eds.
Query Processing in Database Systems. Berlin: Springer-Verlag, 1985, pp. 31-47.

Stonebraker, M., Katz, R., Patterson, D., and Ousterhout, J. The design of xprs.
Proceedings of the International Conference on l~ry Large Databases, Los Angeles,
California, 1988.

Schneider, D.A. Technical report #965. Ph.D. thesis, University of Wisconsin, 1990.
Schneider, D.A. and DeWitt, D.J. A performance evaluation of four parallel join

algorithms in a shared-nothing multiprocessor environment. Proceedings of the
ACMSIGMOD, Portland, Oregon, 1989.

Schneider, D.A. and DeWitt, D.J. Tradeoffs in processing complex join queries via
hashing in multiprocessor database machines. Proceedings of the International
Conference on VLDB, Brisbane, Australia, 1990.

Selinger, EG., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., and Price, T.G.
Access path selection in a relational database management system. Proceedings
oftheACM SIGMOD, Boston, Massachusetts, 1979.

Swami, A. Optimization of large join queries: Combining heuristics and combina-
tional techniques. Proceedings of the ACM SIGMOD, Portland, Oregon, 1989.

Wilschut, A.N. and Apers, EM.G. Dataflow query execution in a parallel main-
memory environment. Proceedings of the International Conference on Parallel and
..Distributed Information Systems, Miami Beach, Florida, 1991.

Zalt, M. Access method selection in a parallel database system (in French). Master's
thesis, Universit6 Paris 6, 1990.

Ziane, M., Za~t, M., and Borla-Salamet, P. Parallel query processing in DBS3.
Proceedings of the International Conference on Parallel and Distributed Information
Systems, San Diego, California, 1993.

