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Abstract. To address the problem of generating test data for a set of general con- 
sistency constraints, we propose a new two-step approach: First the interdepen- 
dencies between consistency constraints are explored and a generator formula is 
derived on their basis. During its creation, the user may exert control. In essence, 
the generator formula contains information to restrict the search for consistent 
test databases. In the second step, the test database is generated. Here, two dif- 
ferent approaches are proposed. "Ihe first adapts an already published approach 
to generating finite models by enhancing it with requirements imposed by test data 
generation. The second, a new approach, operationalizes the generator formula 
by translating it into a sequence of operators, and then executes it to construct 
the test database. For this purpose, we introduce two powerful operators: the 
generation operator and the test-and-repair operator. This approach also allows 
for enhancing the generation operators with heuristics for generating facts in a 
goal-directed fashion. It avoids the generation of test data that may contradict the 
consistency constraints, and limits the search space for the test data. This article 
concludes with a careful evaluation and comparison of  the performance of the two 
approaches and their variants by describing a number of benchmarks and their 
results. 
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1. Introduction 

Database  design can be viewed as a process akin to specification in software 
development :  It  aims at capturing a given section o f  the application domain  called 
the universe o f  discourse ( U o D )  and codifying it as a semantic schemas One  o f  
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the principles of good software engineering is to validate the specification before 
implementation takes place. By starting the validation early, design errors can be 
identified before they become too costly. This is especially important in the case 
of database design where the schema may be used for decades. 

In the database design process, the first formal representation is the semantic 
schema. The formalism used is the semantic data model Unfortunately, these models 
are either general-purpose (unable to reflect all the idiosyncrasies of a particular 
UoD) or special-purpose (satisfying only the rules governing a very narrow UoD.) 
In either case, the semantic schema captures only part of the characteristics of an 
arbitrary UoD. The remainder must be formulated outside the schema, where they 
are referred to as consistency constraints. Consistency constraints should obey some 
formalism, such as first-order logic. 

Schema and constraints succeed the informal representations used in the re- 
quirements analysis and the even more informal intentions of the user. Bridging the 
gap between the informal and formal worlds is often delegated to an expert designer 
by prospective users. Users, then, should have a method of confirming that their 
intentions have indeed been met by the specifications. Furthermore, users should be 
given the opportunity to experience the consequences of the specification, e.g., by 
entering and updating data or retrieving data from the database, and by comparing 
these to their intentions (a technique referred to as rapidprototyping). Experimenting 
with a prototype determines the adequacy of a specification in the intuitive sense 
of its completeness (does the specification exclude potentially interesting worlds?) 
and its correctness (does the specification accept undesirable worlds?). 

Suppose that a database is consistent with the specification. While entering new 
data, a user may be confronted with a rejection due to the violation of some part 
of the specification. In such a case, the user may inspect the cause of the rejection 
and decide whether completeness has been violated and part of the specification 
should be adjusted. To test the correctness of the specification, the user should try 
to insert or update information that violates his or her view of possible worlds. If 
rejection does not occur, the specification must be adapted. Posing queries against 
the database, particularly if they aim at derived data, is also an essential mechanism 
to detect loopholes in the specification. Generated answers may miss expected facts 
or include unexpected facts, again hinting at an inappropriate specification. 

Prototyping in database design corresponds to experimenting with a test database. 
For experiments to have meaning to the designer, tests and results should be in 
terms of the semantic schema. Consequently, what we have to consider is the 
generation and manipulation of a semantic-level database. Such a database could 
be defined within a uniform framework of consistency constraints, because semantic 
schemas (and database schemas in general) may themselves be interpreted in terms 
of first-order formulas. 

To perform meaningful experiments raises a number of questions. How large an 
initial database must be generated so that constraints are not trivially fulfilled? How 
should the generation process guarantee that "significant" violations of completeness 
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and correctness are detected after a fair number of experimental updates or queries? 
Because some constraints have to be readjusted and a new database generated after 
each detection of an inadequacy, how can "sufficient" efficiency of the generation 
process be achieved? 

The issue of this article, then, is the efficient generation of test databases of 
controlled size, which conform to an arbitrary set of consistency constraints. We 
propose a two-step approach. First, the interdependencies between the consistency 
constraints are explored and a generator formula is derived on their basis. During 
its creation, the user can exert some control in order to streamline subsequent 
experiments, and can include information in order to restrict the search for possible 
consistent test databases, thus accelerating the generation. 

In the second step, the test database is generated. Here, two different routes 
are taken. The first adapts a published approach for the generation of finite models 
by enhancing it with the requirements imposed by test data generation. The second 
route operationalizes the generator formula by translating it into a sequence of 
operators. For this purpose, we introduce two powerful operators: the generation 
operator and the test-and-repair operator. We enhance the generation operator 
with heuristics which enable it to generate facts in a goal-directed fashion. This 
avoids the generation of test data that could contradict the consistency constraints, 
and limits the search space for the test data. Another feature of the second route is 
the repair mechanism incorporated in the test-and-repair operator. It uses a form 
of intelligent backtracking realized by a trace with the effect of increased flexibility 
and better performance. 

The outline of this article is as follows. The next section discusses related 
literature. In order to provide a common basis, Section 3 introduces the necessary 
preliminaries. Section 4 introduces the first step of our approach, i.e., the process 
of creating the generator formula in a user-controlled way. Section 5 presents two 
different routes that actually generate the test database. In Section 6 we compare 
the different approaches by a number of benchmarks. Section 7 concludes the 
article. 

2. Related Literature 

Related literature can be divided roughly into two groups. One discusses rapid 
prototyping (especially database prototyping), while the other is concerned with the 
problem of finite model generation. 

There is a rich body of literature on rapid prototyping in general and some 
on database prototyping (Alavi, 1984; Budde et al., 1984; Oberweis et al., 1986; 
Sch/Snthaler, 1989). However, test data generation as a means for schema evaluation 
is not discussed. By far the most effort has gone into automatic generation of test 
databases for performance evaluation, where data quality is not measured in terms 
of meeting complicated constraints, but in terms of the distribution of data values 
that have an impact on performance. Efforts toward generating such databases--  
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referred to as benchmarks--are described in Bitton et al. (1983) and DeWitt 
(1985). Stonebraker (1985) recommends that the amount of data be predictable. In 
Bitton et al. (1983), random number generators with different scopes are used to 
obtain uniformly distributed attribute values for benclunarking relational database 
systems. A bit closer to our approach are QIKSYS (Noble, 1983) and the TDGL- 
system (Neugebauer and Neumann, 1985), because they consider interdependencies 
between attributes in relational database systems. Both systems, however, limit 
themselves to a few specialized constraint types: QIKSYS emphasizes specifying 
and generating test data that obey various inclusion and functional dependencies; the 
TDGL-system only considers inclusion dependencies. Other approaches (Mannila 
and R~iih~t, 1989; Rfhrle, 1989) study how to generate test data for a given relational 
query, e.g., to validate user-defined transactions or to improve the learning of a new 
relational query language. The limit of all these approaches is that the generation 
procedure considers only a small range of the inter-data-dependencies that may 
occur within a UoD. 

The efforts of Silva and Melkanoff (1981) are even closer to our approach. 
These authors present a database design tool that generates an Armstrong relation 
for given functional and multivalued dependencies. This relation precisely obeys 
only the specified dependencies (and their logical consequences). The technique 
used in this context is known as the tableau chase (Ullman, 1988). Starting with 
the hypotheses of the dependencies that form the tableau, (i.e., a relation), the 
given dependencies are applied to this tableau as follows: For a tuple-generating 
dependency (e.g., a multivalued dependency), a tuple (the conclusion) is added to 
the tableau. For an equality-generating dependency (e.g., a functional dependency) 
the identifiers are made equal within the tableau as required. While removing 
violations of the dependencies, the chase produces the required relation. One 
may classify the underlying idea as one of "repairing" a database until it meets all 
constraints (see Section 5). 

Generating a consistent test database corresponds to the problem of constructing 
a finite model for a given set of logical formulas. There are a few approaches on 
this topic within the context of logical databases. All attempt to satisfy a set of 
general consistency constraints. A set of formulas is finitely satisfiable if there is at 
least one finite model satisfying all the formulas in the set. Finite satisfiability as 
well as unsatisfiability are known to be semi.decidable. 

A tableaux approach to finite model generation is presented by Kung (1985). 
He introduces a modified existential quantifier to avoid repeated rule applications 
on the same formula. This approach has been demonstrated to be neither cor- 
rect nor complete for finite satisfiability (Geibel, 1991). Bry and Manthey (1986) 
address termination problems and propose several approaches to avoid infinity 
while checking satisfiability. Manthey and Bry (1987, 1988) describe a method for 
checking constraint satisfiability, based on a proof procedure called SATCHMO. 
SATCHMO is complete for unsatisfiability, but not for finite satisfiability: for 
the clauses { { ~ p ( x ) , p ( f ( z ) ) } ,  {p(a)}}  with f a Skolem function--resulting 
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from an existential quantifier--SATCHMO generates an infinite series of facts 
p ( a ) , p ( f ( a ) ) , p ( f ( f ( a ) ) ) ,  . . . .  This drawback was overcome with case analysis 
for existentially quantified formulas (Bry et al., 1988). Finite satisfiability is shown 
in a constructive way, i.e., the procedure stops whenever a finite model has been 
constructed. The construction process is viewed as a sequence of successive updates, 
each adding new facts. Each update causing a constraint violation is attempted 
to be repaired by deriving further updates. If no repair is possible by updating, 
Prolog-derived chronological backtracking takes place. 

From our point of view, SATCHMO comes closest to our approach, but has 
several drawbacks. We require more than finite model generation for satisfiability. 
First, for the generation of consistent test databases, database size should be 
included to generate specified quantities of test data (Stonebraker, 1985). Second, 
mnemonically pleasing constants must be generated to support the validation process. 
Third, the appearance of the model should be directable, i.e., the user should be 
able to specify which parts of the schema should be instantiated. 

Finite satisfiability can be viewed as a prerequisite for generating test data. 
Because test data generation is an extended form of systematic model generation, 
the method proposed in this article also can be applied to check satisfiability. If a 
test database can be constructed, satisfiability is discovered; if the process terminates 
without having generated a test database, unsatlsfiability is proven. 

SATCHMO is a starting point for test data generation, but it introduces a 
bias into the generation, namely the emphasis on satisfiability. Therefore, it seems 
reasonable to compare it to an approach which emphasizes control over the test 
data (see Sections 5 and 6). 

3. Preliminaries 

First, to provide a common basis, we introduce some basic definitions. Subsequently, 
the statement of the problem addressed in this article is given in terms of these 
definitions. Finally, we sketch the scenario in which the test data generation will 
be embedded. 

3.1 Basic Definitions 

3.1.1 Formulas. We distinguish three sets of symbols: set V of variable symbols, set 
C' of constant symbols, and set P of predicate symbols. Variables are denoted by 
x~ y~ z , . . .  possibly with subscripts. Constants are denoted by a~ b~ c, . . . .  Predicates 
are denoted by p, q, r~ . . . .  There is an arity associated with every predicate symbol. 
Predicate symbol p with arity n and constants c 1 , . . .  , Cn, p ( c ] , . . . ,  Cn) is a fact. 
A term is either a variable or a constant. (Note that we do not allow function 
symbols.) Predicate symbol p and terms t l , . . .  ,t,~, p ( t l , . . .  ,t,~) are positive 
literals, or atoms. If l is a positive literal, then ~ l  is a negative literal. We define 
formulas in the usual way. Every literal is a formula. If f l  and f2 are formulas, then 
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f l  A f2, f l  V f2, f l  :;" f2, and ~ f l  are formulas, and for variable symbol z ,  V x f l  
and 3z  f l  are also formulas. A closed formula has no free variable occurrences. 
Let l be a positive literal. Then l occurs positively in l, and negatively in ~l .  To 
indicate a positive l literal we write Ill. The set of all variables of formula f is 
denoted by vat( f ) .  The set of free variables of formula f is denoted by f ree ( f ) .  

Substitution O'x is a mapping of variable set X into the set of constants and 
variables. The application of a substitution to a formula replaces every occurrence 
of a free variable z E X by its image under O'x. For formula f ,  the application 
of o'x to f is denoted by forx . All variables not in X are left untouched. A 
substitution which maps variables to variables is also called a variable renaming. 
o'x(X) is the image of o'x. 

A formula is said to be in Prenex conjunctive normal form if it has the form 
Q ] z l . . .  QkXk((IL1 V . . .  V lL,nl) A . . .  A (ln4 V . . .  V ln,m,)) where the ~ i  are 
quantifiers and each li,./ is a literal. (li,1 V . . .  V li,mi) represents a disjunction in 
the formula. A formula of the form V X  1 . . .  VZ n f (3zl . . .  3zn f )  is abbreviated 
to V371,...  , x , ~ f ( 3 x l , . . . ,  x~f).  

For generating a consistent test database, it is important to decide whether a 
consistency constraint is valid solely on the basis of the test data. Consider the 
consistency constraint 3z-, is(z ,  person) and is(john, person) as the database. 
We need to know more about the permissible values of x (the domain of person). To 
circumvent the problem, Fagin (1982) introduced the notion of domain independence. 
Another (syntactic) criterion is provided by the notion ofrange-restrictedness (Nicolas, 
1982). Intuitively, the semantics of a database depend only on its contents, not 
on the underlying domain. A formula in Prenex conjunctive normal form is called 
range-restricted if and only if 

• each 'v-quantified variable appears in at least one negative (restriction) literal 
in each disjunction where the variable occurs; 

• for each 3-quantified variable x occurring in a negative literal there is a 
disjunction in which every literal is positive and contains x (restriction literals). 

In Prenex conjunctive normal form the example formula VxlVx2p(xl, x2) 
~," q( x 1 ) iS VX 1VX 2-1p( x l  , X2) V q( x 1 ). It is range-restricted, and the restriction 

literal for x l  and x2 is ~p(xl,x2).  By contrast, the formula VXlVX2q(xa) ~- 
p(xl,  x2) is not range-restricted because there is no negative literal in -~q(xl) V 
p(xl,  x2) where x2 occurs. Replacing the second V-quantifier by a 3-quantifier, we 
obtain Vx13x2p(xl, x2) .'. q(xl) which is not range-restricted either, whereas 
Vx13x2q(xl ) '., p(xl,  x2) is restricted. Note that transformation into a logically 
equivalent formula in Prenex conjunctive normal form is always possible. 

We denote the truth values true and false by T and F. 

3.1.2 Databases. A database, DB, consists of a finite set of facts, D B  ~, and a 
finite set of consistency constraints, D B  c, where the consistency constraints are 
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closed, range-restricted formulas. Note that traditional constraints (often used in 
relational databases, e.g., functional or inclusion dependencies) can be expressed 
in first-order logic, and also as a closed range-restricted formula. C ( D B )  denotes 
the completion of a database, defined as C ( D B )  :=  D B  ~ U {~al  a is affact, 
a f~ D B  a }. This notion corresponds to the closed-world assumption (Reiter, 1978). 
A database D B  is called consistent if and only if C ( D B )  ~ c for an c E D B  c 
where ~ denotes classical first-order logic derivability. 

Starting with a set of consistency constraints, D B  c, a test database is a database 
( D B  ~, D B  ~) with D B  ~ a set of generated facts. We differentiate between two 
aspects of a test database. 

Formalproperties include the logical notions of correctness and completeness. 
A test database is correct if and only if it is consistent. In relational theory, 
the well-known concept of an Armstrong database (Fagin, 1982) defines a 
possible notion of completeness. This database precisely obeys only a given 
set of dependencies (and their logical consequences). Fagin and Vardi (1983) 
show that there always is an Armstrong database for (standard) functional 
and inclusion dependencies. However, in the presence of general consistency 
constraints there can be no Armstrong database (Fagin, 1982). Hence, 
our only formal requirement for test databases is correctness. (The terms 
completeness and correctness as used in Section 1 have little to do with the 
formal notions referred to above. Rather they reflect intuitive objectives of 
the validating designer.) 

Pragmatic properfies include an important issue: the desired size, i.e., the 
number of facts to be generated for each predicate symbol, and the desired 
size of D B  a. This information may serve as a criterion to stop the gen- 
eration of the test database. Another issue is the naming of the generated 
indhdduals. For validation purposes it is important to have meaningful iden- 
tifiers. Furthermore, the user should be able to define which parts of the 
schema should be instantiated. This definition is called the starting formula. 
To summarize, the pragmatic aspects serve as the input parameters for the 
generation procedure so that only test databases with these features will 
be generated. We assume that all these features will be controlled by the 
designer or user. Since these features constitute a rather new topic, more 
pragmatics may become apparent with growing experience. 

Our objective, then, is to arrive at a variety of test databases which are correct, 
i.e., satisfy a given set of consistency constraints and, further, respect the specified 
features: database size, the naming of the individuals, and the starting formula that 
expresses which part of the schema is to be instantiated. In general, the pragmatic 
features cannot be met entirely, because we deal with general consistency constraints. 
Pragmatic features alllow an approximate measurement in order to avoid haphazard 
generation and to arrive at databases that come close to the user's intentions. The 
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generation procedure has to be correct, i.e., it only produces correct test databases. 
We do not attempt to generate all possible correct test databases, which would be 
prohibitively expensive, 1 but we direct our attention to an efficient solution in order 
to avoid a bottleneck in the validation process. 

3.2 Scenario 

As we indicated, our main objective is the validation of a semantic schema. The 
validation likes place within a database design environment (Lockemann et al., in 
press) after requirements analysis and knowledge acquisition. It can be seen as 
an iterative process of generating test data (for parts of the schema), subsequent 
testing, and eventually redefining the schema. In a first phase, test data will be 
generated. During the subsequent test phase, the user can formulate transactions 
in a semantic-level language, similar to the approaches presented in Brodie and 
Ridjanovic (1984) and Ngu (1989). They subject the test database to updates, 
modifications, and retrieval. On the one hand, these transactions will reflect the 
transactions in the application domain so that unexpected constraint violations may 
indicate an "incomplete" semantic schema (in the sense of Section 1). On the other 
hand, the user may define test transactions in order to simulate non-aUowed actions 
and thus discover specification loopholes if no violation occurs ("incorrectness"). 
Furthermore, we are investigating the possibility of automatically generating test 
transactions based on the semantic schema that supports the user. 

4. Deriving the Generator Formula 

4.1 An Example 

To illustrate our approach, we introduce an example which will serve us throughout 
this article. Consider this problem: we want to generate test data for a database 
for a car registration office. Suppose that the semantics of the application domain, 
iJe., the laws that govern registration, are entirely expressed in terms of consistency 
constraints: 

1. There might be an infinite number of correct test databases if there is no upper bound specified for each 
predicate. On the other hand, if upper bounds are specified, the number of possible test databases still 
explodes. For example, consider a schema with predicates P l  ( X l ) ,  P2 (X2)  and P3 ( X l ,  X2 ) and no 
consistency constraint. Assume that r~l facts fo rp l ,  •2 fore2 are requested, and n 3 is the upper bound 

n3 ( r~l :¢ n 2  ) 
for p3.  Hence, we obtain ~i=O i different correct test databases. Even small numbers, 

n 1 : n 2 = 5 and rt 3 : 12, would result in an incredible 224 = 16777216 test databases. 
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Let DBowns be a database where DB" is empty and D B  c contains the following 
consistency constraints: 

1. VxlV~20wns(xl,3C2) ~.. i s (x l ,person)  2 
The first argument of the owns predicate must be a person. 

2. VXlVX2oWnS(Xl,~2) ~" is(x2, car) 
The second argument of the owns predicate must be a car. 

3. Vx l3x2is (x l , car)  ~ owns(x2, xl)  
Every car must have an owner. 

4. Vx13x2is(x , ,person)  :, owns(x l , x2)  
Every (registered) person owns a car. 

5. V x , V x ~ V x 3 0 w n s ( x , , x ~ )  A owns(x3, x~) ; x,  = x3 
Every car has at most one owner. 

Now suppose that we wish to generate a number of instances of car type (i.e., facts 
of the form is(_car)). Clearly, the first step is to introduce facts of  the form 
is(c, car) where e E C.  Obviously, the first fact violates constraint 3 and can only 
be compensated for by inserting fact owns(b,c) where b E C.  In turn, constraint 1 
is violated and requires the addition of fact is(b, person). 

Alternatively, suppose that we start with persons. Again, introduction of fact 
is(b, person) must be succeeded by owns(b,c) and is(c, car) for some constant c. 
Assume further that the database has not been empty prior to these steps. Then 
there is a chance that c had been generated earlier, with some fact owns(d,c). In 
this case constraint 5 would be violated. 

We note two problems. First, the insertion of a fact often necessitates a chain 
of further insertions. Second, the inserted facts may collide with already existing 
facts so that corrective actions must be taken. In this section, we address the first 
problem. Our goal is to detect this chain of insertions and correcting actions prior 
to the actual generation of facts. The advantage is that the detection of the needed 
insertions and correcting actions has to be performed once for all facts, instead 
of once for each generated fact. The interdependencies between the constraints, 
which are responsible for the chain of insertions, are represented by means of  a 
generator formula. 

4.2 Generation Scheme 

Below we describe how the generator formula is derived. The user specifies the test 
data giving the corresponding atoms, e.g., is(x1, car) and is(x2, person). The 
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conjunction of these atoms is the initial generator formula. The ultimate generator 
formula is then derived in a stepwise fashion by applying rewrite rules from two rule 
sets in an alternating manner. Because this involves fairly expensive inference steps, 
the savings by applying them just once are considerable. The first set consists of a 
single rule, the extension rule. This rule forward chains possible side effects of atoms 
within the current generator formula on further consistency constraints. It extends 
the chain mentioned above whenever necessary. The second set contains several 
reduction rules which are used to eliminate redundancies possibly introduced by the 
application of the extension rule. After applying the extension rule, the reduction 
rules are applied exhaustively. 

First, we formally describe the rewrite rules and use simple examples (some 
straightforward extensions of the Section 4.1 example) for illustration. These def- 
initions are followed by a generator formula construction from the Section 4.1 
example. 

Let F be a set of consistency constraints in Prenex conjunctive normal form. Let 
g f  be a(n) (initial) generator formula. Then the generation scheme, with respect 
to F and g f ,  is defined by introducing the following rules. 

4.2.1 Extension Rule. Consider g f = is(  x 1, per son) A is(x2, car) and constraint 
3 of DBow,~s: Vxl 3x2is(xl, car) '.. owns(x2, xl). Generating cars will cause 
the side effect of inserting corresponding owns-facts. If constraint 3 is rewritten 
in conjunctive normal form, f = VXl3X2-~is(xl, car) V owns(x2, Xl) , it can be 
seen that literal is(x2, car) in g f  and -~is(x~, car) in f are unifiable. Because 
only the premises in the constraints are responsible for the chain of insertions, only 
the negative literals in the corresponding conjunctive form need be considered when 
applying the extension rule. The extension rule extends those literais in gf  which 
occur unifiably and negatively in a formula of F .  The result of the rule application 
will be a new generator formula consisting of gf and the matched formula. Thus, 
after renaming x2 in f as x3, g f  has been changed to 

i3(xl,person) A is(x2,car) A (3xa-~is(x2, car) V owns(xa, x2) ). 

This context is stated more formally as follows: 
preconditions: 

• f E F ,  i.e. f is of the form f = VZl . . .  xkQ Al<i<n Vl<j_<ml lis, k > 0 
where Q is a series of quantifiers starting with 3 or-is empty. 

• g f  = gf~ A l A g f", l is a positive literal 

l is unifiable with a negative literal lij in f .  This is denoted by means of 
three substitutions: lo" = Ilijlrlr 2. The substitution cr maps variables of 

l to constants, 7 -1 is restricted to those universally quantified variables of 
lij which are not governed by an existentially quantified variable (i.e. to 
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{ Z l , . . .  , Z k }  f") var(lij)), and r 2 is restricted to the remaining variables 
in var(lij). 

action: g f is replaced by 

where 

g f  A f i t  I 

f '  results from f by removing the universal quantifiers for those variables 
that were substituted by 7 -1 and renaming all remaining variables of f so 
that they are different from all variables appearing in gf. 

For our example the substitutions are as follows: r 1 = [X 1 ~ X2] , and o', T 2 
are empty substitutions. Note that only those variables of the considered literal (lij) 
(which are universally quantified and not governed by an existentially quantified 
variable) will be substituted (by ~.1). Hence, the extension rule implements a form 
of non-clausal resolution, but it does not remove the literals resolved upon. This 
is done by the first reduction rule. 

4.2.2 Reduction Rules. The main purpose of the reduction rules is to eliminate 
redundancies in the generator formula and thus accelerate the test data generation. 
Another purpose is to transform the generator formula so that as many side effects 
as possible are detected, i.e., the extension rule can be applied as often as possible. 

1. Consider the formula resulting from the application of the extension rule of 
the example above 

is(x,,person) A is(x2, car) A (3x3--~is(x2, car) V owns(x3, x2)). 

If we remember that the quantified formula in this current generator formula 
can also be written as 3x3is(x2, car) .'. owns(x3, x2) we see that the 
premise of the formula, is(x2, car) can be removed, since it is already 
satisfied. 

Hence, this rule exploits resolution within the generator formula: 

preconditions: 

2. 

• g f  = gf '  A 1 A g f",  l a positive literal 

• there exists a negative literal l' in g f ' A  g f"  with l = II'l 

action: g f  is reduced by substituting I I by F. 

Thus, applying Rule 1 (with gf '  _=T) and the observation that F V 111 is 
equal to l" (with l" some literal), we obtain is(x1, person) A is(x2, ear) A 
( x3owns(x3, x2)) 
Rule I considers two complementary literals in g f  and replaces one with F. It 
is also possible that g f  contains two identical literals. This rule corresponds 
to subsumption and removes redundancy. It is formally described as follows: 
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. 

preconditions: 

• g f  = gf~ A l A g f " ,  l a positive literal 

• there exists a positive literal l ~ in gf '  A g f "  with l = l ~ 

action: g f  is reduced by substituting l' with T. 

If some parts of the generator formula are logically equivalent, then there 
should be a rule to remove this redundancy. For this purpose we introduce 
the following rule. 

preconditions: 

• g f  = g f '  A f A g f "  A f '  A g f "  with f ,  f '  formulas 
( f  and f '  may be interchanged) 

• f '.- f '  is a tautology 

action: g f is reduced to 

gf '  A f A gf"  A g f ' .  

This rule should be implemented by testing for frequently occurring tautologies 
such as formulas which only differ in the names of their variables. Undetected 
tautologies will merely result in a loss in performance. 

Additionally, there are the usual simplifications of formulas, e.g., replacing a 
conjunction of literals containing F with F or a disjunction of literals containing T 
with T. 

These rules are equivalence-preserving, i.e., they transform a given generator 
formula into a logically equivalent formula. Unfortunately, these rules seems inca- 
pable of discovering many of the side effects. Remember the example resulting from 
the application of Rule 1: i s (x  1, person) A is(x2, car) A ( SXaowns( x3, x2 ) ). 
This example began with the generator formula resulting from extending the literal 
is(x2, car) into the starting formula is(xi, person) A is(x2, car) with constraint 
3. The literals which are candidates for further extension are now is(xl~person) 
and is (x2, car). The constraints whose premises are candidates for such extensions 
are constraint 3 (this would be a repetition) and constraint 4. The other constraints 
(1, 2 and 5) would never be considered, because the literal owns(xs~ x2) is bound 
to the existential quantifier of variable x a. 

We introduce three more non-equivalence-preserving and heuristic reduction 
rules. The first infers side effects caused by atoms which are bound by an existential 
quantifier on the consistency constraints. In this case, the right choice for substituting 
the existentially quantified variable is important. The other two accelerate the 
generation by reducing the generator formula. Consequently, the number of different 
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test databases could be reduced. For example, some constants which should be 
generated get lost (Rule 5) or not enough different facts are generated (Rule 6). This 
has no effect on the correctness of the generation procedure (the final test database 
will be consistent), because in the end the whole set of consistency constraints 
is tested, and violations are eventually repaired. However, in order to increase 
the efficiency and accelerate the generation (Section 3.1.2), the non-equivalence- 
preserving reduction rules restrict the search space for a correct test database, that 
is, some correct test databases may be precluded from being generated. Hence, 
these rules should be applied by the user; if they are applied by the system, they 
should be reconfirmed by the user. 

1. As the example shows, we need a reduction rule that eliminates an existential 
quantifier in order to arrive at an unbound literal (which can later be extended 
by the extension rule). The following rule does this by substituting the 
existentially quantified variable with a free variable in the current generator 
formula. 

preconditions: 

• g f  = gf '  A (Sxf)  A g f", and 

• for Y E free(g f )  o'{~) = [x ~ Y] 

action: g f  is reduced to 

gf '  A fa{~) A gf". 

. 

In our example generator formula, the free variables are x I and x2. Selecting 
x l  and applying the substitution o" = [x3 ~-- Xl] we obtain is(x1, person)A 
is(x2, ca r )  A owns(x1, x2). Obviously, the right choice of the variable is 
up to the user. The rule allows a user to exploit additional knowledge. 

It is possible to find literals in the current generator formula that are "al- 
most" equal, i.e., one can be transformed into the other by substituting 
some variables by constants. Consider a slightly different example: g f  = 
is( J71, sports_car ) A owns( x 2, x l ) A owns(j ohn, X l ). Applying the sub- 
stitution [x2 ~-- john] to owns(x2,xl), we obtain owns(john, xl). We 
may now drop this more specific information if we assume that john will 
later be generated as one of the constants for x2. Because this assumption 
can only be upheld by the user, the following rule which corresponds to 
subsumption may only be applied in a user-controlled way. 

preconditions: 

• g f  = gf '  A 1 A gf"  A 1' A g f " ,  l, l' positive literals 
(1 and l' may be interchanged) 
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• a substitution ax  with X C_ var(1) and crx(X ) C C so that 
lax  = l'. 

action: g f is reduced to 

g f l  A l A g f "  A g f ' .  

In our example, g f  is reduced to is(x1, sports_car) A owns(x2,  xl). The 
reader may be surprised to find constants in g f - - a f t e r  all, the generator 
formula is supposed to introduce them later. Note, however, that constants 
can occur in some consistency constraints, e.g. Vxl i s (x l ,  sports_car) '.. 
owns( john ,  xl), and by extension they will also occur in gf .  

In Rule 5 two literals are "almost" equal (one contains more constants than 
the other). This rule considers literals that differ in their variables (one can 
be transformed into the other by variable renaming), and also correspond to 
subsumption. 

preconditions: 

• g f  = g f '  A l A g f "  A l' A g f ' ,  l, l' positive literals 
(l and l' may be interchanged) 

• a variable renaming tr~,ar(l,) exists so that llo',ar(t,) = l. 

action: g f is reduced to 

r i l l  \ (gf '  A l A g f "  A g j  )a,~(t,). 

Consider g f  = is(x2,sports_car) A owns(x l , x2 )  A owns(x l , x3 )  A 
has_color(x3, green). Rule 6 can be applied with the substitution [x 3 
x2]. Consequently, all sports-cars will now have to be green. This is an 
aggravation for the test data generation. For example, suppose there is 
another consistency constraint which states that if there is a sports_car then 
there must be one which is red. As a consequence, the generation of 
consistent test data is no longer possible. Therefore, this rule is only applied 
after interacting with the user. 

4.2.3 Rule Application. Given an initial generator formula, rules are applied in turn. 
Construction of the generator formula stops ff equivalence-preserving rule can not be 
applied any longer, or ff the user cannot decide to apply a non-equivalence-preserving 
rule. 

Note that the choice of rule, if more than one meets its precondition, is non- 
deterministic. However, we introduce one heuristic: The intermediate formula gf 
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is reduced as far as possible before an extension takes place. Under  this condition 
the rewriting stops if no further extension is possible. If a reduction rule applies to 
g f ,  it is actually applied only if it is not user-controlled or the user accepts it. 

If the extension rule applies to literal l in y f  and literal li,j in consistency 
constraint f ,  then it should be determined whether the rule has already been 
applied to 1 and li,j in f in order to avoid redundant extensions. Therefore, each 
extension is registered by adding the triple (/, f, li,j) to set Z .  The rewriting is 
always terminated, because F contains a finite number of constraints, the initial 
generator formula is a conjunction of a finite number of positive literals, and the 
extension rule can only be applied once for a triple (/, f ,  li,j). The restriction to 
the triples in Z does not affect the final generator formula, because if another 
literal l occurs in yf  to which the extension rule could be applied (with li,j in f), 
this literal would be eliminated by Reduction Rule 2. 

The resulting generator formula must be considered a heuristic that describes 
declaratively how to generate facts so that as few consistency violations as possible 
are observed during subsequent updates. If non-equivalence-preserving rules are 
applied, the number of models possibly is restricted, too. 

4.2.4 Example Bevisitecl. To illustrate the complete rewrite process, we apply it to 
Example 4.1. As noted, the consistency constraints first must be transformed into 
Prenex conjunctive normal form: 

F = { (1) VzlVz2=owns(xl,z2) V is(xl,person), 
(2) Vx,Vx2-owns(=~, x~) v is(x2, ear), 
(a) Vx,3x~-iS(Xl, car) V owns(x~,~,), 
(4) Vx13x2--,is(xl,person) V owns(xl,x2), 
(5)  VXlVX2VX3~OWnS(Xl,X2) V ~owns(x3, x2 ) V x 1 : :  X3}. 

Suppose that the starting formula is g f  = is(x1, person) A is(z2, car), i.e., we 
wish to generate persons and cars. 

• First, no reduction rule can be applied. Extending is(x1, person), due to 
the negative literal of formula (4) (notice the difference to the example in 
Section 4.2.10, yields the following result: i s (x1 ,  person) A is(x2, car) A 
(~3-is(xl,person) V owns(~l,~3)) 

• Applying Reduction Rules 1 and 4 with o = [x 3 ~ x2] we obtain 
is(xl,person) A i s ( x ~ , c a r )  A o w n s ( x , , x 2 ) .  The choice for a would 
have to be made by the user. The system could support the user by revealing 
formula (2) (presumably in its original form) from which he or she could 
conclude that x3 is a car. 

• No further reduction is possible. Extending OWnS(X1, X2) with formula (1) 
yields is( ~1, per son) ^ is(z:, ear) ^ owns(~ 1, ~ )  ^ (-owns( ~ ,  ~2) V 
is(~l,person)) 



188 

• Applying Reduction Rules 1 and 2 yields is(xl,person) A is(x~, car) A 
owns(x1, x2), i.e., the extension by formula (1) had no effect. 

The subsequent extension of owns(x1, x2) with formula (2) similarly has 
no effect on the intermediate formula due to reductions according to Rules 
1 and 2. 

Extending owns(x1, x2) because of the first negative literal of (5), and 
applying Reduction Rule 1 we obtain is(xa,person) A is(x2, car) A 
owns(x , A (Vz -,owns(x , v = =  

The literal owns(xl,x2) could once more be extended with the second 
negative literal of (5). Because of Reduction Rule 3, this has no effect on 
the intermediate result. 

• Now, we extend is(x2, car) with formula (3) and obtain is(xa,person) A 
is(x2, ear)^  ow.s(xi,x ) ^ (W3 owns(x3,  ) V == ^ 

ear) V 

Applying Reduction Rules 1 and 4 with a = [x4 ~ x]], and then Reduc- 
tion Rule 2, we arrive at the final generator formula: iS(xl,person) A 
i3(x2,ear ) A owns(Xl,X2) A (Vx3-~owns(x3, x2) V X 1 = =  X3) 

As shown, rewriting compresses the constraints into a very compact form, albeit in 
a somewhat subjective, user-controlled manner. The final generator formula differs 
logically from the constraints in the sense that it is "stronger": the constraints 
express an existential requirement for owns-facts as opposed to the generator 
formula with implicitly universally quantified variables for owns. If, for example, 
for each variable (Xl and x2) two constants (e.g. person_l, person_2, car_l 
and ear_2) are generated, there are four possibilities to combine with owns-facts. 
Generating all four possibilities violates the formula following the owns-formula 
in the generator formula. To avoid such conflicts and to augment the spectrum 
for possible test databases, we introduce pragmatic parameters for the generation 
operator to guide the generation of such facts (Section 5.2.6). 

5. Test Data Generation 

In this section, we recall the SATCHMO approach (Bry et al, 1988) and present 
the enhancements that fulfill the requirements for test data generation. Finally, we 
present our approach for generating test dam according to a generator formula. 

5.1 Adapting the SATCHMO Approach 

5.1.1 A Short Description of SATCHMO. B~y, et al. (1988) suggest a method for 
checking finite constraint satisfiability. The constraints are restricted to formulas of 
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restricted quantification. Although the restriction resembles our  notion of range- 
restrictedness and guarantees domain independence, neither one is a subset of the 
other, due to the differences in existentially quantified variables. For example, the 
formula Vx 3y-~p(x, y) A s (y) is range-restricted but not of restricted quantification, 
whereas the formula Vx(-,p(x) V 3y(s(y) A -~t(y) ) ) ~ Vx3y(-~p(x) V s(y) ) A 
(-,p(x) V -,t(y)) is of restricted quantification but not range-restricted. 

This method starts with an empty database. If no consistency constraint is 
violated, the current database is a model and finite satisfiability is proven. If each 
constraint is a universally quantified formula, this is already true for a database 
without facts. (Due to the restricted quantification, each formula can be represented 
as a disjunction of which at least one component is a negative literal; in an empty 
database all negative facts are true). Otherwise, a repair of each violated constraint 
is attempted by adding new facts. If no repair is possible, the procedure backtracks 
to the last choice point. The recursive algorithm stops as soon as all constraints 
are satisfied, with the current database as the resulting model. 

5.1.2 Extending SATCHMO for Test Data Generation. In order to adapt SATCHMO 
to our purposes, we extended it with additional features. This extended ver- 
sion is called exSATCHMO. One feature is the ability to control the size of the 
model: According to the starting formula facts are inserted, e.g. when starting with 
is(xl,person), is(personA,person) is added. If a model is found, the facts 
are counted. If the quantity is smaller than the quantity desired by the user, new 
facts are added automatically, and the algorithm is started again. 

Another feature allows the user to specify a pattern which generates meaningful 
identifiers, e.g., person_i for persons. 

The most important extension includes a generator formula. The generator for- 
mula of our running example is is(x], per son) A is(x2, car) A owns( x 1, x2 ) (for 
reasons apparent in Sections 5.2.4 and 5.2.5, we omit the last quantified formula). 
exSATCHMO proceeds as follows: If two persons and two cars are requested, 
is(per son_l, per son), is( car_l , car ) and owns(per son_l, car_l ) are added 
in a first step. Hence, variables Xl and x2 are related to the generated instances 
persona and car_l. Keeping track of such relationships will be explained in detail 
in the next subsection. Because consistency remains untouched, a model has been 
found. However, the model is too small for our purposes (after all, we requested 
2 persons and 2 cars). Facts are inserted once again, i.e. is(person_2, person), 
is(ear_2, car) and owns(person_2, car_2). These insertions also preserve con- 
sistency. Furthermore, now the required quantities have been generated. Thus, this 
model constitutes the result of  the generation process. 

Suppose two persons and only one car should be generated. After the insertion 
of is(person_l, person), is(car_l, car) and owns(person_l, car_l), and af- 
ter it has been determined that consistency is satisfied, is(person_.2,person) is 
added to fulfill the required quantity of  persons. Because person_2 does not own 
a car constraint 4 is violated. SATCHMO tries to add new facts; an instantiation 
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must be searched for 3x2is(person_2,person) ;. owns(person_2, x2). In- 
stantiations that are deducible for the restriction literals are computed. For cases 
where no candidates are derivable, an additional heuristic has been incorporated 
in SATCHMO to find more restriction literals (Moerkotte and Lockemann, 1991). 
This way we arrive at owns(person_2, car_l). But now, constraint 5 is violated 
and cannot be repaired by adding another fact. Hence, the previous computation 
is backtracked and, instead of selecting owns(person_2, car_l), a new constant, 
owns(person_2, car_2) with car_2, is inserted. Finally, to cure violated constraint 
2, is(car_2, car) will be added. 

5.2 An Approach Based on Operationalization of the Generator Formula 

As we indicated, the SATCHMO approach comes closest to our own. It incrementally 
generates facts, tests for consistency, and repairs inconsistencies by adding new facts 
and by chronological backtracking. Although it has been extended with additional 
features to fulfill the requirements for test data generation, we propose an approach 
centered around the generator formula and, hence, more directly related to the 
requirements of  test data generation. 

5.2.1 GeneralApproach. The generator formula is the result of the first stage. The 
generator formula, a descriptive abstraction of the involved consistency constraints 
and of possible conflicts within the generated test data, is translated into a sequence 
of operators. For this purpose, we introduce two powerful operators: the generation 
operator and the test-and-repair operator. The former generates new test identifiers 
according to a user-specified pattern, the latter checks whether the generator formulas 
(which are affected by the test data generated so far) remain valid for the current 
test database. In case of failure, an integrated repair mechanism adds and removes 
test data so that the invalidity is resolved. 

First we demonstrate our approach to operationalizing the generator formula 
with the example from the previous section. Persons and cars should be gen- 
erated by giving the starting formula is(xl,person) A is(x2, car). The corre- 
sponding generator formula is is(xl,person) A is(x~, car)A owns(x1, x2) A 
(Vxa-~owns(xa, x2) V Xl = =  x3). To generate two persons and one car, there 
are several problems to attack: Generate the specified amount of data, represent the 
generated information, and meet the consistency constraints. We will now discuss 
each problem in more detail and illustrate specific solutions. Subsequent sections 
describe the general solution. 

Because atoms are the smallest formulas in a generator formula, one would 
expect the generation operator to identify them and then create instances for 
them. For example, it could generate two facts, is(person_l,person) and 
is(person_2,person), for the atom is(xl,person). Unfortunately, this ap- 
proach obscures the relationship between the variable xl  and the generated instances 
person_l and person_2. However, this relationship is needed because of the oc- 
currence of variable xl  in other atoms of the generator formula where it must be 
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instantiated by the generated individuals. Hence, some bookkeeping with a suitable 
representation must accompany the test data generation. For this purpose, a triple 
called testdata structure is introduced. The first component contains the set of atoms 
for which test data has been generated, in our case initially {is(x1, person)) .  The 
second component contains the generated individuals in form of substitutions for 
the free variables of the atom, so far {Ix1 ~-- p e r s o n _ l ] ,  [xl ~ person_2]} .  The 
third component is redundant but simplifies the formulation of the subsequent steps. 
It contains the set of variables that so far have been bound by the substitutions, 
{ x l )  in our example. This test data structure is then passed to the next operator 
within the generated operator sequence. Here, one car is to be generated next. 
Thus, is(x2, car), Ix2 ~ car_l] ,  and x2 are added to the three components of 
the test data structure, respectively. 

Consider the case of an atom whose variables are bound by previously generated 
test data, i.e., whose variables appear already in the third component of the test data 
structure. This is true, e.g., for the next atom to be treated, owns(xl~ x2). The 
generation operator proceeds as follows: it tries to combine the respective substitu- 
tions found within the test data structure. Here, the complete set of combinations 
is {[xl ~-- person_l ,x2 ~-- car_l],[xl ~ person._2,x2 ~-- car_l]). The test 
data structure is augmented by owns(xl~x2)  in the first component, and the two 
combinations in the second component. The third component remains unchanged 
because no new variable is involved. 

Treating the last conjunct VX3-nOWnS(X3, X2)  V x 1 = - ~  X 3 o f  our generator 
formula, we observe another problem. This formula obviously is false for the 
given input because both person_l, and person_2 own car car_l. Further, this 
formula cannot be made true by generating new persons or cars using the generation 
operator. We must invoke another mechanism to correct the test database created so 
far. The corresponding test-and-repair operator is applied whenever the generator 
formula contains a conjunct (here: an element of the conjunction that represents the 
generator formula) which is not an atom, or is an atom with = =  as its predicate. 3 

Notice that we proceeded from left to right, i.e., we interpreted the generator 
formula as an instruction, not a logical formula, to generate, test, and repair facts. 
This suggests that we devise an algorithm that translates a given generator formula 
into an operator sequence (Section 5.2.5). First, we formally introduce the test data 
structure, the generation operator, and the test-and-repair operator. 

5.2.2 The TestData Structure. The test data structure consists of three components: 
a set of atoms for which test data has been generated; a set of substitutions for the 
variables occurring in the atoms of the first component; and a set of those variables 
bound by the substitutions in the second component of the test data structure. The 

3. This limitation is due to the fact that the interpretation of equality is fixed and cannot be manipulated by 
generating facts of the form a = = b. 
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third component could, of  course, be derived from the substitutions but is kept 
redundantly for convenience. More precisely, we define: 

Definition 5.1 A test data structure is a triple (A,  S, V)  where 

• A is a set of  atoms, 

• S is a set of  substitutions with Va E A3~rx E S : X ~ var(a) and 
a x ( X )  C C, i.e., S contains for each variable of atoms in A at least one 
substitution that maps the variable to a constant. 

• V = UaeA vat (a)  is a set of variables, by definition all those variables for 
which at least one substitution has so far been found. 

Initially A = S = V = ®. 

Note that it is trivial to construct the test database from the test data structure. 
We obtain it by applying all the substitutions given in the second component to the 
atoms within the first component. We take this procedure for granted from now 
o n .  

5.2.3 Generation Operator. The generation operator  has two input parameters, the 
(present) test data structure and an atom for which test data is to be generated, and 
one output parameter, the appropriately modified test data structure. The necessary 
changes to the structure vary, depending on the free variables of the argument atom 
and the variables already bound by earlier substitutions. We distinguish four cases: 

. In case the input atom is a fact, i.e., does not contain any variable, we add 
just this fact to the set of  already treated atoms, i.e., the first component  of 
the test data structure. The other two components remain unchanged. 

. In case all the variables of  the input atom are already bound by substitutions 
of the input test data structure, the first two components are modified to 
include the atom and the combinations of substitutions, respectively. This 
procedure has been indicated above for owns (x l ,  x2). 

3. If no variable of  the input atom is bound, individuals and substitutions using 
these individuals have to be generated (as for i s (x l ,person) ) .  

4. Finally, some but not all of  the variables of  the input atom may already be 
bound. This case is treated as a combination of  cases 2 and 3. 

Definition 5.2 (gen -- op). The operator  gen -- op generates new atoms and 
substitutions. It is defined by the following characteristics: 
input parameters: atom a, 

test data structure Tin = ( Ain, Sin, Vin) 
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outputparameters: test data structure Tout = (Ao~t, Sour, Vo,~t) 
semantics: Ao~t : =  Ain U {a} 

Four cases are distinguished: 
1. Atom a is a fact: vat(a) = Q : 

Sou~ := Sin, 
Vout := Vi~. 

2. For all variables of a at least one substitution already exists: 
vat(a)  7~ Q and vat(a) C_ Vin : 
combine the substitutions of Sin to new ones: 
consider those substitutions o x ,  E Sin with vat(a)  C X1 U . . . U Xn and 

X1 U . . .  U X n  minimal 

Sou ̀  :-~ {O'x1 0 . . .  O 0"Xn } U {orXIo" X E Sir~,X ~ X l  U . . .  U X n }  
Volt := V/n. 

3. No substitution exists for any variable of a: 

vat(a)  = { X l , . . .  ,Xk)  and vat(a)  n Vin = Q:  
for each xi E var(a) generate ni constants cij, 
generate new substitutions, 

Sour : =  {o-{~,) o . . .  o o{~)1o'(~,) E {[xl ~ c i j l l l  _< j <_ ni}} U Sin, 
Volt := V~ u vaT(a). 

4. Only for a part of the variables of a substitutions already exist: vat(a)  5¢ Q 
and v a t ( a ) N  V~n = X where X ¢ ® and X ¢ va t (a ) :  

for X proceed according to case 2 and produce S1, 
for vat(a) \ X proceed according to case 3 and produce $2, 
SOU t :'~ {O'Xl O O'x2lO'xl e ~1, O'X 2 E ~-~2}, 
Vout :=  v~. u va4~). 

To allow for more flexibility and user influence on the generation process, additional 
parameterization of the generation operator is provided to direct the generation 
process and generate test databases with different semantics (Section 5.2.6). 

5.2.4 Test-and-Repair Operator. As indicated in Section 5.2.1, this operator  is in- 
voked as part of processing the generator formula. The underlying repair mechanism 
(X4), which deduces repairs for violated constraints, originates from a system de- 
scribed in Moerkotte and Lockemann (1991). We adapted it to the purpose of test 
data generation. We sketch the general principles of the approach, the changes we 
made in order to fit it to our problem, and its relationship to SATCHMO. We also 
examine at what point the operator is to be invoked. 

Similar to SATCHMO, X4 attempts to alleviate all violated consistency con- 
straints simultaneously. Contrary to SATCHMO, X4 does not exclusively rely on the 
addition of new facts. Instead, it extracts potential causes for a violated constraint 
from a trace created during the consistency check. A potential cause is a minimal 
set of literals where a positive literal represents an atom which should be deleted 
from the current database and a negative literal - , a  stands for an atom a which 
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should be added to the database in order to alleviate the consistency violation. 
Consequently, it is possible for X4 to delete facts explicitly, whereas in SATCHMO 
facts can be deleted implicitly only by backtracking. 

As in SATCHMO the algorithm is iterative in nature because a potential 
cause may not be an ultimate repair if several consistency constraints must be 
considered simultaneously. (The "repair" of one consistency constraint may violate 
another.) Therefore, we distinguish between a potential cause (concerned with a 
single consistency constraint), and a definite cause (concerned with the entire set 
of constraints). For each potential cause an attempt is made to derive iteratively 
a definite cause that also should be minimal (Moerkotte and Lockemann, 1991). 
The potential cause is "executed," i.e., for a positive literal a we compute del(a) 
(a is deleted from the database), and for a negative literal ~ a  we have add(a). 
Consistency is checked for the resulting database. If a violation is discovered, the 
set of its potential causes is derived. Each of those new potential causes is combined 
with the starting cause and then is executed again. If no constraint is violated, we 
arrive at a definite cause, otherwise new potential causes have to be computed and 
so on. A repair represents the executed version of a definite cause and consists 
of a minimal number of changes. Note that the generation of repairs is closely 
related to the problems of view and intentional update investigated (Cosmadakis 
and Papadmitriou, 1984; Manchanda and Warren, 1986; Tomasic, 1988; Rossi and 
Naqvi, 1989; Bry, 1990; Guessoum and Lloyd, 1990, 1991). 

In light of the test data generation, minimality of repairs is superfluous. Fur- 
thermore, it is not necessary to compute all possible repairs because only one repair 
is needed to cure a constraint violation. What we need are criteria to select causes 
and repairs in order to govern the appearance of the test database and arrive at 
a certain variety. The number of potential causes increases as the quantity of test 
data grows and, thus, the number of all possible combinations increases enormously 
even for small quantities of test data. As a consequence, the computation of all 
potential causes may lead to memory problems and bad performance. 

To illustrate the generation of potential repairs, consider our running example 
at the point where two persons and one car have been generated. The insertion of 
the appropriate facts leads to a violation of constraints 3 and 4. The corresponding 
traces are depicted in Figures 1 and 2. 

The satisfaction of the failed constraint can be reached if all of its instantiations 
for Zl are successfully derivable (Figure 1). (Note that the all-requirement leads 
to the and-connector.) Here, car_l is the only instantiation deducible from the 
database. On the other hand, the test of the existentially quantified subforrnula will 
succeed if at least one instantiation evaluates to true (or-connector). In principle, 
one constant is as good as another. Because it does not make sense to consider 
all constants of the database, those instantiations which are deducible from all the 
restriction literals are chosen (the same principle found in exSATCHMO). If no 
instantiations are found, a heuristic to derive new restriction literals is applied. This 
is done by forward chaining within the constraints (Moerkotte and Lockemann, 
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Figure 1. Derivation tree for violated constraint 3 

nttcceedt: all x l  ex x2:is(x1 ,car) ==> owns(x2,xl) 

succeed,: ex x2: is(earj,car) ==> owns(x2,car_l) 

o2"-... 
aueeeed:is(ca~l ,car) ==> I 

owns(person_l ,cat1 ) I 
. / ~ " ~ x  ==¢¢eed: is(car I ,car) ==> 

J - "  X owns(person_2,car 1) 

.a:l.a.: is(car 1 ,car) ~ . / ~ = ~  .=cceed.: is(car 1 ,Car) ==> 
/ \ owns~ome._person car 1) 

succeed:owns(person_l,car 1) ~ X ' - 
,.t..l.: is(car_l , c a r ) ~  / o ~ N  

succeed: owns(person_2,car_l) ~ 
:ga£.l.: i s ( c a r _ l , c a r ) ~  

succeed: owns(some.person ,car_l) 

1991). For our example, we arrive at person_l, person_2, and a new constant 
some_person. Each of the instantiated subformulas is satisfied by the failure of 
its left-hand side or by the success of its right-hand side. Taking these subformulas 
we arrive at ground atoms, and the trace terminates at this point. 

Starting at the root of the trace, we collect information as follows: we recursively 
collect the subnodes of each node with the connector given, and introduce negation 
if the goal is "succeed." Recursion terminates with a leaf. For the trace in Figure 
1, this results in 

(and (or (or 

(or 

(or 

is(car_l, car) 
-~owns (person_l, car_l )) 
is(car_l, car) 
- owns(per son_2, car:) )  
is(car_l, car) 
- owns( some_person, car_l ))) ) 

This expression may be simplified to 

(or is (car_l, car) 
-towns(person_l, car_l) 
-~owns (person_2, car_l) 
- owns( some_per son, car : ) ) 
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Figure 2. Derivation tree for violated constraint 4 

Bttcceed: all xl  ex x2: is(xl,person) ==> owns(xl,x2) 

succeed: is(person 1 person) ==> i n ==> . . . .  t~,~^,~ t ,.o, 4 ~ ' k 8ucceed:ex x2: s(person 2,perso ) 
. . . . .  ~ . . . . .  _ . . . . .  _- i ~ owns(person_2,x2) 

~ ~  nucceed: is(person_l,person)~ ==> ~ o r ~  
owns(person_l, some_car) ~ 

. . . . . . . . . . . .  

owns(person_2, some_car ) 
............ / z \  

. . . .  . . . . . . , .  

Ground atoms have been omitted, but may easily be reconstructed. Compare with Figure 1. 

Each of its constituents corresponds to one potential cause (i.e., we arrive at four 
potential causes for constraint 3). For constraint 4, Figure 2 results in the expression 

(and (or 

(or 

is (person_l, person) 
-,owns(person_l, car_l) 
 o ns(pe  son_a , som _ ar ) ) 
is (person_2, person) 
-towns (person_2, car_l) 
- owns(person_2, some_car))) 

By transforming this expression into disjunctive normal form, we obtain 3*3 = 9 
potential causes. Because both constraints 3 and 4 must be satisfied, the overall 
consistency can be checked by joining them conjunctively. After simplification, we 
arrive at the following expression for both constraints 

(and (or is(car_l, car) 
-~owns(per son_l, car_l) 
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(or 

(or 

-~owns(person_2, car_l) 
-~owns (some_person, car_l)) 
is(person_l, person) 
-~owns(person_l, car_l) 
 owns(per son1, some_car)) 
is(person_2, person) 
~owns (person_2, car_l) 
- owns(person_2, some_car))) 

Hence we derive 4 • 3 * 3 = 36 potential causes. This indicates that the number 
of causes can grow tremendously even for very few facts. One can derive roughly 
1600 potential causes for the case of 3 persons and 2 cars. In the worst case, the 
number of repairs is exponential in DB a size. To reduce this number, we perform 
some other simplifications of the expression resulting from the trace, e.g., 

(and (or Ix 
12) 

(or 12 

ll )) 

with lx, 12 literals will be simplified to 

(or ll 

12). 

The original repair mechanism goes one step further and computes the minimal 
disjunctive normal form in order to gain minimality of repairs. 

The example confirms our initial suspicion that selection criteria are urgently 
needed. These should be locally applicable, i.e., not requiring the knowledge--and 
hence, derivation--of all causes. We leave it up to the user to choose among one 
of three selection strategies: 

• del-strategy: 
Positive literals are preferred. 

add-strategy: 
Negative literals are preferred. This strategy corresponds to the search order 
realized in SATCHMO. 

interactive-strategy: 
The user is interactively asked for each or-expression deducible from the 
derivation tree to select one of its constituents. That means he or she is able 
to directly select causes or even parts of a cause. 
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For our example (Figures 1 and 2) and its corresponding expression (above), the del- 
strategy yields the cause { is( car_l, car), is(per son_l, per son), is(per son _2, 
person)}, which makes little sense because it undoes all the previous updates. By 
contrast, the add-strategy yields { - ~ o w n s ( p e r s o n _ l ,  ear_l), -~owns(person_2, 
car_l)}, which better matches the intuitively desirable additions. However, this 
computed potential cause violates constraint 5 which can only be cured by deleting 
owns(person_l, car_l ) or owns(person_2, car_l), respectively. Combining 
one of those literals with the starting cause results in a cause that contains a 
fact and its negation. Such inconsistent causes cannot be amplified to definite 
causes. Consequently, the computation of another potential cause is attempted 
according to the add-strategy. This yields {-~owns (person_l, car_l), -~owns 
(per son_2, sorne_car)}, which finally leads to the definite cause { towns  
(per son_l, carl ),  owns(per  on_2, some_car), - is(some_car, car) } (the 
same strategy realized in SATCHMO, Section 5.1.2). However, since we simplify 
the expressions from the trace, the resulting test databases need not be identical. 

In summary, if we are willing to sacrifice full automation of the generation 
process and permit the user to influence the sequence, a time-consuming search can 
be avoided, and the appearance of the test database can be effected, exSATCHMO 
permits a direct influence on the appearance as well, however this can only be done 
by rejecting the model found and initiating backtracking. 

It has been shown that the original repair mechanism works correctly and com- 
putes all minimal repairs (Moerkotte and Lockemann, 1991). Dropping minimality 
and computing only one repair still preserves correctness. This allows us to defer 
the test-and-repair operation to the end of the sequence of gen -- op operations 
that corresponds to a generator formula, and then to apply it to the total set of 
consistency constraints. 

Before providing a formal specification of the test-and-repair operator, we 
continue the example given at the beginning of this section. Remember that we 
generated two persons and one car, and both persons owned this one car. This 
situation was ruled out by the last partial formula VXa~owns(x3, x2) VXl = =  x3 
of the generator formula. A solution is to remove one of the substitutions, e.g., the 
one representing the fact that person_2 owns the car car_l. This is exactly what the 
repair operator does in this case. Quantified formulas within the generator formula 
also have to be subjected to the test-and-repair operator and not the gen -- op 
operator. 

The test-and-repair operator has two input parameters, a set of formulas, and 
the test data structure. If the formulas hold within the input test database, the test 
data structure remains unchanged. Otherwise, it is repaired so that the formulas 
hold within the output database. The computed repairs may result in additions or 
deletions of substitutions. 

Definition 5.3. The operator t ~ r  -- op checks whether a set of formulas holds for 
the set of generated test data and repairs if necessary, the set of test data. 
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input parameters:  set of  formulas F, 
test data structure T/n = (Ain, Sin, Vin) 

output  parameters:  test data structure Tout = ( Ao~t, Sour, Volt) 
semantics: check if {a~rxl a E Ain, ax  C Sin, vat(a)  C X }  

{ f ~ x [ f  E F, crx E Sin, f r e e ( f )  C X }  
then Tout : =  Tin, 

else add or remove atoms and/or substitutions of  Tin, 
i.e., Tin is changed to TT~pai~ea SO that 

{aoxla  E A,.~p,~i~d,o'x S S,~v=i,~d, var(a ) C_ X }  
{ f~xl f  e F,,.x e S~o~o~.d,f,~(f) c_ X), 

5.2.6 Generation Procedure. Here  we present the process for translating a generator  
formula into a sequence opx, • • •, Opn of operator  calls. As a heuristic, we order the 
operators in the generator formula so that conjuncts with the least number  of  still 
unbound variables are preferred. If  there are several atoms with the same number  
of  still unbound variables, the one with the least total number  of variables is used. 
This leaves conjuncts which are not atoms, or are atoms with = = as predicates 
and, hence, are unsuitable as input parameters  for the generation operator.  Such 
conjuncts are passed to the test-and-repair operator  and processed as soon as all 
their free variables are bound. 

Algorithm 5.4: Translation into operator sequenca Let g f be the generator  formula 
in the form of a conjunction of formulas, and D B  c the set of  constraints to be 
satisfied. 

start opera tor  sequence O P S  : =  (),  

test data structure (A ,  S, V )  : =  (0, 0, 0) 

set of  variables already bound l'~o~na : =  0 

loop on g f 

• select the next atom a in g f  so that the number  of variables of  a which do 
not occur in Ubound is minimal and, if there are choices, the total number  
of  variables of a is also minimal, 
O P S  :=append(OPS, gen - op(a)), 
Vso=,~d : =  Vbo=,~d LJ vat(a), 

• select all f formulas which are not atoms, or are atoms with = =  as predicates 
in g f so that fr~c(f) C Vbo=nd, and there are no a atoms with gcn--op(a ) 
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qf O P S  and var(a) C_ Vbou,~d, 
O P S  : = a p p e n d ( O P S ,  t~:r - op(F)) where F is the formula set for 
which the condition holds. 

endloop 
append t&r - - o p ( D B  c) to OPS 

As soon as all free variables of f formulas in the generator formula are found 
in Vbo~nd (i.e., constants have been generated for them), and there are no a atoms 
left with variables in Vbo~,~d, we append t ~ r  -- op(f)  to O P S .  That means that 
formulas are tested as early as possible to avoid generating too many eventually 
false test data. 

At the end of the sequence the whole set of original consistency constraints 
is appended. This is necessary because the repair of a formula could violate the 
validity of one or more formulas processed earlier. Because the repair mechanism 
is complete and correct, the correctness of our approach is guaranteed. Further, 
termination of the entire test data generation procedure is guaranteed. Clearly, 
gen -- op terminates. Hence, the generation procedure terminates if t ~ r  -- op 
terminates (Moerkotte and Schmitt, submitted). 

To illustrate the translation of a generator formula into an operator sequence, 
we apply it to Example 4.1 of DBo~n, and its generator formula: 

iS(Xl,person) A is(x2,car)  A owns (x , , x2 )  
A(Vx -- owns(x , v = =  x3). 

The first element of the sequence is g e n -  o p ( i s ( x , , p e r s o n ) ) ( g e n -  
op(is(x2, car)) is also a possible choice). Next, is(x2, car) is chosen, because 
no f formula exists with f r e e ( f )  C Vbo~nd = {Xl}, among the atoms (it 
contains fewer variables than owns(x1,  x2)). Thus we have O P S  = (gen - 
o p ( i s ( x l , p e r s o n ) ) , g e n - o p ( i s ( x 2 , c a r ) ) ) .  In the third step, atom owns(x1,  
x2) is the natural candidate because its variables occur in Vbou~d = {Xl,X2}. In 
the fourth step, the last formula is considered because it includes a still unbound 
variable (x3). However, it is a quantified formula, not an atom, so no gen -- op 
operation is produced. Instead, it is appended together with all the consistency 
constraints of DBowns to the operator sequence. Hence, we obtain the following 
operator sequence: 

(gen -- op(is(x,  , person)),  gen -- op( is(x2, car)), gen -- op(owns(x l ,  x2)),  
t ~ r  - op( {Vx3~owns(  x3, x2) V x,  = =  x3 } ), t~zr - op( D Bo~,n,) ). 

5.2.6 Pragmatic Parameters of the Generation Operator. Here we briefly discuss 
additional parameters that could be supplied to the generation operator. One 
parameter (hi,  Definition 5.2, case 3) has to do with the number of constants to 
be generated by the operator. This allows the user to control the size range of 
the generated database. The size parameter is added to the generation operators 
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in the final operator sequence as follows. For each variable in var(a) \ Vin of a 
generation operator, the number of constants to be generated with atom a has to 
be specified by the user. The operator then generates the set(s) of constants of the 
specified size. This cannot be guaranteed to be the number of constants in the final 
generated test database, because the t&r-operator may introduce new constants or 
remove others. Thus, the size parameter is only an approximate measure for the 
number of constants in the final test database. 

The second parameter concerns the combinations to be generated by the gen- 
eration operator. Remember the operator sequence generated for our example 
OBown,. Here,  y e n  -- op(owns(zl, z2) )  is executed after constants for z l  (per- 
sons) and :r2 (cars) have been generated. If, for example, for each variable two 
constants (person_l, person_2, car_l and c a r _ 2 ) w e r e  generated, four possibil- 
ities exist to combine with owns-facts. If the generation operator has to generate 
facts for an atom p(zl, • . . ,  x,~), and for each xi  there are ni  possible instantia- 
tions, the number of combinations can become unmanageably large. On the other 
hand, the predicate in the (here owns) atom reflects certain real-world situations. 
Consequently, we allow the user to roughly specify the semantics of the relation by 
providing an approximate mathematical specification. For example, the user may 
specify that each person should own a car, or vice versa. For a binary predicate, 
we allow the user to specify whether the relation should be injective, surjective, etc. 
or give functional dependencies. So far, we provide a set of 16 different relation 
types among which the user may select. 

The advantage of this additional parameter is two-fold: First, the user can 
direct the generation process and arrive at test databases with different semantics. 
Second, it is possible to exploit additional knowledge the user might have (in order 
to avoid the generation of test data that otherwise would contradict some given 
consistency constraint) and thus reduce lengthy work of the t&r-operat ions.  We 
can even go one step further and automatically check whether the specification of  
the relation is a consequence of the database constraints (by means of a theorem 
prover), and hence, will not lead to a constraint violation. 

6. Benchmark Results 

In previous sections, we introduced exSATCHMO and our own approach (referred 
to in the following as the generic test data generator, gTDG) together with the 
possibility for including the generator formula. Although we speculated on the 
advantages and disadvantages of both, more solid measurements should be used to 
compare these approaches. 

We differentiate between a +version and a -version for each method, resulting in 
exSATCHMO +, exSATCHMO- and gTDG +, g T D G -  (+  indicates the exploitation 
of  a generator formula and - represents the fact that only the user's starting formula 
is given). Furthermore, we indicate which strategy in gTDG was selected by noting 
it in brackets. (If the strategy does not play a role because repairs are unnecessary, 
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Figure 3. Cost of generating persons and cars 
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we omit this information.) 
The benchmarks were run on a Sun4 Workstation under Quintus Prolog 3.0. 

Both approaches use the same underlying database system and consistency checker. 

6.1 Benchmarking the Running Example. 

Here the basis for the benchmark is our example as introduced in Section 4.1. 
The desired size of the test database, i.e., the number n of persons and cars to be 
generated, was varied. We measured the CPU times to generate n persons and n cars. 
The times for the user inputs were not considered. The time for deriving the generator 
formula could be neglected. The generator formula from Section 4 was applied: 
iS(Xl,person)Ais(x2, car)Aowns(xl,x2)A(Vxa-~owns(xa, x2)VXl = x3) 
(Figure 3). 

The benchmark illustrates the performance gain of the +versions due to the 
preceding analysis step: Because of the generator formula, the generation of owns- 
facts is explicitly enforced, whereas without this formula the generation of a car or 
a person results in a violation of constraints 3 or 4, which must be repaired. With 
the generator formula, no repairs were necessary because the generation operator 
combined the constants for the owns-facts so that the constraints 3, 4 and 5 were 
not violated (Section 5.2.6). The performance gain also increases with increasing 
quantities of test data: In the case of 100 persons and 100 cars exSATCHMO + is 
better than exSATCHMO- by a factor of 8; gTDG + is better than gTDG-  by a 
factor of 6. The database generated by gTDG- depends on the strategy selected by 
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F i g u r e  4. C o s t  of g e n e r a t i n g  p e r s o n s  and  cars  
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the user. For this benchmark, we selected the add-strategy. Hence, g T D G -  behaves 
like exSATCHMO-.  The resulting databases are the same for both -versions and 
++versions. 

For both versions, exSATCHMO is superior to gTDG. This can't be due to the 
different repair mechanisms, because no repairs were necessary in the +version. The 
poorer  performance of gTDG is due to the consistency check. It gets worse the larger 
the quantities of test data that are generated at once. gTDG generates 100 persons 
and 100 cars and then tests for consistency, whereas exSATCHMO incrementally 
generates data, checks consistency, and repairs violations. One hundred small 
consistency checks testing two objects are less costly than a large check testing two 
hundred objects. 

If the quantities of persons and cars are no longer identical and more persons 
than cars should be generated, the +versions necessitate repairs as well (due to 
constraint 5). Figure 4 visualizes the cost of generating persons and cars at 3/2 ratio. 
The values of the horizontal axis represent the factors, e.g. 25 means 75 persons 
and 50 cars should be generated. 

When specifying different quantities for persons and cars the performance 
decreases for both +versions as compared to the symmetric situation. However, 
now gTDG shows a much better performance than exSATCHMO (nine times better 
when generating 75 persons and 50 cars Cr = 25)). 

Furthermore, the performance gain of the exSATCHMO generator formula 
shrank to 1.2 (for x ---- 25), due to its underlying repair mechanism. For example, 
when generating 3 persons and 2 cars, exSATCHMO + generates is(person_l, 
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person), is(car_l, car), owns(person_l, car_l ) then is(person_2, person), 
is(car.2, car), owns(person_2, ear_2) and finally is(person_3,person). 
Constraint 4 is violated because person_3 does not own a car but should. When 
repair owns(person_3, car_l) is added, constraint 5 is violated. The alterna- 
tive repair is owns(person_3, car_2) and leads to the same violation. Finally, 
owns(person_3, car_3) with car_3 as new constant is selected. Due to constraint 
2, is(car_3, car) is added and consistency is regained. This example illustrates 
that, with increasing numbers of persons and cars, the number of hopeless attempts 
(adding owns(person_n, car_i) with 1 < i < n)  grows steadily. 

Now consider 3 persons and 2 cars using gTDG. gTDG + first generates the 
same database as exSATCHMO + (3 persons, 2 cars and owns(person_l, ca r_ l )  
and owns(person_2, car_2)). When testing the consistency, constraint 4 is 
violated. The repair mechanism determines four potential causes: add(owns, 
per son_3, car_l ),add(owns, per son_3, car_2), add( owns, per son_3, car_3), 
del(is, person_3, person) (this is the order in which exSATCHMO + searches 
for a successful repair). For this benchmark we applied the del-strategy. In contrast 
to SATCHMO the action del(is, person_3, person) constitutes an immediately 
successful repair (impossible in SATCHMO, because it does not allow for explicit 
deletes). 

On the other hand, selecting the del-strategy for g T D G -  leads to an empty 
database. Selecting the add-strategy yields a result similar to exSATCHMO-. Hence, 
we selected the interactive-strategy, gTDG-  performed better than exSATCHMO + 
(due to the fact that we selected the "right" cause). Despite the fact that gTDG + 
necessitates repairs like gTDG- ,  the performance gain of the gTDG generator 
formula still is a factor of about three (for x = 25), due to the growing quantity of 
potential causes, gTDG-  generates 3 persons, 2 cars and no owns-facts. Constraint 
3 and 4 are violated and there are a fair number of potential causes to cure the 
inconsistencies: 64 for constraint 4 and 25 for constraint 3. The search space consists 
of all possible combinations, i.e., 1600 possible repairs as opposed to four in the 
+version. 

6.2 A Benchmark Including Totality and Recursiveness 

We now consider more difficult constellations of constraints by introducing a totality 
constraint on a binary relation ( re /  : dora ~ dora) and a recursive constraint 
(the transitive closure of tel realized with a relation rel_trans : dora ~ dora). 

Example 6.1: Let DBTet be a database where DB ~ is empty and D B  c contains 
the following consistency constraints: 

1. VXlVX2rel(x],x2) .'. (is(xl,dora) A is(x2,dom)) 
rel relates elements of dorn to elements of dora. 

2. Vx,3x23x3is(xl,dom) '.. (rel(xl,X2) A r e / (x3 ,  Xl)) 
The relation rel is total on dora. 
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3. VXlVX2rel(xl,x2) '; rel-trans(xl,x2) 
Every rel-relation is also a rel_trans-relation. 

4. Vx,Vx2Vx3rel(xl,x2) A rel_trans(x2,x3) ;. rel_trans(xl,x3) 
There is a transitive closure on tel. 

Suppose the user starts with rel(xl,x2). After extending it and apply- 
ing Reduction Rule 1, we obtain rel(xl, x2) A is(xa, dom) A is(x2, dorn) A 
rel_trans(xl, x2). Then the user is asked to substitute x2 with Xl. If the user 
agrees, we arrive at the following generator formula: rel(xl, Zx) h is (Zl, dora) A 
rel_trans(xl,Xl) A . . .  We leave the quantified formulas open, because they 
do not play a role in the generation process. The operator sequence looks like 
d e n  --  op (  i s (  X l , dora)), den - op( r el(x1, X 1 ) ), d e n  --  op (  r e l _ t r a n s (  x 1, X l ) ) ,  
t&r - op(...), t&r - op(DBc). If the user rejects the proposed substitution but 
applies Reduction Rule 4 twice, the analysis yields a second, different sequence: 
gen--op( is(xl, dora )), gen-op(  is( x2, dora )), den-op(rel(xl ,  x2 )), g e n -  
op(rel_trans(xl,z2)), den - op(rel(x2, xl)),gen - op(rel_trans(x2, xl)), 
t&r - op(...), t&r - op( DBC). 

We measured the CPU times to generate n elements of dora for gTDG 
and exSATCHMO, respectively. Again, we differentiated between +versions and 
-versions. Furthermore, we examined the behavior for both generator formulas 
and operator sequences. To mark which cost graph results from which genera- 
tor formula, we added +1 and +2, respectively, to the name of the examined 
method. For this example, we chose the add-strategy for each benchmark. Figure 5 
shows the resulting costs. 

Both methods show an almost identical performance. Using generator for- 
mula 2 instead of 1 worsens the result by a factor of about 1.5. The +ver- 
sions yield significantly better results than the -versions: In the case of 60 dom- 
elements, exSATCHMO +1 is better than exSATCHMO- by a factor of 21. gTDG +1 
is better than gTDG-  by a factor of 19. Taking the first generator formula 
both methods generate databases like is(dora_i, dora), rel(dom_i, dorn_i) and 
rel_trans(dom_i, dom_i) with 1 < i _< n. Consequently, no consistency 
constraint is violated and no repair is necessary. Because the specified quan- 
tities are still small, the inefficiency of the consistency check is not yet notice- 
able and the difference between exSATCHMO and gTDG remains slight. If 
the second generator formula is computed, both methods generate databases like 
is(dom_i, dom), is(dom_i + 1,dora), rel(dom_i, dom_i + 1), rel(dom_i + 
1, dorn_i), rel_trans( dom_i, dom_i + 1) and rel_trans( dom_i + 1, dora_i) 
with i = 1 ,3 ,  5, . . . .  Repairs were necessary because of the transith, ity of rel, which 
enforced additions of the form rel_trans(dom_i, dora_i) and rel_trans(dom_i+ 
1, dom_i 4- 1). 

The poorer performance of the -versions is caused by the simultaneous violation 
of constraint 1 which requires adequate dom-facts, and of constraint 3 which requires 
the addition of the equivalent rel_trans-fact for each tel-fact. These facts are 
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Figure 5. Cost of generating elements of dom according to DB~i 
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added in the course of repairs. Let  us first consider exSATCHMO- which generates 
and tests incrementally. Suppose the ith step, which inserts rel(doraS, dora_i) 
(1 < i < n),  is executed. Constraint 1 and 3 are violated. The first is repaired 
by adding is(domS, dora), the latter by inserting rel_trans(domS, domS). 
Hence, we arrive at the same database as if taking the first generator formula. 
Although no backtracking is necessary, the performance loss is significant, g T D G -  
generates the same database as exSATCHMO-.  

Now we change the example by substituting a disjunctive constraint for the 
totality constraint so that the transitive closure of  r e / t o t a l l y  covers dora. Call the 

resulting database D B'r~ I. 

Example 6.2 Let D B'ra be a database where D B" is empty and D B c contains 
the following consistency constraints: 

1. VXlVx2rel(Xl,X2) '.. (is(xl,dOm) A is(x2,dom)) 
r e / r e l a t e s  elements of  dora to elements of  dora. 

. WlW~i,(~l ,dom) n i,(~,dora) n ~, # ~ ;. (rel_t~an~(xl,~) 
Vrel_trans(x2, x l ) ) .  All elements of dora are related by rel_trans with 
one another. 

. 

. 

VxlVX~,.d(Xl,X~) ~ ra_tra.~(Xl,X~) 
Every rel-relation is also a rel_trans-relation. 

VxlVx2Vx3rel(xl,x2) A rel_trans(x2, x3) '.- rel_trans(xl,x3) 
There is a transitive closure on rel. 
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Figure 6. Cost of generating elements of dom according to DB'r~ t 
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Startingwith te l (x1 ,  x2) yields rel(  x l  , X l ) t i 3 ( X l ,  dom ) Are l_ trans(  x l  , x l  ) 
A . . .  and r el(xa, x2) A is(x1,  dora ) A is(x2,  dom ) A r el_tr ans(  x l, x2 ) A . . ., 
if the substitution Ix2 +-- xl] proposed by Reduction Rule 6 is rejected. Again, 
we leave the quantified formulas open, because they do not play a role in the 
generation process. The operator sequence corresponding to the first generator 
formula is the same as the first one of example 6.1: gen -- op ( i s ( z l ,  dora)), gen  - 
op( rel  ( x l  , X l ) ) , g e n - o p (  r el_tr ans(  x l , Xl )), t ~ z r - o p ( .  . . ) , t ~ z r - o p (  D Be). 
The sequence resulting from the second generator formula is gen - -op ( i s ( x l ,  dora)), 
gen  --op(  is(x2,  dora)), gen - o p ( r e l ( x l ,  x2)), g e n - o p ( r e l _ t r a n s ( x l ,  x2)),  
t & r  - op( . . . ) ,  t & r  - op(DBC). The plot of Figure 6 shows the CPU times gener- 
ate n elements of dora for both methods and both generator formulas. The indices 
+1 and +2, respectively, denote which generator formula was taken. For gTDG +1 
and gTDG +2, we chose the add-strategy; for gTDG-,  the interactive-strategy. 

In comparison to Figure 5, the performance gain of the +versions over the 
-versions decreased from 8 to Z8 for gTDG and from 9 to 3.4 for exSATCHMO 
when generating 30 elements of dora. This is due to the fact that, despite the use 
of the generator formula, the additional disjunctive constraint causes the need for 
repairs in the +versions. 

Although exSATCHMO- needs no backtracking, gTDG- is superior to 
exSATCHMO-. Both start with generating facts like rel(dora_i, dora_i), so that 
constraints 1 and 3 are violated. To cure them, the insertion of is(dora_i, dora) and 
rel_trans(dora_i,  dom_i) is required. These additional facts cause a violation of 
the disjunctive constraint, exSATCHMO generates rel_trans(dora_i,  dora_j) and 
rel_trans(dora_j,  dora_i) with 1 _< j < i to cure it (all possible combinations 
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are generated). For 30 elements this results in 900 rel_trans-facts. Due to the 
interactive-strategy selected for gTDG-,  we were able to restrict ourselves to the 
necessary combinations; for 30 elements we arrive at 435 plus the symmetric ones 
(30), which are generated because of the generator formula, i.e., 465 altogether. 

The +versions show an almost identical performance. The versions with 
the second generator formula yield better results than those with the first one. 
Starting from the second generator formula, both methods generate facts like 
rel_trans(dom_i,  dom_i q- 1) with the result that fewer violations of the dis- 
junctive constraint occurred than in the version with the first generator formula. 
Still, the difference between these versions is only about a factor of 1.2 for both 
exSATCHMO and gTDG. 

We also observe that the +versions of gTDG show a slightly better performance 
than the corresponding ones of exSATCHMO and, although the add-strategy was 
selected, they generate smaller test databases than the +versions of exSATCHMO. 
Both +l-versions generate the same test database as their -versions. When starting 
with the second formula the +2-versions reduce the +1 test databases by the 
symmetric facts like rel_trans(dora_i, dora_i). Hence, although we chose the 
add-strategy for gTDG +1 and gTDG +2, they produce smaller test databases than 
exSATCHMO +1 and exSATCHMO +2, respectively. This is due to the simplifications 
of the logical expressions resulting from the derivation trees (Section 5.2.4). The 
better performance is a consequence of the smaller test database: fewer constraint 
violations are observed because fewer test data are generated. 

6.3 Adding Negative and Uniqueness Constraints to the Benchmark 

Consider the simple data type chain (or sequence). Expressing it in terms of 
consistency constraints leads to a combination of existentially quantified, recursive, 
disjunctive, and negative constraints. Suppose the objects of the chain are called 
nodes. We introduce relationship next : node ----r node to model the fact that two 
nodes are directly connected, and relationship connected : node ~ node to model 
the indirect connection, i.e. the transitivity of next .  

Example 6.3 Let D Bchain be a database where D B a is empty and D B c contains 
the following consistency constraints: 

1. VXlVx2next(x,,x2) ~ ( i s ( x l , n o d e )  A i s (x2 ,node) )  
N e x t  relates nodes to nodes. 

2. Vx,Vx  onne ted(x,,x ) ( i ,(x,,node) ^ 
Connected relates nodes to nodes. 

3. V x ] V x 2 n e x t ( x , , x 2 )  ;. connec t ed (x l , x2 )  
Every next-relation is also a connected-relation. 
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4. VxlVx2Vx3 : next(xl ,x2) A connected(x2, x3) :.connected(xl,x3) 
Connected is the transitive closure of next. 

5. Vxlis(x, ,node) :.-~connected(xl,xl) 
No cycles are possible. 

6. VXlVX2Vx3next(xl,x2) A next(xl ,x3) :. x2 = x3 
No branching to the right side is possible. 

7. VXlVX2Vx3next(xl,x2) A next(x3, x2) :. Xl = X3 
NO branching to the left side is possible. 

. VxlVx2Vx3 : is(x,,node) A is(x2, node) A X 1 ~ X 2 ~." 
(eonneeted(xl,x2) V conneeted(x2, xl)) 
All nodes are connected with each other. 

. Vx,Vx2connected(x,,x2) ,'- (next(xl,X2) V ( 3 x 3 n e x t ( x l , x 3 )  A 

connected( xa, x2))  
Every connected-relation is decomposable into next-relations. 

Suppose the user starts with next(xl,x2). After extending it and apply- 
ing reduction rule 1, we obtain next(x1, x2) A is(x1, node) A is(x2, node) A 
connected(x1, x2). Then the user is asked to substitute x2 with Xl. If the user 
agrees, a contradiction is reported because of constraint 5, which forbids cycles. 
Hence, we arrive at the following operator sequence: gen--op(is(xl, node)), g e n -  
op(is(x2,node)),gen - op(next(xl ,x2)),gen - op(connected(xl,x2)), 
tgzr - op(...), t~r  - op(DBC). (Again we leave open the quantified formulas 
because they do not play a role in the generation process). Figure 7 illustrates the 
CPU times to generate n nodes for both methods varied by the generator formula. 
For g T D G -  and gTDG +, we chose the interactive-strategy. 

Figure 7 shows that the performance of exSATCHMO dramatically decreases. 
Note the situation for exSATCHMO + after is(node_l, node), is(node_2, node), 
next(node_l, node_2), connected(node_l, node_2) have been generated. If 
three nodes have been requested, is(node_3, node)next(node_3, node_4), 
connected(node_3, node_4) with node_4), a new constant is added. Constraints 
1 and 8 are violated. To cure the first is(node_4, node) is inserted. The latter is 
repaired by adding connected(node_l, node_3), connected(node_2, node_3) 
and connected(node_3, node_l), connected(node_3, node_2). This database 
is the starting point for a time-consuming search which remains unsuccessful be- 
cause the last two facts must be deleted to become consistent again. That means 
exSATCHMO has to backtrack to that point. Due to constraint 9, which enforces 
the generation of new constants, the memory space needed to store all alternative 
points for backtracking in the tree increases so that it is not possible to generate a 
test database for more than three nodes. 
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Figure 7. Cost of generating nodes according DBchain 
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In gTDG the +version also necessitates repairs. Due to the interactive-strategy, 
we could directly select causes and arrive at a test database with the appropriate 
quantities. 

6.4 Summary 

We summarize the results obtained from our benchmarks as follows: 

1. Starting from a generator formula results in a remarkable performance gain 
for both gTDG and exSATCHMO. 

. Due to the incremental consistency check, exSATCHMO performs better 
than gTDG when no repairs are necessary. However, the differences are 
often rather small when the same generator formula strategy is used. gTDG 
then offers the advantage of sometimes generating smaller test databases. 

. If the consistency constraints are more complex, the search for repairs can 
lead to extremely bad performance and to memory problems. This is where 
the advantages of gTDG of being able to select among various search and 
repair strategies become clearly visible. 

The generation of realistically sized test databases is only possible in a semi- 
automatic fashion, with interactive support by the user needed to lind a potential 
cause. We feel that our approach represents a significant advance because higher 
functionality and increased flexibility have been achieved without loss in performance. 
Moreover, the gains for more complex consistency constraints are considerable. 
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7. Conclusion 

We propose a two-step approach to generate test data for an arbitrary set of general 
consistency constraints: 

1. A generator formula is constructed that covers interdependencies between 
consistency constraints and gives rise to a sequence of operations that col- 
lectively preserve consistency. Some optimizations that are not necessarily 
equivalence-preserving can be performed in a user-controlled way. 

2. The generator formula is translated into a sequence of two very powerful 
operators: the generation operator and the test-and-repair operator. The 
generation operator can be enhanced by an additional parameter which allows 
the user to generate facts in a goal-directed fashion. 

This approach has been implemented and successfully tested within a database 
design environment that serves as a rapid prototyping tool for validating semantic 
schemas. We compared our approach with a pure model-generating approach for 
satisfiability checking (SATCHMO), and extended it with additional features for test 
data generation. The performance gain resulting from the analysis and computation 
of a generator formula has been shown to be impressive in both approaches. However, 
in contrast to SATCHMO, our generation procedure provides more flexibility so 
that there is no fixed order of searching for repairs and different strategies can be 
chosen. If the constraints become too complicated, exceeding memory space and 
causing bad performance, this can be overcome only by incorporating the user into 
the selection process. Our approach is interactive and, thus, exploits additional 
knowledge a user might have. 

Future research will gain more experience with pragmatics, which also might be 
desirable for test data generation purposes. Furthermore, we plan to examine how 
to provide more user support in selecting a non-equivalence-preserving reduction 
rule, determining a strategy for finding repairs, and attaching a relation type as an 
additional parameter to the generation operators. 
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