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Abstract. With the existence of many autonomous databases widely accessible 
through computer networks, users will require the capability to jointly manipu- 
late data in different databases. A multidatabase system provides such a capability 
through a multidatabase manipulation language, such as MSQL. We propose a 
theoretical foundation for such languages by presenting a multirelational algebra 
and calculus based on the relational algebra and calculus. The proposal is illus- 
trated by various queries on an example multidatabase. It is shown that properties 
of  the multirelational algebra may be used for optimization and that every multire- 
iational algebra query can be expressed as a multirelational calculus query. The 
connection between the multirelational languages and MSQL, the multidatabase 
version of SQL, is also investigated. 

Key Words. Multidatabase, multirelational algebra, multirelational calculus, 
query optimization. 

1. Introduction 

The  great  diversity of  comput ing  systems and software accessible th rough  compute r  

networks has created a major problem in the interoperability and integration of 
heterogeneous systems and components. A special case in the area of database 
systems, and the topic of this article, is the logical grouping and cohesive access of 
relational databases. 

A large mainframe with a database system or a database server like Compuserve  
may suppor t  dozens o f  databases. A local network can have several database servers 
and a database for hundreds  of  workstations (e.g., the A D M S  system, Roussopoulos  
and Kang, 1986). A public database access system, such as the videotex system 
Teletel in France, may provide access to thousands o f  databases for  millions o f  
people.  With the introduction o f  I N G R E S  in U l t r a  4.0, the OS2/DB presenta t ion 
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manager and other inexpensive relational systems, SQL databases are spreading out 
on workstations and PCs. 

A major consequence of this proliferation of databases is that users will usually 
have data in many databases and will frequently need to jointly manipulate data in 
different databases. A Teletel user who wishes to go out to a movie and dinner may 
wish to find the cinemas and restaurants that are on the same street in a cinema 
guide and restaurant guide database. The manager of a company may need to 
see the account balances that the company has at different bank branches. This 
manager may further wish to query all the bank branches (and their databases) 
simultaneously. A traveler looking for the cheapest route may need to query several 
airline, rail, and bus databases. Furthermore, an address change may require the 
updating of the corresponding databases. 

Such manipulation requires functions that do not exist in standard manipulation 
languages which are designed to manipulate data in a single database. Classical data 
manipulation languages deal with single relations as objects of manipulation, while 
the need is to allow sets of relations as the objects. Additionally, data in different 
databases may be presented in a different format so that corresponding relations may 
not be union-compatible. The differences between similar data result from different 
perceptions of the same real universe--local needs, competition for customers, 
political incompatibility, etc. It would be impossible to provide integration via a 
global schema because there would be no agreement on the global administrator. 
The example databases given in the next section, based on actual databases, show 
some of the differences that may occur. 

A system for the manipulation of data in autonomous databases is called a 
multidatabase system (MDBS) and the corresponding language is called a multi- 
database manipulation language (MML) (Litwin et al., 1982). Databases that may 
be manipulated together without global integration are called interoperable (Litwin 
and Abdellatif, 1986). Litwin et al., 1989 present the multidatabase extension of 
SQL, called MSQL. All the functions of SQL are by definition functions of MSQL. 
MSQL also contains new functions designed for a nonprocedural manipulation of 
data in different and nonintegrated SQL databases. The rationale is that a user's 
query over these databases should be expressible as a single statement. For this 
purpose, MSQL manipulates sets of tables, called multitables or multirelations. In 
particular, the result of a query may be a multitable. 

One way to deal with a multitable query is to decompose it into the set of 
relational queries it expresses and then to transform those queries to the relational 
algebra for optimization. Clearly, this is not necessarily the most efficient method. In 
particular, the techniques of Sellis (1988) for common subexpression processing are 
applicable. In addition to the detection of common subexpressions, the processing of 
useless queries should be avoided. A promising technique for dealing with multitable 
queries is to define an extension of the relational algebra and calculus for multitables. 
The system may then optimize a query both at a high level multitable formulation 
(first in the calculus and then in the algebra) and then perform optimization at the 
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single relational level. This is the approach we introduce here. 

Research related to multidatabase systems has been reported extensively in 
the past. In some sense, all the work in Distributed (homogeneous) Database 
Systems (Ceri and Pelagatti, 1984) is related. However, the work on heterogeneous 
databases is of more interest here; a comprehensive survey on this subject appears 
in Elmagarmid and Pu (1990). Most of the systems and approaches described 
address issues related to the interconnection of database systems that use different 
query languages and methods to allow exchange of data among such databases. 
The question of which model should be used to express queries in such systems 
is not addressed, however. Our research attempts to define such a model in the 
form of an algebra and a calculus that generalizes the standard relational algebra 
respectively for relational multidatabases. 

The structure of this article is as follows. Section 2 introduces the multidatabase 
model, presents the basic definitions and the example databases. Section 3 defines 
the multirelational algebra and uses it to solve queries on the example databases. 
Section 4 presents the multirelational calculus, uses it to solve some of the example 
queries, and reduces the multirelational algebra to the multirelational calculus. 
Section 5 shows the connections of the multirelational algebra and calculus with 
MSQL, the extension of SQL to multidatabases. Section 6 provides properties 
of the multirelational algebra that can be used for query optimization. Section 7 
concludes this article. 

2. Model and Example for Multidatabases 

We begin with a few definitions from relational databases. A relation schema is a 
relation name together with a set of attributes identified by names and drawing 
values from some domains. An element of a relation defined by the schema is 
called a tuple. A relation is a collection of tuples defined on the same schema. A 
database schema is a database name together with a set of  relation schemas. A 
database is a set of relations satisfying the database schema. A query is a dynamic 
definition of a relation, including schema and instance, on a database. 

A multidatabase is a collection of databases; it may be explicitly or implicitly 
named. A multirelation is a set of relations dynamically defined by a multirelational 
query. The relations of a multirelation are usually in different databases of a 
multidatabase; they may have different arities, attribute names, and domain types 
for models of the same elements of the real universe. Database and multidatabase 
names may be used as prefixes to clarify the naming. A multirelational query 
defines a (target) muitirelation from a (source) multirelation through multirelational 
operations (to be defined later). A query contains some relation names, attribute 
names, and possibly domain value specifications (e.g., value expressions or unit and 
precision definitions, that are bound by the system to the actual names and value 
types). Some of the issues involving name equality, different units, and precision 
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will be considered in Section 6. 

A multirelational(data)model extends relational queries to multirelational queries. 
The two axioms given below relate our multirelational data model to the relational 
model. Axiom 1 refers to the naming of operations. Axiom 2 refers to compatibility. 

Axiom 1: A multirelational operation, O, transforms one or more multirelations 
into a multirelation. 

Axiom 2: For any relation, R, and relational operation on R, there is a multirelational 
operation with the same or appropriately modified name that provides the same 
result when applied to the multirelation M = {R}. 

By compatibility, the relational model is a special case of the multirelational model 
with the cardinality of each multirelation equal to 1. 

An operation, O, is evaluated first through binding to the actual relation names 
to find the multirelation(s) it should operate on, i.e. its argument(s). If the binding 
is empty, no multirelation is produced by the query. This is the equivalent of  an 
error  output in today's relational systems. Once the arguments of  O are identified, O 
is further evaluated through the application of relational operations to each element 
of its arguments. It may happen that an operation cannot be evaluated. In that case 
no corresponding relation is produced by the query. This is different from the case 
in which the evaluation of a query results in the empty relation. Thus, in our  model a 
query (with proper  binding) always produces a multirelation that nevertheless might 
be empty. Notice that POSTGRES (Stonebraker and Rowe, 1986) has a similar 
behavior when accessing fields with query expressions that evaluate to relations. In 
some sense, such fields simulate sets of relations (multirelations in our  context) but 
the model has never been defined formally and the semantics of such fields are not 
clear. Our proposal attempts to define precisely the semantics of sets of  relations 
and the operations available on them. 

When a multirelational operation is evaluated, it may happen that it is bound 
(refers) to an attribute not in the given relation. For example, a projection may refer 
to an attribute not in the relation to which the projection is applied. In the basic 
multirelational model that is used throughout this article, such an operation will be 
considered as not evaluable. It is also possible to define an extended multirelational 
model where the attributes not in the given relation are ignored. In this case, for 
a projection any attribute not in the relation is omitted from consideration. Any 
tuple or relation obtained by using the basic model is also obtained by using the 
extended model, but not vice versa. Both models have intuitive appeal. The extended 
model requires extensions to the current definitions of the relational operations. In 
particular, the extended relational projection should have at least one attribute so 
that no relation with an empty set of attributes can be obtained. 

The databases used in the next three sections are described below. These 
databases are patterned after existing databases of the French banks BNP, Societe 
Generale,  and CIC (bnp, sg~ and cic, respectively). The other three, etoile, nation, 
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and opera, are databases of BNP branches named for their location in Paris and 
used for local processing. The latter three contain only data about their customers. 

Banks is a multidatabase, Banks = {bnp, s~ cic}. 

Database bnp: 
branch (br#,brname,street,street#,city,zip,tel) 
account (acc#,cl#,balance,br#) 
client (cl#,ciname,cltel,cltype,street,street#,city,zip) 

Database sg: 
branch (br#,brname,street,street#,city,zip,tel,class) 
account (acc#,br#,cl#,balance) 
client (cl#,clname,cltei,cltype,street,street #,city,zip) 

Database cic: 
branch (br#,brname,street, street#,city,zip,tel) 
account (acc#,br#,cl#,balance,open_date) 
client (cl#,clname,cltel,cltype,street,street#,city,zip) 

Database etoile: 
account (acc#,cl#,balance,open_date) 
client (cl#,clname,cltel,street, street#,city,zip) 

Database nation: 
account (acc#,cl#,balance,open_date) 
client (cl#,clname,cltel,street,street#,city,zip) 

Database opera: 
account (accc#,cl#,balance,open_date) 
client (cl#,clname,cltel,street, street#,city,zip,cltype) 

3. MulUrelational Algebra 

The operations of the multirelational algebra proposed below extend the operations 
of the relational algebra on the model of multirelations presented in the previous 
section. Each operation is based on the corresponding operation of the relational 
algebra and yields the same result when applied to a multirelation that consists of a 
single relation. We do not claim minimality for the set of operations that we define. 
The multirelational algebra is then used for writing 12 queries on the multidatabase 
example of the previous section. To clarify the distinction between the relational 
and multirelationai operations, we precede each of the latter with the letter "M." 

We start by considering the unary operators MPROJECT and MSELECT. 
{R1,...,R,~} is an arbitrary muitirelation. The first operation is projection 

MPROJECT( {R1,...,Rn } ; A1,...,Am) = 

{ PROJECT(Rz; A z,...,Am ),..., PROJECT(R,; A 1,-..,Am ) } 
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where PROJECT(Ri; hl,...,Am) is the usual projection of Ri on the attributes 
A1,...,A m if all Aj appear in Ri; if some Aj do not appear in Ri, then PROJECT(Ri; 
A1,...,Am) does not exist. Thus the multirelational projection has as its result the 
multirelation consisting of the projections on the individual relations of the given 
multirelation. Note that the result may have fewer than n relations. 

The next operation is a multirelational selection, 

MSELECT({R1,...,Rn}: C) = {SELECT(R1: C),..., SELECT(Rn: C)) 

where C is a condition involving the attributes of Ri, constants, relational and logical 
operations. If C contains an attribute not in Ri, then SELECT(R/: C) does not 
exist. Thus the multirelational selection has as its result the multirelation consisting 
of the selections on the individual relations of the given multirelation. Again, the 
result may have fewer than n relations. 

Binary operations are applied to two multirelations. The standard definition 
(cross product) applies the binary operation to every applicable pair of relations from 
the two multirelations. In particular, the multirelational set operations MUNION, 
MINTERSECCr, and MDIFFERENCE apply to union-compatible relations only. In 
practice it is useful to allow a version of binary operations where these are applied 
only within a database. A notation will be introduced for this purpose. The only 
operation formally defined here is MJOIN, but MPRODUCT, as well as the set 
operations, also will be illustrated in the examples. The join operation is defined as 

MJOIN({R11,...,R1n ),{R~I,...,R2m ): C) = {JOIN(R11, R21: C),..., 
JOIN(Rll, R2m: C),JOIN(R12, R21: C),..., JOIN(Rln, R2m: C)} 

where C is the join condition: a conjunction of equalities appropriate for the 
multirelations. Duplicate columns are eliminated as for the standard natural join. 
If condition C is inapplicable to the pair Rli, R2j, then JOIN(Rli, R2j: C) does not 
exist. Thus the multirelational join has as its result the multirelation consisting of 
all possible joins between the relations of the two multirelations. The result may 
have up to m × n relations. 

Next we give multirelational algebra queries for 12 queries on the multidatabase 
and databases of the previous section. 

Q1. For all clients in the Banks multidatabase find their client number, client type, 
and zip code. 

MPROJECT({Banks:client );cl#,cltype,zip) 

In this case Banks:client is the source multirelation; note the use of the colon as a 
qualifier for the multidatabase. The result is a multirelation that consists of three 
relations: 

{ PROJECT(bnp.client;cl#,cllype,zip), 
P R O JECT (sg.clien t; cl #,cltype,zi p ), 
PROJECT(cic.client;cl#,cltype,zip) } 
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Q2. For all accounts in the s~ cic, etoile, and nation databases, find the account 
number and opening date. 

MPROJECT({sg~ cic, etoile, nation :account } ;acc#,open_date ) 

Because the designator open_date is inapplicable to the relation sg.account, the 
result is a multirelation that consists of three relations and not four (as would be 
the case otherwise): 

{ P R OJECT ( cic.accoun t;acc# ,open_date ), 
P R OJECT( etoile.accoun t;acc# ,open_date ), 
PROJECT(nation.account;acc#,opcn_date) } 

Q3. In the Banks multidatabase and opera database, find the accounts for which 
the balance is greater than 1,000. 

MSELECT({Banks, opera:account}: balance > 1,000) 

The result is a multirelation that consists of four relations: 
{SELECT(bnp.account: balance > 1,000), 

SELECT(sg.account: balance > 1,000), 
SELECT(cic.account: balance > 1,000), 
SELECT(opera.account: balance > 1,000)} 

Q4. In the Banks muitidatabase and nation database, find the branch number, branch 
name, and telephone number for all branches on the Av Champs Elysees. 

MPR OJECT( { MSELECCT( {Banks, nation:branch } : street = 
'Av Champs Eiysees')};br#,brname,tel) 

In this case the MSELECT operation does not apply to nation. The result is a 
multirelation that consists of three relations: 

{PROJECT(SELECT(bnp.branch: street = 'Av Champs Elysees');br#,brname,tel),  
PROJECT(SELECT(sg.branch: street = 'Av Champs Eiysees');br#,brname,tel),  
PROJECT(SELECT(cic.branch: street = 'Av Champs Elysees');br#,brname,tel)} 

Q5. Combine (Join) the branch information in the Banks multidatabase with the 
account information in the sg and cic databases. 

MJOlN({Banks: x.branch},{sg,cic: y.account}: x.branch.br# = y.account.br#) 

Note the use of the variables x and y as implicit database names. The result is a 
multirelation that consists of the following six relations: 

{ JOIN(bnp.branch,sg.account: bnp.branch.br# = sg.account.br#), 
JOIN(bnp.branch,cic.account: bnp.branch.br# = cic.account.br#), 
JOIN(sg.branch,sg.account: sg.branch.br# = sg.account.br#), 
JOIN(sg.branch,cic.account: sg.branch.br# = cic.account.br#), 
JOIN(cic.branch,sg.account: cic.branch.br# = sg.account.br#), 
JOIN(cic.branch,cic.account: c/c.branch.br# = cic.acccount.br#) } 
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Q6. Find the corresponding branch number, classification, account number, and 
opening date for all branches and accounts in the Banks multidatabase. 

MPROJECT(MJOIN({Banks:x.branch},{Banks:y.account}: 
x.branch.br# =y.account.br#);br#,class,acc#,open_date) 

The result is a multirelation that consists of a single relation because only sg.branch 
contains class and only cic.account contains open_date: 

{ PROJECT(JOIN(sg.branch,cic.account: sg.branch.br# = cic.account.br#); 
br#,class,accc#,open_date) } 

Q7. In the Banks multidatabase, join the branch information with the account 
information, but only within a single database. 

MJOIN({Banks: x.branch},{Banks: y.account}: x.branch.br# = 
y.account.br# A x = y) 

The requirement that the join be performed only for relations within one database 
is expressed by equating the databases represented by x and y. The result is a 
multirelation with three relations (rather than the nine relations that would be 
obtained by the standard join): 

{JOIN(bnp.branch,bnp.account: bnp.branch.br# = bnp.account.br#), 
JOIN(sg.branch,sg.account: sg.branch.br# = sg.account.br#), 
JOIN(cic.branch,cic.account: cic.branch.br# = cic.account.br#) } 

Q8. Combine (Multiply) the branch information from the bnp and sg databases with 
the account information from the etoile, opera~ and bnp databases. 

MP ROD UCT( { bnp,sg: branch } , { etoil~ opera, bnp: account}) 

The result is a multirelation with 6 Cartesian products: 
{ PRODUCT(bnp.branch,etoile.account), 
PRODUCT(bnp.branch,opera.account), 
PRODUCT(bnp.branch,bnp.account), 
PRODUCT(sg.branch,etoile.acccount), 
PRODUCT(sg.branch,opera.account), 
PRODUCT(sg.branch,bnp.account) } 

Q9. Same as Q8 but combine branches and accounts only within a single database. 

MPR ODUCT( { bnp,sg: x.branch }, { etoile, opera, bnp: y.account}: x = y) 

The result contains one relation: 
{ PRODUCT(bnp.branch,bnp.account) } 

Q10. Find the union of the etoile and nation databases. 

MUNION({etoile}, {nation }) 

The account and client relations are not union-compatible, hence the result is 
a multirelation that consists of two relations: 
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{ UNION(etoUe.account,nation.account), 
UNION(etoile.client,nation.client) ) 

Q l l .  Find the intersection of the etoile and nation databases. 

MINTERSECT({  etoile ), {nation ) ) 

As in the answer to Q10, the result contains two relations, even if the intersections 
are empty, in which case the empty relations could be distinguished in some system- 
defined manner (such as 1.empty, 2.empty), thereby indicating the number of pairs 
of tables on which the operation was performed: 

{ INTERSECT(etoUe.account,nation.account), 
INTERSECT (etoile.client,nation.clien t ) ) 

Q12. Find the difference of the etoile and nation databases. 

MDIFFERENCE({etoi le},  {nation )) 

The result is the multirelation: 

{ D IFFERENCE(etoile.account,nation.account), 
DIFFERENCE(etoile.client,nation.client) ) 

4. Multirelational Calculus 

This section defines the expressions of the multirelational calculus. This calculus 
extends the relational calculus to the model of multirelations in analogy to the 
way that the multirelational algebra extends the relational algebra. In particular, 
the multirelational calculus reduces to the relational (tuple) calculus in case the 
multirelation consists of a single relation. The multirelational calculus is then used 
for writing three of the 12 queries written in the previous section in the multirelational 
algebra. At the end of this section we show that the multirelational calculus is at 
least as powerful as the multirelational algebra. 

Expressions (queries) in the multirelational calculus are of the form {tiC(0 ) 
where t is a tuple variable and ~b is a formula (multirelational version) of first-order 
logic, defined below. One important deviation from the relational calculus is that a 
tuple variable in the multirelational calculus denotes a tuple of indeterminate, but 
bounded, length (i.e., the number of elements in the tuple). This needs to be done 
in the multirelational case because a multirelation may contain similar relations of  
different arity, yet a tuple variable must apply to all the relations. 

First we define the atoms (atomic formulas) allowed in ~b. There are five types. 

. (R1,...,Rn)(U) 
where {R1,...,Rn} is a multirelation and u is a tuple variable. Note how 
first-order logic is extended to cover multirelations. This atom stands for the 
assertion that u is a tuple of the multirelation {R1,...,Rn). 
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2. u.A 0 v.B 
where u and v are tuple variables, A is an attribute appropriate to u, B is 
an attribute appropriate to v, and /9 is a comparison operator.  This atom 
stands for the assertion that the h component of u stands in the relation 0 
to the B component of  v. 

3. u.A 0 ce ( o~ 0 u.A ) 
where u and 0 are as in formula 2 and c~ is a constant. The first atom 
stands for the assertion that the A component  of  u stands in the relation 0 
to the constant o~. The atom in parentheses stands for the assertion that the 
constant o~ stands in the relation 0 to the A component  u. 

4. s m u * v  
where s, u, and v are tuple variables. This atom stands for the assertion 
that the tuple s is the concatenation of the tuples u and v. (If u and v have 
common attributes, the system must distinguish those attributes for s in some 
way, such as by an appropriate qualification.) 

5. t = u [attribute list] 
where t and u are tuple variables. This atom stands for the assertion that 
the tuple t is the projection of  the tuple u to the attributes in the attribute 
list, if the attribute list contains (positive) attributes only. Negated attributes 
are also allowed. A negated attribute means the omission of  that attribute. 

Formulas are defined in the usual recursive manner, starting with the atoms 
by applying the connectives A, V, ~ , - -> ,  and the quantifiers V, 3. It is assumed 
that the muitirelational calculus expression ,~,(t) has exactly one free tuple variable, 
namely t. Note also that the tuple variables are qualified by attributes, not positions. 
Consequently, the order of the columns of a relation in a multirelation is not specified. 

We illustrate the multirelational calculus by showing how to express three of the 
12 queries written in the previous section in the multirelational algebra. For each 
query we show the equivalent set of relational calculus queries using subscripted 
tuple variables to indicate tuple length, i.e., t(/) for a tuple t of  length i. 

Q1. { t l 3 u  ({Banks:client}(u) A t = u[cl#,cltype,zip])} 

The answer contains the three relations that answer the following queries in the 
relational calculus: 

{t(3) 13u (bnp.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)}, 
{t(3) 13u (sg.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)}, 
{/(3) 13u (cic.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)} 

Q2. {t I 3u ({sg, cic, etoile, nation:account}(u) A t = u[acc#,open_date])} 

The resulting multirelation has three relations because open_date is inapplicable to 
sg.acc; the three relations answer the following relational calculus queries: 
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{t(2) 13u (cic.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)}, 
{t(2) 13u (etoile.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)),  
{t(2) [3u (nation.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)} 

Q7. {t 13u3v3w ({Banks: x.branch}(u) A {Banks: x.account)(v) A u .br#  = v.br# 
A w = u * v  A t = w[~v.br#1)} 
The qualifying x for both multirelations indicates that u and v must be tuples in 

relations of the same database. The resulting multirelation consists of the answers 
to the following three queries: 

{tOO ) 13u3v (bnp.branch(u) A bnp.account(v) A u.br#  = v.br# A t .br# = 
u .br#  A t.brname = u.brname A t.street = u.street A t .s treet# = u.s t reet# 
A t.city = u.city A t.zip = u.zip A t.tel = u.tel A t.acc# = v.acc# A t.cl# = 
v.cl# A t.balance = v.balance)} 

{ f i l l )  [3u3v (sg.branch(u) A sg.account(v) A u.br#  = v.br# A t .br#  = u .br#  
A t.brname = u.brname A t.street = u.street A t .s treet# = u .s t reet#  A t.city 
= u.city A t.zip = u.zip A t.tel = u.tel A t.class = u.class A t .acc# = v.acc# 
A t.cl# = v.cl# A t.balance = v.balance)}, 

{ f i l l )  [ 3u3v (c/c.branch(u) A cic.account(v) A u .br#  = v.br# A t.br# = u.br# 
A t.brname = u.brname A t.street = u.street A t .s treet# = u .s t reet#  A t.city 
= u.city A t.zip = u.zip A t.tel = u.tel A t .acc# = v.accc# A t.cl# = v.cl# A 
t.balance = v.balance A t.open_date = v.open_date)} 

Note that the length of  variable t is not the same for all three queries. (The negated 
attribute is used to avoid repeating the common attribute br# . )  

We end this section by showing that the multirelational calculus is at least as 
powerful as the multirelational algebra. 

Theorem: Every multirelational algebra query can be expressed as a multirelational 
calculus query. 

Proof." The proof is by induction on the number of  occurrences of multirelational 
algebraic operators in the multirelational algebra query E. 

Base Case: 0 operators. In this case, E is a constant multirelation, E = {R1,...,R,~ }. 
This is expressed in the multirelational calculus as {t I {R1,"',gn}(t)}" 

Induction: Assume that E has n operators and is constructed from E 1 and E2 where 
E1 is expressed by {t l~bl(t)} and E2 is expressed by {t 1~'2(t)}. 

1. E = MPROJECT(E1;A1,...,An) is expressed by 
{t 13u el(U) A 1 = U[hl,...~an] ).  

2. E = MSELECT(Ei :  C) is expressed by {t I~bx(t) A C ~} where C t is obtained 
from C by replacing each attribute Ai with t.Ai. 
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. E = MJOIN(E1,E2: C) where E1 contains an x qualification, E 2 contains 
an x or y qualification, and C contains appropriate equalities (including 
qualifications) is expressed by {t 13u3v3w (~bl(u) A~bz(v) A w = u *v A 
C~A t = w[-,v.A1, ~v.A2, ..., ~v.Ak]) where (Y is obtained by changing the 
qualification of each attribute to u and v in an appropriate manner and the 
join attributes are A1,...,Ak. 

. E = MPRODUCT(E1,E2) where E1 and E2 may contain an x qualification 
each is expressed by {t [3u3v ~bl(u) A ~,2(v) A t =  u *v)  where ~'1 and 
~'2 contain any x qualification from E1 and E2. 

S. E = MUNION(E1,E2) is expressed by {t I /1 (0  V¢2(t)}. 

6. E = MINTERSECT(E1,E2) is expressed by {t 1¢1(0 A¢2(t)}. 

7. E = MDIFFERENCE(E1,E2) is expressed by {t 1~1(/) A--l~2(t)}. 

The converse of this theorem is an interesting research problem. 

5. An Example Multirelational Language 

Litwin et al. (1989) presented a multidatabase extension of SQL, termed MSQL 
(Multidatabase SQL) intended for multidatabase systems. Any function of SQL 
is by definition a function of MSQL. New functions are designed for nonproce- 
dural manipulation of data in different and basically mutually non-integrated SQL 
databases. This means that the user's wish (informal multidatabase query) should 
become a single MSQL statement. The definition of SQL is mainly that of ISO 
(ISO/DIS, 1986) and of the DB2 dialect (Date, 1983). The new possibilities that 
MSQL statements provide are as follows: 

• single-statement table creation or alteration in any number of databases; 

• retrieval or modification involving the joining of data in different databases; 

broadcasting of a retrieval or of a modification over any number of databases 
where data with similar meanings have the same or different naming rules, 
decompositions into relations, or value types; 

• dynamic transformation of actual attribute meanings, units of measure etc., 
into user-defined value types that may be retrieved or updated; 

• interdatabase queries for data flow between databases; 

• dynamic aggregation of data from different databases using various new 
standard (built-in, aggregate) functions; 



VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 165 

• creation of multidatabase views and of  virtual databases over such views; 

• creation of auxiliary objects like triggers, stored queries and transactions 
(procedures). 

Because MSQL manipulates sets of tables, the language is a natural extension of 
SQL to handle multirelations. For example, consider the database of Section 2. 
The query performed by the branch manager of the opera branch: 

Find in all other branches the accounts of  customers who are millionaires in my branch 

is expressed in MSQL as: 
L E T  x BE sg cic etoUe nation 
SELECT * FROM x.account 
W H E R E  x.account.cl# = opera.account.cl# 
A N D  opera, account.balance > 1,000,000 

The query is a multirelational query, as it expresses in MSQL several relational 
queries. The tables in the result need not be union compatible. 

The algebra and calculus presented in the two previous sections are hard to use 
in a real-life system. Looking at the Banks example, we can observe that real-life 
databases are less uniform than in this example. They are usually semantically 
heterogeneous with respect to names, structure, and value types even though all are 
relational databases. This is because they are autonomous as banks and branches 
compete for clients. Nevertheless, the banks and branches also cooperate, the 
cooperation being naturally stronger between branches of the same bank. That  is 
why data in different databases have also some similarities which are stronger within 
the same bank. In most real-life bank databases the following are true: 

1. Banks partly disagree upon attribute names that model the same concepts. 
For example, one database may use client-name, while another may use 
cl-name for the same attribute. 

2. The same client may be represented in several databases. 

3. Primary key values in databases of different banks are independent, despite 
sometimes having the same column names. 

In order to handle such heterogeneity, MSQL provides some basic language con- 
structs to (a) express queries ranging over sets of databases, and (b) address attributes 
by specifying a prefix and not a complete attribute name. For example, the following 
MSQL query: 

USE etoile 
SELECT * FROM client 

allows the formation of a simple SQL query on the etoile database. Similarly, 
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USE Banks 
SELECT bnp.brname 
F R O M  bnp.branch, branch 
W H E R E  bnp.branch.street# = branch.s t reet#  
AND bnp.branch.br# l=  branch .br#  

finds all bnp branches that are located on the same street with other banks '  branches 
(and other bnp branches as well). Notice in the last query, the multi-dot notation 
that allows the isolation of specific relations within the bnp database. The following 

query 

S E L E C T  * 
F R O M  br% 
W H E R E  s t ree t#  = 'Av. Champs Elysees' 

shows the use of  the wild character % to abbreviate attribute names. This is especially 
useful if, say, one database stores branch information in a branch relation, while 
another  database stores it in a relation called brch. This feature allows performing 
queries on databases that are heterogeneous to some extent. Its syntax is similar to 
that of  the SQL "LIKE"  clause, but it is applied to data names instead of values. 

Finally, if one wants to restrict the set of  databases taking part  in the evaluation 
of  a query, MSQL allows the definition of semantic variables. For example, the 
following query checks if a client of  the opera branch has an account  in the etoile 
or nation branch: 

L E T  x BE etoile nation 
SELECT * F R O M  x.client 
W H E R E  x.client.clname = opera.client.clname 

The query runs only on two databases, excluding the use of  bnp, sg~ sic, and opera. 
We end this section by showing Q7 from the previous section in M S Q L  

Q7. USE Banks 
L E T  x y BE Banks.* 
SELECT b r #  class acc#  open_date 
F R O M  x.branch y.account 
W H E R E  x.branch.br# = y.account .br# A N D  x = y 

6. Query Optimization Using Properties of the Multirelational Algebra 

In analogy to the properties of  the relational algebra in Ullman (1982), we investigate 
the algebraic properties of  the multirelational algebra and show how we can use 
them to process queries efficiently. Note that we consider a relation to be a set of 
tuples. Therefore,  neither M J O I N  nor M P R O D U C T  is commutative,  because the 
order  of  e lement  tuples is not the same. 
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Properties of Multirelational Algebra: 

1. MPRODUCT is always associative, but MJOIN need not be associative. 
MPRODUCT can always be taken; hence it is associative. The problem with 
MJOIN is that a condition may be applicable or not, depending on the order 
in which the MJOINs are performed. For example, suppose that R(A,B), 
S(C,D), T(E,F) are relations and consider 

MJOIN({MJOIN({R},{S):  A = F},{T}: C = E) 
MJOIN({R},{MJOIN({S},{T}: C = E ) : A  F} 

The first version does not provide an answer because the inside MJOIN is 
inapplicable; the second version provides an answer. 

2. MSELECTs cascade, but some M P R O J E C ~  do not cascade. 
Selection conditions can be done in any order because a condition that 
is not applicable in one order is not applicable in another. However, 
for projection, consider R(A,B,C), now MPROJECT({R);A,B) exists, but 
MPROJECT({MPROJECT({R);A,B,D));A,B) does not, even though an 
the attributes in the outside projection are contained in the inside projection. 

. If all the attributes in the MSELECT condition are in MPROJECT, then 
MSELECT and MPROJECT commute. 
MPROJECT({MSELECT({R1,. . . ,Rn) :C)) ;A,,...,An) = 
MSELECT({ MPROJECT({R1,...,Rn } :A1,---,An ):C) 
if condition C contains at most the attributes A1,...,An. For each Ri, if 
MPROJECT followed by MSELECT exists, then so does MSELECT followed 
by MPROJEC'I~ and vice versa. Without that condition, it may be the case 
that a relation for the left-hand side does not appear in the right-hand side. 

. If all the attributes in the MSELECT condition are in every relation of the 
first multirelation, then MSELECT and MPRODUCT commute. 
MSELECT({MPRODUCT({Rll , . . . ,Rln }, {R21,...,R2m }) ):C) = 
MP RODUCT( { MSELEC:F( { Rll,...,Rln ) : C)), { R2w..,g2m } ) 
if the attributes in C appear in all of Rn,...,Rln. Now both the left-hand 
side and the right-hand side have n x m relations. Without this proviso, the 
right-hand side may have fewer relations than the left-hand side. 

. MSELECT commutes with the set operations MUNION, MINTERSECT, 
and MDIFFERENCE.  This result holds because the set operations require 
union-compatible relations. 

. With the MPROJECT attributes appropriately chosen (see below) for the 
multirelations, MPROJECT and MPRODUCT commute. That is 
MPROJECT({MPRODUCT({Rn, . . . ,Rln} ,  {g21,...,g2ra})); Aa,...,An ) = 
MPRODUCT( { MPROJECT( { Rn,...,Rln } ;B1,...,Bm }, 
{MPROJECT({R21,...,R2m );C1,...,Ck }) 
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if {A1,...,A n } = { B1,...,Bm, C1,... , Ck } and B1,...,B m appear in all Of Rll, . . . ,Rln , 
and C1,...,Ck appear in all of  R21,...,R2m. Now both the left-hand side and 
the right-hand side have n × m relations. Without the proviso, the right-hand 
side and the left-hand side may have a different number of relations. 

Given the above, the multirelational algebra should be useful for the optimization 
of  multirelational queries. Below, we illustrate the use of the multirelational algebra 
through a straightforward example using MSQL. 

As mentioned earlier, multirelational queries are at a higher level than relational 
ones in the sense of being less procedural. To illustrate this point, and one 
application of the multirelational algebra, consider the following example. A bank 
has the database Archives and a number of  autonomous databases, one per branch, 
constituting a muitidatabase called Branches, which is similar to the database that 
was defined in Section 2. The difference is that each branch database has a relation, 
clientinfo(cl#,clname,balance,acc#,open_date), that combines the attributes of the 
"client" and "account" relations we have been using in our  examples. The Archives 
database has a relation, cust-89(cl#,ciname,balance), that sums up information about 
the banking of  each customer in 1989. Suppose that a manager wishes to know the 
names and balances of  all the customers that opened an account on 1/1/89. The 
MSQL query would be as follows: 

(M1) USE Archives Branches 
SELECT X.clname Y.balance 
FROM Archives.cust-89 X, clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND X.cl# = Y.cl# 

In query (M1), clientinfo is a multiple identifier of  any relation in any database in 
Branches. The semantics of (M1) is the multirelation defined by all the elementary 
queries resulting from the substitutions of clientinfo by the name of a relation in 
a database in Branches. For example, suppose that query 0VI1) is translated to the 
following set of  queries (a transaction) 

(M2) BEGIN TRANSACTION 

SELECT X.clname Y.balance 
FROM Archives.cust-89 X, etoile.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND X.cl# = Y.cl# 

SELECT X.clname Y.balance 
FROM Archives.cust-89 X, nation.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND X.cl# = Y.cl# 

SELECT X.clname Y.balance 
FROM Archives.cust-89 X, opera.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND X.cl# = Y.cl# 

END TRANSACTION 
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These queries would then be translated into the relational algebra for an 
optimized execution. To observe the limits of this type of processing, suppose that 
there are 100 branches. If query (M1) is processed as the multiple query (M2), 
then the system would execute the same selection 100 times over Archives. To make 
the processing of (M2) more efficient, the system has to discover that there is a 
common expression in this multiple query that can be factored out. This is based 
on Property 4 (above) extended to M JOINs, which allows selections to be pulled 
out. For example, consider that query (M1) is translated first into its multirelational 
form: 

(M3) MPROJECT( 
MJOIN( { Branches:clientinfo } , 
MSELECT( {Archives.cust-89 } : 

open_date='l/1/89') : c l#=c l# )  ; clname, clientinfo.balance) 

The next natural step for the query processor is to examine the cardinalities of the 
multirelations involved. It will find that MSELECT operates over a single relation. 
The easy optimization rule is then to factor out the selection clause: 

(M4) W:= MSELECT({Archives.cust-89} : open_date = '1/1/89') 
MPROJECT(MJOIN({Branches:clientinfo}, W :  c l # = c l # )  ; clname). 

Query (M4) can then be transformed easily to the following transaction: 
(M5) BEGIN TRANSACTION 

USE Archives 
INSERT W 

SELECT * 
FROM cust-89 X 
W H E R E  X.open_date = '1/1/89' 

SELECT clname Y.balance 
FROM W, etoile.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND W.cl# = Y.cl# 

SELECT W.clname Y.balance 
FROM W, nation.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND W.cl# = Y.cl# 

SELECT W.clname Y.balance 
FROM W, opera.clientinfo Y 
W H E R E  Y.open_date = '1/1/89' AND W.cl# = Y.cl# 

END TRANSACTION 

This decomposition is more efficient than (M2), because it avoids 99 useless repeti- 
tions of the selection. Using straightforward extensions of the traditional optimization 
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Figure 1. Alternative query transformations and executions 
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rules, one may also define decompositions where projections are factored out be- 
fore join operations are performed (Rule 6 in the beginning of the section). In 
conclusion, because the multirelational algebraic expressions are at a higher level 
than the relational ones, the lower path in the diagram of Figure 1 should be highly 
preferable to the upper one. This is due to the fact that multirelational queries need 
to be translated to a form that includes basic algebra or calculus operations where 
transformation rules are to be applied. Applying such rules on SQL statements 
(upper path) is much more difficult than applying them on (multirelational) algebra 
statements. 

7. Conclusions 

In this article, the relational algebra and calculus were extended to a multirela- 
tional algebra and calculus, where multitables are semantically heterogeneous. The 
multirelational algebra will be needed in the multidatabase environment that will 
become prevalent in the next few years. Our multirelational operations are defined 
based on the semantics of the multirelational model. They are compatible with 
the relational onees, but some of the properties of the relational operations do not 
hold for the multitables. There does not seem to be any practical multirelational 
algebra that could preserve them. We showed, however, how some properties of 
the algebra can be used in optimizing MSQL queries. 

One further step is to analyze the extended model. For example, the properties 
of the multirelational algebra can be studied where nonexistent attributes for a 
projection are ignored. Or, we may allow the user to define through a function the 
pairs of relations that are to be examined in cases of the MJOIN and MPRODUCT 
operations. Generally, one can devise different semantics for the multirelational op- 
erations we have suggested, and studying such alternative semantics is an interesting 
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topic. Finally, another interesting future direction would be to define optimization 
rules extending standard optimization techniques used in relational database systems 
to the case of multidatabases. 
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