
VLDBJourna~2, 153-171 (1993), Fred J. Maryanski, Editor

©VLDB

Query Languages for Relational Multidatabases

John Grant, Witold Litwin, Nick Roussopoulos, and Timos Sellis

Received December 5, 1990; revised version received June 18, 1992; accepted November
2, 1992.

Abstract. With the existence of many autonomous databases widely accessible
through computer networks, users will require the capability to jointly manipu-
late data in different databases. A multidatabase system provides such a capability
through a multidatabase manipulation language, such as MSQL. We propose a
theoretical foundation for such languages by presenting a multirelational algebra
and calculus based on the relational algebra and calculus. The proposal is illus-
trated by various queries on an example multidatabase. It is shown that properties
of the multirelational algebra may be used for optimization and that every multire-
iational algebra query can be expressed as a multirelational calculus query. The
connection between the multirelational languages and MSQL, the multidatabase
version of SQL, is also investigated.

Key Words. Multidatabase, multirelational algebra, multirelational calculus,
query optimization.

1. Introduction

The great diversity of comput ing systems and software accessible th rough compute r

networks has created a major problem in the interoperability and integration of
heterogeneous systems and components. A special case in the area of database
systems, and the topic of this article, is the logical grouping and cohesive access of
relational databases.

A large mainframe with a database system or a database server like Compuserve
may suppor t dozens o f databases. A local network can have several database servers
and a database for hundreds of workstations (e.g., the A D M S system, Roussopoulos
and Kang, 1986). A public database access system, such as the videotex system
Teletel in France, may provide access to thousands o f databases for millions o f
people. With the introduction o f I N G R E S in U l t r a 4.0, the OS2/DB presenta t ion

John Grant, Ph.D., is Professor, Dept. of Computer and Information Sciences, Towson State University,
Towson, MD 21204; Witold Litwin, Ph.D., is Professor, Universite Paris Dauphine; PI. du Mal. de Lattre
de 'Ihssigny, 75775 Paris Cedex 16, France; Nick Roussopoulos, Ph.D., is Professor, and Timos Sellis, Ph.D.,
is Associate Professor, Dept. of Computer Science, University of Maryland; College Park, MD 20742, USA.

154

manager and other inexpensive relational systems, SQL databases are spreading out
on workstations and PCs.

A major consequence of this proliferation of databases is that users will usually
have data in many databases and will frequently need to jointly manipulate data in
different databases. A Teletel user who wishes to go out to a movie and dinner may
wish to find the cinemas and restaurants that are on the same street in a cinema
guide and restaurant guide database. The manager of a company may need to
see the account balances that the company has at different bank branches. This
manager may further wish to query all the bank branches (and their databases)
simultaneously. A traveler looking for the cheapest route may need to query several
airline, rail, and bus databases. Furthermore, an address change may require the
updating of the corresponding databases.

Such manipulation requires functions that do not exist in standard manipulation
languages which are designed to manipulate data in a single database. Classical data
manipulation languages deal with single relations as objects of manipulation, while
the need is to allow sets of relations as the objects. Additionally, data in different
databases may be presented in a different format so that corresponding relations may
not be union-compatible. The differences between similar data result from different
perceptions of the same real universe--local needs, competition for customers,
political incompatibility, etc. It would be impossible to provide integration via a
global schema because there would be no agreement on the global administrator.
The example databases given in the next section, based on actual databases, show
some of the differences that may occur.

A system for the manipulation of data in autonomous databases is called a
multidatabase system (MDBS) and the corresponding language is called a multi-
database manipulation language (MML) (Litwin et al., 1982). Databases that may
be manipulated together without global integration are called interoperable (Litwin
and Abdellatif, 1986). Litwin et al., 1989 present the multidatabase extension of
SQL, called MSQL. All the functions of SQL are by definition functions of MSQL.
MSQL also contains new functions designed for a nonprocedural manipulation of
data in different and nonintegrated SQL databases. The rationale is that a user's
query over these databases should be expressible as a single statement. For this
purpose, MSQL manipulates sets of tables, called multitables or multirelations. In
particular, the result of a query may be a multitable.

One way to deal with a multitable query is to decompose it into the set of
relational queries it expresses and then to transform those queries to the relational
algebra for optimization. Clearly, this is not necessarily the most efficient method. In
particular, the techniques of Sellis (1988) for common subexpression processing are
applicable. In addition to the detection of common subexpressions, the processing of
useless queries should be avoided. A promising technique for dealing with multitable
queries is to define an extension of the relational algebra and calculus for multitables.
The system may then optimize a query both at a high level multitable formulation
(first in the calculus and then in the algebra) and then perform optimization at the

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 155

single relational level. This is the approach we introduce here.

Research related to multidatabase systems has been reported extensively in
the past. In some sense, all the work in Distributed (homogeneous) Database
Systems (Ceri and Pelagatti, 1984) is related. However, the work on heterogeneous
databases is of more interest here; a comprehensive survey on this subject appears
in Elmagarmid and Pu (1990). Most of the systems and approaches described
address issues related to the interconnection of database systems that use different
query languages and methods to allow exchange of data among such databases.
The question of which model should be used to express queries in such systems
is not addressed, however. Our research attempts to define such a model in the
form of an algebra and a calculus that generalizes the standard relational algebra
respectively for relational multidatabases.

The structure of this article is as follows. Section 2 introduces the multidatabase
model, presents the basic definitions and the example databases. Section 3 defines
the multirelational algebra and uses it to solve queries on the example databases.
Section 4 presents the multirelational calculus, uses it to solve some of the example
queries, and reduces the multirelational algebra to the multirelational calculus.
Section 5 shows the connections of the multirelational algebra and calculus with
MSQL, the extension of SQL to multidatabases. Section 6 provides properties
of the multirelational algebra that can be used for query optimization. Section 7
concludes this article.

2. Model and Example for Multidatabases

We begin with a few definitions from relational databases. A relation schema is a
relation name together with a set of attributes identified by names and drawing
values from some domains. An element of a relation defined by the schema is
called a tuple. A relation is a collection of tuples defined on the same schema. A
database schema is a database name together with a set of relation schemas. A
database is a set of relations satisfying the database schema. A query is a dynamic
definition of a relation, including schema and instance, on a database.

A multidatabase is a collection of databases; it may be explicitly or implicitly
named. A multirelation is a set of relations dynamically defined by a multirelational
query. The relations of a multirelation are usually in different databases of a
multidatabase; they may have different arities, attribute names, and domain types
for models of the same elements of the real universe. Database and multidatabase
names may be used as prefixes to clarify the naming. A multirelational query
defines a (target) muitirelation from a (source) multirelation through multirelational
operations (to be defined later). A query contains some relation names, attribute
names, and possibly domain value specifications (e.g., value expressions or unit and
precision definitions, that are bound by the system to the actual names and value
types). Some of the issues involving name equality, different units, and precision

156

will be considered in Section 6.

A multirelational(data)model extends relational queries to multirelational queries.
The two axioms given below relate our multirelational data model to the relational
model. Axiom 1 refers to the naming of operations. Axiom 2 refers to compatibility.

Axiom 1: A multirelational operation, O, transforms one or more multirelations
into a multirelation.

Axiom 2: For any relation, R, and relational operation on R, there is a multirelational
operation with the same or appropriately modified name that provides the same
result when applied to the multirelation M = {R}.

By compatibility, the relational model is a special case of the multirelational model
with the cardinality of each multirelation equal to 1.

An operation, O, is evaluated first through binding to the actual relation names
to find the multirelation(s) it should operate on, i.e. its argument(s). If the binding
is empty, no multirelation is produced by the query. This is the equivalent of an
error output in today's relational systems. Once the arguments of O are identified, O
is further evaluated through the application of relational operations to each element
of its arguments. It may happen that an operation cannot be evaluated. In that case
no corresponding relation is produced by the query. This is different from the case
in which the evaluation of a query results in the empty relation. Thus, in our model a
query (with proper binding) always produces a multirelation that nevertheless might
be empty. Notice that POSTGRES (Stonebraker and Rowe, 1986) has a similar
behavior when accessing fields with query expressions that evaluate to relations. In
some sense, such fields simulate sets of relations (multirelations in our context) but
the model has never been defined formally and the semantics of such fields are not
clear. Our proposal attempts to define precisely the semantics of sets of relations
and the operations available on them.

When a multirelational operation is evaluated, it may happen that it is bound
(refers) to an attribute not in the given relation. For example, a projection may refer
to an attribute not in the relation to which the projection is applied. In the basic
multirelational model that is used throughout this article, such an operation will be
considered as not evaluable. It is also possible to define an extended multirelational
model where the attributes not in the given relation are ignored. In this case, for
a projection any attribute not in the relation is omitted from consideration. Any
tuple or relation obtained by using the basic model is also obtained by using the
extended model, but not vice versa. Both models have intuitive appeal. The extended
model requires extensions to the current definitions of the relational operations. In
particular, the extended relational projection should have at least one attribute so
that no relation with an empty set of attributes can be obtained.

The databases used in the next three sections are described below. These
databases are patterned after existing databases of the French banks BNP, Societe
Generale, and CIC (bnp, sg~ and cic, respectively). The other three, etoile, nation,

VLDB Journal 2 (2) Grant: Query Languages for Relational Muitidatabases 157

and opera, are databases of BNP branches named for their location in Paris and
used for local processing. The latter three contain only data about their customers.

Banks is a multidatabase, Banks = {bnp, s~ cic}.

Database bnp:
branch (br#,brname,street,street#,city,zip,tel)
account (acc#,cl#,balance,br#)
client (cl#,ciname,cltel,cltype,street,street#,city,zip)

Database sg:
branch (br#,brname,street,street#,city,zip,tel,class)
account (acc#,br#,cl#,balance)
client (cl#,clname,cltei,cltype,street,street #,city,zip)

Database cic:
branch (br#,brname,street, street#,city,zip,tel)
account (acc#,br#,cl#,balance,open_date)
client (cl#,clname,cltel,cltype,street,street#,city,zip)

Database etoile:
account (acc#,cl#,balance,open_date)
client (cl#,clname,cltel,street, street#,city,zip)

Database nation:
account (acc#,cl#,balance,open_date)
client (cl#,clname,cltel,street,street#,city,zip)

Database opera:
account (accc#,cl#,balance,open_date)
client (cl#,clname,cltel,street, street#,city,zip,cltype)

3. MulUrelational Algebra

The operations of the multirelational algebra proposed below extend the operations
of the relational algebra on the model of multirelations presented in the previous
section. Each operation is based on the corresponding operation of the relational
algebra and yields the same result when applied to a multirelation that consists of a
single relation. We do not claim minimality for the set of operations that we define.
The multirelational algebra is then used for writing 12 queries on the multidatabase
example of the previous section. To clarify the distinction between the relational
and multirelationai operations, we precede each of the latter with the letter "M."

We start by considering the unary operators MPROJECT and MSELECT.
{R1,...,R,~} is an arbitrary muitirelation. The first operation is projection

MPROJECT({R1,...,Rn } ; A1,...,Am) =

{ PROJECT(Rz; A z,...,Am),..., PROJECT(R,; A 1,-..,Am) }

158

where PROJECT(Ri; hl,...,Am) is the usual projection of Ri on the attributes
A1,...,A m if all Aj appear in Ri; if some Aj do not appear in Ri, then PROJECT(Ri;
A1,...,Am) does not exist. Thus the multirelational projection has as its result the
multirelation consisting of the projections on the individual relations of the given
multirelation. Note that the result may have fewer than n relations.

The next operation is a multirelational selection,

MSELECT({R1,...,Rn}: C) = {SELECT(R1: C),..., SELECT(Rn: C))

where C is a condition involving the attributes of Ri, constants, relational and logical
operations. If C contains an attribute not in Ri, then SELECT(R/: C) does not
exist. Thus the multirelational selection has as its result the multirelation consisting
of the selections on the individual relations of the given multirelation. Again, the
result may have fewer than n relations.

Binary operations are applied to two multirelations. The standard definition
(cross product) applies the binary operation to every applicable pair of relations from
the two multirelations. In particular, the multirelational set operations MUNION,
MINTERSECCr, and MDIFFERENCE apply to union-compatible relations only. In
practice it is useful to allow a version of binary operations where these are applied
only within a database. A notation will be introduced for this purpose. The only
operation formally defined here is MJOIN, but MPRODUCT, as well as the set
operations, also will be illustrated in the examples. The join operation is defined as

MJOIN({R11,...,R1n),{R~I,...,R2m): C) = {JOIN(R11, R21: C),...,
JOIN(Rll, R2m: C),JOIN(R12, R21: C),..., JOIN(Rln, R2m: C)}

where C is the join condition: a conjunction of equalities appropriate for the
multirelations. Duplicate columns are eliminated as for the standard natural join.
If condition C is inapplicable to the pair Rli, R2j, then JOIN(Rli, R2j: C) does not
exist. Thus the multirelational join has as its result the multirelation consisting of
all possible joins between the relations of the two multirelations. The result may
have up to m × n relations.

Next we give multirelational algebra queries for 12 queries on the multidatabase
and databases of the previous section.

Q1. For all clients in the Banks multidatabase find their client number, client type,
and zip code.

MPROJECT({Banks:client);cl#,cltype,zip)

In this case Banks:client is the source multirelation; note the use of the colon as a
qualifier for the multidatabase. The result is a multirelation that consists of three
relations:

{ PROJECT(bnp.client;cl#,cllype,zip),
P R O JECT (sg.clien t; cl #,cltype,zi p),
PROJECT(cic.client;cl#,cltype,zip) }

VLDB Journal 2 (2) Grant: Query languages for Relational Multidatabases 159

Q2. For all accounts in the s~ cic, etoile, and nation databases, find the account
number and opening date.

MPROJECT({sg~ cic, etoile, nation :account } ;acc#,open_date)

Because the designator open_date is inapplicable to the relation sg.account, the
result is a multirelation that consists of three relations and not four (as would be
the case otherwise):

{ P R OJECT (cic.accoun t;acc# ,open_date),
P R OJECT(etoile.accoun t;acc# ,open_date),
PROJECT(nation.account;acc#,opcn_date) }

Q3. In the Banks multidatabase and opera database, find the accounts for which
the balance is greater than 1,000.

MSELECT({Banks, opera:account}: balance > 1,000)

The result is a multirelation that consists of four relations:
{SELECT(bnp.account: balance > 1,000),

SELECT(sg.account: balance > 1,000),
SELECT(cic.account: balance > 1,000),
SELECT(opera.account: balance > 1,000)}

Q4. In the Banks muitidatabase and nation database, find the branch number, branch
name, and telephone number for all branches on the Av Champs Elysees.

MPR OJECT({ MSELECCT({Banks, nation:branch } : street =
'Av Champs Eiysees')};br#,brname,tel)

In this case the MSELECT operation does not apply to nation. The result is a
multirelation that consists of three relations:

{PROJECT(SELECT(bnp.branch: street = 'Av Champs Elysees');br#,brname,tel),
PROJECT(SELECT(sg.branch: street = 'Av Champs Eiysees');br#,brname,tel),
PROJECT(SELECT(cic.branch: street = 'Av Champs Elysees');br#,brname,tel)}

Q5. Combine (Join) the branch information in the Banks multidatabase with the
account information in the sg and cic databases.

MJOlN({Banks: x.branch},{sg,cic: y.account}: x.branch.br# = y.account.br#)

Note the use of the variables x and y as implicit database names. The result is a
multirelation that consists of the following six relations:

{ JOIN(bnp.branch,sg.account: bnp.branch.br# = sg.account.br#),
JOIN(bnp.branch,cic.account: bnp.branch.br# = cic.account.br#),
JOIN(sg.branch,sg.account: sg.branch.br# = sg.account.br#),
JOIN(sg.branch,cic.account: sg.branch.br# = cic.account.br#),
JOIN(cic.branch,sg.account: cic.branch.br# = sg.account.br#),
JOIN(cic.branch,cic.account: c/c.branch.br# = cic.acccount.br#) }

160

Q6. Find the corresponding branch number, classification, account number, and
opening date for all branches and accounts in the Banks multidatabase.

MPROJECT(MJOIN({Banks:x.branch},{Banks:y.account}:
x.branch.br# =y.account.br#);br#,class,acc#,open_date)

The result is a multirelation that consists of a single relation because only sg.branch
contains class and only cic.account contains open_date:

{ PROJECT(JOIN(sg.branch,cic.account: sg.branch.br# = cic.account.br#);
br#,class,accc#,open_date) }

Q7. In the Banks multidatabase, join the branch information with the account
information, but only within a single database.

MJOIN({Banks: x.branch},{Banks: y.account}: x.branch.br# =
y.account.br# A x = y)

The requirement that the join be performed only for relations within one database
is expressed by equating the databases represented by x and y. The result is a
multirelation with three relations (rather than the nine relations that would be
obtained by the standard join):

{JOIN(bnp.branch,bnp.account: bnp.branch.br# = bnp.account.br#),
JOIN(sg.branch,sg.account: sg.branch.br# = sg.account.br#),
JOIN(cic.branch,cic.account: cic.branch.br# = cic.account.br#) }

Q8. Combine (Multiply) the branch information from the bnp and sg databases with
the account information from the etoile, opera~ and bnp databases.

MP ROD UCT({ bnp,sg: branch } , { etoil~ opera, bnp: account})

The result is a multirelation with 6 Cartesian products:
{ PRODUCT(bnp.branch,etoile.account),
PRODUCT(bnp.branch,opera.account),
PRODUCT(bnp.branch,bnp.account),
PRODUCT(sg.branch,etoile.acccount),
PRODUCT(sg.branch,opera.account),
PRODUCT(sg.branch,bnp.account) }

Q9. Same as Q8 but combine branches and accounts only within a single database.

MPR ODUCT({ bnp,sg: x.branch }, { etoile, opera, bnp: y.account}: x = y)

The result contains one relation:
{ PRODUCT(bnp.branch,bnp.account) }

Q10. Find the union of the etoile and nation databases.

MUNION({etoile}, {nation })

The account and client relations are not union-compatible, hence the result is
a multirelation that consists of two relations:

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 161

{ UNION(etoUe.account,nation.account),
UNION(etoile.client,nation.client))

Q l l . Find the intersection of the etoile and nation databases.

MINTERSECT({ etoile), {nation))

As in the answer to Q10, the result contains two relations, even if the intersections
are empty, in which case the empty relations could be distinguished in some system-
defined manner (such as 1.empty, 2.empty), thereby indicating the number of pairs
of tables on which the operation was performed:

{ INTERSECT(etoUe.account,nation.account),
INTERSECT (etoile.client,nation.clien t))

Q12. Find the difference of the etoile and nation databases.

MDIFFERENCE({etoi le}, {nation))

The result is the multirelation:

{ D IFFERENCE(etoile.account,nation.account),
DIFFERENCE(etoile.client,nation.client))

4. Multirelational Calculus

This section defines the expressions of the multirelational calculus. This calculus
extends the relational calculus to the model of multirelations in analogy to the
way that the multirelational algebra extends the relational algebra. In particular,
the multirelational calculus reduces to the relational (tuple) calculus in case the
multirelation consists of a single relation. The multirelational calculus is then used
for writing three of the 12 queries written in the previous section in the multirelational
algebra. At the end of this section we show that the multirelational calculus is at
least as powerful as the multirelational algebra.

Expressions (queries) in the multirelational calculus are of the form {tiC(0)
where t is a tuple variable and ~b is a formula (multirelational version) of first-order
logic, defined below. One important deviation from the relational calculus is that a
tuple variable in the multirelational calculus denotes a tuple of indeterminate, but
bounded, length (i.e., the number of elements in the tuple). This needs to be done
in the multirelational case because a multirelation may contain similar relations of
different arity, yet a tuple variable must apply to all the relations.

First we define the atoms (atomic formulas) allowed in ~b. There are five types.

. (R1,...,Rn)(U)
where {R1,...,Rn} is a multirelation and u is a tuple variable. Note how
first-order logic is extended to cover multirelations. This atom stands for the
assertion that u is a tuple of the multirelation {R1,...,Rn).

162

2. u.A 0 v.B
where u and v are tuple variables, A is an attribute appropriate to u, B is
an attribute appropriate to v, and /9 is a comparison operator. This atom
stands for the assertion that the h component of u stands in the relation 0
to the B component of v.

3. u.A 0 ce (o~ 0 u.A)
where u and 0 are as in formula 2 and c~ is a constant. The first atom
stands for the assertion that the A component of u stands in the relation 0
to the constant o~. The atom in parentheses stands for the assertion that the
constant o~ stands in the relation 0 to the A component u.

4. s m u * v
where s, u, and v are tuple variables. This atom stands for the assertion
that the tuple s is the concatenation of the tuples u and v. (If u and v have
common attributes, the system must distinguish those attributes for s in some
way, such as by an appropriate qualification.)

5. t = u [attribute list]
where t and u are tuple variables. This atom stands for the assertion that
the tuple t is the projection of the tuple u to the attributes in the attribute
list, if the attribute list contains (positive) attributes only. Negated attributes
are also allowed. A negated attribute means the omission of that attribute.

Formulas are defined in the usual recursive manner, starting with the atoms
by applying the connectives A, V, ~ , - -> , and the quantifiers V, 3. It is assumed
that the muitirelational calculus expression ,~,(t) has exactly one free tuple variable,
namely t. Note also that the tuple variables are qualified by attributes, not positions.
Consequently, the order of the columns of a relation in a multirelation is not specified.

We illustrate the multirelational calculus by showing how to express three of the
12 queries written in the previous section in the multirelational algebra. For each
query we show the equivalent set of relational calculus queries using subscripted
tuple variables to indicate tuple length, i.e., t(/) for a tuple t of length i.

Q1. { t l 3 u ({Banks:client}(u) A t = u[cl#,cltype,zip])}

The answer contains the three relations that answer the following queries in the
relational calculus:

{t(3) 13u (bnp.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)},
{t(3) 13u (sg.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)},
{/(3) 13u (cic.client(u) A t.cl# = u.cl# A t.cltype = u.cltype A t.zip = u.zip)}

Q2. {t I 3u ({sg, cic, etoile, nation:account}(u) A t = u[acc#,open_date])}

The resulting multirelation has three relations because open_date is inapplicable to
sg.acc; the three relations answer the following relational calculus queries:

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 163

{t(2) 13u (cic.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)},
{t(2) 13u (etoile.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)),
{t(2) [3u (nation.account(u) A t.acc# = u.acc# A t.open_date = u.open_date)}

Q7. {t 13u3v3w ({Banks: x.branch}(u) A {Banks: x.account)(v) A u .br# = v.br#
A w = u * v A t = w[~v.br#1)}
The qualifying x for both multirelations indicates that u and v must be tuples in

relations of the same database. The resulting multirelation consists of the answers
to the following three queries:

{tOO) 13u3v (bnp.branch(u) A bnp.account(v) A u.br# = v.br# A t .br# =
u .br# A t.brname = u.brname A t.street = u.street A t .s treet# = u.s t reet#
A t.city = u.city A t.zip = u.zip A t.tel = u.tel A t.acc# = v.acc# A t.cl# =
v.cl# A t.balance = v.balance)}

{ f i l l) [3u3v (sg.branch(u) A sg.account(v) A u.br# = v.br# A t .br# = u .br#
A t.brname = u.brname A t.street = u.street A t .s treet# = u .s t reet# A t.city
= u.city A t.zip = u.zip A t.tel = u.tel A t.class = u.class A t .acc# = v.acc#
A t.cl# = v.cl# A t.balance = v.balance)},

{ f i l l) [3u3v (c/c.branch(u) A cic.account(v) A u .br# = v.br# A t.br# = u.br#
A t.brname = u.brname A t.street = u.street A t .s treet# = u .s t reet# A t.city
= u.city A t.zip = u.zip A t.tel = u.tel A t .acc# = v.accc# A t.cl# = v.cl# A
t.balance = v.balance A t.open_date = v.open_date)}

Note that the length of variable t is not the same for all three queries. (The negated
attribute is used to avoid repeating the common attribute br# .)

We end this section by showing that the multirelational calculus is at least as
powerful as the multirelational algebra.

Theorem: Every multirelational algebra query can be expressed as a multirelational
calculus query.

Proof." The proof is by induction on the number of occurrences of multirelational
algebraic operators in the multirelational algebra query E.

Base Case: 0 operators. In this case, E is a constant multirelation, E = {R1,...,R,~ }.
This is expressed in the multirelational calculus as {t I {R1,"',gn}(t)}"

Induction: Assume that E has n operators and is constructed from E 1 and E2 where
E1 is expressed by {t l~bl(t)} and E2 is expressed by {t 1~'2(t)}.

1. E = MPROJECT(E1;A1,...,An) is expressed by
{t 13u el(U) A 1 = U[hl,...~an]).

2. E = MSELECT(Ei : C) is expressed by {t I~bx(t) A C ~} where C t is obtained
from C by replacing each attribute Ai with t.Ai.

164

. E = MJOIN(E1,E2: C) where E1 contains an x qualification, E 2 contains
an x or y qualification, and C contains appropriate equalities (including
qualifications) is expressed by {t 13u3v3w (~bl(u) A~bz(v) A w = u *v A
C~A t = w[-,v.A1, ~v.A2, ..., ~v.Ak]) where (Y is obtained by changing the
qualification of each attribute to u and v in an appropriate manner and the
join attributes are A1,...,Ak.

. E = MPRODUCT(E1,E2) where E1 and E2 may contain an x qualification
each is expressed by {t [3u3v ~bl(u) A ~,2(v) A t = u *v) where ~'1 and
~'2 contain any x qualification from E1 and E2.

S. E = MUNION(E1,E2) is expressed by {t I /1 (0 V¢2(t)}.

6. E = MINTERSECT(E1,E2) is expressed by {t 1¢1(0 A¢2(t)}.

7. E = MDIFFERENCE(E1,E2) is expressed by {t 1~1(/) A--l~2(t)}.

The converse of this theorem is an interesting research problem.

5. An Example Multirelational Language

Litwin et al. (1989) presented a multidatabase extension of SQL, termed MSQL
(Multidatabase SQL) intended for multidatabase systems. Any function of SQL
is by definition a function of MSQL. New functions are designed for nonproce-
dural manipulation of data in different and basically mutually non-integrated SQL
databases. This means that the user's wish (informal multidatabase query) should
become a single MSQL statement. The definition of SQL is mainly that of ISO
(ISO/DIS, 1986) and of the DB2 dialect (Date, 1983). The new possibilities that
MSQL statements provide are as follows:

• single-statement table creation or alteration in any number of databases;

• retrieval or modification involving the joining of data in different databases;

broadcasting of a retrieval or of a modification over any number of databases
where data with similar meanings have the same or different naming rules,
decompositions into relations, or value types;

• dynamic transformation of actual attribute meanings, units of measure etc.,
into user-defined value types that may be retrieved or updated;

• interdatabase queries for data flow between databases;

• dynamic aggregation of data from different databases using various new
standard (built-in, aggregate) functions;

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 165

• creation of multidatabase views and of virtual databases over such views;

• creation of auxiliary objects like triggers, stored queries and transactions
(procedures).

Because MSQL manipulates sets of tables, the language is a natural extension of
SQL to handle multirelations. For example, consider the database of Section 2.
The query performed by the branch manager of the opera branch:

Find in all other branches the accounts of customers who are millionaires in my branch

is expressed in MSQL as:
L E T x BE sg cic etoUe nation
SELECT * FROM x.account
W H E R E x.account.cl# = opera.account.cl#
A N D opera, account.balance > 1,000,000

The query is a multirelational query, as it expresses in MSQL several relational
queries. The tables in the result need not be union compatible.

The algebra and calculus presented in the two previous sections are hard to use
in a real-life system. Looking at the Banks example, we can observe that real-life
databases are less uniform than in this example. They are usually semantically
heterogeneous with respect to names, structure, and value types even though all are
relational databases. This is because they are autonomous as banks and branches
compete for clients. Nevertheless, the banks and branches also cooperate, the
cooperation being naturally stronger between branches of the same bank. That is
why data in different databases have also some similarities which are stronger within
the same bank. In most real-life bank databases the following are true:

1. Banks partly disagree upon attribute names that model the same concepts.
For example, one database may use client-name, while another may use
cl-name for the same attribute.

2. The same client may be represented in several databases.

3. Primary key values in databases of different banks are independent, despite
sometimes having the same column names.

In order to handle such heterogeneity, MSQL provides some basic language con-
structs to (a) express queries ranging over sets of databases, and (b) address attributes
by specifying a prefix and not a complete attribute name. For example, the following
MSQL query:

USE etoile
SELECT * FROM client

allows the formation of a simple SQL query on the etoile database. Similarly,

166

USE Banks
SELECT bnp.brname
F R O M bnp.branch, branch
W H E R E bnp.branch.street# = branch.s t reet#
AND bnp.branch.br# l= branch .br#

finds all bnp branches that are located on the same street with other banks ' branches
(and other bnp branches as well). Notice in the last query, the multi-dot notation
that allows the isolation of specific relations within the bnp database. The following

query

S E L E C T *
F R O M br%
W H E R E s t ree t# = 'Av. Champs Elysees'

shows the use of the wild character % to abbreviate attribute names. This is especially
useful if, say, one database stores branch information in a branch relation, while
another database stores it in a relation called brch. This feature allows performing
queries on databases that are heterogeneous to some extent. Its syntax is similar to
that of the SQL "LIKE" clause, but it is applied to data names instead of values.

Finally, if one wants to restrict the set of databases taking part in the evaluation
of a query, MSQL allows the definition of semantic variables. For example, the
following query checks if a client of the opera branch has an account in the etoile
or nation branch:

L E T x BE etoile nation
SELECT * F R O M x.client
W H E R E x.client.clname = opera.client.clname

The query runs only on two databases, excluding the use of bnp, sg~ sic, and opera.
We end this section by showing Q7 from the previous section in M S Q L

Q7. USE Banks
L E T x y BE Banks.*
SELECT b r # class acc# open_date
F R O M x.branch y.account
W H E R E x.branch.br# = y.account .br# A N D x = y

6. Query Optimization Using Properties of the Multirelational Algebra

In analogy to the properties of the relational algebra in Ullman (1982), we investigate
the algebraic properties of the multirelational algebra and show how we can use
them to process queries efficiently. Note that we consider a relation to be a set of
tuples. Therefore, neither M J O I N nor M P R O D U C T is commutative, because the
order of e lement tuples is not the same.

VLDB Journal 2 (2) Grant: Query languages for Relational Multidatabases 167

Properties of Multirelational Algebra:

1. MPRODUCT is always associative, but MJOIN need not be associative.
MPRODUCT can always be taken; hence it is associative. The problem with
MJOIN is that a condition may be applicable or not, depending on the order
in which the MJOINs are performed. For example, suppose that R(A,B),
S(C,D), T(E,F) are relations and consider

MJOIN({MJOIN({R},{S): A = F},{T}: C = E)
MJOIN({R},{MJOIN({S},{T}: C = E) : A F}

The first version does not provide an answer because the inside MJOIN is
inapplicable; the second version provides an answer.

2. MSELECTs cascade, but some M P R O J E C ~ do not cascade.
Selection conditions can be done in any order because a condition that
is not applicable in one order is not applicable in another. However,
for projection, consider R(A,B,C), now MPROJECT({R);A,B) exists, but
MPROJECT({MPROJECT({R);A,B,D));A,B) does not, even though an
the attributes in the outside projection are contained in the inside projection.

. If all the attributes in the MSELECT condition are in MPROJECT, then
MSELECT and MPROJECT commute.
MPROJECT({MSELECT({R1,. . . ,Rn) :C)) ;A,,...,An) =
MSELECT({ MPROJECT({R1,...,Rn } :A1,---,An):C)
if condition C contains at most the attributes A1,...,An. For each Ri, if
MPROJECT followed by MSELECT exists, then so does MSELECT followed
by MPROJEC'I~ and vice versa. Without that condition, it may be the case
that a relation for the left-hand side does not appear in the right-hand side.

. If all the attributes in the MSELECT condition are in every relation of the
first multirelation, then MSELECT and MPRODUCT commute.
MSELECT({MPRODUCT({Rll , . . . ,Rln }, {R21,...,R2m })):C) =
MP RODUCT({ MSELEC:F({ Rll,...,Rln) : C)), { R2w..,g2m })
if the attributes in C appear in all of Rn,...,Rln. Now both the left-hand
side and the right-hand side have n x m relations. Without this proviso, the
right-hand side may have fewer relations than the left-hand side.

. MSELECT commutes with the set operations MUNION, MINTERSECT,
and MDIFFERENCE. This result holds because the set operations require
union-compatible relations.

. With the MPROJECT attributes appropriately chosen (see below) for the
multirelations, MPROJECT and MPRODUCT commute. That is
MPROJECT({MPRODUCT({Rn, . . . ,Rln} , {g21,...,g2ra})); Aa,...,An) =
MPRODUCT({ MPROJECT({ Rn,...,Rln } ;B1,...,Bm },
{MPROJECT({R21,...,R2m);C1,...,Ck })

168

if {A1,...,A n } = { B1,...,Bm, C1,... , Ck } and B1,...,B m appear in all Of Rll, . . . ,Rln ,
and C1,...,Ck appear in all of R21,...,R2m. Now both the left-hand side and
the right-hand side have n × m relations. Without the proviso, the right-hand
side and the left-hand side may have a different number of relations.

Given the above, the multirelational algebra should be useful for the optimization
of multirelational queries. Below, we illustrate the use of the multirelational algebra
through a straightforward example using MSQL.

As mentioned earlier, multirelational queries are at a higher level than relational
ones in the sense of being less procedural. To illustrate this point, and one
application of the multirelational algebra, consider the following example. A bank
has the database Archives and a number of autonomous databases, one per branch,
constituting a muitidatabase called Branches, which is similar to the database that
was defined in Section 2. The difference is that each branch database has a relation,
clientinfo(cl#,clname,balance,acc#,open_date), that combines the attributes of the
"client" and "account" relations we have been using in our examples. The Archives
database has a relation, cust-89(cl#,ciname,balance), that sums up information about
the banking of each customer in 1989. Suppose that a manager wishes to know the
names and balances of all the customers that opened an account on 1/1/89. The
MSQL query would be as follows:

(M1) USE Archives Branches
SELECT X.clname Y.balance
FROM Archives.cust-89 X, clientinfo Y
W H E R E Y.open_date = '1/1/89' AND X.cl# = Y.cl#

In query (M1), clientinfo is a multiple identifier of any relation in any database in
Branches. The semantics of (M1) is the multirelation defined by all the elementary
queries resulting from the substitutions of clientinfo by the name of a relation in
a database in Branches. For example, suppose that query 0VI1) is translated to the
following set of queries (a transaction)

(M2) BEGIN TRANSACTION

SELECT X.clname Y.balance
FROM Archives.cust-89 X, etoile.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND X.cl# = Y.cl#

SELECT X.clname Y.balance
FROM Archives.cust-89 X, nation.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND X.cl# = Y.cl#

SELECT X.clname Y.balance
FROM Archives.cust-89 X, opera.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND X.cl# = Y.cl#

END TRANSACTION

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 169

These queries would then be translated into the relational algebra for an
optimized execution. To observe the limits of this type of processing, suppose that
there are 100 branches. If query (M1) is processed as the multiple query (M2),
then the system would execute the same selection 100 times over Archives. To make
the processing of (M2) more efficient, the system has to discover that there is a
common expression in this multiple query that can be factored out. This is based
on Property 4 (above) extended to M JOINs, which allows selections to be pulled
out. For example, consider that query (M1) is translated first into its multirelational
form:

(M3) MPROJECT(
MJOIN({ Branches:clientinfo } ,
MSELECT({Archives.cust-89 } :

open_date='l/1/89') : c l#=c l#) ; clname, clientinfo.balance)

The next natural step for the query processor is to examine the cardinalities of the
multirelations involved. It will find that MSELECT operates over a single relation.
The easy optimization rule is then to factor out the selection clause:

(M4) W:= MSELECT({Archives.cust-89} : open_date = '1/1/89')
MPROJECT(MJOIN({Branches:clientinfo}, W : c l # = c l #) ; clname).

Query (M4) can then be transformed easily to the following transaction:
(M5) BEGIN TRANSACTION

USE Archives
INSERT W

SELECT *
FROM cust-89 X
W H E R E X.open_date = '1/1/89'

SELECT clname Y.balance
FROM W, etoile.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND W.cl# = Y.cl#

SELECT W.clname Y.balance
FROM W, nation.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND W.cl# = Y.cl#

SELECT W.clname Y.balance
FROM W, opera.clientinfo Y
W H E R E Y.open_date = '1/1/89' AND W.cl# = Y.cl#

END TRANSACTION

This decomposition is more efficient than (M2), because it avoids 99 useless repeti-
tions of the selection. Using straightforward extensions of the traditional optimization

170

Figure 1. Alternative query transformations and executions

Mu/aott $0.L Qot.r~.s

I
!
!
!

Y
I
I
I
!

rules, one may also define decompositions where projections are factored out be-
fore join operations are performed (Rule 6 in the beginning of the section). In
conclusion, because the multirelational algebraic expressions are at a higher level
than the relational ones, the lower path in the diagram of Figure 1 should be highly
preferable to the upper one. This is due to the fact that multirelational queries need
to be translated to a form that includes basic algebra or calculus operations where
transformation rules are to be applied. Applying such rules on SQL statements
(upper path) is much more difficult than applying them on (multirelational) algebra
statements.

7. Conclusions

In this article, the relational algebra and calculus were extended to a multirela-
tional algebra and calculus, where multitables are semantically heterogeneous. The
multirelational algebra will be needed in the multidatabase environment that will
become prevalent in the next few years. Our multirelational operations are defined
based on the semantics of the multirelational model. They are compatible with
the relational onees, but some of the properties of the relational operations do not
hold for the multitables. There does not seem to be any practical multirelational
algebra that could preserve them. We showed, however, how some properties of
the algebra can be used in optimizing MSQL queries.

One further step is to analyze the extended model. For example, the properties
of the multirelational algebra can be studied where nonexistent attributes for a
projection are ignored. Or, we may allow the user to define through a function the
pairs of relations that are to be examined in cases of the MJOIN and MPRODUCT
operations. Generally, one can devise different semantics for the multirelational op-
erations we have suggested, and studying such alternative semantics is an interesting

VLDB Journal 2 (2) Grant: Query Languages for Relational Multidatabases 171

topic. Finally, another interesting future direction would be to define optimization
rules extending standard optimization techniques used in relational database systems
to the case of multidatabases.

Acknowledgments

This research was sponsored by the National Science Foundation under Grant
IRI-8921951, the University of Maryland Institute for Advanced Computer Studies
(UMIACS), the Air Force Office for Scientific Research under Grant AFOSR-89-
0303, and NASA under Grant NAS5-31351.

References

ACM Computing Surveys Special Issue. Heterogeneous Databases, Elmargamid, A.
and Pu, C., eds., ACM Computing Surveys, (22)3, 1990.

Ceri, S. and Pelagatti, G. Distributed Databases: Principles and Systems, New York:
McGraw Hill, 1984.

Date, C.J. A Guide to DB2, Reading, MA: Addison-Wesley, 1983.
Information Processing Systems: Database Language SQL, Draft International Stan-

dard, ISO/DIS 9075, 1986.
Litwin, W. and Abdellatif, A. Multidatabase Interoperability, IEEE ComputerJour-

nat (19)12:10-18, 1986.
Litwin, W., et al. SIRIUS Systems for Distributed Data Management. In: Schneider,

H.J., ed., Distributed Databases, New York: North-Holland, 1982.
Litwin, W., Abdellatif, A , Zeroual, A , Nicolas, B., and Vigier, Ph. MSQL: A

multidatabase language, Information Sciences, (49), 1989.
Roussopoulos, N. and Kang, H. Principles and techniques in the design of ADMS,

IEEE Computer Journal, (19)12:19-25, 1986.
Sellis, T. Multiple-query optimization, A CM Transactions on Database Systems, (13)1:

23-52, 1988.
Stonebraker, M. and Rowe, L. The design of POSTGRES, Proceedings of the 1986

ACM-SIGMOD Conference, Washington, DC, 1986.
Ullman, J.D. Principles of Database Systems, Second Edition, Rockville, MD: Com-

puter Science Press, 1982.

