
VLDB Journag2 117-152 (1993) Fred J. Maryanski, Editor 117 
©VLDB 

Value-Based Scheduling in Real-Time Database 
Systems 

Jayant R. Haritsa, Michael J. Carey, and Miron Livny 

Received May 15, 1991; revised version received June 23, 1992; accepted October 6, 1992. 

Abstract. In a real-time database system, an application may assign a value to a 

transaction to reflect the return it expects to receive if the transaction commits 

before its deadline. Most research on real-time database systems has focused on 
systems where all transactions are assigned the same value, the performance goal 
being to minimize the number of missed deadlines. When transactions are as- 
signed different values, the goal of the system shifts to maximizing the sum of the 
values of those transactions that commit by their deadlines. Minimizing the num- 
ber of missed deadlines becomes a secondary concern. In this article, we address 
the problem of establishing a priority ordering among transactions characterized 
by both values and deadlines that results in maximizing the realized value. Of par- 
ticular interest is the tradeoff established between these values and deadlines in 

constructing the priority ordering. Using a detailed simulation model, we evaluate 
the performance of several priority mappings that make this tradeoff in different, 
but fixed, ways. In addition, a "bucket" priority mechanism that allows the rela- 
tive importance of values and deadlines to be controlled is introduced and studied. 
The notion of associating a penalty with transactions whose deadlines are not met 
is also briefly considered. 

Key Words. Transaction values and deadlines, priority mapping, resource and data 

contention, priority and concurrency algorithms. 

1. Introduction 

A Rea l -Time Database  System (RTDBS) is a t ransact ion-processing system that  
a t tempts  to satisfy the t iming constraints  associated with each incoming  transact ion.  
Typically, a t ime constra int  is expressed in the form of a deadline Accordingly,  
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a higher quality of service is associated with processing transactions before their 
deadlines as compared to completing them late. In contrast to conventional DBMSs, 
where the goal usually is to minimize response time, the emphasis here is on meeting 
transaction deadlines. RTDBSs thus have the task of enforcing data integrity 
constraints and satisfying transaction time constraints (Stankovic and Zhao, 1988; 
Buchmann et al., 1989). 

In RTDBSs, an application may assign a value to a transaction to reflect the 
return that the application expects to receive if the transaction is completed before 
its deadline (Huang et al., 1989). 1 The sum of the values of all input transactions 
constitutes the offered value, while the sum of the values of the transactions that are 
completed before their deadlines constitutes the realized value. The goal of an RTDBS 
is to maximize the realized value, because this metric is a direct measure of the 
real-time support provided to the application (Jensen et al., 1985). Most research on 
RTDBS performance has focused on applications where all transactions are assigned 
the same value (Abbott and Garcia-Molina, 1988; Haritsa et al., 1990a). For such a 
framework the goal of maximizing the realized value is equivalent to minimizing the 
number of missed deadlines. The concern is how many transactions are missed, not 
which transactions are missed. There are certainly real-time applications, however, 
where different transactions may be assigned different values (Stankovic and Zhao, 
1988; Huang et al., 1989). The value realized by a database system supporting such 
applications depends on which transactions meet their deadlines. 

To clarify the notion of transactions having different values, consider an airline 
reservation system that allows customers to call in their reservations. The time 
constraint on each reservation transaction is the delay that the customer is willing to 
endure before hanging up. Satisfying the request of a customer buying a high-priced 
ticket is more beneficial to the airline than satisfying the request of a customer 
buying a cheaper ticket, because the high-priced ticket generates greater revenue. In 
this scenario the value of a transaction is the fare paid by the requesting customer, 
and the objective of the reservation database system is to maximize the revenue 
received. A key point to note here is that value and deadline are fundamentally 
different properties (Biyabani et al., 1988; Huang et al., 1989). The fact that a 
transaction has a tight deadline does not necessarily mean that it has a high value, 
nor does a loose deadline imply a low value. The value reflects the transaction's 
worth, while the deadline reflects the transaction's urgency. 

In this article, we address the issue of resource scheduling and concurrency 
control in RTDBSs where transactions may differ in their assigned values. We 
assume that the value of a transaction is obtained by the application if the database 
system completes the transaction before its deadline. If the deadline is missed, 
however, no value is realized. This time-coupling between transaction value and 
system-realized value can be naturally expressed by the use of value functions, a 
powerful mechanism for expressing time constraints that was developed by Jensen 
et al. (1985) and Locke (1986). The key idea of the value-function concept is that 
the completion of a task has a value to the application that can be expressed as a 
function of the completion time. Our model, for instance, is captured by the value 

1. In certain applications there may be some diminished value to completing a transaction even after its 

deadline. For the sake of simplicity, we consider only transactions that have zero value after their deadline. 
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Figure la. Transaction value function. 
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function shown in Figure la. The figure shows a transaction T that has an arrival 
time AT, a deadline DT, and a value VT, in the interval (AT, DT). The application 
receives VT if transaction T is completed before DT, and zero otherwise. 

In order to resolve contention for hardware resources and data objects, the 
RTDBS needs to establish a priority ordering among the transactions executing in 
the system. This ordering should reflect the objective of maximizing the total realized 
value. In the absence of detailed knowledge of transaction resource requirements 
and data-access semantics, two basic principles, Earliest Deadline (ED) and Highest 
Value (HV), can be used to guide the priority ordering. The ED principle is that 
transactions with closer deadlines should be executed first (i.e., given higher priority) 
because delaying them might cause their deadlines to be missed and result in their 
value being lost. The HV principle is that transactions with higher values should 
be executed first because it would be beneficial to make certain that their deadlines 
are met and thereby realize high values. 

When transactions have similar deadlines, it is obvious that the HV principle 
should guide the priority ordering. Conversely, when transactions have similar 
values, it would seem that the ED principle provides the right priority ordering. But 
when transactions differ in both value and deadline characteristics, it is not obvious 
which of the above principles should be followed. Consider the simple scenario 
where a pair of transactions, A and B, with value functions as shown in Figure lb, 
compete for service. Following the ED principle would result in priority ordering 
(A, /3)  while the HV principle would yield (B,  A). In a more general sense, 
deciding on a priority ordering requires value and deadline to be weighted in some 
fashion, i.e., a priority mapping has to be established from the pair (DT, VT) to 
PT, where PT denotes the priority of transaction T. For example, PT = DT/VT, 
a priority mapping that gives equal weight to value and deadline, would result in 
the priority ordering (/3, A) of the two transactions (smaller PT values indicate 
higher system priority). 

Our problem is to identify the priority combination between transaction value 
and deadline that results in the maximum system-realized value. This is not a simple 
task because there is no obvious "right" combination. In fact, the combination that 
results in the best performance may not be the same in all circumstances, but rather 
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a function of the workload and system characteristics. In this article, we investigate 
this issue by using a detailed simulation model of a real-time database system. We 
evaluate the performance of several priority mappings which combine value and 
deadline in different ways. 

In our study we investigate the performance effects of having different degrees 
of spread in transaction values and high degrees of skew in the value distribution. 
The impacts of resource and data contention are examined in isolation and in 
combination, and the effects of correlation in transaction workload characteristics 
are discussed. In addition, a "bucket"-based priority mapping that integrates value 
and deadline based on fundamental real-time scheduling principles is introduced 
and evaluated. The bucket mapping allows the relative importance of values and 
deadlines to be var/ed. The notion of associating a penalty with transactions whose 
deadlines are not met is also briefly considered. 

For the most part, we restrict our attention to transactions with step-shaped 
value functions of the type shown in Figure la (the only exception is the penalty 
scenario). This means that transactions that miss their deadline can be immediately 
discarded, because completing them late generates no value to the application. In 
such situations, we say that the system is operating under firm deadlines. This is 
to be distinguished from hard deadlines, where catastrophic results may occur if 
a deadline is missed, and from soft deadlines, where even late transactions retain 
some completion value. A second assumption that we make is that the database 
system has no a-priori knowledge of transaction hardware resource requirements 
or data-access semantics because such information is not available in most cases. 

Our simulation model captures the modular architecture shown in Figure 2. 
The priority mapper unit generates a priority for a transaction on its arrival, and this 
priority is subsequently used throughout the system. It is possible that there may 
be feedback in the priority assignment process, causing the priority of a transaction 
to change with time; in this case, the change is transmitted by the priority mapper 
to the transaction, thus shielding the internal database mechanisms from the details 
of the priority generation process. This design is modular because it allows priority 
generation to be separated from priority usage. 

The remainder of this article is organized as follows: Section 2 reviews related 
work on integrating value and deadline. Section 3 describes several different priority 
mappings and also the "bucket" mechanism. Section 4 describes the functioning 
of concurrency-control algorithms evaluated in the study. Section 5 presents our 
RTDBS model and its parameters, while Section 6 highlights results of the simulation 
experiments. Finally, Section 7 summarizes the main conclusions and outlines future 
research avenues to explore. 

2. Related Work 

In this section we review some of the related work in algorithms for integrating 
value and deadline. We discuss this work from the perspective of both real-time 
operating systems and real-time database systems. 
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Figure 2. Priority Architecture 
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2.1 Real-time operating systems 

Thus far, research on integrating value and deadline has been almost exclusively 
restricted to the context of real-time operating systems. The first such study Qensen 
et al., 1985) was developed as part of the CMU Archons project. A well-constructed 
"Best-Effort" priority mapping mechanism for integrating value and deadline was 
developed and shown to outperform several "classical" priority mappings. The 
Best Effort algorithm is based on two observed value function and scheduling 
characteristics: (1) Given a set of processes whose deadlines can all be met by some 
schedule, it can be shown that a uniprocessor schedule in which the earliest deadline 
is scheduled first always meets all deadlines and; (2) Given a set of processes with 
values (ignoring deadlines), it can be shown that a schedule organized in decreasing 
order by value density (value/execution time), produces a total value at each point 
in time that is at least as high as any other schedule. 

The algorithm operates in the following manner: The scheduler creates a 
deadline-ordered sequence of the available tasks, which is then sequentially checked 
for its probability of missing the next task's deadline. At any point in the sequence 
where this overload probability passes a preset user-defined threshold, the task prior 
to the overload with the minimum value density is removed from the sequence. The 
removal process is repeated until the overload probability is reduced to acceptable 
levels. This procedure finally results in a sequence of processes in deadline order 
that does not cause an overload condition. In essence, the Best Effort algorithm 
creates a feasible schedule of the tasks with the highest value-densities, incorporating 
both observations described above. A simulation-based performance study of the 
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algorithm showed that, for appropriate settings of the overload probability threshold, 
the Best Effort algorithm provides a high realized value under a wide spectrum 
of loads, including both transient and persistent overloads, and a variety of value 
functions. 

A different approach to integrating value and deadline was described in Biyabani 
et al. (1988). The basic mechanism here is that the scheduler first schedules a 
new task according to its deadline without considering its value. If the task cannot 
be executed before its deadline without jeopardizing the completion of previously 
scheduled tasks, the scheduler then tries to schedule the task by removing previously 
scheduled lesser-valued tasks. If it is not possible to schedule the new task even after 
the removal of all lesser-valued tasks, the new task is discarded and the removed 
tasks are reinstated. A simulation-based study showed that algorithms based on this 
approach performed better than either exclusively deadline-based or value-based 
priority assignments. 

Theoretical studies of uniprocessor scheduling algorithms have been made for 
the special casewhere tasks have no slack time (i.e., deadline = execution time + 
arrival time). These studies focused on identifying the guarantee that a scheduling 
algorithm can provide with respect to how well it performs compared to a clairvoyant 
scheduler on any sequence of task requests. The task value model is that each task's 
value is a user-defined multiple (called "importance") of its execution time. For 
underloaded systems, it was shown in Dertouzos (1974) that the Earliest Deadline 
algorithm achieves 100% of the input task value because it meets all the task 
deadlines. For overloaded systems, however, it was proved in Baruah and Rosier 
(1991) that no on-line uniprocessor-scheduling algorithm can guarantee a value 

more than 1/(1 + x/k) 2 of that obtained by a clairvoyant scheduler, where k 
is the ratio between the maximum and minimum task importance. Recently an 
algorithm called D °ver was presented in Koren and Shasha (1992); this algorithm 
achieves optimal (in the above sense) on-line performance under both underloaded 
and overloaded conditions. 

In order to use any of the above schemes or results, a-priori knowledge of 
task service requirements is required. Unfortunately, knowledge about transaction 
resource and data requirements is usually unavailable in database applications 
(Stankovic and Zhao, 1988), and the schemes therefore cannot be used directly in 
most real-time database systems. Consequently, we are forced to consider alternative 
methods for scheduling value-differing transactions in real-time database systems. 

2.2 Real-Time Database Systems 

The last few years have seen quite a few studies published on the performance 
of resource scheduling policies and concurrency control algorithms in the context 
of RTDBSs. All these studies consider RTDBSs that operate under either firm 
or soft deadlines. (It is generally considered that hard deadline RTDBSs are 
infeasible because it is difficult to determine beforehand the computation time and 
execution pattern of a transaction; Abbott and Garcia-Molina, 1988; Stankovic 
and Zhao, 1988.) The studies can be divided into two general groups: those that 
treat all transactions as equally important (Abbott and Garcia-Molina, 1988, 1989, 
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1990; Haritsa et al., 1990a, 1990b; Huang and Stankovic, 1990a), and those that 
incorporate the notion of transactions having different values (Huang et al., 1989; 
Huang and Stankovic, 1990b). A brief summary of the studies in these two groups 
is presented as follows. 

The problem of scheduling transactions in RTDBSs was first addressed by Abbott 
and Garcia-Molina (1988, 1989). Their work focused on evaluating the performance 
of various real-time scheduling policies, all of which enforced data consistency by 
using a two-phase locking protocol as the underlying concurrency control mechanism. 
In Haritsa et al. (1990a), the focus was shifted to studying the performance of 
optimistic and pessimistic methods of concurrency control in a real-time environment. 
This work was extended in Haritsa et al. (1990b) with the development of new 
optimistic algorithms that delivered improved performance. Algorithms for buffer 
allocation and buffer replacement in real-time database systems were proposed and 
evaluated in Huang and Stankovic (1990a). In Abbott and Garcia-Molina (1990) a 
study of algorithms for scheduling disk requests with deadlines was made. Each of 
these studies assumed that all transactions have the same value, and the primary 
performance metric was therefore the number of missed deadlines. 

The only studies so far that incorporated transaction value in their performance 
evaluation framework are Huang et al. (1989) and Huang and Stankovic (1990b). 
Using a basic locking scheme for concurrency control, Huang et al. (1989) in- 
vestigated several algorithms for resource scheduling and data conflict resolution. 
Huang and Stankovic (1990b) extended this work to include optimistic methods 
of concurrency control. These studies were conducted on a real-time database 
testbed (RT-CARAT) and form an important first step in understanding the effect 
of multiple transaction values on RTDBS performance. There are some aspects 
of these studies, however, that leave room for further investigation: First, only 
fixed tradeoffs between value and deadline were considered. Second, the range 
of values these transactions could take on was limited and the value distribution 
was uniform. Third, the concurrency control algorithms compared in Huang and 
Stankovic (1990b) are priority-indifferent flavors of two-phase locking and optimistic 
concurrency control. Finally, testbed limitations constrained the studies to model a 
closed queuing system with a fixed amount of resources. 

Our work differs from the research mentioned above in that we consider a variety 
of transaction worldoads with different degrees of spread and skew in transaction 
values. Also, an open system with different levels of resource availability is modeled. 
In addition, prioritized flavors of locking and optimistic algorithms are implemented 
and compared. Lastly, a mechanism that allows the tradeoff between value and 
deadline to be varied is presented and evaluated. This mechanism is based on 
principles similar to those used in the construction of the Best Effort algorithm 
described earlier (Jensen et al., 1985), but suitably modified to account for the lack 
of detailed knowledge of transaction characteristics in RTDBSs. 

3. Priority Assignment Algorithms 

In order to resolve contention for hardware resources and data, the RTDBS has to 
establish a priority ordering among the transactions. The ordering should reflect the 
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goal of maximizing the realized value. When transactions are distinguished by both 
value and deadline, the priority mapping has to take both of these characteristics 
into account. In earlier studies (Stankovic and 7Zhao, 1988; Huang et al., 1989; 
Huang and Stankovic, 1990b) several priority mappings that combine ED and HV 
principles with different tradeoffs between value and deadline have been examined. 
A representative subset of these mappings that cover a range of value/deadline 
tradeoffs are evaluated in our performance study. This subset is described first in 
this section. Subsequently, a new "bucket" mechanism for the integration of value 
and deadline is presented. In the following discussion, AT, DT, VT, and PT are 
used to denote the arrival time, deadline, value, and priority of transaction T. The 
priority assignments of all of the mappings are such that smaller PT values reflect 
higher system priority. The first two mappings presented below implement extreme 
tradeoffs between value and deadline, while the others implement intermediate 
tradeoffs. 

3.1 Earliest Deadline (ED) 

The ED mapping follows the ED principle. The transaction priority assignment is 
PT = DT. It represents an extreme tradeoff because the value of the transaction 
is not taken into consideration. Several studies (Jensen et al., 1985; Abbott and 
Garcia-Molina, 1988) have observed that in lightly-loaded or moderately-loaded 
real-time systems, using an ED schedule results in the fewest missed deadlines. 
This mapping is generally used as the scheduling policy in real-time systems where 
all tasks have the same value and details of task characteristics are not available. 

3.2 Highest Value (HV) 

The HV mapping follows the HV principle. The transaction priority assignment 
is PT = 1/VT. It represents the other extreme tradeoff because the deadline 
of the transaction is not taken into consideration. Note that this mapping does 
not distinguish between transactions with the same value in terms of the priority 
assigned to them. Therefore, if all transaction values are the same, this mapping is 
equivalent to having no priority in the system. 

3.3 Value-inflated Deadline (VD) 

The VD mapping combines the ED and HV principles by using the transaction 
priority assignment PT = DT/VT. It gives equal weight to deadline and value. 
Moreover, within a group of transactions that have the same value, the priority 
ordering established by this mapping is identical to that of the ED mapping; within a 
group of transactions that have the same deadline, the priority ordering established 
is identical to that of the HV mapping. 

3.4 Value-Inflated Relative Deadline (VRD) 

The VRD mapping is similar in flavor to VD, but it uses the relative deadline 
instead of the absolute deadline in combining the ED and HV principles. The 
transaction priority assignment is PT = DT -- AT/VT. It gives equal weight to 
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relative deadline and value. Note that if all transactions have their deadlines at a 
fixed distance from their arrival times (i.e., DT -- AT  = constant), this mapping 
produces a priority ordering identical to that established by the H V  mapping. 

3.5 Bucket Algorithm (BA) 

The "bucket" algorithm combines value and deadline based on the applicatio n of 
two scheduling observations that are similar to those used in constructing the Best 
Effort algorithm of Jensen et al. (1985). 

1. Given a set of transactions with deadlines that can all somehow be met, an 
Earliest Deadline priority ordering meets all (or most of) the deadlines. 

. Given a set of homogeneous transactions and a system that has resources 
sufficiently to meet  only the deadlines of a subset of  these transactions, 
choosing the highest valued tasks to form the subset results in maximizing 
the realized value. 

The bucket mechanism is implemented as follows: The priority mapper unit 
of Figure 2 maintains a value-ordered list of all the transactions currently in the 
system. When a new transaction, T, arrives in the system, it is inserted into the 
list and its position in the list, POST, is noted. The transaction is assigned, based 
on its position, to one of the buckets in an array of NumBuckets buckets, where 
NumBuckets is a parameter  of the mechanism. The bucket assignment is done using 
the formula 

[PosT.NumBuckets ] 
[ NumTrans J 

BT = 

POST 

if N u m T r a n s  > N u m B u c k e t s  

otherwise 

where NumTrans is the number of transactions currently in the system. The priority 
assignment for transaction T is then computed as 

PT = (BT, DT, IT) 

where the IT component is a randomly chosen unique integer key. 2 (Because 
the transaction priority is expressed as a vector, priority comparisons are made 
in lexicographic order.) The IT key is intended to serve as a "noise factor" and 
establish a priority ordering among transactions of the same bucket that may have 
identical deadlines, thus ensuring a complete ordering among all the transactions 
in the system. 

The physical meaning of this algorithm is that the transactions in the system 
are evenly split into a set of buckets, based on transaction value. Transactions of 

2. Transaction keys are sampled uniformly over the set of integers. In the unlikely event that a new key 
matches that of an existing transaction, the key is resampled until a unique key is obtained. 
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bucket i tend to have lower value than transactions of bucket i-1 and higher value 
than transactions of bucket i+1. The corresponding priority assignment is such 
that transactions of bucket i have lower priority than transactions of bucket i-1 and 
higher priority than transactions of bucket i+1. The priority assignment is also 
arranged so that within each bucket the transaction priority ordering is based on 
the ED principle. 

By using an ED priority ordering within a bucket, the algorithm tries to incorpo- 
rate the first scheduling characteristic described above. By splitting the transactions 
into buckets based on value, the bucket mechanism tries to incorporate the second 
scheduling characteristic. 

3.6Tradeoffs 

By analyzing the priority mappings described above, we notice several interesting 
features. For instance, if transaction relative deadlines are linearly correlated to 
their execution times, the VRD mapping gives priority to transactions that can 
deliver the most value for the smallest amount of resource consumption. If all 
transactions have the same value, the VRD mapping establishes a Shortest Job 
First priority ordering. For these cases, therefore, the VRD mapping behaves like a 
simple "greedy" algorithm that tries to maximize short-term benefits without taking 
transaction time constraints into account. 

Turning our attention to the bucket algorithm, we see that if the NumBuckets 
parameter is set to 1, the priority mapping is identical to the ED mapping. This is 
because all transactions are assigned to the same bucket and the priority ordering 
within a bucket is ED. If the NumBuckets parameter is set to cx3, the priority 
mapping is similar to the HV mapping, since each transaction is usually assigned 
to a different bucket and the buckets are ordered by value. A NumBuckets setting 
between these two extremes establishes intermediate tradeoffs between value and 
deadline. Therefore, this parameter provides a mechanism for adjusting the tradeoff 
between value and deadline to the desired level. 

4. Concurrency Control Algorithms 

The resource scheduling policies used in most studies of RTDBSs are preemptive- 
resume, based on priorities at the CPUs, and non-preemptive priority-scheduling 
at the disks. These policies use the priority ordering established by the mappings 
described in the previous section in a straightforward manner. For implementing 
concurrency control, however, several different mechanisms are available, including 
locking (Gray, 1979), timestamps (Reed, 1978), and optimistic concurrency control 
(Kung and Robinson, 1981). In this section, we describe the concurrency-control 
algorithms that were chosen for evaluation in this study. These algorithms are a 
subset of those that were investigated in our earlier studies on the performance of 
concurrency-control algorithms in the RTDBS environment (Haritsa et al., 1990a, 
b). The selected algorithms are 2PL-HP, a prioritized locking algorithm; OPT-BC, a 
priority-indifferent (conventional) algorithm; and OPT-WAIT, a prioritized variant 
of the OPT-BC algorithm. Details of these algorithms are given as follows. 
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4.1 2PL-HP 

In 2PL-HP, classical two-phase locking (Eswaran et al., 1976) is augmented with 
a High-Priority conflict resolution scheme (Abbott and Garcia-Molina, 1988) to 
ensure that high-priority transactions are not delayed by low-priority transactions. 
This scheme resolves all data conflicts in favor of the transaction with the higher 
priority. When a transaction requests a lock on an object held by other transactions 
in a conflicting mode, and if the requester's priority is higher than that of all lock 
holders, the holders are started and the requester is granted the lock; otherwise the 
requester waits for the lock holders to release the objecL The High-Priority scheme 
also serves as a deadlock prevention mechanism under priority assignment schemes 
that assign unique priority values to transactions and do not change a transaction's 
priority during the course of its execution. 

4.20PT-BC 

In OPT-BC, classical optimistic concurrency control (Kung and Robinson, 1981) is 
modified to implement the notion of a Broadcast Commit (Menasce and Nakanishi, 
1982; Robinson, 1982). When a transaction commits, it notifies other executing 
transactions that conflict with it and these are immediately restarted. A validating 
transaction conflicts with an executing transaction if it wishes to update a data 
object that has been read by the executing transaction. There is no need for a 
validating transaction to check for conflicts with any already-committed transactions 
because any such transaction would have, in the event of a conflict, already restarted 
the validating transaction at its (the committed transaction's) own earlier commit 
time. This also means that a validating transaction is always certain to commit. 
The broadcast commit method detects conflicts earlier than the basic optimistic 
algorithm (Kung and Robinson, 1981), resulting in less wasted resources and earlier 
restarts; this increases the changes of meeting transaction deadlines. An important 
point to note is that transaction priorities are not used in resolving data conflicts. 

4.3 OPT-WAIT 

The OPT-WAIT algorithm (Haritsa et al., 1990b) is a variant of OPT-BC that 
incorporates transaction priorities. It features a priority wait mechanism: A trans- 
action that reaches validation and finds higher priority transactions in its set of 
conflicting transactions is "put on the shelf," that is, it is made to wait and not 
allowed to commit immediately. This gives higher priority transactions a chance to 
make their deadlines first. While a transaction is waiting, it may be restarted due 
to the commit of one of the conflicting higher-priority transactions. If the waiter's 
deadline is reached during the waiting process, and higher-priority transactions still 
exist in the conflicting set, then the waiter is aborted and discarded. OPT-WAIT 
and OPT-BC represent the extremes with regard to waiting. OPT-WAIT always 
waits for a higher-priority transaction, while OPT-BC never waits and unilaterally 
commits the validating transaction. 

We include the OPT-BC algorithm in this study, although it is priority-indifferent, 
for the following reason: It was shown that OPT-BC provided better performance 
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than 2PL-HP in high-contention firm deadline environments (Haritsa et al., 1992). 
That study assumed that all transactions have the same value. In this study we wish 
to find out whether the above results also carry over to RTDBSs that operate with 
transactions of different values. 

We do not include basic 2PL because its performance was always worse than 
that of 2PL-HP for the workloads considered in this study. The poor performance 
of 2PL is due to its priority-indifferent blocking policy which results in high priority 
transactions being blocked due to lock conflicts with low-priority transactions, a 
phenomenon know as "priority inversion (Sha et al., 1987). Under high contention, 
priority inversion results in long waiting times, causing urgent transactions to miss 
their deadlines. 

5. RTDBS Performance Model 

A detailed model of an RTDBS was used to study the performance of various 
priority mappings. The model is similar to that of our earlier studies (Haritsa et 
al., 1990a, 1990b). In this model, the database system consists of a shared-memory 
multiprocessor operating on disk-resident data (for simplicity, we assume that all 
data that is accessed from disk and buffer pool considerations are therefore ignored). 
The database itself is modeled as a collection of pages. 

Transactions arrive in a Poisson stream and each transaction has an associated 
value and deadline. A transaction consists of a sequence of read and write page 
operations. A read operation involves a concurrency control request to get access 
permission, followed by a disk I/O to read the page, followed by a period of CPU 
usage for processing the page. Write requests are handled similarly except for their 
disk I /O--their  disk activity is deferred until the transaction has committed. Here 
we assume that the RTDBS has sufficient buffer space to retain updates until commit 
time. We also assume the use of a log-based recovery scheme where only log pages 
are forced to disk prior to commit. A transaction that is restarted follows the same 
access pattern as the original transaction. If a transaction is not completed by its 
deadline, it is immediately aborted and discarded. The basic structure of the model 
is shown in Figure 3. 

The model has five components: a source that generates transactions; a transac- 
tion manager that models the execution of transactions; a concurrency control (CC) 
manager that implements the details of the concurrency-control algorithms; a resource 
manager that models the CPU and I/O resources; and a sink that gathers statistics 
on completed transactions. The priority mapper unit is embedded in the transaction 
manager. The following two subsections describe the workload generation process 
and the hardware resource configuration. 

5.1 Workload Model 

The workload model characterizes transactions in terms of the pages that they update. 
Table 1 summarizes the key parameters of the workload model. The ArrivalRate 
parameter specifies the mean rate of transaction arrivals. The DatabaseSize parameter 
gives the number of pages in the database. The number of pages accessed by a 
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Figure 3. RTDBS model structure. 

SOURCE TRANSACTION MANAGER SINK 

Start Transaction ~ End T nmsacdoe 

RESOURCE MANAGER CC MANAGER 

transaction varies uniformly between 0.5 and 1.5 times the value of PageCounL Page 
requests are generated from a uniform distribution (without replacement) spanning 
the entire database. WriteProb gives the probability that a page which is read will 
also be updated. 

5.1.1 Transaction Value Assignment. The arrival stream of transactions is composed 
of multiple-transaction classes that are distinguished by their value distribution. The 
number of classes is specified by the NumClasses workload parameter. The aver- 
age value of a transaction over all classes is specified by the GlobalMeanValue 
parameter. Each transaction class is characterized by four workload parameters: 
ProbClass, OfferedValue, MeanValu~ and SprdValue. The ProbClass parameter  spec- 
ifies what fraction of the input workload is formed of transactions belonging to the 
class. OfferedValue is the fraction of the total offered value to the system that is 
contributed by transactions of the class. For example, a setting of ProbClass= 0.2 
and OfferedValue=0.8 captures a "20-80" class which constitutes 20% of  the input 
transactions and accounts for 80% of the total offered value. The average value of 
transactions belonging to a class, MeanValue, is set by the formula OfferedValue, ProbClass 
GlobalMeanValue. Therefore,  assuming GlobalMeanValue=lO0.O, the average value 
of  transactions of the 20-80 class would be 400.0. The SprdValue parameter  bounds 
the range of values that transactions of a class can take, and it is specified as a 
percentage of the MeanValue of the class. A setting of 50 for this parameter  would 
specify a range of values between ::t=50% of 400.0, that is, between 200.0 and 600.0. 
The actual transaction values in the class are generated from a uniform distribution 
over the range established by the MeanValue and SprdValue parameters. 
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Table 1. Workload model parameters. 

Parameter Meaning 

ArrivalRate 

DatabaseSize 
PageCount 
WriteProb 

DeadlineFormula 
LSF 
HSF 
GlobalMean Value 
NumClasses 

ProbClass [i] 

OfferedValue [i] 
MeanValue [i] 

SprdValue [i] 

Transaction arrival rate 

Number of pages in database 

Average no. of pages accessed/transaction 

Write probability/accessed page 

DF1 or DF2 

Low Slack Factor 

High Slack Factor 

Mean transaction value 

Number of transaction classes 

Prob. of class/, i=l,2,... ,NumClasses 

Fraction value offered by class i 

Computed mean value of class 

Percent Spread in value of  class i 

5.1.2 Transaction Deadline Assignment. The DeadlineFormula workload parameter 
determines how transaction deadlines are assigned. Two transaction deadline formu- 
las are employed in this study. The first, which is used for most of the experiments 
reported here, is: 

DT = AT + SFT  * Rma= (DF1) 
where DT and AT are the deadline and arrival time of  transaction T .  If we 
use the term resource time to denote the total service time at the resources that a 
transaction requires for its data processing, then Rma x is the expected resource 
time of the largest transaction in our workload (i.e., a transaction accessing 1.5" 
PageCount pages). Si lT  is a slack factor (i.e., it determines the tightness/slackness 
of  deadlines) that varies uniformly over the range set by the workload parameters 
LSF and HSF. 

The second deadline formula used in the study is: 

DT = AT  "F S F  * RT (DF2) 
Here  the actual resource time of transaction T is used to compute its deadline, 

i.e., RT replaces Rmax in the assignment. Also, the slack factor SF does not vary 
over a range but is a constant. The workload parameters LSF and HSF are set to 
the same number and SF takes on this value. (Formula DF1 makes the deadline of 
a transaction independent of its actual execution time, and is designed to represent 
workloads where there is no correlation between a transaction's deadline and its 
execution time.) Deadline formula DF2 is designed to investigate the effects of 
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Table 2. Resource model parameters 

Parameter I Meaning 

NumCPUs 
NumDisks 
PageCPU 
PageDisk 

Number of processors 

Number of disks 

CPU time for processing a data page 

Disk service time for a page 

correlation, and makes a transaction deadline linearty correlated to its execution 
time. With DF2, all transactions have the same slack ratio, which is defined as 
(DT -- AT) /RT.  With DF1, however, transaction slack ratios vary over a range of 
values based on the ratio of Rm~,~ to the individual RT'S (and the LSF and HSF 
parameter  settings). It is important to note that while the workload generator uses 
transaction resource requirements in assigning deadlines, we assume that the system 
itself lacks any knowledge of these requirements. This implies that a transaction 
can be detected as being late only when it actually misses its deadline, since the 
system cannot estimate the remaining service requirements of the transaction. 

In order to not generate "degenerate" transactions (i.e., transactions whose 
deadlines cannot be met even it they are executed alone in the system) deadlines 
have to be assigned so that each transaction has a slack ratio of at least 1. We 
ensure this in our  experiments by always setting the values of the LSF and HSF 
parameters to be > 1. 

5.2 Resource Model 

The physical resources in our model consist of  multiple CPUs and multiple disks. 
There is a single queue for the CPUs and service discipline is preemptive-resume, 
with the preemption based on transaction priorities. Each of the disks has its 
own queue and is scheduled with a non-preemptive priority scheduling policy. 
Table 2 summarizes the key parameters of the resource model. The NumCPUs 
and NumDisks parameters specify the hardware resource composition, while the 
PageCPU and PageDisk parameters capture CPU and disk processing times per data 
page. The data are modeled as uniformly distributed across all of the disks. 

6. Experiments and Results 

In this section, we present performance results of our experiments, comparing 
various priority mappings in an RTDBS environment. The simulator used to obtain 
the results is written in Modula-2-based DeNet  simulation language (Livny, 1988). 
We first describe the performance metrics and then list the baseline values for the 
system parameters. Subsequently, we discuss our results with regard to the impact 
of resource contention, data contention, value skew, and correlation. 
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6.1 Performance Metrics 

The primary performance metric is LossPercen¢ which is computed as 

[ OfferedValue-ReallzedVatue ] 
L o s s P e r c e n t  = t ojye~av~t~,~ l * 100 

i.e., it is the percentage of the offered value that is not realized by the system. 
LossPercent values in the range of 0--20% are taken to represent system performance 
under "normal" loadings, while those in the range of 20-100% represent performance 
under "heavy" loading. A long-term operation region where the loss percentage is 
large is obviously unrealistic for a viable RTDBS. Exercising the system to high loss 
levels, however, provides valuable information on the response of the algorithms 
to brief periods of stress loading (Abbott and Garcia-Molina, 1988, 1989). (All 
LossPercent graphs in this article show mean values with relative half-widths about 
the mean of < 5 %  at the 90% confidence interval, with at least 5,000 transactions 
processed for each experiment. Only statistically significant differences are discussed 
here.) 

A secondary performance metric, MissPercent, measures the percentage of trans- 
actions that do not complete before their deadline. Note that when all transactions 
have the same value, the LossPercent and MissPercent metrics are identical. All the 
experiments evaluate these metrics as a function of the transaction arrival rate. 

6.2 Parameter Settings 

The resource parameter settings are such that the mean CPU time to process a 
page is 10 milliseconds, while mean disk access times are 20 milliseconds. For 
experiments that were intended to factor in the effect of resource contention on 
the performance of the mappings, the number of processors and disks were set 
to 8 and 16, respectively. For experiments intended to isolate the effect of data 
contention, we approximately simulated an "infinite" resource situation (Franaszek 
and Robinson, 1985; Agrawal et al., 1987), i.e., where there is no queuing for 
resources. This was done by increasing twenty-five-fold the number of processors 
and disks, from their baseline values of 8 and 16 to 200 and 400, respectively. 
While abundant resources usually are not to be expected in conventional database 
systems, they may be more common in RTDBS environments became real-time 
systems are usually sized to handle transient heavy loading. This directly relates to 
the application domain of RTDBSs, where functionality, rather than cost, is often 
the driving consideration. 

Most of our experiments were conducted for a workload consisting of a single 
class. For experiments designed to evaluate the effect of skew in transaction values, 
however, the workload consisted of two transaction classes. The value for each 
transaction is chosen uniformly over the range of values of its class, and is independent 
of the transaction's other characteristics (the values are taken from the real number 
domain and are not simply integers). The GlobalMeanValue parameter was kept 
constant across all the experiments at a value of 100.0. 



VLDB Journal 2 (2) Haritsa: Value-Based Scheduling in RTDBSs 133 

To serve as a basis for comparison, apart from the candidate priority mappings 
described in Section 3, the following priority mappings are also evaluated in our 
performance study: 

. NoPriority (NP): All transactions are given the same priority in this mapping. 
The performance obtained under this mapping should be interpreted as that 
which would be observed if the RTDBS were to be replaced by a conventional 
DBMS and the feature of discarding late transactions was retained. 

2. RandomPriority (RP): This mapping randomly assigns priorities to transactions 
without taking into account any of their characteristics. The performance 
obtained under this mapping reflects how much performance can be obtained 
by the mere existence of some fixed priority ordering among the transactions. 

6.3 Resource Contention (RC) 

Our first set of experiments investigated the performance of priority mappings 
when resource contention is the sole performance-limiting factor. We began our 
experiments by developing a baseline model around which further experiments were 
constructed by varying a few parameters at a time. The settings of the workload and 
resource parameters for the baseline model are listed in Tables 3 and 4. The WriteProb 
parameter, which gives the probability that an accessed page is updated, is set to 
0.0 to ensure that there is no data contention. Therefore, no concurrency control is 
necessary for this set of experiments because all transactions are queries. There is a 
single transaction class. Transaction values range between 50.0 and 150.0. Deadline 
formula DF1, which makes transaction deadlines independent of their execution 
time, is used for this set of experiments. The workload settings related to deadline 
slack assignment are such that the spread in slack factor, HSF/LSF = 4 . 0 / 1 . 3 3 ,  
is the same as the spread in value, 150.0/50.0, namely 3. These settings ensure 
that variations in both deadline and value play a role in determining overall system 
performance. 

6.3.1 Baseline Model For the baseline model, Figures 4a and 4b show the LossPer- 
cent results under normal and heavy load conditions. Figures 4c and 4d show the 
corresponding MissPercent results. (The curves for HV and VD are identical in 
all of these figures.) From this set of graphs it is clear that, at low loads, the 
ED mapping realizes the most value (smallest Loss Percent). This might be con- 
sidered surprising because ED is a value-indifferent mapping. However, because 
ED misses the deadlines of very few (if any) transactions (Figure 4c), it delivers 
most value. The value-cognizant mappings, HV and, to a lesser extent, VRD focus 
their effort on completing the high-value transactions. In the process, they prevent 
some lower-value transactions from making their deadlines, thus losing more offered 
value. 

As the system load increases the performance of ED steeply degrades, nearly 
paralleling that of NP. At high loads, where the resources become saturated, trans- 
actions under ED and NP make progress at similar average rates. Under NP, every 
transaction makes slow but steady progress from the moment of arrival. Under 
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Table 3. Baseline model workload settings 

Parameter [Value 

DatabaseSize 
PageCount 
WriteProb 
DeadlineFormula 
LSF 
HSF 
GlobalMean Value 
NumClasses 

ProbClass [i] 

OfferValue [i] 
MeanValue [i] 
SprdValue [i] 

1,000 pages 

16 pages 

0.0 

DF1 

1.33 

4.0 

100.0 

1.0 

1.0 

1.0 

100.0 

50.0 

Table 4. Baseline model resource settings 

Parameter 

NumCPUs 
NumDisks 
PageCPU 
PageDisk 

ED, no progress is made initially by a transaction, but as its deadline approaches, 
fast progress is made. The net progress is about the same under both ED and 
NP. This was experimentally confirmed by measuring the average progress made by 
transactions that missed their deadline. Therefore, under overload conditions, ED 
is not the right mapping to use (Jensen et al., 1985; Huang et al., 1989). 

The RP mapping behaves poorly at low loads but performs better than ED at 
high loads. Under ED new transactions usually start off at low priority and become 
high priority only as their deadline draws close. At heavy loads, this gradual process 
of gaining priority causes most transactions to miss their deadlines. The RP mapping, 
on the other hand, due to its static, random assignment of priorities, allows some 
transactions to have a high priority when they arrive. Such transactions tend to 
make their deadlines; therefore there is always some fraction of transactions in the 
system that are guaranteed to make their deadlines. This explanation is confirmed 
by the higher MissPercent characteristics of ED compared to RP at high loads. 
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Figure 4. RC baseline model 
a. Normal load b. Heavy load 
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Figure 4. MissPercent (RC baseline) 
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The H V  mapping also performs worse than ED at low loads, but improves as the 
load increases. In fact, it outperforms all the other algorithms at high loads because 
the system has sufficient resources to handle only a fraction of the transactions in 
the system. At high loads, only transactions that can deliver high value should be 
run. If we look at the MissPercent characteristics (Figures 4c and 4d), we observe 
that HV and RP behave identically with respect to this metric. The reason for this 
behavior is that the workload has transaction values that are independent of other 
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transaction characteristics and all transaction values are distinct. In such a case, HV 
priority ordering is no different from RP priority ordering in terms of the ability 
of the RTDBS to make transaction deadlines. This would not be the case if there 
were groups of transactions with the same value, because same-value transactions 
introduce NP-type behavior into the performance of HV. 

The VD mapping appears to combine ED and HV principles in its priority 
assignments, but it performs identically to the HV mapping. This is not a coincidence, 
but is, in fact, always true: As time progresses, the DT term in D T / V T  becomes 
large enough that it is approximately the same for all transactions. Therefore, once 
the clock time is sufficiently large, VD behaves exactly like HV. For this reason, 
we will not consider the VD mapping any further in this article. The more general 
lesson that can be learned from the behavior of VD is that priority computations 
that combine values and absolute deadlines should be designed with care to ensure 
that the above problem is not encountered. In Huang et al. (1989), it was observed 
that a priority assignment of PT : VT(//31( t - -  AT) - w2 * DT), where wl  and 
w2 are weighting factors, displayed little difference in performance with different 
settings for the weights. The probable reason is that, with any non-zero value for 
w2, the absolute deadline O T te rm in the formula dominates the other term once 
the clock time is sufficiently large; thus the priority assignment degenerates to an 
HV mapping. Therefore, the actual weights should not be expected to impact the 
long-term performance of this mapping. 

The VRD mapping's performance is between that of ED and HV. At low loads, it 
is slightly worse than ED, while at high loads, it is slightly worse than HV. In a sense, 
it delivers the best overall performance. While VRD, like VD, takes both deadlines 
and values into account, it does not behave like HV. The reason is that the mapping 
uses the relative deadline, rather than the absolute deadline, to compute transaction 
priorities. This makes the VRD mapping both value- and deadline-cognizant for 
this workload. The reason that the VRD mapping does better than HV at low 
loads is that it has a partial ED effect, i.e., jobs with small relative deadlines are 
given priority over jobs with larger deadlines. Among sets of similar-valued jobs 
that arrive about the same time, the priority ordering is approximately ED. Due to 
this effect, fewer deadlines are missed by VRD when compared to HV at low loads 
(Figure 4c). Conversely, at high loads under the VRD a high-value transaction may 
not be completed due to having a large relative deadline. 

Our next experiment examined the effect of increased spread in transaction 
values. The SprdValue parameter was increased from the baseline value of 50% to 
99%, while keeping the other parameters the same as in the baseline model. This 
means that transaction values now ranged between 1.0 and 199.0. The LossPercent 
results for this experiment are shown in Figures 5a and 5b. Note that the performance 
of the ED, RP, and NP mappings remains the same as that in the baseline experiment. 
This is because these mappings are value-indifferent; therefore changes in the value 
distribution do not affect their performance (if the mean value remains the same). 
The value-cognizant mappings, HV and VRD, however, improve their performance 
considerably. This is because these mappings concentrate on the more valuable 
transactions, and increasing the value spread implies that, on the average, greater 
value is obtained for each high-value transaction that is completed. The missed 
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Figure 5. Increased spread 
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low-value transactions have lesser effect on the realized value because their average 
value is smaller due to the increased spread. Note that the MissPercent characteristic 
of HV is the same as in the baseline experiment because the workload assigns values 
to transactions independently of their other characteristics. 

We then examined the effect of decreasing the spread of transaction values. 
The SprdValue parameter was set to 0%, keeping the other parameters the same as 
those of the baseline model. This means that all transaction values had the same 
value of 100.0. The LossPercent results for this experiment are shown in Figures 6a 
and 6b. (In Figure 6b the top set of lines corresponds to ED, HV, and NP, while 
the bottom set corresponds to VRD and RE) The value-cognizant mappings, H V  
and VRD, perform worse here when compared to the baseline experiment. H V  
behaves just like NP because it gives every transaction the same priority when all 
values are the same. This is an extreme case, but similar problems would arise when 
the workload consists of multiple transaction classes where all transactions within 
a class have the same value. The VRD mapping does not behave like NP because 
its relative deadline component  ensures a priority ordering among the transactions. 
Also, at high loads the VRD behaves similarly to RP rather than ED. This implies 
that VRD is more value-oriented than deadline-oriented at high loads because the 
relative deadline component has only a randomizing effect when all values are the 
same. 

Another  interesting observation is that the RP mapping performs quite well at 
high loads. This means that if a random noise is added to priority values, stability in 
high-load performance can be obtained even when most or all of  the priority values 
would otherwise be the same. If even an infinitesimally small noise is added to the 
transaction priorities generated by the HV mapping, the heavy load performance 
would be like that of RP rather than that of NP. This is because the addition of 
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Figure 6. Decreased spread 
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noise causes a priority ordering to exist where there was none. The noise should be 
random, not based on transaction characteristics. If transaction deadlines are used 
to generate noise, the performance at high loads would be like that of ED, not RP. 
It should be noted that the high-load stability obtained by the addition of noise is 
gained at some cost in normal load performance, because RP performs worse than 
NP in this loading range. 

We can draw the following conclusions for the uniform workloads examined in 
this section: 

1. At low loads, when the MissPercent is low, the ED priority ordering is the 
right choice. At high loads, when the MissPercent is high, the priority ordering 
given by the HV principle realizes the most value. 

2. The degree of spread in transaction values has a significant effect on the per- 
formance of the value-cognizant mappings. In particular, their performance 
improves with an increased spread in values. 

3. The use of absolute deadlines in priority assignments should be handled with 
c a r e .  

. Priority mappings should have a built-in noise factor to guard against the 
possibility of transactions having identical priorities because such transactions 
can hinder each other's progress and thus degrade performance at high loads. 

6.3.2 Transaction Value Skew. The next experiment examined the effect of skew 
in transaction value distribution. The parameters are set as shown in Table 5. 
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Table 5. Skew workload settings 

Parameter Value 

DatabaseSize 

PageCount 
WriteProb 
DeadlineFormula 
LSF 
HSF 

G lob alMean Value 
NumClasses 
ProbClass [i] 

OfferedValue [i] 
MeanValue [i] 

SprdValue [i] 

1,000 pages 

16 pages 

0.0 

DF1 

1.33 

4.0 

100.0 

2 

0.1, 0.9 

0.9, 0.1 

900.0, 11.0 

50.0, 50.0 

Figure 7. RC value skew 
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They construct a two-class workload where 10% of the transactions deliver 90% 
of the offered value. The transaction values from the first class vary between 450 
and 1,350, while the values of the second class vary between 5.5 and 16.5. (The 
GlobalMeanValue parameter is the same as for the baseline experiment.) LossPercent 
results are shown in Figure 7. As in previous experiments, the performance of the 
ED, RP, and NP mappings remains the same as in the baseline experiment, because 
these mappings are value-indifferent. The figure also shows that the performance 
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Table 6. Data contention resource settings 

Parameter [ ~ ]  

NumCPUs ~ 
NumDisks 
PageCPU 
PageDisk 

of the value-cognizant mappings, HV and VRD, improves greatly over the baseline; 
they are now much superior to the value-indifferent mappings. Even at low loads, 
they perform almost as well as ED. By making sure that all of the (few) high-value 
transactions make their deadline, HV and VRD ensure that they always realize at 
least 90% of the offered value. In addition, the value of the missed transactions 
constitutes a very small fraction of the total value at low loads; the performance 
impact of a higher number of missed deadlines than ED is therefore negligible. 
The performance of VRD is almost identical to that of HV. This is because, 
when the spread in value is much larger than the spread in relative deadline, the 
VT component of the VRD mapping dominates the (DT -- AT) component in 
determining relative transaction priorities. Therefore, for workloads with these 
features, the VRD mapping generates a priority ordering very similar to that of the 
HV mapping, and is only marginally deadline-cognizant. 

We can conclude that skew in transaction values causes the value-cognizant 
algorithms to perform much better. For workloads with a considerable spread in 
transaction values, the priority ordering established by the HV principle ensures 
good performance through the entire loading range. These results also demonstrate 
the significant impact of value distributions on the relative performance of the 
algorithms. 

6.4 Data Contention (DC) 

The second set of experiments investigated the performance of priority mappings 
when data contention is the sole performance degradation factor. As before, we 
began our experiments by developing a baseline model around which we constructed 
further experiments by varying a few parameters at a time. The settings of the 
workload parameters for this baseline model are identical to those for Resource 
Contention (Table 3), except that the WriteProb parameter is set to 0.25 instead of 
0.0. Deadline formula DF1 is used again for the assignment of transaction deadlines. 
The settings of the resource parameters are shown in Table 6. The high settings for 
the quantity of hardware resources contention levels are extremely low, and thus 
the performance differences observed between the mappings are primarily due to 
data contention. Due to space limitations (and for graph clarity), we do not discuss 
the RP and NP mappings in the following sections. 
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Figure 8. DC baseline model 
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Figure 8c. MissPercent (DC Baseline) 
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6.4.1 Baseline Mode l  For the baseline model, Figures 8a and 8b show LossPercent 
results under normal and heavy load. Figure 8c shows the corresponding MissPer- 
cent behavior. The results were obtained separately with 2PL-HP, OPT-BC, and 
OPT-WAIT concurrency control algorithms. The 2PL-HP mappings (solid lines) 
qualitative~ exhibit the same behavior as in the RC baseline model (Figures 4a, 4b). 
The ED mapping performs the best at low loads, while HV outperforms all the other 
algorithms at high loads. Data contention (unlike resource contention) is not work 
conserving; already-performed work has to be redone after a transaction restart. 
Therefore, ensuring that the most urgent transactions are given highest priority is 
even more beneficial at low loads here. At high loads, following the HV principle 
is again the right approach because the data contention level is high enough that 
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only a fraction of transactions are able to complete before their deadlines. In such 
a situation the transactions that should be given priority are those that can deliver 
high values. 

All the priority mappings under OPT-BC (dashed line) behave exactly the same, 
because OPT-BC is a priority-indifferent algorithm and there is virtually no resource 
contention; therefore, transaction priority does not play a role in determining system 
performance. The important point to note is that, in spite of this priority indifference, 
OPT-BC performs better than 2PL-HP for most of the loading range, especially 
at higher loads. The reason for this is obvious when we compare the MissPercent 
characteristics, where we observe that OPT-BC misses far fewer deadlines than 
2PL-HP (Figure 8c). The primary reason for the lower number of misses is that 
the optimistic approach, due to its validation stage conflict resolution, ensures that 
eventually discarded transactions do not cause the restart of other transactions 
(Haritsa et al., 1990a). The locking approach, on the other hand, allows these 
soon-to-be discarded transactions to cause other transactions to be either blocked 
or restarted due to lock conflicts, thereby increasing the number of late transactions. 

OPT-WAIT (dotted lines) performs worse than OPT-BC for all mappings except 
ED at low loads because of priority waiting. Priority waiting is a good idea with ED 
because the more urgent transactions are not restarted by less urgent transactions. 
At high loads, however, the priority wait algorithm causes performance degradation 
due to an increase in system population, which causes a steep increase in the 
number of conflicts. A more detailed explanation of OPT-WAIT behavior is given 
in Haritsa et ai. (1990b). Although that study did not include transaction values, 
the explanations carry over because ED is a value-indifferent mapping. With the 
ED priority mapping, a waiting transaction never has to wait beyond its deadline. 
For other mappings, this is not necessarily the case. Under HV, for example, it is 
clear that the higher-value conflicting transactions may not have completed by the 
waiting transaction's deadline. In such a case the waiter is aborted and its value 
is lost. This wouldn't be so bad if the higher priority transaction then made its 
own deadline and the system realized its value. There is no guarantee, however, 
that this will actually happen. We could have many wasted sacrifices, i.e., cases 
where a transaction is discarded on behalf of another transaction that later does 
not complete. It should be noted that the performance of OPT-WAIT is still better 
than that of 2PL-HP for all mappings throughout the entire loading range. 

6.4.2 Transaction Value Skew. This experiment examined the effect of skew in 
transaction value distribution. Workload parameters are the same as for experiment 
6.3.2 (Table 5), except that the WriteProb parameter is set to 0.25. Resource parameter 
settings for this experiment are shown in Table 6. LossPercent results are shown in 
Figure 9 for the 2PL-HP, OPT-BC, and OPT-WAIT concurrency control algorithms. 
The performance of the value-cognizant mappings improves tremendously under 
2PL-HP and they are now far superior to the ED mapping, as in the pure resource 
contention case. 2PL-HP ensures that the highest priority transactions are virtually 
guaranteed to make it to their deadline. Successfully meeting deadlines of the few 
high-value transactions is, by itself, sufficient to realize at least 90% of the offered 
value. 
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Figure 9. DC value skew 
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The performance of OPT-BC (dashed line) remains the same as in the baseline 
data contention experiment (6.4.1), because OPT-BC does not take into account 
transaction values; therefore changes in the transaction value distribution do not 
affect its performance. Figure 9 shows that the performance of a value-cognizant 
mapping under 2PL-HP is superior to its performance under the OPT-BC algorithm, 
in spite of 2PL-HP having a much higher MissPercent. The value that 2PL-HP derives 
from concentrating on the high-value transactions more than compensates for the 
value lost due to missing the deadlines of a large number of low-value transactions. 
OPT-BC treats all transactions equally, which can cause high-value transactions to 
be restarted (and therefore miss their deadlines) due to the commits of low-value 
transactions. 

All the mappings performed better for OPT-WAIT (dotted lines) than for 2PL- 
HP, including the value-cognizant algorithms. OPT-WAIT is priority-cognizant and 
is willing to sacrifice low-priority transactions for high-priority transactions, similar 
to 2PL-HE In addition, OPT-WAIT gains some extra value due to missing the 
deadlines of a smaller number of low-value transactions. OPT-WAIT makes all of 
the same high-value transactions and misses fewer low-value transactions. 

With increasing data contention, optimistic algorithms outperform locking algo- 
rithms in firm-deadline systems (Haritsa et al., 1992), assuming that all transactions 
have the same value. Our experiments here demonstrate that optimistic algorithms 
can also perform better than locking algorithms when the real-time environment 
incorporates the notion of value and the priority mappings are value-cognizant. 

6.5 Data and Resource Contention Combined (DC+RC) 

We conducted several experiments where both RC and DC contribute towards system 
performance degradation. This was clone using limited hardware resources (8 CPUs 
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Figure 10. DC + RC (2PL-HP) 
a. Baseline model b. MissPercent 
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and 16 disks), a write probability of 0.25, and deadline formula DF1 for assigning 
transaction deadlines. The qualitative results were the same as those obtained for 
RC or DC alone. The ED mapping is the best at normal loads, while t he  HV 
mapping is the best at high loads. The performance of the value-cognizant mappings 
improves with value spread or skew. The performance of priority mappings for 
2PL-HP under the baseline workload model is shown in Figures 10a and 10b. The 
results are qualitatively similar to those of Figures 4a-c or Figures 8a-c. 

We also conducted this experiment using the two optimistic algorithms, OPT-BC 
and OPT-WAIT. Both outperformed 2PL-HP over virtually the entire loading range 
for all mappings. At low loads, OPT-WAIT did slightly better than OPT-BC for 
the ED mapping, and slightly worse for the other mappings (similar to the results 
of the baseline pure data contention experiment, 6.4.1). At high loads, OPT-WAIT 
and OPT-BC had the same performance for all mappings. The reason is that, 
with heavy resource contention, it is rare for a low-priority transaction to reach 
its validation stage before a conflicting high-priority transaction. Accordingly, the 
priority wait mechanism of OPT-WAIT rarely comes into play, and OPT-WAIT 
therefore exhibits OPT-BC-Iike behavior at high loads. 

The conclusion is that both resource and data contention affect mapping per- 
formance in similar fashion, so results are qualitatively the same for both contention 
types. These results can also be traced to the fact that we use priority in a consistent 
fashion for both resource scheduling and concurrency control. 

6.6 Bucket Algorithm (BA) 

In this section we present results for experiments that evaluated the performance 
of the bucket algorithm. Bucket mapping is evaluated for four settings of the 
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NumBuckets  parameter: NumBuckets  = 1,2,4, o¢. These will hereafter be referred 
to as BA1, BA2, BA4, and BAcx3, respectively. The BA1 and BAcx3 mappings 
produce orderings similar to those of the ED and HV mappings, respectively. These 
curves help to put the results in perspective with those described in the previous 
sections. Note that BAc<~ generates similar priority ordering as HV only when all 
transactions have distinct values. HV assigns equal priority to transactions with 
the same value, while BAcx3 assigns different priorities due to its random noise 
component. This protects BAcx~ from the poor performance behavior observed 
with HV when all values are the same (see experiment 6.3.1). 

All of the experiments we carried out for the fixed-tradeoff mappings were also 
performed for the bucket algorithm. Due to space limitations, we will present the 
bucket algorithm performance in detail for only a subset of the experiments. The 
experiments discussed here are the baseline resource contention and the resource 
contention with value skew experiment; the results of the other experiments will be 
briefly summarized. 

6.6.1 Resource Contention. For the baseline model where resource contention is the 
sole performance degradation factor, Figures l l a  and l l b  show the LossPercent 
behavior of the bucket algorithm under normal and heavy loads. At low loads 
up to an arrival rate of 35.0, the BA1 (ED) mapping performs best. As the load 
increases, the performance of BA1 deteriorates and BA2 starts to deliver the best 
performance. When the loading is increased beyond an arrival rate of 70.0, the 
performance of BA2 deteriorates and BA4 starts to deliver the best performance. 
From this trend we can observe that, as the loading level increases, the number of 
buckets required to provide good performance also increases. 
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When the loading level is extremely high, a bucket count of ct3, which corresponds 
to the BAcx9 (HV) mapping, will provide the best performance. Within a bucket the 
priority ordering is ED. Therefore, the bucket count has to be at a level such that 
the miss percentage in the first bucket is small enough for the ED policy to work 
well. At low loads, a single bucket is sufficient because the overall miss percentage 
is small. As the loading increases and more transaction deadlines are missed, the 
bucket count has to be increased to ensure that the miss percentage of transactions 
in the first bucket is kept small. Put another way, the bucket count controls the 
level of mixing of low- and high-value transactions in a single bucket. If the mix is 
too "thin" (too many buckets), the system may miss several lower value transactions 
whose deadlines it could have made. If the mix is too "thick" (too few buckets), 
the system may spend resources on transactions with low values and lose high- 
value transactions. Therefore, there is a bucket count at each operating point that 
delivers the "right" mix and the "right" tradeoff between value and deadline. With 
the appropriate choice, the bucket algorithm generates superior performance to all 
the other mappings (see Figures 4a, 4b) over the entire loading range. Of course, 
an additional adaptive mechanism is still required so that the bucket algorithm may 
dynamically change the number of buckets to match the system loading level. 

6.6.2 7~ansaction Value Skew. This experiment examined the effect of skew on the 
performance of the bucket algorithm. It was conducted for the 10-90 workload 
(Table 5), where 10% of the transactions offer 90% of the value. The results in 
Figures 12a and 12b show that all the bucket mappings perform about the same 
at low loads. As the loading level is increased, however, the bucket mappings, in 
order of bucket count, start performing badly. The BA1 mapping deteriorates from 
an arrival rate of 30.0 onwards; BA2 does poorly after an arrival rate of 50.0; BA4 
is just about to start behaving worse at an arrival rate of 100.0 (this was confirmed 
by running the experiment for higher loads). The results show that, when there is 
considerable skew in the value distribution, the BAoo (HV) mapping is the priority 
ordering of choice, just as we saw before. Although it misses more deadlines than 
other algorithms, BAcx3's poor performance on this front is compensated for by 
the high values of the transactions that it does complete, even at low loads. Note, 
however, that if the load were heavy enough that 90% of the transactions missed 
their deadlines, then a policy like BA10 (which splits transactions into 10%-sized 
buckets) should be expected to perform better than BAcx3. BA10 would be using 
ED among the high-value transactions in the first bucket, while BAoo would be 
using HV. Because ED is better than HV for a set of transactions that can be 
completed by their deadlines, BA10 could be expected to outperform BAcx~. 

The main conclusion here is that, by layering transactions based on value, and 
then using ED within each bucket, the bucket algorithm exhibits a structured and 
logical approach towards the objective of maximizing the realized value. For each 
workload there is a "right" bucket count that delivers good performance. 

6.7 Late Penalty 

So far we have assumed that there is no penalty associated with missing a transaction 
deadline. In real-life systems, however, a penalty may be paid. For example, in 
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Figure 12. 
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a quality-control system that tests products coming off an assembly line, a missed 
deadline may mean that the untested object has to be categorized as defective. The 
penalty here is the manufacturing cost that went into the production of the object. 
The notion of penalty for non-delivery of service can be used in an RTDBS to 
capture the loss incurred due to missing a transaction deadline. (Note that when 
missed deadlines result in penalties, the transaction value function is no longer as 
shown in Figure la  where VT = 0 for t > DT. Instead, the value function now 
has VT = --PT for t > DT, where PT is the penalty associated with missing the 
deadline.) 

If missing a deadline has an associated penalty, then that penalty must be 
discounted from the value realized by the system in computing the net realized 
value. The penalty notion therefore provides a quantitative way to combine the 
separate metrics of LossPercent and MissPercent, because the total penalty is a 
function of  the missed deadlines. The LossPercent metric is now computed by the 
formula 

LossPercent = [ (Of /~dV~t~-R~ti~dV~t~e)+Tot~tP~,~ttUOll~edV~t~,~ * 100] 

where TotalPenalty is the sum of the penalties of all late transactions. 
We conducted preliminary experiments where missing a deadline has an asso- 

ciated penalty in order to investigate the effect on the various mappings. Here we 
consider only the case where all transactions have the same penalty. The priority 
mappings in the presence of penalty are the same as those that are generated when 
value alone is the consideration. This is because the total penalty is a function 
of how many, and not which transactions miss their deadlines. As a result of  
the priority mappings remaining the same, the performance numbers are a linear 
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Figure 13. Late penalty (HV) Figure 14. Deadline/execution time correlation 
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combination of the loss-percent and miss-percent statistics of the corresponding 
no-penalty experiments. This means that the performance numbers can be directly 
computed from the statistics of the corresponding no-penalty experiments. 

For experiment 6.4.2, we computed the LossPercent results for the HV priority 
mapping using 2PL-HP and OPT-BC as the concurrency control algorithms with 
a penalty of 100.0 for each missed deadline (Figure 13, solid lines.) (The results 
obtained in the absence of penalties are also shown, dotted lines). With penalty, the 
performance of the 2PL-HP algorithm is considerably worse than that of OPT-BC 
because it misses many more deadlines. Therefore, when penalties are levied, the 
total penalty loss for 2PL-HP is much higher than for OPT-BC. The degree of 
change in LossPercent results, relative to the no-penalty case, is a function of the 
magnitude of the penalty levied for missed deadlines. 

From the above experiment, we learn that algorithms that realize a high value 
by selectively completing only high-value transactions may suffer a significant per- 
formance degradation if a penalty is levied for each missed deadline. The penalty 
notion is therefore a mechanism for combining the value realized due to completed 
transactions with the loss suffered due to late transactions. We have considered only 
the case where all transactions have the same penalty. Generally, each transaction 
may have a different penalty. A complete analysis of the impact of penalty on 
real-time priority mappings is a challenging problem that needs to be addressed, 
but is outside the scope of this article. 

6.8 Correlation 

In order to investigate the effects of correlation in transaction workload characteris- 
tics, we conducted one experiment where deadline formula DF2 was used to generate 
transaction deadlines. This formula introduces a linear correlation between deadline 
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and execution time. The workload parameters LSF and HSF were both set to 4.0 
(to match the mean slack ratio of the baseline model). All remaining parameter 
settings were kept the same as those of the baseline resource contention model 
(Section 6.3.1). LossPercent behavior is shown in Figure 14. There are important 
differences between the mapping behaviors shown in this figure and those shown in 
Figures 4a and 4b. The performance of VRD mapping is better than HV mapping 
throughout the entire loading range. With deadline formula DF1, VRD performed 
better than HV at low loads, but worse at high loads. Here, with DF2, the VRD 
mapping generates a priority ordering that is identical to the ordering generated 
by the Value Density (VD) mapping (Jensen et al., 1985). In VD mapping, task 

priorities are determined by ratio _~z where RT is the task execution time; this v r '  
means that the task with the highest value density is given the highest priority. 
When tasks do not have time constraints, the VD mapping is known to produce 
a total value at every point in time that is at least as high as any other schedule 
(Jensen et al., 1985), because the mapping gives higher priority to those tasks that 
can yield more value in a shorter time period. The VRD mapping is identical to 
VD because relative deadline and execution time are linearly correlated in DF2. 
Therefore, because the VRD mapping concentrates on "quick-paying" transactions, 
its performance is even better than that of the HV mapping (which concentrates 
only on "high-paying" transactions). 

At intermediate and high loads, the NP mapping performs much worse here 
than all other mappings. When DF1 was used, the performance of NP was close to 
that of ED in these loading ranges. Here, with DF2, all transactions in the system 
make progress at the same rate. All transactions have the same slack ratio and, 
therefore, the same chance of making their deadline; this results in more missed 
deadlines. (With DF1 short transactions tend to have greater slack ratios than 
long transactions. Transactions with high slack ratios tend to complete before their 
deadlines. Transactions with low slack ratios are discarded earlier. This skew in 
slack ratios has a beneficial effect on the MissPercent characteristic.) 

This experiment shows that correlation in workload characteristics can have an 
appreciable effect on mapping performance, and is therefore an area that should 
be investigated in greater detail. 

7. Conclusions 

Our experiments showed that for workloads with a limited, uniform spread in 
transaction values, the ED mapping provided the best performance among fixed- 
tradeoff mappings under light loads. Although ED is a value-indifferent mapping, 
the database system had sufficient resources at low loads to meet most transaction 
deadlines; consequently, prioritizing transactions according to their urgency led to 
the fewest missed deadlines and generated the most value. 

Under heavy loads the HV mapping delivered the best performance in spite of 
being deadline-indifferent. A large fraction of the deadlines were missed at high 
loads under all mappings, and the fact that HV prioritizes transactions by value 
alone ensured that high value transactions rarely missed their deadlines. 
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The VD mapping, which weights both values and deadlines equally, was found 
to behave identically to HV. The VRD mapping, which weights relative deadlines 
and values equally, provided the best overall performance among fixed-tradeoff 
mappings. 

For workloads with a large spread or pronounced skew in the distribution of 
transaction values, the HV mapping was found to deliver the best performance 
throughout virtually the entire loading range. Although HV missed more deadlines 
than the ED mapping at low loads, the value gained by its ability to complete virtually 
all high-value transactions more than compensated. When transaction deadlines 
were linearly correlated with their execution times, the VRD mapping performs 
especially well by giving priority to those transactions that can return the most value 
in the shortest period of time. 

In addition to results regarding the performance of ffixed-tradeoff mappings, 
our experiments also showed susceptibility to performance breakdown based on 
workload characteristics. For example, assigning the same priority to a number of 
high-value transactions was shown to be quite detrimental to performance at high 
loads. (Adding a random noise component to the priority mappings alleviated this 
problem by constructing a total priority ordering among the transactions.) It was 
also shown that associating a penalty with transactions whose deadlines are not met 
can seriously degrade the performance of some mappings. 

Experiments were also conducted to explore the impact of data contention on 
the performance of various priority mappings. These experiments were conducted 
with several concurrency control algorithms in order to evaluate their performance 
and study their impact on priority mapping results. The same qualitative behavior 
that was observed in the presence of resource contention was obtained in the data 
contention experiments; this was also the case when data and resource contention 
were combined. In Haritsa et al., (1992) we showed that, with increasing data 
contention, real-time optimistic concurrency control algorithms outperform real- 
time locking algorithms in a firm deadline environment. That work employed an 
ED priority mapping and assumed that all transactions have the same value. The 
conclusion of the present study is that our earlier results generally carry over to 
the value-based RTDBS domain for all the priority mappings we have considered. 

Our experiments show that no single fixed tradeoff between value and deadline 
is appropriate under all circumstances. Rather, the right tradeoff is a function of the 
workload and system-operating conditions. This result highlighted the need for a 
priority assignment algorithm that could adaptively vary the value-deadline tradeoff 
to match the operating environment. To address this need, a bucket algorithm that 
allows the transaction value/deadline tradeoff to be varied was introduced in this 
article. In the bucket algorithm a structured approach is used to combine value 
and deadline based on basic real-time scheduling principles. The actual tradeolI 
made is controlled by a parameter of the algorithm. A series of experiments 
demonstrated that the algorithm can perform well at each operating point when its 
control parameter is set appropriately. An interesting question is how to adaptively 
change the setting of this parameter to optimize performance as the system load 
varies. A mechanism to accomplish this goal was recently developed and reported 
in Haritsa et al. (1991); the mechanism requires further work to make it a fully 
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functional algorithm. We are currently researching this issue. 
Another issue that we plan to explore further is the performance impact of 

different types of workload correlations, because we expect the bucket algorithm 
(unlike the ffixed-tradeoff mappings) to be relatively immune to correlation-related 
performance degradation. Finally, the effect of transactions having different penalties 
on the performance of real-time priority mappings is an interesting open problem. 
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