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Abstract. We present an architecture for query processing in the relational model 
extended with transaction time. The architecture integrates standard query op- 
timization and computation techniques with new differential computation tech- 
niques. Differential computation computes a query incrementally or decremen- 
tally from the cached and indexed results of previous computations. The use of dif- 
ferential computation techniques is essential in order to provide efficient process- 
ing of queries that access very large temporal relations. Alternative query plans are 
integrated into a state transition network, where the state space includes backlogs 
of base relations, cached results from previous computations, a cache index, and 
intermediate results; the transitions include standard relational algebra operators, 
operators for constructing differential files, operators for differential computation, 
and combined operators. A rule set is presented to prune away parts of state tran- 
sition networks that are not promising, and dynamic programming techniques are 
used to identify the optimal plans from the remaining state transition networks. 
An extended logical access path serves as a "structuring" index on the cached re- 
suits and contains, in addition, vital statistics for the query optimization process 
(including statistics about base relations, backlogs, and queries--previously com- 
puted and cached, previously computed, or just previously estimated). 

Key Words. Temporal databases, transaction time, efficient query processing, in- 
cremental and decremental computation. 

1. Introduction 

The relational mode l  presented by E. E Codd twenty years ago (Codd,  1970, 1979) has 

gained immense populari ty and is regarded today as a defacto s tandard for business 

applications. A main reason for  the success is the generality of  the model;  it makes 
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very few assumptions about specific application areas. This, however, has im draw- 

backs because the model does not provide detailed and customized support for some 
application areas. Extensions that make the relational model more suitable for the 

application areas have been a topic of interest in the database research community 

ever since the relational model was presented. 

This article presents an implementation model, IMfI' (Implementation Model/ 

Time), for an extension of the relational model supporting transaction time, DM/T 

(Data Model/Time) (Jensen et al., 1991, 1992). Data are never deleted once entered 
into a database in this model; it is possible to see the database from any time in the 

past, and it is possible to analyze the change history. Many applications will benefit 
from efficient transaction time support. In the literature, engineering, econometrics, 
banking, inventory control, medical records, and airline reservations have been men- 
tioned as candidates (McKenzie and Snodgrass, 1991). 

Traditional implementation models cannot cope efficiently with huge, ever grow- 
ing quantities of historical data. The predominant approach taken to solve this 

problem has been partitioned storage, where data of individual relations are parti- 

tioned, and a storage hierarchy is maintained that favors efficient support of queries 

solely accessing recent data (Lum et al., 1984; Salzberg and Lomet, 1989). While still 
allowing for partitioned storage, the data organization of IM/T allows efficient access 
to frequently accessed states of individual relations, recent or old, thus providing 

efficient support of any state. 
IM/T exploits caching of query results. Caching is the idea of storing results, 

on secondary memory, of previous computations and subsequently using them to 
avoid redoing expensive computations (Roussopoulos, 1982b, Sellis, 1988a). Caching 

trades replication of data for speed of retrieval. It is potentially a very powerful 

technique, but a number of issues must be dealt with intelligently in order to gain 
the full benefits. Let us mention the most important ones, some of which are 

addressed in this article while others are still issues for future research. 

First, there is the question of how to cache results. In IM/'I~ query results can 

be stored as actual data or as pointers to base data, possibly via several levels of 

indirection. Pointer cache storage gives a fixed, small tuple size and makes results 

very compact thus allowing for efficient use of main memory (Roussopoulos, 1991). 
For transaction-time databases, however, one base data page must be read for each 
pointer in extreme cases. Data cache storage solves this potential problem because 
it allows for control of locality of reference. Additionally, it allows for reduction of 

references to slower storage areas. While the architecture allows for both data and 
pointer caching, a detailed study of the relative merits of the two is still warranted. 
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Figure 1. Three IM/T stores: base data, derived data, ELAP 
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1M,rI" has three stores, one for base data, one for derived data, and one for the ELAP, containing statistics 
and representing the structure of base and derived data. During query optimization, plans using the stored 
data are enumerated in STNs. 

Second, the utility of caching can be improved by means of cache indexing. IM/T 
extends the logical access path (Roussopoulos, 1982b) into an Extended Logical 

Access Path (ELAP), which allows for efficient identification of all potentially useful 
results during query processing. It is a persistent query graph with nodes for all 

cached, computed, or just estimated results. While the algorithms for maintaining 

and using the ELAP have not been developed, it has been demonstrated that 

an appropriate extension of the algorithms for the logical access path is fairly 

straightforward, i.e., the rule-access path (Sellis et al., 1990). 

Third, to gain the full benefits, caching should be used in conjunction with 

differential computation techniques (Roussopoulos, 1991). The application of such 
techniques prolongs the usefulness of cached results because slightly outdated results 

need not be discarded and recomputed, but can instead be efficiently incremented 

or decremented to answer a query. IM/T generalizes incremental computation 

to differential computation using both incremental and decremental techniques, 
and it unifies differential computation and traditional recomputation. Differential 
computation is the focus of this article, and it is treated in great detail. 

Fourth, only potentially beneficial results should be cached. If the cache is full, 
appropriate replacement strategies must be used. IM/T has a cache management 

component that supports selective caching and cache replacement. The purpose for 
selective caching is that neither caching of all results (and differential computation) or 



78 

no caching at all (and recomputation) is superior to the other in every given situation. 

Caching is attractive in environments characterized by many queries, few updates, very 
large underlying base relations, and comparably small results. Methods of adapting 

the numerous contributions on cache management into appropriate strategies for 

selective caching and cache replacement in this context are discussed elsewhere 

(Hanson, 1987; Sellis, 1987, 1988a," Jhingran, 1988; Jhingran and Stonebraker, 

1989). 
Fifth, the fact that cached results become outdated must be addressed. Any 

possible update strategy ranging from "eager" (i.e., when relevant base data are 

entered), over threshold-triggered, to "lazy" (i.e., when the result is requested) 

is possible (Ronssopoulos and Kang, 1986; Hanson, 1987). The details of cache 
updating are not part of this article. 

In a temporal setting the maintenance of stored results is likely to be more 
feasible than in a snapshot setting. The reasons are that relations are large because 

previous states are retained and essential additional semantics for the process of 

selective caching is available. For example, fixed views are primary candidates 

for caching because they never become outdated, and the future outdatedness of 

time-dependent views issued against past states can be estimated at the time of 

computation. 
Query-plan generation in IM/T uses the concept of state transition network (STN; 

Lafortune and Wong, 1986). Query-plan selection uses dynamic programming (see 
Figure 1). We present a set of rules for pruning the STNs generated, the idea 

being to avoid generating inferior paths, thus saving both space and time during 
cost estimation. During query-plan generation and selection we use results from 
the cache, and we use both recomputation and differential computation versions of 

the operators of the query language of DM/T as possible transitions in STNs. Apart 

from defining the operators, we discuss how to efficiently implement the differential 

versions. In addition, combined operators are introduced to minimize the need for 

storage of intermediate results during query computation. 

Efficient query processing is a central theme in database research, and conse- 

quently the work of this article is related to a number of previous efforts. 

The transaction-time extension of this article was designed to be transparent 
to the naive user of the standard relational model. To our knowledge, none of 

the other temporal extensions of the relational model shares this characteristic 
(Bubenko, 1977; Bolour et al., 1982; Snodgrass and Alan, 1985; Snodgrass, 1987; 

Stam and Snodgrass, 1988; McKenzie and Snodgrass, 1991). 
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IM/T allows for partitioned storage and supports both reverse and forward 
chaining. Related efforts can be found (Dadam et al., 1984; Lum et al., 1984; Ahn, 

1986; Snodgrass and Ahn, 1988; Kolovson and Stonebraker, 1989; Salzberg and 

Lomet, 1989). Grid files have been suggested as a means of implementation of 

temporal data (Shoshani and Kawagoe, 1986), but they seem inappropriate because 

surrogates, for which no natural ordering exists, would be one dimension and time 

the other. In addition, indexing of other attributes is not allowed, which again is 

unsatisfactory. The subject of Rotem and Segev (1987) is multi-dimensional file 

partition for static files with time as one of multiple dimensions. 

Some research (Gunadhi and Segev, 1989; Gunadhi et al., 1989; Segev and 
Gunadhi, 1989) concentrates on different kinds of temporal joins (time-union, time- 

intersection, and event-joins) and temporal-selectivity estimation. This research, 

while interesting, is not addressed here. 

The focus of the work presented by McKenzie (1988) is the data model for 

a temporal database, and it is closely related to our work. It formally defines 
incremental algebra operators, resembling those of our state-transition space. In 

addition, it surveys applications of incremental techniques in the relational model, 
and discusses ways to combine previous efforts into an implementation supporting 

both transaction time and valid (logical) time. Our work concentrates only on 

implementation and on transaction time. We present a detailed design of an 
implementation model and concentrate on query optimization and processing. 

IM/T exploits caching of views and the literature contains many contributions to 
the understanding of its many aspects. Aspects of materialized views relevant to dis- 

tributed processing are presented in Segev and Fang (1989, 1990). The performance 

of three techniques (lazy incremental computation, eager incremental computation, 

and recomputation) has been compared by Hanson (1987), who demonstrated that 

none of the techniques were superior to the others in all cases. Caching of query 

results has been addressed to support query language procedures (programs, rules) 
efficiently stored in relational fields Qhingran, 1988; Sellis, 1987, 1988a). Techniques 
aimed at reducing the cost of maintaining materialized views have been recently 

reported by Blakely et al. (1986, 1989) who attempt to detect base data updates that 
do not affect a view, and to detect when a view can be correctly updated using only 

the data already present. IM/T generalizes and unifies traditional recomputation 
and incremental computation so that a single query can be processed using re- 

computation, incremental computation, and decremental computation. 'Itaditional 
systems, e.g., Ingres (Wong and Youseffi, 1976) and System R (Selinger et al., 

1979) use recomputation. Kinsley and Driscoll (1979, 1984) have described how to 
extend the RAQUEL II database management system to support dynamic derived 
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relations using eager incremental update. In ADMS (±) ,  a database management 

system implementing the standard relational model, incremental computation of 

views stored as pointer structures is used (Roussopoulos, 1982a, 1987, 1991). Our 

work has some resemblance to Postgres, where previous history is also retained. 
The temporal support, however, never was the focus, and time stamps and backlog 

queries are not supported as in IM/E Postgres exploits caching, but since indexing, 

differential cache maintenance, and query execution are missing, the full potential 

of caching is not achieved (Rowe and Stonebraker, 1987). 

For previous work on query optimization, and further references, see Smith 
and Chang (1975), Selinger et al. (1979), Jarke and Koch (1984), and Sellis and 

Shapiro (1985). 

State transition networks have, to our knowledge, never been applied in a 
temporal setting or in settings involving caching. Lafortune and Wong (1986) used 

STNs as a framework for query optimization in a distributed environment. Hong 

and Wong (1989) applied STNs to multiple query optimization. 

The structure of the remaining part of this article is as follows: Section 2 serves 

as a specification of the functionality to be supported by IM/'E The concept of 
transaction time, data structures, and the query language of DM/T are presented. 

The remaining sections are devoted to IM/T and the efficient processing of DM/T 
queries. Section 3 describes the three stores of IM/T--base data, cache, and ELAP. 

In Section 4, STNs are used for enumerating alternative query plans and dynamic 

programming is used to collect costs of entire plans from costs of single transitions. 

The concrete state and transition spaces, incorporating the use of cached results, 

differential computation, standard query computation techniques, and support for 
combined operators, are introduced. Also discussed is the use of ELAP to find 
promising results from the cache, considered when STNs are generated. In Section 5 

we first present the cases to consider when implementing operators and then discuss 

the three types of operators: Recomputation operators, operators that construct 

differential files, and differential operators. Section 6 presents rules for reducing 

the sizes of the generated STNs. Section 7 concludes this article. 

2. Transaction Time in the Relational Model, DM/T 

In this section we briefly introduce the transaction time extension of the basic 
relational model (Codd, 1970, 1979; Jensen et al., 1991). Our purpose is to identify 

the kinds of queries that should be supported by IM/T The properties of the time 
concept offered by DM/T are outlined in Figure 2 and are discussed below. 
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Figure 2. Characterization of the time concept offered by DM/T. 
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Two orthogonal time dimensions have been studied in temporal databases 

(Snodgrass and Alan, 1985). Logical time models time in the part of reality modeled 

by a database. Transaction time models time in the part of the reality that surrounds 

the database, the input subsystem. While logical time is application-dependent, 

transaction time depends only on the database management system, and is inherently 

application-independent. 

First, DM/T supports transaction time as opposed to logical time. Second, a 
domain is regular if the distances between consecutive values of the active domain 

are identical. Otherwise the domain is irregular. DM/T supports an irregular time 

domain. Third, a time domain can be discrete or stepwise continuous. Taples with 

discrete timestamps are only valid at the exact times of their timestamps. In contrast, 

tuples have an interval of validity in a stepwise continuous domain. The DM/T time 

domain has this property (also termed stability) because the values of a relation 

remain the same until the relation is changed by a new transaction. Fourth, DM/T 

supports true time as opposed to arbitrary time. True time reflects the actual time 

of the input subsystem while an arbitrary time domain only needs to have a metric 

and a total order defined on it; the set of natural numbers is a possible arbitrary 

time domain. Fifth, DM/T has automatic time-stamping, which is the natural choice 

for transaction time. Manual, user-supplied timestamp values are natural for logical 

time. We have chosen tuple stamping as opposed to attribute value stamping. The 

major reason has been to provide a first normal-form model which is a simple and 

yet powerful extension of the standard relational model. 

In order to record detailed temporal data and still be able to use the operators 

of the basic relational model, we have introduced the concept of a backlog relation. 

A backlog, BR, for a relation, R, is a relation that contains the complete history 

of change requests to relation R (Roussopoulos and Kang, 1986). Backlog BR 

contains three attributes in addition to those of R. Attribute Id is defined over a 
domain of logical, system generated unique identifiers, i.e., surrogates. The values 

o f / d  represent the individual tuples, termed change requests. The attribute Op is 
defined over the enumerated domain of operation types, and values of Op indicate 
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Figure 3. System-controlled insertions into a backlog. 

Requested operation on R: 

insert R(tuple) 

Effect on B~: 
i l l  i 

insert BR(id, Ins, time, tuple) 

delete R(key) insert BR(id, Del, time, tuple(key)) 

modify P~(key, new value) insert BR(id, Mod, time, tuple(key,new value)) 

The function "tuple" returns the tuple identified by its argument. 

whether an insertion (Ins), a deletion (Del) or a modification (Mod) is requested. 1 

Finally, the attribute Time is defined over the domain of transaction timestamps, 

TTIME, as previously discussed. DM/T automatically generates and maintains a 

backlog for each base relation (i.e., user-defined relations and schema relations). 

Figure 3 shows the effect on backlogs resulting from operation requests on their 

corresponding relations. 

As a consequence of the introduction of timestamps, a base relation is now a 
function of time. To retrieve a base relation it must first be time sliced. To define 

timeslice, assume that R has the attributes A1, A 2 , . . . ,  A,~ and let t E [tlnit; 
NOW] where tlnit is the time when the database is initialized and NOW is a special 

variable with the current time as its value. Now, R at time t is defined as follows: 

R(t) { x l 3 s ( B R ( s  ) A x[1] = s[1] A x[2] = a[2] A . . .  A x[n] = a[n] A 

s[Time] < t A (s[Op] = ModV s[Op] = Ins)  A 

(--,3u(BR(u) A s[R.Ic~ = u[R.Ia] A s[Time] < u[Time] <_ t ) ) )}  

When the database is initialized, it has no history and every relation is empty. If 

R is parameterized with an expression that evaluates to a time value, then the 

result is the state of R as it was at that point in time. It has no meaning to use 

a time before the database was initialized and after the present time. If R is used 

without any parameters this indicates the current R,  i.e., R deJ R(NOW). Time 

sliced relations have an implicit time stamp attribute, not shown unless explicitly 

projected. Note that these features help provide transparency to the naive user. 

1. At a lower level, modifications are modeled by a deletion followed by an insertion, each with the same 
timestamp value. 
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If the expression E of a time-sliced relation R(E) contains the variable NOW, 
then R is time dependent. Otherwise, it is fixed. While fixed-time slices of relations 

never get outdated, time-dependent time slices do, and they are consequently 

updated by the DBMS before retrievals. 

A view is time-dependent if it is derived from at least one of the time-dependent 

relations and views. Otherwise it is fixed. Traditional views are ultimately derived 

directly and solely from time-sliced base relations. If a view ultimately is derived 

directly (i.e., not via a time-sliced base relation) from at least one backlog, then 

we term it a backlog view. Backlog views are time sliced as are base relations and 

views. Backlog view time slices involving NOW are time-dependent, and, as above, 

so are backlog views derived from views invoking NOW. We define: 

R(t ) do] 
: O 'T ime<txSR 

de] 
BR = BR(NOW). 

By introducing the time slice operator it is possible to use the standard relational 

algebra as the query language. The query language of DMfF was presented in Jensen 

et el. (1991), and in Jensen and Mark (1992) it was extended to support analysis of 

change history. In this article we only consider time-slice, selection, projection, and 

equi-join. We adopt a set of precedence rules to simplify the appearance of query 

expressions. Time-slice has highest precedence, and is followed by projection and 

selection with the same precedence, which, in turn, are followed by binary operators, 

all with the same precedence. Parentheses are used to control precedence in the 
standard way, and evaluation is from left to right. 

3. Structures of the Implementation Model, IM/T 

In the previous section we described the data model, DM~.  The subject of this 

and the remaining sections is the implementation model, IMfF, which supports the 

data structures and operators of DM/T. We present the three different stores of 

IM/T: the store containing backlogs and indices; the cache containing views; and 

the ELAP which contains information about queries, and is an index to the cache. 

3.1 Storage of Backlogs 

Backlogs assume the role of base relations and are always stored. They are stored like 

traditional base relations with the possibilities of traditional indexing. Throughout 

this article we assume that tuples of a backlog are sorted according to the values 



84 

of their transaction timestamp attribute. Also, mainly for simplicity, we assume 

that backlog tuples actually contain all the data of their attributes---compression 

techniques (Bassiouni, 1985) may be applied to the backlogs. To further cope with 

the ever-growing bulk of historical data, partitioned storage techniques may be 

introduced (Dadam et al., 1984; Lum et al., 1984; Ahn, 1986; Christodoulakis, 1987; 

Snodgrass and Ahn, 1988; Kolovson and Stonebraker, 1989; Salzberg and Lomet, 

1989). 
Finally, realizing that even WORM storage is limited and that some historical 

data might not be needed by any user, we have offered advanced facilities for 

pruning historical data elsewhere (Jensen and Mark, 1990). 

3.2 Pointer and Data Cache of IM/T 

The cache of IM/T is a collection of query results stored as either pointers or data. 

A part of secondary memory is allocated for the cache. Each entry of the cache is 
of the form (r/d, result) where r/d uniquely identifies an entry and result is of the 

format 

result ~-- array of  ptr [ array of  (ptr × ptr) ] relation 

Tuples of the same entry are stored consecutively and are sorted on t/d's (pointers) 
or surrogate attribute values (data). Indices can exist on the tuples of results. 

The ELAP, discussed in the next subsection, is a structuring index on the cache 

and is used to identify cache entries to be used in query processing. In the ELAP, 

a cache entry is represented by its r/d, and therefore an index of r/d entry results 

is desirable. 

Differential files computed as intermediate results during query processing are 

not stored in the cache. It may, however, be useful to store statistics about such 

files. Such statistics may help estimate the cost of processing future differential files 
and help choose between different ways of processing a differential file. The design 

of data structures and algorithms that maintain the statistics, and the use of the 

statistics during query optimization are subjects of current research. 
The cache contains the current states of all base relations, and they are updated 

readily. This makes the extended data model DM,rI ~ transparent to the naive user 
and enables IM/T to retrieve current data and check standard integrity constraints 

etliciently. 
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3.3 The Extended Logical Access Path of IM/T 

The ELAP is a directed acyclic graph (DAG) (Roussopoulos, 1982b). Each node 

is associated with a set of equivalent query expressions, a list of statistics about 

each query expression, and an optional reference to a cached result. The edges 

are labeled by operators, and in the unary case an edge from node N~ to node 

Nb indicates that the operator constructs an expression associated with Nb from 

an expression associated with Na. In the binary case, a pair of edges, possibly 

ordered, from nodes Na and N~ to node Nb indicates that the operator constructs 

an expression associated with Nb from expressions associated with Na and N~. 

Here, we allow time slice, selection, projection, and join as labels of edges of the 

ELAP. In addition, we allow for combined operators in order to avoid the storage 

of intermediate results. 

The ELAP integrates graphs of query expressions that have been computed or 

have been subject to estimation of statistics into a unifying structure by merging 

nodes representing common (sub-)expressions. It is important to observe that, 

while the expressions of a node all produce the same result, they may have different 

processing costs. The ELAP is a generalized AND/OR DAG where, at a single 

node, there is a choice ("OR") of one of several sets of '~AND" edges (Rich, 1983; 

Mahanti and Bagchi, 1985), where '~AND" edges correspond to binary operators. 

To illustrate, consider the following three equivalent query expressions defined on 

an employee relation Emp with attributes Id (employee id), Sal (salary), and Dep 
(department). 

Q1 7rEmp(tl).Id,Emp(t~).Sal(O'Emp(tl).Sal_>30((Emp(tl)) 
~Emp(tl ).Id=Emp(t2).Id (Emp( t2) ) ) 

Q2 7['Emp(tl).Id,E~rt~p('2).So.l(O'Sal~30 (Emp(tl)) 
MEmp(tl).ld=Emp(tz).I d (Emp( t2) ) ) 

Q3 rEmv(t~).Ia,Emp(,:).S,t(rId(aS,l>_30(emp(ta))) 
t~Emp(,1)./d=E,~p(t~).td (TrZd,SaZ (emp(t2) ) ) ) 

Each query returns the ld's and Sal's at time t2 of employees that were employed 

at both time tl  and t2 and that earned more than $30,000. at t l .  Yet, they are 

different expressions with different processing characteristics. The ELAP for these 

expressions is shown in Figure 4. 

It follows that a cached result of a node could have been computed in several 
ways, and that it subsequently can be computed in several ways. A node tells from 

which expression a cached result was most recently computed. There is at most 
one cache entry per node. 
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Figure 4. Three equivalent query expressions. 
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The view corresponding to a node can be computed from several query language expressions. The 

figure represents three equivalent query expressions, first separate and then combined. 

Nodes can belong to one of several categories, depending on the computational 
status of the labeling query expressions. The result of a query expression can be 
cached as data or pointers; the result of the query expressions can have been cached 
previously as data or pointers; it is possible that no result of the query expressions 
has ever been cached, but results might have been computed or just estimated; 
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finally, a node can denote a backlog. 

Different types of statistics can be kept in each of the six types of nodes. 

Individual statistics should only be maintained if the cost of doing so is less than the 

benefits achieved from having them available during query optimization. Practical 

experiments are needed to determine when this is the case. Possible statistics 

include: cardinality of stored result; result stored as pointer or data; tuple size; 

which expression is cached; up-to-date status; how often used; usage; computation 

cost; when deleted; why deleted; and available indices. 

4. Query Plan Generation and Selection 

To efficiently compute a query, the system generates a state transition network 

(STN) where the initial state contains the uncomputed query, the backlog relations 

(in which terms it is defined) the cache, and the ELAE A state transition occurs 

when the cost of a partial computation toward the total computation of the query is 
estimated. The new state is identical to the predecessor state except it is assumed 

that the cost-estimated computation has been performed. A final state is reached 

when the costs of all computations have been estimated. By following all paths from 

the initial to a final state and accumulating costs for each path, the total costs of 

computing the query in different ways are obtained, and we can choose the query 
plan with the lowest cost. The purpose of this section is to formalize and elaborate 

on the generation of query plans as just described. 

4.1 State Transition Network 

An STN for a query, ~ is a labeled DAG, and can be defined as 

STN(Q) = (S,79,P,F,Zo, Xs) 

where S is a set of states (nodes); each node contains what remains to be calculated 

of query Q along with the data structures that can be used to compute the query ~ 

(i.e., intermediate results, the ELAP, the cache, backlogs). 79 is a set of operators 

which describe the query processing and label the edges of the DAG. P is a mapping: 

,S --~ 2 p,  which maps the state space into the power set space of operations, and 

describes the set of operations applicable at a given state. I ~ is the set of transitions, 

r C S x P(S) × S;  thus, an edge is a triplet, ( x l , p ,  x2), containing a start state, 

2. Note that  no computat ions  are actually carried out. We are merely estimating assumed computations.  



Figure 5. An outline of an STN. 

a label, and an end state. The last two elements of the equation, Xo E S ,  and 

,¥y C S are the initial and the final states, respectively. The initial state contains 

the uncomputed query, and a final state contains the computed query, and possibly 

various intermediate results. 

A plan for a query, Q, and a state, x, tells which sequence of operators to 

apply to the partially computed query Q at state x in order  to arrive at the final 

state. If x ~ Xo then the plan is partial. If we let Pl  0 x denote the application 

of  operator Pl  at state x then a plan can be expressed as 

P l ,  P2, P 3 , . . . ,  P,~ where p~ 0 . . .  0 P3 0 P2 0 Pl  0 x E X f 

We associate a cost C with each plan in the obvious way. First, we define cost : 
( S ,  P ( S ) ,  S )  ~ [0; cxs) to be the cost of applying an operator  to a state to get 

a new state (i.e., the cost of  an edge in our DAG). Then the cost of  a plan is 

C(x,  pa,P2,P3,. . .  ,Pn) = cost (x ,p l , s2)  + cost(s2,P2, S3)--l- 
cost(sa,ps, s4) + . . .  + cost(s,~,p,~,xf) 

where x !  E X / ;  Figure 5 shows this plan as a part of a larger network. 

The minimal cost of a query, Q,  is defined as the minimum over all possible 
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plans for Q and x: 

CQ(X) = m i n { C ( x , p l , p 2 , P 3 , . . .  , p , )  I Pn 0 . . .  0 p3 0 P2 o Pl 0 x E ,~gf } 

A plan Pl,  P2, P3, • • •, P~ for which C (x, Pl,  P2, P3, • • •, P~) = CQ (x) is optimal. 

4.2 Plan Selection 

Assuming we have costs for all single state transitions, the cheapest query plan 

in the network can be found by applying dynamic programming techniques. The 

function CQ(X) of the previous subsection can be expressed as: 

CO(Z ) = rain {cos t (x ,p ,x ' )  + CO(Z')} 
peP(x) 

Dynamic programming is applicable because the cost of a single transition in an 

STN depends only on local information and not, for example, on the nature of 

previous transitions that led to the state of the current transition. This has been 

termed the separation assumption (Lafortune and Wong, 1986). 

When using dynamic programming, the task of finding a good query plan is 

conceptually divided into two phases: generation of the STN of the query to be 

computed; and estimation and selection of the optimal path in the STN. In practice the 

whole STN need not be computed before phase two is initiated; parts needed during 

phase two must, however, be made available when needed and, upon completion, 

all of the STN will be needed. For this reason, dynamic programming requires 

a relatively large amount of storage space (RND, Sedgewick, 1988). Among the 

heuristic techniques the A* algorithm (Rich, 1983) is an alternative, but until an easily 

computable and precise heuristic function has been found, dynamic programming 

seems more promising. 

To reduce the potentially large search space and improve performance, we 

introduce pruning rules (Section 6) that specify the function P .  They allow us to 

eliminate paths that are generally not competitive, and therefore limit the search 

space with little chance of eliminating advantageous plans. 

4.3 State and Transition Spaces 

We now present the specific design of the type of STN to be used in IMfF. We 

describe what constitutes a state and which transitions are possible on the states. 

4.3.1 State Spaces oflM/T. IM/T generates a separate STN for each query it optimizes, 
and each STN has its own state space. A state space is a set of states, each consisting 
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of a set of objects. All the types of objects in a state space are stored on secondary 

memory, and can be read, 3 used, and as a result new objects can be created. 

The query of an STN is ultimately defined in terms of a set of backlogs. These 
are part of all the states for that STN. Together with the backlogs, cached results 
constitute the outsets for query computation, and the content of the cache is part 

of all states. The cache is not changed during plan enumeration and selection, 

but can be updated when the selected plan is processed. Similarly, the ELAP is 

part of each state of any STN. The final component of states is intermediate results. 
An intermediate result is any query that can be expressed in terms of backlogs, 

cached results, and existing intermediate results. Thus, differential files are also 

intermediate results. Generally a state will contain a set of intermediate results to 

be used in further computations in order to achieve the evaluation of the query of 

the STN at hand. With the exception of differential files, such results can later be 

stored in the cache if they are part of the plan chosen for actual execution. In this 

case, the ELAP is updated to reflect the new state of the cache. Even if the state 

of the cache is not changed, the ELAP can be updated with statistics of computed, 

or estimated, temporary results. 

Two states with mutually equivalent objects are identical states. 

4.3.2 Transition Space of IM/T. We define the transition space below. In Section 

5 we will discuss implementation of the operators of the transition space. The 

conventional relational operators, projection (Tr), selection (or), and equiojoin (M) 

are included. Differential operators are included. In differential computation, 

previously computed query results are reused in conjunction with differential files 

to compute desired queries. To more precisely define the differential operators, we 

first consider differential files in more detail. 

Let Q and Qt be query expressions that evaluate to relations with identical 

schemas. A differential file from Q to Q', ~(Q ~ Q'),  satisfies two requirements. 

First, it consists of an ordered pair of relations with schemas identical to those of 

Q and Q'. 
6(Q ~ Q') = (6 - (Q ~ Q') ,6+(Q ~ Q')) 

Second, the result of query Q~ may be computed from the result of query Q by 

applying the differential file as follows. 

Q ' =  (Q - ~ - ( Q  ~ Q'))  t..J 6+(Q ~ Q')  

3. Objects still exist after they have been read. 
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For this expression, we will use the notation Q ' =  D I F ( Q , 6 ( Q  --r Q')) .  Now, 
differential selection, projection, and join may be defined as follows. 

DIF-i(iF(Q),6(Q ~ Q')) = (oF(Q))' 
DIF-Tr(TrA(Q),6(Q ~ Q')) = (TrA(Q))' 

DIF-M (Q1 t~ Q2,Qi,6(Qi "-~ Q~),Q2,6(Q2 ~ Q~)) = (Q1 t~ Q2) ~ 

Here, we define ( iF(Q)) '=  iF(Q)', (~A(Q))' = 7ra(Q)', and (Q1 N Q2)' = 
Q~ t~ Q~. In differential selection, the desired query, ( I F ( Q ) ) ' ,  may be computed 

from an already computed query, IF(Q), and the differential file 6(Q --~ Q'). 
This contrasts recomputation where first Q'  is (re-)computed and then the selection, 
i F ,  is re-applied. 

Operators that provide the differential files used in the differential formulas 

are included in the transition space. 

DELTA(tl ~ t2, BR) 

DELTA-If(r, 6(Q ~ Q')) 
DELTA-r (A, 6(Q ~ Q')) 

DELTA- M (Qi ,  6(Q1 --+ Qi ), Q: ,  6(Q~ ~ Q~)) 

= 6 ( R ( t ~ ) ~  R(t2)) 

= 6 ( i F ( Q ) - ~  ( iF(Q)) ' )  

= 6(rA(Q) ~ (rA(Q)) ')  
= 6 ( ( Q i ~ Q 2 ) ~ ( Q i ~ Q 2 )  ~) 

The first of these operators takes a backlog relation, BR, and two time values, 

Q, t2, as arguments. The result is the differential file that, when applied to R ( t l )  
results in R(t2). This is the base case operator. The remaining operators are the 
step case operators. For example, the DELTA-i-operator will, given a selection 
criterion, F ,  and a differential file from Q to Q', return the differential file from 

iF(Q) to (iF(Q))'. 
Finally, combined operators are included so that combined operators may be 

more efficiently processed than sequences of uncombined operators. To illustrate 
this, assume that we have available the result of the query 7rA(O'F(R(tl))) and 
that we want to compute the query 7rA(i r (R( t2) ) ) .  With the operators above, 
we may proceed as follows. 

1. Evaluate DELTA(t1 ---+ t2, BR) to get 6 (R( t l )  ~ R(t2)).  

2. Evaluate DELTA-i(F,  6 (R( t l )  ~ R(t2)))  to get 6(iF(R(Q)) 
IF(R(t~))) .  

3. Evaluate DIF-r(rA(IF(R(tl))) ,6(IF(R(tl)  ) ~ IF(R(t2))) to obtain 
the final result. 
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This implies that the results of both Step 1 and Step 2 are written to disk. 

A combined operator such as DIF-Tro(TrA(O'F(Q)),6(Q ~ Q')) eliminates the 

storage of the result of Step 2 by processing 7rA and O'F in a single pass. In general, 

we allow for combining selection and projection with another operator (cry 7r~ ~,  or 
combined) into a combined operator. 

4.3.3 Identily Transformations. A user query can be processed in many ways to 

produce the desired result. During query optimization, equivalence transformation 

rules for algebra expressions are utilized to enumerate the possible execution orders 
for a query. We add the following three rules to the ones presented in the literature 

(Ullman, 1982; Jarke and Koch, 1984; Smith and Chang, 1975). 

1. Substituting selection and differential selection. 

O')) _= ffF(DIF(Q, O'))) 
2. Substituting projection and differential projection. 

DIF-Tr(Tra(O),6(O ~ Q')) ~ 7rA(DIF(Q,6(Q ~ O'))) 

3. Substituting join and differential join. 

D I F - N  (Qi  ~ Q:,Q1,6(Q1 ~ QI),Q2,6(Q2 ~ Qi)) -= 
DIF(Q1,6(Qi ~ Qi)) t~ DIF(Q2,6(Q2 ~ Q[)) 

The proofs of these equivalences are similar and straightforward. For example, the 

lefthand side of the third rule is equivalent to (Q1 M Q2)',  by definition. This in 
turn is equivalent to Q~ M Q~. By definition of DELTA, the righthand side of the 

third rule is equivalent to Q~ IXl Q~. Thus, the rule follows. 

4.4 Using the ELAP for Cache Access 

We have included a cache for views in IM/F, and we have defined an ELAP as a 
"structuring index" on the cache. The role of the ELAP is to allow for efficient 
identification of cached results that can be used to compute a query at hand. 

Let D B  be a database instance (i.e., an instance of the backlog store) and QC 

the defining expression of a cached result, then QC(DB) is the cached result of 

QC on DB. 
The result QC(DB) is only useful for the computation of a (sub-)query, Q, ,  

if the data of Qs(DB) are all contained in QC(DB), and can be extracted from 

Q~(DB) using an expression, E ,  of the query language (Yang and Larson, 1985). 
If this is the case for any database instance, we say that Q~ covers Qs, Q, _E QC. 
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Coverage is an intensional property. Formally, 

Qs E QC --- E(Oc)) 

where 0 denotes Q where temporal information (time slice) is ignored. Thus, 

a~>as(R(tl)) • a~_>lo(R(t2)), even if ta ~ t2, because a z > l s ( R )  ~ O'x~15 

(a~>lo(R)). The covering queries we are most intereested in are the ones that are 

most cheaply modified to the requested query, i.e., the minimal covering queries. 

Certainly, if Q1 E Q2 E Q3 then, considering only coverage, we would prefer to 

use Q2 instead of Q3 to compute Q1- 
Orthogonal to the issue of coverage there is the issue of temporal closeness which 

we have disregarded so far. There is both an intensional and an extensional aspect. 

We address the intensional aspect first. When we have retrieved a result from the 

cache it might not reflect the state we are interested in. If we let Qs = ax>_lO(R(Q)) 
and let Q~ = a~_>lo(R(ta)) then the two queries are identical under coverage, 

but if tl ~ ta, the operator D I F  (probably) still needs to be applied to Q~ and an 
appropriate differential file to make it correctly reflect the desired state. Assume 

the existence of Q~ = o'~>_lO(R(tb)). If the temporal expressions ta and tb are 

both fixed then we would choose Q~ if ta is closer to t l  than is tb otherwise, we 

would choose Q~. The concept of closeness is defined in terms of the cost of the 

differential computation that has to be carried out in order to reach the desired 

state, and it depends on the size of the portions of the associated backlog that has 

to be processed. The distance between time stamps is an intensional property which 

can be used for comparing closeness. However, if t~ < tl _< tb or tb _< tl ~_ t~, 
the distance between time stamps is not a reliable means of comparison. 

The extensional aspect of closeness is important because cache entries generally 

get outdated (because of the variable NOW). In the context of time dependent 

views, it is not sufficient only to look at the intensions of queries as we did above 

where we compared t l ,  ta ,  and tb. For example, if Qs = cr~>_lO(R(tl)), and 

the cache contains Q~ = a~>_lO(R(tl)) and Q~ = ax_>10(R(t2) ), where ta ~ t2 

then Q~ still can be more useful than Q~. This is so because t l  could be time 

dependent and Q~ could be very outdated. Outdatedness of a cached query result 

is defined as the closeness between the defining query expression at the time it was 

computed and the current defining query expression. 

For each cached result the ELAP stores the value of the variable NOW at 

the time when the result was computed so that the states of cached results can 

be inferred without actually accessing them. Also the ELAP holds statistics that 

can help estimate the outdatedness of results (i.e., estimate the number of change 

requests between two points in time and the cost of processing them appropriately). 
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Figure 6. Implementation of operators of STNs. 
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5. Implementation of Operators of STNs 

Here  we discuss the operators in more detail. Initially, we outline the different 

cases to consider. Based on these, we discuss alternatives for implementation of 

the operators. 

5.1 Overview of Operators 

The operators considered are outlined in Figure 6. The figure has 22 entries, each 

corresponding to a separate case. In IM/T results can be stored as either actual 

data or pointers that point to the data. The entries "data" and "pointer" indicate 

the type of arguments. All operators must work on both kinds of  arguments, with 

one exception: The DELTA operator  in both the incremental and the decremental  

case is applied to a backlog which is a data argument. In the Figure 6, the type of 

the result returned by an operator  is assumed to be the same as the type of  the 

arguments. However, if the arguments are data, both data and pointer results are 

possible, the only restriction being that differential files are assumed to be data. 

This gives an additional seven cases (i.e., three for o', 7r, and M with data arguments; 
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four for DIF, DIF-tr, DIF-Tr, and DIF-N with data arguments). 

As the first six entries, we find the ordinary operators o', 7r, and M .4 These 

operators have their standard semantics and can be implemented as suggested in 

the literature (e.g., Selinger et al., 1979; Shapiro, 1986.) 

The remaining sixteen cases concern the new operators. The operator DELTA 

incrementally or decrementally processes sequences of change requests stored in 

backlogs to get differential files. The three remaining cases of the DELTA operator 

are the computations of differential files of relations from which they are derived 
by either projection, selection, or join. 

The four DIF operators differentially update a stored result to correctly reflect 

a desired state. The operators differ on how the outset is related to the differential 

file(s) to be used. It is possible to use the differential file of a relation from which 

the outset is derived by a projection (including the identity projection) or a selection. 

The differential files of relations from which the outset is derived by a join can be 
used also. 

Finally, selections and projections can be done on the fly, meaning that a selection 
and a projection can be performed interleaved with another operator (selection, 

projection, or join) in a single pass without storage of intermediate results. 

In the following, we will generally consider only the cases where the operators 
take data arguments and produce data results. 

5.2 Selection, Projection, and Join 

The traditional relational algebra operators, selection, projection, and join, can be 

applied to any relation, including differential files, ( ~ - ( Q  ~ Q') ,  ~+(Q ~ Q')) .  

The expression F of the selection operator, O'F(Q), can contain a conjunction 

of selection criteria of the form Att_Name op Att_Name or Att_Name op 

V a l u e  where op is one of = ,  < ,  > ,  > ,  _<, ~ ,  ~ ,  ~ ,  ~ ,  or ~ ,  and Att_Name is 
an attribute identifier of the relation valued expression Q. The most advantageous 
implementation of selection depends on numerous factors and has been addressed 

already in many settings. Consequently we will not address it here. 

The projection expression, A, of 7rA(Q) is any subset of attributes of Q. When 

we do differential computations, we would like to be able to distribute projections 
over difference. In order to make this legal, we must at all times make sure that 

unique identification of tuples is possible. We choose to do this by always retaining 
the primary key of relations, remembering whether it was removed by projection 

4. In the following, D<~ denotes equi-join. 
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or not. 

The equi-join operator, Q1 t~F Q2, can be used on any two query expressions. 

The condition F is a list of elements of the form Att_Name_l = A**_Narae_2 

where Att_Name_1 is an attribute of relation Q1 (Q2) and Att_Name_2 is an 

attribute of the expression Q2 (Q1). Several ways have been suggested for doing 

binary joins, e.g., Hash-Join, Nested-Loop-Join, Sort-Merge-Join. For a thorough 

treatment, see Shapiro (1986). 

Finally, selection and projection can be combined with any operator (possibly 
combined) to form a combined operator. 

5.3 Computing Differential Flies 

Here we discuss each of the DELTA operators. Recall that a differential file from 

Q to Q', both query expressions with identical schemas, is denoted 6(Q ~ Q') so 

that t~(Q ~ Q') = ( 6 - ( Q  --~ ~ Q')) ,  and Q' = (Q - 6 - ( Q  --~ 
Q') )u6+(Q ~ Q ' ) .  

5.3.1 The Base Cases. The operator DELTA(t, --r t= , B R ) generates a differential 

file, ~(R(ta) ~ R(t=)), directly from a backlog, BR. This operator differs from 
the three other DELTA operators in that a list of change requests in a backlog is 

the argument. 

If ta < tz then the requested state of R is a future state relative to its current 

state, and we are in the incremental case. If ta > tx then we are in the decremental 

case .  

The construction procedure for 6+(R(t,) --~ R(t=)) and 6-(R( t , )  
R(t=)) starts with the initialization of these to empty relations. The schema 

of 6+(R(Q) --~ R(t=)) is the same as that of R, and the schema of 6-(R(ta) 
R(tx))  only contains the primary key attribute of that of R. 5 Then we process 

change requests from the outset in the direction of t= until the next change request 

to be processed has a time stamp that is not in the half-open interval from t ,  to, 

and including, t=. 

Each request is projected to remove superfluous attribute values. Assuming that 

we are in the incremental case, insertion requests go into 6 + (R(ta) ~ R(t=)) which 

optionally can be kept sorted on key values, or/and an (hash) index on key values can 

be maintained. A deletion request refers to either a tuple in the outset or to a tuple in 

5. Only the key is needed in an actual implementation, but in algebra expressions we assume for simplicity 
that the schema is the same as that of R .  
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+ (R( ta)  ~ R(t~) ).6 First 6 + (R( t~ ) ~ R(t~))  is searched for a tuple matching 
the deletion request, and if a match is found, then the request is disregarded, and 

the matching tuple of the current 6+(R(t~) ~ R(tx)) is deleted, because the 

net effect is that no change takes place; otherwise, the deletion request goes into 

6-(R(t~) ~ R(t~)). Note that no action was taken when we encountered an 
insertion request of a previously encountered deletion request. Such corresponding 

deletion and insertion requests must be carried out because they update implicit 

time stamp attributes of base relations; such attributes are hidden, but can be 

seen by explicit projections. Here, we ignore these implicit attributes. Tuples of 

6+(R(t~) --~ R(t~)) and 6-(R(t~) ~ R(t~)) are written to secondary memory 
one page at a time. Note that there are no references from 6-(R(t~) ~ R(t~)) 
to 6+(R(t,) ~ R(t~)), making the sequence of operation in the formula above 
valid in the sense that the outcome of DIF-(R(t.) ,6(R(t~) -~ R(t~))) is, in 
fact, R(t~). Also note that there can be references from (~+(R(t,) --~ R(tz)) to 

6 - ( R ( t a )  ~ R(t~)),  making the sequence of operation in the formula the only 
valid one. 

When there are no more change requests, both differentials are stored sorted 
on key values, and the optional index on 6+(R(t~) ~ R(t~)) is deleted. 

In the decremental case, the only change is that deletion requests assume the 
role of insertion requests, and vice versa. 

5.3.2 The Step Cases. Now, we consider the cases where a differential file of 

a result is constructed from the differential file of another result. In DELTA- 

a(F, 6(Q --~ Q')), the operator constructs the differential file from oF(Q) to 
(O'F(Q)f using the differential file from Q to Q', 6(Q ~ Q'),  where Q denotes 
any query expression. This is just a selection: 

DELTA-cr(F, 6(Q - - ~  Q')) = aF(6(Q ~ Q')) = 
(OF(6-(Q ~ Q')),O~F(6+(Q ~ Q'))) 

Claiming that this correctly computes 6(CrF(Q) ~ (aF(Q))') is equivalent to 
claiming that the following expression correctly computes (aF(Q)f.  

(dE(Q)-aF(6-(Q ~ Q' ) ) )UaF(6+(Q ~ Q')) 

6. Note that eagerly maintained current states of user-defined rollback relations allow for checking that 
deletions and insertions actually make sense, i.e., that deletions actually delete something existing and, con- 
versely, that insertions actually insert something not already existing. These are system enforced integrity 
constraints. 
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Figure 7. The DELTA-o- and DELTA-~- operators. 
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This expression is equivalent to the following. 

aF((Q -- ~- (O ~ O')) t_J ~+(O ~ Q')) 

Correctness follows as this is equivalent to O'F(Q') which, in turn, is equivalent to 

(oF(Q))'. 
Next, in DELTA-Tr(A, ~(Q ---~ Q')), we make a projection: 

DELTA-Tr(A, ~(Q ~ Q')) = 7rA(~(Q ~ Q')) = (TrA(~-(Q --> Q')), 
Q')) 

Remember that key information is retained to overcome the problem of indistin- 

guishable tuples when distributing a projection over a difference. The proof of 
correctness is similar to that of the DELTA-o operator. Figure 7 is a schematical 

representation of the DELTA-o" and DELTA-Tr operators. 
The last case is the join: DELTA-M ( Q I , ~ ( Q I  ~ QI),Q2,~(Q: ~ Q~)). 

To construct the differential file of QI M Q2, we need both Q1, Q2, ~(Q1 -+ Qi), 
and ~(Q2 --~ Q~). In order to explain the derivation of the formula for computing 
~((Q1 M Q2) ~ (Q1 M Q2)'), consider the following three equalities: 

Q'IMQ~ = (Q1MQ~) '  (1) 

(Q1 M Q2)' : [(Q~ M Q2) - ~- ( (Qi  M Q2) -~ (Q~ M Q2)')] (2) 

U(~+((Q1 M Q2) ~ (Q1 M Q2)') 

Qi M Q~ = [((Q1 - ~-(Q1 ~ Q~)) u 8+(Q1 ~ Qi)] M (3) 

[ ( ( Q 2 -  ~-(Q2 -~ Q~)) t-J ~+(Q2 ~ Qi)] 
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We derive (i((Q1 ~ Q2) ~ (Q1 N Q2)') by transforming the right hand side of 
equality (3) into an equivalent expression of the form [(Q1 ~ Q2) - ~ ] u  ~ .  
Then, by equalities (1) and (2), ((i-((Q1 ~ Q2) ~ (Q~ ~ Q2)'), 6+((Q1 
Q2) -~ (Q1 pd Q2)'))  = ( [~], [~] ). 

To do the transformation, we need two transformation rules: 

(Q1 u Q2) ~ Q8 -= (Q1 pd Qa) u (Q2 ~ Qs) 

(Q1 - Q2) ~ Q8 --- (Q1 N Q3) - (Q2 N Q8) 

To derive the first, observe that (Q1 u Q2) x Q3 _~ (Q1 x Q3) u (Q2 x Q8). 
Because, in addition, Q1 N Q2 --- OfF(Q1 X Q2) where F is the equi-join condition, 

then 

(QiuQ2)~Q~ --- o'¢[(Qiu Q2)xQ~] -= ~-F[(QI xQ3) u (Q2xQ8)] 
_-- o~(q~ xq~)uoF(q2xq~) --- (Qi ~Q~)u(Q2NQ~) 

The second is proven as follows. First, assume that x E (Q~ - Q2) N Q3; then, 
we prove that x E (Qa ~ Q3) - (Q2 ~ Q~). The element x is of the form 
(x1,~2) where Xl ~ ( Q 1 -  Q2) and ~2 e Q3. Further, Xl e Q1 andxl  ¢ Q2. 
Hence, (z l ,x2)  ~ Q1 ~ Q3, and (Xl,X2) ¢ Q2 ~ Qa. 

Second, we assume the converse and prove that x E (Q1 - Q 2 )  pd Q3. Here, 
x C Q1 pd Q3, and x ¢ Q2 N Q3. Consequently, x I ~ Q1, and X 2 ~ Q3, and 

also Xl ¢ Q2. But then Xl E Q1 - Q2. 

Using the abbreviations (ix + / -  and (i2 + / -  for (i + / -  ( Q ~ ~ Qi ) and 6 +/- (Q 2 
Q~), respectively, we now have 

[(Q1 - (il-) u (il +] pd [(Q2 - (i2) u (i2 +] 

-= {(Q1 - 6~-) N [(Q2 - (i~-) u (i2+]} u {61 + N [(Q2 - (i~) u (i2+]} 

---- {[(Qi -(I~) N (Q2 - 6 ~ ) ] u  [(Q1-6~-) N 62+]} u 
{[(i~ ~ (Q2 - 6~-)] u ((i~- N (itt)} 

~- { { [ q l  s ( q 2 - ( i i - ) ] -  [(ii- ~ ( q 2 - ( i i - ) ] } u [ ( q l  N 6~-) -  
((iF N (i~-)]} u {[((itt N Q2) - (6~ ~ (i i)] u ((it N (itt)} 

_-- { { [ ( q l  ~ q 2 ) - ( q l  s 6 i - ) ] -  [(6i- N q 2 ) -  (6~- ~ (ii-)]} u 
[ (Q, N 6~-) - (6~- N 62+)]} u {[(6~ + N Q2) - ( 6 t  N (i~-)] o (61 + N ( i t )  } 

_-- {(Q~ N Q2) - (Q~ N (i~-) - [(6 i- N Q2) - ((i~- N (i~-)]} u 

[(Q1 ~ 62 +) - (6~ ixl 62+)] u [(61 + pd Q2) - (61 + N 6~)] U (6~ + N 6~-) 
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The two last right hand sides contain different expressions for the differential file 

of a join. For example, using the last one, we have 

DELTA-N (Qi,~(Q1 ~ Q~), Q~,~(Q2 ~ Q~)) 
=- (~-((Q~ ~ Q2) ~ (Q1 t~ Q2)'),~+((Q1 t~ Q2) ~ (Q1 M Q2)')) 

=- ([01 ~ ~ u (~- t~ Q , ) -  (~- ~ ~-1], 

y z 

The components of ~- ( (Q1 t~ Q2) ~ (Q1 M Q2)') are: (a) the deletions to 
Q1 ~ Q2 due to deletions from Q2; and (b) the deletions to Q1 N Q2 due 
to deletions from Q1, but with overlapping deletions (i.e., 6 - (Q1 ~ Q~) N 
6- (Q2 ~ Q~)) removed. 

The components of 6+((Q1 N Q2) ~ (Qa ~ Q2)') are: (x) insertions to the 
outset due to tuples from Q1 matching insertions to Q:,  but not including tuples 
due to matches between insertions to Q2 and deletions to Q1; (y) a component 
symmetric, in Q1 and Q2, to (x); (z) insertions to the outset due to matches between 
insertions in Q1 and insertions in Q2. Figure 8 shows all the constituent joins of 
~-((Q1 ~ Q2) ~ (Q1 ~ Q2) ' )and 6+((Q1 ~ Q2) ~ (Q1 N Q2)') by means 

of dotted lines connecting two relations. 
There are no deletions of insertions in the differential file of a join, DELTA- 

( Q i , ~ ( Q i  --~ QI),Q2,~(Q2 ~ Q~)). To see why, observe that neither of 

the two components (a and b) for ~- ( (Q1 )4 Q2) ---r (Q1 ~ Q2) I) overlap any 
of the three components of ~- ( (Q1 ~ Q2) --+ (Qi  N Q2)~) (x, y, and z). (a, x) 
and (a, z): disjoint because ~- (Q2 ~ Q~) and (~+(Q2 --+ Q2) are disjoint. (b, 
y) and (b, z): disjoint because ~-(Q1 ~ Q~) and ~+(Q1 --r Qi) are disjoint. 
(a, y): disjoint because ~- (Q2 ~ Q2) and Q2 -~-(Q2 ~ Q~) are disjoint. @, 
x): disjoint because (~-(Q1 ~ Q~) and Q1 - ~-(Q1 --r Q~) are disjoint. 

As shown, the differential of a join is a complex query and it can be computed 
in many ways (Blakely et al., 1986). Techniques from multiple query optimization 
can he exploited (Jarke, 1984; Kim, 1984; Chakravarthy and Minker, 1986; SeUis, 
1986, 1988b). For example, keeping all six argument relations sorted, joins can be 

done interleaved and pagewise (pipe-line join). 
It is straightforward to implement operators such as DELTA-Tro(A, F~ ~(Q --+ 

Q~)) where projection and selection is combined. This is done using combined 
operators of the previous subsection. "Combined" generation of differential files 
directly from change requests and selections/projections is possible also. 
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Figure 8. Computation of differentials of joins. 
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5.4 Incrementing/Decrementlng Relations 

Now we discuss the implementation of the four operators for differential computat ion 

in turn. 

5.4.1 Time Slicing Base Relations--The Base Cases. For the DIF operator we wil l  

investigate two cases. First we consider the special case of computing DIF(R(t=), 
tS(R(t=) ~ R(ty)))  where we use the backlog B R  directly as an alternative 

to first computing tS(R(t=) --~ R(ty)).  Second, we consider the general case, 

DIF(Q, 6(Q ~ O')). 
The first case is illustrated in Figure 9. Note that both incremental and 

decremental  computat ion are always possible (with t= = tinit and t= =NOW, 
respectively). 

In this case, change requests are processed one at a t ime towards the requested 

state from the outset until the time stamp of the next change request to be considered 

exceeds the time of the desired state. The result of  an insertion request is that the 

tuple of the request is entered into the current outset, and the result of a deletion 

request is that the tuple identified by the request is removed from the current state. 
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Figure 9. Time-slicing a base relation. 
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In the general case, DIF(Q,  (5-  (Q ---~ Q ' ) ,  ~ + (Q ~ Q ' ) ) ) ,  we initially sort 

5 - ( 0  ~ ~ ' )  and 5 + ( 0  ~ Q' )  if they were not sorted already. Both G-files are 

then simultaneous "merged" with the outset: first a page of deletions is read, then 

the first relevant page of the outset and the first relevant page of the insertions 

are read. Deletions are performed on the outset first, then relevant insertions are 

performed. Whenever a page is totally read, the next page of the relation is read. 

In the case of the outset, processed pages are written, and only pages that are 

relevant for the deletions are read (irrelevant pages can be considered processed 

and written already). When there are neither deletions nor insertions left, the 

processing terminates. Following this procedure, pages of the three relations are 

only read once, and irrelevant pages of the outset need not be read at all. 

When computing DIF(R(t~),6(R(t~) ~ R(tv)))  we use the characteristics 

of the arguments (i.e., the size of the outset used) and the differential file, as criteria 

for chosing between the first and a variation of the second strategy. The framework 

includes a component that, given the name of a backlog and a start and an end time, 

returns estimates: the number of insertions, the total number of change requests, 

and the number of deletions of insertions. The input to the component is produced 

during non-eager processing of change requests. If the first strategy is used, counts 

of insertions and deletions are used; if the second strategy is used, again counts of 

insertions and deletions are available, but so is also the final number of insertions. 

How these inputs are most efficiently used to generate the output is a topic of 

current research. 

The first strategy is advantageous if the total number of change requests to be 

processed is low. The choice of keeping ~ + ( Q  ~ Q ' )  sorted or not depends on 
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Figure 10. Differential selection, projection, and join. 
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the number of insertions into 6+(Q ~ Q') compared to the number of deletions 

to be processed against 6+(Q ~ Q'). If sorting is adopted, insertion has an 
overhead, and if not, then search for deletions must be done by sequential scan. 

5.4.2 The Step Cases. The differential selection and projection operators, DIF-o" 

(O'F(Q),6(Q --~ Q')) and DIF-Tr(TrA,6(Q ~ Q')) ,  respectively, may be com- 
puted as follows. 

DIF-a(aF(Q),8(Q ~ Q')) 

= (aF(Q)  - a F ( 8 - ( Q  ~ Q')))  U a F ( 8 + ( Q  ~ Q'))  

DIF-r(~rA(Q),8(Q ~ Q')) 

= ( r A ( Q ) - r A ( 8 - ( Q - + Q ' ) ) ) u r A ( 8 + ( Q - + Q ' ) )  

The correctness of these observations follows from the observations aF(6(Q 
Q')) = 6(trF(Q) ~ trF(Q)' ) and 7rA(6(Q ~ Q')) : 6(TrA(Q) --~ 7rA(Q)'). 

Differential selection, projection, and join are illustrated in Figure 10. For each 

of the operators, the arguments are shown. The broken box of DIF-o'/DIF-Tr is not 
an argument--it is present only to indicate the relationship between the arguments. 

' 
The final case is DIF-~ (Q1 t~ Q2,Qi,6(Q1 ~ Q1),Q2,  (Q2 --~ Q~)), 

the differential join. From Subsection 5.3, we have (again, we abbreviate 6 + / -  (Q1 

Q~) and 6+ / - (Q2  ---~ Q~) by 61 + / -  and 62 + / - ,  respectively). 

DIF(Q1 t~ Q2, Q1, ~Q~, Q2, ~Q~) 

[(Q1 M ~-)  - (~? ~ ~-)]  u [(~1" N Q~) - (~-  ~ ~ i ) ]  u (~-  ~ ~- )  
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Let us consider processing of the deletions to the outset. The two components can 
be explained as follows. 

1. Q1 ~ 6-(Q2 ~ Q~) are all the deletions from the outset due tO deletions 

to Q2; 

2. (6-(Q~ ~ Qi) t~ Q2) - (6-(Q1 ~ Qi) M 6-(Q2 ~ Q[)) are all 
the deletions to the outset due to deletions to Q1 with duplicate deletions 

due to overlaps between 6 - (Q1  --~ Q~) and 6 - (Q2  ~ Q~) and already 
included in (1) removed. 

The overlaps can be ignored without affecting the correctness of the final result, 
and the deletions represented by the two remaining terms can be performed using 

only Q1 N Q2, 6 - (Q1  ~ Q~), and 6 - (Q2  ~ Q~). A tuple of the outset 
is of the form (zoo,  XQ2) where Xol is a tuple compatible with Q1 and xo2 is 
a tuple compatible with Q2. Tuples of Q1 N Q2 where XQ2 match a tuple in 
6 - (Q2  ~ Q~) are simply deleted; similarly tuples where xol  match a tuple in 

6 - (Q1  ~ Q~) are deleted. 
Now, let us turn to the insertions. It is instructive to reformulate the expression 

for (Q1 ~ Q2)' as follows (with 6 - ( (Q1  N Q2) ----r (Q1 N Q2)') abbreviated by 

6~-2). 

(Q1 M Q2)' 
(Q~ - 6~) M (Q2 - 6~-)u[(Q~ - 6i-) M 6 ~ ] u { 6 ~  M [(Q2 - 6~-)u62+]) 

=-- Q1MQ2 - 6 ~ u [ ( Q 1  - 61-)u61 + - 61t] N 62+]U (61 + t~ [(Q2 - 6~-) U62+]} 
=- Q1 t~ Q2 - 6~-2u 

{[(Q~ - 6 ; )  u 61 +] N 62+ } - [61 + N 6~-] u {6~- N [(Q2 - 6 ; )  u 6~-]} 
--= Q1 M Q2 - 61-2 u {[(Q, - 6 ; )  u 61 +] t~ 6~- } u !6~ + t~ (Q2 - 6 ; ) !  

7 

The insertion, 6+((Q1 M Q2) ~ (Q1 ~ Q2)'), is now defined by two joins. The 
first (1) has 6+(Q2 ~ Qi) as one argument, and the second (2) has 6+(Q1 ~ Qi) 
as one argument. This explains the superiority of differential computation when 
differentials are small and relations large because in such cases an expensive join 
of two large relations, Q~ and Q~, is avoided and two joins of a small relation with 
a large relation is done instead. 7 

7. Differential computation and recomputation both involve additional processing apart from joins, but, 
because join is the most expensive operation, we ignore this. 
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Algorithms, costs, and efficient implementation of  incremental join for pointer 

views in the ADMS system are discussed in detail in Stamenas (1989) and Rous- 

sopoulous (1991). 

6. Pruning the Search Space 

We already have presented a complete framework for query optimization. Here  we 

introduce the concept of pruning a STN. Pruning is a means of  further optimization 

of plan selection. The purpose is to reduce the sizes of the STNs generated 

without leaving out promising query plans. Reduced STNs mean reduced costs 

of estimating costs of single transitions and a smaller argument of the dynamic 

programming algorithm which therefore executes more efficiently. The purpose of 

introducing the mapping P in the definition of an STN was exactly to be able to 

include pruning into the framework. The rules of this section restrict the number 

of possible transitions at a state. 

The rules below illustrate the kind of rules that can be integrated into IM/T 

Rules from standard query optimization (Ullman, 1982) can be applied, too. 

Rule 1. Only apply a differential to its outset if exactly the selections/projections performed 

on the outset have been performed on the differentia~ too. Obeying this rule will 

ensure that selections/projections are done on only the outset or the differential, 

and never on the updated outset. This is reasonable because at least the 

differential can be assumed to be much smaller than the updated outset. 

Rule 2. Apply operators as early as possible. If the arguments in state Xb of an 

operation p (transforming Xb into xc) are present in an predecessor state, xa 

of Xb then p should be applied to xa instead of to Xb. 

Rule 3. Only compute a differential of  an outset, if  the outset already exists. Both se- 

quences are possible, but an STN should only include one of  them, and a 

differential is not useful if the outset is not available. 

Rule 4. Application o f  maximal combined operators is preferable to the sequential appli- 

cation of  the constituent operators of  the combined operators. 

Rule 5. Only use the smallest cached result out of  covering results equally outdated with 

respect to the desired state. This and the following rule attempt to consider only 

the most promising cached results during generation af an STN. 

Rule 6. Only use the least outdated cached result out o f  covering results o f  equal size. 
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7. Conclusion and Future Research 

Extending the relational model to automatically record transaction time is not a 

new idea, but implementing the extended model by storing the complete history 

of change in relation backlogs is. Such an implementation will support not only 
queries on previous database states, but queries on the nature of change itself. 

We expect queries on the nature of change to play a key role in future information 

systems. With ever-increasing amounts of constantly changing information, it will 
be impossible for an individual user to digest all the information that pertains to a 

given situation and stay abreast of all its changes. We will see applications where 

the user is not interested in the current state of the database and the changes made 

to it, as long as they are both normal. On the other hand, if the current state of 

the database or the change made to it is abnormal, then the user is interested and 

must be notified. The price paid for the added functionality is a substantial increase 

of space consumption and a decrease of query processing efficiency. 

The topic of this article has been the efficient support of transaction time in 

the relational model. The concrete results include: 

• a transparent extension of the relational model (DMfF) where the transparency 
is supported by the underlying implementation (IM/T) 

a general query optimization and processing architecture which utilizes par- 
titioned backlog storage, selective pointer and data-view caching, eager/lazy 
view update, cache indexing, and state transition networks with dynamic 

programming. 

• integration of recomputation and differential computation of queries 

• a symmetrical, general notion of differential computation integrating incre- 

mental and decremental computation 

• formulas for differential computation 

• a generalization of the notion of query subsumption to utilize differential 
computation 

• augmentation of standard query optimization with rules for optimization of 

differential query processing 

Several aspects of the individual components of IM/T are the subjects of future 
research. They include: 
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• the relative merits of data and pointer caching 

• the extension of existing algorithms for the logical access path to the ELAP 

• the adaption of existing cache management strategies 

• the relative merits of eager and lazy cache update 

• the efficient application of state transition networks for query plan enumer- 
ation of transaction time queries 

Substantial research efforts are required in order to clarify each of these aspects 
(Snodgrass, 1990). Other research topics include the caching of differential files, 
statistics for query optimization, optimal algorithms for operators of STNs, and 
support for general versioning. 
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