
VLDB Journal2 (1):75-111 (1993) Fred J. Maryanski, Editor
©VLDB

75

Using Differential Techniques to Efficiently Support
Transaction Time

Christian S. Jensen, Leo Mark, Nick Roussopoulos, and Timos Sellis

Received May 30, 1990; revised version received February 28, 1992; accepted June 25,
1992.

Abstract. We present an architecture for query processing in the relational model
extended with transaction time. The architecture integrates standard query op-
timization and computation techniques with new differential computation tech-
niques. Differential computation computes a query incrementally or decremen-
tally from the cached and indexed results of previous computations. The use of dif-
ferential computation techniques is essential in order to provide efficient process-
ing of queries that access very large temporal relations. Alternative query plans are
integrated into a state transition network, where the state space includes backlogs
of base relations, cached results from previous computations, a cache index, and
intermediate results; the transitions include standard relational algebra operators,
operators for constructing differential files, operators for differential computation,
and combined operators. A rule set is presented to prune away parts of state tran-
sition networks that are not promising, and dynamic programming techniques are
used to identify the optimal plans from the remaining state transition networks.
An extended logical access path serves as a "structuring" index on the cached re-
suits and contains, in addition, vital statistics for the query optimization process
(including statistics about base relations, backlogs, and queries--previously com-
puted and cached, previously computed, or just previously estimated).

Key Words. Temporal databases, transaction time, efficient query processing, in-
cremental and decremental computation.

1. Introduction

The relational mode l presented by E. E Codd twenty years ago (Codd, 1970, 1979) has

gained immense populari ty and is regarded today as a defacto s tandard for business

applications. A main reason for the success is the generality of the model; it makes

Christian Jensen, Ph.D., is Assistant Professor, Department of Mathematics and Computer Science, Aal-
borg University, Fr. Bajers Vej 7, DK-9220, Ost, Denmark. Leo Mark, Ph.D., is Associate Professor, Col-
lege of Computing, Georgia Tech, Atlanta, GA 30332, LISA. Nick Roussopoulos, Ph.D., is Full Professor;
and Timos Sellis, Ph.D., is Associate Professor, Department of Computer Science, University of Maryland,
College Park, MD 20742, USA.

76

very few assumptions about specific application areas. This, however, has im draw-

backs because the model does not provide detailed and customized support for some
application areas. Extensions that make the relational model more suitable for the

application areas have been a topic of interest in the database research community

ever since the relational model was presented.

This article presents an implementation model, IMfI' (Implementation Model/

Time), for an extension of the relational model supporting transaction time, DM/T

(Data Model/Time) (Jensen et al., 1991, 1992). Data are never deleted once entered
into a database in this model; it is possible to see the database from any time in the

past, and it is possible to analyze the change history. Many applications will benefit
from efficient transaction time support. In the literature, engineering, econometrics,
banking, inventory control, medical records, and airline reservations have been men-
tioned as candidates (McKenzie and Snodgrass, 1991).

Traditional implementation models cannot cope efficiently with huge, ever grow-
ing quantities of historical data. The predominant approach taken to solve this

problem has been partitioned storage, where data of individual relations are parti-

tioned, and a storage hierarchy is maintained that favors efficient support of queries

solely accessing recent data (Lum et al., 1984; Salzberg and Lomet, 1989). While still
allowing for partitioned storage, the data organization of IM/T allows efficient access
to frequently accessed states of individual relations, recent or old, thus providing

efficient support of any state.
IM/T exploits caching of query results. Caching is the idea of storing results,

on secondary memory, of previous computations and subsequently using them to
avoid redoing expensive computations (Roussopoulos, 1982b, Sellis, 1988a). Caching

trades replication of data for speed of retrieval. It is potentially a very powerful

technique, but a number of issues must be dealt with intelligently in order to gain
the full benefits. Let us mention the most important ones, some of which are

addressed in this article while others are still issues for future research.

First, there is the question of how to cache results. In IM/'I~ query results can

be stored as actual data or as pointers to base data, possibly via several levels of

indirection. Pointer cache storage gives a fixed, small tuple size and makes results

very compact thus allowing for efficient use of main memory (Roussopoulos, 1991).
For transaction-time databases, however, one base data page must be read for each
pointer in extreme cases. Data cache storage solves this potential problem because
it allows for control of locality of reference. Additionally, it allows for reduction of

references to slower storage areas. While the architecture allows for both data and
pointer caching, a detailed study of the relative merits of the two is still warranted.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction "time 77

Figure 1. Three IM/T stores: base data, derived data, ELAP

I l l l l l l l l l" l l l l l l l

l] l l l l l l l l l l l l l l l

IIIIIIII!111111111

[i] [311][i] [i]

[1] [i] [3 1 3 1 3

E] DE]D

TSTT
°o°°°..'° " ' .°

~.° S'°° /

""°°'"'"'...°~ •

"TT

.°...-..~
.'#° i

/
i

/

. i
%.o......;

O

O

O

O

1M,rI" has three stores, one for base data, one for derived data, and one for the ELAP, containing statistics
and representing the structure of base and derived data. During query optimization, plans using the stored
data are enumerated in STNs.

Second, the utility of caching can be improved by means of cache indexing. IM/T
extends the logical access path (Roussopoulos, 1982b) into an Extended Logical

Access Path (ELAP), which allows for efficient identification of all potentially useful
results during query processing. It is a persistent query graph with nodes for all

cached, computed, or just estimated results. While the algorithms for maintaining

and using the ELAP have not been developed, it has been demonstrated that

an appropriate extension of the algorithms for the logical access path is fairly

straightforward, i.e., the rule-access path (Sellis et al., 1990).

Third, to gain the full benefits, caching should be used in conjunction with

differential computation techniques (Roussopoulos, 1991). The application of such
techniques prolongs the usefulness of cached results because slightly outdated results

need not be discarded and recomputed, but can instead be efficiently incremented

or decremented to answer a query. IM/T generalizes incremental computation

to differential computation using both incremental and decremental techniques,
and it unifies differential computation and traditional recomputation. Differential
computation is the focus of this article, and it is treated in great detail.

Fourth, only potentially beneficial results should be cached. If the cache is full,
appropriate replacement strategies must be used. IM/T has a cache management

component that supports selective caching and cache replacement. The purpose for
selective caching is that neither caching of all results (and differential computation) or

78

no caching at all (and recomputation) is superior to the other in every given situation.

Caching is attractive in environments characterized by many queries, few updates, very
large underlying base relations, and comparably small results. Methods of adapting

the numerous contributions on cache management into appropriate strategies for

selective caching and cache replacement in this context are discussed elsewhere

(Hanson, 1987; Sellis, 1987, 1988a," Jhingran, 1988; Jhingran and Stonebraker,

1989).
Fifth, the fact that cached results become outdated must be addressed. Any

possible update strategy ranging from "eager" (i.e., when relevant base data are

entered), over threshold-triggered, to "lazy" (i.e., when the result is requested)

is possible (Ronssopoulos and Kang, 1986; Hanson, 1987). The details of cache
updating are not part of this article.

In a temporal setting the maintenance of stored results is likely to be more
feasible than in a snapshot setting. The reasons are that relations are large because

previous states are retained and essential additional semantics for the process of

selective caching is available. For example, fixed views are primary candidates

for caching because they never become outdated, and the future outdatedness of

time-dependent views issued against past states can be estimated at the time of

computation.
Query-plan generation in IM/T uses the concept of state transition network (STN;

Lafortune and Wong, 1986). Query-plan selection uses dynamic programming (see
Figure 1). We present a set of rules for pruning the STNs generated, the idea

being to avoid generating inferior paths, thus saving both space and time during
cost estimation. During query-plan generation and selection we use results from
the cache, and we use both recomputation and differential computation versions of

the operators of the query language of DM/T as possible transitions in STNs. Apart

from defining the operators, we discuss how to efficiently implement the differential

versions. In addition, combined operators are introduced to minimize the need for

storage of intermediate results during query computation.

Efficient query processing is a central theme in database research, and conse-

quently the work of this article is related to a number of previous efforts.

The transaction-time extension of this article was designed to be transparent
to the naive user of the standard relational model. To our knowledge, none of

the other temporal extensions of the relational model shares this characteristic
(Bubenko, 1977; Bolour et al., 1982; Snodgrass and Alan, 1985; Snodgrass, 1987;

Stam and Snodgrass, 1988; McKenzie and Snodgrass, 1991).

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction Time 79

IM/T allows for partitioned storage and supports both reverse and forward
chaining. Related efforts can be found (Dadam et al., 1984; Lum et al., 1984; Ahn,

1986; Snodgrass and Ahn, 1988; Kolovson and Stonebraker, 1989; Salzberg and

Lomet, 1989). Grid files have been suggested as a means of implementation of

temporal data (Shoshani and Kawagoe, 1986), but they seem inappropriate because

surrogates, for which no natural ordering exists, would be one dimension and time

the other. In addition, indexing of other attributes is not allowed, which again is

unsatisfactory. The subject of Rotem and Segev (1987) is multi-dimensional file

partition for static files with time as one of multiple dimensions.

Some research (Gunadhi and Segev, 1989; Gunadhi et al., 1989; Segev and
Gunadhi, 1989) concentrates on different kinds of temporal joins (time-union, time-

intersection, and event-joins) and temporal-selectivity estimation. This research,

while interesting, is not addressed here.

The focus of the work presented by McKenzie (1988) is the data model for

a temporal database, and it is closely related to our work. It formally defines
incremental algebra operators, resembling those of our state-transition space. In

addition, it surveys applications of incremental techniques in the relational model,
and discusses ways to combine previous efforts into an implementation supporting

both transaction time and valid (logical) time. Our work concentrates only on

implementation and on transaction time. We present a detailed design of an
implementation model and concentrate on query optimization and processing.

IM/T exploits caching of views and the literature contains many contributions to
the understanding of its many aspects. Aspects of materialized views relevant to dis-

tributed processing are presented in Segev and Fang (1989, 1990). The performance

of three techniques (lazy incremental computation, eager incremental computation,

and recomputation) has been compared by Hanson (1987), who demonstrated that

none of the techniques were superior to the others in all cases. Caching of query

results has been addressed to support query language procedures (programs, rules)
efficiently stored in relational fields Qhingran, 1988; Sellis, 1987, 1988a). Techniques
aimed at reducing the cost of maintaining materialized views have been recently

reported by Blakely et al. (1986, 1989) who attempt to detect base data updates that
do not affect a view, and to detect when a view can be correctly updated using only

the data already present. IM/T generalizes and unifies traditional recomputation
and incremental computation so that a single query can be processed using re-

computation, incremental computation, and decremental computation. 'Itaditional
systems, e.g., Ingres (Wong and Youseffi, 1976) and System R (Selinger et al.,

1979) use recomputation. Kinsley and Driscoll (1979, 1984) have described how to
extend the RAQUEL II database management system to support dynamic derived

80

relations using eager incremental update. In ADMS (±) , a database management

system implementing the standard relational model, incremental computation of

views stored as pointer structures is used (Roussopoulos, 1982a, 1987, 1991). Our

work has some resemblance to Postgres, where previous history is also retained.
The temporal support, however, never was the focus, and time stamps and backlog

queries are not supported as in IM/E Postgres exploits caching, but since indexing,

differential cache maintenance, and query execution are missing, the full potential

of caching is not achieved (Rowe and Stonebraker, 1987).

For previous work on query optimization, and further references, see Smith
and Chang (1975), Selinger et al. (1979), Jarke and Koch (1984), and Sellis and

Shapiro (1985).

State transition networks have, to our knowledge, never been applied in a
temporal setting or in settings involving caching. Lafortune and Wong (1986) used

STNs as a framework for query optimization in a distributed environment. Hong

and Wong (1989) applied STNs to multiple query optimization.

The structure of the remaining part of this article is as follows: Section 2 serves

as a specification of the functionality to be supported by IM/'E The concept of
transaction time, data structures, and the query language of DM/T are presented.

The remaining sections are devoted to IM/T and the efficient processing of DM/T
queries. Section 3 describes the three stores of IM/T--base data, cache, and ELAP.

In Section 4, STNs are used for enumerating alternative query plans and dynamic

programming is used to collect costs of entire plans from costs of single transitions.

The concrete state and transition spaces, incorporating the use of cached results,

differential computation, standard query computation techniques, and support for
combined operators, are introduced. Also discussed is the use of ELAP to find
promising results from the cache, considered when STNs are generated. In Section 5

we first present the cases to consider when implementing operators and then discuss

the three types of operators: Recomputation operators, operators that construct

differential files, and differential operators. Section 6 presents rules for reducing

the sizes of the generated STNs. Section 7 concludes this article.

2. Transaction Time in the Relational Model, DM/T

In this section we briefly introduce the transaction time extension of the basic
relational model (Codd, 1970, 1979; Jensen et al., 1991). Our purpose is to identify

the kinds of queries that should be supported by IM/T The properties of the time
concept offered by DM/T are outlined in Figure 2 and are discussed below.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'Iime 81

Figure 2. Characterization of the time concept offered by DM/T.

/trisection/ /re u) { iscre / {
logical x [~] x [stepwise cont. [× srbitrary × manual

Two orthogonal time dimensions have been studied in temporal databases

(Snodgrass and Alan, 1985). Logical time models time in the part of reality modeled

by a database. Transaction time models time in the part of the reality that surrounds

the database, the input subsystem. While logical time is application-dependent,

transaction time depends only on the database management system, and is inherently

application-independent.

First, DM/T supports transaction time as opposed to logical time. Second, a
domain is regular if the distances between consecutive values of the active domain

are identical. Otherwise the domain is irregular. DM/T supports an irregular time

domain. Third, a time domain can be discrete or stepwise continuous. Taples with

discrete timestamps are only valid at the exact times of their timestamps. In contrast,

tuples have an interval of validity in a stepwise continuous domain. The DM/T time

domain has this property (also termed stability) because the values of a relation

remain the same until the relation is changed by a new transaction. Fourth, DM/T

supports true time as opposed to arbitrary time. True time reflects the actual time

of the input subsystem while an arbitrary time domain only needs to have a metric

and a total order defined on it; the set of natural numbers is a possible arbitrary

time domain. Fifth, DM/T has automatic time-stamping, which is the natural choice

for transaction time. Manual, user-supplied timestamp values are natural for logical

time. We have chosen tuple stamping as opposed to attribute value stamping. The

major reason has been to provide a first normal-form model which is a simple and

yet powerful extension of the standard relational model.

In order to record detailed temporal data and still be able to use the operators

of the basic relational model, we have introduced the concept of a backlog relation.

A backlog, BR, for a relation, R, is a relation that contains the complete history

of change requests to relation R (Roussopoulos and Kang, 1986). Backlog BR

contains three attributes in addition to those of R. Attribute Id is defined over a
domain of logical, system generated unique identifiers, i.e., surrogates. The values

o f / d represent the individual tuples, termed change requests. The attribute Op is
defined over the enumerated domain of operation types, and values of Op indicate

82

Figure 3. System-controlled insertions into a backlog.

Requested operation on R:

insert R(tuple)

Effect on B~:
i l l i

insert BR(id, Ins, time, tuple)

delete R(key) insert BR(id, Del, time, tuple(key))

modify P~(key, new value) insert BR(id, Mod, time, tuple(key,new value))

The function "tuple" returns the tuple identified by its argument.

whether an insertion (Ins), a deletion (Del) or a modification (Mod) is requested. 1

Finally, the attribute Time is defined over the domain of transaction timestamps,

TTIME, as previously discussed. DM/T automatically generates and maintains a

backlog for each base relation (i.e., user-defined relations and schema relations).

Figure 3 shows the effect on backlogs resulting from operation requests on their

corresponding relations.

As a consequence of the introduction of timestamps, a base relation is now a
function of time. To retrieve a base relation it must first be time sliced. To define

timeslice, assume that R has the attributes A1, A 2 , . . . , A,~ and let t E [tlnit;
NOW] where tlnit is the time when the database is initialized and NOW is a special

variable with the current time as its value. Now, R at time t is defined as follows:

R(t) { x l 3 s (B R (s) A x[1] = s[1] A x[2] = a[2] A . . . A x[n] = a[n] A

s[Time] < t A (s[Op] = ModV s[Op] = Ins) A

(--,3u(BR(u) A s[R.Ic~ = u[R.Ia] A s[Time] < u[Time] <_ t)))}

When the database is initialized, it has no history and every relation is empty. If

R is parameterized with an expression that evaluates to a time value, then the

result is the state of R as it was at that point in time. It has no meaning to use

a time before the database was initialized and after the present time. If R is used

without any parameters this indicates the current R, i.e., R deJ R(NOW). Time

sliced relations have an implicit time stamp attribute, not shown unless explicitly

projected. Note that these features help provide transparency to the naive user.

1. At a lower level, modifications are modeled by a deletion followed by an insertion, each with the same
timestamp value.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction Time 83

If the expression E of a time-sliced relation R(E) contains the variable NOW,
then R is time dependent. Otherwise, it is fixed. While fixed-time slices of relations

never get outdated, time-dependent time slices do, and they are consequently

updated by the DBMS before retrievals.

A view is time-dependent if it is derived from at least one of the time-dependent

relations and views. Otherwise it is fixed. Traditional views are ultimately derived

directly and solely from time-sliced base relations. If a view ultimately is derived

directly (i.e., not via a time-sliced base relation) from at least one backlog, then

we term it a backlog view. Backlog views are time sliced as are base relations and

views. Backlog view time slices involving NOW are time-dependent, and, as above,

so are backlog views derived from views invoking NOW. We define:

R(t) do]
: O 'T ime<txSR

de]
BR = BR(NOW).

By introducing the time slice operator it is possible to use the standard relational

algebra as the query language. The query language of DMfF was presented in Jensen

et el. (1991), and in Jensen and Mark (1992) it was extended to support analysis of

change history. In this article we only consider time-slice, selection, projection, and

equi-join. We adopt a set of precedence rules to simplify the appearance of query

expressions. Time-slice has highest precedence, and is followed by projection and

selection with the same precedence, which, in turn, are followed by binary operators,

all with the same precedence. Parentheses are used to control precedence in the
standard way, and evaluation is from left to right.

3. Structures of the Implementation Model, IM/T

In the previous section we described the data model, DM~. The subject of this

and the remaining sections is the implementation model, IMfF, which supports the

data structures and operators of DM/T. We present the three different stores of

IM/T: the store containing backlogs and indices; the cache containing views; and

the ELAP which contains information about queries, and is an index to the cache.

3.1 Storage of Backlogs

Backlogs assume the role of base relations and are always stored. They are stored like

traditional base relations with the possibilities of traditional indexing. Throughout

this article we assume that tuples of a backlog are sorted according to the values

84

of their transaction timestamp attribute. Also, mainly for simplicity, we assume

that backlog tuples actually contain all the data of their attributes---compression

techniques (Bassiouni, 1985) may be applied to the backlogs. To further cope with

the ever-growing bulk of historical data, partitioned storage techniques may be

introduced (Dadam et al., 1984; Lum et al., 1984; Ahn, 1986; Christodoulakis, 1987;

Snodgrass and Ahn, 1988; Kolovson and Stonebraker, 1989; Salzberg and Lomet,

1989).
Finally, realizing that even WORM storage is limited and that some historical

data might not be needed by any user, we have offered advanced facilities for

pruning historical data elsewhere (Jensen and Mark, 1990).

3.2 Pointer and Data Cache of IM/T

The cache of IM/T is a collection of query results stored as either pointers or data.

A part of secondary memory is allocated for the cache. Each entry of the cache is
of the form (r/d, result) where r/d uniquely identifies an entry and result is of the

format

result ~-- array of ptr [array of (ptr × ptr)] relation

Tuples of the same entry are stored consecutively and are sorted on t/d's (pointers)
or surrogate attribute values (data). Indices can exist on the tuples of results.

The ELAP, discussed in the next subsection, is a structuring index on the cache

and is used to identify cache entries to be used in query processing. In the ELAP,

a cache entry is represented by its r/d, and therefore an index of r/d entry results

is desirable.

Differential files computed as intermediate results during query processing are

not stored in the cache. It may, however, be useful to store statistics about such

files. Such statistics may help estimate the cost of processing future differential files
and help choose between different ways of processing a differential file. The design

of data structures and algorithms that maintain the statistics, and the use of the

statistics during query optimization are subjects of current research.
The cache contains the current states of all base relations, and they are updated

readily. This makes the extended data model DM,rI ~ transparent to the naive user
and enables IM/T to retrieve current data and check standard integrity constraints

etliciently.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'Iime 85

3.3 The Extended Logical Access Path of IM/T

The ELAP is a directed acyclic graph (DAG) (Roussopoulos, 1982b). Each node

is associated with a set of equivalent query expressions, a list of statistics about

each query expression, and an optional reference to a cached result. The edges

are labeled by operators, and in the unary case an edge from node N~ to node

Nb indicates that the operator constructs an expression associated with Nb from

an expression associated with Na. In the binary case, a pair of edges, possibly

ordered, from nodes Na and N~ to node Nb indicates that the operator constructs

an expression associated with Nb from expressions associated with Na and N~.

Here, we allow time slice, selection, projection, and join as labels of edges of the

ELAP. In addition, we allow for combined operators in order to avoid the storage

of intermediate results.

The ELAP integrates graphs of query expressions that have been computed or

have been subject to estimation of statistics into a unifying structure by merging

nodes representing common (sub-)expressions. It is important to observe that,

while the expressions of a node all produce the same result, they may have different

processing costs. The ELAP is a generalized AND/OR DAG where, at a single

node, there is a choice ("OR") of one of several sets of '~AND" edges (Rich, 1983;

Mahanti and Bagchi, 1985), where '~AND" edges correspond to binary operators.

To illustrate, consider the following three equivalent query expressions defined on

an employee relation Emp with attributes Id (employee id), Sal (salary), and Dep
(department).

Q1 7rEmp(tl).Id,Emp(t~).Sal(O'Emp(tl).Sal_>30((Emp(tl))
~Emp(tl).Id=Emp(t2).Id (Emp(t2)))

Q2 7['Emp(tl).Id,E~rt~p('2).So.l(O'Sal~30 (Emp(tl))
MEmp(tl).ld=Emp(tz).I d (Emp(t2)))

Q3 rEmv(t~).Ia,Emp(,:).S,t(rId(aS,l>_30(emp(ta)))
t~Emp(,1)./d=E,~p(t~).td (TrZd,SaZ (emp(t2))))

Each query returns the ld's and Sal's at time t2 of employees that were employed

at both time tl and t2 and that earned more than $30,000. at t l . Yet, they are

different expressions with different processing characteristics. The ELAP for these

expressions is shown in Figure 4.

It follows that a cached result of a node could have been computed in several
ways, and that it subsequently can be computed in several ways. A node tells from

which expression a cached result was most recently computed. There is at most
one cache entry per node.

86

Figure 4. Three equivalent query expressions.

i i i i i i i irl l l l l l l l l l l l

E]

II

E
E

I1.1111111111111111
0 2 t~ ~

D
I
[

E

I IIIIIIIIIIIII

] E

2
[

The view corresponding to a node can be computed from several query language expressions. The

figure represents three equivalent query expressions, first separate and then combined.

Nodes can belong to one of several categories, depending on the computational
status of the labeling query expressions. The result of a query expression can be
cached as data or pointers; the result of the query expressions can have been cached
previously as data or pointers; it is possible that no result of the query expressions
has ever been cached, but results might have been computed or just estimated;

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction Time 87

finally, a node can denote a backlog.

Different types of statistics can be kept in each of the six types of nodes.

Individual statistics should only be maintained if the cost of doing so is less than the

benefits achieved from having them available during query optimization. Practical

experiments are needed to determine when this is the case. Possible statistics

include: cardinality of stored result; result stored as pointer or data; tuple size;

which expression is cached; up-to-date status; how often used; usage; computation

cost; when deleted; why deleted; and available indices.

4. Query Plan Generation and Selection

To efficiently compute a query, the system generates a state transition network

(STN) where the initial state contains the uncomputed query, the backlog relations

(in which terms it is defined) the cache, and the ELAE A state transition occurs

when the cost of a partial computation toward the total computation of the query is
estimated. The new state is identical to the predecessor state except it is assumed

that the cost-estimated computation has been performed. A final state is reached

when the costs of all computations have been estimated. By following all paths from

the initial to a final state and accumulating costs for each path, the total costs of

computing the query in different ways are obtained, and we can choose the query
plan with the lowest cost. The purpose of this section is to formalize and elaborate

on the generation of query plans as just described.

4.1 State Transition Network

An STN for a query, ~ is a labeled DAG, and can be defined as

STN(Q) = (S,79,P,F,Zo, Xs)

where S is a set of states (nodes); each node contains what remains to be calculated

of query Q along with the data structures that can be used to compute the query ~

(i.e., intermediate results, the ELAP, the cache, backlogs). 79 is a set of operators

which describe the query processing and label the edges of the DAG. P is a mapping:

,S --~ 2 p, which maps the state space into the power set space of operations, and

describes the set of operations applicable at a given state. I ~ is the set of transitions,

r C S x P(S) × S; thus, an edge is a triplet, (x l , p , x2), containing a start state,

2. Note that no computat ions are actually carried out. We are merely estimating assumed computations.

Figure 5. An outline of an STN.

a label, and an end state. The last two elements of the equation, Xo E S , and

,¥y C S are the initial and the final states, respectively. The initial state contains

the uncomputed query, and a final state contains the computed query, and possibly

various intermediate results.

A plan for a query, Q, and a state, x, tells which sequence of operators to

apply to the partially computed query Q at state x in order to arrive at the final

state. If x ~ Xo then the plan is partial. If we let Pl 0 x denote the application

of operator Pl at state x then a plan can be expressed as

P l , P2, P 3 , . . . , P,~ where p~ 0 . . . 0 P3 0 P2 0 Pl 0 x E X f

We associate a cost C with each plan in the obvious way. First, we define cost :
(S , P (S) , S) ~ [0; cxs) to be the cost of applying an operator to a state to get

a new state (i.e., the cost of an edge in our DAG). Then the cost of a plan is

C(x, pa,P2,P3,. . . ,Pn) = cost (x ,p l , s2) + cost(s2,P2, S3)--l-
cost(sa,ps, s4) + . . . + cost(s,~,p,~,xf)

where x ! E X / ; Figure 5 shows this plan as a part of a larger network.

The minimal cost of a query, Q, is defined as the minimum over all possible

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'I~me 89

plans for Q and x:

CQ(X) = m i n { C (x , p l , p 2 , P 3 , . . . , p ,) I Pn 0 . . . 0 p3 0 P2 o Pl 0 x E ,~gf }

A plan Pl, P2, P3, • • •, P~ for which C (x, Pl, P2, P3, • • •, P~) = CQ (x) is optimal.

4.2 Plan Selection

Assuming we have costs for all single state transitions, the cheapest query plan

in the network can be found by applying dynamic programming techniques. The

function CQ(X) of the previous subsection can be expressed as:

CO(Z) = rain {cos t (x ,p ,x ') + CO(Z')}
peP(x)

Dynamic programming is applicable because the cost of a single transition in an

STN depends only on local information and not, for example, on the nature of

previous transitions that led to the state of the current transition. This has been

termed the separation assumption (Lafortune and Wong, 1986).

When using dynamic programming, the task of finding a good query plan is

conceptually divided into two phases: generation of the STN of the query to be

computed; and estimation and selection of the optimal path in the STN. In practice the

whole STN need not be computed before phase two is initiated; parts needed during

phase two must, however, be made available when needed and, upon completion,

all of the STN will be needed. For this reason, dynamic programming requires

a relatively large amount of storage space (RND, Sedgewick, 1988). Among the

heuristic techniques the A* algorithm (Rich, 1983) is an alternative, but until an easily

computable and precise heuristic function has been found, dynamic programming

seems more promising.

To reduce the potentially large search space and improve performance, we

introduce pruning rules (Section 6) that specify the function P . They allow us to

eliminate paths that are generally not competitive, and therefore limit the search

space with little chance of eliminating advantageous plans.

4.3 State and Transition Spaces

We now present the specific design of the type of STN to be used in IMfF. We

describe what constitutes a state and which transitions are possible on the states.

4.3.1 State Spaces oflM/T. IM/T generates a separate STN for each query it optimizes,
and each STN has its own state space. A state space is a set of states, each consisting

90

of a set of objects. All the types of objects in a state space are stored on secondary

memory, and can be read, 3 used, and as a result new objects can be created.

The query of an STN is ultimately defined in terms of a set of backlogs. These
are part of all the states for that STN. Together with the backlogs, cached results
constitute the outsets for query computation, and the content of the cache is part

of all states. The cache is not changed during plan enumeration and selection,

but can be updated when the selected plan is processed. Similarly, the ELAP is

part of each state of any STN. The final component of states is intermediate results.
An intermediate result is any query that can be expressed in terms of backlogs,

cached results, and existing intermediate results. Thus, differential files are also

intermediate results. Generally a state will contain a set of intermediate results to

be used in further computations in order to achieve the evaluation of the query of

the STN at hand. With the exception of differential files, such results can later be

stored in the cache if they are part of the plan chosen for actual execution. In this

case, the ELAP is updated to reflect the new state of the cache. Even if the state

of the cache is not changed, the ELAP can be updated with statistics of computed,

or estimated, temporary results.

Two states with mutually equivalent objects are identical states.

4.3.2 Transition Space of IM/T. We define the transition space below. In Section

5 we will discuss implementation of the operators of the transition space. The

conventional relational operators, projection (Tr), selection (or), and equiojoin (M)

are included. Differential operators are included. In differential computation,

previously computed query results are reused in conjunction with differential files

to compute desired queries. To more precisely define the differential operators, we

first consider differential files in more detail.

Let Q and Qt be query expressions that evaluate to relations with identical

schemas. A differential file from Q to Q', ~(Q ~ Q'), satisfies two requirements.

First, it consists of an ordered pair of relations with schemas identical to those of

Q and Q'.
6(Q ~ Q') = (6 - (Q ~ Q') ,6+(Q ~ Q'))

Second, the result of query Q~ may be computed from the result of query Q by

applying the differential file as follows.

Q ' = (Q - ~ - (Q ~ Q')) t..J 6+(Q ~ Q')

3. Objects still exist after they have been read.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'lime 91

For this expression, we will use the notation Q ' = D I F (Q , 6 (Q --r Q')) . Now,
differential selection, projection, and join may be defined as follows.

DIF-i(iF(Q),6(Q ~ Q')) = (oF(Q))'
DIF-Tr(TrA(Q),6(Q ~ Q')) = (TrA(Q))'

DIF-M (Q1 t~ Q2,Qi,6(Qi "-~ Q~),Q2,6(Q2 ~ Q~)) = (Q1 t~ Q2) ~

Here, we define (iF(Q)) '= iF(Q)', (~A(Q))' = 7ra(Q)', and (Q1 N Q2)' =
Q~ t~ Q~. In differential selection, the desired query, (I F (Q)) ' , may be computed

from an already computed query, IF(Q), and the differential file 6(Q --~ Q').
This contrasts recomputation where first Q' is (re-)computed and then the selection,
i F , is re-applied.

Operators that provide the differential files used in the differential formulas

are included in the transition space.

DELTA(tl ~ t2, BR)

DELTA-If(r, 6(Q ~ Q'))
DELTA-r (A, 6(Q ~ Q'))

DELTA- M (Qi , 6(Q1 --+ Qi), Q: , 6(Q~ ~ Q~))

= 6 (R (t ~) ~ R(t2))

= 6 (i F (Q) - ~ (iF(Q)) ')

= 6(rA(Q) ~ (rA(Q)) ')
= 6 ((Q i ~ Q 2) ~ (Q i ~ Q 2) ~)

The first of these operators takes a backlog relation, BR, and two time values,

Q, t2, as arguments. The result is the differential file that, when applied to R (t l)
results in R(t2). This is the base case operator. The remaining operators are the
step case operators. For example, the DELTA-i-operator will, given a selection
criterion, F , and a differential file from Q to Q', return the differential file from

iF(Q) to (iF(Q))'.
Finally, combined operators are included so that combined operators may be

more efficiently processed than sequences of uncombined operators. To illustrate
this, assume that we have available the result of the query 7rA(O'F(R(tl))) and
that we want to compute the query 7rA(i r (R(t2))) . With the operators above,
we may proceed as follows.

1. Evaluate DELTA(t1 ---+ t2, BR) to get 6 (R(t l) ~ R(t2)).

2. Evaluate DELTA-i(F, 6 (R(t l) ~ R(t2))) to get 6(iF(R(Q))
IF(R(t~))) .

3. Evaluate DIF-r(rA(IF(R(tl))) ,6(IF(R(tl)) ~ IF(R(t2))) to obtain
the final result.

92

This implies that the results of both Step 1 and Step 2 are written to disk.

A combined operator such as DIF-Tro(TrA(O'F(Q)),6(Q ~ Q')) eliminates the

storage of the result of Step 2 by processing 7rA and O'F in a single pass. In general,

we allow for combining selection and projection with another operator (cry 7r~ ~, or
combined) into a combined operator.

4.3.3 Identily Transformations. A user query can be processed in many ways to

produce the desired result. During query optimization, equivalence transformation

rules for algebra expressions are utilized to enumerate the possible execution orders
for a query. We add the following three rules to the ones presented in the literature

(Ullman, 1982; Jarke and Koch, 1984; Smith and Chang, 1975).

1. Substituting selection and differential selection.

O')) _= ffF(DIF(Q, O')))
2. Substituting projection and differential projection.

DIF-Tr(Tra(O),6(O ~ Q')) ~ 7rA(DIF(Q,6(Q ~ O')))

3. Substituting join and differential join.

D I F - N (Qi ~ Q:,Q1,6(Q1 ~ QI),Q2,6(Q2 ~ Qi)) -=
DIF(Q1,6(Qi ~ Qi)) t~ DIF(Q2,6(Q2 ~ Q[))

The proofs of these equivalences are similar and straightforward. For example, the

lefthand side of the third rule is equivalent to (Q1 M Q2)', by definition. This in
turn is equivalent to Q~ M Q~. By definition of DELTA, the righthand side of the

third rule is equivalent to Q~ IXl Q~. Thus, the rule follows.

4.4 Using the ELAP for Cache Access

We have included a cache for views in IM/F, and we have defined an ELAP as a
"structuring index" on the cache. The role of the ELAP is to allow for efficient
identification of cached results that can be used to compute a query at hand.

Let D B be a database instance (i.e., an instance of the backlog store) and QC

the defining expression of a cached result, then QC(DB) is the cached result of

QC on DB.
The result QC(DB) is only useful for the computation of a (sub-)query, Q, ,

if the data of Qs(DB) are all contained in QC(DB), and can be extracted from

Q~(DB) using an expression, E , of the query language (Yang and Larson, 1985).
If this is the case for any database instance, we say that Q~ covers Qs, Q, _E QC.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'lame 93

Coverage is an intensional property. Formally,

Qs E QC --- E(Oc))

where 0 denotes Q where temporal information (time slice) is ignored. Thus,

a~>as(R(tl)) • a~_>lo(R(t2)), even if ta ~ t2, because a z > l s (R) ~ O'x~15

(a~>lo(R)). The covering queries we are most intereested in are the ones that are

most cheaply modified to the requested query, i.e., the minimal covering queries.

Certainly, if Q1 E Q2 E Q3 then, considering only coverage, we would prefer to

use Q2 instead of Q3 to compute Q1-
Orthogonal to the issue of coverage there is the issue of temporal closeness which

we have disregarded so far. There is both an intensional and an extensional aspect.

We address the intensional aspect first. When we have retrieved a result from the

cache it might not reflect the state we are interested in. If we let Qs = ax>_lO(R(Q))
and let Q~ = a~_>lo(R(ta)) then the two queries are identical under coverage,

but if tl ~ ta, the operator D I F (probably) still needs to be applied to Q~ and an
appropriate differential file to make it correctly reflect the desired state. Assume

the existence of Q~ = o'~>_lO(R(tb)). If the temporal expressions ta and tb are

both fixed then we would choose Q~ if ta is closer to t l than is tb otherwise, we

would choose Q~. The concept of closeness is defined in terms of the cost of the

differential computation that has to be carried out in order to reach the desired

state, and it depends on the size of the portions of the associated backlog that has

to be processed. The distance between time stamps is an intensional property which

can be used for comparing closeness. However, if t~ < tl _< tb or tb _< tl ~_ t~,
the distance between time stamps is not a reliable means of comparison.

The extensional aspect of closeness is important because cache entries generally

get outdated (because of the variable NOW). In the context of time dependent

views, it is not sufficient only to look at the intensions of queries as we did above

where we compared t l , ta , and tb. For example, if Qs = cr~>_lO(R(tl)), and

the cache contains Q~ = a~>_lO(R(tl)) and Q~ = ax_>10(R(t2)), where ta ~ t2

then Q~ still can be more useful than Q~. This is so because t l could be time

dependent and Q~ could be very outdated. Outdatedness of a cached query result

is defined as the closeness between the defining query expression at the time it was

computed and the current defining query expression.

For each cached result the ELAP stores the value of the variable NOW at

the time when the result was computed so that the states of cached results can

be inferred without actually accessing them. Also the ELAP holds statistics that

can help estimate the outdatedness of results (i.e., estimate the number of change

requests between two points in time and the cost of processing them appropriately).

94

Figure 6. Implementation of operators of STNs.

data

pointer
M

DELTA x x data
DECR

DELTA-o"

DELTA-n"

DELTA-M{}
data

DIF x
pointer

DIF-o*

DIF- r

DIF-M

5. Implementation of Operators of STNs

Here we discuss the operators in more detail. Initially, we outline the different

cases to consider. Based on these, we discuss alternatives for implementation of

the operators.

5.1 Overview of Operators

The operators considered are outlined in Figure 6. The figure has 22 entries, each

corresponding to a separate case. In IM/T results can be stored as either actual

data or pointers that point to the data. The entries "data" and "pointer" indicate

the type of arguments. All operators must work on both kinds of arguments, with

one exception: The DELTA operator in both the incremental and the decremental

case is applied to a backlog which is a data argument. In the Figure 6, the type of

the result returned by an operator is assumed to be the same as the type of the

arguments. However, if the arguments are data, both data and pointer results are

possible, the only restriction being that differential files are assumed to be data.

This gives an additional seven cases (i.e., three for o', 7r, and M with data arguments;

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction Time 95

four for DIF, DIF-tr, DIF-Tr, and DIF-N with data arguments).

As the first six entries, we find the ordinary operators o', 7r, and M .4 These

operators have their standard semantics and can be implemented as suggested in

the literature (e.g., Selinger et al., 1979; Shapiro, 1986.)

The remaining sixteen cases concern the new operators. The operator DELTA

incrementally or decrementally processes sequences of change requests stored in

backlogs to get differential files. The three remaining cases of the DELTA operator

are the computations of differential files of relations from which they are derived
by either projection, selection, or join.

The four DIF operators differentially update a stored result to correctly reflect

a desired state. The operators differ on how the outset is related to the differential

file(s) to be used. It is possible to use the differential file of a relation from which

the outset is derived by a projection (including the identity projection) or a selection.

The differential files of relations from which the outset is derived by a join can be
used also.

Finally, selections and projections can be done on the fly, meaning that a selection
and a projection can be performed interleaved with another operator (selection,

projection, or join) in a single pass without storage of intermediate results.

In the following, we will generally consider only the cases where the operators
take data arguments and produce data results.

5.2 Selection, Projection, and Join

The traditional relational algebra operators, selection, projection, and join, can be

applied to any relation, including differential files, (~ - (Q ~ Q') , ~+(Q ~ Q')) .

The expression F of the selection operator, O'F(Q), can contain a conjunction

of selection criteria of the form Att_Name op Att_Name or Att_Name op

V a l u e where op is one of = , < , > , > , _<, ~ , ~ , ~ , ~ , or ~ , and Att_Name is
an attribute identifier of the relation valued expression Q. The most advantageous
implementation of selection depends on numerous factors and has been addressed

already in many settings. Consequently we will not address it here.

The projection expression, A, of 7rA(Q) is any subset of attributes of Q. When

we do differential computations, we would like to be able to distribute projections
over difference. In order to make this legal, we must at all times make sure that

unique identification of tuples is possible. We choose to do this by always retaining
the primary key of relations, remembering whether it was removed by projection

4. In the following, D<~ denotes equi-join.

96

or not.

The equi-join operator, Q1 t~F Q2, can be used on any two query expressions.

The condition F is a list of elements of the form Att_Name_l = A**_Narae_2

where Att_Name_1 is an attribute of relation Q1 (Q2) and Att_Name_2 is an

attribute of the expression Q2 (Q1). Several ways have been suggested for doing

binary joins, e.g., Hash-Join, Nested-Loop-Join, Sort-Merge-Join. For a thorough

treatment, see Shapiro (1986).

Finally, selection and projection can be combined with any operator (possibly
combined) to form a combined operator.

5.3 Computing Differential Flies

Here we discuss each of the DELTA operators. Recall that a differential file from

Q to Q', both query expressions with identical schemas, is denoted 6(Q ~ Q') so

that t~(Q ~ Q') = (6 - (Q --~ ~ Q')) , and Q' = (Q - 6 - (Q --~
Q'))u6+(Q ~ Q ') .

5.3.1 The Base Cases. The operator DELTA(t, --r t= , B R) generates a differential

file, ~(R(ta) ~ R(t=)), directly from a backlog, BR. This operator differs from
the three other DELTA operators in that a list of change requests in a backlog is

the argument.

If ta < tz then the requested state of R is a future state relative to its current

state, and we are in the incremental case. If ta > tx then we are in the decremental

case .

The construction procedure for 6+(R(t,) --~ R(t=)) and 6-(R(t ,)
R(t=)) starts with the initialization of these to empty relations. The schema

of 6+(R(Q) --~ R(t=)) is the same as that of R, and the schema of 6-(R(ta)
R(tx)) only contains the primary key attribute of that of R. 5 Then we process

change requests from the outset in the direction of t= until the next change request

to be processed has a time stamp that is not in the half-open interval from t , to,

and including, t=.

Each request is projected to remove superfluous attribute values. Assuming that

we are in the incremental case, insertion requests go into 6 + (R(ta) ~ R(t=)) which

optionally can be kept sorted on key values, or/and an (hash) index on key values can

be maintained. A deletion request refers to either a tuple in the outset or to a tuple in

5. Only the key is needed in an actual implementation, but in algebra expressions we assume for simplicity
that the schema is the same as that of R .

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'Iime 97

+ (R(ta) ~ R(t~)).6 First 6 + (R(t~) ~ R(t~)) is searched for a tuple matching
the deletion request, and if a match is found, then the request is disregarded, and

the matching tuple of the current 6+(R(t~) ~ R(tx)) is deleted, because the

net effect is that no change takes place; otherwise, the deletion request goes into

6-(R(t~) ~ R(t~)). Note that no action was taken when we encountered an
insertion request of a previously encountered deletion request. Such corresponding

deletion and insertion requests must be carried out because they update implicit

time stamp attributes of base relations; such attributes are hidden, but can be

seen by explicit projections. Here, we ignore these implicit attributes. Tuples of

6+(R(t~) --~ R(t~)) and 6-(R(t~) ~ R(t~)) are written to secondary memory
one page at a time. Note that there are no references from 6-(R(t~) ~ R(t~))
to 6+(R(t,) ~ R(t~)), making the sequence of operation in the formula above
valid in the sense that the outcome of DIF-(R(t.) ,6(R(t~) -~ R(t~))) is, in
fact, R(t~). Also note that there can be references from (~+(R(t,) --~ R(tz)) to

6 - (R (t a) ~ R(t~)), making the sequence of operation in the formula the only
valid one.

When there are no more change requests, both differentials are stored sorted
on key values, and the optional index on 6+(R(t~) ~ R(t~)) is deleted.

In the decremental case, the only change is that deletion requests assume the
role of insertion requests, and vice versa.

5.3.2 The Step Cases. Now, we consider the cases where a differential file of

a result is constructed from the differential file of another result. In DELTA-

a(F, 6(Q --~ Q')), the operator constructs the differential file from oF(Q) to
(O'F(Q)f using the differential file from Q to Q', 6(Q ~ Q'), where Q denotes
any query expression. This is just a selection:

DELTA-cr(F, 6(Q - - ~ Q')) = aF(6(Q ~ Q')) =
(OF(6-(Q ~ Q')),O~F(6+(Q ~ Q')))

Claiming that this correctly computes 6(CrF(Q) ~ (aF(Q))') is equivalent to
claiming that the following expression correctly computes (aF(Q)f.

(dE(Q)-aF(6-(Q ~ Q')))UaF(6+(Q ~ Q'))

6. Note that eagerly maintained current states of user-defined rollback relations allow for checking that
deletions and insertions actually make sense, i.e., that deletions actually delete something existing and, con-
versely, that insertions actually insert something not already existing. These are system enforced integrity
constraints.

98

Figure 7. The DELTA-o- and DELTA-~- operators.

Q I ÷
!

0"

t
I

J I
!
I

Q
- +

!

7g

- +

This expression is equivalent to the following.

aF((Q -- ~- (O ~ O')) t_J ~+(O ~ Q'))

Correctness follows as this is equivalent to O'F(Q') which, in turn, is equivalent to

(oF(Q))'.
Next, in DELTA-Tr(A, ~(Q ---~ Q')), we make a projection:

DELTA-Tr(A, ~(Q ~ Q')) = 7rA(~(Q ~ Q')) = (TrA(~-(Q --> Q')),
Q'))

Remember that key information is retained to overcome the problem of indistin-

guishable tuples when distributing a projection over a difference. The proof of
correctness is similar to that of the DELTA-o operator. Figure 7 is a schematical

representation of the DELTA-o" and DELTA-Tr operators.
The last case is the join: DELTA-M (Q I , ~ (Q I ~ QI),Q2,~(Q: ~ Q~)).

To construct the differential file of QI M Q2, we need both Q1, Q2, ~(Q1 -+ Qi),
and ~(Q2 --~ Q~). In order to explain the derivation of the formula for computing
~((Q1 M Q2) ~ (Q1 M Q2)'), consider the following three equalities:

Q'IMQ~ = (Q1MQ~) ' (1)

(Q1 M Q2)' : [(Q~ M Q2) - ~- ((Qi M Q2) -~ (Q~ M Q2)')] (2)

U(~+((Q1 M Q2) ~ (Q1 M Q2)')

Qi M Q~ = [((Q1 - ~-(Q1 ~ Q~)) u 8+(Q1 ~ Qi)] M (3)

[((Q 2 - ~-(Q2 -~ Q~)) t-J ~+(Q2 ~ Qi)]

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction Time 99

We derive (i((Q1 ~ Q2) ~ (Q1 N Q2)') by transforming the right hand side of
equality (3) into an equivalent expression of the form [(Q1 ~ Q2) - ~] u ~ .
Then, by equalities (1) and (2), ((i-((Q1 ~ Q2) ~ (Q~ ~ Q2)'), 6+((Q1
Q2) -~ (Q1 pd Q2)')) = ([~], [~]).

To do the transformation, we need two transformation rules:

(Q1 u Q2) ~ Q8 -= (Q1 pd Qa) u (Q2 ~ Qs)

(Q1 - Q2) ~ Q8 --- (Q1 N Q3) - (Q2 N Q8)

To derive the first, observe that (Q1 u Q2) x Q3 _~ (Q1 x Q3) u (Q2 x Q8).
Because, in addition, Q1 N Q2 --- OfF(Q1 X Q2) where F is the equi-join condition,

then

(QiuQ2)~Q~ --- o'¢[(Qiu Q2)xQ~] -= ~-F[(QI xQ3) u (Q2xQ8)]
_-- o~(q~ xq~)uoF(q2xq~) --- (Qi ~Q~)u(Q2NQ~)

The second is proven as follows. First, assume that x E (Q~ - Q2) N Q3; then,
we prove that x E (Qa ~ Q3) - (Q2 ~ Q~). The element x is of the form
(x1,~2) where Xl ~ (Q 1 - Q2) and ~2 e Q3. Further, Xl e Q1 andxl ¢ Q2.
Hence, (z l ,x2) ~ Q1 ~ Q3, and (Xl,X2) ¢ Q2 ~ Qa.

Second, we assume the converse and prove that x E (Q1 - Q 2) pd Q3. Here,
x C Q1 pd Q3, and x ¢ Q2 N Q3. Consequently, x I ~ Q1, and X 2 ~ Q3, and

also Xl ¢ Q2. But then Xl E Q1 - Q2.

Using the abbreviations (ix + / - and (i2 + / - for (i + / - (Q ~ ~ Qi) and 6 +/- (Q 2
Q~), respectively, we now have

[(Q1 - (il-) u (il +] pd [(Q2 - (i2) u (i2 +]

-= {(Q1 - 6~-) N [(Q2 - (i~-) u (i2+]} u {61 + N [(Q2 - (i~) u (i2+]}

---- {[(Qi -(I~) N (Q2 - 6 ~)] u [(Q1-6~-) N 62+]} u
{[(i~ ~ (Q2 - 6~-)] u ((i~- N (itt)}

~- { { [q l s (q 2 - (i i -)] - [(ii- ~ (q 2 - (i i -)] } u [(q l N 6~-) -
((iF N (i~-)]} u {[((itt N Q2) - (6~ ~ (i i)] u ((it N (itt)}

_-- { { [(q l ~ q 2) - (q l s 6 i -)] - [(6i- N q 2) - (6~- ~ (ii-)]} u
[(Q, N 6~-) - (6~- N 62+)]} u {[(6~ + N Q2) - (6 t N (i~-)] o (61 + N (i t) }

_-- {(Q~ N Q2) - (Q~ N (i~-) - [(6 i- N Q2) - ((i~- N (i~-)]} u

[(Q1 ~ 62 +) - (6~ ixl 62+)] u [(61 + pd Q2) - (61 + N 6~)] U (6~ + N 6~-)

100

The two last right hand sides contain different expressions for the differential file

of a join. For example, using the last one, we have

DELTA-N (Qi,~(Q1 ~ Q~), Q~,~(Q2 ~ Q~))
=- (~-((Q~ ~ Q2) ~ (Q1 t~ Q2)'),~+((Q1 t~ Q2) ~ (Q1 M Q2)'))

=- ([01 ~ ~ u (~- t~ Q ,) - (~- ~ ~-1],

y z

The components of ~- ((Q1 t~ Q2) ~ (Q1 M Q2)') are: (a) the deletions to
Q1 ~ Q2 due to deletions from Q2; and (b) the deletions to Q1 N Q2 due
to deletions from Q1, but with overlapping deletions (i.e., 6 - (Q1 ~ Q~) N
6- (Q2 ~ Q~)) removed.

The components of 6+((Q1 N Q2) ~ (Qa ~ Q2)') are: (x) insertions to the
outset due to tuples from Q1 matching insertions to Q:, but not including tuples
due to matches between insertions to Q2 and deletions to Q1; (y) a component
symmetric, in Q1 and Q2, to (x); (z) insertions to the outset due to matches between
insertions in Q1 and insertions in Q2. Figure 8 shows all the constituent joins of
~-((Q1 ~ Q2) ~ (Q1 ~ Q2) ')and 6+((Q1 ~ Q2) ~ (Q1 N Q2)') by means

of dotted lines connecting two relations.
There are no deletions of insertions in the differential file of a join, DELTA-

(Q i , ~ (Q i --~ QI),Q2,~(Q2 ~ Q~)). To see why, observe that neither of

the two components (a and b) for ~- ((Q1)4 Q2) ---r (Q1 ~ Q2) I) overlap any
of the three components of ~- ((Q1 ~ Q2) --+ (Qi N Q2)~) (x, y, and z). (a, x)
and (a, z): disjoint because ~- (Q2 ~ Q~) and (~+(Q2 --+ Q2) are disjoint. (b,
y) and (b, z): disjoint because ~-(Q1 ~ Q~) and ~+(Q1 --r Qi) are disjoint.
(a, y): disjoint because ~- (Q2 ~ Q2) and Q2 -~-(Q2 ~ Q~) are disjoint. @,
x): disjoint because (~-(Q1 ~ Q~) and Q1 - ~-(Q1 --r Q~) are disjoint.

As shown, the differential of a join is a complex query and it can be computed
in many ways (Blakely et al., 1986). Techniques from multiple query optimization
can he exploited (Jarke, 1984; Kim, 1984; Chakravarthy and Minker, 1986; SeUis,
1986, 1988b). For example, keeping all six argument relations sorted, joins can be

done interleaved and pagewise (pipe-line join).
It is straightforward to implement operators such as DELTA-Tro(A, F~ ~(Q --+

Q~)) where projection and selection is combined. This is done using combined
operators of the previous subsection. "Combined" generation of differential files
directly from change requests and selections/projections is possible also.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'Iime 101

Figure 8. Computation of differentials of joins.

. °

. • Deletions

-! I + - +

" Q1 Q2

i
- +

Q1 ~Q~
I .

5.4 Incrementing/Decrementlng Relations

Now we discuss the implementation of the four operators for differential computat ion

in turn.

5.4.1 Time Slicing Base Relations--The Base Cases. For the DIF operator we wil l

investigate two cases. First we consider the special case of computing DIF(R(t=),
tS(R(t=) ~ R(ty))) where we use the backlog B R directly as an alternative

to first computing tS(R(t=) --~ R(ty)). Second, we consider the general case,

DIF(Q, 6(Q ~ O')).
The first case is illustrated in Figure 9. Note that both incremental and

decremental computat ion are always possible (with t= = tinit and t= =NOW,
respectively).

In this case, change requests are processed one at a t ime towards the requested

state from the outset until the time stamp of the next change request to be considered

exceeds the time of the desired state. The result of an insertion request is that the

tuple of the request is entered into the current outset, and the result of a deletion

request is that the tuple identified by the request is removed from the current state.

102

Figure 9. Time-slicing a base relation.

t~ni, Time
1

BR

l l~ [ttt

n(*~) n(t~)

NOW
1

In the general case, DIF(Q, (5- (Q ---~ Q ') , ~ + (Q ~ Q '))) , we initially sort

5 - (0 ~ ~ ') and 5 + (0 ~ Q') if they were not sorted already. Both G-files are

then simultaneous "merged" with the outset: first a page of deletions is read, then

the first relevant page of the outset and the first relevant page of the insertions

are read. Deletions are performed on the outset first, then relevant insertions are

performed. Whenever a page is totally read, the next page of the relation is read.

In the case of the outset, processed pages are written, and only pages that are

relevant for the deletions are read (irrelevant pages can be considered processed

and written already). When there are neither deletions nor insertions left, the

processing terminates. Following this procedure, pages of the three relations are

only read once, and irrelevant pages of the outset need not be read at all.

When computing DIF(R(t~),6(R(t~) ~ R(tv))) we use the characteristics

of the arguments (i.e., the size of the outset used) and the differential file, as criteria

for chosing between the first and a variation of the second strategy. The framework

includes a component that, given the name of a backlog and a start and an end time,

returns estimates: the number of insertions, the total number of change requests,

and the number of deletions of insertions. The input to the component is produced

during non-eager processing of change requests. If the first strategy is used, counts

of insertions and deletions are used; if the second strategy is used, again counts of

insertions and deletions are available, but so is also the final number of insertions.

How these inputs are most efficiently used to generate the output is a topic of

current research.

The first strategy is advantageous if the total number of change requests to be

processed is low. The choice of keeping ~ + (Q ~ Q ') sorted or not depends on

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction "Iime 103

Figure 10. Differential selection, projection, and join.

DIF DIF-o'/DIF-Tr

] [

DIF-~

U

_1

the number of insertions into 6+(Q ~ Q') compared to the number of deletions

to be processed against 6+(Q ~ Q'). If sorting is adopted, insertion has an
overhead, and if not, then search for deletions must be done by sequential scan.

5.4.2 The Step Cases. The differential selection and projection operators, DIF-o"

(O'F(Q),6(Q --~ Q')) and DIF-Tr(TrA,6(Q ~ Q')) , respectively, may be com-
puted as follows.

DIF-a(aF(Q),8(Q ~ Q'))

= (aF(Q) - a F (8 - (Q ~ Q'))) U a F (8 + (Q ~ Q'))

DIF-r(~rA(Q),8(Q ~ Q'))

= (r A (Q) - r A (8 - (Q - + Q '))) u r A (8 + (Q - + Q '))

The correctness of these observations follows from the observations aF(6(Q
Q')) = 6(trF(Q) ~ trF(Q)') and 7rA(6(Q ~ Q')) : 6(TrA(Q) --~ 7rA(Q)').

Differential selection, projection, and join are illustrated in Figure 10. For each

of the operators, the arguments are shown. The broken box of DIF-o'/DIF-Tr is not
an argument--it is present only to indicate the relationship between the arguments.

'
The final case is DIF-~ (Q1 t~ Q2,Qi,6(Q1 ~ Q1),Q2, (Q2 --~ Q~)),

the differential join. From Subsection 5.3, we have (again, we abbreviate 6 + / - (Q1

Q~) and 6+ / - (Q2 ---~ Q~) by 61 + / - and 62 + / - , respectively).

DIF(Q1 t~ Q2, Q1, ~Q~, Q2, ~Q~)

[(Q1 M ~-) - (~? ~ ~-)] u [(~1" N Q~) - (~- ~ ~ i)] u (~- ~ ~-)

104

Let us consider processing of the deletions to the outset. The two components can
be explained as follows.

1. Q1 ~ 6-(Q2 ~ Q~) are all the deletions from the outset due tO deletions

to Q2;

2. (6-(Q~ ~ Qi) t~ Q2) - (6-(Q1 ~ Qi) M 6-(Q2 ~ Q[)) are all
the deletions to the outset due to deletions to Q1 with duplicate deletions

due to overlaps between 6 - (Q1 --~ Q~) and 6 - (Q2 ~ Q~) and already
included in (1) removed.

The overlaps can be ignored without affecting the correctness of the final result,
and the deletions represented by the two remaining terms can be performed using

only Q1 N Q2, 6 - (Q1 ~ Q~), and 6 - (Q2 ~ Q~). A tuple of the outset
is of the form (zoo, XQ2) where Xol is a tuple compatible with Q1 and xo2 is
a tuple compatible with Q2. Tuples of Q1 N Q2 where XQ2 match a tuple in
6 - (Q2 ~ Q~) are simply deleted; similarly tuples where xol match a tuple in

6 - (Q1 ~ Q~) are deleted.
Now, let us turn to the insertions. It is instructive to reformulate the expression

for (Q1 ~ Q2)' as follows (with 6 - ((Q1 N Q2) ----r (Q1 N Q2)') abbreviated by

6~-2).

(Q1 M Q2)'
(Q~ - 6~) M (Q2 - 6~-)u[(Q~ - 6i-) M 6 ~] u { 6 ~ M [(Q2 - 6~-)u62+])

=-- Q1MQ2 - 6 ~ u [(Q 1 - 61-)u61 + - 61t] N 62+]U (61 + t~ [(Q2 - 6~-) U62+]}
=- Q1 t~ Q2 - 6~-2u

{[(Q~ - 6 ;) u 61 +] N 62+ } - [61 + N 6~-] u {6~- N [(Q2 - 6 ;) u 6~-]}
--= Q1 M Q2 - 61-2 u {[(Q, - 6 ;) u 61 +] t~ 6~- } u !6~ + t~ (Q2 - 6 ;) !

7

The insertion, 6+((Q1 M Q2) ~ (Q1 ~ Q2)'), is now defined by two joins. The
first (1) has 6+(Q2 ~ Qi) as one argument, and the second (2) has 6+(Q1 ~ Qi)
as one argument. This explains the superiority of differential computation when
differentials are small and relations large because in such cases an expensive join
of two large relations, Q~ and Q~, is avoided and two joins of a small relation with
a large relation is done instead. 7

7. Differential computation and recomputation both involve additional processing apart from joins, but,
because join is the most expensive operation, we ignore this.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction "rime 105

Algorithms, costs, and efficient implementation of incremental join for pointer

views in the ADMS system are discussed in detail in Stamenas (1989) and Rous-

sopoulous (1991).

6. Pruning the Search Space

We already have presented a complete framework for query optimization. Here we

introduce the concept of pruning a STN. Pruning is a means of further optimization

of plan selection. The purpose is to reduce the sizes of the STNs generated

without leaving out promising query plans. Reduced STNs mean reduced costs

of estimating costs of single transitions and a smaller argument of the dynamic

programming algorithm which therefore executes more efficiently. The purpose of

introducing the mapping P in the definition of an STN was exactly to be able to

include pruning into the framework. The rules of this section restrict the number

of possible transitions at a state.

The rules below illustrate the kind of rules that can be integrated into IM/T

Rules from standard query optimization (Ullman, 1982) can be applied, too.

Rule 1. Only apply a differential to its outset if exactly the selections/projections performed

on the outset have been performed on the differentia~ too. Obeying this rule will

ensure that selections/projections are done on only the outset or the differential,

and never on the updated outset. This is reasonable because at least the

differential can be assumed to be much smaller than the updated outset.

Rule 2. Apply operators as early as possible. If the arguments in state Xb of an

operation p (transforming Xb into xc) are present in an predecessor state, xa

of Xb then p should be applied to xa instead of to Xb.

Rule 3. Only compute a differential of an outset, if the outset already exists. Both se-

quences are possible, but an STN should only include one of them, and a

differential is not useful if the outset is not available.

Rule 4. Application o f maximal combined operators is preferable to the sequential appli-

cation of the constituent operators of the combined operators.

Rule 5. Only use the smallest cached result out of covering results equally outdated with

respect to the desired state. This and the following rule attempt to consider only

the most promising cached results during generation af an STN.

Rule 6. Only use the least outdated cached result out o f covering results o f equal size.

106

7. Conclusion and Future Research

Extending the relational model to automatically record transaction time is not a

new idea, but implementing the extended model by storing the complete history

of change in relation backlogs is. Such an implementation will support not only
queries on previous database states, but queries on the nature of change itself.

We expect queries on the nature of change to play a key role in future information

systems. With ever-increasing amounts of constantly changing information, it will
be impossible for an individual user to digest all the information that pertains to a

given situation and stay abreast of all its changes. We will see applications where

the user is not interested in the current state of the database and the changes made

to it, as long as they are both normal. On the other hand, if the current state of

the database or the change made to it is abnormal, then the user is interested and

must be notified. The price paid for the added functionality is a substantial increase

of space consumption and a decrease of query processing efficiency.

The topic of this article has been the efficient support of transaction time in

the relational model. The concrete results include:

• a transparent extension of the relational model (DMfF) where the transparency
is supported by the underlying implementation (IM/T)

a general query optimization and processing architecture which utilizes par-
titioned backlog storage, selective pointer and data-view caching, eager/lazy
view update, cache indexing, and state transition networks with dynamic

programming.

• integration of recomputation and differential computation of queries

• a symmetrical, general notion of differential computation integrating incre-

mental and decremental computation

• formulas for differential computation

• a generalization of the notion of query subsumption to utilize differential
computation

• augmentation of standard query optimization with rules for optimization of

differential query processing

Several aspects of the individual components of IM/T are the subjects of future
research. They include:

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction "Hme 107

• the relative merits of data and pointer caching

• the extension of existing algorithms for the logical access path to the ELAP

• the adaption of existing cache management strategies

• the relative merits of eager and lazy cache update

• the efficient application of state transition networks for query plan enumer-
ation of transaction time queries

Substantial research efforts are required in order to clarify each of these aspects
(Snodgrass, 1990). Other research topics include the caching of differential files,
statistics for query optimization, optimal algorithms for operators of STNs, and
support for general versioning.

References

Ahn, I. Performance Modeling and access methods for temporal database manage-
ment systems. TR86-018, University of North Carolina, 1986.

Bassiouni, M.A. Data compression in scientific and statistical databases. 1EEE TSE,
11(10):1047-1058, 1985.

Blakeley, J.A., Coburn, N., and Larson, P. Updating derived relations: Detecting
irrelevant and autonomously computable updates. TR, CS--86-17, Computer
Science Department, University of Waterloo, Canada, 1986.

Blakeley, J.A, Coburn, N., and Larson, E Updating derived relations: Detecting
irrelevant and autonomously computable updates. ACM TODS, 14(3):369-400,
1989.

Bolour, A , Anderson, T.L., Dekeyser, LJ., and Wong, H.K.T. The role of time in
information processing: A survey. ACM SIGMOD Record, 12(3):27-50, 1982.

Bubenko, jr, J.A. The temporal dimension in information modeling. In: Nijssen,
G.M., ed. Architecture and Models in Data Base Management Systems, North Hol-
land: Amsterdam, 1977.

Chakravarthy, U.S. and Minker, J. Multiple query processing in deductive databases
using query graphs. Twelfth International Conference on VLDB, Kyoto, Japan,
1986.

Christodoulakis, S. Analysis of retrieval performance for records and objects using
optical disk technology. ACM TODS, 12(2):137-169, 1987.

108

Codd, E.E A relational model of data for large shared data banks. CACM 13(6):377-
387, 1970.

Codd, E.E Extending the database relational model to capture more meaning. ACM
TODS, 4(4):397-434, 1979.

Dadam, P., Lum, V., and Werner, H.D. Integration of time versions into a relational
database system. Tenth International Conference on VLDB, Singapore, 1984.

Gunadhi, H. and Segev, A. A framework for query optimization in temporal data-
bases. Proceedings of the Fifth International Conference on Statistical and Scienttfic
Database Managemeng 1989.

Gunadhi, H., Segev, A. and Shantikumar, G.J. Selectivity estimation in tempo-
ral databases. TR, LBL-27435, Information and Computer Science Division,
Lawrence Berkeley Laboratory, 1989.

Hanson, E.N. A performance analysis of view materialization strategies. International
Conference on the Management of Data, San Francisco, 1987.

Hong, W. and Wong, E. Multiple query optimization through state transition and
decomposition. Memorandum, UCB/ERL M89/25, Electrical Research Lab,
College of Engineering, University of California, Berkeley, 1989.

Jarke, M. and Koch, J. Query optimization in database systems. Computer Surveys,
16(2):111-152, 1984.

Jarke, M. Common subexpression isolation in multiple query optimization. In: Kim,
W., Reiner, D.S., and Batory, D.S., eds., Query Processing in Database Systems,
Springer-Verlag: Boston, 1984, pp. 191-205.

Jensen, C.S. and Mark, L A framework for vacuuming temporal databases. CS-TR-
2516 and UMIACS-TR-90-105, Department of Computer Science, University of
Maryland: College Park, 1990.

Jensen, C.S. and Mark, L. Queries on change in an extended relational model.
IEEE Transactions on Knowledge and Data Engineering, 4(2):192-200, 1992.

Jensen, C.S., Mark, Leo and Roussopoulos, N. Incremental implementation model
for relational databases with transaction time. IEEE Transactions on Knowledge
and Data Engineering 3(4):461-473, 1991.

Jhingran, A. A performance study of query optimization algorithms on a database
system supporting procedures. Fourteenth International Conference on VLDB, Los
Angeles, 1988.

Jhingran, A. and Stonebraker, M. Alternatives in complex object representation: A
performance perspective. Memorandum, UCB/ERL M89/18 Electrical Research
Lab, College of Engineering, University of California, Berkeley, 1989.

Kinsley, K.C. and Driscoll, J.R. Dynamic derived relations within the RAQUEL II
DBMS. ACMAnnual Conference, Detroit, MI, 1979.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'I~me 109

Kinsley, K.C. and Driscoll, J.R. Ageneralized method for maintaining views. National
Computer Conference, 1984.

Kim, W. Global optimization of relational queries: A first step. In: Kim, W., Reiner,
D.S., and Batory, D.S., eds., Query Processing in Database Systems, Springer-
Verlag: Berlin, 1984, pp. 206--216.

Kolovson, C. and Stonebraker, M. Indexing techniques for historical databases.
Proceedings of the Fifth International Conference on Data Engineering~ 1989.

Lafortune, S. and Wong, E. A state transition model for distributed query processing.
ACMTODS, 11(3):294-322, 1986.

Lure, V., Dadam, R., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H.,
and Woodfill, J. Designing DBMS support for the temporal dimension. ACM
SIGMOD International Conference on the Management of Data, Boston, MA, 1984.

Mahanti, A. and Bagchi, A. AND/OR graph heuristic search methods. JACM,
32(1):28-51, 1985.

McKenzie, L.E. An algebraic language for query and update of temporal databases.
TR88-050, Department of Computer Science, University of North Carolina,
1988.

McKenzie, L.E. and Snodgrass, R. An evaluation of algebras incorporating the time
dimension in databases. Computer Surveys, 23(4):501-543, 1991.

Rich, FE. Artificial Intelligence. McGraw-Hill: New York, 1983.
Rotem, D. and Segev, A. Physical organization of temporal data. Proceedings of the

Third International Conference on Data Engineering 1987.
Roussopouios, N. View indexing in relational databases. ACM TODS, 7(2):258--290,

1982a.
Roussopoulos, N. The logical access path schema of a database. IEEE TSE, 8(6):563--

573, 1982b.
Roussopoulos, N. Overview of ADMS: A high performance database management

system. Proceedings of the Fall Joint Computer Conference, 1987.
Roussopoulos, N. An incremental access method for ViewCache: Concept, algo-

rithms, and cost analysis. ACM TODS, 16(3):535-563, 1991.
Roussopoulos, N. and Kang, H. Principles and techniques in the design of ADMS±.

Computer, 19(12):19--25, 1986.
Rowe, L.A. and Stonebraker, M.R., eds. The Postgres Papers. Memorandum,

UCB/ERL M86/85, Electrical Research Lab, College of Engineering, University
of California at Berkeley, 1987.

Salzberg, B.J. and Lomet, D. Access methods for multiversion data. ACMSIGMOD
International Conference on the Management of Data, Portland, OR, 1989.

Sedgewick, R. Algorithms, 2nd edition. Addison-Wesley: Reading, MA, 1988.

110

Segev, A. and Fang, W. Optimal update policies for distributed materialized views.
TR-LBL--26104, Information and Computer Science Division, Lawrence Berkeley
Laborarory, 1989.

Segev, A. and Gunadhi, H. Event-join optimization in temporal relational data-
bases. TR-LBL-26600, Information and Computer Science Division, Lawrence
Berkeley Laboratory, 1989. Also in Fifteenth International Conference on VLDB,
Amsterdam, 1989.

Segev, A. and Fang, W. Currency-based updates to distributed materialized views.
TR-LBL-27359, Information and Computer Science Division, Lawrence Berkeley
Laboratory, 1989. Also in Sixth International Conference on Data Engineering, 1990.

Selinger, P.G., Astrahan, M.M., Chamberlain, D.D., Lorie, R.A, and Price, T.G. Ac-
cess path selection in a relational database management system. ACMSIGMOD
International Conference on the Management of Data, 1979.

Sellis, T. Global query optimization. ACM SIGMOD International Conference on the
Management of Data, Washington, DC, 1986.

Sellis, T. Efficiently supporting procedures in relational database systems. ACM
SIGMOD International Conference on the Management of Data, San Francisco,
1987.

Sellis, T. Intelligent caching and indexing techniques for relational database system.
Information ~stems, 13(2):175-185, 1988a.

Sellis, T. Multiple-query optimization. ACM TODS 13(1): 23-52, 1988b.

SeUis, T. and Shapiro, L. Optimization of extended database query languages. ACM
SIGMOD International Conference on the Management of Data, Austin, 'IX, 1985.

Sellis, T., Roussopoulos, N., and Ng, R.T. Efficient compilation of large rule bases
using logical access paths. Information ~stems, 15(1): 73--84, 1990.

Shapiro, L.D. Join processing in database systems with large main memories. ACM

TODS, 11(3):239-264, 1986.

Shoshani, A. and Kawagoe, K. Temporal data management. Twelfth International
Conference on VLDB, Kyoto, Japan, 1986.

Smith, J.M. and Chang, P.Y-T. Optimizing the performance of a relational algebra
interface. CACM, 18(10):569-579, 1975.

Snodgrass, R. The temporal query language TQuel. ACM TODS, 12(2):247-298,
1987.

Snodgrass, R. Temporal databases: Status and research directions. ACMSIGMOD
Record, 19(4):83--89, 1990.

Snodgrass, R. and Ahn, I. A taxonomy of time in databases. ACM SIGMOD
International Conference on the Management of Data, Austin, TX, 1985.

VLDB Journal 2 (1) Jensen: Differential Techniques to Support Transaction 'rime 111

Snodgrass, R. and Ahn, I. Partitioned storage for temporal databases. Information
Systems, 13(4):369-391, 1988.

Stare, R.B. and Snodgrass, R. A bibliography on temporal databases. Data Engi-
neering, 7(4):53-61, 1988.

Stamenas, A.G. High performance incremental relational databases. UMIACS-TR-
89--49, CS-TR-2245, Department of Computer Science, University of Maryland,
1989.

UUman, J.D. Principles of Database Systems, 2nd edition, Computer Science Press:
RockviUe, MD, 1982.

Wong, E. and Yousefli, K. Decomposition--A strategy for query processing./tCM
TOD$, 1(3):223-241, 1976.

Yang, H.7_,. and Larson, E-A. Computing queries from derived relations. Eleventh
Intemmional Conference on VLDB, Stockholm, 1985.

