
VLDB Yourna~ 2(1):39-74 (1993) Gunter Schlageter, Editor
©VLDB

E Hct~:::,ler q3 ~

39

Concurrency Control Issues in Nested Transactions

Theo HErder and Kurt Rothermel

Received October 26, 1990; revised version received May 16, 1991; accepted July 20, 1992.

Abstract. The concept of nested transactions offers more decomposable execution
units and finer-grained control over concurrency and recovery than "fiat" transac-
tions. Furthermore, it supports the decomposition of a "unit of work" into subtasks
and their appropriate distribution in a computer system as a prerequisite of intra-
transaction parallelism. However, to exploit its full potential, suitable granules
of concurrency control as well as access modes for shared data are necessary. In
this article, we investigate various issues of concurrency control for nested trans-
actions. First, the mechanisms for cooperation and communication within nested
transactions should not impede parallel execution of transactions among parent
and children or among siblings. Therefore, a model for nested transactions is pro-
posed allowing for effective exploitation of intra-transaction parallelism. Starting
with a set of basic locking rules, we introduce the concept of "downward inher-
itance of locks" to make data manipulated by a parent available to its children.
To support supervised and restricted access, this concept is refined to "controlled
downward inheritance." The initial concurrency control scheme was based on S-X
locks for "fiat," non-overlapping data objects. In order to adjust this scheme for
practical applications, a set of concurrency control rules is derived for generalized
lock modes described by a compatibility matrix. Also, these rules are combined
with a hierarchical locking scheme to improve selective access to data granules of
varying sizes. After having tied together both types of hierarchies (transaction and
object), it can be shown how "controlled downward inheritance" for hierarchical
objects is achieved in nested transactions. Finally, problems of deadlock detection
and resolution in nested transactions are considered.

Key Words. Nested transactions, concurrency control, locking, object hierarchies.

1. Introduction

W h e n multiple users access a database simultaneously, their data opera t ions have to

be coordina ted in order to prevent incorrect results and to preserve the consistency

Theo H~irder, Ph.D., is Professor of Computer Science, University of Kaiserslautern, D-6750 Kaiserslautern,
Federal Republic of Germany. Kurt Rothermel, Ph.D., is Professor of Computer Science, University of
Stuttgart, D-7000 Stuttgart 80, Federal Republic of Germany.

40

of the shared data. This activity is called concurrency control and should provide

each concurrent user with the illusion that he is referencing a dedicated database.

The classical transaction concept (Eswaran et al., 1976) defines a transaction as

the unit of concurrency control, that is, the database management system (DBMS)
has to guarantee isolated execution for an entire transaction. This implies that its

results as derived in a multi-programming environment should be the same as if

obtained in a serial execution schedule. Other important transaction properties are

atomicity, consistency, and durability as defined by H~irder and Reuter (1983). In

a DBMS, the component responsible for achieving these properties is transaction

management which includes concurrency control as a major function.

In current DBMSs, transaction management is typically designed with a single-

level control structure; its implementation is optimized to execute short transactions

with only a few data references (Anon et al., 1985). Two-phase locking is, by far,

the most common method for controlling concurrency among transactions and has
been accepted as a standard solution (Gray, 1978; Bernstein and Goodman, 1981).

When running on a centralized DBMS, transaction granularity as well as locking

protocols usually obtain satisfactory performance; for high-performance transaction

systems, special concurrency control methods are considered to be mandatory in
order to increase the level of parallelism (Reuter, 1982; Gawlick, 1985), however,

without requiring changes to the transaction concept.
When executing more complex transactions involving, for example, sequences

of joins and sort operations in a relational DBMS, it turns out that single-level

transactions do not achieve optimal flexibility and performance. Especially in dis-
tributed systems, it is highly desirable to have more general control structures to
support reliable and distributed computing more effectively. Major concerns are

more decomposable and finer grained control of concurrency and recovery. As a

solution to these problems, the concept of nested transactions was proposed by Moss

(1985) where single-level transactions are enriched by an inner control structure.

Such a mechanism allows for the dynamic decomposition of a transaction into a

hierarchy of subtransactions, thereby preserving all properties of a transaction as a

unit and assuring atomicity and isolated execution for every individual subtransaction.

As a consequence, subtransactions may be distributed in a system among various

(processor) nodes performing subtasks of the entire transaction. These prime

aspects of nested transactions--decomposition of a "unit of work" into subtasks and

their distribution--lead to the following advantages in a computing system and, in

particular, in a distributed DBMS.

VLDB Journal 2(1) H~irder: Currency Control Issues in Nested 'ltansactions 41

1.1 Intra-transaction Parallelism

The larger a transaction, the more inherent parallelism may be anticipated during
its execution. To take advantage of this inherent concurrency in the application,

suitable granules of concurrency control as well as access modes (e.g., locking

modes) are necessary. In environments enabling parallel execution, the nested-

transaction concept embodies an appropriate control structure to support supervised,

and therefore safe, intra-transaction concurrency, thereby increasing efficiency and

decreasing response time.

1.2 Intra-transaction Recovery Control

An uncommitted subtransaction can be aborted and rolled back without any side-
effects to other transactions outside its hierarchy. Hence, the concept of nested

transactions contributes to a considerable refinement of the scope of in-transaction
UNDO as compared to single-level transactions where UNDO-recovery necessarily

yielded the state "begin of transaction" (BOT). It may be further refined by adding

an appropriate savepoint concept to nested transactions (H/irder and Rothermel,
1987; Rothermel and Mohan, 1989).

1.3 Explicit Control Structure

When parallel and asynchronous activities are to be coordinated for a single unit of
work (from an external point of view), the introduction of a powerful explicit control

structure allowing for the delegation of pieces of work and their atomic execution

appears to be mandatory. Such a structure will greatly reduce the complexity of

programming and enhance the reliability of transaction processing.

1.4 System Modularity

Subtransactions facilitate a simple and safe composition of a transaction program

whose modules may be designed and implemented independently. This system

modularity serves other design goals as well: encapsulation (information hiding),

failure limitation, and security.

1.5 Distribution of Implementation

The concept of the nested transaction supports the implementation of distributed
algorithms by a flexible control structure for concurrent execution. Distribution of

42

data and processing, in turn, has a major impact on overall efficiency, in terms both of

cost-effective use of hardware (special processors, I/O devices) and responsiveness.

Distribution also affects availability (replication of data). Hence, the robustness of

the system may be improved in various ways.

In a centralized DBMS, nested transactions have some uses, however, they do

not exploit their full potential due to the lack of resources. An obvious advantage

is a clearer control structure for the execution of complex transactions supporting

the design of more reliable programs. It also allows for the isolated rollback of

an uncommitted subtransaction in the case of forced abort or transaction failure.

When seriallzability of transactions controlled by strict 2-phase locking protocols

(or equivalent methods) is required, neither lock granules nor lock duration are

affected by such an approach. Subtransactions do not release their locks; they are
inherited by their parent transaction.

For multi-layered centralized DBMSs, some kind of multi-level transaction
management was provided where the subtransactions serve as control structures

in the various layers. To gain a higher degree of concurrency and more flexible

control of lock granules, a so-called multi-level concurrency control was introduced.

Furthermore, isolated rollback of subtransactions can be guaranteed. In System R
(Astrahan et al., 1976) this concept is used for two layers: locking is applied twice:

on tuples until EOT (long tuple locks) and on pages for the duration of each tuple
operation (short page locks for actions). Since tuple operations can be regarded as

subtrausactions and page locks are released before EOT of the parent transaction,
this technique has been called "open-nested transaction." The problems involved

were discussed by Gray (1981).

The generalization of open nested transactions for centralized systems--called

multi-level transactions--was proposed to allow early release of locks at lower levels

of control (Weikum and Schek, 1984; Moss et al., 1986; Weikum, 1986; Beeri et

al., 1989); however, they rely on compensation operations for subtransactions to

be applied in the case of rollback recovery. A detailed description of all aspects

of multi-level transaction management including a discussion of performance issues

is given by Weikum (1991). We don't want to consider this kind of multi-level

structure and concurrency control for centralized DBMS operations.

Due to the salient properties supported by nested transactions, many researchers

have focused attention on their design and implementation in distributed systems.
Our approach is based on the proposals, results, and experiences of distributed
systems design (Jessop, 1982; Allchin, 1983; Mueller et al., 1983; Spector and

Schwarz, 1983; Walter, 1984; Liskov, 1985); it tries to adjust the concept of nested

transactions and improves its use for distributed DBMSs. Our prime goal is its

VLDB Journal 2 (1) HErder: Currency Control Issues in Nested 'It'ansactions 43

investigation and its conceivable extension for flexible intra-transaction parallelism.

Due to space limitations we restrict our discussion to concurrency control and

deadlock detection issues. Recovery problems are dealt with by Moss (1987),

H/irder and Rothermel (1987), and Rothermel and Mohan (1989). To facilitate our

discussion, we introduce a model for nested transactions; it is designed so as to not

prohibit parent/child- or sibling-parallelism.

In Section 3, the basic concurrency control model (Moss, 1985) is discussed.

In some systems, it has been extended and refined by downward inheritance,

enabling transactions to pass on locks to their child transactions. In Section 4,

we propose a number of generalizations and extensions for concurrency control in

nested transactions. Controlled downward inheritance enables a parent to give its

child access to shared data and at the same time to restrict its mode of usage.

Another refinement allows the use of more general lock modes as compared to the

simple S-X lock model. Hence, applications may better adjust their synchronization

needs. So far, all efforts are directed towards enhancement of concurrency control

in transaction hierarchies operating on "flat" objects. Since every practical DBMS

is forced to use an object hierarchy to provide fine as well as coarse lock granules

at reasonable cost, we design a concurrency control protocol which combines object

and transaction hierarchies as well as supports controlled downward inheritance.

Section 5 discusses deadlock detection issues in nested transactions, and Section

6 compares concurrency control schemes of some system implementations. We

conclude and summarize our results in the final section.

2. A Model of Nested Transactions

The concurrency control techniques we present in this article are based on the

nested transaction model introduced by Moss (1985). A transaction may contain

any number of subtransactions, which again may be composed of any number of

subtransactions--conceivably resulting in an arbitrarily deep hierarchy of nested

transactions. The root transaction which is not enclosed in any transaction is

called the top-level transaction (TL-transaction). Transactions having subtransactions

are called parents, and their subtransactions are their children. We also speak

of ancestors and descendants. The ancestor (descendant) relation is the reflexive

transitive closure of the parent (child) relation. We use the terms superior or

inferior for the non-rellexive version of the ancestor or descendant. The set of

descendants of a transaction together with its parent/child relationships is called the

transaction's hierarchy. In the following, we use the term "transaction" to denote

both TL-transactions and subtransactions.

• f C

Figure 1. Example of a Transaction Tree.

44

The hierarchy of a TL-transaction can be represented by a so-called transaction
tree. The nodes of the tree represent transactions, and the edges illustrate the

parent/child relationships between the related transactions. In the transaction tree

shown in Figure 1, the root is represented by TL-transaction A. The children of

subtransaction C are D, F, and G; and the parent of C is B. The inferiors of C

are D, E, F, and G, and the superiors are B and A Of course, the descendant and

ancestor sets of C additionally contain C itself. The hierarchy of C is depicted as

the subtree spanned by C's descendants.

The properties defined for flat transactions are atomicit~ consistency, isolated
execution, and durability (ACID-properties) (I-I~rder and Reuter, 1983). In the nested

transaction model, the ACID-properties are fulfilled for TL-transactions, while only

a subset of them are defined for subtransactions. A subtransaction appears atomic

to the other transactions and may commit and abort independently. Aborting a

subtransaction does not affect the outcome of the transactions not belonging to the

subtransaction's hierarchy, and hence subtransactions act as firewalls, shielding the

outside world from internal failures. If the concurrency control scheme introduced

by Moss (1985) is applied, isolated execution is guaranteed for subtransactions.

However, to increase intra-transaction parallelism the enhanced schemes proposed

in this article allow transactions belonging to the same TL-transaction hierarchy to

share data in a controlled manner. The durability of the effects of a committed

subtransaction depends on the outcome of its superiors---even if it commits, aborting

one of its superiors will undo its effects. A subtransaction's effects become permanent

only when its TL-transaction commits. The consistency property for subtransactions

seems to be too restrictive, because sometimes a parent transaction needs the results

of several child transactions to perform some consistency preserving actions.

VLDB Journal 2 (1) H~irder: Currency Control Issues in Nested 'l~ansactions 45

To exploit the inherent potential of nested transactions and their advantages as

stated in Section 1, the degree of intra-transaction parallelism should be as high

as possible. Two kinds of intra-transaction parallelism can be defined, parent/child-

parallelism and sibling-parallelism. If the first kind of parallelism is supported,

then a transaction may run in parallel to its children, while in the second kind,

siblings are allowed to run concurrently. Using both these definitions, we are able

to characterize four levels of intra-transaction parallelism:

. Neither parent~child-nor sibling-parallelism: At any point in time there is at

most one transaction active in a TL-transaction hierarchy, i.e. there is no

intra-transaction parallelism at all. Since all transactions in a hierarchy are

executed serially, no concurrency control among them is needed. For example,

if each transaction is executed by a single process and processes communicate

only by means of a (synchronous) remote procedure call mechanism, only

this level of "parallelism" can be provided.

. Only sibling-parallelism: If only siblings may be performed concurrently, then

a transaction never runs in parallel with its superiors. This kind of restricted

parallelism enables a transaction to share objects with its ancestors without

further concurrency control. For example, in the ARGUS system (Liskov,

1985), the intra-transaction parallelism is restricted to this level.

. Only parent/childTarallelism: Since a transaction and its children may run

concurrently but siblings may not, in a TL-transaction hierarchy only the

transactions along one path of the hierarchy may run in parallel. This kind of

restriction simplifies intra-transaction concurrency control in the sense that

only transactions residing in the same path have to be synchronized with

each other. (This reason hardly justifies such a system design).

. Parent~child- as well as sibling-parallelism: This level permits arbitrary intra-

transaction parallelism, i.e., in principle, all transactions of a TL-transaction

hierarchy may be executed concurrently. Of course, compared to the degrees

of parallelism described above, this degree requires the most sophisticated

concurrency control scheme. For example, LOCUS (Mueller et al., 1983)

and CLOUDS (Allchin, 1983) support this level of parallelism.

As discussed so far, our transaction model does not contain any essential
restrictions. Transactions may be performed either entirely on a single processor

site or may be distributed over multiple processors located at one or more sites.
Moreover, the model does not restrict the kind of data distribution implemented by

46

the underlying system, and hence our considerations apply for data sharing as well

as for data distribution approaches (Rahm, 1992). Since we focus on concurrency

control concepts, introduction of further refinements or implementation issues would

only burden our discussion.

3. Basic Locking Rules for Nested Transactions

Locking as the standard method of concurrency control in DBMS has been used

successfully for a variety of applications over the past decade and longer. Therefore,

it is reasonable to choose conventional locking protocols as our starting point of

investigation for nested transactions. Conventional locking protocols offer two modes

of synchronization: read, which permits multiple transactions to Share an object

at a time, and write, which gives the right to a single transaction for exclusively

accessing an object (Gray, 1978). As far as concurrency control is concerned, our

data model initially consists of disjoint ("fiat") objects, Oi, which are the lockable

units.

In the next part of this section, we summarize the locking scheme for nested
transactions proposed by Moss (1985). This scheme only allows for upward in-

heritance of locks, i.e., a transaction can inherit locks from its children, but not

vice versa. In the last part, we extend this scheme such that it supports upward as

well as downward inheritance. Both schemes presented in this section have been

implemented in several systems.

3.1 Upward Inheritance of Locks

Before describing the locking rules proposed by Moss (1985), we have to introduce

some terminology. Possible lock modes of an object are NL-, S-, and X-mode. The

null mode (NL) represents the absence of a lock request for or a lock on the object.

A transaction can acquire a lock on object, O, in some mode, M; then it holds the

lock in mode M until its termination. Besides holding a lock, a transaction can retain

a lock. When a subtransaction commits, its parent transaction inherits its locks

and then retains them. If a transaction holds a lock, it has the right to access the

locked object (in the corresponding mode), which is not true for retained locks. A

retained lock is only a place holder. A retained X-lock, denoted by r:X (as opposed

to h:X for an X-lock held), indicates that transactions outside the hierarchy of the

retainer cannot acquire the lock, but that descendants of the retainer potentially

can. That is, if a transaction, T, retains an X-lock, then all non.descendants of T

cannotho ld the lock in either X- or in S-mode. If T is a retainer of an S-lock,

VLDB Journal 2 (1) Hiirder: Currency Control Issues in Nested 'Itansactions 47

it is guaranteed that a non-descendant of T cannot hold the lock in X-mode, but

potentially can in S-mode. As soon as a transaction becomes a retainer of a lock,

it remains a retainer for that lock until it terminates.

Having introduced this terminology, we can formulate the locldng rules now:

Rule 1: Transaction T may acquire a lock in X-mode if

• no other transaction holds the lock in X- or S-mode, and

• all transactions that retain the lock in X- or S-mode are ancestors of T.

Rule 2: Transaction T may acquire a lock in S-mode if

• no other transaction holds the lock in X-mode, and

• all transactions that retain the lock in X-mode are ancestors of T.

Rule 3: When subtransaction T commits, the parent of T inherits T's locks (held

and retained). After that, the parent retains the locks in the same mode

(X or S) in which T held or retained the locks previously. 1

Rule 4: When a transaction aborts, it releases all locks it holds or retains. I f any

of its superiors holds or retains any of these locks they continue to do so.

Obviously, the rules stated above only allow for upward inheritance of locks, i.e.,

a transaction can only inherit its children's locks, but not vice versa. The principle

of upward inheritance is exemplified in Figure 2, where we use the notions X- and

S-sphere for describing the implications of this principle. The X-sphere (S-sphere)

of an object is defined to be the set of transactions that can potentially lock this

object in X-mode (S-mode). In Figure 2a, the X-sphere of an object disappears

entirely when transaction T acquires an S-lock on this object, i.e., no transaction

may acquire an X-lock on this object, while each transaction in R's hierarchy may

lock the object in S-mode. After commit of T, a new X-sphere is established, which

consists of the descendants of T 's parent transaction. In Figure 2b, the X- as well

as the S-sphere disappear when T acquires an X-lock. When T commits, a new

X- and S-sphere are established. In general, a transaction acquiring a lock on an

object may cause the object 's X- or S-sphere to shrink, while the termination of a

transaction may cause them to grow.

The rules stated above only allow for upward inheritance at commit time, i.e., a

transaction may not inherit a child's locks before the latter commits. This restriction

1. Note that the inheritance mechanism may cause a transaction to (conceptually) retain several locks on
the same object. Of course, the number of locks retained by a transaction should be limited to one by only
retaining the most restrictive lock.

48

Figure 2.

R retains X-lock

Upward inheritance of locks.

after T acquired S-lock after EOT(T)

r:X

,

R retains X-lock after T acquired X-lock after EOT(T)

'~-:;;:-~: X-sphere - S-sphere

guarantees that transactions can see the effects of committed children only, and hence

are not affected by failures of children. Furthermore, this restriction ensures that the

subtransactions of a transaction tree are serializable. Allowing upward inheritance

before commit time would cause transactions to become dependent on the outcome

of child transactions, i.e., subtransactions would not act as firewalls anymore (H~irder

and Rothermel, 1987) such that application code within a subtransaction had to

cope with concurrency and recovery issues.

3.2 Downward Inheritance of Locks

We feel that the restrictions caused by allowing only upward lock inheritance

especially prevent desirable decompositions of transactions into a set of cooperating

subtransactions. For example, assume an application that navigates through an

object base and updates each of the accessed objects. A desirable decomposition of

the above task is depicted in Figure 3. Transaction T reads an object and determines

the next object to be accessed by applying the Next operation on the current object's

content. Then T creates a new child transaction, which asynchronously performs an

Update operation on the current object, while T reads in the next object, on which

it acts as described above. This decomposition has some appealing characteristics:

(1) Update operations are performed in parallel. (2) If an update operation fails,

VLDB Journal 2 (1) H~irder: Currency Control Issues in Nested 'Itansactions 49

Figure 3. Decomposition of an Application

T c-Read(O1) O2=Next(c) ec-Read(O2)O3-Next(c) ee=Read(O3)O4=Next(c)

cl[U =" co1
C2 Update (02)

C3
r

it does not affect the other operations. A failed operation can be restarted at a

later point in time. (3) The update operations are performed in isolation from each

other. This is of particular importance if the update of an object may imply updates

on other objects. For example, the update of two different objects may imply two

updates of the same access path.

Unfortunately, this decomposition is impossible if the basic locking rules pro-

posed by Moss (1985) are applied. To be able to perform the Next operation on an

object, T must hold an R-lock on this object. Since T must hold this R-lock until it

commits, no child of T can ever acquire an X-lock on this object. In other words,

once an object has been read by T, it cannot be updated by T's children anymore.

The decomposition required in the example of Figure 3 is possible as soon as

downward inheritance of locks is supported by the underlying locking scheme. In

such a scheme, subtransactions may inherit locks from superiors, where inheritance

of a lock can only take place after the superior holding this lock has explicitly

offered this lock for downward inheritance. A transaction can offer a lock it holds

to the transactions in its hierarchy, which can then acquire the lock according to

the locking rules stated above. Consequently, the concept of downward inheritance

allows a transaction to make all or a subset of its locks available to its hierarchy. The

locking rules proposed by Moss (1985) can easily be extended to support downward

inheritance by adding a new rule:

Rule 5: Transaction T, holding a lock, can offer the lock (to the transactions in its

hierarchy). After offering the lock, T retains the lock in the same mode

it held the lock before.

A transaction offering a lock disclaims (temporarily) the right to access the

locked object and gives the transactions in its hierarchy the opportunity to lock this

object in any mode. Of course, in its hierarchy there might be either at most one

transaction holding the lock in X-mode or a number of transactions holding the
lock in S-mode. Since the transaction offering a lock still retains the lock in the

50

Figure 4. Downward inheritance of locks.

R holding X-lock after R offered X-lock after T acquired X-lock after EOT(T)

...... X-sphere ~ S-sphere

mode it held the lock before, no transaction from outside its hierarchy can lock

the object in a mode that conflicts with the mode of the retained lock. To become

a holder again, the transaction must acquire the lock anew, which only succeeds if

rules R1 and R2 stated above are fulfilled.

An example for applying the lock-offering mechanism is illustrated in Figure

4. When transaction R offers the X-lock it holds, an S- and X-sphere comprising
R's hierarchy is established for the corresponding object, i.e., all descendants of R

have the opportunity to lock the object either in S- or in X-mode. As depicted in

the example, the object's X- and S-sphere disappear when a descendant of R locks

the object in X-mode.

If downward inheritance of locks is possible, the isolation property of transactions

may be violated. While transactions belonging to different TL-transaction hierarchies

still cannot interfere, transactions of the same hierarchy may share data. As a

consequence, a transaction may see uncommitted data of superiors. This, however,

cannot lead to inconsistencies because the effects of the transaction are undone when

a superior aborts. On the other hand, a transaction may never see uncommitted

data of inferiors, i.e., subtransactions act as firewalls even if downward inheritance

of locks is allowed.

A lock-offering mechanism similar to the one described above has been im-

plemented in the LOCUS system (Mueller et al., 1983). Some kind of automatic

downward inheritance is provided in the ARGUS system (Liskov, 1985). In this

particular approach, concurrency control is considerably simplified, since conflicts

among transactions in a hierarchical path are prevented by allowing only sibling-

parallelism. Automatic downward inheritance is then implicitly obtained by the

rule that a transaction may acquire a lock if each transaction holding this lock is a

superior of it.

VLDB Journal 2(1) Hiirder: Currency Control Issues in Nested "ltansaetions 51

Figure 5. Decomposition of a design task.

B: L (p O~) U(X)I b

s) i i A
c: .: i i

i t4s) ii
D: ~1 i

B: ~"-'~:~" i . r:X/h:X i" IIIi-
r:X/h:S

. I l U -

L~ I "'" acquire lock on O in X-mode; h:X ... BholdsOinX-mode;
acquire lock on 0 in S-mode; r:X/h:S ... B retains 0 in X-mode

D(S) downgrade lock on 0 to S-mode; and holds 0 in S-mode;
U(X) upgrade lock on 0 to X-mode;

a) task structure b) concurrent work steps

4. Enhanced Concurrency Control for Nested Transactions

By using the idea of downward inheritance we gain more flexibility of lock inheritance

in a given transaction hierarchy. We have poor control over its specific usage,

however. For this reason, this kind of offering concept still has some shortcomings

in situations where a transaction offering a lock desires to control the mode in

which its inferiors can hold the lock. For example, consider the access sequence

shown in Figure 3 once more. With the additional rule R5 it is possible to make

the desired decomposition. When transaction T offers the X-lock for O1, 02 , 03 ,

etc., then its children C1, C2, C3, etc., can acquire and hold the lock in any mode

later on. However, it would be helpful if T could prevent some child Ci from being

able to hold the lock in X-mode in order to make sure that Ci cannot change the

respective Oi.

4,1 Controlled Downward Inheritance

The need for controlling the lock mode in which inferiors can access an offered

object becomes more obvious if we consider an example from a cooperative design

environment (Kim et al., 1984; Bancilhon et al., 1985). Figure 5 shows a design task

that is structured as a three-level transaction hierarchy. Assume that transaction B

generates an object, O, describing the interface of a work piece. Transactions C

and D, which are children of B, design subparts of the work piece and therefore

require read access to the interface description. To allow its children to read O,

B must offer the lock that it holds on O. If there is no way to control the mode

52

in which children can hold the lock, one of the children may acquire the lock in

X-mode which has two undesirable consequences: First, the child can change O,

and second, the child blocks its siblings by preventing them from reading O.

To overcome these problems we suggest an extension of the locking rules

introduced in the previous section. In the scheme discussed previously, a transaction

can offer locks that it holds to its inferiors. In the extended scheme, we will replace

the lock-offering mechanism by primitives supporting the upgrading and downgrading

of locks:

Downgrade. Transaction T, holding a lock in mode M, can downgrade the lock to a

less restrictive mode M t. After downgrading the lock, transaction T holds the lock

in mode M ~ and retains the lock in mode M. For example, a transaction holding a

lock in X-mode can downgrade the lock to mode S or NL. ~

Upgrade. Transaction T, holding a lock in mode M, can upgrade the lock to a more

restrictive mode M ~ if the following condition is satisfied: No other transaction

holds the lock in a mode conflicting with M ~ and all transactions that retain the

lock in a mode conflicting with M t are ancestors of T. 3 For example, transaction T,

holding a lock in S-mode, can upgrade the lock to mode X if no other transaction

holds the lock in X- or S-mode, and all transactions retaining the lock in X- or

S-mode are ancestors of T.

In the extended scheme, holding and retaining a lock have exactly the same

semantics as in Moss's scheme (1985). After downgrading a lock from mode M

to mode M ~, a transaction holds the lock in mode M t and retains it in mode M.

Since the transaction retains the lock in M-mode, it prevents transactions outside its

hierarchy from holding the lock in a mode conflicting with M. On the other hand,

since it holds the lock in mode M ~ it keeps its inferiors from holding the lock in a

mode conflicting with M ~. That is, in contrast to the offering of locks described in

the basic scheme, downgrade allows a transaction to control how its inferiors can

hold a lock. For example, if transaction T downgrades a lock from X- to S-mode, it

prevents transactions outside its hierarchy from holding the lock in any mode, and

precludes its inferiors from holding the lock in X-mode, but allows its inferiors to

hold the lock in S-mode. Of course, downgrading a lock to NL-mode is equivalent

to offering a lock in the basic scheme. As stated above, the holder of a lock can

2. Downgrading to NL does not correspond to a general release of the lock. Release of such locks is limited
to the sphere of the downgrader.

3. This condition is equivalent to the condition that must be satisfied for a transaction acquiring a lock.

VLDB Journal 2 (1) H/irder: Currency Control Issues in Nested 'Itansaetions 53

upgrade the lock to a mode which is more restrictive than its current hold mode.

This feature allows a transaction to upgrade a lock which it downgraded previously,

e.g., a transaction that downgraded a lock to S-mode could again upgrade the lock

to mode X as soon as its children have committed. Of course, transactions can

also upgrade a lock without having downgraded it before. In the following, we will

describe the extended locking rules. Italics will be used to point out the extensions

added to Moss's scheme:

Extended rule 1: Transaction T may acquire a lock in X-mode or upgrade a lock it

holds to mode X if

• no other transaction holds the lock in X- or S-mode, and

• all transactions that retain the lock in X- or S-mode are ancestors of T.

Extended rule 2: Transaction T may acquire a lock in S-mode if

• no other transaction holds the lock in X-mode, and

• all transactions that retain the lock in X-mode are ancestors of T.

Extended rule 3: When subtransaction T commits, the parent of T inherits T 's locks

(held and retained). After that, the parent retains the locks in the same

mode (X or S) as T held or retained them before.

Extended rule 4: When a top-level transaction commits, it releases all locks it holds

or retains.

Extended rule 5: When a transaction aborts, it releases all locks it holds or retains.

If any of its superiors hold or retain any of these locks, they continue to do

so.

Extended rule 6: Transaction T, homing a lock in X-mode, can downgrade the lock to

mode S or NL. After performing the downgrade operation, T retains the lock in

X-mode.

Extended rule 7: A transaction homing a lock in S-mode can downgrade the lock to mode

NL. After performing the downgrade operation, T retains the lock in S-mode.

The mode to which a T transaction downgrades a lock determines the modes

in which the transactions of T's hierarchy cannot hold the lock. If the downgraded

mode is S, the transactions of T's hierarchy cannot hold the lock in X-mode (since

S conflicts with X). If the downgraded mode is NL, then the transactions in T's

hierarchy can potentially hold the lock in any mode.

54

Figure 6.

R holding X-lock

Controlled downward inheritance.

after R downgraded after U and T after EOTIT)
X- to S-lock acquired S-lock

- S-sphere

Some examples may help to clarify the key issue of controlled downward

inheritance. The effect of offering an X-lock can be depicted in the scenario in

Figure 4. A similar scenario in Figure 6 illustrates the downgrading of an X-lock

to mode S. (Downgrading of S-locks is handled in an analogous manner). The

essential issue observed in this example is that only S-locks may be granted within

R's hierarchy, i.e., no X-sphere is established when the lock is downgraded to mode

S.

Given these extended locking rules, the problem described in the design en-

vironment example above can be solved very easily (see Figure 5). After having

generated object O, transaction B downgrades the X-lock it holds on O to mode

S. Since it then holds the lock in S-mode, C and D are prevented from holding

the lock in X-mode which guarantees that they cannot change O or block each

other. Note that since B retains the lock in X-mode after downgrading the lock,

transactions A and E cannot hold the lock in any mode, i.e., A and E can neither

reead nor write O. After commit of C and D, B can upgrade the lock once again.

4.2 Correctness Concerns

As stated in Section 3.1, upward lock inheritance at commit ensures that sub-

transactions act as firewalls in case of a failure and that all subtransactions of a

TL-transaction remain isolated. Since we have proposed the concept of controlled

downward inheritance, we now discuss the impact of this concept on the correctness

of concurrent executions.

VLDB Journal 2(1) H~irder: Currency Control Issues in Nested 'Ransaetions 55

Tl_,-transactions are serializable because

• each transaction in a TL-transaction tree locks each data object before

accessing it

• all locks held by transactions in a transaction tree are released, but not

before the TL-transaction commits.

This locking protocol corresponds to strict 2-phase locking for TL-transactions.

It determines their serialization order by the time of their commit, as it holds for

single-level transactions.

Now let us discuss the visibility of data changes and their induced dependencies

within a transaction tree. In Moss's nested transaction model (1985) the following

holds:

• A transaction may see changes only of those transactions that are committed

and on which it depends. 4 We say transaction T depends on a transaction

"I '~, if undoing the effects of ~ causes the abortion of T.

• Once transaction T has seen a state of an object, this state never will be

seen or changed by another transaction before T commits.

In contrast, our model allows for controlled downward inheritance which makes

uncommitted data available to inferiors. For this reason, we observe the following

properties:

• Transaction T may see changes only of

- those transactions that are committed and on which T depends,

- those transactions that are superiors of T

• An object state seen by transaction T may be changed by inferiors of T.

A transaction may see changes of superiors only if these transactions have

downgraded the corresponding locks explicitly. That is, whether or not a transaction

may see the effects of superiors can be controlled by the application logic. In terms

of failures a transaction seeing changes of superiors causes no problems because,

if a superior aborts, this transaction is aborted also. Note that once a transaction

has seen an object, the object cannot be changed by a superior again before this

transaction commits. If a transaction downgrades a lock, it must be aware of the

4. Remember that the effects of a committed (sub) transaction only become permanent when the top-level
transaction commits. The reason why a transaction may only see data of committed transactions is to ensure
that it is aborted when the effects of one of these transactions is wiped out due to a failure. In the transaction
hierarchy of Figure 5a, transaction E may see changes from transaction C, but not before B has committed.
When B commits, E becomes dependent on C as a failure, wiping out effects of C, which causes A and, of
course, E to be aborted.

56

consequences of the reduced isolation. Downgrading from S- to NL-mode may

cause unrepeatable reads from the downgrading transaction's point of view. With

X-locks two cases must be considered: Downgrading from X- to NL-mode and from

X- to S-mode. In the first case, from the downgrader's point of view lost updates
and unrepeatable reads are possible in principle. However, a much more flexible
cooperation is enabled where the correctness of execution has to be enforced by
application level protocols. In CSCW (computer-supported cooperative work)-like

applications, it is even conceivable that this kind of high-level control is based on

so-called social protocols between end users. In the latter case, which prevents

the inferiors of the downgrading transaction from keeping the downgraded lock in

X-mode, neither unrepeatable reads nor lost updates can occur.

An important question is whether the firewall property of nested transactions is

in some way affected by the downgrading mechanism. A transaction downgrading a

lock does not become dependent on the outcome of its inferiors. When a child fails,

its updates (possibly on objects with downgraded locks) are rolled back. Therefore,
the downgrading transaction is not affected and may create another child to do the

work.

In summary, the fact that a transaction may see changes from superiors causes
no problems, The firewall property is not affected by the downgrading mechanism.

Lost updates may only happen when locks are downgraded from X- to NL-mode.
In this case, which provides the highest degree of flexibility in terms of cooperation,

application-level concurrency control mechanisms are needed to ensure the required

form of correctness. Since the application itself can decide how and when to use

the downgrading mechanism, it can adapt the level of system-supported isolation to
its cooperation needs and its facilities for application-specific concurrency control.

4.3 Generalization of Lock Modes

Thus far, we have described and refined a concurrency control scheme for S-X

locks on "fiat," non-overlapping objects (e.g., tuples or relations); in particular,

we have developed a mechanism for controlled downward inheritance of locks in

nested transactions. Closer consideration reveals that the lock modes (comprising

only S and X so far) may be enriched by special modes to better adapt concurrency

control to access patterns in practical applications. For example, tailored lock
modes for frequent kinds of object access could be helpful to more effectively

exploit the inherent parallelism of concurrent transactions. Furthermore, the use of

semantic knowledge could greatly optimize some contention patterns of data access.

However, this requires enhanced lock modes; in particular, it presupposes the ability

VLDB Journal 2 (1) H~irder: Currency Control Issues in Nested ql'ansactions 57

to introduce user-defined lock modes (Allchin, 1983; Schwarz and Spector, 1984).

Such a refinement of lock modes may be easily integrated into our model

presented so far. Assume that the data model remains unchanged. Then our

locking rules stated in Section 4.1 for S-X schemes can be generalized for basic

and/or user-defined lock modes as follows:

Generalized Rule 1: Transaction T may acquire a lock in mode M or upgrade a lock

it holds to mode M if

• no other transaction holds the lock in a mode that conflicts with M, and

• all transactions that retain the lock in a mode conflicting with M are ancestors

of T

Generalized Rule 2: When subtransaction T commits, the parent of T inherits T's

locks (held and retained). After that, the parent retains the locks in the same

mode as T held or retained them before.

Generalized Rule 3: When a top-level transaction commits, it releases all locks it

holds or retains.

Generalized Rule 4: When a transaction aborts, it releases all locks it holds or

retains. If any of its superiors hold or retain any of these locks, they continue

to do so.

Generalized Rule 5: Transaction T, holding a lock in mode M, can downgrade the

lock to a less restrictive mode, M I. After downgrading the lock, T retains it

in mode M.

The locking rules stated above allow upward as well as controlled downward

inheritance for arbitrary lock modes. If generalized rule 5 were omitted, we would

get a generalization of Moss's scheme (1985) which only provides for upward

inheritance.

4.4 Use of Hierarchical Locks in Nested Transactions

Let us now reconsider our underlying data model which has some serious drawbacks

for realistic concurrency control situations. In particular, the fiat object structure

that requires disjoint lockable units of a given granule makes it impractical for

large databases when small granules are needed for some transactions and larger

ones for others. To improve selective access to data granules of varying sizes,

hierarchical locking schemes have been proposed. In our context, hierarchically

structured objects introduce a certain complexity, due to orthogonal transaction and

data hierarchies.

58

As mentioned earlier, locking of disjoint partitions of a given size is insufficient

for performance reasons in most applications. The choice of lockable units affects
locking overhead of a transaction (space for lock control blocks, time to request

and release locks) as well as concurrency among transactions. Hence, it implies a

dichotomy of increased concurrency using fine lockable units and higher cost for

lock management. While small granules are appropriate for "simple" transactions
accessing a few tuples, they are intolerable (and hard to implement) for "complex"

transactions accessing a large fraction of the database. Assume, for example, a
sequential scan of a relation with 106 tuples; having only tuples as Iockable units

would require 106 consecutive lock requests and storing of just as many lock control

blocks (of course, in main memory for performance reasons). Hence, coarser

granularity locks are sometimes more natural and efficient (e.g., when sorting or

reorganizing a relation).
These arguments should convince every DBMS designer that an object hierarchy

for locking purposes has to be provided. In fact, every "practical" DBMS supports

such a hierarchy of typically 2, 3, or 4 levels (e.g., System R has a generic 4-level

hierarchy: database, segment, relation, tuple; Astrahan et al., 1976).

An appropriate hierarchical locking scheme was proposed for fiat transactions
(Gray et al., 1976). Two key ideas allowed for the design of a scheme that could be

adapted to a transaction's needs for either locking a few items using a line lockable

unit or locking larger sets of items with larger lock granules:

• A node, R, in a hierarchy can be locked explicitly. As a result, its entire

subtree is implicitly locked, too.

• A transaction, locking part of the hierarchy, places "Intention mode" locks

along the path to R to avoid a situation where an ancestor node of R is locked

in an incompatible mode as compared to R. I-locks merely serve as place

holders, signalling the fact that locking of a subtree is done at a lower level

of the hierarchy, thereby preventing incompatible locks from being granted

for the corresponding nodes.

Besides the known modes, S and X, an Intention Share mode (IS) and an Intention

eXclusive mode (IX) were introduced to express a transaction's intent to read and
to update or read an object at a lower level of the hierarchy, respectively. A further

refinement is the Share and Intention eXclusive mode (SIX) which grants an S-lock

for the entire subtree to a transaction. In addition, it indicates the transaction's

intention to request X-locks explicitly for "finer" object granules later on. Table 1
(from Gray et al., 1976) shows the compatibilities among request/lock modes which

derive from these semantics.

VLDB Journal 2(1) HErder: Currency Control Issues in Nested ~ansactions 59

Table 1. Compability modes for hierarchical locking,

Compatibility

Mode of lock

Mode of request NL IS IX S SIX X

NL

I$

IX

S
SIX

yes yes yes yes yes yes

yes yes yes yes yes no

yes yes yes no no no

yes yes no no no no

yes no no no no no

For a comprehensive discussion of the precise effects of lock modes end their competibilities
see Grey (1978).

4.4.1 Basic Locking Rules for Object Hierarchies. We have now introduced the
essential ingredients of both generalized locking rules for nested transactions and

appropriate lock modes for an object hierarchy. How can we combine both together?

We start with the basic concurrency control model where only upward inheritance is

allowed. For the transaction hierarchy, our generalized rules 1--4 apply. Furthermore,

when acquiring a lock on an object, O, we have to consider additional rules resulting

from the object hierarchies.

As opposed to fiat objects, an approach for controlling concurrent access to an

object hierarchy has to obey the following rules (Gray et al., 1976):

. Instead of locking an object directly, every transaction has to observe a strict

hierarchical protocol requesting appropriate locks from root to leaf in the

object hierarchy (denoted in the following as root-to-leaf rule.) A lock is

granted at each level according to the compatibilities expressed in Table 1.

As soon as a lock is obtained, a transaction may request another appropriate

lock at the same or at the next lower level.

2. Level-to-level transitions should obey the following constraints called level-
to-level rules:

• IS held at a node only allows IS and S to be requested on descendant

nodes.

• IX granted for a node carries the privilege to request IS, IX, S, SIX

and X at the next level.

60

Table 2. Locks in an object hierarchy.

Object hierarchy

Database DB
Segment S
Relation R
Tuplesi

Before EOT(T1)

h:lX
h:lX
h:X

After EOT(T1)
P T2 T3

r:lX
r:lX
r:X

h:lX h:lS
h:lX h:IS
h:lX h:lS

h:Xont] h:Sont3
h:Xont2 h:Son

• S and X allow read and write access (respectively) to all descendants

of the node without further locking.

• SIX carries the privileges of S and IX; hence, while S mode allows

read only access to all descendants, write access at lower levels may

be requested by IX or X at the next level.

As far as acquiring locks is concerned, the rules obtained for the transaction
hierarchy and the object hierarchy must be satisfied independently. Following the

root-to-leaf rule, transactions must request their locks from root to leaf in the object

hierarchy. Whether or not a lock for an object may be granted in a particular mode

is decided according to the level-to-level rules, the generalized locking rules (1-4),

and the lock mode compatibilities depicted in Table 1. Since the rules introduced

for the object hierarchy are independent of the underlying transaction model and

the rules for both hierarchies are applied independently, our protocol and that

proposed by Gray et al. (1976) for flat transactions only differ in the rules implied

by the transaction model.
An example may clarify the issues involved in lock retainment for object hier-

archies. In the scenario of Table 2, T1 passes on its hierarchical locks for X-access

on relation R to its parent P at EOT(T1). After having retained the locks, P and

its inferiors Ti are qualified to acquire read or write access on R or to tuples of R.

Table 2 shows the locks of Tz and Ta for obtaining write and read access on tuples

of R.

4.4.2 Upgrading and Downgrading Hierarchical Locks. Although we have suc-

ceeded in tying together both hierarchy types (transaction and object), we have

so far obtained only a more economical and efficient solution of the concurrency

problem than compared to the basic approach in Section 3.1. Since we cannot

VLDB Journal 2(1) H~rder: Currency Control Issues in Nested 'l~ansactions 61

Table 3. Inconsistent downgrading of a lock.

Object hierarchy P P T
after downgrade using downgraded lock

Database DB
Segment S
Relation R

Tuplesi

h:lX
h:lX

h:SIX
h:X on t]
h:X on t2

h:lX
h:lX

r:SIX/-
h:X on tl
h:X on t2

h:lX
h:lX

h:SIX
h:X on t3
h:X on

make a transaction's objects available to its inferiors, all arguments discussed earlier

apply. Therefore, it is desirable to enable controlled downward inheritance in the

presence of object hierarchies, too.

Assume, for example, a transaction P holds an SIX-lock on a relation, R, and

wants to permit write access to tuples of R by its inferiors. Using the same kind of
inheritance mechanism as in Section 4.1, P has to downgrade its lock on the object

to an appropriate mode. To do so, P retains the SIX-lock on R (r:SIX) and holds

R in IX-mode (h:IX). Note that r:SIX only prevents incompatible locks on R from

being granted to non-descendants, but not to inferiors.

Let us examine whether such a straightforward approach may be applied. In

the scenario depicted by Table 3, P holds R in SIX-mode and some tuples of R

in X-mode. We assume that P downgrades the SIX-lock on R. Requesting a lock

by an inferior T implies that T obeys the root-to-leaf and the level-to-level rules.

Hence, as soon as T has acquired appropriate locks for the ancestors of R, it can

request a compatible lock for R. The presented scenario is meant to serve as a

counter-example for arbitrary inheritance of hierarchical locks and aims at clarifying

a new issue: Inheritance of objects in data hierarchies. It shows that P holds some

locks at the tuple level while it has downgraded the corresponding lock at the

relation level to NL-mode, i.e., without particular protection.

In Table 3, T acquires an SIX-lock on R giving read access to all tuples of R.

On the other hand, P still has some tuples locked in X-mode, namely tl and t2.

These exclusively locked tuples would be read by T, since read access to tuples of

R need not be checked by T anymore. Even worse, write-write interference on the
same tuples could occur, if T had locked R in X-mode. Of course, the sketched

examples may cause severe consistency problems. These anomalies would not occur

if the lock on relation R, together with all locks on its tuples, had been downgraded.

62

Control given by the hold-mode alone would not guarantee the desired consistency

as exemplified by only downgrading R to S-mode.

The key observation in the example above is that downgrading a lock without

considering the whole object hierarchy may lead to inconsistencies. The same can

be shown for upgrading locks in object hierarchies. For example, if a transaction has

locked a database in IS-mode and upgrades an S-lock that it holds on a segment of

this database to X-mode, similar inconsistencies may occur. Obviously, to prevent

violations of the level.to-level rules, upgrading or downgrading of a lock may enforce

upgrade or downgrade operations on other locks held in the object hierarchy.

When a transaction T upgrades a lock held on an object, O, within an object

hierarchy, it might be necessary to also upgrade locks of T held on superior objects

of O in order to satisfy the level-to-level rules. For example, if T holds an IS-,

IS-, and S-lock on a database, a segment of this database and a relation of this

segment, respectively, the level-to-level rules enforce the upgrading of both IS-

locks to IX-mode before the relation lock can be upgraded to X-mode. Because

upgrading the locks on an object and superior objects is not performed in an

atomic manner, upgrading should be done in a root-to-leaf direction. Of course,

an upgrade operation can only take place if the generalized locking rules 1--4 are

fulfilled. Otherwise, upgrading is blocked which may cause deadlocks to occur (see

Section 5).

Because upgrading a lock on an object, O, converts the mode of the locks to

a more restrictive one, the level-to-level rules are not violated as far as locks on

inferior objects of O are concerned. However, due to the upgrade operation, locks

held by the upgrading transaction on inferior objects of O may become useless.

For example, when a lock on relation R is upgraded from SIX- to X-mode (lock

escalation; Bernstein et al., 1987), all locks held by the upgrading transaction on

individual tuples of R are not needed anymore. A clean approach to handling

those useless locks is to release them as part of the upgrade operation. An actual

implementation may optimize this cleanup process using pragmatic arguments (e.g.,

see System R; Astrahan et al., 1976).

Downgrading a lock held by transaction T on object O is confined to the

subhierarchy with O as the root object. Superiors of O in the object hierarchy

are not involved because downgrading cannot violate the level-to-level rules as

far as superiors of O are concerned. However, with respect to the objects in its

subhierarchy, downgrading the lock on O may cause a violation of the level-to-level

rules: if T holds a lock on subobject O' of O, then after downgrading, the mode

of the lock held on O t may violate the level-to-level rules. For example, assume T

holds an IX-lock on a relation, R, and an X-lock on a tuple, t of R. If T downgrades

VLDB Journal 2(1) H~rder: Currency Control Issues in Nested 'Itansactions 63

Table 4. Consistent lock modes of subobjects.

Object O of transaction T Consistent modes for locks of T
downgraded to mode on subobjects of O

NL
IS
IX

SIX
S

NL
NL, IS, S

NL, IS, IX, SIX, S, X
NL, IX, X

NL

Table 5. Consistent downgrading of a lock.

Object hierarchy P P T

Database DB
Segment S
Relation R

Tuplesi

h:lX
h:lX

h:SIX
h:X on tl
h:X on t2

h:lX
h:lX

r:SIX/h:lX
r:X/h:S on t l

r:X/- on t2

h:lX
h:lX

h:SIX
h:S on t l
h:X on t2

its lock on R from IX to IS, then T's X-lock on t is not consistent anymore with the

lock mode of its parent object. As a consequence, downgrading the lock on O may

require downgrading locks held by T on objects in the subhierarchy of O, such that

the level-to-level rules are satisfied. In Table 3, this would require downgrading T's

lock on tuple t to S- or NL-mode.

Table 4, derived from the level-to-level rules, lists for each possible mode to

which the lock on O can be downgraded, the modes in which T can hold locks

on the objects in the subhierarchy of O without violating the level-to-level rules.

For example, if the lock is downgraded to IS-mode, T can hold subobjects of O

either in NL-, IS- or S-mode. If subobjects are held in more restrictive modes,

the locks on these objects must be downgraded to one of the listed modes. Note,

since downgrading an entire subhierarchy cannot be done atomically, downgrading

should be performed in a leaf-to-root direction.

By observing these rules, consistency-preserving downward inheritance of locks

may be easily achieved by P in the example in Table 3 by downgrading the tuples
tl and t2 before downgrading relation R. Control of lock usage is then possible by

64

downgrading to the appropriate modes. In Table 5, the locks in the subhierarchy

of relation R have been downgraded to different modes which allows for selective
control of access to R's subobjects.

Downgrade of an intention mode (IS, IX, SIX) implies subsequent downgrades

of locks on subobjects in order to satisfy the level-to-level rules. This, however, can

be avoided by restricting downgrade operations to S- and X-locks. If T holds a lock

on object O in S- or X-mode, then the entire subhierarchy of O is locked implicitly

for T, that is, T does not hold any locks on subobjects of O. Hence, downgrade of

O does not involve downgrading locks on lower levels of O's subhierarchy.

Let us summarize our findings for controlled downward inheritance of locks

in a data hierarchy. In general, downgrading of entire subtrees is necessary for

hierarchical objects to guarantee consistency of downward inheritance in nested

transactions. That is, if an M-lock held by transaction T on object O is downgraded,

it might be necessary to downgrade locks held by T on inferiors of O in order to
satisfy the level-to-level rules. If downgrading is allowed only on X- and S-locks,

then the downgrading of a lock never involves locks held on lower levels of the

object hierarchy, which simplifies the downgrade mechanism substantially.

5. Deadlock Detection in Nested Transactions

Lock protocols are pessimistic, that is, they block lock requests of data currently

granted to another transaction in a conflicting mode, and therefore are not immune

to deadlocks. Deadlocks may occur among transactions belonging to various TL-

transactions and even among subtransactions within a single transaction hierarchy.

For deadlock detection, we mainly follow the basic approach sketched in Moss

(1985), which allows identification of existing deadlocks. In addition, we propose

the maintenance of further information (waits-for-retained-locks relation) to detect

opening-up deadlocks as early as possible.

Deadlocks in nested transactions can be resolved by the concepts known for

single-level transactions extended by some mechanisms tailored to the properties

of the nested structure (Moss, 1985; Rukoz, 1991). When a transaction acquires

a lock for data which is incompatible with a lock held by another transaction, the

requesting transaction is deactivated: a direct wait for the lock holder occurs. All

direct waits are maintained in a waits-for-lock relation in order to detect deadlocks.

Using this waits-for-lock relation, deadlock detection can be performed immediately

when a transaction is blocked or after some elapsed time. A deadlock exists if, and

only if, a cycle is found in the waits-for-lock relation. For single-level transactions,
such a cycle is composed of direct waits (or waits for lock) only.

VLDB Journal 2(1) H~rder: Currency Control Issues in Nested Transactions 65

Figure 7. Lock and commit waits.

V

A.T
' l l l g . '

............ ll.,. waits-for-lock

waits-for-commit

As we have seen in Section 3.1, nested transactions have an inner structure which

determines along which paths locks are inherited and whether retained locks can

be acquired. Assume a subtransaction, R, waits for a lock held by a subtransaction,

T. After commit of T, its locks are inherited and retained by its parent transaction,

P (Figure 7). Now lock requests from transactions in P's X- or S- sphere can be

served. Outside P's sphere, however, transaction R cannot acquire retained locks;

for this reason, it has to wait for the retained locks of P. Such waits for retained

locks are indirect waits. They propagate along the ancestor hierarchy of P. In the

following, we will introduce two different waiting relationships:

. Waits-for-retained-locks: A lock requestor, R, directly waits for a lock holder,

T, if the mode of the requested lock is in conflict with the lock mode held by

T. Let Q be the highest ancestor of T that is not an ancestor of R. Then R

indirectly waits for all ancestors of T up to Q until they commit. Those wait

relationships are called waits-for-retained-lock. This wait rule implies that if

requestor R is not in the same TL-transaction as T, then R must wait for

the retained locks of T's TL-transaction, which are released at its commit."

. Waits-for-commit: Since a waiting lock requestor, R, cannot proceed with its

work, all ancestors of R may have to wait. In Figure 7, U cannot commit until

R does, and U's parent cannot commit until U does, that is, all ancestors of

R cannot commit before R does. We denote this kind of wait relationship by

waits-for-commit, which can be represented by the parent-child relationships,

as outlined in Figure 7. Due to this dependency, an ancestor of R may wait

66

Figure 8. Deadlock situations.

°oo i ° ° ° . o •

!

. A ! • T "illli R •
a) direct-wait deadlock b) ancestor-descendant deadlock

for all transactions for which R directly or indirectly waits. Of course, waiting

may be broken up as soon as T or one of its ancestors aborts. As illustrated

in Figure 7, R directly waits for T and indirectly waits for retained locks for

P, ..., Q. Furthermore, since S, ..., U wait for commit of R, they also wait for

T, ~ ... Q.

In Section 4.4, hierarchical locking was employed to nested transactions. The key

observation exhibited is that object and transaction hierarchies are orthogonal. As a

consequence, further aspects are not added to deadlock detection when hierarchically

composed objects are used. As illustrated by Figure 7, waits-for relations occur

among transactions; thus, the rules of the hierarchical locking protocol do not

interfere with the waits-for-lock and waits-for-commit relationships as long as the

root-to-leaf and the level-to-level rules are observed.

5.1 Detection of Existing Deadlocks

In order to handle deadlock detection in nested transactions successfully, we have

to combine the various waits-for relations. Considering the waits-for-lock relation,

only direct-wait deadlocks can be found, as indicated in Figure 8a, whereas other

kinds of deadlocks cannot be detected. This is true no matter whether a deadlock

occurs within a TL-transaction or among subtransactions of various TL-transactions.

The cycle in Figure 8a consists of direct waits only, that is, all transactions in the

cycle cannot proceed any further. In Figure 8b, however, another kind of cycle is

encountered; this situation does not mean that progress has stopped everywhere

in the cycle. T waits for a lock of Q; Q , P may proceed for some time, but

cannot commit without aborting T Since T must be rolled back anyway, the best

decision is to detect and resolve this ancestor-descendant deadlock immediately. A

VLDB Journal 2(1) H~irder: Currency Control Issues in Nested 'ltansactions 67

request of T, causing a lock wait on its ancestor Q, can be detected only by using

the combined waits-for-lock and waits-for-commit relation information.

Situations such as those illustrated by Figure 8b would frequently be caused

when descendants refer to exclusively used data in an uncoordinated way. Controlled

downgrading of locks, however, provides a mechanism to avoid such cycles, that is,

application knowledge is applied to reduce the possibility of a deadlock involving lock

and commit waits. Coordinated work requires that a parent, P, should downgrade the

lock on an object, O, currently granted to P, before it creates a child, T, to do some

work on O. Then T can acquire the lock for O in a non-conflicting mode without

causing a blocking situation. Downgrading enables deadlock-free cooperation, but

cannot enforce it; if T requests the lock in a mode more restrictive than the offered

one, a deadlock may arise.

Upgrading a lock may lead to wait situations and therefore to deadlocks as

they occur in single-level transactions. Assume in Figure 7 that T and R already

hold an S-lock on object O. Now, if R upgrades the lock to mode X, R has to

wait until a direct ancestor of R retains the lock or, ff T and R are not in the

same TL-transaction, until T's TL-transaction has committed. Hence, our wait rule

applies to lock upgrades, too.

5.2 Detection of Opening-up Deadlocks

The combined use of waits-for-lock and waits-for-commit relations turned out to

be sufficient for nested transactions to detect existing cycles embodying direct-

wait or ancestor-descendant deadlocks. Since a waits-for-lock relationship is only

represented between the requestor and the holder of a lock (or, after commit of the

lock holder, the current retainer), waits-for-retained-lock relationships between the

requestor and all ancestors of the holder (retainer) are not explicitly established in the

waits-for information. For nested transactions, however, these waits-for-retained-

lock relationships should be taken into account to provide for early deadlock

detection. This may save a lot of useless work as shown in the scenario of Figure 9.

Figure 9 represents a deadlock-free situation, since transactions T, D, and possibly

others can proceed with their work. R waits for D, and G for T to obtain the

requested locks. All other waits indicated are waits-for-commit. R indirectly waits

for A, which is the oldest ancestor of D that is not an ancestor of R. On the other

hand, G indirectly waits for V. If we evaluate this information (R ~ A, G ~ V),

we can immediately detect a cycle opening up.

Optimistically, one may not care about such an opening-up deadlock, since an

abort of any transaction involved would eventually avoid the actual deadlock. For

Figure 9. Opening-up deadlock among nested transactions.

V A

o ° ° o o o

To Iq • t i t . . •

B

D

i = = ° °

II I . '

example, the abort of any transaction in Figure 9 resolves the opening-up deadlock

before all progress ceases within the TL transactions V and A. However, transaction

aborts are regarded as exceptions and should not be considered a remedy to break

opening-up deadlock cycles.

In contrast, a pessimistic approach usually saves work. If we use the transitive

waits-for-commit and waits-for-retained-lock relationships of all ancestors, e.g., of

V on R and A on G, as well as R on A and G on V, we can construct a direct

(future) cycle between V and A and can roll back either V or A. However, deadlock

detection and resolution at the level of the highest non-common ancestors of the

transactions which have caused the conflict may not be appropriate. Deadlock

resolution is typically based on transaction rollback and should affect minimal data

granules or work lost.

For this reason, special measures should be used to determine an opening-up

deadlock as early as possible and at the suitable level in the nested transaction

hierarchies. In addition to waits-for-lock and waits-for-commit relations, the waits-

for-retained-lock relationships have to be included in the waits-for information. For

example in Figure 9, the relationships R ~ C, ..., R ---r B, R --~ A, as well as G

P,..., G ~ Q, G --~ V have to be represented in order to successfully search

for opening-up cycles. Once an opening-up deadlock is detected, all transactions

involved have to be considered to determine a low-cost victim for rollback. Since

rollback of a parent transaction implies rollback of all its inferiors (committed

and uncommitted), rollback of a child transaction is always cheaper than that of

the corresponding parent transaction. For this reason, rollback of a lock holder

(retainer) or a lock requestor is always cheaper than a rollback of their ancestors

VLDB Journal 2 (1) H~rder: Currency Control Issues in Nested "Ransactions 69

in a potential cycle; hence, the set of transactions from which to choose a rollback

victim is the set of lock holders (retainers) and lock requestors. In Figure 9, this

set of candidates is D,T and R,G, respectively.

Note that, in contrast to Moss (1985), in our transaction model these transactions

must not be leaves in the current transaction tree. However, the same methods

and cost measures could be applied for breaking up the cycle, in principle. Since

candidate transactions can occur arbitrarily in the transaction hierarchy, resource

estimation involving the evaluation of subtrees may become much more complicated.

To summarize, waits-for-retained-lock relationships are evaluated only to detect

opening-up deadlocks as early as possible. Since candidate transactions for breaking

up the cycle are lock holders and lock requestors, the mechanisms for deadlock

resolution can be derived from those provided for single-level transactions.

Early detection of opening-up deadlocks saves transaction work. However,

as discussed above, the additional representation and management of waits-for-

retained-lock relationships require some overhead. If deadlocks are infrequent, a
particular system implementation has to take this trade-off into account.

6. Comparison of Some System Implementations

In the following, we will compare some systems that implement nested transactions

with regard to the degree of parallelism supported, the applied concurrency control

schemes, and the way deadlocks are treated. In particular, we will consider ARGUS

(Liskov et al., 1987; Liskov, 1988), Camelot (Spector et al., 1988; Epinger et al.,

1991), Clouds (Ahamad et al., 1987; Dasgupta et al., 1989), Eden (Alines et al.,

1985; Pu and Noe, 1988), and LOCUS (Mueller et al., 1983; Weinstein et al., 1985).

Table 6 summarizes the results.

While Camelot, Clouds, Eden and LOCUS allow for parent/child as well as

sibling parallelism, ARGUS does not permit a parent transaction to run in parallel

with its children, resulting in simpler locking rules (Liskov et al., 1987). All the

systems considered are based on two-phase locking; however, only Clouds and

LOCUS support downward inheritance. While the downward inheritance scheme

in LOCUS requires a lock holder to explicitly state when downward inheritance

may potentially take place, transactions in CLOUDS are allowed to share the

locks of their ancestors in a totally uncontrolled manner (Allchin, 1983). When a
transaction closes a file in LOCUS, the lock held on this file becomes a retained

lock. Although it supports downward inheritance by means of an explicit offering

mechanism, the LOCUS scheme is uncontrolled in the sense that a lock holder

70

Table 6. Comparison of system implementations.

Controlled

Parent/child Sibling Downward downward

parallelism parallelism inheritance inheritance

Argus no yes no no

Camelot yes yes no no

Clouds yes yes yes no

Eden yes yes no = no

LOCUS yes yes yes no

Object Deadlock

hierarchy avoidance &

support detection

timeout-based

no resolution

timeout-based

no resolution

timeout-based

no resolution

wound-wait

no avoidance

schema

neither

resolution

no nor avoidance

offering a lock cannot control in which mode its descendants may acquire this lock.
None of the five systems supports controlled downward inheritance, neither do they
support object hierarchies. ARGUS, Camelot, and Clouds implement deadlock
resolution based on a timeout mechanism, whereas Eden applies a wound-wait
deadlock avoidance scheme (Rosenkrantz et al., 1978). LOCUS neither performs
deadlock detection, nor implements an avoidance scheme. However, it provides an
interface to operaating system data, permitting a system process to detect deadlock
by constructing a wait-for-graph. In this manner, different deadlock resolution
strategies may be implemented (Weinstein et al., 1985).

7. Conclusions

We have presented an investigation of concurrency control in nested transactions.
The primary focus of our article has been on achieving a high degree of intra-
transaction parallelism within nested transactions by using locking protocols.

Our initial concurrency control mechanism for nested transactions was based on
S-X locking protocols on fiat objects which seriously limit parent/child parallelism.
Therefore, the concept of downward inheritance was introduced and relined to

VLDB Journal 2 (1) H~irder: Currency Control Issues in Nested 'lt'ansactions 71

controlled downward inheritance in order to enable a transaction to restrict the

access mode of its inferiors for an object. Controlled downward inheritance turned

out to be a useful concept for achieving safe parent/child cooperation on data

structures to be read or written in a shared manner.

Practical applications sometimes have a need for specialized lock modes as well

as multi-level object hierarchies offering efficient ways to lock granules of varying

sizes. Therefore, we have generalized the locking rules for nested transactions to

be applied for richer access modes on flat objects. Most importantly, this kind

of generalization was a prerequisite for the integration of transaction and object

hierarchies, since the appropriate use of object hierarchies implied suitable access

modes beyond S- and X-locks. As a result, we could combine both types of

hierarchies in a general concurrency control model and then could enhance the

model again, using the concept of controlled downward inheritance, for the even

richer set of access modes. Finally, we studied the principles of deadlock detection in

nested transactions. In contrast to single-level transactions where the waits-for-lock

relation is sufficient to search for waiting cycles among transactions, detection of all

deadlocks in nested transactions further requires the maintenance of the waits-for-

commit relation and its combined use with the waits-for-lock relation. If deadlocks

are frequently anticipated, opening-up deadlocks, which may span transaction trees,

should be detected as early as possible to save transaction work. For this purpose,

we have additionally introduced the waits-for-retained-lock relation.

Acknowledgments

This research was carried out by the authors as visiting scientists at the IBM Almaden

Research Center, San Jose, California. C. Mohan shared his great knowledge and

experience on concurrency control with us. We thank him for his contributions,

which led to essential simplifications and clarifications of the concepts proposed in

the paper. We also thank J. Palmer and E Schwarz and the VLDB referees for

their helpful comments on this paper.

References

Ahamad, M., Dasgupta, E, Le Blanc, R.J., and Wilkes, C.T. Fault tolerant com-

puting in object based distributed systems. IEEE 6th Symposium on Reliability in

Distributed Software and Database Systems, 1987.

72

Allchin, J.E. An architecture for decentralized systems. Technical Report GIT-
ICS83-23, School of Information and Computer Science, Georgia Institute of
Technology, 1983.

Almes, G.T., Black, A.P., Lazowska, E.D., and Noe, J.D. The Eden system: A
technical review. IEEE Trans. Software Engineering 11(1):43-58, 1985.

Anon et al. A measure of transaction processing power. Datamation, April, 1985.

Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D, Eswaran, K.P., Gray, J.N.,
Grillith, P.P., King, W.E, Lorie, R.A., McJones, ER., Mehl, J.W., Putzolu, G.R.,
Traiger, I.L., Wade, B., and Watson, V. System R: Relational approach to database
,management. ACM TODS, 1(2):97-137, 1976.

Bancilhon, E, Kim, W., and Korth, H.E A model of CAD transactions. Proceedings
of the 11th International Conference on VLDB, Stockholm, 1985.

Beeri, C., Bernstein, EA., and Goodman, N. A model for concurrency in nested
transaction systems. Journal oftheACM, 36(1):230-269, 1989.

Bernstein, P.A. and Goodman, N. Concurrency control in distributed database
systems. ACM Computing Surveys, 13(2):185-221, 1981.

Bernstein, EA., Hadzilacos, N., and Goodman, N. Concurrency Control and Recovery
in Database Systems, Addison-Wesley: Reading, Pennsylvania, 1987.

Dasgupta, E, Le Blanc, R., and Appelbe, W. The Clouds distributed operating system:
Functional description, implementation details and related work. IEEE 8th
International Conference on Distributed Computing Systems, San Jose, California,
1989.

Eswaran, K.E, Gray, J.N., Lorie, R.A, and Traiger, I.L. The notions of consistency
and predicate locks in a database system. CommununicationsofACM, 19(11):624-
633, 1976.

Eppinger, J.L., Mummert, L.B., and Spector, A.Z., eds. Camelot and Avalon--A

Distributed Transaction Facility. Morgan Kaufmann: San Mateo, California, 1991.

Gawlick, D. Processing "hot spots" in high performance systems. Proceedings of the
IEEE, Spring CompCon, San Francisco, 1985.

Gray, J.N. Notes on database operating systems. Operating Systems--An Advanced
Course. In: Bayer, R., Graham, R.M., and Seegmueller, G., eds., Lecture Notes
in Computer Science 60, Springer-Verlag: Berlin, 1978, pp. 393-481.

Gray, J.N. The transaction concept: Virtues and limitations. Proceedings of the
Seventh International Conference on VLDB, Cannes, 1981.

Gray, J.N., Lorie, R.A., Putzolu, G.R., and Traiger, I. Granularity of locks and degrees
of consistency in a shared data base. Proceedings of the IFIP Working Conference
on Modeling in Data Base Management Systems, Freudenstadt, Germany, 1976.

VLDB Journal 2 (1) H~rder: Currency Control Issues in Nested qt'ansactions 73

H~irder, T. and Reuter, A. Principles of transaction-oriented database recovery.
ACM Computing Surveys, 15(4):287-318, 1983.

H~irder, T. and Rothermel, K. Concepts for transaction recovery in nested transac-
tions. Proceedings oftheACMSIGMOD, San Francisco, 1987.

Jessop, W.H. The EDEN transaction-based file system. Proceedings of the Second
Symposium on Reliability in Distributed Software and Databases, Pittsburgh, 1982.

Kim, W, Lorie, R., McNabb, D., and Plouffe, W. Nested transactions for engineering

design databases. Proceedings of the Tenth International Conference on VLDB,
Singapore, 1984.

Liskov, B. The ARGUS language and system. Distributed systems--Methods and

tools for specification: An advanced course. In: Paul, M. and Siegert, H.J.,

eds., Lecture Notes in Computer Science 190, Springer-Verlag: Berlin, 1985, pp.

343-430.
Liskov, B. Distributed programming in ARGUS. Communications oftheACM, 31:300-

312, 1988.
Liskov, B., Curtis, D., Johnson, P., and Scheifler, R. Implementation of ARGUS.

Proceedings of the l l th Symposium on Operating System Principles, ACM
Operating Systems Review, 21(5):111-122, 1987.

Mohan, C., Lindsay, B., and Obermark, R. Transaction management in R* distributed
data base management systems. IBM Research Report #RJ5037, San Jose,
California, 1986.

Moss, J.E.B. Nested Transactions: An Approach to Reliable Distributed Computing.
M.I.T. Press, Cambridge, 1985.

Moss, J.E.B., Grigeth, N.D., and Graham, M.H. Abstraction in recovery manage-

ment. Proceedings of the International Conference on Management of Data (SIG-
MOD), Washington, D.C., 1986.

Moss, J.E.B. Log-based recovery for nested transactions. Proceedings of the 13th
VLDB Conference, Brighton, 1987.

Mueller, E.T., Moore, J.D., and Popek, G.A. Nested transaction mechanism for

LOCUS. Proceedings of the 9th Symposium on Operating Systems Principles, ACM/
SIGOPS, Bretton Woods, 1983.

Pu, C. and Noe, J.D. Nested transactions for general objects: The Eden implementa-
tion. Department of Computer Science, University of Washington, TR-85-12-03,

1988.
Rahm, E. A Framework for Workload allocation in distributed transaction processing

systems. Journal of@stems and Software, 18:171-190, 1992.
Reuter, A. Concurrency on high-traffic data elements. Proceedings on the Conference

on Principles of Database @stems, Los Angeles, 1982.

74

Rosenkrantz, D.J., Stearns, R.E., and Lewis II, P.M. System level concurrency control
for distributed database systems. ACM Transactions on Database Systems, 3(2):
pages? 1978.

Rothermel, IC and Mohan, C. ARIES/NT: A recovery method based on write-ahead
logging for nested transactions. Proceedings of the 15th International Conference
on l~ry Large Data Bases, Amsterdam, 1989.

Rukoz, M. Hierarchical deadlock detection for nested transactions. Distributed
Computing; 4:'123-129, 1991.

Schwarz, P.M. and Spector, A .Z Synchronizing shared abstract types. ACM TOCS,
2(3):223-250, 1984.

Spector, A.Z. and Schwarz, P.M. Transactions: A construct for reliable distributed
computing. Operating Systems Revie~ 17(2):18-35, 1983.

Spector, A.Z., Pausch, R.E, and Bruell, G. Camelot: A flexible, distributed transac-
tion processing system. Proceedings of the Spring lEEE COMPCON, San Francisco,
1988.

Walter, B. Nested transactions with multiple commit points: An approach to the

structure of advanced database applications. Proceedings of the Tenth International
Conference on VLDB, Singapore, 1984.

Weikum, G. A theoretical foundation of multi-level concurrency control. Proceed-
ings of the ACM SIGACT-SIGMOD: Symposium on Principles of Database Systems,
Cambridge, Massachussetts, 1986.

Weikum, G. Principles and realization strategies of multilevel transaction manage-
ment, ACM TODS, 16(1):132-180, 1991.

Weikum, G. and Schek, H.-J. Architectural issues of transaction management in
layered systems. Proceedings of the Tenth International Conference on VLDB, Sin-
gapore, 1984.

Weinstein, M., Page, T., Livezey, B., and Popek, G. Transactions and synchronization

in a distributed operating system. Proceedings of the Tenth Symposium on Operating
Systems Principles, ACM/SIGOPS, Orcas Island, Washington, 1985.

