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Abstract. The concept of nested transactions offers more decomposable execution 
units and finer-grained control over concurrency and recovery than "fiat" transac- 
tions. Furthermore, it supports the decomposition of a "unit of  work" into subtasks 
and their appropriate distribution in a computer system as a prerequisite of intra- 
transaction parallelism. However, to exploit its full potential, suitable granules 
of concurrency control as well as access modes for shared data are necessary. In 
this article, we investigate various issues of concurrency control for nested trans- 
actions. First, the mechanisms for cooperation and communication within nested 
transactions should not impede parallel execution of transactions among parent 
and children or among siblings. Therefore, a model for nested transactions is pro- 
posed allowing for effective exploitation of intra-transaction parallelism. Starting 
with a set of basic locking rules, we introduce the concept of  "downward inher- 
itance of locks" to make data manipulated by a parent available to its children. 
To support supervised and restricted access, this concept is refined to "controlled 
downward inheritance." The initial concurrency control scheme was based on S-X 
locks for "fiat," non-overlapping data objects. In order to adjust this scheme for 
practical applications, a set of concurrency control rules is derived for generalized 
lock modes described by a compatibility matrix. Also, these rules are combined 
with a hierarchical locking scheme to improve selective access to data granules of 
varying sizes. After having tied together both types of hierarchies (transaction and 
object), it can be shown how "controlled downward inheritance" for hierarchical 
objects is achieved in nested transactions. Finally, problems of deadlock detection 
and resolution in nested transactions are considered. 
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1. Introduction 

W h e n  multiple users access a database simultaneously, their data opera t ions  have to 

be coordina ted  in order  to prevent  incorrect  results and to preserve the consistency 
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of the shared data. This activity is called concurrency control and should provide 

each concurrent user with the illusion that he is referencing a dedicated database. 

The classical transaction concept (Eswaran et al., 1976) defines a transaction as 

the unit of concurrency control, that is, the database management system (DBMS) 
has to guarantee isolated execution for an entire transaction. This implies that its 

results as derived in a multi-programming environment should be the same as if 

obtained in a serial execution schedule. Other important transaction properties are 

atomicity, consistency, and durability as defined by H~irder and Reuter (1983). In 

a DBMS, the component responsible for achieving these properties is transaction 

management which includes concurrency control as a major function. 

In current DBMSs, transaction management is typically designed with a single- 

level control structure; its implementation is optimized to execute short transactions 

with only a few data references (Anon et al., 1985). Two-phase locking is, by far, 

the most common method for controlling concurrency among transactions and has 
been accepted as a standard solution (Gray, 1978; Bernstein and Goodman, 1981). 

When running on a centralized DBMS, transaction granularity as well as locking 

protocols usually obtain satisfactory performance; for high-performance transaction 

systems, special concurrency control methods are considered to be mandatory in 
order to increase the level of parallelism (Reuter, 1982; Gawlick, 1985), however, 

without requiring changes to the transaction concept. 
When executing more complex transactions involving, for example, sequences 

of joins and sort operations in a relational DBMS, it turns out that single-level 

transactions do not achieve optimal flexibility and performance. Especially in dis- 
tributed systems, it is highly desirable to have more general control structures to 
support reliable and distributed computing more effectively. Major concerns are 

more decomposable and finer grained control of concurrency and recovery. As a 

solution to these problems, the concept of nested transactions was proposed by Moss 

(1985) where single-level transactions are enriched by an inner control structure. 

Such a mechanism allows for the dynamic decomposition of a transaction into a 

hierarchy of subtransactions, thereby preserving all properties of a transaction as a 

unit and assuring atomicity and isolated execution for every individual subtransaction. 

As a consequence, subtransactions may be distributed in a system among various 

(processor) nodes performing subtasks of the entire transaction. These prime 

aspects of nested transactions--decomposition of  a "unit of  work" into subtasks and 

their distribution--lead to the following advantages in a computing system and, in 

particular, in a distributed DBMS. 



VLDB Journal 2(1) H~irder: Currency Control Issues in Nested 'ltansactions 41 

1.1 Intra-transaction Parallelism 

The larger a transaction, the more inherent parallelism may be anticipated during 
its execution. To take advantage of this inherent concurrency in the application, 

suitable granules of concurrency control as well as access modes (e.g., locking 

modes) are necessary. In environments enabling parallel execution, the nested- 

transaction concept embodies an appropriate control structure to support supervised, 

and therefore safe, intra-transaction concurrency, thereby increasing efficiency and 

decreasing response time. 

1.2 Intra-transaction Recovery Control 

An uncommitted subtransaction can be aborted and rolled back without any side- 
effects to other transactions outside its hierarchy. Hence, the concept of nested 

transactions contributes to a considerable refinement of the scope of in-transaction 
UNDO as compared to single-level transactions where UNDO-recovery necessarily 

yielded the state "begin of transaction" (BOT). It may be further refined by adding 

an appropriate savepoint concept to nested transactions (H/irder and Rothermel, 
1987; Rothermel and Mohan, 1989). 

1.3 Explicit Control Structure 

When parallel and asynchronous activities are to be coordinated for a single unit of 
work (from an external point of view), the introduction of a powerful explicit control 

structure allowing for the delegation of pieces of work and their atomic execution 

appears to be mandatory. Such a structure will greatly reduce the complexity of 

programming and enhance the reliability of transaction processing. 

1.4 System Modularity 

Subtransactions facilitate a simple and safe composition of a transaction program 

whose modules may be designed and implemented independently. This system 

modularity serves other design goals as well: encapsulation (information hiding), 

failure limitation, and security. 

1.5 Distribution of Implementation 

The concept of the nested transaction supports the implementation of distributed 
algorithms by a flexible control structure for concurrent execution. Distribution of 
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data and processing, in turn, has a major impact on overall efficiency, in terms both of 

cost-effective use of hardware (special processors, I/O devices) and responsiveness. 

Distribution also affects availability (replication of data). Hence, the robustness of 

the system may be improved in various ways. 

In a centralized DBMS, nested transactions have some uses, however, they do 

not exploit their full potential due to the lack of resources. An obvious advantage 

is a clearer control structure for the execution of complex transactions supporting 

the design of more reliable programs. It also allows for the isolated rollback of 

an uncommitted subtransaction in the case of forced abort or transaction failure. 

When seriallzability of transactions controlled by strict 2-phase locking protocols 

(or equivalent methods) is required, neither lock granules nor lock duration are 

affected by such an approach. Subtransactions do not release their locks; they are 
inherited by their parent transaction. 

For multi-layered centralized DBMSs, some kind of multi-level transaction 
management was provided where the subtransactions serve as control structures 

in the various layers. To gain a higher degree of concurrency and more flexible 

control of lock granules, a so-called multi-level concurrency control was introduced. 

Furthermore, isolated rollback of subtransactions can be guaranteed. In System R 
(Astrahan et al., 1976) this concept is used for two layers: locking is applied twice: 

on tuples until EOT (long tuple locks) and on pages for the duration of each tuple 
operation (short page locks for actions). Since tuple operations can be regarded as 

subtrausactions and page locks are released before EOT of the parent transaction, 
this technique has been called "open-nested transaction." The problems involved 

were discussed by Gray (1981). 

The generalization of open nested transactions for centralized systems--called 

multi-level transactions--was proposed to allow early release of locks at lower levels 

of control (Weikum and Schek, 1984; Moss et al., 1986; Weikum, 1986; Beeri et 

al., 1989); however, they rely on compensation operations for subtransactions to 

be applied in the case of rollback recovery. A detailed description of all aspects 

of multi-level transaction management including a discussion of performance issues 

is given by Weikum (1991). We don't want to consider this kind of multi-level 

structure and concurrency control for centralized DBMS operations. 

Due to the salient properties supported by nested transactions, many researchers 

have focused attention on their design and implementation in distributed systems. 
Our approach is based on the proposals, results, and experiences of distributed 
systems design (Jessop, 1982; Allchin, 1983; Mueller et al., 1983; Spector and 

Schwarz, 1983; Walter, 1984; Liskov, 1985); it tries to adjust the concept of nested 

transactions and improves its use for distributed DBMSs. Our prime goal is its 
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investigation and its conceivable extension for flexible intra-transaction parallelism. 

Due to space limitations we restrict our discussion to concurrency control and 

deadlock detection issues. Recovery problems are dealt with by Moss (1987), 

H/irder and Rothermel (1987), and Rothermel and Mohan (1989). To facilitate our 

discussion, we introduce a model for nested transactions; it is designed so as to not 

prohibit parent/child- or sibling-parallelism. 

In Section 3, the basic concurrency control model (Moss, 1985) is discussed. 

In some systems, it has been extended and refined by downward inheritance, 

enabling transactions to pass on locks to their child transactions. In Section 4, 

we propose a number of generalizations and extensions for concurrency control in 

nested transactions. Controlled downward inheritance enables a parent to give its 

child access to shared data and at the same time to restrict its mode of usage. 

Another  refinement allows the use of  more general lock modes as compared to the 

simple S-X lock model. Hence, applications may better  adjust their synchronization 

needs. So far, all efforts are directed towards enhancement of concurrency control 

in transaction hierarchies operating on "flat" objects. Since every practical DBMS 

is forced to use an object hierarchy to provide fine as well as coarse lock granules 

at reasonable cost, we design a concurrency control protocol which combines object 

and transaction hierarchies as well as supports controlled downward inheritance. 

Section 5 discusses deadlock detection issues in nested transactions, and Section 

6 compares concurrency control schemes of some system implementations. We 

conclude and summarize our results in the final section. 

2. A Model of Nested Transactions 

The concurrency control techniques we present in this article are based on the 

nested transaction model introduced by Moss (1985). A transaction may contain 

any number of subtransactions, which again may be composed of any number of  

subtransactions--conceivably resulting in an arbitrarily deep hierarchy of  nested 

transactions. The root transaction which is not enclosed in any transaction is 

called the top-level transaction (TL-transaction). Transactions having subtransactions 

are called parents, and their subtransactions are their children. We also speak 

of  ancestors and descendants. The ancestor (descendant) relation is the reflexive 

transitive closure of the parent (child) relation. We use the terms superior or 

inferior for the non-rellexive version of the ancestor or descendant. The set of 

descendants of a transaction together with its parent/child relationships is called the 

transaction's hierarchy. In the following, we use the term "transaction" to denote  

both TL-transactions and subtransactions. 
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The hierarchy of a TL-transaction can be represented by a so-called transaction 
tree. The nodes of the tree represent transactions, and the edges illustrate the 

parent/child relationships between the related transactions. In the transaction tree 

shown in Figure 1, the root is represented by TL-transaction A. The children of 

subtransaction C are D, F, and G; and the parent of C is B. The inferiors of C 

are D, E, F, and G, and the superiors are B and A Of course, the descendant and 

ancestor sets of C additionally contain C itself. The hierarchy of C is depicted as 

the subtree spanned by C's descendants. 

The properties defined for flat transactions are atomicit~ consistency, isolated 
execution, and durability (ACID-properties) (I-I~rder and Reuter, 1983). In the nested 

transaction model, the ACID-properties are fulfilled for TL-transactions, while only 

a subset of them are defined for subtransactions. A subtransaction appears atomic 

to the other transactions and may commit and abort independently. Aborting a 

subtransaction does not affect the outcome of the transactions not belonging to the 

subtransaction's hierarchy, and hence subtransactions act as firewalls, shielding the 

outside world from internal failures. If the concurrency control scheme introduced 

by Moss (1985) is applied, isolated execution is guaranteed for subtransactions. 

However, to increase intra-transaction parallelism the enhanced schemes proposed 

in this article allow transactions belonging to the same TL-transaction hierarchy to 

share data in a controlled manner. The durability of the effects of a committed 

subtransaction depends on the outcome of its superiors---even if it commits, aborting 

one of its superiors will undo its effects. A subtransaction's effects become permanent 

only when its TL-transaction commits. The consistency property for subtransactions 

seems to be too restrictive, because sometimes a parent transaction needs the results 

of several child transactions to perform some consistency preserving actions. 
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To exploit the inherent potential of nested transactions and their advantages as 

stated in Section 1, the degree of intra-transaction parallelism should be as high 

as possible. Two kinds of intra-transaction parallelism can be defined, parent/child- 

parallelism and sibling-parallelism. If the first kind of parallelism is supported, 

then a transaction may run in parallel to its children, while in the second kind, 

siblings are allowed to run concurrently. Using both these definitions, we are able 

to characterize four levels of intra-transaction parallelism: 

. Neither parent~child-nor sibling-parallelism: At any point in time there is at 

most one transaction active in a TL-transaction hierarchy, i.e. there is no 

intra-transaction parallelism at all. Since all transactions in a hierarchy are 

executed serially, no concurrency control among them is needed. For example, 

if each transaction is executed by a single process and processes communicate 

only by means of a (synchronous) remote procedure call mechanism, only 

this level of "parallelism" can be provided. 

. Only sibling-parallelism: If only siblings may be performed concurrently, then 

a transaction never runs in parallel with its superiors. This kind of restricted 

parallelism enables a transaction to share objects with its ancestors without 

further concurrency control. For example, in the ARGUS system (Liskov, 

1985), the intra-transaction parallelism is restricted to this level. 

. Only parent/childTarallelism: Since a transaction and its children may run 

concurrently but siblings may not, in a TL-transaction hierarchy only the 

transactions along one path of the hierarchy may run in parallel. This kind of 

restriction simplifies intra-transaction concurrency control in the sense that 

only transactions residing in the same path have to be synchronized with 

each other. (This reason hardly justifies such a system design). 

. Parent~child- as well as sibling-parallelism: This level permits arbitrary intra- 

transaction parallelism, i.e., in principle, all transactions of a TL-transaction 

hierarchy may be executed concurrently. Of course, compared to the degrees 

of parallelism described above, this degree requires the most sophisticated 

concurrency control scheme. For example, LOCUS (Mueller et al., 1983) 

and CLOUDS (Allchin, 1983) support this level of parallelism. 

As discussed so far, our transaction model does not contain any essential 
restrictions. Transactions may be performed either entirely on a single processor 

site or may be distributed over multiple processors located at one or more sites. 
Moreover, the model does not restrict the kind of data distribution implemented by 
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the underlying system, and hence our considerations apply for data sharing as well 

as for data distribution approaches (Rahm, 1992). Since we focus on concurrency 

control concepts, introduction of further refinements or implementation issues would 

only burden our discussion. 

3. Basic Locking Rules for Nested Transactions 

Locking as the standard method of concurrency control in DBMS has been used 

successfully for a variety of applications over the past decade and longer. Therefore, 

it is reasonable to choose conventional locking protocols as our starting point of 

investigation for nested transactions. Conventional locking protocols offer two modes 

of synchronization: read, which permits multiple transactions to Share an object 

at a time, and write, which gives the right to a single transaction for exclusively 

accessing an object (Gray, 1978). As far as concurrency control is concerned, our 

data model initially consists of disjoint ("fiat") objects, Oi, which are the lockable 

units. 

In the next part of this section, we summarize the locking scheme for nested 
transactions proposed by Moss (1985). This scheme only allows for upward in- 

heritance of locks, i.e., a transaction can inherit locks from its children, but not 

vice versa. In the last part, we extend this scheme such that it supports upward as 

well as downward inheritance. Both schemes presented in this section have been 

implemented in several systems. 

3.1 Upward Inheritance of Locks 

Before describing the locking rules proposed by Moss (1985), we have to introduce 

some terminology. Possible lock modes of an object are NL-, S-, and X-mode. The 

null mode (NL) represents the absence of a lock request for or a lock on the object. 

A transaction can acquire a lock on object, O, in some mode, M; then it holds the 

lock in mode M until its termination. Besides holding a lock, a transaction can retain 

a lock. When a subtransaction commits, its parent transaction inherits its locks 

and then retains them. If a transaction holds a lock, it has the right to access the 

locked object (in the corresponding mode), which is not true for retained locks. A 

retained lock is only a place holder. A retained X-lock, denoted by r:X (as opposed 

to h:X for an X-lock held), indicates that transactions outside the hierarchy of the 

retainer cannot acquire the lock, but that descendants of the retainer potentially 

can. That is, if a transaction, T, retains an X-lock, then all non.descendants of T 

cannotho ld  the lock in either X- or in S-mode. If T is a retainer of an S-lock, 
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it is guaranteed that a non-descendant of T cannot hold the lock in X-mode,  but  

potentially can in S-mode. As soon as a transaction becomes a retainer of  a lock, 

it remains a retainer for that lock until it terminates. 

Having introduced this terminology, we can formulate the locldng rules now: 

Rule 1: Transaction T may acquire a lock in X-mode if 

• no other transaction holds the lock in X- or S-mode, and 

• all transactions that retain the lock in X- or S-mode are ancestors of  T. 

Rule 2: Transaction T may acquire a lock in S-mode if 

• no other  transaction holds the lock in X-mode,  and 

• all transactions that retain the lock in X-mode are ancestors of  T. 

Rule 3: When subtransaction T commits, the parent  of  T inherits T's locks (held 

and retained). After  that, the parent retains the locks in the same mode  

(X or S) in which T held or retained the locks previously. 1 

Rule 4: When a transaction aborts, it releases all locks it holds or retains. I f  any 

of its superiors holds or retains any of these locks they continue to do so. 

Obviously, the rules stated above only allow for upward inheritance of  locks, i.e., 

a transaction can only inherit its children's locks, but not vice versa. The  principle 

of  upward inheritance is exemplified in Figure 2, where we use the notions X- and 

S-sphere for describing the implications of  this principle. The X-sphere (S-sphere) 

of  an object is defined to be the set of  transactions that can potentially lock this 

object in X-mode (S-mode). In Figure 2a, the X-sphere of  an object disappears 

entirely when transaction T acquires an S-lock on this object, i.e., no transaction 

may acquire an X-lock on this object, while each transaction in R's hierarchy may 

lock the object in S-mode. After commit  of  T, a new X-sphere is established, which 

consists of  the descendants of  T 's  parent  transaction. In Figure 2b, the X- as well 

as the S-sphere disappear when T acquires an X-lock. When T commits,  a new 

X- and S-sphere are established. In general, a transaction acquiring a lock on an 

object may cause the object 's X- or  S-sphere to shrink, while the termination of  a 

transaction may cause them to grow. 

The rules stated above only allow for upward inheritance at commit  time, i.e., a 

transaction may not inherit a child's locks before the latter commits. This restriction 

1. Note that the inheritance mechanism may cause a transaction to (conceptually) retain several locks on 
the same object. Of course, the number of locks retained by a transaction should be limited to one by only 
retaining the most restrictive lock. 
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Figure 2. 

R retains X-lock 

Upward inheritance of locks. 

after T acquired S-lock after EOT(T) 

r:X 

, 

R retains X-lock after T acquired X-lock after EOT(T) 

'~-:;;:-~: X-sphere - S-sphere 

guarantees that transactions can see the effects of committed children only, and hence 

are not affected by failures of children. Furthermore, this restriction ensures that the 

subtransactions of a transaction tree are serializable. Allowing upward inheritance 

before commit time would cause transactions to become dependent on the outcome 

of child transactions, i.e., subtransactions would not act as firewalls anymore (H~irder 

and Rothermel, 1987) such that application code within a subtransaction had to 

cope with concurrency and recovery issues. 

3.2 Downward Inheritance of Locks 

We feel that the restrictions caused by allowing only upward lock inheritance 

especially prevent desirable decompositions of transactions into a set of cooperating 

subtransactions. For example, assume an application that navigates through an 

object base and updates each of the accessed objects. A desirable decomposition of 

the above task is depicted in Figure 3. Transaction T reads an object and determines 

the next object to be accessed by applying the Next operation on the current object's 

content. Then T creates a new child transaction, which asynchronously performs an 

Update operation on the current object, while T reads in the next object, on which 

it acts as described above. This decomposition has some appealing characteristics: 

(1) Update operations are performed in parallel. (2) If an update operation fails, 
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Figure 3. Decomposition of an Application 

T c-Read(O1) O2=Next(c) ec-Read(O2)O3-Next(c) ee=Read(O3)O4=Next(c) 

cl[U =" co1  
C2 Update (02) 

C3 
r 

it does not affect the other operations. A failed operation can be restarted at a 

later point in time. (3) The update operations are performed in isolation from each 

other. This is of particular importance if the update of an object may imply updates 

on other objects. For example, the update of two different objects may imply two 

updates of the same access path. 

Unfortunately, this decomposition is impossible if the basic locking rules pro- 

posed by Moss (1985) are applied. To be able to perform the Next operation on an 

object, T must hold an R-lock on this object. Since T must hold this R-lock until it 

commits, no child of T can ever acquire an X-lock on this object. In other words, 

once an object has been read by T, it cannot be updated by T's children anymore. 

The decomposition required in the example of Figure 3 is possible as soon as 

downward inheritance of locks is supported by the underlying locking scheme. In 

such a scheme, subtransactions may inherit locks from superiors, where inheritance 

of a lock can only take place after the superior holding this lock has explicitly 

offered this lock for downward inheritance. A transaction can offer a lock it holds 

to the transactions in its hierarchy, which can then acquire the lock according to 

the locking rules stated above. Consequently, the concept of downward inheritance 

allows a transaction to make all or a subset of its locks available to its hierarchy. The 

locking rules proposed by Moss (1985) can easily be extended to support downward 

inheritance by adding a new rule: 

Rule 5: Transaction T, holding a lock, can offer the lock (to the transactions in its 

hierarchy). After offering the lock, T retains the lock in the same mode 

it held the lock before. 

A transaction offering a lock disclaims (temporarily) the right to access the 

locked object and gives the transactions in its hierarchy the opportunity to lock this 

object in any mode. Of course, in its hierarchy there might be either at most one 

transaction holding the lock in X-mode or a number of transactions holding the 
lock in S-mode. Since the transaction offering a lock still retains the lock in the 
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Figure 4. Downward inheritance of locks. 

R holding X-lock after R offered X-lock after T acquired X-lock after EOT(T) 

...... X-sphere ~ S-sphere 

mode it held the lock before, no transaction from outside its hierarchy can lock 

the object in a mode that conflicts with the mode of the retained lock. To become 

a holder again, the transaction must acquire the lock anew, which only succeeds if 

rules R1 and R2 stated above are fulfilled. 

An example for applying the lock-offering mechanism is illustrated in Figure 

4. When transaction R offers the X-lock it holds, an S- and X-sphere comprising 
R's hierarchy is established for the corresponding object, i.e., all descendants of R 

have the opportunity to lock the object either in S- or in X-mode. As depicted in 

the example, the object's X- and S-sphere disappear when a descendant of R locks 

the object in X-mode. 

If downward inheritance of locks is possible, the isolation property of transactions 

may be violated. While transactions belonging to different TL-transaction hierarchies 

still cannot interfere, transactions of the same hierarchy may share data. As a 

consequence, a transaction may see uncommitted data of superiors. This, however, 

cannot lead to inconsistencies because the effects of the transaction are undone when 

a superior aborts. On the other hand, a transaction may never see uncommitted 

data of inferiors, i.e., subtransactions act as firewalls even if downward inheritance 

of locks is allowed. 

A lock-offering mechanism similar to the one described above has been im- 

plemented in the LOCUS system (Mueller et al., 1983). Some kind of automatic 

downward inheritance is provided in the ARGUS system (Liskov, 1985). In this 

particular approach, concurrency control is considerably simplified, since conflicts 

among transactions in a hierarchical path are prevented by allowing only sibling- 

parallelism. Automatic downward inheritance is then implicitly obtained by the 

rule that a transaction may acquire a lock if each transaction holding this lock is a 

superior of it. 
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Figure 5. Decomposition of a design task. 
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acquire lock on 0 in S-mode; r:X/h:S ... B retains 0 in X-mode 

D(S) downgrade lock on 0 to S-mode; and holds 0 in S-mode; 
U(X) upgrade lock on 0 to X-mode; 

a) task structure b) concurrent work steps 

4. Enhanced Concurrency Control for Nested Transactions 

By using the idea of downward inheritance we gain more flexibility of lock inheritance 

in a given transaction hierarchy. We have poor control over its specific usage, 

however. For this reason, this kind of  offering concept still has some shortcomings 

in situations where a transaction offering a lock desires to control the mode in 

which its inferiors can hold the lock. For example, consider the access sequence 

shown in Figure 3 once more. With the additional rule R5 it is possible to make 

the desired decomposition. When transaction T offers the X-lock for O1, 02 ,  03 ,  

etc., then its children C1, C2, C3, etc., can acquire and hold the lock in any mode 

later on. However, it would be helpful if T could prevent some child Ci from being 

able to hold the lock in X-mode in order to make sure that Ci cannot change the 

respective Oi. 

4,1 Controlled Downward Inheritance 

The need for controlling the lock mode in which inferiors can access an offered 

object becomes more obvious if we consider an example from a cooperative design 

environment (Kim et al., 1984; Bancilhon et al., 1985). Figure 5 shows a design task 

that is structured as a three-level transaction hierarchy. Assume that transaction B 

generates an object, O, describing the interface of a work piece. Transactions C 

and D, which are children of B, design subparts of the work piece and therefore 

require read access to the interface description. To allow its children to read O, 

B must offer the lock that it holds on O. If there is no way to control the mode 
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in which children can hold the lock, one of  the children may acquire the lock in 

X-mode which has two undesirable consequences: First, the child can change O, 

and second, the child blocks its siblings by preventing them from reading O. 

To overcome these problems we suggest an extension of  the locking rules 

introduced in the previous section. In the scheme discussed previously, a transaction 

can offer locks that it holds to its inferiors. In the extended scheme, we will replace 

the lock-offering mechanism by primitives supporting the upgrading and downgrading 

of locks: 

Downgrade. Transaction T, holding a lock in mode M, can downgrade the lock to a 

less restrictive mode M t. After downgrading the lock, transaction T holds the lock 

in mode M ~ and retains the lock in mode M. For example, a transaction holding a 

lock in X-mode can downgrade the lock to mode S or NL. ~ 

Upgrade. Transaction T, holding a lock in mode M, can upgrade the lock to a more 

restrictive mode M ~ if the following condition is satisfied: No other  transaction 

holds the lock in a mode conflicting with M ~ and all transactions that retain the 

lock in a mode conflicting with M t are ancestors of T. 3 For example, transaction T, 

holding a lock in S-mode, can upgrade the lock to mode X if no other  transaction 

holds the lock in X- or S-mode, and all transactions retaining the lock in X- or 

S-mode are ancestors of T. 

In the extended scheme, holding and retaining a lock have exactly the same 

semantics as in Moss's scheme (1985). After downgrading a lock from mode M 

to mode M ~, a transaction holds the lock in mode M t and retains it in mode M. 

Since the transaction retains the lock in M-mode, it prevents transactions outside its 

hierarchy from holding the lock in a mode conflicting with M. On the other  hand, 

since it holds the lock in mode M ~ it keeps its inferiors from holding the lock in a 

mode conflicting with M ~. That  is, in contrast to the offering of  locks described in 

the basic scheme, downgrade allows a transaction to control how its inferiors can 

hold a lock. For example, if transaction T downgrades a lock from X- to S-mode, it 

prevents transactions outside its hierarchy from holding the lock in any mode, and 

precludes its inferiors from holding the lock in X-mode, but allows its inferiors to 

hold the lock in S-mode. Of  course, downgrading a lock to NL-mode is equivalent 

to offering a lock in the basic scheme. As stated above, the holder of  a lock can 

2. Downgrading to NL does not correspond to a general release of the lock. Release of such locks is limited 
to the sphere of the downgrader. 

3. This condition is equivalent to the condition that must be satisfied for a transaction acquiring a lock. 
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upgrade the lock to a mode  which is more restrictive than its current hold mode. 

This feature allows a transaction to upgrade a lock which it downgraded previously, 

e.g., a transaction that downgraded a lock to S-mode could again upgrade the lock 

to mode  X as soon as its children have committed. Of  course, transactions can 

also upgrade a lock without having downgraded it before. In the following, we will 

describe the extended locking rules. Italics will be used to point out the extensions 

added to Moss's scheme: 

Extended rule 1: Transaction T may acquire a lock in X-mode or upgrade a lock it 

holds to mode X if 

• no other transaction holds the lock in X- or S-mode, and 

• all transactions that retain the lock in X- or S-mode are ancestors of  T. 

Extended rule 2: Transaction T may acquire a lock in S-mode if 

• no other  transaction holds the lock in X-mode,  and 

• all transactions that retain the lock in X-mode are ancestors of  T. 

Extended rule 3: When subtransaction T commits, the parent  of  T inherits T 's  locks 

(held and retained). After  that, the parent  retains the locks in the same 

mode  (X or S) as T held or retained them before. 

Extended rule 4: When a top-level transaction commits, it releases all locks it holds 

or retains. 

Extended rule 5: When a transaction aborts, it releases all locks it holds or retains. 

If  any of its superiors hold or retain any of these locks, they continue to do 

so. 

Extended rule 6: Transaction T, homing a lock in X-mode, can downgrade the lock to 

mode S or NL. After performing the downgrade operation, T retains the lock in 

X-mode. 

Extended rule 7: A transaction homing a lock in S-mode can downgrade the lock to mode 

NL. After performing the downgrade operation, T retains the lock in S-mode. 

The mode  to which a T transaction downgrades a lock determines the modes 

in which the transactions of  T's  hierarchy cannot hold the lock. If the downgraded 

mode  is S, the transactions of T's hierarchy cannot hold the lock in X-mode  (since 

S conflicts with X). If the downgraded mode is NL, then the transactions in T's 

hierarchy can potentially hold the lock in any mode. 
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Figure 6. 

R holding X-lock 

Controlled downward inheritance. 

after R downgraded after U and T after EOTIT) 
X- to S-lock acquired S-lock 

- S-sphere 

Some examples may help to clarify the key issue of controlled downward 

inheritance. The effect of offering an X-lock can be depicted in the scenario in 

Figure 4. A similar scenario in Figure 6 illustrates the downgrading of an X-lock 

to mode S. (Downgrading of S-locks is handled in an analogous manner). The 

essential issue observed in this example is that only S-locks may be granted within 

R's hierarchy, i.e., no X-sphere is established when the lock is downgraded to mode 

S. 

Given these extended locking rules, the problem described in the design en- 

vironment example above can be solved very easily (see Figure 5). After having 

generated object O, transaction B downgrades the X-lock it holds on O to mode 

S. Since it then holds the lock in S-mode, C and D are prevented from holding 

the lock in X-mode which guarantees that they cannot change O or block each 

other. Note that since B retains the lock in X-mode after downgrading the lock, 

transactions A and E cannot hold the lock in any mode, i.e., A and E can neither 

reead nor write O. After commit of C and D, B can upgrade the lock once again. 

4.2 Correctness Concerns 

As stated in Section 3.1, upward lock inheritance at commit ensures that sub- 

transactions act as firewalls in case of a failure and that all subtransactions of a 

TL-transaction remain isolated. Since we have proposed the concept of controlled 

downward inheritance, we now discuss the impact of this concept on the correctness 

of concurrent executions. 
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Tl_,-transactions are serializable because 

• each transaction in a TL-transaction tree locks each data object before 

accessing it 

• all locks held by transactions in a transaction tree are released, but not 

before the TL-transaction commits. 

This locking protocol corresponds to strict 2-phase locking for TL-transactions. 

It determines their serialization order by the time of  their commit, as it holds for 

single-level transactions. 

Now let us discuss the visibility of data changes and their induced dependencies 

within a transaction tree. In Moss's nested transaction model (1985) the following 

holds: 

• A transaction may see changes only of those transactions that are committed 

and on which it depends. 4 We say transaction T depends on a transaction 

"I '~, if undoing the effects of ~ causes the abortion of T. 

• Once transaction T has seen a state of an object, this state never will be 

seen or changed by another transaction before T commits. 

In contrast, our model allows for controlled downward inheritance which makes 

uncommitted data available to inferiors. For this reason, we observe the following 

properties: 

• Transaction T may see changes only of 

- those transactions that are committed and on which T depends, 

- those transactions that are superiors of T 

• An object state seen by transaction T may be changed by inferiors of T. 

A transaction may see changes of superiors only if these transactions have 

downgraded the corresponding locks explicitly. That is, whether or not a transaction 

may see the effects of superiors can be controlled by the application logic. In terms 

of  failures a transaction seeing changes of superiors causes no problems because, 

if a superior aborts, this transaction is aborted also. Note that once a transaction 

has seen an object, the object cannot be changed by a superior again before this 

transaction commits. If a transaction downgrades a lock, it must be aware of the 

4. Remember that the effects of a committed (sub) transaction only become permanent when the top-level 
transaction commits. The reason why a transaction may only see data of committed transactions is to ensure 
that it is aborted when the effects of one of these transactions is wiped out due to a failure. In the transaction 
hierarchy of Figure 5a, transaction E may see changes from transaction C, but not before B has committed. 
When B commits, E becomes dependent on C as a failure, wiping out effects of C, which causes A and, of 
course, E to be aborted. 
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consequences of the reduced isolation. Downgrading from S- to NL-mode may 

cause unrepeatable reads from the downgrading transaction's point of view. With 

X-locks two cases must be considered: Downgrading from X- to NL-mode and from 

X- to S-mode. In the first case, from the downgrader's point of view lost updates 
and unrepeatable reads are possible in principle. However, a much more flexible 
cooperation is enabled where the correctness of execution has to be enforced by 
application level protocols. In CSCW (computer-supported cooperative work)-like 

applications, it is even conceivable that this kind of high-level control is based on 

so-called social protocols between end users. In the latter case, which prevents 

the inferiors of the downgrading transaction from keeping the downgraded lock in 

X-mode, neither unrepeatable reads nor lost updates can occur. 

An important question is whether the firewall property of nested transactions is 

in some way affected by the downgrading mechanism. A transaction downgrading a 

lock does not become dependent on the outcome of its inferiors. When a child fails, 

its updates (possibly on objects with downgraded locks) are rolled back. Therefore, 
the downgrading transaction is not affected and may create another child to do the 

work. 

In summary, the fact that a transaction may see changes from superiors causes 
no problems, The firewall property is not affected by the downgrading mechanism. 

Lost updates may only happen when locks are downgraded from X- to NL-mode. 
In this case, which provides the highest degree of flexibility in terms of cooperation, 

application-level concurrency control mechanisms are needed to ensure the required 

form of correctness. Since the application itself can decide how and when to use 

the downgrading mechanism, it can adapt the level of system-supported isolation to 
its cooperation needs and its facilities for application-specific concurrency control. 

4.3 Generalization of Lock Modes 

Thus far, we have described and refined a concurrency control scheme for S-X 

locks on "fiat," non-overlapping objects (e.g., tuples or relations); in particular, 

we have developed a mechanism for controlled downward inheritance of locks in 

nested transactions. Closer consideration reveals that the lock modes (comprising 

only S and X so far) may be enriched by special modes to better adapt concurrency 

control to access patterns in practical applications. For example, tailored lock 
modes for frequent kinds of object access could be helpful to more effectively 

exploit the inherent parallelism of concurrent transactions. Furthermore, the use of 

semantic knowledge could greatly optimize some contention patterns of data access. 

However, this requires enhanced lock modes; in particular, it presupposes the ability 
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to introduce user-defined lock modes (Allchin, 1983; Schwarz and Spector, 1984). 

Such a refinement of lock modes may be easily integrated into our model 

presented so far. Assume that the data model remains unchanged. Then our 

locking rules stated in Section 4.1 for S-X schemes can be generalized for basic 

and/or user-defined lock modes as follows: 

Generalized Rule 1: Transaction T may acquire a lock in mode M or upgrade a lock 

it holds to mode M if 

• no other transaction holds the lock in a mode that conflicts with M, and 

• all transactions that retain the lock in a mode conflicting with M are ancestors 

of T 

Generalized Rule 2: When subtransaction T commits, the parent of T inherits T's 

locks (held and retained). After that, the parent retains the locks in the same 

mode as T held or retained them before. 

Generalized Rule 3: When a top-level transaction commits, it releases all locks it 

holds or retains. 

Generalized Rule 4: When a transaction aborts, it releases all locks it holds or 

retains. If any of its superiors hold or retain any of these locks, they continue 

to do so. 

Generalized Rule 5: Transaction T, holding a lock in mode M, can downgrade the 

lock to a less restrictive mode, M I. After downgrading the lock, T retains it 

in mode M. 

The locking rules stated above allow upward as well as controlled downward 

inheritance for arbitrary lock modes. If generalized rule 5 were omitted, we would 

get a generalization of  Moss's scheme (1985) which only provides for upward 

inheritance. 

4.4 Use of Hierarchical Locks in Nested Transactions 

Let us now reconsider our underlying data model which has some serious drawbacks 

for realistic concurrency control situations. In particular, the fiat object structure 

that requires disjoint lockable units of a given granule makes it impractical for 

large databases when small granules are needed for some transactions and larger 

ones for others. To improve selective access to data granules of  varying sizes, 

hierarchical locking schemes have been proposed. In our  context, hierarchically 

structured objects introduce a certain complexity, due to orthogonal transaction and 

data hierarchies. 
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As mentioned earlier, locking of disjoint partitions of a given size is insufficient 

for performance reasons in most applications. The choice of lockable units affects 
locking overhead of a transaction (space for lock control blocks, time to request 

and release locks) as well as concurrency among transactions. Hence, it implies a 

dichotomy of increased concurrency using fine lockable units and higher cost for 

lock management. While small granules are appropriate for "simple" transactions 
accessing a few tuples, they are intolerable (and hard to implement) for "complex" 

transactions accessing a large fraction of the database. Assume, for example, a 
sequential scan of a relation with 106 tuples; having only tuples as Iockable units 

would require 106 consecutive lock requests and storing of just as many lock control 

blocks (of course, in main memory for performance reasons). Hence, coarser 

granularity locks are sometimes more natural and efficient (e.g., when sorting or 

reorganizing a relation). 
These arguments should convince every DBMS designer that an object hierarchy 

for locking purposes has to be provided. In fact, every "practical" DBMS supports 

such a hierarchy of typically 2, 3, or 4 levels (e.g., System R has a generic 4-level 

hierarchy: database, segment, relation, tuple; Astrahan et al., 1976). 

An appropriate hierarchical locking scheme was proposed for fiat transactions 
(Gray et al., 1976). Two key ideas allowed for the design of a scheme that could be 

adapted to a transaction's needs for either locking a few items using a line lockable 

unit or locking larger sets of items with larger lock granules: 

• A node, R, in a hierarchy can be locked explicitly. As a result, its entire 

subtree is implicitly locked, too. 

• A transaction, locking part of the hierarchy, places "Intention mode" locks 

along the path to R to avoid a situation where an ancestor node of R is locked 

in an incompatible mode as compared to R. I-locks merely serve as place 

holders, signalling the fact that locking of a subtree is done at a lower level 

of the hierarchy, thereby preventing incompatible locks from being granted 

for the corresponding nodes. 

Besides the known modes, S and X, an Intention Share mode (IS) and an Intention 

eXclusive mode (IX) were introduced to express a transaction's intent to read and 
to update or read an object at a lower level of the hierarchy, respectively. A further 

refinement is the Share and Intention eXclusive mode (SIX) which grants an S-lock 

for the entire subtree to a transaction. In addition, it indicates the transaction's 

intention to request X-locks explicitly for "finer" object granules later on. Table 1 
(from Gray et al., 1976) shows the compatibilities among request/lock modes which 

derive from these semantics. 
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Table 1. Compability modes for hierarchical locking, 

Compatibility 

Mode of lock 

Mode of request NL IS IX S SIX X 

NL 

I$ 

IX 

S 
SIX 

yes yes yes yes yes yes 

yes yes yes yes yes no 

yes yes yes no no no 

yes yes no no no no 

yes no no no no no 

For a comprehensive discussion of the precise effects of lock modes end their competibilities 
see Grey (1978). 

4.4.1 Basic Locking Rules for Object Hierarchies. We have now introduced the 
essential ingredients of both generalized locking rules for nested transactions and 

appropriate lock modes for an object hierarchy. How can we combine both together? 

We start with the basic concurrency control model where only upward inheritance is 

allowed. For the transaction hierarchy, our generalized rules 1--4 apply. Furthermore, 

when acquiring a lock on an object, O, we have to consider additional rules resulting 

from the object hierarchies. 

As opposed to fiat objects, an approach for controlling concurrent access to an 

object hierarchy has to obey the following rules (Gray et al., 1976): 

. Instead of locking an object directly, every transaction has to observe a strict 

hierarchical protocol requesting appropriate locks from root to leaf in the 

object hierarchy (denoted in the following as root-to-leaf rule.) A lock is 

granted at each level according to the compatibilities expressed in Table 1. 

As soon as a lock is obtained, a transaction may request another appropriate 

lock at the same or at the next lower level. 

2. Level-to-level transitions should obey the following constraints called level- 
to-level rules: 

• IS held at a node only allows IS and S to be requested on descendant 

nodes. 

• IX granted for a node carries the privilege to request IS, IX, S, SIX 

and X at the next level. 
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Table 2. Locks in an object hierarchy. 

Object hierarchy 

Database DB 
Segment S 
Relation R 
Tuplesi 

Before EOT(T1) 

h:lX 
h:lX 
h:X 

After EOT(T1) 
P T2 T3 

r:lX 
r:lX 
r:X 

h:lX h:lS 
h:lX h:IS 
h:lX h:lS 

h:Xont] h:Sont3 
h:Xont2 h:Son 

• S and X allow read and write access (respectively) to all descendants 

of the node without further locking. 

• SIX carries the privileges of S and IX; hence, while S mode allows 

read only access to all descendants, write access at lower levels may 

be requested by IX or X at the next level. 

As far as acquiring locks is concerned, the rules obtained for the transaction 
hierarchy and the object hierarchy must be satisfied independently. Following the 

root-to-leaf rule, transactions must request their locks from root to leaf in the object 

hierarchy. Whether or not a lock for an object may be granted in a particular mode 

is decided according to the level-to-level rules, the generalized locking rules (1-4), 

and the lock mode compatibilities depicted in Table 1. Since the rules introduced 

for the object hierarchy are independent of the underlying transaction model and 

the rules for both hierarchies are applied independently, our protocol and that 

proposed by Gray et al. (1976) for flat transactions only differ in the rules implied 

by the transaction model. 
An example may clarify the issues involved in lock retainment for object hier- 

archies. In the scenario of Table 2, T1 passes on its hierarchical locks for X-access 

on relation R to its parent P at EOT(T1). After having retained the locks, P and 

its inferiors Ti are qualified to acquire read or write access on R or to tuples of R. 

Table 2 shows the locks of Tz and Ta for obtaining write and read access on tuples 

of R. 

4.4.2 Upgrading and Downgrading Hierarchical Locks. Although we have suc- 

ceeded in tying together both hierarchy types (transaction and object), we have 

so far obtained only a more economical and efficient solution of the concurrency 

problem than compared to the basic approach in Section 3.1. Since we cannot 
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Table 3. Inconsistent downgrading of a lock. 

Object hierarchy P P T 
after downgrade using downgraded lock 

Database DB 
Segment S 
Relation R 

Tuplesi 

h:lX 
h:lX 

h:SIX 
h:X on t] 
h:X on t2 

h:lX 
h:lX 

r:SIX/- 
h:X on tl 
h:X on t2 

h:lX 
h:lX 

h:SIX 
h:X on t3 
h:X on 

make a transaction's objects available to its inferiors, all arguments discussed earlier 

apply. Therefore, it is desirable to enable controlled downward inheritance in the 

presence of object hierarchies, too. 

Assume, for example, a transaction P holds an SIX-lock on a relation, R, and 

wants to permit write access to tuples of R by its inferiors. Using the same kind of 
inheritance mechanism as in Section 4.1, P has to downgrade its lock on the object 

to an appropriate mode. To do so, P retains the SIX-lock on R (r:SIX) and holds 

R in IX-mode (h:IX). Note that r:SIX only prevents incompatible locks on R from 

being granted to non-descendants, but not to inferiors. 

Let  us examine whether such a straightforward approach may be applied. In 

the scenario depicted by Table 3, P holds R in SIX-mode and some tuples of R 

in X-mode. We assume that P downgrades the SIX-lock on R. Requesting a lock 

by an inferior T implies that T obeys the root-to-leaf and the level-to-level rules. 

Hence, as soon as T has acquired appropriate locks for the ancestors of R, it can 

request a compatible lock for R. The presented scenario is meant to serve as a 

counter-example for arbitrary inheritance of hierarchical locks and aims at clarifying 

a new issue: Inheritance of objects in data hierarchies. It shows that P holds some 

locks at the tuple level while it has downgraded the corresponding lock at the 

relation level to NL-mode, i.e., without particular protection. 

In Table 3, T acquires an SIX-lock on R giving read access to all tuples of R. 

On the other hand, P still has some tuples locked in X-mode, namely tl and t2. 

These exclusively locked tuples would be read by T, since read access to tuples of 

R need not be checked by T anymore. Even worse, write-write interference on the 
same tuples could occur, if T had locked R in X-mode. Of course, the sketched 

examples may cause severe consistency problems. These anomalies would not occur 

if the lock on relation R, together with all locks on its tuples, had been downgraded. 
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Control given by the hold-mode alone would not guarantee the desired consistency 

as exemplified by only downgrading R to S-mode. 

The key observation in the example above is that downgrading a lock without 

considering the whole object hierarchy may lead to inconsistencies. The same can 

be shown for upgrading locks in object hierarchies. For example, if a transaction has 

locked a database in IS-mode and upgrades an S-lock that it holds on a segment of 

this database to X-mode, similar inconsistencies may occur. Obviously, to prevent 

violations of the level.to-level rules, upgrading or downgrading of a lock may enforce 

upgrade or downgrade operations on other locks held in the object hierarchy. 

When a transaction T upgrades a lock held on an object, O, within an object 

hierarchy, it might be necessary to also upgrade locks of T held on superior objects 

of O in order to satisfy the level-to-level rules. For example, if T holds an IS-, 

IS-, and S-lock on a database, a segment of this database and a relation of this 

segment, respectively, the level-to-level rules enforce the upgrading of both IS- 

locks to IX-mode before the relation lock can be upgraded to X-mode. Because 

upgrading the locks on an object and superior objects is not performed in an 

atomic manner, upgrading should be done in a root-to-leaf direction. Of course, 

an upgrade operation can only take place if the generalized locking rules 1--4 are 

fulfilled. Otherwise, upgrading is blocked which may cause deadlocks to occur (see 

Section 5). 

Because upgrading a lock on an object, O, converts the mode of the locks to 

a more restrictive one, the level-to-level rules are not violated as far as locks on 

inferior objects of O are concerned. However, due to the upgrade operation, locks 

held by the upgrading transaction on inferior objects of O may become useless. 

For example, when a lock on relation R is upgraded from SIX- to X-mode (lock 

escalation; Bernstein et al., 1987), all locks held by the upgrading transaction on 

individual tuples of R are not needed anymore. A clean approach to handling 

those useless locks is to release them as part of the upgrade operation. An actual 

implementation may optimize this cleanup process using pragmatic arguments (e.g., 

see System R; Astrahan et al., 1976). 

Downgrading a lock held by transaction T on object O is confined to the 

subhierarchy with O as the root object. Superiors of O in the object hierarchy 

are not involved because downgrading cannot violate the level-to-level rules as 

far as superiors of O are concerned. However, with respect to the objects in its 

subhierarchy, downgrading the lock on O may cause a violation of the level-to-level 

rules: if T holds a lock on subobject O' of O, then after downgrading, the mode 

of the lock held on O t may violate the level-to-level rules. For example, assume T 

holds an IX-lock on a relation, R, and an X-lock on a tuple, t of R. If T downgrades 
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Table 4. Consistent lock modes of subobjects. 

Object O of transaction T Consistent modes for locks of T 
downgraded to mode on subobjects of O 

NL 
IS 
IX 

SIX 
S 

NL 
NL, IS, S 

NL, IS, IX, SIX, S, X 
NL, IX, X 

NL 

Table 5. Consistent downgrading of a lock. 

Object hierarchy P P T 

Database DB 
Segment S 
Relation R 

Tuplesi 

h:lX 
h:lX 

h:SIX 
h:X on tl 
h:X on t2 

h:lX 
h:lX 

r:SIX/h:lX 
r:X/h:S on t l  

r:X/- on t2 

h:lX 
h:lX 

h:SIX 
h:S on t l  
h:X on t2 

its lock on R from IX to IS, then T's X-lock on t is not consistent anymore with the 

lock mode of its parent object. As a consequence, downgrading the lock on O may 

require downgrading locks held by T on objects in the subhierarchy of O, such that 

the level-to-level rules are satisfied. In Table 3, this would require downgrading T's 

lock on tuple t to S- or NL-mode. 

Table 4, derived from the level-to-level rules, lists for each possible mode to 

which the lock on O can be downgraded, the modes in which T can hold locks 

on the objects in the subhierarchy of O without violating the level-to-level rules. 

For example, if the lock is downgraded to IS-mode, T can hold subobjects of O 

either in NL-, IS- or S-mode. If subobjects are held in more restrictive modes, 

the locks on these objects must be downgraded to one of the listed modes. Note, 

since downgrading an entire subhierarchy cannot be done atomically, downgrading 

should be performed in a leaf-to-root direction. 

By observing these rules, consistency-preserving downward inheritance of locks 

may be easily achieved by P in the example in Table 3 by downgrading the tuples 
tl and t2 before downgrading relation R. Control of lock usage is then possible by 
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downgrading to the appropriate modes. In Table 5, the locks in the subhierarchy 

of relation R have been downgraded to different modes which allows for selective 
control of access to R's subobjects. 

Downgrade of an intention mode (IS, IX, SIX) implies subsequent downgrades 

of locks on subobjects in order to satisfy the level-to-level rules. This, however, can 

be avoided by restricting downgrade operations to S- and X-locks. If T holds a lock 

on object O in S- or X-mode, then the entire subhierarchy of O is locked implicitly 

for T, that is, T does not hold any locks on subobjects of O. Hence, downgrade of 

O does not involve downgrading locks on lower levels of O's subhierarchy. 

Let us summarize our findings for controlled downward inheritance of locks 

in a data hierarchy. In general, downgrading of entire subtrees is necessary for 

hierarchical objects to guarantee consistency of downward inheritance in nested 

transactions. That is, if an M-lock held by transaction T on object O is downgraded, 

it might be necessary to downgrade locks held by T on inferiors of O in order to 
satisfy the level-to-level rules. If downgrading is allowed only on X- and S-locks, 

then the downgrading of a lock never involves locks held on lower levels of the 

object hierarchy, which simplifies the downgrade mechanism substantially. 

5. Deadlock Detection in Nested Transactions 

Lock protocols are pessimistic, that is, they block lock requests of data currently 

granted to another transaction in a conflicting mode, and therefore are not immune 

to deadlocks. Deadlocks may occur among transactions belonging to various TL- 

transactions and even among subtransactions within a single transaction hierarchy. 

For deadlock detection, we mainly follow the basic approach sketched in Moss 

(1985), which allows identification of existing deadlocks. In addition, we propose 

the maintenance of further information (waits-for-retained-locks relation) to detect 

opening-up deadlocks as early as possible. 

Deadlocks in nested transactions can be resolved by the concepts known for 

single-level transactions extended by some mechanisms tailored to the properties 

of the nested structure (Moss, 1985; Rukoz, 1991). When a transaction acquires 

a lock for data which is incompatible with a lock held by another transaction, the 

requesting transaction is deactivated: a direct wait for the lock holder occurs. All 

direct waits are maintained in a waits-for-lock relation in order to detect deadlocks. 

Using this waits-for-lock relation, deadlock detection can be performed immediately 

when a transaction is blocked or after some elapsed time. A deadlock exists if, and 

only if, a cycle is found in the waits-for-lock relation. For single-level transactions, 
such a cycle is composed of direct waits (or waits for lock) only. 
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Figure 7. Lock and commit waits. 
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As we have seen in Section 3.1, nested transactions have an inner structure which 

determines along which paths locks are inherited and whether retained locks can 

be acquired. Assume a subtransaction, R, waits for a lock held by a subtransaction, 

T. After commit of T, its locks are inherited and retained by its parent transaction, 

P (Figure 7). Now lock requests from transactions in P's X- or S- sphere can be 

served. Outside P's sphere, however, transaction R cannot acquire retained locks; 

for this reason, it has to wait for the retained locks of P. Such waits for retained 

locks are indirect waits. They propagate along the ancestor hierarchy of P. In the 

following, we will introduce two different waiting relationships: 

. Waits-for-retained-locks: A lock requestor, R, directly waits for a lock holder, 

T, if the mode of the requested lock is in conflict with the lock mode held by 

T. Let  Q be the highest ancestor of T that is not an ancestor of R. Then R 

indirectly waits for all ancestors of T up to Q until they commit. Those wait 

relationships are called waits-for-retained-lock. This wait rule implies that if 

requestor R is not in the same TL-transaction as T, then R must wait for 

the retained locks of T's TL-transaction, which are released at its commit." 

. Waits-for-commit: Since a waiting lock requestor, R, cannot proceed with its 

work, all ancestors of R may have to wait. In Figure 7, U cannot commit until 

R does, and U's parent cannot commit until U does, that is, all ancestors of  

R cannot commit before R does. We denote this kind of wait relationship by 

waits-for-commit, which can be represented by the parent-child relationships, 

as outlined in Figure 7. Due to this dependency, an ancestor of R may wait 
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Figure 8. Deadlock situations. 
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for all transactions for which R directly or indirectly waits. Of  course, waiting 

may be broken up as soon as T or one of its ancestors aborts. As illustrated 

in Figure 7, R directly waits for T and indirectly waits for retained locks for 

P, ..., Q. Furthermore, since S, ..., U wait for commit of  R, they also wait for 

T, ~ ... Q. 

In Section 4.4, hierarchical locking was employed to nested transactions. The key 

observation exhibited is that object and transaction hierarchies are orthogonal. As a 

consequence, further aspects are not added to deadlock detection when hierarchically 

composed objects are used. As illustrated by Figure 7, waits-for relations occur 

among transactions; thus, the rules of the hierarchical locking protocol do not 

interfere with the waits-for-lock and waits-for-commit relationships as long as the 

root-to-leaf and the level-to-level rules are observed. 

5.1 Detection of Existing Deadlocks 

In order  to handle deadlock detection in nested transactions successfully, we have 

to combine the various waits-for relations. Considering the waits-for-lock relation, 

only direct-wait deadlocks can be found, as indicated in Figure 8a, whereas other 

kinds of deadlocks cannot be detected. This is true no matter  whether a deadlock 

occurs within a TL-transaction or among subtransactions of various TL-transactions. 

The cycle in Figure 8a consists of direct waits only, that is, all transactions in the 

cycle cannot proceed any further. In Figure 8b, however, another  kind of  cycle is 

encountered; this situation does not mean that progress has stopped everywhere 

in the cycle. T waits for a lock of Q; Q . . . .  , P may proceed for some time, but 

cannot commit without aborting T Since T must be rolled back anyway, the best 

decision is to detect and resolve this ancestor-descendant deadlock immediately. A 
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request of T, causing a lock wait on its ancestor Q, can be detected only by using 

the combined waits-for-lock and waits-for-commit relation information. 

Situations such as those illustrated by Figure 8b would frequently be caused 

when descendants refer to exclusively used data in an uncoordinated way. Controlled 

downgrading of locks, however, provides a mechanism to avoid such cycles, that is, 

application knowledge is applied to reduce the possibility of  a deadlock involving lock 

and commit waits. Coordinated work requires that a parent, P, should downgrade the 

lock on an object, O, currently granted to P, before it creates a child, T, to do some 

work on O. Then T can acquire the lock for O in a non-conflicting mode without 

causing a blocking situation. Downgrading enables deadlock-free cooperation, but  

cannot enforce it; if T requests the lock in a mode more restrictive than the offered 

one, a deadlock may arise. 

Upgrading a lock may lead to wait situations and therefore to deadlocks as 

they occur in single-level transactions. Assume in Figure 7 that T and R already 

hold an S-lock on object O. Now, if R upgrades the lock to mode X, R has to 

wait until a direct ancestor of R retains the lock or, ff T and R are not in the 

same TL-transaction, until T's TL-transaction has committed. Hence, our wait rule 

applies to lock upgrades, too. 

5.2 Detection of Opening-up Deadlocks 

The combined use of waits-for-lock and waits-for-commit relations turned out to 

be sufficient for nested transactions to detect existing cycles embodying direct- 

wait or ancestor-descendant deadlocks. Since a waits-for-lock relationship is only 

represented between the requestor and the holder of a lock (or, after commit of  the 

lock holder, the current retainer), waits-for-retained-lock relationships between the 

requestor and all ancestors of the holder (retainer) are not explicitly established in the 

waits-for information. For nested transactions, however, these waits-for-retained- 

lock relationships should be taken into account to provide for early deadlock 

detection. This may save a lot of useless work as shown in the scenario of  Figure 9. 

Figure 9 represents a deadlock-free situation, since transactions T, D, and possibly 

others can proceed with their work. R waits for D, and G for T to obtain the 

requested locks. All other waits indicated are waits-for-commit. R indirectly waits 

for A, which is the oldest ancestor of D that is not an ancestor of R. On the other 

hand, G indirectly waits for V. If we evaluate this information (R ~ A, G ~ V), 

we can immediately detect a cycle opening up. 

Optimistically, one may not care about such an opening-up deadlock, since an 

abort of any transaction involved would eventually avoid the actual deadlock. For 
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example, the abort of any transaction in Figure 9 resolves the opening-up deadlock 

before all progress ceases within the TL transactions V and A. However, transaction 

aborts are regarded as exceptions and should not be considered a remedy to break 

opening-up deadlock cycles. 

In contrast, a pessimistic approach usually saves work. If we use the transitive 

waits-for-commit and waits-for-retained-lock relationships of all ancestors, e.g., of  

V on R and A on G, as well as R on A and G on V, we can construct a direct 

(future) cycle between V and A and can roll back either V or A. However, deadlock 

detection and resolution at the level of  the highest non-common ancestors of  the 

transactions which have caused the conflict may not be appropriate. Deadlock 

resolution is typically based on transaction rollback and should affect minimal data 

granules or work lost. 

For this reason, special measures should be used to determine an opening-up 

deadlock as early as possible and at the suitable level in the nested transaction 

hierarchies. In addition to waits-for-lock and waits-for-commit relations, the waits- 

for-retained-lock relationships have to be included in the waits-for information. For 

example in Figure 9, the relationships R ~ C, ..., R ---r B, R --~ A, as well as G 

P,..., G ~ Q, G --~ V have to be represented in order  to successfully search 

for opening-up cycles. Once an opening-up deadlock is detected, all transactions 

involved have to be considered to determine a low-cost victim for rollback. Since 

rollback of a parent transaction implies rollback of all its inferiors (committed 

and uncommitted), rollback of a child transaction is always cheaper  than that of 

the corresponding parent transaction. For this reason, rollback of  a lock holder 

(retainer) or a lock requestor is always cheaper than a rollback of  their ancestors 
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in a potential cycle; hence, the set of transactions from which to choose a rollback 

victim is the set of lock holders (retainers) and lock requestors. In Figure 9, this 

set of candidates is D,T and R,G, respectively. 

Note that, in contrast to Moss (1985), in our transaction model these transactions 

must not be leaves in the current transaction tree. However, the same methods 

and cost measures could be applied for breaking up the cycle, in principle. Since 

candidate transactions can occur arbitrarily in the transaction hierarchy, resource 

estimation involving the evaluation of subtrees may become much more complicated. 

To summarize, waits-for-retained-lock relationships are evaluated only to detect 

opening-up deadlocks as early as possible. Since candidate transactions for breaking 

up the cycle are lock holders and lock requestors, the mechanisms for deadlock 

resolution can be derived from those provided for single-level transactions. 

Early detection of opening-up deadlocks saves transaction work. However, 

as discussed above, the additional representation and management of waits-for- 

retained-lock relationships require some overhead. If deadlocks are infrequent, a 
particular system implementation has to take this trade-off into account. 

6. Comparison of Some System Implementations 

In the following, we will compare some systems that implement nested transactions 

with regard to the degree of parallelism supported, the applied concurrency control 

schemes, and the way deadlocks are treated. In particular, we will consider ARGUS 

(Liskov et al., 1987; Liskov, 1988), Camelot (Spector et al., 1988; Epinger et al., 

1991), Clouds (Ahamad et al., 1987; Dasgupta et al., 1989), Eden (Alines et al., 

1985; Pu and Noe, 1988), and LOCUS (Mueller et al., 1983; Weinstein et al., 1985). 

Table 6 summarizes the results. 

While Camelot, Clouds, Eden and LOCUS allow for parent/child as well as 

sibling parallelism, ARGUS does not permit a parent transaction to run in parallel 

with its children, resulting in simpler locking rules (Liskov et al., 1987). All the 

systems considered are based on two-phase locking; however, only Clouds and 

LOCUS support downward inheritance. While the downward inheritance scheme 

in LOCUS requires a lock holder to explicitly state when downward inheritance 

may potentially take place, transactions in CLOUDS are allowed to share the 

locks of their ancestors in a totally uncontrolled manner (Allchin, 1983). When a 
transaction closes a file in LOCUS, the lock held on this file becomes a retained 

lock. Although it supports downward inheritance by means of an explicit offering 

mechanism, the LOCUS scheme is uncontrolled in the sense that a lock holder 
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Table 6. Comparison of system implementations. 

Controlled 

Parent/child Sibling Downward downward 

parallelism parallelism inheritance inheritance 

Argus no yes no no 

Camelot yes yes no no 

Clouds yes yes yes no 

Eden yes yes no = no 

LOCUS yes yes yes no 

Object Deadlock 

hierarchy avoidance & 

support detection 

timeout-based 

no resolution 

timeout-based 

no resolution 

timeout-based 

no resolution 

wound-wait 

no avoidance 

schema 

neither 

resolution 

no nor avoidance 

offering a lock cannot control in which mode its descendants may acquire this lock. 
None of the five systems supports controlled downward inheritance, neither do they 
support object hierarchies. ARGUS, Camelot, and Clouds implement deadlock 
resolution based on a timeout mechanism, whereas Eden applies a wound-wait 
deadlock avoidance scheme (Rosenkrantz et al., 1978). LOCUS neither performs 
deadlock detection, nor implements an avoidance scheme. However, it provides an 
interface to operaating system data, permitting a system process to detect deadlock 
by constructing a wait-for-graph. In this manner, different deadlock resolution 
strategies may be implemented (Weinstein et al., 1985). 

7. Conclusions 

We have presented an investigation of concurrency control in nested transactions. 
The primary focus of our article has been on achieving a high degree of intra- 
transaction parallelism within nested transactions by using locking protocols. 

Our initial concurrency control mechanism for nested transactions was based on 
S-X locking protocols on fiat objects which seriously limit parent/child parallelism. 
Therefore, the concept of downward inheritance was introduced and relined to 
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controlled downward inheritance in order to enable a transaction to restrict the 

access mode of its inferiors for an object. Controlled downward inheritance turned 

out to be a useful concept for achieving safe parent/child cooperation on data 

structures to be read or written in a shared manner. 

Practical applications sometimes have a need for specialized lock modes as well 

as multi-level object hierarchies offering efficient ways to lock granules of  varying 

sizes. Therefore,  we have generalized the locking rules for nested transactions to 

be applied for richer access modes on flat objects. Most importantly, this kind 

of generalization was a prerequisite for the integration of transaction and object 

hierarchies, since the appropriate use of object hierarchies implied suitable access 

modes beyond S- and X-locks. As a result, we could combine both types of  

hierarchies in a general concurrency control model and then could enhance the 

model again, using the concept of controlled downward inheritance, for the even 

richer set of access modes. Finally, we studied the principles of deadlock detection in 

nested transactions. In contrast to single-level transactions where the waits-for-lock 

relation is sufficient to search for waiting cycles among transactions, detection of  all 

deadlocks in nested transactions further requires the maintenance of the waits-for- 

commit relation and its combined use with the waits-for-lock relation. If deadlocks 

are frequently anticipated, opening-up deadlocks, which may span transaction trees, 

should be detected as early as possible to save transaction work. For this purpose, 

we have additionally introduced the waits-for-retained-lock relation. 
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