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Abstract. In a multi-query environment, the marginal utilities of allocating ad- 
ditional buffer to the various queries can be vastly different. 'nae conventional 
approach examines each query in isolation to determine the optimal access plan 
and the corresponding locality set. This can lead to performance that is far from 
optimal. As each query can have different access plans with dissimilar locality sets 
and sensitivities to memory requirement, we employ the concepts of memory con- 
sumption and return on consumption (ROC) as the basis for memory allocations. 
Memory consumption of a query is its space-time product, while ROC is a measure 
of the effectiveness of  response-time reduction through additional memory con- 
sumption. A global optimization strategy using simulated annealing is developed, 
which minimizes the average response over all queries under the constraint that 
the total memory consumption rate has to be less than the buffer size. It selects 
the optimal join method and memory allocation for all query types simultaneously. 
By analyzing the way the optimal strategy makes memory allocations, a heuristic 
threshold strategy is then proposed. The threshold strategy is based on the concept 
of ROC. As the memory consumption rate by all queries is limited by the buffer 
size, the strategy tries to allocate the memory so as to make sure that a certain 
level of ROC is achieved. A simulation model is developed to demonstrate that 
the heuristic strategy yields performance that is very close to the optimal strategy 
and is far superior to the conventional allocation strategy. 

Key Words. Buffer management, query optimization, simulated annealing, join 
methods, queueing model, simulation. 

1. Introduction 

D a t a b a s e  systems have genera l ly  re l ied  on m e m o r y  buffers  to r educe  d isk  accesses .  

Even  with  the  t rend  o f  ever - increas ing  m e m o r y  size, the  m e m o r y  buffer  usual ly  can 
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not accommodate all the databases in the system, and some memory management 

strategy is needed to make the best use of the memory space. The traditional 

approach to memory management in a virtual memory environment often uses a 

least recently used (LRU) replacement policy, which replaces the least recently used 

page with a newly referenced page to capture temporal locality. For a network 

or hierarchical database system, reference strings tend to be unpredictable except 

for batch processing. A study of network databases can be found in (Effelberg 

and Loomis, 1984). These types of systems seem to fit reasonably well with the 

working set model. However, queries to relational databases (Codd, 1970) imply a 

lot of information on data references. The query optimizer analyzes each query and 

generates an access plan which contains detailed information on how each relation 

is accessed. Although some variant of the LRU policy often is used for buffer 

management, it is not considered to be well suited for the reference patterns of 

relational databases (Stonebreaker, 1981). 

In a relational database environment, queries that do not involve join operations 

have only a small memory requirement and we therefore concentrate our attention 

on how join operations are affected by memory availability. Three methods have 

commonly been used for performing the join: hash join, sort-merge join, and nested- 
loop join. Each of these join methods can operate under different memory allocations 

with dissimilar performances. There is some minimum amount of working storage 

required for each join method. The working storage includes the I/O buffering for 

each joining relation and the additional storage, (e.g., for the hash table under the 

hash-join method or the sort buffer, like the tournament tree [Knuth, 1975]), under 

the sort-merge join method. Beyond the minimum requirement, more storage may 

be allocated to speed up the query. In hash joins, the amount of storage allocated 

for the hash table determines the proportion of the tuples needed to be read more 

than once (Shapiro, 1986). In sort-merge joins, the amount of storage available 

for the sort buffer determines the number of sorted runs generated after the sort 

phase. 

Previous research directed toward using information available about reference 

patterns for buffer management has been described (Sacco and Schkolnick, 1982, 

1986; Chou and DeWitt, 1985). In Sacco and Schkolnick (1982, 1986) a hot-set 

model is proposed for buffer allocation. The basic idea is to determine a hot 

set for every query and allocate sufficient buffer space to cover the maximum hot 

set that will fit the buffer constraint before executing a query. It can lead to 

substantial performance improvement over the LRU strategy. However, this is 

a local optimization for each query to provide it with sufficient buffer space to 

minimize disk I/O accesses. The potential buffer contention among queries is not 
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addressed in the buffer allocation strategy. As pointed out in Sacco and Schkoinick 

(1986), straightforward implementation of this idea can lead to problems such as 

infinite waits, long queries blocking short queries, etc. Some ad hoc techniques 

to relieve these problems are also suggested. Active instances (due to references 

from different queries) of a file are given different buffer pools and are managed by 

different replacement disciplines (Chou and DeWitt, 1985). A DBMIN algorithm 

proposed for estimating the buffer allocation and replacement discipline for each 

file instance of a query is described. DBMIN is based on a query locality set model 

to capture relational query behavior. All these works investigate the "right" buffer 

allocation for a given query plan or access path selection without considering the 

effect of other queries. 

In the presence of multiple queries simultaneously under execution, how much 

memory to be allocated to each query and which join methods to be employed can 

not easily be determined. For each query type, different access plans show dissimilar 

sensitivities to memory allocation and thus have distinct memory requirements. The 
best access plan for a given memory allocation is not necessarily the best plan for 

another memory allocation. Even for a pre-selected join method, like hash join or 

sort-merge join, the appropriate working storage to be allocated in a multi-query 

environment is far from clear. The return on memory allocation to dissimilar queries 

can be vastly different. In one extreme, one can allocate just the minimum working 

storage requirement to each query if memory is the highly contended resource. 

The other extreme is to allocate the maximum requirement to each query--to 

accommodate the whole relation in the hash table under hash join or to sort the 

whole relation in one sorted run under sort-merge join--if there is ample memory. 

However, in most cases, one needs to allocate something in between the two extreme 

points, and there is a big gap between the minimum and the maximum requirement. 

(The minimum, as we shall see later, is roughly the square root of the maximum.) 

This is especially the case when the relation size is larger than the buffer size. The 

concept of a hot set or query locality set does not provide a meaningful indication 

of the appropriate amount of memory allocation in this case. Under the hot set 

strategy the minimum requirement is allocated, whereas under the query locality 

set approach the maximum allowed for any query is allocated similar to a fixed 

allocation scheme. Cornell and Yu (1989) proposed an integrated strategy based on 

an integer programming approach to allocate storage and make access plan selection 

when arrival rates of all query types are known. The allocation strategy specifically 
considers which relations should be kept in the memory during the join. In Ng et 

al. (1991), generalizing DBMIN, a class of algorithm based on marginal gains is 

proposed and studied. It shows that suboptimal allocations, when handled properly, 



can lower the waiting time for buffer and improve overall system performance. 

Here we introduce the concept of return on consumption (ROC) to guide the 

memory allocation. The memory consumption of each query is defined to be its space 

time product. ROC is introduced as a measure on the effectiveness of additional 

memory consumption on response time improvement. Note that the cost of allocating 

additional memory depends not only on the amount of memory allocation but also 

the length of time the memory is in use. That is to say, memory consumption is a 

better measure of the cost of additional memory allocation. Consider an example. 

Assume that query A has a 10-see response time at a 50-page memory allocation 

and query B has a 20-see response time at a 40-page allocation. Let's assume that 

an additional 100-page allocation will reduce the response time of either query by 

5 sec. Although the benefit is the same, the cost is very different. Query B will 

have an increase in memory consumption of 1300 page-see (= 15 sec x 140pages 

- 20 sec × 40 pages) while query A only has an increase of 250 page-see. Even 

if query B achieves a 10-sec response time reduction with the additional 100 page 

allocation, the increase in memory consumption will be 600 page-sec, which is still 

more than twice that of query A. As we shall see later, ROC can indeed provide 

the appropriate metrics to decide the memory allocations among queries. 

Practical memory management schemes need to be simple and should not rely 

on perfect knowledge of the workload. However, it is generally hard to evaluate 

the optimality of a heuristic strategy, especially in a multi-query environment. Here 

we first develop an approach to find the global optimal memory allocation strategy 

assuming perfect knowledge on the workload mix. This provides an upper bound 

on the achievable performance based on which more realizable strategies can be 

compared. A heuristic strategy is then devised without relying on this assumption and 

its performance is found to be reasonably close to the optimal solution. Specifically, 

a global optimization strategy, based on simulated annealing (Kirkpatrick et al., 

1983, Kirkpatrick and Toulouse, 1985) is developed to select optimal join methods 

and memory allocation. It handles the case when relation size is larger than the 

buffer size and decides the fraction of the relation to be kept in the buffer. The 

objective function is the average response time over all query types and the major 

constraint is that the memory consumption rate over all query types needs to be less 

than or equal to the total buffer size. By analyzing the solution from the optimal 

strategy, a heuristic strategy is proposed based on ROC. 

In Section 2 we examine the ROC under different join methods. We describe 

the global optimization procedure for buffer management in Section 3 and the 

heuristic threshold strategy in Section 4. In Section 5, a performance comparison 

of the different strategies is presented. Concluding remarks are given in Section 6. 
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2. Return on Memory Consumption 

We now take a closer look at the concepts of memory consumption and ROC. 

Formally, memory consumption of a query is defined to be the integral of the 

instantaneous memory allocation, F(t), over its in-memory time, T, i.e., fo T F(t)dt. 
A complex query can be viewed as a sequence of steps where each step is either 

a join or some retrieve or projection operation. If the memory allocation stays the 

same during the in-memory time of a query step, the memory consumption of a 

query step can be expressed as the in-memory time of the query step multiplied 

by its memory allocation. Note that the in-memory time here is from the time the 

query step is initiated until it is completed. It does not include the time waiting for 

memory to become available. For the rest of this article, we assume that the memory 

allocation is by query step and each query consists of a single step to simplify the 

discussion. Generalization is straightforward. Clearly, the memory consumption 

per unit time over all queries can not be larger than the total buffer size. Thus the 

memory allocation problem can be viewed as an optimization problem to achieve 
the most improvement in response time under the constraint that the total memory 

consumption rate has to be less than the buffer size. 

ROC is introduced as a measure on the effectiveness of additional memory 

consumption on response time improvement. Let F m i  n be the allowable memory 
allocation that achieves the minimum memory consumption to execute a given query 

access plan. (If there are multiple memory allocations that can achieve the minimum 

consumption, Finis will be set to the largest allocation, as it provides the minimum 

response time.) Memory allocation < Fmi,~ is generally not meaningful as it takes 

longer to execute and causes more memory consumption. For memory allocation 

F > Fmi,, the response time or the in-memory time, T(F) ,  cannot be larger 

than T(Fmin), assuming the additional memory is employed in a meaningful way. 

The ROC at a memory allocation, F > F m i n ,  is the reduction in in-memory time, 

T(F)  - T(Fmi,~), divided by the additional memory consumption relative to the 

point of minimum memory consumption: 

ROC(F)  = T(Fmin,-T(F) 
T ( F ) F - T ( F m i n ) F r n i n  " 

Note that ROC is a more meaningful metrics than the return on memory allocation 

(ROA): 

ROA(F)  = T(Fmin)-T(F) 
F - F r n i n  

which can be viewed as a surrogate for the negative of the derivative of T(F)  in 
the discrete variable F .  This is due to the fact that the cost of allocating additional 



memory depends not only on the amount of memory allocation but also the length 

of time the memory is in use. Also note that T(F) is the in-memory time, and 

does not include the time the query must wait for its memory allocation to become 

available. Hence, ROC does not depend on the level of memory contention in 
the system. In the example given in the previous section, both queries A and B 

have the same ROA, but query A has a much larger ROC, assuming both queries 

originally are operating at the minimum consumption point. Furthermore, even 
after the ROA of query B is doubled, query A still has a larger ROC. 

In a relational database environment, queries that do not involve join operations 

have only a small memory requirement and we therefore concentrate our attention 

on how join operations are affected by memory availability. Three methods have 

commonly been used for performing the join: hash join, sort-merge join, and 
nested-loop join. Each of these join methods can operate under different memory 

allocations with dissimilar performance. We examine here the effect of memory 

allocation on query response time and memory consumption for individual two- 

way join queries running alone in the system. The sensitivity of ROC to different 
memory allocations is then considered. The effect of resource contention among 
concurrently executing queries is treated in Section 3, where a global optimization 
strategy based on simulated annealing is developed. The findings in this section 
provide a guide to reduce the search space for the global optimization procedure. 
There are many different ways of implementing any of these join methods. We 

would only pick a simple implementation for each join method to illustrate the 
concepts of memory consumption and ROC. 1 For an alternative implementation, 

we can similarly derive the response time curve (vs memory allocation) and then 

the corresponding set of memory consumption and ROC curves. Even for more 
complex multi-way joins, which often involve pipelining into succeeding joins, as 

long as we can estimate the response time curve, the corresponding set of memory 

consumption and ROC curves follows directly. The buffer management approach 

introduced in this paper only relies on these concepts and does not depend on any 
particular implementation of the join method, pathlength parameters, or formula 

to estimate CPU and I/O overhead. 

2.1 Hash Join 

Let R and S be the two relations to be joined, with .R being the smaller relation. 

1. The  simple implementat ions are chosen to show different R O C  behaviors. The  intent is not to use  the  
most  efficient implementat ions to compare the different join methods.  
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When R is smaller than the available memory M, the hash join algorithm works 

as follows: the join attributes of all the tuples from R are first hashed and a hash 

table is built in memory. Then relation S is scanned sequentially. For each tuple in 

S, the join attribute is hashed and used to probe R's hash table in memory. When 

a match is found the corresponding tuples from the two relations are concatenated 

and added to the result relation. 

Three extensions to the above algorithm for situations where R exceeds the 

size of available memory have been presented (Dewitt et al., 1984; Shapiro, 1986). 

Among the three, the hybrid hash join algorithm has been shown to be the most 

efficient algorithm. We assume the hybrid hash join in this article. 

Hybrid hash join consists of three phases. In phase one, relation R is read from 

disks and is hashed into multiple partitions where only the hash table of the first 

partition is kept in memory. The other partitions are stored on disks. The number 

of partitions is chosen such that the hash table for each partition will individually fit 

in the memory. In the second phase, relation S is read from disks and is similarly 

hashed into multiple partitions based on the same hash function. Tuples from its 

first partition are joined directly with those of relation R residing in the memory. 

The other partitions are stored on disks. In the third phase the remaining partitions 

are joined. For each pair of corresponding partitions, tuples from relation R are 

first hashed to build a hash table in memory and then tuples from relation ,5' are 

used to probe the hash table to find a match. 

We next examine the minimum memory allocation required to make relation 

R partitionable so that each of its partitions can fit in memory. Let M be the 

size of the available database buffer. For relation R, let [R I be the number of 

pages in the relation. Let 6 be the expansion factor of the hash table relative to 

the partition size. The minimum value of M should be greater than ~/6[R[ where 

relation R is the smaller of the two joining relations (Dewitt et al., 1984). For 

memory allocation beyond the minimum, the size of Ro will be increased, thus 

reducing the portion of relations needed to be read in twice. Formulas to evaluate 

the performance sensitivity to memory allocation are given in the Appendix. 

Assume the pathlength to perform an I/O operation is Iio, the pathlength to 

either extract each tuple from the input buffer or move it to the output buffer is 

Imove, the pathlength to apply a hash function to the join attribute value is Ihash, 
the pathlength to search for a match or empty slot in the hash table is Isearch, 
and the pathlength to join a pair of tuples is Ijoin. Isearch may involve several 
comparisons or hash collisions. The number of comparisons is affected by the 

the expansion factor, 6. By maintaining a fixed expansion factor, 6, the memory 

allocations will not affect Isearch and only change the portion of data to be read in 



Figure 2.1 Single-query response time for Hash Join 
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Table 2.1 System configuration 
Processor speed 15 MIPS 

No. of disks 10 

Disk I/O time 30 millisec 

twice. The I/O and CPU requirements can be derived in terms of these parameters 

(Lakshmi, 1989) (see Appendix). The single query response time is simply the sum 

of the CPU time and the I/O time. 

Consider an example of a query joining two relations of 500 and 1,000 pages 

with 10,000 and 20,000 tuples, respectively. The join selectivity, which is defined to 

be the cardinality of the join result divided by the product of the cardinalities of the 

two joining relations, is assumed to be 0.001. Throughout this article, we assume a 

system configuration given in Table 2.1. Furthermore, the following pathlength pa- 

rameters are assumed: Iio = 3000, Imove = 500, Ihash = 100, Iseareh = 1000, 
and 1join = 100. A prefetch blocking factor of 10 pages also is assumed to scan 

through each relation when hash join is considered. We use an expansion factor t~ of 
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Figure 2.2 Memory consumption for Hash Join 
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1.5. A plot of the single query response time vs memory allocation is shown in 

Figure 2.1. For hash joins, increasing the memory allocation has almost a linear 

effect on reducing the query response time which is also evident from the analy- 

sis in the Appendix. The corresponding plot of memory consumption vs memory 

allocation is shown in Figure 2.2. The shape of the curve is concave. Point A 

corresponds to the point of minimum allocation whereas point C corresponds to 

the point of maximum allocation where the hash table can accommodate the whole 

relation (i.e., the hash join can be done in one pass through the relation). Assume 

point B has the same memory consumption as point C (i.e., a point with much less 

memory allocation and longer response time), but with the same product of the two 

quantities as point C. If C represents a feasible allocation, allocations between B 

and C are not meaningful since they result in more buffer consumption and longer 
response time than point C. Points between A and B correspond to the situation 

operating with lower memory consumption but larger response time. We may be 

forced to operate in this region, if the system is memory limited. Thus the curve 
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Figure 2.3 Return on consumption for Hash Join 
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implies the only sensible allocation would be either the maximum allocation, or 

some allocation between A and B. If available buffer is less than the relation size, let 

C '  represent the point corresponding to the maximum allowed memory allocation, 

the entire buffer. If C" is on the right of the maximum memory consumption point, 

there is another point B '  at the left of the maximum memory consumption point 

which has the same memory consumption as C'.  A similar argument can be made 

that the only sensible allocations would be either the maximum allocation at C", or 

some allocation between A and B ~. If C" is on the left of the maximum memory 

consumption point, the only sensible allocations would be some allocations between 

A and C". Figure 2.3 shows the ROC versus memory allocation. Although the 

ROC is mostly increasing (except in the beginning), the curve does not take off 

until it nears the maximum allocation. This seems to imply that in a multiple query 
environment, the strategy to get maximum return from the memory allocation is 

not to equally divide the buffer among all queries, but to give more memory to a 

few smaller queries so they can operate at the point of high return and to give the 
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big queries close to their minimum requirement. Here  small queries mean queries 

joining relations of smaller sizes. In the next section, we shall see this is exactly 

what happens under the global optimization strategy. 

2.2. Sort-Merge Join 

The sort-merge join can be viewed as consisting of three phases. First, tuples from 

each relation are scanned and sorted runs are produced. This is referred to as the 

scan phase. Next, the sorted runs are merged to produce a single sorted run for 

each relation. This is referred to as the merge phase. The third phase is the actual 

join phase, where the two sorted relations are joined by merging the matching tuples 

on the join attribute. One variation of the above scheme is to combine phase 2 

and phase 3 together when there is sufficient memory. We ignore this optimization 

as it does not affect the buffer management methodology. 

The scan phase can be implemented using a tournament tree sort (Knuth, 1975). 

In this method, tuples are placed into the leaves of the tournament tree. Values 

on the join attribute of tuples at the same level of the tree are compared and the 

tuple with the smallest value is moved to a level higher in the tree. Once the tree 

is full, the tuple at the root is output and a new tuple is inserted into the tree. On 

the average, the sorted runs of tuples are twice as long as the number of tuples 

that can fit into the tournament tree. 

The performance of the sort-merge join depends critically on the number of  

passes required through each relation. Each additional pass means reading in and 

writing out the relation one more time. There are three critical memory allocations 

which affects the number of passes. The first one occurs at the point that the merge 

phase can be accomplished in one pass. This memory requirement would be taken 

as the minimum required allocation for sort-merge join as failing to do this would 

result in additional passes through the relation, hence a substantial increase in I/Os. 

Let ~b be the expansion factor of memory requirement due to pointers in the nodes 

of the tournament tree. Assume that S is the larger of the two joining relations. 

IsI is defined in the same way as IRI. The minimum allocation of M can be 

to be > x/¢lSI (DeWitt et al., 1984). In comparing the sort-merge join shown 

with hash join, we note that the minimum required allocation for the sort-merge 

join is proportional to the square root of the larger relation whereas the minimum 

required allocation for the hash join is proportional to the square root of the smaller 

relation. 

The second critical memory allocation occurs at the point when the tournament  

tree is large enough so that the smaller of the two joining relations can result in one 
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sorted run, thus eliminating the merge phase for that relation. This saves one pass 

over the smaller relation by eliminating the necessity of reading in the relation for 

the merge of runs and rewriting to disk. The size of the tournament tree would be 

roughly equal to half of the smaller relation size. A third critical memory allocation 

occurs at the point when the tournament tree is large enough so that the larger of 

the two joining relations can also result in one sorted run. 

Next we consider the impact of additional memory in between these critical 

points. Consider the case when the number of tuples is a power of 2. Doubling the 

memory space for the tournament tree increases the number of comparisons by 1 

during the scan phase and reduces the number of sorted runs by half. At the merge 

phase, as the number of runs is reduced by half, the level of comparisons can be 

reduced by one. Hence, the CPU time is not sensitive to the memory allocations 

as long as the number of passes through each relation remains the same. For the 

general case, in which the I/O time is a substantial component of the response 

time and the instruction overhead for comparison per level of tournament tree is 

small, even if the additional memory allocations results in one fewer or one more 

comparisons, it would hardly make a difference in the overall response time as 

long as the number of passes through each relation remains the same. Detailed 
analysis of the CPU and I/O requirement can be found in the Appendix. The CPU 

requirement can be expressed in terms of the various pathlength parameters, like 

Iio, Imo~, and ]comp. The last parameter is the pathlength to do a comparison 

per level on the tournament tree. 

Next we consider an example, again assuming a query joining two relations 

of 500 and 1,000 pages with 10,000 and 20,000 tuples, respectively, and a join 

selectivity of 0.001. A blocking factor of 10 is assumed for the I/O operation 

during the sort phase and join phase. For the merge phase, the potential large 

number of sorted runs can make it prohibitive to merge in one pass if each run 

requires a large input buffer, hence no prefetch is assumed for the input operation. 

A plot of the estimated single query response time for performing the join is 

plotted versus memory allocation in Figure 2.4 for pathlength parameter values 

of ho = 3000, Icomp = 100, and Imo,,~ = 500. We assume in this example 

the worst case scenario: that the number of nodes needed in the tournament tree 

to produce one sorted run of either relation is equal to the cardinality of the 

relation. The response time curve shows two drops at the points where each of 

the relation can be sorted in one run, respectively. In between these two points 

and the point of minimum memory allocation, the additional memory allocations 

does not lead to any noticeable improvement in response time. The corresponding 

plot of memory consumption versus memory allocation is shown in Figure 2.5. The 
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Figure 2.4 Single query response time for Sort-Merge Join 
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Figure 2.5 Memory consumption for Sort-Merge Join 
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memory consumption achieves its local minimum at these three points. In between 

there is only increase in consumption with no improvement in response time. Figure 

2.6 shows the ROC versus memory allocation. Again ROC reaches its high points 

at the two points where the merge phase can be eliminated. In between ROC 

is either zero (i.e., no return), or decreasing. It is clear from these figures that 

the memory allocation should be either the minimum memory needed to do the 

merge in one pass or should be the memory allocations to eliminate the merge 

phase of the sorted runs. These allocations actually correspond to the hot  sets of 

Sacco and Schkolnick (1986). The difference is that those authors addressed only 

the single query environment so the maximum hot set that would fit into the whole 

buffer is picked. This will be useful guidance in pruning the search space for the 

global optimization in the next section. Furthermore, we note that an alternative 

implementation to take better advantage of the buffer allocation in-between the 

critical sizes is to use the additional memory to store runs between phases, thus 

saving I/O costs (Shapiro, 1986). 

2.3. Nested-Loop Join 

One implementation of  a nested-loop join is a method based on table scan where 

one scan of  an "inner" relation takes place for each tuple present in the "outer"  

relation (Selinger et al., 1979). The minimum memory allocation is two blocks: one 

for the inner relation and the other for the outer relation. The outer relation only 

needs to be read in once, while the inner relation will be read in as many times as 

the number of  tuples or blocks in the outer relation. If the inner relation can be kept 

in memory, both relations only need to be read in once. This amount  of memory 

allocation to keep the inner relation in memory is referred to as the hot set size 

(Sacco and Schkolnick, 1986). If the memory allocation is in between the minimum 

amount and the hot set size, the portion of the inner relation that will be read in 

multiple times depends upon the memory management policy. Let  us consider two 

different memory management policies: MRU and LRU. The analysis of  the I/O 

and CPU requirement is included in the Appendix. If an MRU type policy is used 

to manage the memory, the additional memory allocation will have a linear effect in 

reducing the portion of the inner relation that needs to be read in repeatedly (Chou 

and DeWitt, 1985). The response time curve versus memory allocation has a shape 

similar to Figure 2.1. Furthermore,  the shapes of the memory consumption curve 

and ROC curve would be similar to those of Figures 2.2 and 2.3, respectively. If 

an LR U type policy is adopted, additional memory allocation beyond the minimum 

allocation is useless. It behaves no better than under the minimum allocation. The 
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Figure 2.6 Return on Consumption for Sort-Merge Join 

Z 
0 

=E 

¢q 
Z 
0 
U 
Z 
0 
Z 

o 
0 200 400 800 BOO 1000 

MEMORY ALLOCATION 

response time is a step function similar to that in Figure 2.4, ignoring the portion 

beyond the first drop. The memory consumption curve and ROC curve would be 

similar in shape to those of Figures 2.5 and 2.6, respectively. Thus all comments in 

the previous subsections on memory allocations in the multiple query environment 

again apply here. 

3. Global Optimization Strategy 

The conventional approach to query optimization is to examine each query in 

isolation and select the access plan with the minimal cost based on some predefined 

cost function of I/O and CPU requirements to execute the query (Selinger et al., 

1979). The impact of memory management generally is not captured in the cost 

function. Furthermore, the value of the cost function does not reflect the potential 

effect of other transactions concurrently under execution. 

As we have seen in the previous section, for a given query, different access plans 
show different sensitivities to memory allocation. The best access plan for a given 
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memory allocation is not necessarily the best plan for another memory allocation. 

In this section, a global optimization strategy is developed which considers not only 

query access plan selection but also the optimal buffer allocation in a multi-query 

environment. It takes all query types into consideration assuming the arrival rate 
of each type is known. (The assumption on query arrival rate is relaxed later 
on when the heuristic threshold strategy is considered in Section 4.) This type 
of global optimization has also been considered for the case where the relation 

size is less than the buffer size (Cornell and Yu, 1989). They proposed a (0,1) 

integer programming approach to decide whether each relation referenced by a 

query should be kept in memory in its entirety or not. It is shown that the system 

performance can be drastically improved under the global optimization approach. 

Here, we consider the situation that the relation size can be larger than the buffer 

size. A generalized approach based on simulated annealing is adopted to allow for 

any fraction of a relation to be kept in memory based on memory availability and 
query mix. The result of the global optimization will serve as the basis to understand 

memory allocation and derive heuristic strategy in Section 4. 

3.1 Optimization Problem 

Consider a set of join queries Qi, i = 1 , " ' , N  o, and relations Rk, k = 
1 , - . . ,  NR. For each query type Qi, there are the three join methods and each 
can operate under different memory allocations with different sensitivities to per- 

formance. Decision variables Si j  are used to specify the join method currently 
under consideration for Qi with j = 1, 2, 3 referring to hash join, sort-merge join, 
and nested-loop join, respectively. Xlj = 1 if the j - th  join method is adopted for 

Qi, otherwise Xij = 0. Let F/ be the amount of memory allocation for query 

i. For each strategy r/, there is an associated (Xij, Fi) for Qi. Furthermore, for 

each Qi, let Dij(Fi) be the number of pages to be read from disks if the j - th  join 
method is used with a memory allocation of F/. Similarly, Uij(_l~) can be defined 
for the query-processing pathlength at the CPU. Formulas to estimate Dij(Fi) and 

Uij(Fi) are given in the Appendix, where Uij(Fi) is expressed in terms of the 

various pathlength parameters like ho, Imove, Icomp, and Ihash. Define hi to be 

the arrival frequency for Qi. 
Now we formulate the optimization problem. The objective function is the 

average response time over all query types. Let RTij(Fi) be the average response 
time of Qi under the j - th  join method with a memory allocation of F/. Thus, 

objective function = ~ j ~ i  Ai RTi j ( l~ i ) X i j • 
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The average response time in a multi-query environment is determined using an 

open queueing network model. Assume the system consists of a single CPU with 

speed M I P S  and multiple (ND) disks. Each database is assumed to be partitioned 

uniformly across the ND disks, based on its primary key. For a given strategy r/, 

the response time of each query can be calculated as its resource requirement on 

the CPU and disks can be predicted given the buffer allocation. The total CPU 

processing cost is then 

Ucpu = 

Let TUo be the disk service time to perform an I/O operation. The utilization of 

each disk assuming the load is spread uniformly across all disks for each relation 

can be shown to be 

Tllo 

The average response time of Qi is 

RT j(F ) = + D,j(F,)T, io 
M I P S - U c p u  1 -p i /0  , 

where the first component is the sum of the service time and waiting time at the 

CPU and the second component is the sum of those times at the disks. 

Constraints are included to guarantee that exactly one join method is adopted 

for each query, 

~iX~j = I, j = 1 , . . . , 3 .  

Additional constraints are added to prevent the buffer from being overcommitted. 

First of  all, no query can get a memory allocation more than the total buffer size. 

Let  B be the number of memory pages available. 

Fi  < o~B, for each i. 

The o~ is chosen so that a reasonable muitiprogramming level can be maintained. 

Furthermore, the memory consumption rate of each query type is estimated as 

the product of memory allocation and response time × the arrival frequency. In 

order  to provide a margin of safety, thus accommodating the fluctuations in query 

workload, the memory consumption rate needs to be less than some fraction, 8 ,  

of the total buffer. 

Ej    FF RT j(F )X j <_ ZB. 
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An implicit assumption of the optimizing procedure is that c~ and fl are chosen 

such that if the memory allocation of any single query is less than some fraction a 

of the buffer size and the total memory consumption rate is less than some fraction 

fl of the buffer size, then memory is not the bottleneck. 

3.2 Solution Technique 

To solve for the above optimization problem, we use the method of simulated 

annealing (Kirkpatrick et al., 1983; Kirkpatrick and Toulouse, 1985). It was invented 

as an optimization analogy to the statistical mechanics associated with annealing 

solids. This approach has been applied successfully to problems having several 

thousand variables (Kirkpatrick et al., 1983) and a variety of applications, including 

query optimization (Ioannidis and Wong, 1987; Ioannidis and Kang, 1990, 1991; 

Swami and Gupta, 1988; Swami, 1989) and file assignment (Wolf et al., 1989). We 

outline the general simulated annealing algorithm as follows (Kirkpatrick et al., 

1983). 

Pick initial feasible solution S 
Pick initial temperature T 

Do while (not frozen): 

Do while (not in equilibrium): 

Pick random nearby feasible solution S '  

Let ~ be equal to the difference in objective function values 

between the two allocations S and S ~. 

I f z 3 < 0 t h e n s e t S = S '  

Else set S = S ~ with probability e -zx/T 

End. 

Reduce temperature T. 

End. 

Final solution is S. 

TO determine whether a strategy, {(X/ j ,  Fi),  i = 1, ..., NQ},  is feasible, we need 
to check if it satisfies all the constraints. The memory consumptions of all query 

types need to be calculated and the sum of memory consumptions over all query 

types must be less than fl times the buffer size. The initial temperature T is chosen 

to be To(=  10). At this temperature, nearly all the nearby feasible solutions 
will be successes, since e - A / T  will be close to one. As T decreases, successes 

for poorer solutions will become scarcer. The average response time under the 
current strategy is then estimated and compared to that of the previous cycle of 
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calculation. In the following examples, to reduce the temperature, we replace T 

with ~,(= 0.9)T. Furthermore, equilibrium is defined to be the point that either 

ks(= 10)(NQ + NR) successes have occurred or kF(: 50)(NQ + NR) failures 

have occurred. Freezing is defined to be the point where we continue to cool until 

kL(= 3) losing temperatures have occurred in a row. The parameters (namely, 

To, ¢ ,  ks, kF, and kL) chosen for the particular cooling schedule were based on 

experiments to achieve a balance between efficiency and accuracy. This cooling 

schedule is similar to the one of Kirkpatrick et al. (1983). More elaborate cooling 

schedules can be found (Van Laarhoven, 1987), but their utility in this particular 

problem was found to be marginal. 

At each cycle of the calculation, a random nearby solution is chosen as follows: 

A new candidate query is picked by random number generation to have its join 

strategy altered either by using a different join method or by different memory 

allocation. From the analysis in the previous section we know that for each join 

method, only certain memory allocations are meaningful. For example, if the join 

method is sort-merge, a meaningful memory allocation must correspond to one of 

the three local minima of Figure 2.4, and if hash join, the meaningful allocation is 

the allocation's correspondence to point C and the region between points A and 

B. The memory allocation is adjusted by some fractional amount depending on 

the value returned by the random number generator. If the increase in memory 

allocation for the candidate query causes the memory consumption rate to exceed 

the consumption constraint, then another query is chosen at random to decrease 

its allocation until the consumption rate is less than the memory size. Because 

of the shape of the curve of Figure 2.3, this may require more than one cycle of 

adjustment. Of course the result is still a candidate memory allocation and can be 

accepted or rejected by the annealing algorithm. 

The size of the optimization problem can be reduced by simply having one 

variable per query which is the memory allocation. For a given memory allocation, 

each query may decide locally which join method to adopt for its minimum response 

time. The global effect of the trade-off of CPU processing and I/O is then neglected. 

4. Heuristic Threshold Strategy 

Next we try to observe simple rules of thumb for the way the global optimization 

strategy allocates memory and if a simple heuristic strategy therefore can be devel- 

oped. To keep the situation manageable, we'll look at an example with hash join 
as the method of choice and examine how memory allocation to each query type 

changes under the optimization procedure as the query arrival rate changes. 
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Figure 4.1 Memory allocations 

~ Q3 
A ~ 

81 

o I I I I I I 
0 100  200  3 0 0  

MEMORY ALLOCATION 

Table 4.1 Memory allocations 

arrival rate 

(queries per sec) 0.035 0.045 0.055 0.065 0.067 

Q1 1.000 0.170 0.100 0.100 0.100 

Q2 1.000 1.000 0.260 0.090 0.090 

Q3 1.000 1.000 1.000 0.150 0.080 

Q4 1.000 1.000 1.000 1.000 0.470 

Q5 1.000 1.000 1.000 1.000 1.000 

Q6 1.000 1.000 1.000 1.000 1.000 

Example 4.1: We now consider memory allocations among the following six queries 

which do hash joins on two relations: 

Q1 joining two relations each with 60000 tuples over 600 pages 

Q2 joining two relations each with 50000 tuples over 500 pages 

Q3 joining two relations each with 40000 tuples over 400 pages 

Q4 joining two relations each with 30000 tuples over 300 pages 

Q5 joining two relations each with 20000 tuples over 200 pages 

Q6 joining two relations each with 20000 tuples over 200 pages 
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A join selectivity of 0.0001 is assumed for all queries. We further assume a memory 

buffer size of 300 pages with a system configuration specified in Table 2.1. Figure 4.1 

shows the memory consumption versus memory allocation for the various types of 

queries and Figure 4.2 presents the ROC versus memory allocation. Notice Q6 has 

the same behavior as Q5, and hence is not explicitly shown. Query Q1 shows the 

largest memory consumption for a given allocation and the lowest ROC, whereas 

queries Q5 and Q6 are the opposite. 

In Table 4.1, we show the memory allocations based on the global optimization 

procedure of Section 3 under different arrival rates for an arbitrarily chosen fl of 

0.75, o~ of 1, and ~ of 1.25. The allocation is expressed relative to the maximum 

allowed allocation which is assumed to be 300 pages for all queries. At low query 

frequency, each query type is given its maximum allowed allocation. As the arrival 

rate increases, memory contention increases. Q1 is the first to be forced to run at its 

minimum allocation (31 pages). Further increase in the arrival rate forces Q2 and 

then Q3 to run at their minimum allocations (i.e., 28 and 25 pages, respectively). Q5 
and Q6 with the maximum ROC continue to get their maximum allowed allocation 

at the expense of the other queries with lower ROC's. The large memory allocations 

are made to the queries with the smallest amount of tuples to join and the least 

response time. [] 

From the above example, we can make the following observations: When joining 

two relations of equal size under hash join, the processing and I/O saved by allocating 

an additional page of memory to a query is the same irrespective of the size of 

the relations to be joined if the relations have the same number of tuples per page 

(see Section 2). Therefore, ROC is maximized by allocating the memory page to 

the query with the shortest response time, because its memory consumption is the 

least. Looked at another way, for a given amount of memory consumption to be 

distributed among queries, more pages of memory can be allocated to a query with 

a larger ROC to improve response time. Thus, a global optimization strategy will 

not equally divide the memory among queries but will favor the queries with larger 

ROC for more memory allocation. 

The optimal strategy divides the queries into three categories. The first category 

gets the maximum allowed allocation. (If the maximum requirement is less than the 

maximum allowed allocation per query, it will get the maximum required allocation.) 

The second category gets the minimum required allocation, which is the allocation 
with minimum consumption. The third category gets something in between. The 

majority of the queries fall into the first two categories. The third category is only 

for the borderline case. Furthermore, we can order the query types according to 
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F i g u r e  4 .2  R e t u r n  on c o n s u m p t i o n  
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their ROC at the maximum allocation in descending order• Surprisingly, the net 

effect of the optimization strategy is to pick a dividing point on this ordered list. 

Elements preceding the dividing point fall into the first category, and elements 

following the dividing point fall into the second category. Elements at the dividing 

point, if any, belong to the third category. 

Based on these observations we propose a simple heuristic strategy, referred to 

as the threshold strategy. It is based on ROC to determine how to allocate memory 

among concurrently executing queries. Assuming in-memory time of a join query 

is dominated mainly by I/O time, we can use the stand-alone execution time of a 

query as an estimate of its in-memory time. 

Let us first consider the case where the join method for each query is pre- 

determined by the query optimizer. Only the memory allocation needs to be 

determined in this case. Define for each query its marimum allocation, to be either 

its maximum required allocation or some predefined maximum allocation limit for 

all queries, whichever is smaller. For each query Qi, let ,y~naz be its maximum 

ROC value within the maximum allocation. Recall that in Section 2, given the 

sizes of the joining relations and the join selectivity, the curve for ROC vs memory 

allocation can be directly derived. (We expect the query optimizer to provide the 

ROC information for each query step.) Thus, obtaining 7~ naz is straightforward. 
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The heuristic buffer management scheme attempts to allocate memory to main- 

tain a certain level of ROC. It is important to look not only at the response-time 

reduction through additional memory allocation, but also at the associated cost (the 

amount of memory consumption), because the memory allocation does not reflect 

the effect of holding time. Define 0 to be the threshold on ROC to be determined 

at the run-time environment. The single threshold parameter is applied to all query 

types to balance the global buffer allocation requirement. Under the threshold 

strategy, before a query is initiated, the amount of memory to be allocated for its 

execution is determined based on 7~  ~z and 0. There is no attempt to change the 

allocation dynamically during query execution. (Only 0 may be adjusted dynamically 

to affect the memory allocation of future queries.) For each query, say Qi, if 7~  ~ 
exceeds 0, the memory allocation corresponding to a ROC of 7~ n"x will be provided 

before the query is initiated. Otherwise, the allocation with the minimum memory 

consumption is provided. 

Next we consider the case in which both the join method and memory allocation 

are to be determined together. This can correspond to the case in which query 

access plans based on different join methods are pre-generated for each query. At 

execution time, depending on the value of 0, the suitable access plan is selected 

and the appropriate memory allocation is provided before the query is initiated. 

(Upon different activations of a given query, unless the query mix has changed 

drastically, most likely the optimal join method would not change, but the optimal 

memory allocation may change. The approach described below can be used to 

provide input to the query optimizer to generate an access plan of the desired 

join method and subsequently only the simplified technique described above would 

need to be used to decide the desirable memory allocation at run time.) As we 

observed in Section 2, different join methods have different memory consumption 

and minimum allocation requirements. For each query type, we can pick the the 

minimum memory consumption allocation over all join methods to calculate the 

ROC for each method. Note that changing the base of calculating the ROC will 

preserve the strict order on ROC values between any two allocations under a given 

join method. For example, under hash join, if originally the ROC at an allocation x 

is larger than that at an allocation y, using the minimum allocation of sort-merge join 

as the basis to calculate ROC will preserve this relation. This is due to the fact that 

if a/b >c/d with a > c and b > f ,  then (a + 6)/(b+ ~) > (c + 6)/(d + w), 
for 6 > 0 and w > 0. 

ma:r be its maximum ROC value within the Thus for each query Qi, let "Yij 
maximum allocation under the j- th join method. Let 7~  ~ be the maximum of the 

7/~ ~ ,  for j = 1, ..., 3. Again a single threshold is applied to all query types to 
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balance the global storage allocation requirement. Under the threshold strategy, for 

each query, say Qi, if 7~ na~ exceeds 0, the corresponding join method is adopted 

and the associated memory allocation will be provided before the query is initiated. 

Otherwise, the join method and memory allocation with the minimum memory 

consumption are adopted. 

5. Performance Comparison 

In this section, we examine the performance of the heuristic strategy in Section 4 and 

the global optimization strategy in Section 3. Also considered is the fixed allocation 

strategy, which allocates each query with some predefined maximum allocation (or 

its maximum required allocation, if smaller). A simulation program is developed 

to compare the performance of the three strategies. The simulator consists of two 

parts. The first part simulates the different memory management strategies. Based 

on the strategy chosen, it decides the amount of memory allocation to the incoming 

query. For the threshold strategy, based on the threshold value and the query type 

which determines the ROC curve, the amount of memory allocation is determined. 

The second part is the system simulator which models the CPU and I/O queues 

and tracks the actual memory allocation. It keeps track of the progress of each 

activated query. Queries entering the system are activated if they can be given the 

entire memory allocation specified by the memory management strategy from an 

available memory pool (free page list); otherwise they remain on a wait list until 

their memory allocation is available. Queries are served on a FCFS basis. Both the 

CPU queue and I/O queues are FCFS. The service (CPU and I/O) demand of each 

type of query is determined by the query type. Queries run on the processor for 

a time period equal to the calculated CPU requirement divided by the calculated 

number of I/O, at which time they are switched to the disk queue. The relations 

are assumed striped or interleaved on the disks so that the disk utilizations are the 

same for all disks. After completion of I/O, the job returns to the CPU queue. 

At finish, the memory allocation for the job is returned to the available memory 

pool. All simulation runs are obtained such that the 95% confidence interval of 

the response time measure is estimated to be within 5% of the mean. 

Example 5.1: There are 10 joins referencing 20 relations. Tables 5.1 and 5.2 show 

the pertinent parameters of the 20 relations and 10 join queries, respectively. Join 

selectMties are assumed to be 0.01 for query Q7, 0.0001 query for Q1, Q9, and 

Q10, and 0.130001 for all other queries. For hash join, 6 is again assumed to be 1.5. 

The system configuration in Table 2.1 is assumed with a buffer size of 1000 pages. 
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Table 5.1. Relations in Example 5.1 

Size Cardinality 

Relation (pages) (no. of tuples) 

25 

1 500 4500 

2 500 4500 

3 700 50000 

4 700 50000 

5 800 80000 

6 800 80000 

7 1400 100000 

8 1400 100000 

9 650 40000 

10 650 40000 

11 400 30000 

12 400 30000 

13 2 10 

14 400 10000 

15 400 7000 

16 400 7000 

17 300 6000 

18 300 6000 

19 200 3000 

20 200 3000 

sorted on join attribute 

sorted on join attribute 

Table 5.2 Queries in Example 5.1 

Query 

Relations Relative 

referenced run frequency 

1 1 2 .032 

2 3 4 .032 

3 5 6 .036 

4 7 8 .032 

5 9 10 .032 

6 11 12 .036 

7 13 14 .180 

8 15 16 .050 

9 17 18 .200 

10 19 20 .370 
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Figure 5.1 Response t imes under different strategies 
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Figure 5.1 shows the response time versus query arrival rate for the optimized, 

the heuristic and the fixed allocation strategies. For the fixed allocation strategy, 

we consider three cases with the maximum allocation limits to be 1/2, 1/5, and 

1/10 of the total buffer size, respectively. The heuristic threshold strategy performs 

quite close to the optimized strategy. The fixed allocation strategy does not do well 

over the whole range considered for all three cases. The fixed allocation with 1/2 

of the buffer performs well at the low arrival rate but does badly as arrival rate 

increases. The fixed allocation with 1/10 of the buffer does badly at both low and 

high arrival rates. The fixed allocation with 1/5 of the buffer performs the best at 

the high arrival rate compared with the 1/2 and 1/10 allocations, but it is still much 

worse than the optimized and threshold strategies. As pointed out before, both 

these two strategies avoid allocating memory evenly, in favor of queries with higher 

ROC, thus leading to more robust performance. We have conducted many more 

simulations on different relative run frequencies, join selectivities, and relation sizes 
with similar results. 

We now take a closer look at the global optimization strategy. First we examine 

its sensitivity to the parameters a ,  the maximum fraction of the buffer that can 

be allocated to a single query, and/3,  which sets the upper limit on total memory 

consumption of all queries. Figure 5.2 shows the average response time versus fl 
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Figure 5.2 Optimal strategy's sensitivity to fl 
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with an o~ of 0.5 and an arrival rate of 0.2 queries/sec. The optimal ~ is around 

0.7. Too small a fl causes memory to be wasted, i.e. not allocated, and too big 

a ~ results in long waiting time for the memory allocation to become available 

as memory usage becomes the bottleneck relative to the other resource like CPU. 

Next we examine the effect of o~. Choosing c~ larger than 0.5 can seriously degrade 

the performance, because under the FCFS scheduling policy, the multiprogramming 

level (MPL) will be adversely affected. Consider the extreme case where o~ = 1. 

For this case, understandably, when a query getting the maximum allocation is 

under execution, no other queries can get initiated. The execution time of that 

particular query is minimized but the CPU is idled most of the time with a MPL of 

one and the waiting time for the desired memory allocation increases substantially. 

Table 5.3 shows average response times for an optimized memory allocation for 

o~ = 0.5 and c~ = 1, respectively. For each o~ value, the optimal ~ is chosen. As 

expected, the response time for o~ = 1 is extremely poor. We can see that the 

global optimization strategy does depend upon the appropriate selection of c~ and 

ft. (It may be difficult to maintain "near optimal" settings for these parameters 

in a dynamically changing environment.) In Figure 5.1, the optimized strategy is 

plotted with ot = 0.5 and the optimal /3 derived through trial and error using 



28 

Table 5.3. Sensitivity to ot 

Response 

ct /3 time 

1.0 0.8 390.0 

0.5 0.7 26.4 

the simulation. The optimal value of fl decreases as the arrival rate decreases to 

prevent memory from becoming the bottleneck. 

The optimized strategies for the queries at an arrival rate of 0.2 queries/see 

with c~ = 0.5 and/3 = 0.7 are as follows: 

Queries Q1 and Q2 do sort merge joins with minimum memory allocation. 

Query Q7 does nested loops join with index scan on the inner relation R14. 

Queries Q3 and Q4 do hash join with minimum memory assignment. 

Query Q5 does hash join with 364 pages of buffer which is neither the maximum 

nor the minimum allocation. 

Queries Q6, Q8, Q9, and Q10 do hash join with the maximum allocation. 

The heuristic strategy with a maximum allocation constraint of half the buffer 

has a threshold of 0.0015, where the allocation is similar to the above except that 

Q5 is given the minimum allocation. Figure 5.3 shows the average response time 

versus the threshold, 0, for an arrival rate of 0.2 queries/sec. A smaller than 

optimal 0 value means memory is over-allocated causing a longer wait time for the 

memory to be freed up, and a larger than optimal 0 value means that the memory 

is under-allocated causing more memory resource to be wasted. Performance can 

be improved by properly setting 0 at run time. In a quasi-stable environment, a 

dynamic approach can be taken to incrementally adjust 0 and search for the optimal 

value. For example, if the memory wait time is too long, we can increase the value 

of 0 by some increment. The average query's in-memory time will increase as 
more queries operate on their minimum allocations. However, the wait time for 

the required memory allocation to become available will decrease. If the net effect 

measured after some period of time does not deteriorate the query response time, 

which is the sum of the wait time and in-memory time, then 0 is moving in the 

right direction and the procedure continues. Otherwise, 0 will be adjusted in the 

opposite direction with a smaller decrement. The procedure stops if no performance 

improvement can be made by adjusting 0 in either direction. 

Simulations have been conducted for the dynamic approach of adjusting the 0 
value in Example 5.1. Both cases of starting 0 with initial values larger than and 
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Figure 5.3 Threshold strategy's sensitivity to 0 
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smaller than the optimal range of values are considered. In either case, 0 can move 

to the optimal range of 0 values and similar average response times to that under 

the optimal 0 can be achieved. [] 

Example 5.2 Tables 5.4 and 5.5 show the 20 relations and 10 join queries, respec- 

tively. Join selectivities are assumed to be 0.0001 for the first three queries and 

0.00001 for the other queries. In this example, no relation is pre-sorted on the 

join column, hence hash join is the method of choice for all queries. The system 

configuration in Table 2.1 is again assumed with a buffer size of 2100 pages. Figure 

5.4 shows the average response time versus query arrival rate for the heuristic 

threshold strategy and the fixed allocation strategy. For the fixed allocation strategy, 

we again consider the three cases with the maximum allocation limits to be 1/2, 1/5, 

and 1/10, respectively. The fixed allocation strategy does not perform well at higher 

arrival rate under all three cases. The threshold strategy with a maximum allocation 

constraint of half the buffer size operates under a 0 of 0.00048 over the entire range. 

The optimized strategy is hardly distinguishable from the threshold strategy in this 
case, hence is not explicitly shown on Figure 5.4. Under the threshold strategy, 

all queries except queries Q9 and Q10 will get their maximum allocations whereas 
queries Q9 and Q10 only get their minimum allocations. [] 
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Table 5.4 Relations in Example 5.2 

Relation Size Cardinality 

1 200 

2 200 

3 300 

4 300 

5 500 

6 500 

7 700 

• 8 700 

9 800 

10 800 

11 1000 

12 1000 

13 1200 

14 1200 

15 1500 

16 1500 

17 1700 

18 1700 

19 2000 

20 2000 

10000 

10000 

15000 

15000 

30000 

30000 

50000 

50000 

75000 

75000 

110000 

110000 

130000 

130000 

140000 

140000 

145000 

145000 

150000 

150000 

Table 5.5 Joins in Example 5.2 

Query 

Relations Relative 

referenced run frequency 

1 1 2 .225 

2 3 4 .215 

3 5 6 .095 

4 7 8 .095 

5 9 10 .075 

6 11 12 .075 

7 13 14 .065 

8 15 16 .065 

9 17 18 .045 

10 19 20 .045 
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Figure 5.4 Response times under different strategies 
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6 .  C o n c l u s i o n  

In a multi-query environment, the overall performance is very sensitive to buffer 

allocation strategies. This is especially the case when the relation size is larger than 

the buffer size. Conventional buffer management strategies do not provide guidelines 

on how much memory to allocate to the hash buckets under hash join or to the sort 

buffer like the tournament tree for sort-merge join in a multi-query environment. 

Allocating memory to optimize the performance of each query without considering 

the effect of other concurrently executing queries can lead to performance far from 

optimal. In this article, the concept of memory consumption and ROC is introduced 

as the basis for buffer management in a multi-query environment. Note that it is 

insufficient just to examine the reduction in I/O or response time as the criterion 

for allocating memory among contending queries. Even if two queries can result in 

the same I/O or response time reduction for the same amount of additional buffer 

allocation, the effect on memory consumption can be quite different as the two 

queries can have very different response times. Since the total buffer consumption 
must be preserved, it is important to introduce the concept of ROC. A global 
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optimization strategy is developed based on simulated annealing to provide a basis 

against which a more realizable algorithm can be devised and compared. By studying 
the optimal allocation, we observe that (1) the optimal strategy is not to evenly 

allocate the memory among queries like the fixed allocation strategy, and (2) the 
optimal strategy attempts to bias toward queries with larger ROC. Only those 

queries with larger ROC are given the maximum allocations, or allocation at the 
local maximum of the ROC curve, whereas most of the rest are given the minimum 

allocations. Furthermore, we expect the query optimizer should be able to estimate 

the response time curve (vs memory allocation), hence the ROC curve for a query. 

From these observations, a heuristic threshold strategy is proposed based on the 

concept of ROC. Simulation studies show that the heuristic strategy performs quite 

closely to the optimum and outperforms the fixed allocation strategy substantially. 

Appendix 

In this Appendix, we provide a simple analysis to estimate the amount of I/O and 

CPU processing under each join method. 

A.1 Hash Joln 

Recall that the pathlength to perform an I/O operation is Iio, the pathlength to 

either extract each tuple from the input buffer, or move it to the output buffer is 

1mot, e, the pathlength to apply a hash function to the join attribute value is Ih~sh, the 
pathlength to search for a match or empty slot in the hash table is Isearch , and the 
pathlength to join a pair of tuples is Ijoi,~. I~e~,rch may involve several comparisons 

or hash collisions. The number of comparisons is affected by the expansion factor, 

6. For a fixed expansion factor, d/, the memory allocations will not affect Isearch 

and will change only the portion of data to be read in twice. Define f to be the 
fraaction of tuples in the first partition which is kept in the memory during phase 

one. Furthermore, let ,~ be the join selectivity, i.e., the number of tuples resulting 

from the join divided by the product of the numbers of tuples in the two joining 

relations. Let {R} and {S} be the number of tuples in relation R and relation 

,5', respectively. 
The number of I/Os and the amount of CPU processing required are given 

below. 
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Phase I Cost 
Number of I/Os 

Dvh.8.-~ = [RI + (1 - f)lR[. 
The CPU processing is 

uph~"e-1 = IRIho + {R}(Imo,,o + Ih~,,h) + f{R}Is~areh 

+ ( 1  - f )({R}Imo..  + IR[I~o). 

Phase 2 Cost 
Number of I/Os 

DPhas*"2 = ISI + (1 - f ) l S I ,  

The CPU processing is 

U ph"'-2 = ISlI~o + {S}(I~ov.  + Ih~,,h) + f{S}I.~.,.~h 

+(1  - f ) ( { s } i ~ o w  + ISI/,o) + {R}{S}f¢Ijo,,~. 

Here we assume that the number of tuples matching from the join operation are 

spread over all the hash partitions and are proportional to the number of tuples in 
each partition. 

Phase 3 Cost 
Number of I/Os 

D ph'~8~-'3 = (]R] + S ) ( 1  - f ) .  

The CPU processing is 

uph~8~"3 = (IRI + IsI)(1 - f)Iio + ({R} + {S})(1 - f )  

(Imo,,~ + Ih~,h + I , ~ , ~h )  + { R } { S } ( 1  - f)¢boi,~. 

The total number of I/O accesses is the sum of the I/O accesses in the three phases. 

Similarly, the total number of instructions processed by the CPU is the sum of the 

CPU processing in the three phases. Note that we have been ignoring the effect of 
prefetch blocking, but the extension is straightforward. 
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A.2 Sort-Merge Join 

Under sort-merge join, the CPU requirement is composed of the following operations. 
1. Set up the I/O operation 

2. Move tuples from the I/O buffer to the tournament tree 

3. Sort/Merge tuples through the tournament tree 
4. Move tuples from the tournament tree to the output buffer 

5. Compare the join fields of tuples in the two sorted relations to perform the join. 

Both the scan phase and merge phase go through the first four steps and the final 
join phase involve steps 1 and 5. The CPU requirement at each step except Step 3 
is some constant, which is independent of the memory allocations, x the number 

of tuples in each relation. Step 3 depends upon the size of the tournament tree. 

Assume the pathlengths to move the tuple with the next smallest join attribute 

value out of the tournament tree and refill the tree is I~our and I~o~, r for the scan 
phase and merge phase, respectively. I:o~r or I~o~, ,. is roughly equal to the number 

of levels in the tournament tree multiplied by Icomp, the pathlength to perform 
a comparison operation at each level. The number of levels in the scan phase is 
determined by the memory allocation and that in the merge phase is determined 
by the number of sorted runs generated in the scan phase. The number of I/Os 
and the amount of CPU processing required are derived below. 

Phase I Cost 
Number of I/Os 

D vh~s~-~ = 2(IRI + ISl). 

The CPU processing is 

u ph s -I -- 2(IRI + ISI)ho + ({R} + {S})(2Imov~ + I'tour). 

Phase 2 Cost 
Number of I/Os 

DPh=**-2 = 2(IR ] + IS]). 

The CPU processing is 

U pha'*-2 = 2(JR ] + ]S])I,o + ({R} + {S})(2Imo~,~ + IJo'~,.). 
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Phase  3 Cost 

Number of I/Os 

D pha~-z  = IRI + ISl. 

The CPU processing is 

u ph~'̀ ~-z = (IRI + ISI)I,o + ({R} + {S})(I,~o~o + Lomp) + {R}{SS}¢Ijoln. 

A.3 Nested.Loop Join 

Assume the Iproc to be the pathlength to scan and compare a tuple, lproc is the 

sum of Imo,e and Ieomp. Assume that R is the inner relation. Define g to be 

M/IRI, i.e., the portion of the inner relation that can be kept in memory. If the 

entire inner relation can be kept in memory, the number of I/O's is shown by 

D = IRI + ISl. 

The CPU processing overhead is, 

U = (IRI + ISI)ho ++ {R}{S}I~.~ + {R}{S}¢Ijo~,~. 

Next we consider the case where neither relation can be kept entirely in memory. 

For table scan under LRU, 

O = IS'IIRI + IS'I 

u = (ISlIRI + ISI)ho + {R}{S}Ip.o~ + {R}{S}¢I~o,~. 

For table scan under MRU, 

O = (1 - g)ISIIRI + ISI 

U = ((1  - g ) I S l I R I  + ISI)ho + {R}{S}Xp~o~ + {R}{S}¢bo~,~. 

For index scan, assuming no buffer hit at the data pages, (see Mackert and Lohrnan, 
1989 for more elaborate estimations), 
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D = ISl + 

u = (ISl + + + Ijo, ). 
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