
VLDB Journa~ 1-37 (1993) Hector Garcia- Molina, Editor
©VLDB

Buffer Management Based on Return on Consumption

In a Multi-Query Environment

Philip S. Yu and Douglas W. Cornell

Received November 26, 1990; revised version received January 5, 1992; accepted July 6,
1992.

Abstract. In a multi-query environment, the marginal utilities of allocating ad-
ditional buffer to the various queries can be vastly different. 'nae conventional
approach examines each query in isolation to determine the optimal access plan
and the corresponding locality set. This can lead to performance that is far from
optimal. As each query can have different access plans with dissimilar locality sets
and sensitivities to memory requirement, we employ the concepts of memory con-
sumption and return on consumption (ROC) as the basis for memory allocations.
Memory consumption of a query is its space-time product, while ROC is a measure
of the effectiveness of response-time reduction through additional memory con-
sumption. A global optimization strategy using simulated annealing is developed,
which minimizes the average response over all queries under the constraint that
the total memory consumption rate has to be less than the buffer size. It selects
the optimal join method and memory allocation for all query types simultaneously.
By analyzing the way the optimal strategy makes memory allocations, a heuristic
threshold strategy is then proposed. The threshold strategy is based on the concept
of ROC. As the memory consumption rate by all queries is limited by the buffer
size, the strategy tries to allocate the memory so as to make sure that a certain
level of ROC is achieved. A simulation model is developed to demonstrate that
the heuristic strategy yields performance that is very close to the optimal strategy
and is far superior to the conventional allocation strategy.

Key Words. Buffer management, query optimization, simulated annealing, join
methods, queueing model, simulation.

1. Introduction

D a t a b a s e systems have genera l ly re l ied on m e m o r y buffers to r educe d isk accesses .

Even with the t rend o f ever - increas ing m e m o r y size, the m e m o r y buffer usual ly can

Philip Yu, Ph.D., is Manager, Architecture Analysis and Design Group, IBM Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, NY 10598; Douglas W. Cornell, Ph.D., is Principal Software En-
gineer, Digital Equipment Corp., Littleton, MA.

not accommodate all the databases in the system, and some memory management

strategy is needed to make the best use of the memory space. The traditional

approach to memory management in a virtual memory environment often uses a

least recently used (LRU) replacement policy, which replaces the least recently used

page with a newly referenced page to capture temporal locality. For a network

or hierarchical database system, reference strings tend to be unpredictable except

for batch processing. A study of network databases can be found in (Effelberg

and Loomis, 1984). These types of systems seem to fit reasonably well with the

working set model. However, queries to relational databases (Codd, 1970) imply a

lot of information on data references. The query optimizer analyzes each query and

generates an access plan which contains detailed information on how each relation

is accessed. Although some variant of the LRU policy often is used for buffer

management, it is not considered to be well suited for the reference patterns of

relational databases (Stonebreaker, 1981).

In a relational database environment, queries that do not involve join operations

have only a small memory requirement and we therefore concentrate our attention

on how join operations are affected by memory availability. Three methods have

commonly been used for performing the join: hash join, sort-merge join, and nested-
loop join. Each of these join methods can operate under different memory allocations

with dissimilar performances. There is some minimum amount of working storage

required for each join method. The working storage includes the I/O buffering for

each joining relation and the additional storage, (e.g., for the hash table under the

hash-join method or the sort buffer, like the tournament tree [Knuth, 1975]), under

the sort-merge join method. Beyond the minimum requirement, more storage may

be allocated to speed up the query. In hash joins, the amount of storage allocated

for the hash table determines the proportion of the tuples needed to be read more

than once (Shapiro, 1986). In sort-merge joins, the amount of storage available

for the sort buffer determines the number of sorted runs generated after the sort

phase.

Previous research directed toward using information available about reference

patterns for buffer management has been described (Sacco and Schkolnick, 1982,

1986; Chou and DeWitt, 1985). In Sacco and Schkolnick (1982, 1986) a hot-set

model is proposed for buffer allocation. The basic idea is to determine a hot

set for every query and allocate sufficient buffer space to cover the maximum hot

set that will fit the buffer constraint before executing a query. It can lead to

substantial performance improvement over the LRU strategy. However, this is

a local optimization for each query to provide it with sufficient buffer space to

minimize disk I/O accesses. The potential buffer contention among queries is not

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 3

addressed in the buffer allocation strategy. As pointed out in Sacco and Schkoinick

(1986), straightforward implementation of this idea can lead to problems such as

infinite waits, long queries blocking short queries, etc. Some ad hoc techniques

to relieve these problems are also suggested. Active instances (due to references

from different queries) of a file are given different buffer pools and are managed by

different replacement disciplines (Chou and DeWitt, 1985). A DBMIN algorithm

proposed for estimating the buffer allocation and replacement discipline for each

file instance of a query is described. DBMIN is based on a query locality set model

to capture relational query behavior. All these works investigate the "right" buffer

allocation for a given query plan or access path selection without considering the

effect of other queries.

In the presence of multiple queries simultaneously under execution, how much

memory to be allocated to each query and which join methods to be employed can

not easily be determined. For each query type, different access plans show dissimilar

sensitivities to memory allocation and thus have distinct memory requirements. The
best access plan for a given memory allocation is not necessarily the best plan for

another memory allocation. Even for a pre-selected join method, like hash join or

sort-merge join, the appropriate working storage to be allocated in a multi-query

environment is far from clear. The return on memory allocation to dissimilar queries

can be vastly different. In one extreme, one can allocate just the minimum working

storage requirement to each query if memory is the highly contended resource.

The other extreme is to allocate the maximum requirement to each query--to

accommodate the whole relation in the hash table under hash join or to sort the

whole relation in one sorted run under sort-merge join--if there is ample memory.

However, in most cases, one needs to allocate something in between the two extreme

points, and there is a big gap between the minimum and the maximum requirement.

(The minimum, as we shall see later, is roughly the square root of the maximum.)

This is especially the case when the relation size is larger than the buffer size. The

concept of a hot set or query locality set does not provide a meaningful indication

of the appropriate amount of memory allocation in this case. Under the hot set

strategy the minimum requirement is allocated, whereas under the query locality

set approach the maximum allowed for any query is allocated similar to a fixed

allocation scheme. Cornell and Yu (1989) proposed an integrated strategy based on

an integer programming approach to allocate storage and make access plan selection

when arrival rates of all query types are known. The allocation strategy specifically
considers which relations should be kept in the memory during the join. In Ng et

al. (1991), generalizing DBMIN, a class of algorithm based on marginal gains is

proposed and studied. It shows that suboptimal allocations, when handled properly,

can lower the waiting time for buffer and improve overall system performance.

Here we introduce the concept of return on consumption (ROC) to guide the

memory allocation. The memory consumption of each query is defined to be its space

time product. ROC is introduced as a measure on the effectiveness of additional

memory consumption on response time improvement. Note that the cost of allocating

additional memory depends not only on the amount of memory allocation but also

the length of time the memory is in use. That is to say, memory consumption is a

better measure of the cost of additional memory allocation. Consider an example.

Assume that query A has a 10-see response time at a 50-page memory allocation

and query B has a 20-see response time at a 40-page allocation. Let's assume that

an additional 100-page allocation will reduce the response time of either query by

5 sec. Although the benefit is the same, the cost is very different. Query B will

have an increase in memory consumption of 1300 page-see (= 15 sec x 140pages

- 20 sec × 40 pages) while query A only has an increase of 250 page-see. Even

if query B achieves a 10-sec response time reduction with the additional 100 page

allocation, the increase in memory consumption will be 600 page-sec, which is still

more than twice that of query A. As we shall see later, ROC can indeed provide

the appropriate metrics to decide the memory allocations among queries.

Practical memory management schemes need to be simple and should not rely

on perfect knowledge of the workload. However, it is generally hard to evaluate

the optimality of a heuristic strategy, especially in a multi-query environment. Here

we first develop an approach to find the global optimal memory allocation strategy

assuming perfect knowledge on the workload mix. This provides an upper bound

on the achievable performance based on which more realizable strategies can be

compared. A heuristic strategy is then devised without relying on this assumption and

its performance is found to be reasonably close to the optimal solution. Specifically,

a global optimization strategy, based on simulated annealing (Kirkpatrick et al.,

1983, Kirkpatrick and Toulouse, 1985) is developed to select optimal join methods

and memory allocation. It handles the case when relation size is larger than the

buffer size and decides the fraction of the relation to be kept in the buffer. The

objective function is the average response time over all query types and the major

constraint is that the memory consumption rate over all query types needs to be less

than or equal to the total buffer size. By analyzing the solution from the optimal

strategy, a heuristic strategy is proposed based on ROC.

In Section 2 we examine the ROC under different join methods. We describe

the global optimization procedure for buffer management in Section 3 and the

heuristic threshold strategy in Section 4. In Section 5, a performance comparison

of the different strategies is presented. Concluding remarks are given in Section 6.

VLDB JOURNAL 2(1) Yu: Buffer Management Based on Return on Consumption 5

2. Return on Memory Consumption

We now take a closer look at the concepts of memory consumption and ROC.

Formally, memory consumption of a query is defined to be the integral of the

instantaneous memory allocation, F(t), over its in-memory time, T, i.e., fo T F(t)dt.
A complex query can be viewed as a sequence of steps where each step is either

a join or some retrieve or projection operation. If the memory allocation stays the

same during the in-memory time of a query step, the memory consumption of a

query step can be expressed as the in-memory time of the query step multiplied

by its memory allocation. Note that the in-memory time here is from the time the

query step is initiated until it is completed. It does not include the time waiting for

memory to become available. For the rest of this article, we assume that the memory

allocation is by query step and each query consists of a single step to simplify the

discussion. Generalization is straightforward. Clearly, the memory consumption

per unit time over all queries can not be larger than the total buffer size. Thus the

memory allocation problem can be viewed as an optimization problem to achieve
the most improvement in response time under the constraint that the total memory

consumption rate has to be less than the buffer size.

ROC is introduced as a measure on the effectiveness of additional memory

consumption on response time improvement. Let F m i n be the allowable memory
allocation that achieves the minimum memory consumption to execute a given query

access plan. (If there are multiple memory allocations that can achieve the minimum

consumption, Finis will be set to the largest allocation, as it provides the minimum

response time.) Memory allocation < Fmi,~ is generally not meaningful as it takes

longer to execute and causes more memory consumption. For memory allocation

F > Fmi,, the response time or the in-memory time, T(F) , cannot be larger

than T(Fmin), assuming the additional memory is employed in a meaningful way.

The ROC at a memory allocation, F > F m i n , is the reduction in in-memory time,

T(F) - T(Fmi,~), divided by the additional memory consumption relative to the

point of minimum memory consumption:

ROC(F) = T(Fmin,-T(F)
T (F) F - T (F m i n) F r n i n "

Note that ROC is a more meaningful metrics than the return on memory allocation

(ROA):

ROA(F) = T(Fmin)-T(F)
F - F r n i n

which can be viewed as a surrogate for the negative of the derivative of T(F) in
the discrete variable F . This is due to the fact that the cost of allocating additional

memory depends not only on the amount of memory allocation but also the length

of time the memory is in use. Also note that T(F) is the in-memory time, and

does not include the time the query must wait for its memory allocation to become

available. Hence, ROC does not depend on the level of memory contention in
the system. In the example given in the previous section, both queries A and B

have the same ROA, but query A has a much larger ROC, assuming both queries

originally are operating at the minimum consumption point. Furthermore, even
after the ROA of query B is doubled, query A still has a larger ROC.

In a relational database environment, queries that do not involve join operations

have only a small memory requirement and we therefore concentrate our attention

on how join operations are affected by memory availability. Three methods have

commonly been used for performing the join: hash join, sort-merge join, and
nested-loop join. Each of these join methods can operate under different memory

allocations with dissimilar performance. We examine here the effect of memory

allocation on query response time and memory consumption for individual two-

way join queries running alone in the system. The sensitivity of ROC to different
memory allocations is then considered. The effect of resource contention among
concurrently executing queries is treated in Section 3, where a global optimization
strategy based on simulated annealing is developed. The findings in this section
provide a guide to reduce the search space for the global optimization procedure.
There are many different ways of implementing any of these join methods. We

would only pick a simple implementation for each join method to illustrate the
concepts of memory consumption and ROC. 1 For an alternative implementation,

we can similarly derive the response time curve (vs memory allocation) and then

the corresponding set of memory consumption and ROC curves. Even for more
complex multi-way joins, which often involve pipelining into succeeding joins, as

long as we can estimate the response time curve, the corresponding set of memory

consumption and ROC curves follows directly. The buffer management approach

introduced in this paper only relies on these concepts and does not depend on any
particular implementation of the join method, pathlength parameters, or formula

to estimate CPU and I/O overhead.

2.1 Hash Join

Let R and S be the two relations to be joined, with .R being the smaller relation.

1. The simple implementat ions are chosen to show different R O C behaviors. The intent is not to use the
most efficient implementat ions to compare the different join methods.

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 7

When R is smaller than the available memory M, the hash join algorithm works

as follows: the join attributes of all the tuples from R are first hashed and a hash

table is built in memory. Then relation S is scanned sequentially. For each tuple in

S, the join attribute is hashed and used to probe R's hash table in memory. When

a match is found the corresponding tuples from the two relations are concatenated

and added to the result relation.

Three extensions to the above algorithm for situations where R exceeds the

size of available memory have been presented (Dewitt et al., 1984; Shapiro, 1986).

Among the three, the hybrid hash join algorithm has been shown to be the most

efficient algorithm. We assume the hybrid hash join in this article.

Hybrid hash join consists of three phases. In phase one, relation R is read from

disks and is hashed into multiple partitions where only the hash table of the first

partition is kept in memory. The other partitions are stored on disks. The number

of partitions is chosen such that the hash table for each partition will individually fit

in the memory. In the second phase, relation S is read from disks and is similarly

hashed into multiple partitions based on the same hash function. Tuples from its

first partition are joined directly with those of relation R residing in the memory.

The other partitions are stored on disks. In the third phase the remaining partitions

are joined. For each pair of corresponding partitions, tuples from relation R are

first hashed to build a hash table in memory and then tuples from relation ,5' are

used to probe the hash table to find a match.

We next examine the minimum memory allocation required to make relation

R partitionable so that each of its partitions can fit in memory. Let M be the

size of the available database buffer. For relation R, let [R I be the number of

pages in the relation. Let 6 be the expansion factor of the hash table relative to

the partition size. The minimum value of M should be greater than ~/6[R[where

relation R is the smaller of the two joining relations (Dewitt et al., 1984). For

memory allocation beyond the minimum, the size of Ro will be increased, thus

reducing the portion of relations needed to be read in twice. Formulas to evaluate

the performance sensitivity to memory allocation are given in the Appendix.

Assume the pathlength to perform an I/O operation is Iio, the pathlength to

either extract each tuple from the input buffer or move it to the output buffer is

Imove, the pathlength to apply a hash function to the join attribute value is Ihash,
the pathlength to search for a match or empty slot in the hash table is Isearch,
and the pathlength to join a pair of tuples is Ijoin. Isearch may involve several
comparisons or hash collisions. The number of comparisons is affected by the

the expansion factor, 6. By maintaining a fixed expansion factor, 6, the memory

allocations will not affect Isearch and only change the portion of data to be read in

Figure 2.1 Single-query response time for Hash Join

g

o i I I I I I I
0 2 0 0 4 0 0 8 0 0

MEMORY ALLOCATION

I

Table 2.1 System configuration
Processor speed 15 MIPS

No. of disks 10

Disk I/O time 30 millisec

twice. The I/O and CPU requirements can be derived in terms of these parameters

(Lakshmi, 1989) (see Appendix). The single query response time is simply the sum

of the CPU time and the I/O time.

Consider an example of a query joining two relations of 500 and 1,000 pages

with 10,000 and 20,000 tuples, respectively. The join selectivity, which is defined to

be the cardinality of the join result divided by the product of the cardinalities of the

two joining relations, is assumed to be 0.001. Throughout this article, we assume a

system configuration given in Table 2.1. Furthermore, the following pathlength pa-

rameters are assumed: Iio = 3000, Imove = 500, Ihash = 100, Iseareh = 1000,
and 1join = 100. A prefetch blocking factor of 10 pages also is assumed to scan

through each relation when hash join is considered. We use an expansion factor t~ of

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 9

Figure 2.2 Memory consumption for Hash Join

/
.¢

C

o I I I I I I I I
0 200 4.00 800 BOO

MEMORY ALLOCATION

1.5. A plot of the single query response time vs memory allocation is shown in

Figure 2.1. For hash joins, increasing the memory allocation has almost a linear

effect on reducing the query response time which is also evident from the analy-

sis in the Appendix. The corresponding plot of memory consumption vs memory

allocation is shown in Figure 2.2. The shape of the curve is concave. Point A

corresponds to the point of minimum allocation whereas point C corresponds to

the point of maximum allocation where the hash table can accommodate the whole

relation (i.e., the hash join can be done in one pass through the relation). Assume

point B has the same memory consumption as point C (i.e., a point with much less

memory allocation and longer response time), but with the same product of the two

quantities as point C. If C represents a feasible allocation, allocations between B

and C are not meaningful since they result in more buffer consumption and longer
response time than point C. Points between A and B correspond to the situation

operating with lower memory consumption but larger response time. We may be

forced to operate in this region, if the system is memory limited. Thus the curve

10

Figure 2.3 Return on consumption for Hash Join

it)

o

Z D

J

f I I I I I I
2 0 0 4.go 6 0 0 8 0 0

MEMORY AU.0CATION

i m

O

o
0

implies the only sensible allocation would be either the maximum allocation, or

some allocation between A and B. If available buffer is less than the relation size, let

C ' represent the point corresponding to the maximum allowed memory allocation,

the entire buffer. If C" is on the right of the maximum memory consumption point,

there is another point B ' at the left of the maximum memory consumption point

which has the same memory consumption as C'. A similar argument can be made

that the only sensible allocations would be either the maximum allocation at C", or

some allocation between A and B ~. If C" is on the left of the maximum memory

consumption point, the only sensible allocations would be some allocations between

A and C". Figure 2.3 shows the ROC versus memory allocation. Although the

ROC is mostly increasing (except in the beginning), the curve does not take off

until it nears the maximum allocation. This seems to imply that in a multiple query
environment, the strategy to get maximum return from the memory allocation is

not to equally divide the buffer among all queries, but to give more memory to a

few smaller queries so they can operate at the point of high return and to give the

VLDB JOURNAL 2(1) Yu: Buffer Management Based on Return on Consumption 11

big queries close to their minimum requirement. Here small queries mean queries

joining relations of smaller sizes. In the next section, we shall see this is exactly

what happens under the global optimization strategy.

2.2. Sort-Merge Join

The sort-merge join can be viewed as consisting of three phases. First, tuples from

each relation are scanned and sorted runs are produced. This is referred to as the

scan phase. Next, the sorted runs are merged to produce a single sorted run for

each relation. This is referred to as the merge phase. The third phase is the actual

join phase, where the two sorted relations are joined by merging the matching tuples

on the join attribute. One variation of the above scheme is to combine phase 2

and phase 3 together when there is sufficient memory. We ignore this optimization

as it does not affect the buffer management methodology.

The scan phase can be implemented using a tournament tree sort (Knuth, 1975).

In this method, tuples are placed into the leaves of the tournament tree. Values

on the join attribute of tuples at the same level of the tree are compared and the

tuple with the smallest value is moved to a level higher in the tree. Once the tree

is full, the tuple at the root is output and a new tuple is inserted into the tree. On

the average, the sorted runs of tuples are twice as long as the number of tuples

that can fit into the tournament tree.

The performance of the sort-merge join depends critically on the number of

passes required through each relation. Each additional pass means reading in and

writing out the relation one more time. There are three critical memory allocations

which affects the number of passes. The first one occurs at the point that the merge

phase can be accomplished in one pass. This memory requirement would be taken

as the minimum required allocation for sort-merge join as failing to do this would

result in additional passes through the relation, hence a substantial increase in I/Os.

Let ~b be the expansion factor of memory requirement due to pointers in the nodes

of the tournament tree. Assume that S is the larger of the two joining relations.

IsI is defined in the same way as IRI. The minimum allocation of M can be

to be > x/¢lSI (DeWitt et al., 1984). In comparing the sort-merge join shown

with hash join, we note that the minimum required allocation for the sort-merge

join is proportional to the square root of the larger relation whereas the minimum

required allocation for the hash join is proportional to the square root of the smaller

relation.

The second critical memory allocation occurs at the point when the tournament

tree is large enough so that the smaller of the two joining relations can result in one

12

sorted run, thus eliminating the merge phase for that relation. This saves one pass

over the smaller relation by eliminating the necessity of reading in the relation for

the merge of runs and rewriting to disk. The size of the tournament tree would be

roughly equal to half of the smaller relation size. A third critical memory allocation

occurs at the point when the tournament tree is large enough so that the larger of

the two joining relations can also result in one sorted run.

Next we consider the impact of additional memory in between these critical

points. Consider the case when the number of tuples is a power of 2. Doubling the

memory space for the tournament tree increases the number of comparisons by 1

during the scan phase and reduces the number of sorted runs by half. At the merge

phase, as the number of runs is reduced by half, the level of comparisons can be

reduced by one. Hence, the CPU time is not sensitive to the memory allocations

as long as the number of passes through each relation remains the same. For the

general case, in which the I/O time is a substantial component of the response

time and the instruction overhead for comparison per level of tournament tree is

small, even if the additional memory allocations results in one fewer or one more

comparisons, it would hardly make a difference in the overall response time as

long as the number of passes through each relation remains the same. Detailed
analysis of the CPU and I/O requirement can be found in the Appendix. The CPU

requirement can be expressed in terms of the various pathlength parameters, like

Iio, Imo~, and]comp. The last parameter is the pathlength to do a comparison

per level on the tournament tree.

Next we consider an example, again assuming a query joining two relations

of 500 and 1,000 pages with 10,000 and 20,000 tuples, respectively, and a join

selectivity of 0.001. A blocking factor of 10 is assumed for the I/O operation

during the sort phase and join phase. For the merge phase, the potential large

number of sorted runs can make it prohibitive to merge in one pass if each run

requires a large input buffer, hence no prefetch is assumed for the input operation.

A plot of the estimated single query response time for performing the join is

plotted versus memory allocation in Figure 2.4 for pathlength parameter values

of ho = 3000, Icomp = 100, and Imo,,~ = 500. We assume in this example

the worst case scenario: that the number of nodes needed in the tournament tree

to produce one sorted run of either relation is equal to the cardinality of the

relation. The response time curve shows two drops at the points where each of

the relation can be sorted in one run, respectively. In between these two points

and the point of minimum memory allocation, the additional memory allocations

does not lead to any noticeable improvement in response time. The corresponding

plot of memory consumption versus memory allocation is shown in Figure 2.5. The

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 13

Figure 2.4 Single query response time for Sort-Merge Join

bJ
:E

z
o Q.

l

°I

o
0 200 400 BOO BOO 1000

MEMORY AIJ..OCATION

Figure 2.5 Memory consumption for Sort-Merge Join

200 400 600 800 1000

MEMORY AI I nCATION

14

memory consumption achieves its local minimum at these three points. In between

there is only increase in consumption with no improvement in response time. Figure

2.6 shows the ROC versus memory allocation. Again ROC reaches its high points

at the two points where the merge phase can be eliminated. In between ROC

is either zero (i.e., no return), or decreasing. It is clear from these figures that

the memory allocation should be either the minimum memory needed to do the

merge in one pass or should be the memory allocations to eliminate the merge

phase of the sorted runs. These allocations actually correspond to the hot sets of

Sacco and Schkolnick (1986). The difference is that those authors addressed only

the single query environment so the maximum hot set that would fit into the whole

buffer is picked. This will be useful guidance in pruning the search space for the

global optimization in the next section. Furthermore, we note that an alternative

implementation to take better advantage of the buffer allocation in-between the

critical sizes is to use the additional memory to store runs between phases, thus

saving I/O costs (Shapiro, 1986).

2.3. Nested-Loop Join

One implementation of a nested-loop join is a method based on table scan where

one scan of an "inner" relation takes place for each tuple present in the "outer"

relation (Selinger et al., 1979). The minimum memory allocation is two blocks: one

for the inner relation and the other for the outer relation. The outer relation only

needs to be read in once, while the inner relation will be read in as many times as

the number of tuples or blocks in the outer relation. If the inner relation can be kept

in memory, both relations only need to be read in once. This amount of memory

allocation to keep the inner relation in memory is referred to as the hot set size

(Sacco and Schkolnick, 1986). If the memory allocation is in between the minimum

amount and the hot set size, the portion of the inner relation that will be read in

multiple times depends upon the memory management policy. Let us consider two

different memory management policies: MRU and LRU. The analysis of the I/O

and CPU requirement is included in the Appendix. If an MRU type policy is used

to manage the memory, the additional memory allocation will have a linear effect in

reducing the portion of the inner relation that needs to be read in repeatedly (Chou

and DeWitt, 1985). The response time curve versus memory allocation has a shape

similar to Figure 2.1. Furthermore, the shapes of the memory consumption curve

and ROC curve would be similar to those of Figures 2.2 and 2.3, respectively. If

an LR U type policy is adopted, additional memory allocation beyond the minimum

allocation is useless. It behaves no better than under the minimum allocation. The

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 15

Figure 2.6 Return on Consumption for Sort-Merge Join

Z
0

=E

¢q
Z
0
U
Z
0
Z

o
0 200 400 800 BOO 1000

MEMORY ALLOCATION

response time is a step function similar to that in Figure 2.4, ignoring the portion

beyond the first drop. The memory consumption curve and ROC curve would be

similar in shape to those of Figures 2.5 and 2.6, respectively. Thus all comments in

the previous subsections on memory allocations in the multiple query environment

again apply here.

3. Global Optimization Strategy

The conventional approach to query optimization is to examine each query in

isolation and select the access plan with the minimal cost based on some predefined

cost function of I/O and CPU requirements to execute the query (Selinger et al.,

1979). The impact of memory management generally is not captured in the cost

function. Furthermore, the value of the cost function does not reflect the potential

effect of other transactions concurrently under execution.

As we have seen in the previous section, for a given query, different access plans
show different sensitivities to memory allocation. The best access plan for a given

16

memory allocation is not necessarily the best plan for another memory allocation.

In this section, a global optimization strategy is developed which considers not only

query access plan selection but also the optimal buffer allocation in a multi-query

environment. It takes all query types into consideration assuming the arrival rate
of each type is known. (The assumption on query arrival rate is relaxed later
on when the heuristic threshold strategy is considered in Section 4.) This type
of global optimization has also been considered for the case where the relation

size is less than the buffer size (Cornell and Yu, 1989). They proposed a (0,1)

integer programming approach to decide whether each relation referenced by a

query should be kept in memory in its entirety or not. It is shown that the system

performance can be drastically improved under the global optimization approach.

Here, we consider the situation that the relation size can be larger than the buffer

size. A generalized approach based on simulated annealing is adopted to allow for

any fraction of a relation to be kept in memory based on memory availability and
query mix. The result of the global optimization will serve as the basis to understand

memory allocation and derive heuristic strategy in Section 4.

3.1 Optimization Problem

Consider a set of join queries Qi, i = 1 , " ' , N o, and relations Rk, k =
1 , - . . , NR. For each query type Qi, there are the three join methods and each
can operate under different memory allocations with different sensitivities to per-

formance. Decision variables Si j are used to specify the join method currently
under consideration for Qi with j = 1, 2, 3 referring to hash join, sort-merge join,
and nested-loop join, respectively. Xlj = 1 if the j - th join method is adopted for

Qi, otherwise Xij = 0. Let F/ be the amount of memory allocation for query

i. For each strategy r/, there is an associated (Xij, Fi) for Qi. Furthermore, for

each Qi, let Dij(Fi) be the number of pages to be read from disks if the j - th join
method is used with a memory allocation of F/. Similarly, Uij(_l~) can be defined
for the query-processing pathlength at the CPU. Formulas to estimate Dij(Fi) and

Uij(Fi) are given in the Appendix, where Uij(Fi) is expressed in terms of the

various pathlength parameters like ho, Imove, Icomp, and Ihash. Define hi to be

the arrival frequency for Qi.
Now we formulate the optimization problem. The objective function is the

average response time over all query types. Let RTij(Fi) be the average response
time of Qi under the j - th join method with a memory allocation of F/. Thus,

objective function = ~ j ~ i Ai RTi j (l~ i) X i j •

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 17

The average response time in a multi-query environment is determined using an

open queueing network model. Assume the system consists of a single CPU with

speed M I P S and multiple (ND) disks. Each database is assumed to be partitioned

uniformly across the ND disks, based on its primary key. For a given strategy r/,

the response time of each query can be calculated as its resource requirement on

the CPU and disks can be predicted given the buffer allocation. The total CPU

processing cost is then

Ucpu =

Let TUo be the disk service time to perform an I/O operation. The utilization of

each disk assuming the load is spread uniformly across all disks for each relation

can be shown to be

Tllo

The average response time of Qi is

RT j(F) = + D,j(F,)T, io
M I P S - U c p u 1 -p i /0 ,

where the first component is the sum of the service time and waiting time at the

CPU and the second component is the sum of those times at the disks.

Constraints are included to guarantee that exactly one join method is adopted

for each query,

~iX~j = I, j = 1 , . . . , 3 .

Additional constraints are added to prevent the buffer from being overcommitted.

First of all, no query can get a memory allocation more than the total buffer size.

Let B be the number of memory pages available.

Fi < o~B, for each i.

The o~ is chosen so that a reasonable muitiprogramming level can be maintained.

Furthermore, the memory consumption rate of each query type is estimated as

the product of memory allocation and response time × the arrival frequency. In

order to provide a margin of safety, thus accommodating the fluctuations in query

workload, the memory consumption rate needs to be less than some fraction, 8 ,

of the total buffer.

Ej FF RT j(F)X j <_ ZB.

18

An implicit assumption of the optimizing procedure is that c~ and fl are chosen

such that if the memory allocation of any single query is less than some fraction a

of the buffer size and the total memory consumption rate is less than some fraction

fl of the buffer size, then memory is not the bottleneck.

3.2 Solution Technique

To solve for the above optimization problem, we use the method of simulated

annealing (Kirkpatrick et al., 1983; Kirkpatrick and Toulouse, 1985). It was invented

as an optimization analogy to the statistical mechanics associated with annealing

solids. This approach has been applied successfully to problems having several

thousand variables (Kirkpatrick et al., 1983) and a variety of applications, including

query optimization (Ioannidis and Wong, 1987; Ioannidis and Kang, 1990, 1991;

Swami and Gupta, 1988; Swami, 1989) and file assignment (Wolf et al., 1989). We

outline the general simulated annealing algorithm as follows (Kirkpatrick et al.,

1983).

Pick initial feasible solution S
Pick initial temperature T

Do while (not frozen):

Do while (not in equilibrium):

Pick random nearby feasible solution S '

Let ~ be equal to the difference in objective function values

between the two allocations S and S ~.

I f z 3 < 0 t h e n s e t S = S '

Else set S = S ~ with probability e -zx/T

End.

Reduce temperature T.

End.

Final solution is S.

TO determine whether a strategy, {(X/ j , Fi), i = 1, ..., NQ}, is feasible, we need
to check if it satisfies all the constraints. The memory consumptions of all query

types need to be calculated and the sum of memory consumptions over all query

types must be less than fl times the buffer size. The initial temperature T is chosen

to be To(= 10). At this temperature, nearly all the nearby feasible solutions
will be successes, since e - A / T will be close to one. As T decreases, successes

for poorer solutions will become scarcer. The average response time under the
current strategy is then estimated and compared to that of the previous cycle of

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 19

calculation. In the following examples, to reduce the temperature, we replace T

with ~,(= 0.9)T. Furthermore, equilibrium is defined to be the point that either

ks(= 10)(NQ + NR) successes have occurred or kF(: 50)(NQ + NR) failures

have occurred. Freezing is defined to be the point where we continue to cool until

kL(= 3) losing temperatures have occurred in a row. The parameters (namely,

To, ¢ , ks, kF, and kL) chosen for the particular cooling schedule were based on

experiments to achieve a balance between efficiency and accuracy. This cooling

schedule is similar to the one of Kirkpatrick et al. (1983). More elaborate cooling

schedules can be found (Van Laarhoven, 1987), but their utility in this particular

problem was found to be marginal.

At each cycle of the calculation, a random nearby solution is chosen as follows:

A new candidate query is picked by random number generation to have its join

strategy altered either by using a different join method or by different memory

allocation. From the analysis in the previous section we know that for each join

method, only certain memory allocations are meaningful. For example, if the join

method is sort-merge, a meaningful memory allocation must correspond to one of

the three local minima of Figure 2.4, and if hash join, the meaningful allocation is

the allocation's correspondence to point C and the region between points A and

B. The memory allocation is adjusted by some fractional amount depending on

the value returned by the random number generator. If the increase in memory

allocation for the candidate query causes the memory consumption rate to exceed

the consumption constraint, then another query is chosen at random to decrease

its allocation until the consumption rate is less than the memory size. Because

of the shape of the curve of Figure 2.3, this may require more than one cycle of

adjustment. Of course the result is still a candidate memory allocation and can be

accepted or rejected by the annealing algorithm.

The size of the optimization problem can be reduced by simply having one

variable per query which is the memory allocation. For a given memory allocation,

each query may decide locally which join method to adopt for its minimum response

time. The global effect of the trade-off of CPU processing and I/O is then neglected.

4. Heuristic Threshold Strategy

Next we try to observe simple rules of thumb for the way the global optimization

strategy allocates memory and if a simple heuristic strategy therefore can be devel-

oped. To keep the situation manageable, we'll look at an example with hash join
as the method of choice and examine how memory allocation to each query type

changes under the optimization procedure as the query arrival rate changes.

20

Figure 4.1 Memory allocations

~ Q3
A ~

81

o I I I I I I
0 100 200 3 0 0

MEMORY ALLOCATION

Table 4.1 Memory allocations

arrival rate

(queries per sec) 0.035 0.045 0.055 0.065 0.067

Q1 1.000 0.170 0.100 0.100 0.100

Q2 1.000 1.000 0.260 0.090 0.090

Q3 1.000 1.000 1.000 0.150 0.080

Q4 1.000 1.000 1.000 1.000 0.470

Q5 1.000 1.000 1.000 1.000 1.000

Q6 1.000 1.000 1.000 1.000 1.000

Example 4.1: We now consider memory allocations among the following six queries

which do hash joins on two relations:

Q1 joining two relations each with 60000 tuples over 600 pages

Q2 joining two relations each with 50000 tuples over 500 pages

Q3 joining two relations each with 40000 tuples over 400 pages

Q4 joining two relations each with 30000 tuples over 300 pages

Q5 joining two relations each with 20000 tuples over 200 pages

Q6 joining two relations each with 20000 tuples over 200 pages

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 21

A join selectivity of 0.0001 is assumed for all queries. We further assume a memory

buffer size of 300 pages with a system configuration specified in Table 2.1. Figure 4.1

shows the memory consumption versus memory allocation for the various types of

queries and Figure 4.2 presents the ROC versus memory allocation. Notice Q6 has

the same behavior as Q5, and hence is not explicitly shown. Query Q1 shows the

largest memory consumption for a given allocation and the lowest ROC, whereas

queries Q5 and Q6 are the opposite.

In Table 4.1, we show the memory allocations based on the global optimization

procedure of Section 3 under different arrival rates for an arbitrarily chosen fl of

0.75, o~ of 1, and ~ of 1.25. The allocation is expressed relative to the maximum

allowed allocation which is assumed to be 300 pages for all queries. At low query

frequency, each query type is given its maximum allowed allocation. As the arrival

rate increases, memory contention increases. Q1 is the first to be forced to run at its

minimum allocation (31 pages). Further increase in the arrival rate forces Q2 and

then Q3 to run at their minimum allocations (i.e., 28 and 25 pages, respectively). Q5
and Q6 with the maximum ROC continue to get their maximum allowed allocation

at the expense of the other queries with lower ROC's. The large memory allocations

are made to the queries with the smallest amount of tuples to join and the least

response time. []

From the above example, we can make the following observations: When joining

two relations of equal size under hash join, the processing and I/O saved by allocating

an additional page of memory to a query is the same irrespective of the size of

the relations to be joined if the relations have the same number of tuples per page

(see Section 2). Therefore, ROC is maximized by allocating the memory page to

the query with the shortest response time, because its memory consumption is the

least. Looked at another way, for a given amount of memory consumption to be

distributed among queries, more pages of memory can be allocated to a query with

a larger ROC to improve response time. Thus, a global optimization strategy will

not equally divide the memory among queries but will favor the queries with larger

ROC for more memory allocation.

The optimal strategy divides the queries into three categories. The first category

gets the maximum allowed allocation. (If the maximum requirement is less than the

maximum allowed allocation per query, it will get the maximum required allocation.)

The second category gets the minimum required allocation, which is the allocation
with minimum consumption. The third category gets something in between. The

majority of the queries fall into the first two categories. The third category is only

for the borderline case. Furthermore, we can order the query types according to

22

F i g u r e 4 .2 R e t u r n on c o n s u m p t i o n

[
~E

Ul

Z o

. /

,I,

y J

• Q1
! Q 2
" Q 3

A Q 5

O

I I I o I , I I
0 1 ~ 2 ~ ,,300

MEMORYALLOCA~ON

their ROC at the maximum allocation in descending order• Surprisingly, the net

effect of the optimization strategy is to pick a dividing point on this ordered list.

Elements preceding the dividing point fall into the first category, and elements

following the dividing point fall into the second category. Elements at the dividing

point, if any, belong to the third category.

Based on these observations we propose a simple heuristic strategy, referred to

as the threshold strategy. It is based on ROC to determine how to allocate memory

among concurrently executing queries. Assuming in-memory time of a join query

is dominated mainly by I/O time, we can use the stand-alone execution time of a

query as an estimate of its in-memory time.

Let us first consider the case where the join method for each query is pre-

determined by the query optimizer. Only the memory allocation needs to be

determined in this case. Define for each query its marimum allocation, to be either

its maximum required allocation or some predefined maximum allocation limit for

all queries, whichever is smaller. For each query Qi, let ,y~naz be its maximum

ROC value within the maximum allocation. Recall that in Section 2, given the

sizes of the joining relations and the join selectivity, the curve for ROC vs memory

allocation can be directly derived. (We expect the query optimizer to provide the

ROC information for each query step.) Thus, obtaining 7~ naz is straightforward.

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 23

The heuristic buffer management scheme attempts to allocate memory to main-

tain a certain level of ROC. It is important to look not only at the response-time

reduction through additional memory allocation, but also at the associated cost (the

amount of memory consumption), because the memory allocation does not reflect

the effect of holding time. Define 0 to be the threshold on ROC to be determined

at the run-time environment. The single threshold parameter is applied to all query

types to balance the global buffer allocation requirement. Under the threshold

strategy, before a query is initiated, the amount of memory to be allocated for its

execution is determined based on 7~ ~z and 0. There is no attempt to change the

allocation dynamically during query execution. (Only 0 may be adjusted dynamically

to affect the memory allocation of future queries.) For each query, say Qi, if 7~ ~
exceeds 0, the memory allocation corresponding to a ROC of 7~ n"x will be provided

before the query is initiated. Otherwise, the allocation with the minimum memory

consumption is provided.

Next we consider the case in which both the join method and memory allocation

are to be determined together. This can correspond to the case in which query

access plans based on different join methods are pre-generated for each query. At

execution time, depending on the value of 0, the suitable access plan is selected

and the appropriate memory allocation is provided before the query is initiated.

(Upon different activations of a given query, unless the query mix has changed

drastically, most likely the optimal join method would not change, but the optimal

memory allocation may change. The approach described below can be used to

provide input to the query optimizer to generate an access plan of the desired

join method and subsequently only the simplified technique described above would

need to be used to decide the desirable memory allocation at run time.) As we

observed in Section 2, different join methods have different memory consumption

and minimum allocation requirements. For each query type, we can pick the the

minimum memory consumption allocation over all join methods to calculate the

ROC for each method. Note that changing the base of calculating the ROC will

preserve the strict order on ROC values between any two allocations under a given

join method. For example, under hash join, if originally the ROC at an allocation x

is larger than that at an allocation y, using the minimum allocation of sort-merge join

as the basis to calculate ROC will preserve this relation. This is due to the fact that

if a/b >c/d with a > c and b > f , then (a + 6)/(b+ ~) > (c + 6)/(d + w),
for 6 > 0 and w > 0.

ma:r be its maximum ROC value within the Thus for each query Qi, let "Yij
maximum allocation under the j- th join method. Let 7~ ~ be the maximum of the

7/~ ~ , for j = 1, ..., 3. Again a single threshold is applied to all query types to

24

balance the global storage allocation requirement. Under the threshold strategy, for

each query, say Qi, if 7~ na~ exceeds 0, the corresponding join method is adopted

and the associated memory allocation will be provided before the query is initiated.

Otherwise, the join method and memory allocation with the minimum memory

consumption are adopted.

5. Performance Comparison

In this section, we examine the performance of the heuristic strategy in Section 4 and

the global optimization strategy in Section 3. Also considered is the fixed allocation

strategy, which allocates each query with some predefined maximum allocation (or

its maximum required allocation, if smaller). A simulation program is developed

to compare the performance of the three strategies. The simulator consists of two

parts. The first part simulates the different memory management strategies. Based

on the strategy chosen, it decides the amount of memory allocation to the incoming

query. For the threshold strategy, based on the threshold value and the query type

which determines the ROC curve, the amount of memory allocation is determined.

The second part is the system simulator which models the CPU and I/O queues

and tracks the actual memory allocation. It keeps track of the progress of each

activated query. Queries entering the system are activated if they can be given the

entire memory allocation specified by the memory management strategy from an

available memory pool (free page list); otherwise they remain on a wait list until

their memory allocation is available. Queries are served on a FCFS basis. Both the

CPU queue and I/O queues are FCFS. The service (CPU and I/O) demand of each

type of query is determined by the query type. Queries run on the processor for

a time period equal to the calculated CPU requirement divided by the calculated

number of I/O, at which time they are switched to the disk queue. The relations

are assumed striped or interleaved on the disks so that the disk utilizations are the

same for all disks. After completion of I/O, the job returns to the CPU queue.

At finish, the memory allocation for the job is returned to the available memory

pool. All simulation runs are obtained such that the 95% confidence interval of

the response time measure is estimated to be within 5% of the mean.

Example 5.1: There are 10 joins referencing 20 relations. Tables 5.1 and 5.2 show

the pertinent parameters of the 20 relations and 10 join queries, respectively. Join

selectMties are assumed to be 0.01 for query Q7, 0.0001 query for Q1, Q9, and

Q10, and 0.130001 for all other queries. For hash join, 6 is again assumed to be 1.5.

The system configuration in Table 2.1 is assumed with a buffer size of 1000 pages.

VLDB JOURNAL 2(1) Yu: Buffer Management Based on Return on Consumption

Table 5.1. Relations in Example 5.1

Size Cardinality

Relation (pages) (no. of tuples)

25

1 500 4500

2 500 4500

3 700 50000

4 700 50000

5 800 80000

6 800 80000

7 1400 100000

8 1400 100000

9 650 40000

10 650 40000

11 400 30000

12 400 30000

13 2 10

14 400 10000

15 400 7000

16 400 7000

17 300 6000

18 300 6000

19 200 3000

20 200 3000

sorted on join attribute

sorted on join attribute

Table 5.2 Queries in Example 5.1

Query

Relations Relative

referenced run frequency

1 1 2 .032

2 3 4 .032

3 5 6 .036

4 7 8 .032

5 9 10 .032

6 11 12 .036

7 13 14 .180

8 15 16 .050

9 17 18 .200

10 19 20 .370

26

Figure 5.1 Response t imes under different strategies

8

m
I.iJ =Z
1,1,,I (,/'1 z

w

o I
0 o.25

• ' RXED 1/2 M
. FIXED 115 M
.,- F~(EO I110 M /

--~.- "mem.tou3 I
--A-- OPTIMIZED / ~

. +

, ! I I I I I I I
0.05 0.10 0.15 0.20

ARRIVAL RATE

Figure 5.1 shows the response time versus query arrival rate for the optimized,

the heuristic and the fixed allocation strategies. For the fixed allocation strategy,

we consider three cases with the maximum allocation limits to be 1/2, 1/5, and

1/10 of the total buffer size, respectively. The heuristic threshold strategy performs

quite close to the optimized strategy. The fixed allocation strategy does not do well

over the whole range considered for all three cases. The fixed allocation with 1/2

of the buffer performs well at the low arrival rate but does badly as arrival rate

increases. The fixed allocation with 1/10 of the buffer does badly at both low and

high arrival rates. The fixed allocation with 1/5 of the buffer performs the best at

the high arrival rate compared with the 1/2 and 1/10 allocations, but it is still much

worse than the optimized and threshold strategies. As pointed out before, both

these two strategies avoid allocating memory evenly, in favor of queries with higher

ROC, thus leading to more robust performance. We have conducted many more

simulations on different relative run frequencies, join selectivities, and relation sizes
with similar results.

We now take a closer look at the global optimization strategy. First we examine

its sensitivity to the parameters a , the maximum fraction of the buffer that can

be allocated to a single query, and/3, which sets the upper limit on total memory

consumption of all queries. Figure 5.2 shows the average response time versus fl

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 27

Figure 5.2 Optimal strategy's sensitivity to fl

bJ

tlJ
In
z

o I I I I I I I I I
0 .5 0 .8 0 . 7 O.B 0 .9 1 .0

B~A

with an o~ of 0.5 and an arrival rate of 0.2 queries/sec. The optimal ~ is around

0.7. Too small a fl causes memory to be wasted, i.e. not allocated, and too big

a ~ results in long waiting time for the memory allocation to become available

as memory usage becomes the bottleneck relative to the other resource like CPU.

Next we examine the effect of o~. Choosing c~ larger than 0.5 can seriously degrade

the performance, because under the FCFS scheduling policy, the multiprogramming

level (MPL) will be adversely affected. Consider the extreme case where o~ = 1.

For this case, understandably, when a query getting the maximum allocation is

under execution, no other queries can get initiated. The execution time of that

particular query is minimized but the CPU is idled most of the time with a MPL of

one and the waiting time for the desired memory allocation increases substantially.

Table 5.3 shows average response times for an optimized memory allocation for

o~ = 0.5 and c~ = 1, respectively. For each o~ value, the optimal ~ is chosen. As

expected, the response time for o~ = 1 is extremely poor. We can see that the

global optimization strategy does depend upon the appropriate selection of c~ and

ft. (It may be difficult to maintain "near optimal" settings for these parameters

in a dynamically changing environment.) In Figure 5.1, the optimized strategy is

plotted with ot = 0.5 and the optimal /3 derived through trial and error using

28

Table 5.3. Sensitivity to ot

Response

ct /3 time

1.0 0.8 390.0

0.5 0.7 26.4

the simulation. The optimal value of fl decreases as the arrival rate decreases to

prevent memory from becoming the bottleneck.

The optimized strategies for the queries at an arrival rate of 0.2 queries/see

with c~ = 0.5 and/3 = 0.7 are as follows:

Queries Q1 and Q2 do sort merge joins with minimum memory allocation.

Query Q7 does nested loops join with index scan on the inner relation R14.

Queries Q3 and Q4 do hash join with minimum memory assignment.

Query Q5 does hash join with 364 pages of buffer which is neither the maximum

nor the minimum allocation.

Queries Q6, Q8, Q9, and Q10 do hash join with the maximum allocation.

The heuristic strategy with a maximum allocation constraint of half the buffer

has a threshold of 0.0015, where the allocation is similar to the above except that

Q5 is given the minimum allocation. Figure 5.3 shows the average response time

versus the threshold, 0, for an arrival rate of 0.2 queries/sec. A smaller than

optimal 0 value means memory is over-allocated causing a longer wait time for the

memory to be freed up, and a larger than optimal 0 value means that the memory

is under-allocated causing more memory resource to be wasted. Performance can

be improved by properly setting 0 at run time. In a quasi-stable environment, a

dynamic approach can be taken to incrementally adjust 0 and search for the optimal

value. For example, if the memory wait time is too long, we can increase the value

of 0 by some increment. The average query's in-memory time will increase as
more queries operate on their minimum allocations. However, the wait time for

the required memory allocation to become available will decrease. If the net effect

measured after some period of time does not deteriorate the query response time,

which is the sum of the wait time and in-memory time, then 0 is moving in the

right direction and the procedure continues. Otherwise, 0 will be adjusted in the

opposite direction with a smaller decrement. The procedure stops if no performance

improvement can be made by adjusting 0 in either direction.

Simulations have been conducted for the dynamic approach of adjusting the 0
value in Example 5.1. Both cases of starting 0 with initial values larger than and

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 29

Figure 5.3 Threshold strategy's sensitivity to 0

bJ

0
O.

O

I
i

I I I I I I I I 1 I I I I I I I l l I
0.001 0.01

THETA

smaller than the optimal range of values are considered. In either case, 0 can move

to the optimal range of 0 values and similar average response times to that under

the optimal 0 can be achieved. []

Example 5.2 Tables 5.4 and 5.5 show the 20 relations and 10 join queries, respec-

tively. Join selectivities are assumed to be 0.0001 for the first three queries and

0.00001 for the other queries. In this example, no relation is pre-sorted on the

join column, hence hash join is the method of choice for all queries. The system

configuration in Table 2.1 is again assumed with a buffer size of 2100 pages. Figure

5.4 shows the average response time versus query arrival rate for the heuristic

threshold strategy and the fixed allocation strategy. For the fixed allocation strategy,

we again consider the three cases with the maximum allocation limits to be 1/2, 1/5,

and 1/10, respectively. The fixed allocation strategy does not perform well at higher

arrival rate under all three cases. The threshold strategy with a maximum allocation

constraint of half the buffer size operates under a 0 of 0.00048 over the entire range.

The optimized strategy is hardly distinguishable from the threshold strategy in this
case, hence is not explicitly shown on Figure 5.4. Under the threshold strategy,

all queries except queries Q9 and Q10 will get their maximum allocations whereas
queries Q9 and Q10 only get their minimum allocations. []

30

Table 5.4 Relations in Example 5.2

Relation Size Cardinality

1 200

2 200

3 300

4 300

5 500

6 500

7 700

• 8 700

9 800

10 800

11 1000

12 1000

13 1200

14 1200

15 1500

16 1500

17 1700

18 1700

19 2000

20 2000

10000

10000

15000

15000

30000

30000

50000

50000

75000

75000

110000

110000

130000

130000

140000

140000

145000

145000

150000

150000

Table 5.5 Joins in Example 5.2

Query

Relations Relative

referenced run frequency

1 1 2 .225

2 3 4 .215

3 5 6 .095

4 7 8 .095

5 9 10 .075

6 11 12 .075

7 13 14 .065

8 15 16 .065

9 17 18 .045

10 19 20 .045

VLDB JOURNAL 2(1) Yu: Buffer Management Based on Return on Consumption 31

Figure 5.4 Response times under different strategies

m

8

l l -

m

L
O

0

bJ

t a~
Ill
Z
ID
Q.

= 9

• - - * - - FIXED 1/2 M
~ - - fiXED 1/5 M ...,~
• - - ~ - Rxlw 1/ lo li ...-"

/ ,/'
,t,,., / /

j . 1

~,.~. g : : : : . . " ~ ~ " " - " " "
~ : : : = ~ , , , ~ .;;

I I I I I I I
0.01 0.02 0.03 0.04.

ARRNAL RATE

6 . C o n c l u s i o n

In a multi-query environment, the overall performance is very sensitive to buffer

allocation strategies. This is especially the case when the relation size is larger than

the buffer size. Conventional buffer management strategies do not provide guidelines

on how much memory to allocate to the hash buckets under hash join or to the sort

buffer like the tournament tree for sort-merge join in a multi-query environment.

Allocating memory to optimize the performance of each query without considering

the effect of other concurrently executing queries can lead to performance far from

optimal. In this article, the concept of memory consumption and ROC is introduced

as the basis for buffer management in a multi-query environment. Note that it is

insufficient just to examine the reduction in I/O or response time as the criterion

for allocating memory among contending queries. Even if two queries can result in

the same I/O or response time reduction for the same amount of additional buffer

allocation, the effect on memory consumption can be quite different as the two

queries can have very different response times. Since the total buffer consumption
must be preserved, it is important to introduce the concept of ROC. A global

32

optimization strategy is developed based on simulated annealing to provide a basis

against which a more realizable algorithm can be devised and compared. By studying
the optimal allocation, we observe that (1) the optimal strategy is not to evenly

allocate the memory among queries like the fixed allocation strategy, and (2) the
optimal strategy attempts to bias toward queries with larger ROC. Only those

queries with larger ROC are given the maximum allocations, or allocation at the
local maximum of the ROC curve, whereas most of the rest are given the minimum

allocations. Furthermore, we expect the query optimizer should be able to estimate

the response time curve (vs memory allocation), hence the ROC curve for a query.

From these observations, a heuristic threshold strategy is proposed based on the

concept of ROC. Simulation studies show that the heuristic strategy performs quite

closely to the optimum and outperforms the fixed allocation strategy substantially.

Appendix

In this Appendix, we provide a simple analysis to estimate the amount of I/O and

CPU processing under each join method.

A.1 Hash Joln

Recall that the pathlength to perform an I/O operation is Iio, the pathlength to

either extract each tuple from the input buffer, or move it to the output buffer is

1mot, e, the pathlength to apply a hash function to the join attribute value is Ih~sh, the
pathlength to search for a match or empty slot in the hash table is Isearch , and the
pathlength to join a pair of tuples is Ijoi,~. I~e~,rch may involve several comparisons

or hash collisions. The number of comparisons is affected by the expansion factor,

6. For a fixed expansion factor, d/, the memory allocations will not affect Isearch

and will change only the portion of data to be read in twice. Define f to be the
fraaction of tuples in the first partition which is kept in the memory during phase

one. Furthermore, let ,~ be the join selectivity, i.e., the number of tuples resulting

from the join divided by the product of the numbers of tuples in the two joining

relations. Let {R} and {S} be the number of tuples in relation R and relation

,5', respectively.
The number of I/Os and the amount of CPU processing required are given

below.

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 33

Phase I Cost
Number of I/Os

Dvh.8.-~ = [RI + (1 - f)lR[.
The CPU processing is

uph~"e-1 = IRIho + {R}(Imo,,o + Ih~,,h) + f{R}Is~areh

+ (1 - f)({R}Imo.. + IR[I~o).

Phase 2 Cost
Number of I/Os

DPhas*"2 = ISI + (1 - f) l S I ,

The CPU processing is

U ph"'-2 = ISlI~o + {S}(I~ov. + Ih~,,h) + f{S}I.~.,.~h

+(1 - f) ({ s } i ~ o w + ISI/,o) + {R}{S}f¢Ijo,,~.

Here we assume that the number of tuples matching from the join operation are

spread over all the hash partitions and are proportional to the number of tuples in
each partition.

Phase 3 Cost
Number of I/Os

D ph'~8~-'3 = (]R] + S) (1 - f) .

The CPU processing is

uph~8~"3 = (IRI + IsI)(1 - f)Iio + ({R} + {S})(1 - f)

(Imo,,~ + Ih~,h + I , ~ , ~h) + { R } { S } (1 - f)¢boi,~.

The total number of I/O accesses is the sum of the I/O accesses in the three phases.

Similarly, the total number of instructions processed by the CPU is the sum of the

CPU processing in the three phases. Note that we have been ignoring the effect of
prefetch blocking, but the extension is straightforward.

34

A.2 Sort-Merge Join

Under sort-merge join, the CPU requirement is composed of the following operations.
1. Set up the I/O operation

2. Move tuples from the I/O buffer to the tournament tree

3. Sort/Merge tuples through the tournament tree
4. Move tuples from the tournament tree to the output buffer

5. Compare the join fields of tuples in the two sorted relations to perform the join.

Both the scan phase and merge phase go through the first four steps and the final
join phase involve steps 1 and 5. The CPU requirement at each step except Step 3
is some constant, which is independent of the memory allocations, x the number

of tuples in each relation. Step 3 depends upon the size of the tournament tree.

Assume the pathlengths to move the tuple with the next smallest join attribute

value out of the tournament tree and refill the tree is I~our and I~o~, r for the scan
phase and merge phase, respectively. I:o~r or I~o~, ,. is roughly equal to the number

of levels in the tournament tree multiplied by Icomp, the pathlength to perform
a comparison operation at each level. The number of levels in the scan phase is
determined by the memory allocation and that in the merge phase is determined
by the number of sorted runs generated in the scan phase. The number of I/Os
and the amount of CPU processing required are derived below.

Phase I Cost
Number of I/Os

D vh~s~-~ = 2(IRI + ISl).

The CPU processing is

u ph s -I -- 2(IRI + ISI)ho + ({R} + {S})(2Imov~ + I'tour).

Phase 2 Cost
Number of I/Os

DPh=**-2 = 2(IR] + IS]).

The CPU processing is

U pha'*-2 = 2(JR] +]S])I,o + ({R} + {S})(2Imo~,~ + IJo'~,.).

VLDB JOURNAL 2 (1) Yu: Buffer Management Based on Return on Consumption 35

Phase 3 Cost

Number of I/Os

D pha~-z = IRI + ISl.

The CPU processing is

u ph~'̀ ~-z = (IRI + ISI)I,o + ({R} + {S})(I,~o~o + Lomp) + {R}{SS}¢Ijoln.

A.3 Nested.Loop Join

Assume the Iproc to be the pathlength to scan and compare a tuple, lproc is the

sum of Imo,e and Ieomp. Assume that R is the inner relation. Define g to be

M/IRI, i.e., the portion of the inner relation that can be kept in memory. If the

entire inner relation can be kept in memory, the number of I/O's is shown by

D = IRI + ISl.

The CPU processing overhead is,

U = (IRI + ISI)ho ++ {R}{S}I~.~ + {R}{S}¢Ijo~,~.

Next we consider the case where neither relation can be kept entirely in memory.

For table scan under LRU,

O = IS'IIRI + IS'I

u = (ISlIRI + ISI)ho + {R}{S}Ip.o~ + {R}{S}¢I~o,~.

For table scan under MRU,

O = (1 - g)ISIIRI + ISI

U = ((1 - g) I S l I R I + ISI)ho + {R}{S}Xp~o~ + {R}{S}¢bo~,~.

For index scan, assuming no buffer hit at the data pages, (see Mackert and Lohrnan,
1989 for more elaborate estimations),

36

D = ISl +

u = (ISl + + + Ijo,).

Acknowledgments

The authors would like to thank Joel W. Wolf for his comments and suggestions.

References

Chou, H.-T. and DeWitt, D.J., An Evaluation of Buffer Management Strategies for
Relational Database Systems, Proceedings of the l lth International Conference on
~ty Large Data Bases, Stockholm, Sweden, 1985.

Codd, E.E Relational Model of Data for Large Shared Data Banks, Communications
oftheACM 13:377-387, 1970.

Cornell, D.W and Yu, ES. Integration of Buffer Management and Query Optimiza-
tion in Relational Database Environment, Proceedings of the 15th International
Conference on Pbry Large Data Bases, Amsterdam, Netherlands, 1989.

Dewitt, D.J., Katz, R.H., Olken, E, Shapiro, D.L, Stonebraker, M.R., and Wood, D.
Implementation Techniques for Main Memory Database Systems, Proceedings of
the SIGMOD International Conference on Management of Data, Boston, MA, 1984.

Effelberg, W. and Loomis, M.E.S. Logical, Internal and Physical Reference Behavior
in CODASYL Database Systems, ACM ~ansactions on Database Systems, 9:187-
213, 1984.

Ioannidis, Y. and Wong, E. Query Optimization by Simulated Annealing, Proceedings
of ACM SIGMOD International Conference on Management of Data, San Francisco,
CA, 1987.

Ioannidis, Y. and Kang, Y. Randomized Algorithms for Optimizing Large Join
Queries, Proceedings of ACM SIGMOD International Conference on Management
of Data, Atlantic City, NJ, 1990.

Ioannidis, Y. and Kang, Y. Left-Deep vs Bushy Trees: An Analysis of Strategy
Spaces and Its Implications for Query Optimization, Proceedings of ACMSIGMOD
International Conference on Management of Data, Denver, CO., 1991.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. Optimization by Simulated Annealing,
Science, 220:671-680, 1983.

VLDB JOURNAL 2(1) Yu: Buffer Management Based on Return on Consumption 37

Kirkpatrick, S. and Tolouse, G. Configuration Space Analysis of 'Itavelling Salesman
Problems, Journal Physique, 46:1277-1292, 1985.

Knuth, D.E., The Art of Computer Programming: Vol. 3, Reading, MA: Addison-
Wesley, 1975.

Lakshmi, M.S. and Yu, P.S. Limiting Factors of Join Performance on Parallel
Processors, Proceedings of the Fifth International Conference on Data Engineering~
Los Angeles, CA, 1989.

Mackert, L.E and Lohman, G.M. Index Scans Using a Finite LRU Buffer: A
Validated I/O Model, ACM Transactions on Database Systems, 14:401-424, 1989.

Ng, R., Faloutsos, C., and Sellis, T. Flexible Buffer Allocation Based on Marginal
Gains, Proceedings of ACM SIGMOD International Conference on Management of
Data, Denver, CO, 1991.

Sacco, G. and Schkolnick, M. A Mechanism for Managing the Buffer Pool in a
Relational Database System using the Hotset Model, Proceedings of the Eighth
International Conference on Very Large Data Bases, Mexico City, 1982.

Sacco, G. and Schkolnick, M. Buffer Management in Relational Database Systems,
ACM Transactions on Database Systems, 11:474-498, 1986.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., and Price, T.G.
Access Path Selection in a Relational Database Management System, Proceedings
of ACM SIGMOD International Conference on Management of Data, Boston, MA,
1979.

Shapiro, D.S. Join Processing in Database Systems with Large Memories, ACM
Transactions on Database Systems, 11:239-264, 1986.

Stonebraker, M. Operating System Support for Database Management, Communi-
cations of the ACM, 24:412-418, 1981.

Swami, A. and Gupta, A. Optimization of Large Join Queries, Proceedings of ACM
SIGMOD International Conference on Management of Data, Chicago, 1988.

Swami, A. Optimization of Large Join Queries: Combining Heuristics and Com-
binatorial Techniques, Proceedings of ACM SIGMOD International Conference on
Management of Data, Portland, OR, 1989.

Wolf, J.L., Dias, D.M., Iyer, B.R., and Yu, ES. Multisystem Coupling by a Com-
bination of Data Sharing and Data Partitioning, IEEE Transactions on Software
Engineering 15:854-860, 1989.

