
FLDB1ouma~ 2, 285-310 (1992) Dennis McLeod, Editor 28.5

Federated Databases and Systems:

Part II - A Tutorial on Their Resource Consolidation

David K, Hsiao

Received JuRy 11, 1990; revised version received June 13, 1991; accepted August 22, 1991.

Abstract. The issues and solutions for the interoperability of a class of hetero-
geneous databases and their database systems are expounded in two parts. Part
I presented the data-sharing issues in federated databases and systems (Hsiao,
1992). The present article explores resource-consolidation issues. Interoperabil-
ity in this context refers to data sharing among heterogeneous databases, and to
resource consolidation of computer hardware, system software, and support per-
sonnel. Resource consolidation requires the presence of a database system archi-
tecture which supports the heterogeneous system software, thereby eliminating
the need for various computer hardware and support personnel. The class of het-
erogeneous databases and database systems expounded herein is termed federated,
meaning that they are joined in order to meet certain organizational requirements
and because they require their respective application specificities, integrity con-
straints, and security requirements to be upheld. Federated databases and systems
are new. While there are no technological solutions, there has been considerable
research towards their development. This tutorial is aimed at exposing the need
for such solutions. A taxonomy is introduced in our review of existing research
undertakings and exploratory developments. With this taxonomy, we contrast and
compare various approaches to federating databases and systems.

Key Words: Interoperability of heterogeneous databases and systems (attribute-
based, hierarchical, network, relational, object-oriented); data-sharing techniques
(database conversion, schema transformation, transaction translation, data-
model-and-language-to-data-model-and-language mappings).

1. Introduction

A new class o f he te rogeneous databases and systems consisting of bo th new and old

existing systems is currently being developed. Until now, each of these databases and

David K. Hsiao, Ph.D., is Professor of Computer Science, Naval Postgraduate School, Monterey, CA.
(Reprint requests to Prof. Hsiao, Code CS/Hq, BIdg, Ha-221, Naval Postgraduate School, Monterey, CA
93943.)
Editorial note: Portions of the introductory sections of Part II of this article replicate material in Part I
(Hsiao, 1992) in order to provide the reader with a self-standing article.

286

systems has been used in a stand-alone environment for a specific application

with a particular integrity constraint and unique security requirement. They have
been rather efficient in their respective applications and effective in upholding their

respective integrity constraints and security requirements. However, these databases
and systems are heterogeneous. In order to facilitate their respective application,

integrity, and security requirements, they must have their respective data models,

data languages, and database systems. They are also supported on different computer

hardware, system software, and professional personnel, since all the stand-alone

environments are distinct. What makes them into a class are:

. they all belong to an organization which requires data in various heterogeneous

databases to be shared so that new applications dealing with organizational

matters can be developed from the shared data, i.e., heterogeneous data

meant to be shared in the organization;

. they, on the other hand, have their own individual application specificities and

must uphold the individual integrity constraints and security requirements,

i.e., data-sharing among heterogeneous databases meant to be controlled by

individual database systems;

. these heterogeneous databases and systems of the organization must be

consolidated if the data sharing and its access controls are to be effective
and efficient (i.e., controlled sharing of heterogeneous databases meant to be
facilitated in a single architecture instead of many separate and stand-alone

environments).

Such a class of heterogeneous databases and systems is termed federated databases
and systems.

In this section we reveal the need for federated databases and systems. We

report the factors that have prompted the pending arrival of federated databases and

systems in Section 1.2. In Section 1.3, we list the requirements for heterogeneous

databases and systems to be federated. However, the bulk of the tutorial deals

with various approaches towards a solution to controlled sharing of heterogeneous

data (Section 2) and various architectures for consolidating heterogeneous database-

system resources. To this end, we propose a taxonomy for the purpose of examining
various approaches and architectures in terms of the requirements set forth in

Section 1.3.

With this taxonomy, we are able to compare the merits and demerits of various

approaches and architectures. It is important to note that heterogeneous databases

287

and systems in a federation consist of both new, old, and older databases and

systems. This is a real-world database problem which we attempt to address. Thus,

our sample data models and data languages include new ones, such as the object-

oriented; old ones, such as the relational; and older ones, such as the hierarchical

and the network. It is also important to note that approaches and architectures

examined herein are mostly research proposals and exploratory developments. The

technology for federated databases and systems is simply not here now. We hope

this tutorial will prompt more researchers and explorers into the field of federated

databases and systems in the coming decades.

Some colleagues working in the area of federated databases and systems term

this area the interoperability of heterogeneous databases and systems. Others term it

the interoperability ofmultidatabase systems. Either terminology is acceptable to us.

However, some prefer the term integration over the term interoperability. We take

issue with the use of the term of integration, because integration means combining

databases and systems into a whole. In federated databases and systems, there are

approaches and architectures which require no combination of multiple databases

and systems into one. We may examine the integration issues of, for example,

concurrency control mechanisms of various heterogeneous databases systems and

database schemas of various heterogeneous databases at some "lower" level. Inte-

gration will be used in addressing these lower-level issues in the tutorial, but it will

not be used to refer to the new area of study known as federated databases and

systems.

1.1 What is the Notion of Federated Databases and Systems? In a federation

of heterogeneous databases, there is the need for data sharing among the diverse

databases, and for resource consolidation of all supporting software, hardware, and

personnel, although each database has its own autonomy in terms of, for example,

its integrity constraint, application specificity, and security requirements. Thus,

federated databases and systems deal with heterogeneous databases. They must

provide data sharing and resource consolidation without violating the autonomies

of individual databases. In the following, we first report the proliferation of the

heterogeneous databases in an organization. We then propose controlled sharing

of data among heterogeneous databases. The sharing is not only necessary, but

controlled, so that the autonomy of each database is upheld. Lastly, we explore the

need for resource consolidation.

1.2 What Factors Prompted the Pending Arrival of Federated Databases and
S y s t e m s ? There are several real-world factors which are elaborated in the following

288

sections, although database technologists and researchers may not be aware of their

concerted impact on the need for and arrival of federated databases and systems

at the moment.

1.2.1 The Replacement of Traditional Data Processing Practices with Modem Ho-
mogeneous Database Systems. In traditional data processing, data are stored on
tapes. A data processing task requires the manual handling of tapes and trans-
actions. To process data on tapes for a new query, data processing professionals
must first write the necessary transactions off-line and then run the new transactions
against necessary tapes manually. For routine data processing involving regular and
standard transactions, there is already considerable manual work which is not only
error-prone, but also labor-intensive. For ad hoc queries, their routines and practices
are greatly affected. There are more errors in developing the new transactions and
in running them against existing tapes. There are also more labor-intensive efforts
on the part of data processing professionals in developing new transactions and in
handling tapes. The introduction of modern database systems as replacements for
traditional data processing practices has greatly reduced labor-intensive and error-
prone pitfalls. Since data are stored on disks and managed by the database system
automatically, there is no manual handling of storage media. Regular and standard
transactions are cataloged in and executed by the database system routinely. There
is also no need for any manual handling of regular and standard transactions. For
ad hoc queries, the modern database system provides an ad hoe query capability.
Thus, database professionals may develop new transactions for queries on-line and
query the existing database directly. Finally, each modern database system is highly
specialized to deliver the most effective and efficient on-line processing of a class
of data processing tasks. For example, the relational database system is particu-
larly suitable for keeping records. Thus, data processing tasks on payroll records,
on employee records, and on other record collections may be taken over by the
relational database system. Despite the diversity of the record-keeping tasks and

differences in the record type, the same relational database system can handle them

effectively and efficiently. Thus, the relational database system is said to handle

homogeneous databases of records, since all the records are stored on the disks with

the same format (i.e., the relational form), and are accessible and manipulatable by

transactions written in the same relational data language (e.g., SQL). The sameness

(i.e., homogeneity) in the data model and data language, is introduced, of course,

for the effective and efficient handling and processing of the intended databases.

For these reasons, the relational database system is termed a homogeneous database

system for record keeping.

289

There are other homogeneous database systems which are specialized in other
distinct and major tasks beyond data processing of records. For example, the hier-

archical database system supports the hierarchical databases; the network database

system the network databases; the functional database system the functional data-

bases; the object-oriented database system the object-oriented databases; and so on.

The great proliferation of many homogeneous databases and database systems indi-

cates that traditional data processing (using tapes and relying on manual handling

of tapes and transactions) is disappearing. It also indicates that the homogeneous

database systems not only replace traditional data processing tasks, but also open

up new database applications. Thus, database systems become an indispensable

means in an organization for handling information needs.

1.2.2 The Proliferation of Heterogeneous Databases in an Organization. Typically,

each department in an organization has its own information needs and focuses on

a specific database application. For example, the personnel department may use a

record-keeping database system to keep track of employee records. The use of a
relational database system such as ORACLE to support the database, and writing

transactions in SQL to access and manipulate employee records, has been in vogue.
The engineering department may focus on design specifications in terms of

product assemblies. Each assembly consists of many subassemblies, each subassembly
many components, each component many parts, each part many design specs, each
spec many figures and numbers. These design specs can best be organized as a

hierarchical database of facts and figures supported by a hierarchical database system.

Thus, we may use, for example, an IBM IMS to support the hierarchical database

and a data language, DIHI, to write transactions for accessing and manipulating the

database.
The inventory department, on the other hand, may wish to use a network database

to represent the many-to-many relationships among their inventory records. For

example, a part (therefore, a part record) may be supplied by (related to) several

suppliers (several supplier records); a supplier (a supplier record) on the other hand

may be supplying (related to) several parts (part records). Thus, in this example,
there is a many-to-many relationship between the part records and the supplier

records. There are many such many-to-many relationships in a real inventory

collection (i.e., a network database). Such databases can be supported by a network

database system such as Unisys DBMS 1100 and by transactions written in a network

data language such as CODASYL-DML

290

The research-and-development department may want to experiment with a

functional database to support expert-system applications using a functional database
system such as CCA Local Database Manager and a data language such as CCA

Daplex. It may also desire to try an object-oriented database system and its object-

oriented data language on new applications in manufacture engineering. Many new
and experimental object-oriented database systems and data languages (e.g., HP
IRIS) have been proposed and prototyped recently.

Databases, data languages, and database systems in different departments,

although homogeneous with respect to their own departments, are heterogeneous
in the organization; this is because they are based on different data models, data

languages, and database systems. If departments of an organization attempt to

computerize all their useful information into databases, using suitable database

systems and employing stylized data languages to write transactions for their highly
specialized applications, then it is inevitable that a proliferation of heterogeneous

databases and systems will result. As we enter the Information Age, the race

towards computerized information and the proliferation of heterogeneous databases,

data languages, and database systems in an organization will be intensified. This

proliferation is not reversible; nor can the proliferation be restricted to one data
model, to one data language, and to one database system. In other words, the
proliferation is on the heterogeneity of databases and systems in all the departments,

not just on a collection of homogeneous databases and systems in a single department.

1.2.3 Data Sharing of Various Databases in the Organization. The effective use

of information scattered in different departments requires data sharing among
the departments for corporate planning and decision-making, marketing strategies,

regulatory compliances, inter-departmental communications and coordinations, and

other multi-departmental activities. In fact, the effectiveness of sharing data within

an organization may well be the most important surviving factor of the organization in

the Information Age. What would be the most expeditious way to share data among
heterogeneous databases? There are three requirements in federated databases and

systems:

1. The first requirement is that the user must be able to access a heterogeneous

database as if it were the user's homogeneous database. In other words, the

user should not be required to learn the data model of the heterogeneous

database. Nor should the user be required to write transactions in the

data language supported by the other database system of the heterogeneous
database. Instead, the user continues to view the heterogeneous database

291

by way of the user's familiar data model and writes transactions against the

database in the user's familiar data language. For example, a relational

database user in the personnel department may access a hierachical database

in the engineering department as if it were a relational database by writing

SQL transactions for such accesses and manipulations of the database. We

term this requirement the transparent access to heterogeneous databases.

2. The second requirement allows the owner of a database to share the database

with others without compromising the owner's integrity constraint, application

specificity, and security requiremenL In other words, the autonomy of

the owner's database is upheld, despite the fact that multiple accesses and

manipulations are being made by users of other departments. We term this

requirement the local autonomy of each heterogeneous database.

. The third requirement is that federated databases and systems are multi-

model and multilingual. By multimodel we mean that a database system in

the federation supports various databases in many different data models. For

example, a multimodel database system may support relational databases, hi-

erachical databases, network databases, functional databases, object-oriented

databases, and other model-based databases. By multilingual we mean that

the database system executes transactions, each of which may be written

in a distinct data language, for its corresponding model-oriented databases.

For example, a multilingual database system may execute SQL transactions

against relational databases, DL/I transactions against hierachical databases,

CODASYL-DML transactions against network databases, Daplex transactions

against functional databases, and transactions written in an object-oriented

or new data language against object-oriented or new databases, respectively.

Without being multimodel and multilingual, federated databases and systems

will not be able to support heterogeneous databases and systems which are

the necessary condition of the federation.

Unless the aforementioned three requirements are met, data sharing among hetero-

geneous databases scattered in different parts of an organization (i.e., federation)

will not become effective. Here, the emphasis of requirements is on the effectiveness

of federated databases and systems.

1.2.4 Resource Consolidation of Supporting Software, Hardware, and Personnel
Heterogeneous databases scattered in different departments in an organization

are likely to be supported respectively by different sets of computer hardware,

292

database systems, and database professionals. Such supports are both inefficient and

unaccountable. They are inefficient due to the duplication of hardware, software, and

personnel in supporting several, separate, and complete database systems and their

databases. They are unaccountable because if there is any difficulty in data sharing

it is hard to hold a particular department and its database system responsible for the

difficulty. Consequently, communications and cooperations among the departments

in terms of data sharing will be hindered. The question is whether or not it is

possible to come up with an architecture for federated databases and systems so

that inefficiency and unaccountability of heterogeneous databases for data sharing

will be resolved. Later we will review several architectures for federated databases

and systems. First we will spell out requirements for such an architecture.

The architecture of federated databases and systems must be special-purpose and

parallel. This requirement may overcome inefficiency and unaccountability issues.

By special-purpose we mean that the computer and its secondary storage are dedicated

to and specialized in the support of the databases and database-system software.

Due to the recent advances in computer technology, it is entirely cost-effective to

construct special-purpose computers for better database management performance

than mainframes and superminis. These special-purpose database computers are
termed database backends, or, for short, backends. The backend architecture

must also be parallel. Parallel backend architecture is termed the multibackend
architecture. Specialization and parallelism are the two most important architectural

principles for the improvement of the computer performance and efficiency.

By multibackend we mean that federated database systems, whether centralized

or distributed, have been off-loaded from the mainframe computers into specialized

backend computers. They can be supported by a single backend and its database

store. However, they are likely run on multiple backends and their respective

database stores where the backends, not database stores, are interconnected by way

of a communication net. With identical backends, this architecture requires that

the database-system software be replicatable over the identical backends. However,

the federated databases are not replicated. They are required, nevertheless, to

be clustered or partitioned. The distribution of data aggregates in a cluster must

induce parallel accesses to all the aggregates in the cluster. Thus, the distribution

and redistribution of federated databases on existing and new database stores

are required to be automatic. When the number of the backends at a site is

two or greater, the backends and their stores are configured parallel to sustain

the multiple-transactions-and-multiple-database-streams (MTMD) operation. These

requirements allow federated databases and systems to be run more efficiently with

built-in, processing-and-accessing parallelism, to be maintained by fewer personnel,

293

to be supported with identical hardware, replicatable software, and reconfigurable
databases, and to be charged with the sole responsibility for the support of federated
databases and the database-system software.

It is important to note that, unlike the previous requirements for data sharing

which emphasize the effectiveness of federated databases and systems, these archi-

tectural requirements emphasize efficiency of the federated databases and systems.
The architecture of the multibackend database system allows the user to scale the

system in terms of the number of backends and their stores, i.e., the degree of its

parallelism, for the performance gain and capacity growth of federated databases

and systems.

For accountability, we require federated database systems to provide deadlock-

free accesses to their databases, although these accesses may have already met

integrity constraints, application specificities, and security requirements. Otherwise,

concurrent accesses for authorized and necessary data will be indefinitely delayed

or deferred. Thus, the search for effective and efficient access and concurrency
controls in federated databases and systems is aimed to address the accountability

issue. We also can discuss in the following section the need for effective and efficient

access and concurrency controls in terms of their necessary role in upholding the
local autonomy of a federated database system and its databases.

1.2.5 Access and Concurrency Controls for Local Autonomies of Federated Data-
bases. To uphold the local autonomy of departmental databases in terms of integrity

constraint, application specificity, and security requirement, accesses to departmental

databases must be controlled. Thus, federated databases and systems are required

to provide access and concurrency control mechanisms for triggering the particular

integrity constraint, for interfacing with the specific model/language software, for
enforcing the necessary security requirement, and for controlling concurrent accesses

to heterogeneous databases of separate departments. The question is, therefore,
what would be the most effective and efficient architecture for the incorporation

of necessary access and concurrency control mechanisms into federated databases

and systems. These architectural issues are addressed later in this paper.

Here, we simply point out that effective and efficient access and concurrency

controls are necessary for upholding autonomies of local databases and thus a re-

quirement for federated databases and systems to be truly effective in data sharing
and highly efficient in resource consolidation. Consequently, this requirement under-
scores all previous requirements. In our examination of various approaches towards

either data sharing or resource consolidation we must examine these approaches for

their capacity to incorporate necessary access and concurrency control mechanisms.

294

1.3 Summary of Five Requirements for Federated Databases and Systems.
All solutions for and approaches to federated databases and systems presented in

this article will be examined in terms of five requirements. Data sharing requires:

1. Transparent accesses to heterogeneous databases in the federation;

2. The local autonomy of each heterogeneous database;

3. Multimodel and multilingual capabilities of federated database systems.

Resource consolidation requires:

4. Multibackend capability.

Upholding local autonomies of federated databases requires:

5. Effective and efficient access and concurrency control mechanisms.

Since approaches to data sharing have been expounded upon in Part I (Hsiao, 1992),

we will now explore solutions for resource consolidation.

2. Architectures for Resource Consolidation

In Sections 1.2.4 and 1.2.5, requirements for resource consolidation were established

to address the issues of efficiency and accountability of federated databases and

systems. In order to be efficient, federated databases require architectures which

will induce

. parallel operations (i.e., the multiple-transactions-and-multiple-database-

streams [MTMD] operation with special-purpose and multibackend com-

puters),

2. identical backends and their database stores,

3. replicatable database-system software on backends,

4. clustered or partitioned databases on database stores,

5. automatic database distribution or redistribution on a per-cluster or per-

partition basis over parallel stores.

295

For accountability, the architecture should be able to facilitate effective and

efficient access and concurrency controls over the federated databases

1. without causing an indefinite delay in any access,

2. without breaching the constraints, specificities, and requirements for any

transaction.

In following sections, we examine three entirely different architectures of feder-

ated databases and systems for resource consolidation. They are mainframe-based,

single-backend-based, and multiple-backend-based. In examining each of them, we

refer to the requirements of efficiency and accountability.

2.1 Sharing a Mainframe Computer among Federated Databases and
Systems

In a mainframe computer (e.g., a supercomputer or a supermini), database trans-

actions are executed by the mainframe as application programs (Figure 1). There
are many kinds of application programs in a mainframe computer. Each kind is

supported by an application system. The mainframe computer and its operating

system therefore run many application systems.

2.1.1 Merits in Consolidating Database Transactions and Database Systems in a
Mainframe. Each federated database system is considered an application system by
the mainframe. Transactions of a database system in the federation are considered as

application programs of the database (or more precisely, application) system of the

mainframe. Since there are many heterogeneous database systems in the federation,

there are many application systems supported by the mainframe and its operating

system. This is a good case for resource consolidation of the database-system

software and transactions into a single mainframe.
There are, of course, other nondatabase application programs and systems.

Consider compiler-language systems. The mainframe typically runs several compiler-
language systems as application systems. In this kind of application system, we have
program-language applications. Programs written by the user and compiled by the

compiler-language system are also termed application programs of the mainframe

computer. Thus, as the application-system software, heterogeneous database systems
must share resources of the mainframe not only with other application-system soft-

ware (such as compiler-language systems), hut also among heterogeneous database

systems themselves.

296

Figure 1. Mainframe-Based Approach to Federated Database
Systems

TI, ia
User --dl-~-

~ Q
Ua l r +

IJa'tabase Transactiona I R Oo'tabase
.Ira.- W r i t t e n ;n a Oa ta ~ . l m - . H a n a q e m e n t - . , q l -

I L a n q u o q e i $~etem

Pregrams Written I1 Comoilar-
l ib in a --,4- ~ L a n g u a g e

Compiler-language St/stem

npollc~:rtdans
Praareme

COhZtn•nel Olsk Cant.railers j

O o 0
T h e

O p e r ~ t l n ~

, - - - . . a a - . . f , , . , j
Channel i

I

N o l n f r O m o _ I ~ D o t a ~ I ~ H o l n f r a m e ~
,111 Coral:lurer a t o m $o f t tuor t - I - u u s e s ' ~ i - OlaS(S lJ l t tem '~ 'JP]

_ H i . f l A P IlcatJane I
Vstems

$ o f t m a r e - -

n M a i n f r a m e Compu" ter

2.1.2 Difficulties in Consofidating Federated Databases and Systems in a Main°
frame. Sharing mainframe-computer resources among application-system software,
particularly heterogeneous database systems, presents difficulties:

. The disks of the mainframe must be shared among application-system software.
Whereas compiler-language systems utilize disks as temporary storages, which
enhances storage sharing, heterogeneous database systems utilize disks for
their databases as permanent storages which precludes sharing the same set
of disks for each other's databases. Consequently, sharing mainframe disks

with heterogeneous database systems is not possible.

. As an application system, a compiler-language system may be CPU-bound and
main-memory-bound during the program-compilation phase. Nevertheless,
it is seldom I/O bound. Further, during the execution of a compiled program
as an application program, the typical program does not consume a lot of
computer resources. During the execution of a transaction, on the other
hand, the database transaction is typically CPU-bound, memory-bound, and
I/O-bound. Due entirely to its data-intensive and data-voluminous opera-
tions, a database transaction as a mainframe application ties up considerable
mainframe computer resources.

297

. The intensive demand on computer resources by various application-system

software requires periodic upgrading of the underlying mainframe computer.

The replacement of the existing mainframe computer with a newer and more

powerful mainframe tends to be disruptive and costly, since we must shut

down the existing computer system and bring up the new system. Further,

new lines of mainframes are always more costly than the current line of the

mainframe computer.

With these difficulties, heterogeneous database systems seldom share a main-

frame computer with other application-system software. In fact, heterogeneous

database systems do not even share the same mainframe computer among them-

selves. Since a mainframe is either a supercomputer or a supermini, the use of

a single mainframe computer to support exclusively a monomodel/monolingual or

bimodel/bilingual database system is a costly undertaking. The replacement of the

mainframe with a more powerful and newer mainframe for performance enhance-

ment and capacity growth of a single database system with limited heterogeneity is

therefore disruptive and costly, too.

Since by nature federated databases and systems have greater heterogeneity, the

use of a large number of mainframe computers for supporting federated database

systems will not only incur greater costs and disruptions in the replacement issue,

but also create difficulties in the development of parallel operations and concurrency

controls. Except in the case of the database conversion approach to data sharing

(Hsiao, 1992) where two database systems (e.g., relational DB2 and hierarchical

IMS) and their databases are supported by a single mainframe computer, the use

of multiple mainframe computers for federated databases and systems has not been

in practice. Thus, we disqualify this architecture from the onset without checking

it against the remaining architectural requirements.

2.2 Use of Single-Backend Computers for Federated Databases and Systems

Single backends are minis, supermicros, or database machines (single or dual proces-

sor). As Figure 2 shows, the term backend indicates that the computer or machine

is in the back of either a mainframe computer or a communication device. Further,

federated databases and database systems of the mainframe computer are off-loaded
from the mainframe computer onto backend computers or machines. Symmetri-

cally, we term the mainframe computer and the communication device frontends.
To utilize a backend computer or machine, the user typically accesses it through

a frontend, i.e., by way of a mainframe computer or via a communication device

such as a local-area network. While both the mainframe and the communication

298

Figure 2. The Single-Backend Architecture for Federated Database
Systems

The
U s e r

The -,4---
U s e r

I .onquage

J OelJDboe•
Oertm

I ' - " l " ' - ,

4-- : z : . : ' ; : . . - - "

I = l - - A 8ocken4 Comotn.ur ~-I

O N Co0tgJP olloP 18 J Olek

J IU I I tem • • •

I I N i l ~ f r l l m • ¢Omlll*/hlr ~,~11

P r e g r clmll UIr ~tten

C o m l l l l l r -lan,aluoqlo

device support nondatabase applications, database applications are solely supported

by the single-backend computers and machines. Thus, database backends become

heterogeneous database servers to the mainframe computer and communication
device.

Since each backend (computer or machine) consists of its own set of disks,

it may dedicate its entire resources to a heterogeneous database system and its

databases in the federation. If the heterogeneity of federated databases and systems

in the federation is m, then we may have m database servers, each of which is

monomodel and monolingual and supports a collection of homogeneous databases.

Together, they provide for the federation multimodel and multilingual capabilities

and serve as a reservoir of heterogeneous databases.

2.2.1 Database Conversion Approach to Data Sharing. Separate, monomodel and
monolingual database systems are now off-loaded from the mainframe computer

into separate single-backends. Database converters (Hsiao, 1992) may still run at

the mainframe or be relegated to their respective source backends. For example, the

hierarchical-to-relational database converter may be relegated to the hierarchical

database backend (i.e., the source backend), which would convert a hierarchical

database into a relational database and send the relational copy to the intended

relational backend, the target backend, by way of the frontend. With the use of

multiple single-backends for the heterogeneous databases in the federation, the

299

routing of conversion tasks and converted copies still rests with the frontend. Such

routing has minimal impact on the performance and load of the frontend.

2.2.2 For Single-ML-to-Single-ML, Single-ML-to.Multiple-MLs, and Multiple-MLs-
to-Multiple-MLs Mappings. The multi-system architecture of these three mappings

(Hsiao, 1992) can be supported by multiple single-backend computers or machines

as configured for the data conversion approach in the previous paragraph. For

Single-ML-to-Single-ML mapping, for example, if the heterogeneity of the feder-

ation is three (e.g., relational, hierarchical, and network) then we can have three

database servers (i.e., the relational/SQL server, the hierarchical/DL/I server, and

the network/CODASYL-DML server) being realized in three different backends.

For this mapping, their schema transformers and transaction translators can run in

the frontend or in their respective source backends. More specifically, the relational-

to-hierarchical schema transformation and the SQL-to-DL/I transaction translation

can be done either in the frontend or in the relational/SQL server but need not

in both, for instances. Essentially, in this case either the frontend or the back-

end transforms the schema, translates the transaction, and ships the transformed

schema and translated transaction to the target backend for execution. The six

source-to-target transformations and translations in this example can be supported

either entirely in the frontend or two in each backend.

For Single-ML-to-Multiple-MLs mapping, the global-to-local schema transfor-

mation and global-to-local transaction translation can be done in the frontend.

There is no need for a separate server for the global data model and language,

since there is no real global database in the federation. However, different sets of

global transformers and translators may be run on different target backends where

the set on the backend produces the transformed schema (in the local data model)

and the translated transaction (in the local data language) for the local database

system. In this distribution of the transformers and translators, there is no need to

run any set of transformer and translator in the frontend.

For Multiple-MLs-to-Multiple-MLs mapping, the intermediate ML does not

have a database. Therefore, there is no need to set aside a backend for the

intermediate ML. All the source-ML-to-target-ML transformations and translations

by way of the intermediate ML can be done in the frontend centrally or in respective

source backends separately.

It is important to observe that despite the differences in the software complexity

of their transformation and translation requirements, all the three mappings discussed

in this section require the use of multiple single-backend computers as in the case
of database conversion approach to data sharing.

300

2.2.3 Multiple-MLs-to-Single-ML Mapping. We need only one single-backend com-

puter or machine to support the single (kernel) database system and its data model

and language. The multiple-MLs transformation and translation software can be

supported on the frontend. Thus, the single backend becomes the kernel database

server of the federation. All the heterogeneous and federated databases are stored

in the kernel database server in the kernel-data-model form. There is no other

database server. Since this mapping is a single-(kernel)-system architecture, it is

natural to consolidate the system software into a single backend.

2.2.4 Merits and Limitations of Single-Backend Architecture. Since there are seven

architectural requirements for resource consolidation and access and concurrency

controls, we examine each of aforementioned architectures in terms of these re-

quirements.

Specialization and Parallel Operations. The use of single-backend computers or

machines to support federated databases has the following advantages. The cost

is much lower than the cost of a mainframe computer. Further, the backend can

be tailored to a given data model and data language and can dedicate its entire

resources to the given database system, whereas the mainframe computer tends
to host many application systems. While running several heterogeneous databases

and systems on a single mainframe computer is difficult, if not impossible, running

multiple heterogeneous database systems on multiple mainframe computers will

incur prohibitive costs. However, running multiple heterogeneous database systems

on multiple single-backend computers (one for each backend) is straightforward

(e.g., there is the commercial IDM 500 for the relational databases and system, the

proposal of CASSM for the hierarchical databases and system, and the experimental

XDBMS for the network databases and system. These are cost-effective, single-

backend, special-purpose database computers or machines).

To support parallel MTMD operations it is necessary to use a number of

single-backends. Since these are separate servers hosting different databases, it

is necessary to have a supervisor for such a parallel, multi-computer operation

to achieve an MTMD operation over a given set of heterogeneous databases on

several database servers. Neither the mainframe nor the separate servers have such

built-in supervisory software. On the other hand, to achieve an MTMD operation

over a given database on a single server is impossible, because the server is a

single-backend. Thus, the use of multiple single-backends for a server requires a

built-in supervisor as in any multi-computer case. The coordination and scheduling

of heterogeneous, separate database systems on many single-backend computers for

parallel operations are unsolved issues.

301

Identical Hardware, Replicatable Software, and Automatic Database Distribution.
Identical single-backend computers such as the off-the-shelf supermicros and minis

may be used in lieu of the special-purpose database machines. Since parallel

operations are not achievable in a given single-backend computer and the use of

multiple single-backends has not taken place, the need for replicatable software

on multiple single-backends, for clustering (partitioning) a database, and for an

intelligent distribution of the clustered database for subsequent parallel operations

is no longer there.

Access and Concurrency Controls and Local Autonomies. Except in the Multiple-

MLs-to-Single-ML mapping where a single-backend computer is used, other map-

pings and the database conversion approach all require multiple single-backend

computers. In these multi-computer, federated databases and systems there is a

lack of a global access and concurrency control mechanism. Instead, there are a

large number of individual, local access, and concurrency control mechanisms in

their corresponding single-backend computers. A local autonomy may be upheld

by an individual local access and concurrency control mechanism. However, it is

not clear if a collection of independent and separate local mechanisms can pro-

vide concurrent transactions with deadlock-free accesses to data scattered in many

heterogeneous databases. In other words, whether or not we can achieve global

accesses and concurrency controls with just a set of local access and concurrency

control mechanisms and without a global mechanism remains a research issue.

In the case of the Multiple-MLs-to-Single-ML mapping, we can rely on the only

local access and concurrency control mechanism of the kernel database system. All

the access and concurrency control requirements are translated into the specifications

in the kernel data model and in kernel data language and enforced by the kernel

database system. Since all the heterogeneous databases are stored in the kernel.data-

model form, the design and instrumentation of the kernel access and concurrency

control mechanism are no different from the design and instrumentation of the

access and concurrency control mechanism for either centralized or distributed

homogeneous database system. There is no issue in access and concurrency controls

for this kind of federated databases and systems.

2.3 Sharing a Multiple-Backend Computer for the entire Federation

In a multiple-backend computer, there is a controller computer and one or more

backend computers as shown in Figure 3. However, to incur high performance

and great capacity the number of backends should be two or more. In any case,

302

the number of controller computers remains one or zero. In the latter case, the

controller-computer software runs in the frontend computer. The multiple-backend

computer architecture is also termed the multibackend architecture. This is not the

same as the multiple single-backend computers discussed in the previous section.

In our examination of this architecture, we first review the role of the controller

computer and its relationship with the frontend and backends. We then, instead

of reviewing the multiple-backend architecture for the support of various mappings

and conversion approach, review the multiple-backend architecture in terms of

the seven architectural requirements for the Multiple-MLs-to-Single-ML mapping.

Thus, we relate the architecture with the most promising mapping for the support

of federated databases at the onset.

2.3.1 The Role of the Controller Computer. The controller computer merely routes
transactions to backends, assembles results, and relays results to the frontend.

Because the controller computer does only routing, assembly, and relay, it is not

a database computer. Consequently, in some multiple-backend computers, such as

the Teradata DBC 1012, the role of the controller computer is taken over by the

frontend computer.

2.3.2. The Need for a Broadcasting Net. The controller computer must have an

intercomputer net to communicate with backends. Minimally, the net must be

able to broadcast transactions from the controller to backends simultaneously, to

broadcast data from one backend to all the other backends simultaneously, and to

relay messages from one computer (comtroller or backend) to another computer

(backend or controller).

Some nets also do certain processing tasks such as sorting and merging results

before routing them to the frontend via the controller computer. These additional

capabilities are not necessary, since the individual backends can perform their

respective sorting tasks and the controller can perform the merging of sorted data.

It is important to note that there is no direct-coupling of backends during transaction

executions and database accesses. The coupling of backends' CPUs in a close and

direct fashion is not conducive to parallel operations, and is therefore absent from

the multiple-backend computer.

2.3.3 Multiple-Backend Computers. The multiple-backend computer architecture
is the only database computer architecture that meets the seven requirements for

resource consolidation previously outlined. We review the architecture against these

requirements below.

303

Figure 3. Multiple-Backend Computer for Federated Database
Systems

Wo~t(oe~e o r ~norqll
04rher l OOllrOHl~qJ I +Tr°rl I o¢~onlvl]

I
L o,.. s . . , , . J

Fnlllt On4 ~ S T
I l e m l O f O. $.

' + + +

C o + o i l e r

O ~ o b e l Q

g o c k g n 4 ° ' - " ' + - ' - I +...+
O ~ t o b o l e

I Io¢l, m n d +...+
TWG Of m a r e

pOrGl lm l I l f O ¢ l l l e l O r l . • • •

II Dor'ff'H@l,~llld. ¢ | u l f f l l r q l d
Ohlm Cml, tg lPo l iT l (l II01111Delll.

Specialization, Parallel Operations, Identical IIardware, Replicatable Software,

Clustered Databases, and Automatic Database Distribution. For this section, we

consider six of the seven requirements, which are interrelated in the architecture.

They can best be reviewed together for multiplc-backend architecture. The seventh

requirement will be discussed in the section below.

Unlike multiple single-backcnd computers, which are run independently from

each other, multiple backends in a multiple-backcnd computer (i.e., the multibackend

architecture) run identical database-system software in parallel. Thus, the system
software is replicable. The parallel operation is achieved with the aid of clustering

(partitioning). Although each backcnd computer in the multiple-backend computer

has its own system of disks, a database in the multiple-backend computer is clustered

where each cluster is evenly distributed across the disk systems of all the backend

computers. With this distribution, parallel accesses of a cluster by multiple backend

computers to their respective portions of the cluster are therefore facilitated. Further,
transactions arc broadcast by the controller to multiple backends via the network.

Thus, it is possible for all the backcnds to execute the same transaction when it is

broadcasted. Parallel executions of a transaction for parallel accesses to each cluster
of a database become typical operations of the multiple-backend computer. Thus,

304

the STMD operation is achieved. If no data for a transaction are on a backend's

disks, the backend computer can execute the next queued transaction. Thus, the

concurrent execution of multiple transactions by the multiple-backend computer is

also possible. In this way, the MTMD operation is achieved.

Effective and Efficient Access and Concurrency Controls and Their Support of

Multiple-MLs-to-Single-ML Mapping. The multiple-backend computer is partic-
ularly suitable for supporting federated databases. Since the kernel database system

must support many heterogeneous databases and many sets of schema transforma-
tion and transaction translation, it must be run on a computer which can allow

great capacity growth and high performance gain. Further, it must provide ef-

fective and efficient access and concurrency control mechanism for deadlock-free

accesses to heterogeneous databases for concurrent transactions in different data
languages and concurrent accesses to different databases. The issues on capacity

growth and performance gain are discussed in the next section. Here, we reiterate

the solution suggested earlier for issues in access and concurrency controls. Since

the Multiple-MLs-to-Single-ML mapping relies on a single, kernel database system,

all the access requests, concurrency requirements, and control specifications which

have been translated into the kernel data model and language can now be carried
out by the access and concurrency control mechanism of the kernel database system.

Despite the heterogeneity created by the multitude of model/language interfaces,
federated databases are supported on an operating-system-like homogeneous data-
base system (i.e., the kernel database system.) We know how to design an effective

and efficient access and concurrency control mechanism for the homogeneous data-
base system. Thus, this architecture is particularly relevant to the mapping. The

multibackend architecture, despite the multitude of backends, is a single, paral-

lel computer with many loosely-coupled backends and a homogeneous, kernelized

operating-system-like database system.

Performance Gain and Capacity Growth. The multiple-backend computer exhibits

the following capabilities:

1. The number ofbackends employed in a configuration is proportional inversely

to the response-time reduction of a data-intensive transaction. For example,

if we double the number of backends in a multiple-backend configuration,
we can reduce the response time of the same transaction nearly by half.

2. When the database capacity is increased, the proportional addition of backends

to the multiple-backend configuration can keep the response time of the same

transaction nearly unchanged. For example, suppose the response time of

305

a transaction of a database is 2 minutes. When the database is doubled in

capacity, to keep the response time nearly unchanged (i.e., about 2 minutes),

one needs only to double the number of backends for the transaction's

database. This is known as the response-time invariance for capacity growth.

We note in both response-time reductions for performance gain and response-

time invariance for capacity growth, we simply add backends of the same

line without using more expensive and newer replacements. Further, adding

identical backends on the net does not disrupt the operation of the multiple-

backend computer. Although the clustered (partitioned) databases may have

to be redistributed (since we have new systems of disks), the redistribution is
done by the backend database system automatically at each addition of one

or more new backends and database stores.

2.3.4 Support of the Database Conversion Approach and Three Mappings. In each

of the four software methods of data sharing (i.e., the database conversion ap-

proach and three mappings: Single-ML-to-Single-ML, Single-ML-to-Multiple-MLs,

and Multiple-MLs-to-Multiple-MLs), there is the requirement for the multi-system

support. On the other hand, despite the multiplicity of backends in the multiple-

backend architecture, the architecture is single-system. The parallelism, scalability,

clustering, distribution, and redistribution are "transparent" to the system software.

Thus, each of the four software methods can run its multi-system software on the

multiple-backend computer as in the case of the single-backend computer. The

difference is, of course, that the multiple-backend computer is a parallel database

computer where the single-backend is not. Performance gains and capacity growth

can be accomplished in the multiple-backend easily, whereas they cannot be easily

achieved either in a single-backend or in a system of multiple single-backends.

The use of multibackend architecture for these four software methods of data

sharing may also open up the possibility that autonomous local access and concur-

rency control mechanisms in separate, heterogeneous database systems may now be

coordinated by the multiple-backend computer, since there can be one coordinator

in a single-system architecture. In a multi-system architecture, such as the one with

multiple, separate single-backends, it may be difficult, if not impossible, to develop a

single mechanism of the multiple computers for the coordination and scheduling of

autonomous local access and concurrency control mechanisms. It may be possible,

however, to develop a single mechanism in the multiple-backend computer for such

purposes.

306

3. Concluding Remarks

In this tutorial, we have pointed out that the proliferation of heterogeneous databases

and database systems is likely to continue and accelerate. This is prompted by

the replacement of traditional data processing with modern database systems. It

is also prompted by the introduction of new data-intensive and data-voluminous

applications. As monomodel-and-monolingual database systems proliferate, it is

likely that in a large organization several monomodel-and-monolingual database

systems for diverse applications may be utilized for organizational information

needs. The interoperability of these heterogeneous databases and database systems

becomes necessary for overall data sharing and resource consolidation. It also

creates the issues of access controls, concurrency controls, performance gains,

capacity growth, maintenance cost, and support complexity. In spite of needs and

issues, the organization must uphold the local autonomies of individual database

systems and their databases. Otherwise, data sharing and resource consolidation

will be met with resistance.

In the context of these problems, needs, and complexities, a number of software

and hardware solutions emerges. For data sharing, we have classified and described

various approaches in Part I (Hsiao, 1992). For resource consolidation, there

are the mainframe, single-backend, and multiple-backend approaches. These are

hardware-architectural solutions and are summarized in Table 1.

In examining these solutions, the most promising system and architecture to

data sharing and resource consolidation of federated databases and systems appears

to be the Multiple-MLs-to-Single-ML mapping and the multiple-backend computer

architecture. The issues of all of the software approaches have been discussed

in Section 6 of Part I (Hsiao, 1992). Here, we focus only on the issues of the

architecural solutions.

3.1 Technology Issues

From the architectural viewpoint, it seems that the multiple-backend computer

provides a most viable solution to federated databases and systems. Since this

architecture consists of different components, the question is therefore whether or

not the technology will concentrate its effort on the improvement of the cost and

the capability of the broadcasting net, of the multiple-backend computer, and the

database store.

The lack of a communication net with the built-in hardware for broadcasting

is evident. To incorporate this capability into the hardware of a net, the bandwidth of

307

Table 1. Merits and Limitations of Three Architectures for Resource
Consolidation

Mainframe-
based

h

l

n

Single-
backend

h

I m

h

m

maybe

n

I maybe

I maybe

| m

h m

Specialization in DB

operations

Support of multiple DB

systems

Parallel operations with

a large number

Identical hardware

Replicatable DB-system

software

Clustered databases

Automatic DB distribution

for DB stores

Access/concurrency control

of all DBs

Scaling multiplicity of

computers for performance

gain/capacity growth

Cost-effective

disruptions due to upgrades

Multiple-
backend

h

h

h

h

Y

Y

Y

Y

h

1

(h = high; I = low; m = medium; n = no; y = yes)

the net will have to be increased significantly, since all of the networked backends

may be doing their own broadcastings simultaneously. Simultaneous broadcastings

are termed multicastings.

6.2 Research Issues

Research issues of the architecture are many. Multibackend database computer

architecture is characterized by the use of

1. distributed, scalable, and share-nothing computer hardware components and

stores,

308

2. replicated meta data and system software on every backend,

3. evenly-distributed and clustered base data on all of the database stores, and

4. a high-bandwidth, extensible, point-to-point, broadcast, and multicast net
interconnecting all of the backends.

Due to its share-nothing and distributed nature in (1), the research issue will

be on the use of a large number of inexpensive hardware components and stores,
instead of a small number of expensive hardware components and stores, for the
performance gain and capacity growth.

In (2), there is the research issue on the maintenance and update of meta data

replicated over a large number of meta-data stores. There is also the research issue
of automatically generating and updating multiple copies of the system software for

a specific number of backends in a given configuration.

In (3), we search for a data model with an equivalence relation for the kernel

database system. Few of the conventional data models have a built-in equivalence

relation for clustering the database so modeled. None of the conventional database

systems has the capability of clustering the database automatically, distributing the
clustered data evenly, and re-distributing the database evenly when the computer
is scaled up with more backends and their respective stores.

In (4), research is urgently needed in hardware and software for broadcasting

and multicasting using a high bandwidth net such as the fiber-optical local-area-net
with the 100-megabits-per-second capability. The network hardware for buffering

of long messages and for interrupting backends' CPUs to receive these messages by
their communication processes should also be researched. Otherwise, the messages

may overwhelm the network buffers; the communication processes in a backend

may not be ready for the incoming messages from the net.

7. Postscript

Extensive citations for the terms used for this two-part tutorial have been given in
Part I (Hsiao, 1992), including over thirty references primarily related to software

issues. In this article we include only references to architectural issues. There

are many papers on either the single-backend computer or the multiple-backend

computer. They can be found in Hurson et. al. (1989). For additional reading on

the multibackend database computer and on performance and design methodologies

for the multibackend architecture, the reader may refer to Demurjian et. al. (1986b,

309

1987). The benchmark results of a multibackend computer in terms of the response-
time reduction for performance gain and the response-time invariance for capacity
growth can be found (Hall, 1989; Hall et al., 1990). Database partitioning for

parallel accesses to the database by the multibackend computer can be found in
Hsiao (1991). The use of database computer as database servers can be found
in Demurjian et. al. (1985, 1986a). The issue of interconnecting networks for
federated databases and systems can be found in Hsiao and Kamel (1991).

Acknowledgment

The work reported here is supported by funds from NPS, NPMTC, and NRL

References

Demurjian, S.A., Hsiao, D.K., and Marshall, R.G. The configuration analysis of a
database server for office automation. Proceedings of NationalACM Conference,
ACM Press, October, 1985.

Demurjian, S.A., Hsiao, D.K., and Marshall, R.G. The architectural requirements
and integration analyses of a database server for office automation. Proceedings
of 1986-IFIP WG 8.4 Working Conference on Methods and Tools for Office Systems,
IFIP Press, October, 1986a.

Demurjian, S.A., Hsiao, D.K., and Marshall, R.G. Design Ana~,sis and Performance
Evaluation Methodologies for Database Computers, Prentice-Hall, 1987.

Demurjian, S.A., Hsiao, D.K., and Menon, J. A multi-backend database system
for performance gains, capacity growth and hardware update. Proceedings of
the Second International Conference on Data Engineering IEEE Computer Society
Press, February 1986b.

Hall, J.E. Performance evaluations of a parallel and expandable database computer:
The multibackend database computer. Master~ Thesis in Computer Science, Mon-
terey, CA: Naval Postgraduate School, 1989.

Hall, J.E., Hsiao, D.K., and Kamel, M. The multibackend database system (MDBS):
A performance study. Proceedings of International Conference on Databases, Par-
allel Architectures, and Their Applications, (Parbase-90), Miami Beach, Florida,

1990.
Hsiao, D.IC A parallel, scalable, microprocessor-based database computer for per-

formance gains and capacity growth. IEEEMicro, 0:44--60, 1991.

310

Hsiao, D.K. Federated databases and systems: Part I-A tutorial on their data

sharing. The International Journal for Very Large Data Bases, 1:127-179, 1992.
Hsiao, D.K. The impact of the interconnecting network on parallel database comput-

ers. Proceedings of the Fifth International Workshop on Database Machines, Tokyo,
1987.

Hsiao, D.K. and Kamel, M.N. The multimodel and multilingual approach to inter-
operability of multidatabase systems. International Conference on Interoperability
of Multidatabase Systems, Kyoto, Japan, 1991.

Hurson, A.R., Miller, L.L., and Pakzad, S.H., eds. Tutorial: Parallel Architectures for
Database Systems, New York: IEEE Computer Society Press, 1989.

