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Abstract. The integration of  heterogeneous database environments is a difficult 
and complex task. The A la carte Framework addresses this complexity by provid- 
ing a reusable and extensible architecture in which a set of heterogeneous data- 
base management systems can be integrated. The goal is to support incremen- 
tal integration of existing database facilities into heterogeneous, interoperative, 
distributed systems. The Framework addresses the three main issues in heteroge- 
neous systems integration. First, it identifies the problems in integrating heteroge- 
neous systems. Second, it identifies the key interfaces and parameters required for 
autonomous systems to interoperate correctly. Third, it demonstrates an approach 
to integrating these interfaces in an extensible and incremental way. The A la carte 
Framework provides a set of reusable, integrating components which integrate the 
major functional domains, such as transaction management, that could or should 
be integrated in heterogeneous systems. It also provides a mechanism for captur- 
ing key characteristics of the components and constraints which describe how the 
components can be mixed and interchanged, thereby helping to reduce the com- 
plexity of the integration process. Using this framework, we have implemented 
an experimental, heterogeneous configuration as part of the object management 
work in the software engineering research consortium, Arcadia. 

Key Words. Heterogeneous databases, extensible databases, open architectures, 
reconfigurable architectures, incremental integration, heterogeneous transaction 
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1. Introduction 

A proliferation of  database applications over the past two decades  has created a 

large number  and wide variety o f  database environments .  Further ,  more  and more  
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applications require access across these disparate stores. Researchers have made 

significant progress in understanding some aspects of integrating heterogeneous 

persistent stores, particularly from a theoretical point of view. Yet, integration 

of heterogeneous systems in practice still proves difficult; actual implementations 
in both research and industrial environments are infrequent and typically provide 

limited functionality. 
This article describes the A la carte Framework and an actual heterogeneous 

configuration we have built from it. The goal of the work is to support the incre- 

mental integration of existing database facilities into heterogeneous, interoperative 

distributed systems. The Framework addresses the three main issues in heteroge- 

neous systems integration. First, it identities what the problems are in integrating 

heterogeneous systems. Second, it identifies the key interfaces and parameters 

required for autonomous systems to interoperate correctly. And third, it demon- 

strates an approach to integrating these interfaces in an extensible and incremental 

way. 

1.1 Requirements of a Heterogeneous Management System 

There are several requirements that a heterogeneous management system (HMS) 
should satisfy. First, it should be able to accommodate systems which may or may 

not provide certain types of functionality required for them to operate properly in a 

concurrent heterogeneous environment. For example, a heterogeneous transaction 
management system may require some local concurrency mechanism with which 

to communicate in each autonomous system. Any autonomous system lacking this 

functionality would have to be extended with a concurrency control mechanism 
of its own to be able to communicate with the heterogeneous manager. This 

characteristic of heterogeneous environments requires integration processes that 

will help extend each autonomous system with the functionality that it may need. 

Second, an HMS must be able to integrate systems that provide incompatible 

implementations for the functionality that they do provide. A lack of information 
about variations in the internal implementation of closed architecture systems can 
hinder this process and can make it difficult to design a heterogeneous manager which 

operates correctly, or optimally. This characteristic of heterogeneous environments 

requires open, extensible architectures in which integrating processes can truly 

manage the heterogeneity of disparate implementations. 

And third, an HMS must be tailorable and flexible in order to accommodate 

requirements placed on it by end-user applications, and the autonomous configura- 

tion systems that it integrates. Requirements of end-user applications might include 

the type of functionality the user wants to integrate (e.g., schema representation) 
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and the query stream characteristics of the global applications (e.g., whether op- 

erations are mostly updates or reads, the likelihood of conflict, and the required 

degree of sharability). The nature of each autonomous system also places a set 

of requirements on the HMS. For example, the types of internal algorithms (e.g., 

concurrency control) and the interface calls provided by each autonomous system 

will have an impact on what type of algorithms the HMS should use to integrate 

them. 

1.2 A la carte and Its Contributions 

The A la carte Framework addresses these issues by providing an extensible set of 

reusable components to integrate heterogeneous, persistent, object stores. There 

are three different types of functionality required to implement a heterogeneous 

configuration; the A la carte Framework provides components to serve each of 

these functions. Components of the first type are combined to create behavior such 

as heterogenous transaction management that is typically implemented as part of 

an HMS itself. Components of the second type specify integrating protocols that 

implement mappings between different implementations of the same function, such 

as concurrency control, in autonomous systems and are also typically implemented 

as part of an HMS itself. These integrating components help ensure correct interop- 

eration between autonomous systems with disparate implementations. Components 

of the third type are used to extend or "bootstrap" an autonomous system with 

the functionality it needs to operate in a heterogeneous configuration if it does not 

provide the required behavior in its native state. In this case, A la carte components 

are combined with an existing system to, in effect, create a new autonomous system 

that has the capabilities required to operate in a heterogeneous architecture. The 

Framework also provides a mechanism for capturing constraints which describe how 

components can be mixed and interchanged with others, thereby helping to reduce 

the complexity of heterogeneous systems integration. Finally, each component can 

have different implementations, within certain constraints, So that some tailorable 

HMS behavior can be achieved. 

The A la carte Framework could be used to integrate a spectrum of domains 

found in heterogeneous systems like schema representation, query processing, trans- 

action management, and recovery. However, it is not always necessary to integrate 

all of the domains in a set of autonomous systems. Since diverse application do- 

mains can require different types of functionality from a heterogeneous manager, 

it is appropriate, and natural, that certain types of functionality do not appear 

in a particular configuration. For example, a recent workshop on heterogeneous 
systems revealed that some applications which manipulate seismographic data don't 
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require heterogeneous schema integration, but instead only require access to het- 

erogeneous information (Drew et al., 1990). Thus, only subsets of functionality in 

heterogeneous systems may need to be integrated at a particular time; the required 

subsets may also change as the requirements of the application change. 

This incremental approach to integration is required in an experiment we have 

performed with the Arcadia consortium (Taylor et al., 1988). In this case, only the 

transaction management and recovery schemes of the configuration systems need 

to be integrated. Software engineering applications frequently access objects that 

are loosely structured and can be interpreted in relatively raw formats. Builders 

of these applications prefer to have direct concurrent access to the native form 

of the objects for their manipulation. The schema representations of each of the 

underlying stores do not need to be integrated, but the transaction management 

and recovery schemes do. Thus, the initial scope of the A la carte Framework is 

in the domains of transaction management and recovery. 

It is important to understand that the primary goal of this work is to find a 

mechanism for describing the components that make up heterogeneous management 

systems so that their integration can be studied and better understood. Reusable 

components created in this framework will have different implementations which 
do ultimately execute some algorithm used in heterogeneous database integration, 

but the invention of these algorithms is not our goal. Also, though the Framework 

does provide a mechanism to capture rules or constraints on how these components 

can be combined, we do not propose to define all of the rules that may apply to 

them. Instead, we propose that we have identified some of the general definitive 

characteristics of these components about which constraints can be written. We 

only propose a few likely candidates for the constraints themselves based on our 

experience in the domain. 

1.3 An Experiment 

The A la carte investigation has been performed as part of a larger set of work on 

object management for software engineering environments being done by the Arca- 

dia research consortium (Taylor et al., 1988). The Arcadia consortium, supported 

by DARPA, brings together researchers from several industrial research facilities 

and universities including the University of Colorado at Boulder, the University 

of California at Irvine, and the University of Massachusetts at Amherst to inves- 

tigate next-generation software environments. Because the consortium is in the 

experimental stages of investigating prototypical integrated software engineering 

environments, the requirements for the appropriate object stores are still evolving 

and several object management stores are being used in different contexts for 
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different purposes. Further, heterogeneous database systems are a natural charac- 

teristic of any realistic software environment. Thus, an extensible framework that 

can be easily reconfigured to integrate different object stores provides a convenient 

platform for the consortium to evolve its object management requirements. With 

this experiment, we have driven the construction of an HMS using the A la carte 

Framework with some "real-world" requirements. 

This article is an introduction to the A la carte Framework, an overview of the 

experimental heterogeneous system we have constructed from it, and the prototype 

environment we envision will ultimately encompass the Framework. Section 2 gives 

a brief description of some of the relevant work related to A la carte. Section 3 

then gives an overview of the A la carte approach to heterogeneous management 

system construction and the overall architecture of the Framework. The Framework 

is further detailed in Sections 4 and 5. Section 6 gives a set of requirements for 

the Arcadia heterogeneous configuration and a brief description of each of the 

autonomous systems within it. Section 7 describes an application of the Framework 

to the Arcadia object management systems and the heterogeneous configuration that 

has been constructed as a result. And finally, Section 8 provides some concluding 

remarks and initial recommendations for designers of future systems. 

2. Related Work 

There are several relatively disparate fields of research that are relevant to the A 

la carte project. This related work can be categorized by specific characteristics of 

the A la carte Framework. 

2.1 Extensibility 

There are many research projects which share the A la carte Framework's char- 

acteristic of extensibility. In the database community, approaches to incorporating 

extensibility into both data models and systems internals have been investigated. 

The so-called extensible data model work (Gray, 1978; Maier et al., 1986; Manola 

and Dayal, 1986; Schwarz et al., 1986; Stonebraker and Rowe, 1986; Andrews and 

Harris, 1987; Banerjee et al., 1987; Rowe and Stonebraker, 1987; Carey et al., 1988; 

Linneman et al., 1988) concentrates on providing schema representations in which 

the user can add new user-defined types and operations. A la carte is currently 

not focused on this domain of extensibility. 

More closely related to our research are those systems which provide extensible 

or reconfigurable architectures like EXODUS (Carey et al., 1986a, 1986b, 1990; 
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Richardson and Carey, 1987), GENESIS (Batory et al., 1990), Starburst (Schwarz et 

al., 1986), POSTGRES (Stonebraker and Rowe, 1986, Rowe and Stonebraker, 1987); 

and the "Open Object-Oriented DBMS" project underway at Texas Instruments 

(Thatte, 1991a, 1991b). A la carte shares some of the goals of these projects, 
particularly with the Texas Instruments Open OODB project which is also now 

defining a meta-architecture for the construction of object systems. However, A 
la carte's primary focus is supporting tailorable heterogeneous database systems 
rather than autonomous database systems. 

In general, there has not been a significant amount of work done in the database 

community to integrate heterogeneous systems from an "extensible architecture" 

point of view, though the requirement for this type of solution has been stated 

(Jones et al., 1985). There are two projects, besides A la carte, that have taken 
the first steps. The first project, called the Object Management System (OMS), 

provides an object framework within which heterogeneous systems can communicate 

(Heiler, 1989). This system, like A la carte, provides mappings between interfaces 

of heterogeneous configuration systems. However, A la carte takes this notion one 

step further to provide a taxonomy which will decompose configuration systems 
into the domains that an application needs to integrate. 

The other project builds heterogeneous systems from components that are 
modeled as active objects (Buchmann, 1990). These architectures incorporate 

systems that may have very diverse characteristics. Like A la carte, this system 

"wraps" component systems lacking in certain required behavior with functionality 
that boot-straps the components into a common architecture. However, this work 

is focused on the language support to create these active wrappers, whereas A 
la carte's also concentrates on specifying a reusable framework which defines the 
functionality and information required of the wrapping components. 

The operating systems community has also begun to investigate extensibility and 

tailorability for parallel and distributed computing as seen in PRESTO (Bershad 

et al., 1988a, 1988b) and Choices (Russo and Campbell, 1989). Each of these 

systems provide a set of extensible objects which are responsible for a certain type 

of operating system functionality, e.g., spin-locks and threads. These systems differ 

from A la carte in their domain of study and in some of the types of constructs 

that are used to capture the components of the domain. 

2.2 Reusable Frameworks 

In addition to the TI Open Object-Oriented DBMS project just referenced, there 

are several other works which, like the A la carte Framework, use some form of 

meta-information as a basis of analysis or integration. The most closely related work 
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is the ACTA transaction management framework (Chrysanthis and Ramamritham, 

1990, 1991) which provides a set of reusable model constructs for characterizing 

autonomous transaction facilities. Its constructs provide a mechanism for defining 

the interactions between transactions with special emphasis on support for modeling 
"non-traditional" transaction management algorithms like nested (Moss, 1981) or 

cooperative transactions (Skarra, 1989, 1990; Nodine et al., 1990). The A la carte 
Framework shares the goal of providing a method for modeling and understanding 

the interactions of transactions at a meta-level. One of the approaches that we 

have considered for representing the behavior of transactions in a heterogeneous 

architecture builds upon the ACTA constructs. 

There are, however, fundamental differences between the interactions that A 

la carte must capture and those that ACTA models. For example, ACTA gives a 

formalism of "rewrite rules" which define a process for transforming two separate 

transaction management algorithms into one mechanism. The A la carte Framework, 

on the other hand, is concerned with showing how separate algorithms interact and 
what types of dependencies should be enforced between them to ensure correct 

behavior. Also, ACTA does not address communications or other implementation 
issues that are of primary importance to heterogeneous systems integration; A la 

carte ties each of these areas into one unifying framework. 

There is a body of work in the software engineering community which also 
provides a meta-architecture for interoperating programs. Interoperability research 

in the programming languages domain has been characterized by two approaches: 
Representation Level Interoperability (RLI) and Specification Level Interoperabil- 

ity (SLI). RLI provides a way for programs to share simple data types despite 

implementation differences (Bershad et al., 1984; Jones et al., 1985; Gibbons, 1987; 

Liskov et al., 1988; Hayes et al., 1990; Maybee and Dykes, 1990), and provides a 

lower level approach to interoperability than does A la carte. 

SLI, on the other hand, is much more closely related to the A la carte Framework. 
SLI consists of a set of abstract data types which provide a unified type model for 

programming languages and a mechanism for mapping these abstract data types 
into particular programming language type implementations. To a certain extent, 

the A la carte Framework shares this approach in specifying an architecture for 

interoperating heterogeneous database systems. Both systems define a unifying 
model which can be mapped into specific implementations in their respective 

domains. However, the A la carte Framework attempts to capture more of the 

semantics in the domain than the simple types that might be manipulated by the 

autonomous systems. 
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2.3 Heterogeneous Database Systems 

Finally, there has been a significant amount of work done on mechanisms to 

integrate heterogeneous databases, the domain of the A la carte Framework. This 

work can be roughly described by two major points of focus. First, there is a 

set of work which investigates integrating the schemas and query processing of 

systems with different native data models. To this end, there are several different 

approaches. One approach entails creating a global schema and query language 

which unites all of the autonomous system schemas and translates queries from 
the global scheme to each local language (l_,anders and Rosenberg, 1982; Siegel 
and Madnick, 1989; Templeton, 1989). Another approach is the federated database 

work in which various DBMSs maintain private schemas and use a message-passing 

and import/export mechanism to share information about schemas and transactions 
(Heimbigner and McLeod, 1985; Buneman et al., 1989; Litwin et al., 1989). A 

la carte takes an approach closer to the federated database approach by allowing 

global transactions access to local database schemas and query facilities directly. 

The other point of focus is in the domain heterogeneous transaction management 

and recovery which is the current scope of the A la carte Framework. Within this 

domain, two approaches have been taken. In one approach, each autonomous 

DBMS need not be modified in order to accommodate the global transaction 

management system (Breitbart and Silberschatz, 1988, 1990; Du and Eimagarmid, 
1989a, 1989b; Litwin and Tirri, 1989). Local transactions can execute against the 
local DBMSs without having any knowledge of the global transactions accessing 

the database. However, not until recently has any mechanism been proposed with 
reliable recovery in the event of a failure of the global transaction processing system 

(Breitbart and Silberschatz, 1988), and only then under the strict limitation that 

the global and local transactions access disjoint data sets. The other approach is to 

modify the component DBMSs to provide the information required by the global 

transaction manager (Elmagarmid and Leu, 1987; Pu, 1988; Du and Elmagarmid, 
1989a). Limited support for transaction recovery can be provided since the local 
DBMSs can share some of the required information with the global transaction 

management system. Our goal of providing integrating protocols will help specify 

what other types of information should be exported out of autonomous systems so 

that a common ground can be found between these two approaches. 

3. An Overview of A La Carte 

The A la carte Framework is encompassed in the A la carte Toolkit, an environment 

which supports a user in the construction of a heterogeneous system. In this section, 
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Figure 1. A User's View of the A la carte Toolkit Environment 
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we give a high-level overview of the environment and how it is used to implement 

heterogeneous configurations. We describe the environment's architecture from 

the user's point of view, the internal management system which guides the user 

through the construction process, and an architectural view of the Framework itself. 

In Sections 4 and 5, the Framework is described in detail. For a more narrowly 

focused description of how a user interacts with this environment, we direct the 

reader to Drew et al. (1990). 

3.1 The User's View 

In order to help reduce the complexity of heterogeneous systems integration, the A 

la carte Toolkit Environment encompasses the A la carte Framework and partially 

automates the integration process, as shown in Figure 1. It is composed of four main 

components: the A la carte Framework, the A la carte Tool Set, the heterogeneous 

management system constructed by the user, and the run-time system that can be 

generated from the environment. The arrowed lines in Figure 1 represent user 

actions. The user can use the tools provided in the A la carte Tool Set to edit, browse, 
and query the A la carte Framework from which the heterogeneous architecture 



250 

Figure 2. Architecture of the A la carte Framework 
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is constructed. This environment is supported by an internal management system 
which performs user-specified operations on the components in the Framework and 
partially controls the construction of a heterogeneous configuration. The user can 
also create, if desired, a "run-time" version of an A la carte management system. In 
this fashion, although it is not a goal of this research to create production software, 
a user of A la carte can extract an executable system from the environment's 
internal management facilities to achieve better performance. 

3.2 The Architecture of the A la carte Framework 

There are four different views of heterogeneous database system behavior in the 
A la carte Framework: the Meta-Model, the Framework Objects, the Library, 
and the Configuration Models. Each provides a different level of abstraction 
of heterogeneous systems behavior and each is related to the next view in the 
architecture, as depicted in Figure 2. 

The A la carte Meta-Model, depicted at the top of Figure 2, captures char- 
acteristics of heterogeneous transaction management systems that define how they 
interoperate. It provides a context in which the rest of the architecture's components 
can be placed. This model describes properties that are common to heterogeneous 
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transaction management systems, as well as the dependencies that exist between 

them. For example, one attribute, termed the visibility of a transaction management 

system, defines how objects are shared during different phases of a transaction's 

fife-time. 

Each transaction management system follows some procedure for enforcing 

consistency and recovery criteria, such as serializability and atomicity, on transac- 

tions. The attributes defined in the meta-model provide a way of describing this 

criterion. By describing different management schemes in terms of these properties, 

we can model how they will interact in a heterogeneous architecture. Using these 

properties, we can also write rules or constraints on how heterogeneous transaction 

management systems can interact. These rules can be applied during the systems 

integration process. 

The Framework Objects are the reusable components in the Framework that 

can be used in the integration of heterogeneous systems. A Framework Object's 

definition includes an interface specification and, possibly, a set of protocols which 

integrate disparate implementations of parameters that the Framework Objects need 

to share. The Framework Objects inherit the properties and constraints described in 

the Meta-Model that apply to them. Conversely, the Framework Object definitions 

themselves are part of the A la carte Meta-Model. In this fashion, a new Framework 

Object will have a context when it is first introduced. This context will help identify 

which components already exist in the Framework that can interoperate properly 

with the new component. It is important to note that these components represent 

a functional decomposition of a heterogeneous transaction management system; the 

sum of their interactions and the other properties in the meta-model define the 

consistency characteristics for the overall system. 

The A la carte Library, implemented in an object-oriented class library, contains 

behavioral specializations of the Framework Objects. For example, a Concurrency 
Control Framework Object could have two Library Component implementations: 

one as a Timestamping Concurrency Control Manager and the other as a Locking 
Concurrency Control Manager. Again, the Library Components will inherit the 

meta-model information of its parent Framework Object. 

Finally, the Configuration Models provide example configurations of classes 

from the Library which can be used as templates for HMS construction. The 

configurations are instantiations of a set of Library Components. As a user creates 

instantiations of the Library Components, the constraints which the component has 

inherited from the Meta-Model are enforced. A Configuration Model represents the 

communication lines required between a particular set of Framework Objects. It also 
represents an implemented heterogeneous architecture. The Configuration Models 
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can be used to guide the user in creating new combinations of Framework Objects. 

They can also be refined to meet a particular environment's requirements. Of course, 

if none of the configurations are close to satisfying the current requirements, the 

user can always create a new HMS by combining an all together different set of 

Framework Objects into a configuration with some set of algorithms implementing 

their respective functionalities. 

3.3 The Internal Architecture of The Toolkit 

The A la carte toolkit, provides an internal management system to help guide the 

user through the HM~ construction and combination process. This internal manager 

is composed of two main components: the Creation Manager and the Constraint 
Manager. The Creation Manager is responsible for the instantiation of a set of 

Library Components selected by the user. The Constraint Manager is responsible 

for enforcing the constraints which apply to them. As the construction proceeds, 

the Creation Manager queries the user for the required input to instantiate each 

component, and consults the Constraint Manager for the legality of the specification. 

There are three important points to note about the Constraint Manager and 
how the user interacts with it. First, it is not a goal of A la carte to define a new 

constraint language to be used for the analysis of heterogeneous systems. Instead, 

we have relied on existing language classes as a basis for experimentation. So 

far, the types of constraints that we have identified can be effectively captured 

by a declarative first-order logic programming language like Prolog (Sterling and 

Shapiro, 1986). Second, it is not a goal to identify all possible constraints that 

apply to heterogeneous systems integration; the current set seems to be a first 

good approximation based on our experience with the domain. And third, it is 

left to the user of A la carte to correctly specify any new constraints. A la carte 

cannot guarantee correct execution of any prototypical management system; the 

constraints are provided as a service to the user. 

4. Meta-Model  Properties 

To understand the integration of heterogeneous transaction management systems, 

a meta-model of those properties which are basic to a system's interoperability is 

needed. These properties can be used to describe different consistency and recovery 

criteria, such as serializability and atomicity, that transaction management schemes 

enforce on transactions. These properties include a model of which configuration 
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systems share control over which transactions, 1 a model of how the configuration 

systems manage change to the states of objects under their respective control, a model 

of how the configuration systems allow sharing of objects between transactions, 2 

and a model of the configuration's operational components, or Framework Objects, 

and the interactions between them. It is the last model that links the A la carte 

Framework to actual systems implementation. There can, of course, be other 

properties which we have not identified. However, this set seems to be a good 

first approximation to some of the key characteristics of heterogeneous transaction 

management systems. For a detailed description of each of these properties, please 

see Drew (1991). 

There are different ways that these properties can be used to analyze the 

interoperability of a heterogeneous configuration. One way is to compare the 

description of a potential heterogeneous architecture with the description of a "legal" 

architecture. Of course, with the advent of more advanced design environments, a 

number of consistency criteria ranging from strict serializability (Bernstein et al., 
1987) to quasi-serializability (Alonso et al., 1987; Du and Elmagarmid, 1989b) to 

user-defined correctness criterion (Siegel and Madnick, 1989; Skarra, 1989; Nodine 

et al., 1990) have been proposed. Thus, there is not a single canonical model with 

which all other systems can be compared. Instead, the potential architecture can 

be compared with o n e  of the "legal" architectures to see how it differs. 

Another way to use the properties is as a basis for understanding illegal, or 

undesirable, states in a heterogeneous configuration. For example, management 

systems which share control over transactions, e.g., a heterogeneous transaction 

manager and an autonomous transaction manager, must be able to coordinate their 

behavior. Otherwise, inconsistencies, such as the inability to recover from failure 

and deadlock, are possible (Du and Elmagarmid, 1989a; Breitbart et al., 1990). By 

explicitly examining how control is shared in a heterogeneous architecture, we can 

identify when potential inconsistencies can arise. 

Finally, the properties also can be used to identify dependencies that can 

exist between operational components in the configuration. Unlike autonomous 

transaction management systems, dependencies can be created between transactions 

under the control of different management systems in a heterogeneous architecture. 

1. In he terogeneous  architectures, liaison transactions that  are generated by a he terogeneous  transaction 
manager  to execute at an au tonomous  site can be under  the control of  at least two systems, the heteroge- 
neous  manager  and the au tonomous  transaction manager.  

2. The  ACTA transaction managemen t  model (Chrysanthis and Ramamri tham,  1990, 1991) supports  a 
similar concept for au tonomous  systems. 
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Figure 3. A la carte Framework Objects 
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For example, in a 2-phase commit protocol, there is a dependency between a global, 
heterogeneous transaction and its liaison transactions. In this case, the commit 

operation of the global transaction first sends a "prepare-to-commit" message to 

each of the liaison transactions; a positive response means that it will commit 

successfully when instructed to do so. If each of the liaison transactions responds 
affirmatively, then the global transaction will send a second "commit" message to 
each of the liaison transactions; this step will allow the global transaction to finish 

its commit operation as well. If for some reason any of  the liaison transactions 

respond negatively, or not at all, the global transaction will not commit. 

Illegal combinations of functionality (i.e., those that could lead to an undesirable 

configuration state) and dependencies between configuration components can be 

represented as constraints associated with the Framework Objects. These constraints 

are enforced during the system integration process in the Toolkit environment. 

5. The Framework Objects 

Our functional decomposition of a heterogenous transaction management system 
is modeled by the current set of A la carte Framework Objects depicted in Fig- 
ure 3. There are three types of objects in this design. The first type, shown 

in the bold boxes, are the Functional Domain Managers that are responsible for 
the implementation of the operational components in a particular heterogeneous 
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architecture (e.g., a Concurrency Control Manager3). The second type, shown in 
the dotted boxes, are the objects that the Functional Domain Managers manipulate 
and coordinate (e.g., a Lockable Entity). A brief definition of these objects is listed 
below. 

The Access Manager provides the access primitives {Create, Delete, Read, 
Write} and operates on accessible_entities that can be one of the types 
{ByteStream, Record, Tupl6 Object, ComplexObjec~ File. } 

The Transaction Manager provides the primitives {Begin, PrepareToCommit, 
Commit Abort} to manipulate the states of transactions and operates on 
committable_sets that can be one of the types {Object Pag6 Record, Segment, 
File, Database} In a heterogeneous transaction manager, these sets are 
heterogeneous and span several transaction managers. 

The Concurrency Control Manager provides the concurrent access primitives 
{ GrantReadAccess, GrantWriteAccess, ReleaseReadAccess, ReleaseWriteAccess} 
and operates on lockable_entities that can be one of the types {Objecg Page, 
Record, Segment File, Database. } 

The Recovery Manager provides the primitives {Undo, Redo, Restart} to 
return a system to a consistent state and operates on recoverable_sets that 
can be one of the types {Object, Page, Record, Segment File, Database. } 

The Liaison Manager provides the primitives {BeginExecution, EndExecu- 
lion, Connect, Disconnect, BeginLocalTrxn, CommitLocalTbcn, AbortLocalT~xn, 
LocalPrimitivel, LocalPrimitve2~...} to manage liaison transactions created 
by a heterogeneous transaction manager to execute at a local site. Many 
of the primitives in this interface will directly reflect the interface of the 
local system. The Liaison Manager operates on liaison_sets that include local 
client code for autonomous systems. 

The Communications Manager provides the primitives {BeginExecution, En- 
dExecution, Connect, Disconnect, CallServer, Receive, Repby } to coordinate com- 
munication between clients and servers in heterogeneous architectures. The 
Communications Manager operates on message_sets that can be one of the 
types {Datagram, Streams. ) 

3. This object performs scheduling of access to objects. Its operations combined with the operations of 
the 'It'ansaction and Recovery Managers implement the system's overall consistency criteria for concurrent 
access to objects. 
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The third type of object in the Framework, shown in dashed boxes, are those 

which provide the "glue" to combine different Functional Domain Framework 

Objects together; these objects also provide the end-user interface of the resulting 

system. These objects are defined as follows: 

The Autonomous Manager provides the primitives {CreateDB, DeleteDB, 
OpenDB, CloseDB, Begin Trxn, CommitTrxn, AbortTrxn, CreateObject, DeleteOb- 
jec~ ReadObjec~ WriteObject) for accessing an autonomous system. This 

manager object is used when an autonomous system needs to be combined 

with the functionality provided by an A la carte Framework Object to oper- 

ate properly in a heterogeneous architecture. In this case, the autonomous 

system is treated as an implementation of the Functional Domains that it 
provides. The Autonomous Manager Object calls the autonomous system for 

its native functions and calls other A la carte Library Components for func- 

tionality which provides the required extensions. The Autonomous Manager 
operates on accessible_sets (e.g., databases). 

The Heterogeneous Manager provides the primitives {BeginHetTrxn, Commi- 
tHetT~xn, AbortHetTrxn} for accessing a heterogeneous management system 
and operates on committable.sets. This manager object is used to integrate 
Framework Objects that implement algorithms for managing heterogeneous 
versions of their Functional Domains. 

5.1 The Integration of Framework Objects 

As shown in Figure 4, the Framework Objects can be integrated in two dimensions. 

One dimension is within the same functional domain and across the systems within a 

particular architecture. For example, in this dimension of integration, the transaction 

managers of a set of systems could be integrated, but other functions of each 

system could remain autonomous. Rather than treating each autonomous system 

as a monolithic "black-box" and integrating all of its functions into a heterogeneous 

architecture, it is sometimes convenient to integrate only a subset of the services 

that a particular system provides. Further, as we shall see in an upcoming example, 

even if all of the functional domains of a set of systems are to be integrated, it 

may be necessary to integrate a set of systems in this modular way in order to 

achieve correct behavior. 
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Figure 4. Framework Object Structure and Dimensions of Integration 

Functional Spec I 
iiiii:~iii~i!::~4 mplementatioii:::i!i!!::::::~i::::ii::::: I 

I Integrating I 
Protocol I 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Framework Object I • 

Integration Within Domains 

& 

I unctional Spec I 

Integrating i [ 
Protocol I 

Framework Object 2 

l Integration Across Domains l 

Integrating 
erotocol 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

The other dimension of integration is across functional domains; this dimension 
allows components of different functional domains, like access management and 
concurrency control management, to be integrated together. This dimension of 
integration supports the tlexible mixing and matching of different types of functions 
in a heterogeneous configuration and enforces strict notions of layered architectures. 
By integrating these reusable components in different combinations and in different 
dimensions, a user can tailor a heterogeneous architecture to the requirements of 
a particular environment. 

5.2 Integrating Protocols and Parameters 

Integrating protocols are used to allow components of disparate implementations 
to communicate, and to facilitate the mixing of different Library Components to 
create new behaviors. They are defined in an object-oriented paradigm: each 
protocol has a set of data types, or integrating parameters, and a set of operations, 
or integratingprotocols, that can be performed on those data types. The parameters 
represent information to be integrated and the operations represent the method by 
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Figure 5. A Heterogeneous System in Deadlock 
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which the parameters can be integrated. There can be any number of integrating 

protocols for each Framework Object. In the next subsections, we give an example 

for one of them called the lockable_entity protocol, and its specification. This 

example helps illustrate why a decomposition of system functionality and exposure 

of system interfaces is sometimes required for correct execution in a heterogeneous 
environment. 

5.2.1 Motivating Example. Consider the system shown in Figure 5, comprised of a 

heterogeneous manager and two autonomous systems: Site 1 and Site 2. All three 

of these systems provide a strict 2-Phase locking protocol in which transactions 

will not release their locks until their work has been completed. Site 1 and Site 

2, provide page-level locking, but the HMS provides locking for heterogeneous 

transactions at the object-level. Objects O1 and 02  exist on the same page P1 at 

Site 1; objects 03 and 04  exists on page P2 at Site 2. Two global transactions have 

been submitted to the HMS: GT1 and GT2 (shown in the system above the dotted 

line). GT1 has submitted the operations write 01, write 03; GT2 has submitted the 

operations write 04, write 02. Local transactions LT1 and LT2 are created on behalf 
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of  GT1 and GT2 and generate the local schedules (shown in the systems below 

the dotted line), at Site 1, LTI: Write 01, LT2: Write 02; at Site $2, LT2: Write 04, 
LTI: Write 03. 

This system is in a state of  global deadlock. GT1 is waiting for GT2 to release 

its lock on P2 so that it can get a lock on 03,  and GT2 is waiting for GT1 

to release its lock on P1, so that it can get a lock on 02.  Further,  the HMS 

created this deadlock unwittingly because it was not aware of the implications 

of its lock requests in the autonomous systems. Because the pairs, O1/O2 and 

0 3 / 0 4 ,  exist on the same pages at their respective sites, the write locks on them 

actually conflict and create a deadlock. But, because the HMS does not know 

how the locking is being implemented in the autonomous systems, it cannot detect 

or avoid this deadlock. Since there is a one-to-n mapping from pages to objects 

in this particular configuration, heterogeneous transactions have an effect on one 

another  that the heterogeneous manager cannot detect. Notice also that neither 

of the autonomous systems can detect this deadlock since the deadlock involves 

heterogeneous transactions that access different autonomous stores. Since the 

autonomous stores do not communicate with one another, they cannot be aware 

of how transactions are being managed by other systems or which transactions are 

part of  the same heterogeneous transaction. 

There  are a range of solutions to this problem. One is to simply execute a 

time-out procedure on suspended local transactions that were created on the behalf 

of the HMS. Another  solution is to somehow provide enough information to the 

heterogeneous manager about the state of the autonomous systems to be able to 

avoid or detect this scenario. Within this "export-information" class of  solutions is 

a whole range of design, implementation, and performance trade-offs. So far, we 

have focused our  work on the identification of these solutions at the specification 

level without analyzing the trade-otis of  different implementation strategies in detail. 

5.2.2 The Lockable_Entity Protocol of Integration. We have defined a lockable_entity 
protocol of integration, 4 shown in Figure 6, which provides a specification-level 

solution to the problem illustrated by the previous example. It provides a mecha- 

nism for a Concurrency Control Framework Object within an HMS to determine 

whether or not a set of locks conflict within an autonomous system. The interferes 
method shown in this specification aids the HMS in determining the ramifications 

of  locking a particular set of entities. Given a set of iockable entities, the interferes 

4. This pseudo code representation borrows from the Eiffel programming language (Meyer, 1988). 
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Figure 6. Example Specification of Integrating Protocol, Lockable 
Entity 

class LOCKABLE_ENTITY[T] 

export 

interferes 

method 

T: LEVEL_OF_GRANULARITY is_one_of 

OBJECT, PAGE, RECORD, FILE, SEGMENT, DB, NULL; 

interferes (lockable_entityl, lockable_entity2: T): BOOLEAN is 

do 

ff lock(lockable_entityl) i= =/, lock(lockable_entity2) then 

Result := True 

else 

Result := False 

end; - interferes 

end - class LOCKABLE_ENTITY 

method returns whether or not granting locks on Lthem creates a conflict within 

an autonomous system. The type of the integrating parameter, T, is the level of 

granularity that the HMS is using for its internal implementation of locking and 

can be one of the frequently used implementation types like objects or pages shown 

in the specification. To integrate a set of autonomous systems, the choice of T 

must be one for which a mapping from T to the various internal implementations 

of lockable entities in the autonomous systems can be created. 

If this protocol were applied in the system just described, the HMS would have 

been able to determine that locking O1 would also lock 02 and hence would have 

been able to avoid or detect the global deadlock. In our example, the level of 

granularity chosen for the HMS was the object-level; the level of granularity of Sites 

1 and 2 was the page-level. The HMS could have invoked the interferes protocol 

with input parameters, O1 and O2, which represent an object-level granularity. 

Through some mapping process from the HMS representation of lockable entities 

to Site l's representation of lockable entities, the interferes protocol would have 

returned TRUE implying that a lock on O1 would interfere with a lock on 02. 

The required mapping process could be implemented in several ways. Site 

1 could maintain an internal mapping from objects to pages and compute the 

interferes method itself, or Site 1 could export the mapping and the HMS could 

compute the protocol. In another solution, Site 1 could export information from 

its lock table which the HMS could use to compute a solution. In any case, the 
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choice of T can be influenced or determined by the set of autonomous systems that 

are to be incorporated into a particular architecture. Via this mapping process, 

a heterogeneous set of systems can emulate a common level of granularity with 

respect to the HMS for a particular type of function so that the function can be 

integrated properly. 

It is important to note that this particular protocol only needs to be applied be- 

tween each autonomous system and the heterogeneous manager. The autonomous 

systems do not need to be integrated with respect to each other. Only the hetero- 

geneous manager needs to be able to interpret each system's integrating parameter. 

5.2.3 Uses of Integrating Protocols. The integrating protocols can be used to 

integrate systems in the different dimensions that are supported by the A la carte 

Framework depicted in Figure 4. Integrating protocols which integrate parameter 

types within the same functional domain and across a set of systems, as in the 

lockable_entity example, are defined in the Functional Domain Framework Objects. 

Integrating protocols that allow Framework Objects from different functional domains 

to share data are defined in the Autonomous Manager and Heterogeneous Manager 

Framework Objects. For example, the Autonomous Manager may need to provide 

an integrating protocol to map between the entities that an Access Manager 

manipulates and the entities that a Concurrency Control Manager manipulates. In 

this case, the Autonomous Manager's primitive, ReadObject, invokes both the Access 

Manager primitive, ReadObject, and the Concurrency Control Manager primitive, 

GetReadAccess. If the Access Manager is manipulating Objects and the Concurrency 

Control Manager is manipulating Pages, an integrating protocol which maps one 

into the other must be implemented by the Autonomous Manager. 

There may be other integrating protocols of heterogeneous systems which we 

have not identified. The definition of these protocols is an evolutionary process. 

As we gain more experience with this Framework, we expect the protocols to be 

enhanced and extended. Those that we have specified have proven to be useful tools 

in understanding some of the ramifications in integrating disparate autonomous 

systems. 

6. An Example Set of Configuration Systems 

In this section, we give an overview of the object management systems that we 

integrated in a heterogeneous configuration and a set of requirements that this 

configuration has to satisfy. Each of the architectures given here describe the 
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systems as they exist in an autonomous, or native, state without any communication 

with a heterogeneous manager. 

6.1 Object Management in Arcadia 

One of the long-range goals of the Arcadia Consortium is to provide an object 

management infrastructure that supports multiple users with heterogeneous systems. 

Heterogeneity is a prevalent characteristic of software engineering environments 

which usually include many diverse software, administrative, and database systems. 

Process-centered, integrated environments often support applications which require 

coordinated access to information located across disparate systems. For example, 

a documentation tool may need to access requirement specifications located in 

one store and design documents located in another. Similarly, there may be a 

project management tool that also requires access to these documents. Further, 

there may also be an analysis tool that operates on requirement specifications 

only, and requires access to the requirement specifications simultaneously with the 

documentation and project management tools. This is a common scenario for 

integrated software engineering environments and provides a motivating example 

for creating heterogeneous architectures. 

In the Arcadia object management infrastructure, two object-management sys- 

tems, Triton (Heimbigner, 1990) and PGraphite (Wileden et al., 1990), are primarily 
used to supply persistence for software engineering applications. Each of these 

systems differ in several aspects, such as models of persistence. The application's 
programmer can choose to use the one which best suits the requirements of the 

given application. Each system is composed of a storage manager which is then 

extended with some additional functionality that the Arcadia Consortium has iden- 

tified as useful for object management in software engineering environments. We 

now briefly elaborate on the structure and behavior of each of the component 

systems. 

Triton 

One of the autonomous object management systems, Triton, extends the Exodus 

storage manager and its associated database programming language, E (Richardson 
and Carey, 1987), with an interpretive environment which provides constructs, 

like triggers, that are useful in managing a process-oriented software environment. 

Triggering mechanisms can be used to manage dependencies that exist between 

various activities in software engineering environments. For example, when some 
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Figure 7. The Triton/Exodus Architecture in an Autonomous State 
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portion of a requirements specification is changed, the associated design documents, 

software, and test harnesses may require some modification. A trigger could be 

used to automatically enforce this dependency between the related artifacts. 

Triton's native architecture is evolving from using a single-user version of 

the Exodus storage manager to a new, serverized, multi-user implementation of 
Exodus, as depicted in Figure 7. The new Exodus implementation has a client- 

server architecture and provides transaction management with a hierarchical, 2-Phase 

locking protocol (Gray, 1976, 1978) and simple recovery services. Client processes 
include application code, like Triton, and some Exodus "front-end" software which 
provides object-manipulation facilities and cache management. Finally, the client 

processes communicate with the server via a message-passing protocol, depicted by 
the dashed lines. Currently, Triton processes are single-threaded, so several must 

be invoked to create a multi-user environment. 

PGraphite 

PGraphite (Wileden et al., 1990), the other autonomous object management system, 

provides a data model which is useful for supporting general graph and tree 

structures, like data flow diagrams, frequently used by software analysis and language 

processing tools. PGraphite uses its own mechanism for defining persistence models, 

and has a different data model from Triton. 

PGraphite communicates with the underlying storage management system 

through an intermediary layer of software called the Storage Manager Interface 
(SMI), as shown in Figure 8. The purpose of the SMI layer is to provide a uniform 

interface to any number of underlying storage managers so that one can be easily 
exchanged for another. In its native state this system is implemented within one 
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Figure 8. The PGraphite/Mneme Architecture in an Autonomous State 
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process. SMI mappings have been created for Exodus, Observer (Hornick and 

Zdonik, 1987), and the system currently in use, Mneme. The current implementa- 

tion of Mneme provides object manipulation and clustering facilities, but does not 

support transaction management or recovery. Hence, this version of Mneme is an 

example system that will have to be combined with A la carte components in order 

to communicate and operate correctly in a concurrent heterogeneous environment. 

6.2 HMS Requirements 

The heterogenous management system that integrates these two systems should 

provide, as a first-cut, some form of transaction management which allows applica- 

tions to access, within a single global transaction, objects that are located in these 

heterogeneous stores. Further, other non-heterogeneous, or local, applications 

should be able to access the autonomous stores simultaneously, and should not 

have to interact with the autonomous system via the HMS interface. And finally, 

these global transactions should follow commit protocols which allow for recovery 

in the event of either a local or global management failure. 

The architecture that models the required behavior is depicted in Figure 9. The 

emboldened boxes present the three major components in the architecture: the HMS 

and the two autonomous systems. The integrating transaction management system 

will be introduced at the storage management level of the autonomous systems 

since it is at this level that the native transaction management facilities of Exodus 

reside. (The method by which we can introduce local transaction management 

facilities to Mneme is detailed in the next section.) 'II'ansactions are submitted to 

the HMS by heterogeneous, or global, applications depicted in the dashed boxes. 

These applications require objects that reside in the different autonomous stores 
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and submit object requests to the HMS. The HMS, in turn, submits local liaison 

transactions, represented by ovals, to the autonomous systems. There are also other 

local applications simultaneously interacting with the autonomous systems without 

communicating with the HMS. 

There are many different algorithms that could be used to implement this 

architecture. Our first choice for the classes of algorithms to be implemented 
by the heterogeneous transaction management system are 2-Phase locking for 

concurrency management, 2-phase commit and deadlock detection for transaction 

management, and write-ahead logging for recovery management. We are aware 

that some software engineering applications may require less traditional transaction 

management mechanisms like cooperative (Skarra, 1989, 1990; Nodine et al., 1990) 

or nested transactions (Moss, 1981), but since our initial work is focused on 

appropriate interface and modularity issues, we have chosen a more accessible and 

easy-to-implement set of algorithms. Future work can include the investigation of 

these less traditional types of algorithms in heterogeneous environments. 

7. The Arcadia Experiment 

Like many existing heterogeneous database environments, each of the autonomous 
systems, Exodus and Mneme, do not provide complete support for their integration 
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into dgstributed or heterogeneous architectures in their current native state. We 

must analyze each system to determine exactly which parts of them are integratable 

as they stand, which parts of them are integratable with some extensions, and which 

parts of them are not integratable at all. We will find that some of our initial 

choices can be implemented relatively easily, while other aspects are more difficult 

to achieve. 

There are several key questions which apply to the integration of heterogeneous 

configurations that are answered for this set of systems: 

• What Functional Domains are to be integrated? 

• Is the required information for integration accessible and, if so, where is it? 

• What are the various ways in which to implement an integration mapping? 

• What level of "homogeneity" should be emulated in the architecture, and 

how is the HMS interface affected? 

• What are the trade-offs in distributing the HMS functionality in a hetero- 

geneous architecture? 

This section describes an integration process in which these questions are answered. 

First, we detail which Framework Objects are required to achieve the desired 

behavior for the overall configuration. Second, we analyze how each autonomous 

system would be best integrated into the architecture. And third, we outline the 

resulting implementation from our analysis. 

7.1 The RequEred Functional Domains 

An A la carte Configuration Model which implements the desired behavior is created 

by combining Library Components in the heterogeneous transaction management 

architecture shown in Figure 10. The unfilled ovals depict functionality that the 

autonomous systems provide in their native state and the filled ovals represent 

functionality that A la carte Library Components must provide for this particular 

architecture. The Heterogeneous Manager is implemented entirely of A la carte 

Library Components and contains a 'I~ansaction Manager, a Concurrency Manager, 

and a Recovery Manager to implement the heterogeneous transaction management 

algorithms. It also contains a Communications Manager and a Liaison Manager 

to communicate with the autonomous systems. Each of these functional domains 

will be integrated with its counterpart in each autonomous system. 
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Figure 10. An Example Heterogeneous Configuration Model 
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The autonomous systems are depicted in Figure 10 in terms of the Frame- 

work Objects that they implement. At the time of this writing, the Exodus client 
provides an Access Manager operating on simple Objects, ComplexObjects, and 

Files; a Buffer Manager 5 which provides a local cache for objects, and some end- 
user transaction management operations. The Exodus server is implemented by 
a 'Itansaction Manager providing most A la carte operations except the Prepare- 
ToCommit operation, and operating on simple Objects, ComplexObjects, and Files; a 
Concurrency Control Manager providing two-phase, hierarchical locking on Pages 
and Files; a Recovery Manager providing primarily only a Restart operation and 

5. The Buffer Manager Framework Object is another functional domain that is not currently considered a 
primary A la carte integration domain, but it must be represented to capture the operation of autonomous 
systems. 
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operating on the Database level; and a Storage Manager 6 operating at the Byte 

level. A Communications Manager provides message passing between clients and 

a multi-threaded server, and operates on both the Stream and Datagram level. 

Mneme, on the other hand, provides an Access Manager operating on Objects 
and a Storage Manager operating on Bytes. Each of the Framework Objects for 

transaction management, concurrency control, recovery, and communications are 

not implemented as native functions in Mneme. The functions that Mneme does 

provide are combined with A la carte Framework Objects to achieve the appropriate 

local serializable behavior required of it to interoperate properly in a heterogeneous 

concurrent architecture. This combination process entails "wrapping" Mneme with 

the Autonomous Manager from the A la carte Framework and combining it with 

A la carte Library Components which implement concurrency control, transaction 

management, recovery, and communications. 

7.1.1 Integration of Mneme. For each component that A la carte implements in 

the A la carte/Mneme system, we must choose the Library Component with the 

appropriate implementation and the type of its integrating parameter. This choice 
is influenced by the desired behavior of the overall architecture, by the data types 
accessible in the existing system, and possibly by the integrating parameters of the 
other systems in a configuration. For example, because serializable behavior is a 

requirement for this environment, A la carte should provide components which 
implement a 2-phase locking Concurrency Control Manager and a 2-phase commit 

Transaction Manager that supports a PrepareTo-Commit protocol. Since Mneme 

provides access to object-level information in its native interface, this level of 
granularity is a convenient choice for the integrating parameter of the Locking 

Concurrency Control Manager that A la carte supplies. Also, since Mneme is to 

be integrated with Exodus, which provides recovery functions at the database-level, 

this level is considered to be a sufficient for Mneme as well. If, on the other hand, 

another system that provided recovery at the object-level were to be integrated in 

this architecture, an end-user application may have also required an object-level 

recovery scheme for Mneme. And finally, because of a rather unusual architectural 

design for the overall system to be described below, we found it most convenient 

to serverize Mneme using the A la carte Communications Manager. 

6. The Storage Manager Framework Object captures all functions, like disk access and buffering, that per- 
sistent stores provide. It is not listed as a primary Framework Object in the A ia carte Framework since 
reconfigurable persistence models are not our primary focus in this experiment. 
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7.1.2 Integration of Exodus. The integration of Exodus raises a different set of 

issues. In this case, the system provides many of the required Framework Objects in 

its native state. The integration process for this system mostly requires determining 

where the functional domains, and their respective integrating parameters, are 

exposed in the system. Upon careful study of the system's interfaces and design, 

we were able to integrate most aspects of the required functional domains. 

An A la carte view of the function of the Exodus client is to provide a 

mapping from the integrating parameters of the domains exposed in the interface 

of the client to those exposed in the interface of the server. For example, the 

Exodus client decomposes the representation of objects supplied by the Access 

Manager in the client into their equivalent representation as pages on which the 

Concurrency Manager in the server operates. The client passes messages to the 

server requesting operations, like lock requests, for the pages on which an object 

resides. This decomposition is the equivalent of the integrating protocols associated 

with the Autonomous Manager Framework Object which provides mappings from 

one functional domain to another. 

A heterogeneous manager can integrate the concurrency control of this system 

by "intercepting" these service requests as they are passed from the client to the 

server. In this fashion, an implementation of the lockable_entity protocol, described 

in Section 5, can be achieved. The HMS can integrate its representation of Exodus' 

locking function by intercepting the real lock requests. The mapping implementation 

for the protocol is not achieved by some translation from one parameter type to 

another, but instead, by moving the place in which an HMS typically interacts with 

an autonomous system. 

This approach to integration works well in most cases; however, there are 

two general types of problems that can arise if a system is not designed with this 

approach in mind. One problem is that if a client sends a message to the server 

which is then decomposed into different functional domains inside of the server, an 

"intercepting" HMS may not know into which domains the server may ultimately 

decompose the message. For example, if a ReadPage message from the Buffer 

Manager of the client is further decomposed into a GrantReadLock call to the 

Concurrency Manager, and a ReadPage call to the Storage Manager, inside of the 

server, an HMS would not be able to intercept the lock message alone. In this case, 

the heterogeneous system designer must understand which messages will ultimately 

turn into operations on a functional domain targeted for integration. 

The other problem that could arise is that the heterogeneous manager may not 

be able to integrate a particular domain if the required integrating parameters are 

not always exposed. In the case of Exodus, there are two interfaces that may have 
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been used to access lockable_entity integrating parameters: the end-user interface 

and the interface between the client and the server. Exodus uses a hierarchical 

locking mechanism in which file-level locks imply locks on the pages in the file which 

in turn imply locks on the objects on those pages. Interestingly, this hierarchical 

locking scheme perpetuates the same problem that the motivating example for the 

lockable-entity protocol illustrated. If a heterogeneous manager were locking at 

the page-level, and two autonomous systems implemented this hierarchical locking 

scheme, then the HMS could inadvertently create a deadlock on two pages in the 

same file and not detect the deadlock. 

One implementation of an integrating protocol would track which objects are 

on which pages and which pages are in which files, so that it could interpret the 

requests of the client. However, the data types at the client or server interfaces 

of  Exodus would have to expose this information. This information is partially 

exposed in the end-user interface. The interface between the client and server, 

on the other hand, provides enough information about lock requests on pages for 

the HMS to integrate the domain. Hence, the HMS in the Arcadia configuration 

tracks lock requests on pages made at the interface between the client and the 

server to integrate the concurrency control functions of Exodus. 

Neither of these problems are meant to point out that Exodus is at all poorly 

designed. To the contrary, because of  its clean design, we were able to easily reuse 

portions of  the Exodus software to implement some of the A la carte Framework 

Objects that supply communications and threading services (for which we are very 

grateful!). Its generally well-specified interfaces fostered our experimentation with 

these new approaches to heterogeneous systems integration. These exceptions 

merely underscore the need for more experience with these approaches so that 

more specific recommendations and requirements can be made for future systems 

that are intended to interoperate in heterogeneous and distributed environments. 

7.1.3 Transaction Management and Recover. In addition to integrating concur- 

rency control domains, the HMS must also integrate the transaction management  

and recovery of  the autonomous systems. In this configuration, neither one of 

the autonomous systems provides the PrepareToCommit operation required for a 

distributed 2-phase commit in their native state. Since Mneme is being extended 

with A la carte Library Components,  it can be configured to provide this call. In this 

scenario, the HMS implements a commit protocol in which the Mneme stores are 

transitioned to a semi-permanent state and are "prepared-to-commit" before the 

Exodus stores are committed. Then, if the Exodus stores commit successfully, the 

Mneme stores can be committed. If an Exodus store does not commit successfully, 
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the heterogeneous transactions at the Mneme stores can be undone. The worst 

case scenario is if there is more than one Exodus store being used at a time and one 

of them crashes after some other Exodus store had been committed; in this case, 

inconsistency in heterogeneous transactions can arise (Breitbart and Silberschatz, 

1988; Du and Elmagarmid, 1989a). This characteristic of the configuration (i.e., 

no PrepareToCommit call in more than one of the autonomous systems) identifies 

one of the constraints that can be triggered by the A la carte Framework during 

the integration process. 

The integration of these domains can also be analyzed to determine where their 

integrating protocols and parameters should be implemented in the architecture. 

Again, the interfaces to the domains being integrated are provided at both the 

end-user and server interfaces in each of the autonomous systems. This might lead 

one to believe that the "intercept messages" approach used for concurrency control 

is a viable solution for providing the integration mapping for these domains as well. 

Assume that this approach were taken. Then a heterogeneous application 

would send local transaction management operations, such as Commit~xn, directly 

to all of the autonomous systems to which it needs access. As the clients passed the 

transaction requests to the autonomous servers, the heterogeneous manager would 

"intercept" the messages to determine if the operation were legal from a global 

transaction management perspective. The heterogeneous transaction manager could 

block certain operations, like a lock manager does, if it detected some inconsistent 

state. 
This approach decomposes the operation of the heterogeneous transaction 

manager too much. The heterogeneous application would have to perform much 

of the bookkeeping that a heterogeneous transaction manager normally does. For 

example, the heterogeneous application would have to track which transactions are 

submitted to which sites and it would have to perform the appropriate recovery 

operations if one of the autonomous systems did not respond correctly. While 

the domains would be integrated, the architecture may be considered too visibly 

heterogeneous for a system that is supposed to integrate the transaction management 

mechanisms of the autonomous systems. Hence, the Library Components which 

implement heterogeneous transaction management and recovery are implemented 

as part of the HMS is executed before submitting local requests to the autonomous 

systems. 

7.2 An Implementation 

Figure 11 shows the implementation strategy for the architecture that has resulted 
from our analysis. This picture shows how the A la carte Library Components 
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Figure 11. A View of the Underlying Implementations in the 
Configuration 
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that implement the Configuration Model shown in Figure 10 are distributed in 

the Arcadia configuration. The parts of the system separated by the dashed-line 

box represent the two major scopes of control in this configuration. All of the 

components within the dashed-line box make up the heterogeneous management 

system's scope of control and those outside the dashed box (i.e., the Exodus and 

ALC/Mneme servers and their respective local clients) represent systems with local 

scopes of control. Hence, the Arcadia configuration is susceptible to inconsistencies 

that can arise when transactions have access to the same data but operate under 

different management systems that are not completely coordinated (e.g., a two-phase 

commit is not readily implementable). 

The different types of software in the components of the configuration emphasize 

which parts of this configuration are applicable to any heterogeneous architecture 

and which are not. Each of these software types are depicted with a different 

pattern in Figure 11. Those components made up of native code, like Exodus 

and parts of the ALC/Mneme server, are shown with the sparsely dotted boxes. 

Those that are generic, reusable components from the A la carte Library, like 

most of the components in the HMS, are shown with the diagonally-lined boxes. 

These pieces of code can be reused in many heterogeneous architectures. Those 

components that are from the A ia carte Library, but that have been have been 

somewhat tailored to accommodate the integration of a particular system, like 

the components used to extend Mneme, are depicted as unfilled boxes. These 

components are mostly reusable in different architectures, however, they do have 

to be specifically configured to know about the parameter types of the system that 

they are extending. For example, the Concurrency Control Manager is configured 

to lock Mneme objects and the Communications Manager is configured to pass 

messages that will execute Mneme interface calls. 

The communication lines of the configuration show how the interfaces of 

the Framework Objects are exposed to integrate their respective domains. (The 

communication lines are depicted in Figure 11 as arrowed lines where the arrow 

points to component acting as a server for a set of messages.) In particular, the 

separate message passing interface to the Concurrency Control Manager in the HMS 

is the mechanism used to intercept the locking messages between the heterogeneous 

clients and autonomous servers so that the concurrency control functions can be 

integrated properly. The HMS's Transaction Manager and Recovery Manager, on 

the other hand, provide their interfaces to the heterogeneous applications directly. 

These different server interfaces are created by defining the interface operations 

of the desired Framework Object, or Objects, to be the messages accepted by a 

Communications Manager from the A la carte Library. The integrating parameters 
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of  the Framework Object are typically passed as data within in the message. The 

overall behavior of the configuration is achieved by messages flowing through these 

interfaces; some examples are described next. 

7.2.1 The Configuration's Operation. A heterogeneous application can have con- 

current access to objects in both Exodus and Mneme in tkis configuration. To 

do this, the heterogeneous application first executes the BeginHetT~xn operation 

of  the Heterogeneous Manager which implements the end-user interface of the 

HMS. The HMS then executes the BeginExecution operation of its Liaison Manager 

to create a heterogeneous liaison client r which will execute local transactions on 

its behalf. Each liaison client in turn connects with its respective autonomous 

server. The Liaison Manager then executes its BeginLocal~ansaction operation 

that instructs the liaison to begin a transaction at the local site. Upon completing 

this operation, the client returns the local transaction ID for that liaison and its 

process ID to the HMS. The HMS repeats this process for every local transaction 

that the heterogeneous transaction has requested to start. When the process is 

complete, the HMS returns a set of transaction and process ID pairs, each of 

which uniquely identify a liaison, to the heterogeneous application. Note that if 

the heterogeneous liaison were multi-threaded, the HMS could start one liaison 

per autonomous store to handle all heterogeneous requests. If, on the other  hand, 

the client's are not multi-threaded (as in this experiment), a new liaison must exist 

for each local liaison transaction. 

Given a set of  liaison IDs, the heterogeneous application can now communicate 

with the access interface of  each liaison directly via the serverized interface of 

each of  the heterogeneous clients. The heterogeneous application knows which 

transaction it owns at the autonomous site and can now access objects using the 

native access operations of  the autonomous systems. Like the interfaces in the 

HMS, these interfaces were also constructed by defining the native object access 

operations of the autonomous systems to be the messages supported by an A la 

carte Communications Manager. (The same process was also used to serverize the 

ALC/Mmene autonomous system.) In this fashion, the HMS does not integrate 

the schemas or access interfaces of  the autonomous systems, but it does make the 

7. There are a number of policies that the heterogeneous manager could use to manage creation, execution, 
and destruaion of liaison processes. The most sophisticated policy might keep a set of liaisons around for 

reuse and adapt its management policy depending on usages. For now, A la carte supports a fixed number 
of liasons. 
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interfaces available to a heterogeneous application that cannot execute as local 

application of an autonomous server. 

As the heterogeneous application makes object access requests, each of the 

autonomous systems decompose the calls into operations of the functional domains 

that are required to complete the request. For example, a DeleteObject operation in 

a heterogeneous client interface will decompose into several lower level calls, one 

of which will be a GetWriteAccess call to the Concurrency Control Manager. In the 

case of Exodus, this decomposition was already implemented in the Exodus client 

code. In the case of Mneme, the A la carte Autonomous Manager implements 

the decomposition from native Mneme object access calls to internal operations on 

A la carte components, such as the GetWriteeAccess operation of the Concurrency 

Control Manager, and on the Mneme Storage Manager. 

As the analysis in the previous section revealed, the concurrency control op- 

erations of the autonomous systems should be intercepted by the HMS to provide 

correct behavior. Hence, whenever a concurrency control operation is invoked in 

a heterogeneous client, a message is sent to the HMS to execute the respective 

operation in its Concurrency Control Manager. In our example, the heterogeneous 

client first passes a GetWriteeAccess message to the HMS Concurrency Manager 

before requesting the lock in the autonomous server. This message contains infor- 

mation about the autonomous server lock request, such as what is being locked 

and which transaction is making the request. The HMS does a look-up in its 

own internal tables to determine whether or not this local transaction belongs to 

a heterogeneous transaction. If it does, it then checks to see if the operation is 

legal with respect to global synchronization and deadlock. If the operation is legal, 

the HMS records it in its own internal management system and returns control to 

the liaison which then proceeds to make the original request to the autonomous 

server. If the request is illegal with respect to global consistency, the HMS blocks 

the operation until global consistency can be maintained. 

Finally, the heterogeneous application commits or aborts its heterogeneous 

transaction across all of the autonomous systems by executing the CommitHetTrxn 

or AbortHetTrxn operation in the HMS, not in the autonomous systems directly. 

The HMS will again determine the legality of the request from a global perspective. 

Based on its determination, it will send the appropriate messages to each liaison 

either to participate in a distributed commit or to abort. The HMS does not notify 

the application of the success or failure of the operation until all liaisons have 

completed their respective tasks. 



276 

7.3 General Remarks 

Mneme provided us with a good example to investigate approaches to integrate a 

system that needs some extensions to interoperate with other systems. It underscores 

the most basic characteristic of heterogeneous environments: the systems to be 

integrated are typically pre-existing and have been chosen based on criteria other 

than how well-suited the system is to interoperate with others. An extensible 

heterogeneous architecture must provide an approach to deal with this characteristic. 

The integration process applied to this system also emphasizes the notion of 

incremental systems integration and extensibility. The components with which 

Mneme is extended could be interchanged as the requirements of an environment 

changed. It could also be mixed and matched with different components to tailor 

its behavior from one architecture to another. 

The architecture of the serverized Exodus provided an interesting testbed 

for the analysis of heterogeneous systems integration. Its clean design facilitated 

our approach. With Exodus, we were able to reveal some of the more subtle 

issues that need to be addressed in the design of future systems if they are to 

interoperate in a heterogeneous configuration. Since it's architecture and design is 

fairly representative of next-generation database systems, we feel that the approach 

taken and the lessons learned will be applicative to future heterogeneous database 

environments. 

8. Conclusions 

We conclude with a description of the current status of the system, some initial 

recommendations to database designers, and some directions for future work. 

8.1 Current Status 

The A la carte Framework Objects and approximately 50% of the toolkit environment 

was implemented in the Eiffel programming language (Meyer, 1988). Many of the A 

la carte Library Components are implemented and operational as well. Most of the 

Arcadia configuration is fully implemented except for the heterogenous recovery 

management components which have only been analyzed for the design of the 

system. The transaction management extensions for Mneme are under construction 

and the serverized version of it is currently operational. Finally, the heterogeneous 

liaisons are also implemented. These components are constructed out of the A la 

carte Framework Objects, written in Eiffel, and the native programming languages 
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of the autonomous systems: C + +  for Exodus and C for Mneme. There are 

69 Eiffel classes, all tolled, contributing to the A la carte code in the Arcadia 

configuration. There are approximately 150 classes which comprise all of the A 

la carte Framework Objects and the internal management system (i.e., the code 

which implements prototypes of the creation and constraint managers) in the toolkit 

environment. 

8.2 Summary 

The A la carte Framework defines a multi-dimensional model that helps clarify the 

process of heterogeneous systems integration from a very applicative standpoint. It 

is intended to help systems integrators understand the implications of certain design 

decisions and the alternative architectures that are available to them. By uncovering 

the internal behaviors of autonomous systems, this framework supports the creation 

of tailorable heterogeneous configurations. Yet, despite its systems-orientation, its 

meta-level representation of heterogeneous architectures makes it a very flexible 

and reusable tool. 

We believe that this approach to systems integration is not only feasible, but 

preferable to the more traditional "black-box" approaches to database integration. 

By truly integrating and managing the disparity between system implementations, 

we may not only be able to achieve correct systems operations, but we may also 

be able to optimize these configurations for particular application domains. 

8.3 Design Recommendations 

Our experience with A la carte leads to some recommendations to designers of 

future database systems and heterogeneous management systems. 

8.3.1 Designing Interoperable, Autonomous Database Systems. Systems that are 

intended to interoperate in a heterogeneous environment should provide truly open 

architectures. From an A la carte perspective, "openness" refers to the exposure of 

a system's key functional interfaces. These interfaces should provide an essential 

set of operations for each functional domain; the A la carte specifications for 

the domains of transaction management, concurrency control, recovery, and access 

seem to be representative. The granularity of the functional components should 

be chosen carefully. Too fine of a decomposition will make the integration process 

unmanageable and too large of a granularity can result in inconsistent behavior. 

Indeed, a concurrency control manager is typically embedded inside of a transaction 
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management system, however, as examples in this article show, access to its interface 

can allow a heterogeneous manager to integrate a set of systems in a way that 

avoids undesirable behavior. These interfaces should be exposed at convenient 

architectural boundaries (e.g. the boundary between a client and a server.) Here, 

there are trade-offs in where these interfaces are placed and how process boundaries 

should be split. If two functional domains within a system need to communicate, 
it may seem more convenient initially to put both domains into one process and 

not expose the information that they pass to one another. However, this choice 

may make the integration of those domains more difficult. 

The parameters of the functional domains should also be carefully designed. 

The consistent design of these parameters and exposure of these parameters with 

their associated domains are as important to building heterogeneous architectures 

as the exposure of the proper interface calls. Further, it would be most convenient, 

if the format of these data types could be somewhat standardized. Ironically, 

some of the more "unruly" aspects of the integration process involve integrating 

different implementation formats of these data types, not the interface calls of the 

autonomous systems. 

And finally, the interfaces to the functional domains should be used consistently 
within the autonomous system itself. If the autonomous system does not cleanly 

decompose its operation into the operations of its functional domains, components 

of other systems will not be able to be easily integrated with them. Some extra work 

may be required to track down exceptions and, in some cases, these exceptions 

may make complete integration impossible. 

8.3.2 Designing Extensible Heterogeneous Architectures. Perhaps the most crucial 

requirement for a heterogeneous management system is the ability to capture the 

vital operations and data that represent the essence of heterogeneity so that correct 

execution can be achieved. The A la carte Framework gives an example of how 

this might be accomplished. There are two parts to satisfying this requirement. 

One part is to know what these operations and data are. To this end, we have 

identified some properties and dependencies that represent some of the definitive 

characteristics of heterogeneous transaction management systems, and a method 

of decomposing the functions of systems into components that reflect operational 

heterogeneity. This view can help give some insight into what exactly should be 

integrated in a heterogeneous system. 

The other part to satisfying the requirement is to provide the appropriate 

extensible representation in which to capture this information. A la carte provides 

a harness for this information and some examples of how to map between specific 
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database implementations and the harness. By supplying a meta-level harness for 

integration, new systems can be introduced into existing configurations and others 

can be removed. The heterogeneous manager is not "hardwired" to the systems in 

the configuration. This framework also allows for the behavior of the heterogeneous 

manager itself to be reconfigurable. A heterogeneous manager's behavior may need 

to change if new demands are placed on it from an end-user community, or if a 

change in the makeup of the configuration requires a new set of functionality from 

it. Indeed, given that the harness provided the appropriate functional components, 

the same framework should be able to be reused to configure either a heterogeneous 

or autonomous system; the extension of Mneme is an example of this process. 

Another desirable feature of a heterogeneous management system is the ability 

to perform "incremental integrations." Not all users may want an entire monolithic 

system integrated, particularly in very complex environments. A integrated transac- 

tion management system which leaves the language interfaces to the autonomous 

systems visibly heterogeneous may be all that is required--and easier to supply 

for a given set of systems. Further, because the system should be extensible, new 
domains may be added or removed, and mixed and matched, as required. 

The Arcadia experiment revealed a requirement for heterogeneous systems 

that is generally not addressed in the database community. These sophisticated 

architectures require communications packages that allow the roles of client and 

server to be as easily mixed, matched, and combined as the other components of 

the Framework. Special care must be taken in the design of the communications 

packages so that they are as extensible as the rest of the system components. 

Finally, in a distributed architecture where sub-components of management 

systems may potentially exist in different processes, the ordering of the execution 

of the overall system may require special analysis to assure that no communications 

deadlock or incorrect ordering of operations can occur. This underscores the 

importance of capturing the operational model of a system. It is important to 

explicitly state how these components interact and what states are legal, otherwise 

untold inconsistencies might result. 

8.4 Future Directions 

Future work can include several types of efforts. Other database systems, both com- 

mercial and research prototypes, can be integrated using the A la carte Framework. 

The Framework may also be extended to include the representation of other func- 

tional domains like schema representation, query processing and optimization, and 

security. Similarly, the Library can be extended to include other less "traditional" 



280 

transaction management schemes. While we do not expect this new functionality 

to dramatically impact the specification of the Framework Objects, it would most 
likely have some impact on the properties and dependencies represented in the 

Meta-Model. Finally, we could perform empirical analysis on different architectures 
and functional distribution schemes. Our approach has been to try to understand 
the integration process based on practical experience. As more types of systems 

are integrated using this Framework the formal aspects of the Meta-Model can be 
enhanced. 
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