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Abstract. Traditional atomic and nested transactions are not always well-suited 
to cooperative applications, such as design applications. Cooperative applications 
place requirements on the database that may conflict with the serializability re- 
quirement. They require transactions to be long, possibly nested, and able to in- 
teract with each other in a structured way. We define a transaction framework, 
called a cooperative transaction hierarchy, that allows us to relax the requirement for 
atomic, seriaUzable transactions to better support cooperative applications. In co- 
operative transaction hierarchies, we allow the correctness specification for groups 
of designers to be tailored to the needs of the application. We use patterns and con- 
flicts to specify the constraints imposed on a group's history for it to be correct. We 
also provide some primitives to smooth the operation of  the members. We charac- 
terize deadlocks in a cooperative transaction hierarchy, and provide mechanisms 
for deadlock detection and resolution. We examine issues associated with failure 
and recovery. 

Key Words. Cooperation, design transactions, transaction hierarchies, non-serial- 
izability, transaction synchronization, deadlock detection, version management. 

1. Introduction 

Design applications such as C A D  tools genera te  requirements  for underlying data-  

base suppor t  that  do  not  conform well to tradit ional database structure. Traditional 

databases were developed to support  on-line data  processing applications and are op-  

timized for  short,  a tomic  transactions. W h e n  using a database,  design applications 

tend to genera te  long transactions that are not  necessarily atomic. Because  the design 
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Figure 1. Word processing system design 
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process is interactive, design transactions also interact with each other, specifically 
through the sharing of data. Because the design process is both interactive and itera- 

five, design transactions are not completely specified at the time they begin. Rather, 
they are open-ended. Because the design task often decomposes hierarchically, the 
transactions that support that task also may be structured to reflect that decomposi- 

tion. All of these properties complicate the issues of synchronizing these transactions 

and recovering from failure. On the other hand, we can assume that the transactions 

are controlled ultimately by experienced users who can respond intelligently to prob- 

lems. 

Design applications are an example of cooperative applications. Transactions that 

support cooperative applications are correct when they interact and share data only 
in ways acceptable to the application environment. We do not believe that a single, 
monolithic correctness criterion such as serializability suffices. Instead, we provide 

a way to program application-specific correctness specifications for the cooperative 

transactions. 

In this paper, we will use as an example a CASE tool being used to write a simple 

word processing system. The word processing system has three modules, as shown in 

Figure 1. 

The Display module manages the user interface, the Process/ng module maintains 

the document in its internal format, changing it according to the commands received 

from the Display module, and the Storage module deals with the disk I/O. The Process- 

/rig module has submodules that take the commands specified to the display module 

and compute the appropriate changes in the document itself. Each module and sub- 

module has designers responsible for designing and programming it. The objects in 
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the database include design specifications for each module, the interfaces between 
modules, the internal format of the document, and header and source files containing 
the code. 

In this example, the specification for the interface between the Display and Pro- 

cessing modules may be manipulated by more than one designer. The Display module 

designer may change it as he gives the users new capabilities. For example, if he al- 

lows the user of the word processor to specify new commands, new procedures will 

be added to the interface specification. The Processing module designers, specifically 

the one working on the User Command Input submodule, may need to change the 

specification to define the information that they need to execute the new command. 

In the word processor design, each designer completes only part of the design task 

and maintains only partial consistency in the database. For instance, the part of the 
interface discussed above that is in the Display module is maintained by the designer of 

that module, and similarly for the part of the interface in the User Command Input sub- 

module. However, the two parts of the interface design are interdependent, because 
the various designers corporately implement the interface, and therefore must agree 

on any changes made to it. The interactions between the designers are structured ac- 
cording to the task they are working on; using the example in the previous paragraph, 

if the Display module designer changes the interface, the Processing module designers 
must ensure that the changes are reasonable from their perspective. The designers 

also may iterate through several refinements or changes in the design as they work. 
Because of the complexity of the design process, the individual designers dynamically 

determine what is necessary to complete their part of the task. Also, all designers 

involved in a task must agree that it is complete before it should be committed. 

From the point of view of the database, each designer starts a cooperative trans- 
action for each major design change he participates in. Groups of designers working 

together join transaction groups. In the above example, each of the Display, Processing, 
and Storage modules is represented by a transaction group. Three transaction groups 

are nested within the Processing group. Figure 2 shows this structure. 

Each designer has started up a cooperative transaction. For example, Bob works 

on the User Command Input submodule of the Processing module. We call the whole 

tree-like structure a cooperative transaction hierarchy. 
The cooperative transaction hierarchy for a particular design task is typically struc- 

tured according to the task's natural decomposition. The internal nodes in the tree 
represent transaction groups, and the external nodes represent cooperative transac- 

tions. For any given transaction group, we call its direct children its members. The 
transaction group itself is its members' parent. The Root transaction group is at the 
top of the transaction hierarchy. 
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Figure 2. Word processing hierarchy 
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Cooperative transactions are sequences of related atomic read and write opera- 

tions. Because cooperative transactions in the same transaction group may need to 

read and modify the same set of objects, they may read or overwrite each others' un- 

committed object versions (as in the previous interface example). Consequently, con- 

current cooperative transactions may be interdependent, and atomicity may be too 
strict a requirement for correct execution. Transaction groups correspond to some 

task, and that task is done cooperatively by its members. Since transaction groups 

may themselves cooperate, and thus may also be interdependent, atomicity may be 

too strict a requirement for them as well. 

In this paper we define a method for specifying correctness for a cooperative trans- 

action hierarchy. This method, which is related to one originally proposed (Skarra, 

1991), allows each transaction group to tailor the correctness specification for its mem- 

bers to the needs of the group's task. Correctness is specified not only by how the 

different members cannot interact, as in a locking system, but also in how they must 

interact to complete the task. Thus, we can both support interactions between coop- 

erative transactions that share uncommitted data, and control the extent to which this 

data sharing is allowed. 

Each transaction group has its own local set of copies of the objects that its mem- 

bers are currently accessing. An object is copied into this set the first time a member 

reads it. An object is removed from the set when all members that have interacted 

with it have terminated. Each group makes its own guarantees about thepersistence of 

the object copies in its set, i.e., their resilience to certain types of failure. For example, 

a transaction group may have its own backing store where it keeps its object copies in 

case of system failure. 
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Each transaction group also has its own correctness specification that defines the 

order in which its members'  operations can interleave. The transaction group is re- 

sponsible for ensuring that its members'  operations follow that order. This includes 

determining the acceptability of the operations as they are submitted to the transaction 

group (synchronization), and ensuring that the correctness of the transaction group is 

upheld even after the failure or abort of a member. 

A transaction group history is the actual sequence of operations by its members 

on the objects in the database. In this paper, we consider only histories that contain 

nonnested read and write operations. Each transaction group's correctness specifica- 

tion defines how its members should operate and how their operations should inter- 

leave in its own history. We use a notion of patterns and conflicts to specify correct 

histories for each transaction group. Each pattern defines a set of acceptable order- 

ings of operations in a transaction group's history. For example, a pattern might say, 

',.Alice must read the Display~Processing Interface Specification object (if_spec) before 

she writes it." Conflicts are defined within the context of patterns, and specify order- 

ings of operations that must not occur. For example, "Once Alice has written if_spec, 
Bob cannot write it until he reads Alice's version." Every transaction group has many 

patterns and conflicts defined for the objects and members, and they work together to 

define correctness. 

Although we use only read-write semantics in this paper, we expect that this model 

can support any set of operations that do not nest. This would include methods in 

simple object-oriented systems. 

Once we have defined a notion of correct operation interleaving in a transaction 

group's history, we need to ensure that the actual history produced by a transaction 

group corresponds to that notion of correctness. The synchronization process exam- 

ines each operation submitted to the transaction group in turn, and queues or rejects 

any operation that cannot occur at the time it was submitted. Unfortunately, once 

we allow for operation queueing, deadlocks can develop among operations submitted 

by different members. Thus, the transaction groups are also responsible for deadlock 

detection and resolution within the cooperative transaction hierarchy. Deadlock de- 

tection and resolution here have some similarities to that of a lock-based database. 

However, we may not want to abort an entire member because one of its operations 

is deadlocked, if only because the member may be long-lived. 

In fact, there are many compelling reasons why a deadlock, failure, or abort should 

not cause the effects of a whole transaction to be backed out of  the database. In ad- 

dition to the fact that cooperative transactions may be long-lived and open-ended, we 

also know that they may have complex interdependencies that would cause a severe 

cascading abort problem (Haerder,  1987). These interdependencies need to be dealt 
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with during recovery; however, we may want the cascading only to propagate to the 

parts of the other cooperative transactions that actually were affected by the failed or 

aborted operation. 

Transaction groups also provide a few facilities that, while not required for cor- 

rect operation, do facilitate the process of cooperation. Intentions allow a member to 

reserve the capability to do some specific operation in the future. Once a member is 

granted an intention to do an operation, any conflicting operation is queued until the 

intention is released. 

Intentions allow members to make either optimistic or pessimistic assumptions 

about whether other members will interfere with their work. For example, say Alice 

needs to make a large modification to if_spec. The result of this modification will be the 

writing of the new version of the object at some possibly distant point in the future. 

If she wants to guarantee that she will be able to do the write, she can first request 

an intention for it. The granting of the intention by the transaction group guarantees 

that the write operation will not be queued or refused. On the other hand, if she is 

optimistic that the operation will be accepted, she can go ahead and do the modifica- 

tion without requesting the intention. However, if the write operation is rejected or 

queued, she may have to redo her work. 

Nott~ication allows a member to be informed of other members' operations that it 

may be interested in. Notification facilitates the working of the transaction groups be- 

cause it allows the members to know when they may need to do something in response 

to a change in some object in the database. For instance, the designers responsible for 

the Processing module in our example may request to be notified when if_spec changes. 

This paper covers the basic operation of a cooperative transaction hierarchy. In 

the next section, we define cooperative transaction hierarchies in more detail. In Sec- 

tion 3 we discuss patterns and their associated conflicts, and describe how they are 

specified(operation machines). We then discuss the basic synchronization algorithm, 

including how we coordinate the synchronization among the different groups in a co- 

operative transaction hierarchy to make the database operate more smoothly. In Sec- 

tion 4 we discuss the queueing semantics and the mechanisms for deadlock detection 

and resolution. In Sections 5 and 6 we discuss what information needs to be kept for 

recovery, and provide a procedure for backing changes out of a database after a failure 

or abort. We also provide guidelines for how operations can be redone cooperatively. 

Finally, in Section 7, we discuss database support for mediated communication among 

the cooperative transactions. A brief summary of related research is provided in Sec- 

tion 8. 
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2. The Model 

A cooperative transaction hierarchy is a structured set of cooperative transactions, 

where the structure of the interaction among the cooperative transactions reflects the 

underlying hierarchical decomposition of the task they are working on together. The 

internal nodes are the transaction groups, and the leaves are cooperative transactions. 
A transaction group contains a set of members that ctx~perate to do a single task. It 

actively controls the interaction of its cooperating members. A member may be either 

an individual cooperative transaction or another transaction group. No member may 

have more than one parent. The Root transaction group always exists at the top of the 

hierarchy. 

2.1 Transact ion Groups.  Each transaction group is tailored to the task its mem- 

bers are working on. The procedures and rules defining the operation of a transaction 

group (e.g. its definition of correct operation) are called its protocols. A transaction 

group's internalprotocols specify the allowable interactions among its members. The 

internal protocols include a correctness specification that defines the patterns and asso- 

ciated conflicts that must hold in the transaction group's history. Its externalprotocols 
specify how the transaction group may interact with its siblings in the transaction hier- 

archy. At any level in the tree, the external protocols of a transaction group member 

are defined to be the internal protocols of its parent. 

A transaction group has a local set of object versions being accessed by its mem- 

bers. There may be several versions of an object scattered throughout the hierarchy. 

We do not follow a general versioning scheme; in this scheme a member's version of an 

object always directly subsumes its parent's version. The object versions in a particular 

transaction group's set may be accessed (read or written) only by members below it in 

the hierarchy. The Root transaction group has a version of every object in its set, and 

this version may be accessed by all members. 

Each transaction group makes its own guarantees about how resilient its copies 

are to various failures (permanence). Because the Root transaction group is at the top 

of the hierarchy, it contains the most stable versions of the objects. All of the other 

versions of an object in the hierarchy are either identical to Root's version, or are more 

recent intermediate versions. Because of this, the Root transaction group must make 

the strongest guarantees about the persistence of its copies. This means that these 

copies should be rigorously backed up on disk, and routinely archived on tape or some 
other off-line storage medium. 

An object version is copied automatically into a member transaction group's set 

from that of its parent when the member initiates a read operation on that object. A 
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new version of the object is written back to the parent transaction group's set when the 

member indicates that it has finished modifying the object. All read and write opera- 

tions must be allowed by the transaction group's correctness specification. Because of 

the long-lived and interactive nature of the cooperative transactions, we also allow the 
individual members to selectively commit or undo parts of their work as they progress. 

Becausse the members of a transaction group cooperate, they are no longer self- 

contained. This means that the sequence of operations by a single member might not 

leave the database in a correct state. The transaction group is responsible for ensur- 

ing that the combined history produced by its members conforms to its correctness 

specification. 

When a member ( M )  of a transaction group ( T G )  commits some portion of its 

work, the effects of that work on the database must be propagated to its parent ( P ) .  

This involves encapsulating the operations done by M into a sequence of operations 

initiated by T G  on P ' s  object copies. This sequence of operations must be compatible 

with P ' s  correctness specification, because each transaction group must adhere to its 
own notion of correctness. It also must be equivalent to the committed operations, in 

that it leaves P ' s  object copies in the same state as the copies in TG.  For example, a 

write operation followed by a sequence of read and write operations on a single object 

in TG may be encapsulated into a single write operation by TG on P ' s  object version. 
This encapsulation hides the internal operations of the transaction group's members 
from its parents, allowing groups of non-serializable transactions to be members of 
other serializable groups, among other things. 

Because we cannot determine the transaction groups a priori, the transaction hi- 
erarchy can be modified dynamically. The Root transaction group, whose task is to 
maintain the database, always exists. Other transaction groups and cooperative trans- 

actions may join and leave the hierarchy as the overall task progresses. 

2.2 Cooperative Transactions. In our model, cooperative transactions represent 
designers or intelligent design applications. Because the lifetime of a design task is in- 
determinate, we assume that cooperative transactions are long-lived and open-ended. 

We also assume that cooperative transactions can interact with each other both exter- 
nally and through the objects in the database. Thus, they may know what the other 

members in their transaction group are doing. 

During its lifetime, a cooperative transaction issues read and write operations on 

object versions in its transaction group. These operations are executed by the trans- 

action group if they conform to its correctness specification. The transaction group's 

synchronization mechanism examines each operation as it is submitted, and returns 

a(ccepO if the operation can be executed immediately, r(efuse) if the operation can- 
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not be executed, or q(ueue) if the operation may be doable later. If q is returned, the 

operation itself is not actually queued. Instead, the intention to do the operation is 

queued, and the transaction is notified once the operation can definitely either be ac- 

cepted or refused. In the meantime, the cooperative transaction is allowed to dequeue 

this intention and/or continue processing. As with transaction groups, operations are 

individually checkpointed or aborted by the cooperative transaction as the design task 

progresses. 

2.3 Operational Overview. This section describes how members begin, access the 
database, and terminate. These operations are similar in spirit to the familiar transac- 

tion begin, commit, and abort operations, though there are differences because of the 

different requirements cooperative applications place on the database. 

Members are created using the member_begin command. The command specifies 

the new member's name and its parent. If the member is a transaction group, its in- 

ternal protocols must be specified as well. These indicate how the members of the 

transaction group interact, including information such as an enumeration of its mem- 

bers or a procedure for authenticating new members and a correctness specification. 

The new member also must authenticate itself to its parent, using its parent's authen- 

tication procedure. 

There are several functions that are not specified during the member definition 

process, but rather are inherent in the way the transaction hierarchy is managed. These 

include the rules for managing object versions, and the rules for requesting, sending, 

and receiving notifications. 

Once a member has been established, it may operate on its parent's object copies 

in any way allowable by its parent's correctness specification. Objects are copied into 

its parent's object set as they are needed by the member. Each operation is checked by 

the transaction group as it is submitted to see that it conforms to the group's correct- 

ness specification. The only operations that are accepted are those that are correctly 

ordered. 

When the members of a transaction group complete some set of changes, the 

operations that effected that change can be checkpointed (committed) using a mem- 
ber_checkpoint operation. The decision to checkpoint may be made either manually or 

automatically. Because the group's patterns capture the structure of all interactions 

among its members, all patterns a member participates in must be complete when the 

checkpoint takes effect. 

The checkpoint operation causes the internal operations by the members to be 

encapsulated into an equivalent set of external operations by the transaction group. 

Since we restrict the operation set in this paper to {read, write}, this means that new 
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versions of the objects that have been modified by the members of the group are prop- 

agated up to its parent. To do this, the transaction group issues its own (external) write 

request to the parent for each such object, specifying its latest version as the one to be 

written. The requests are issued in the order in which the last modification of each ob- 

ject occurred. They must be acceptable according to the parent's correctness criteria. 

Each write introduces a new object version to the parent transaction group, making 

the changes accessible by the transaction group's other siblings. The changes also be- 

come recoverable from the parent transaction group if the member fails. Since the 

different groups in the transaction hierarchy may guarantee different levels of perma- 

nence, the member_checkpoint procedure only guarantees that the new object versions 

are as permanent as the parent transaction group guarantees them to be. 

As an example of how a member operates, consider what happens when Alice, 

who is a member of the Display transaction group in Figure 2, decides to make her 

changes to the if_spec object. When she first tries to read the specification, a copy of 

the object is read into Display's object set from the Root transaction group. Alice's 

read operation is then checked for correctness. Provided it is correct, Alice can then 

read the object into her editor. As Alice edits the object over time, she issues a series 

of write operations. Provided the Display transaction group accepts these operations 

as correct, new versions of if_spec are introduced in Display's object set. When she has 

completed the edit, she checkpoints. At this time, the Display transaction group issues 

a write operation to the Root transaction group to propagate the new version up the 

hierarchy. The write operation must be accepted by the Root transaction group for the 

checkpoint to succeed. 
Occasionally, a member may wish to abort one or more of its uncheckpointed 

operations. This means that the operation is no longer a part of the operation his- 

tory of the transaction group, and that any object version created by the operation no 

longer properly exists in the object server. An operation can be aborted either be- 

cause the member actually failed in some way, causing its transaction group to abort 

the uncheckpointed operations by the member, or because the member decided that 

its changes were inappropriate in some way and aborted its own operations. The mem- 
ber_abort operation causes a specified set of operations to become invalid. The oper- 

ations need not be contiguous, and aborting an operation does not necessarily mean 

aborting all subsequent operations by the member. The abort makes it appear to the 

transaction group members as if those operations had never happened. The process of 

aborting must also leave the transaction group's history in a correct state. This means 

that any operations that are incorrect as a result of the abort must also be removed 

from the history, as well as any versions they created. 
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Figure 3. State transition diagram for cooperative transactions and 
transaction groups. 
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When a member is completely finished and all its valid operations are check- 
pointed, it may remove itself from the transaction group using the member_terminate 

command. However, some of the operations done by the member may be dependent 
on other members' operations, and consequently may become invalid if one of those 
members aborts. When a member terminates, its transaction group becomes respon- 
sible for recovery if any of its operations are subsequently invalidated. 

The member operations differ from the traditional transaction operations begin, 

commit, and abort in two ways. First, member_checkpoint and member_abort do not 
terminate the member. This is because we view the member as an ongoing operator 
doing a long sequence of operations, each of which it may selectively commit or abort. 
The second reason is that they may be done by any member, not just by a leaf trans- 
action. This is necessary because we want the operations done within the context of a 
transaction group to be local to that group, and not affected by other members closer 
to the leaves of the hierarchy. 

At any time, each member in the transaction hierarchy is in one of the following 

states: 

• Running-  the member may have some outstanding uncheckpointed operations. 

• Checkpointed - all existing operations by the member are correct and final, ac- 
cording to both itself and the transaction group's correctness criteria. 

• Terminated - the member has explicitly terminated. 

The state transition diagram is shown in Figure 3. 
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2.4 Data Structures. A transaction group is responsible for a single task within the 

database, and that task is accomplished through the cooperation of its members. Be- 

cause of this, it also controls the interaction among its members, only allowing op- 

erations that are consistent with its correctness specification. The transaction group 

records each of its members' operations, as well as all of its own operations. When 

one of its members fails or when some operation is aborted, the transaction group 

also ensures that its object versions are recovered to a consistent state. 

A transaction group acts on behalf of its members when submitting operations 

to its parent. This means that it must map sets of operations by its members which 

are correct according to its correctness specification into single operations by itself 

which are correct according to its parent's correctness specification, as described in 

the previous section. 

A transaction group is a tuple 7"~ = < TID, 79, S ,  .A4, IP >,  where 

TID is the unique member ID, 

P is the member ID of the parent transaction group, 

S E {Running Checicpointeg Terminated) is the member's state. 

M contains the member IDs of TG's members, and 

IP specifies TG's internal protocols. 

A cooperative transaction is not necessarily atomic. The sequence of operations 

for a single transaction does not have to be individually correct and consistent, ia that it 

may not in itself leave the database in a consistent state. However, it must be validated 

according to its parent transaction group's internal protocols. 

A cooperative transaction is a tuple C'T = <  TID, P, S >,  where TID, P,  and 

S are defined as for transaction groups. 

2.5 Operations. Members access and update their local object versions using oper- 
ations. An operation defines an atomic action on a single object by a single member 

of a transaction group. When an operation is checkpointed, its effects are propagated 

towards the root transaction group. An operation can also be aborted. 

An operation is a tuple (.9 = <  M ,  o, O > ,  where 

M E { a n y ,  mi, ~ }  is the ID of some member, where any is any member, 

mi  identifies member i, and ~ is any member except mi. 
o E {r,  w} is an operation, where r is read and w is write, and 

O is an object identifier. 

When a member needs to access or update an object, it submits the operation to 

its parent transaction group. Before an operation can be executed, it must be accepted 

by the transaction group to which the member that requested the operation belongs. 

Once the operation has been accepted, we know that its execution at this time does 
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Figure 4. State transition diagram for operations. 

checkpoint ~ 

not conflict. Therefore, we can read or write the object as requested. If the member 

that did the operation decides later that it is incorrect in some way, it can abort the 

individual operation. Otherwise, the operation checkpoints the next time the member 

checkpoints, and the process of making any changes resulting from the operation more 

permanent begins. However, there is a gap between the time the member checkpoints 

the operation (indicating that it will not abort it later) and the time the operation 

cannot be undone for any reason (e.g., if some other operation aborts). Once the 

operation cannot be undone for any reason, it is complete. 

At any time, and operation is in one of the following states: 

• Submitted. The operation has been accepted by the transaction group's internal 

protocols, and executed. Its effects are temporary. 

• Pending. The operation has been checkpointed by the member that requested 

it. It cannot be aborted by that member, though it may be indirectly invalidated 

if some other operation is aborted. 

• Invalid. The operation has been aborted. Its effects are not reflected in the 

database. 

• Complete. This operation has been checkpointed, and all of the earlier opera- 

tions in the history are Complete. It cannot be undone. 

The possible state transitions are shown in Figure 4. 

2.6 Histories. The history of a transaction group is a partially-ordered sequence of 

operations. It contains both the operations submitted to the transaction group by its 

members, and the operations submitted by the transaction group to its parent. In 
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other words, each operation in the cooperative transaction hierarchy potentially par- 

ticipates in two histories - it always participates in the history of the transaction group 

the operation is submitted to, but it also participates in the history of the member that 

submitted it if that member is also a transaction group. 

3. Synchronization 

Each transaction group in a cooperative transaction hierarchy defines and enforces its 

own correctness specification using patterns and conflicts. The patterns and conflicts 

defined in the Root transaction group specify the correctness constraints on the data- 

base. The patterns and conflicts defined in other transaction groups specify their own 

correctness constraints. A transaction group's synchronization process ensures that its 

members generate a history that conforms to group's correctness specification. 

3.1 Operation Machines. Synchronization protocols for cooperative transaction hi- 

erarchies need to control not only the concurrent access of objects, but also the order 

in which different objects are accessed by different members. They need not constrain 

the members' operations to a specific execution; rather they specify the general form of 
the allowable member interactions. We use patterns and conflicts to specify required 

and prohibited operation sequences by the members of a transaction group, as well as 

the interleaving of the members' operation sequences. 

Operation machines are user-definable synchronization mechanisms for specifying 
patterns and conflicts. They were first proposed by (Skarra, 1991). An operation ma- 

chine is a finite-state automaton. Each transition in an operation machine is labeled 

with the symbol o" = <  My o r O, P > that defines the operation associated with it, 

where 

M E {any, mi, ~ }  is the ID of a member or set of members any of whom 

can initiate the operation, where any is any member, ml identifies member 
i, and ~ identifies any member except mi. 

o E {r, w} is an operation, where r is read and w is write, 

O is an object identifier, and 

P E {a, r, q} is a return value, where a is accept, r is refuse and q is queue. 

In an operation machine, the start state represents the beginning of a pattern. 

Machine transitions represent operations on an object by some member. They are 
annotated with return values that are either a(ccept) if the operation conforms to the 

pattern, r(efuse) if the operation conflicts, or q(ueue) if the operation conflicts now 

but may conform to the pattern if done later. The lack of a transition for an operation 
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from some state indicates that the operation is not relevant to the pattern at that time, 

therefore the pattern cannot cause the operation to be rejected or queued. The final 

states of an operation machine indicate when its pattern is complete in the history. 

The active set of a transaction group is the set of operation machines currently 

being used to define and enforce correctness in the group. The operation machines 

in a group's active set may be defined directly or instantiated from operation machine 

templates. An operation machine template is defined in the same way as an operation 

machine, but the transition functions may have variables for the member and object 

identifiers. A machine template is instantiated by making a copy of its definition and 

binding the variables in the copy to specific object and member IDs. 

3.2 Synchronization Algorithm. In a given transaction group, the correctness cri- 
teria are specified by an active set of operation machines, each of which describes a 

specific pattern and its associated conflicts. When an operation is submitted by some 

member to the transaction group, the group first finds the set of operation machines in 

its active set that are relevant to that operation. A machine is relevant to the operation 

if there is some arc from the machine's current state that specifies explicitly whether 

the operation should be accepted, queued, or refused. An operation is only accepted 

by the group if it is accepted by every operation machine in its active set that considers 

that operation to be relevant. An operation is refused if any relevant machine specifies 

the operation should be refused. Otherwise, if any relevant machine specifies that the 

operation should be queued, then it is queued. Executing an operation causes an are 

traversal in each machine in the active set that considers that operation to be relevant. 

Since the operation machines together specify the correct operation of the members 

of the group, a database maintains consistency if every member checkpoints only when 

every machine that considered one or more of its operations relevant is in a final state. 

3.3 Operation Machlne Functions. Operation machines can be used for various 
functions in a cooperative database. Example functions include synchronizing the ac- 

cess of an object by multiple members, protecting an object from being accessed by 

specific members, and enforcing a pattern among a specific set of operations by multi- 

ple members. Some of the operation machines are defined manually, either when the 

transaction group is set up or when new members are added. Some may be instantiated 

automatically as needed from operation machine templates. 

Pattern machines and protection machines are examples of machines that are de- 

fined manually for specific functions. Pattern machines define the sequences of oper- 

ations needed to do some current task. Consider the machine defined in Figure 7(a). 
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Figure 5. Synchronization machine templates 

(a) ( ) M,r/w,O,a (b) 

M,r,O ,a 

(a) serializable; (b) cooperative. 

M,r,O,a 

M,r/w,O ,a 

When operation machines are shown diagrammatically, the start state is indicated by 

a caret (>), final states have bullets (e) in them, and transitions are represented by 

labeled arrows (-+). This pattern forces Display to read the interface specification 

(if.spec) after the last write before it can actually make the corresponding changes in 

the module (display.c). It also forces display.c to be current with if_spec before the task 

is complete. These machines put a general form on the allowable executions consis- 

tent with the transaction group's task. They do not necessarily restrict the transactions 

to conform to one specific execution, though they may. Protection machines are used 

to prohibit specific members from doing specific operations on an object. They are 

implemented using refuse arcs. 

Synchronization machines define the patterns that enforce the underlying concur- 

rency control mechanism (e.g., cooperative, serializable). Since a transaction group 

usually wants to enforce concurrent access of objects in a uniform way, each transac- 

tion group instantiates the synchronization machines as needed from its synchroniza- 
tion machine template. The template looks like an operation machine, except that the 

arcs are labeled with the variables M for a single member identifier and O for a single 

object. When a member first accesses an object, the transaction group instantiates the 

template by copying it, binding all instances of the variable M to the member's ID 

and all instances of the variable O to the object's ID, and placing the new machine in 

its active set. When a member terminates, its synchronization machines are removed 

from the active set. 

Figure 5 gives two examples of synchronization machine templates. Figure 5(a) 

shows a machine that enforces seriallzability in a similar manner to two-phase lock- 

ing. If the transaction is in the lower middle state the object is basically read-locked. 
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Figure 6. Synchronization machine governing Alice's interaction with 
the iLspec object. 

Alice,r,if_spec,a 

~ A  lice ,w,if _sp ec, ) a ~  

Alice,w,if spec,q 
Alice,r/w,if_spec,a 

Similarly, if the transaction is in the upper middle state, it is basically write-locked. 

The locks persist until the member terminates. At that point, the operation machine 

is removed. Figure 5(b) shows a synchronization machine template to enforce one 

type of cooperation. Before member M can write the object, it must have read it. 

Furthermore,  if some other member writes the object, then member M must read the 

written changes before it can write the object again. This machine prevents a member 

from overwriting another member's changes. As an example, say the Display transac- 

tion group enforces the cooperative synchronization protocol defined by the template 

in Figure 5(b). When Alice first reads the (iff_spec) object, the synchronization ma- 

chine shown in Figure 6 is instantiated and placed in Display's active set of  operation 

machines. 

A traversal of an operation machine is a sequence of  operations associated with 

consecutive traversals of accept arcs for the machine, beginning at the start state and 

ending at the current state. If we view the operation machine as a directed graph, a 

traversal is a path in the graph that begins at the start state, ends at the current state, 

and traverses only arcs whose return value labels are a. 

Figure 7 shows examples of traversals. Given the operation machine shown in 

Figure 7a, the operation sequence 1 in Figure 7b is a traversal. Sequence 2 is not a 

traversal because the third operation causes the traversal of an arc that returns refuse. 

Sequence 3 is not a traversal because the first operation does not cause an arc traversal 

at all, though it would be accepted by the machine. A complete traversal ends at a final 

state, e.g. sequence 4. The null traversal of this machine is correct, though it is only 

complete because the start state is also a final state. 

We can use operation machine traversals to formalize our definition of  correct- 

ness. For each operation in a history, we know which arcs were traversed when it was 

executed. Define the sequence IlOM associated with operation machine OM as 
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Figure 7. 

(a) 

Operation machines and traversals 

Display,w ,display.c,a 

~ a n y  w if spec a Display r if spec 
, ,._ , ~  . , , '_ ,r  any,w,ifspec,r 

any,w,if _spec,a 

1. { <Processinbw, g_spec>, 
2 { <Processinbw, if_spec>, 
3. { <Processing;r, if_spec >, 
4. { <Processing; w, if_spec >, 

<Processinb w, if_spec >, 
<Display, r, if _spec > , 
<Processing w, if _spec >, 
<Display, r, if _spec > , 

<Display, r, if_spec > } 
<Display, w, g_spec > } 
<Displa~r, if.spec > } 

.<Display, w, display.c> } 

IIoM = {op I operation op caused an arc traversal in machine O M }  

That is, IIoM is the projection of the pattern defined by the machine OM from 

the history. These operations were acceptable according to the pattern specification 
at the time they were executed. A history is correct when it satisfies both thepattern and 

conflict criteria. 

• Pattern criterion 
All sequences rXoM for the machines that were active during the history are 

traversals. 

Conflict criterion 
The history contains no operations that would conflict based on the state of 
any operation machine active at the point in the history where the operation is 

recorded. 

Correctness is an ongoing notion; it applies to histories of transaction groups that may 

not have completed their task yet. However, correctness in itself does not guarantee 
that the work thus far preserves global consistency. A history is complete when all its 
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sequences are complete traversals. A complete history both is correct and preserves 

global consistency. 

3.5 Intentions. Each transaction group in a hierarchy has a local set of versions of 

the objects that it is currently accessing. Since multiple copies of the same object exist, 

different members in the hierarchy may be doing operations on different copies of the 

object that will ultimately conflict. The conflict will be detected eventually, but resolv- 

ing it requires that some operations be aborted. If a member wishes to ensure that 

an operation will eventually succeed, it may declare an intention to do the operation 

before any work is actually done. Intentions reserve the capability for a member to do 

a single operation on a single object. When a member M o f  a transaction group TG is 

granted an intention, TG's version of the object is restricted in such a way that no other 

operations can be done that will cause the intended operation to be rejected. This 

also means that new operation machines cannot be added to the transaction group's 

correctness specification if they would cause the intended operation to be rejected or 

queued. This could occur, for instance, if the database administrator decided to add a 

protection machine to the group's active set that rejects the operation. 

When the member M is a transaction group, the intended operation represents 

the combined effects of a sequence of operations by M's members on the object. For 

example, many reads and writes by the members of Mcan be consolidated into a single 

write by M to TG. Thus, there may be more complex patterns in M associated with the 

single operation in TG. We call this phenomenon hatching. 

The sequence of steps required to gain and release intentions is very similar to 

that of locks. When a member M wants an intention, it makes an intention request 

to the transaction group TG. Once TG ascertains that the operation can be done im- 

mediately, it accepts the intention. Once an intention has been accepted, TG ensures 

that M can do the operation at any time by preventing any conflicting operations from 

being processed. M may release the intention at any time. 

Intentions are like locks in that they take a pessimistic approach to concurrency 

control. However, intentions differ from locks in that they reserve the capability to 

do only one operation, while locks reserve the capability to do an arbitrary number of 

operations from a fixed operation set. Locking is used to prevent transactions from 

interleaving their operations, and would further restrict the allowable operation se- 

quences in the transaction group. Intentions are more flexible because they do not 

generate these restrictions. 

A member may request an operation without having acquired an intention. This 

is similar to taking an optimistic approach to concurrency control. The operation is still 
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Figure 8. Intention machines 

(a)  Display,w,ifspec,   
  w specr   yr/wifspecr 

(b) ~ any,w,if-spec'a~ 

~ny,r,if speC,lny,r/w t~f spec, a 

done, provided that it is currently acceptable according to the patterns and conflicts 

defined in its parent. It also may be queued or refused. 

3.5.1 Intention Machines. Two restrictions need to be enforced for intentions to work 

properly. At the transaction group level (TG), we need to ensure that no other mem- 

ber does an operation that conflicts with the operation requested by member M. I fM 

is itself a transaction group, we need to ensure that its members do operations only 

according to a pattern that will batch to the single intended operation. We associate 

two operation machines with each type of intention (read or write), one to bc bound 

to the object copy at TG's level and one to be bound to the object copy atM's level i fM 

itself is a transaction group. These machines are in the active sets of their respective 

transaction groups for the duration of the intention. 

Figure 8 shows an example of the intention machines that are put in place when 

the Root transaction group accepts an intention request for the operation <D/sp/ay~ w, 

if_spec>. Figure 80)  shows the machine bound to the if_spec object at Root's level. It 

prevents any write of the object by any other member, while allowing exactly one write 
by D/sp/ay. This machine also allows anyone to read the original version ofif_spec until 

the newversion is created. If the read operation causes a change of state in any existing 

machine bound to the object, the intention machine should not allow the read. Figure 

8(b) shows the machine specifying the allowable operations by the members of Display 
that can be batched into the single intended write in Root. It allows many read and 

write operations by its members, but at least one member must do a write operation 

first. These patterns assume that Display has already read the if_spec object. 

3.5.2 Implementation. A memberMdeclares its intention to do an operation by send- 

ing an intention request to its parent transaction group TG. This request is either ac- 

cepted, queued, or refused depending on whether the intended operation would be 

accepted, queued, or refused. If TG accepts the intention, it associates an additional 
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operation machine with its version of the object to block any operations that conflict 

with the intended one. For example, this machine has the same structure as the one 

in Figure 8(a) if the intention is for a write operation. If M is a transaction group, it 

associates an operation machine with its object version to ensure that the combined 

effect of all of its member operations is as intended. For a write operation, this ma- 

chine would be similar to the one in Figure 8(b). These machines can be constructed 

automaticaliy from standard read and write intention machine templates. 

Intention requests cascade up the transaction hierarchy until a copy of the object 

is found. 

Members may wish to change their intentions if they decide to do something else 

or augment their intentions if they have completed the intended operation and want to 

do another one. As with intention requests, the database may accept, queue, or refuse 

these requests. If the change or augment request is refused, the old intention is still 

retained. Change and augment requests have priority over initial requests. 

Intentions may be released at any time, regardless of whether the operation has 

been done. Once an operation's effects can no longer be revoked by anymember_abort, 
its intention is released automatically. 

4. Conflict, Queueing, and Deadlock 

Operation conflict occurs when a member cannot do a requested operation immedi- 

ately because one of the machines associated with the member returns queue or refuse. 
Normally, this situation arises because some other member has done some operation 

that cannot be followed immediately by the requested operation, or because some 

member has declared an intention that prevents the requested operation from taking 

place immediately. 

Conflict may also occur when a member is requesting an intention. If the intention 

cannot be granted, it may also be queued or refused. 

Queueing an operation or intention does not block the requesting member. 

Rather, a message indicating that it was queued is returned to the member, and the 

member is allowed to continue normally. The member may also cancel the request. 

Refusing an operation means the operation cannot be done. The transaction 

group keeps no record of what operations and intentions have been refused. 

4.1 The Semantics of Queuelng. Each transaction group has a queue of requests 

waiting to be accepted or refused ordered by the time of the request. That is, the de- 

queuing of earlier requests is always attempted before the dequeuing of later requests. 
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This set does not mimic a FIFO queue, however; two requests may be dequeued in a 

different order than the one in which they were inserted. This could occur, for instance, 

if the two requested operations were relevant to different patterns. 

When an intention request is queued, a copy of the request is placed at the tail of 

the queue and an intention.queued message is sent to the requester. The requester may 

continue processing. At any time, it can cancel its request by sending a cancel_request 
to its transaction group. If the request is not canceled, the transaction group eventually 

responds by either accepting or refusing the intention request. If the intention request 
is accepted, then the requesting member can either resubmit the operation or release 

the intention. 

Operation requests are not queued directly, because an operation request con- 

tains an entire invocation of the operation. Write operations, for instance, not only 

specify the member and object to be written, but also the new version. Consider the 

following scenario derived from the pattern in Figure 6. Recall that the purpose of this 

pattern is to ensure that Alice cannot overwrite some other member's changes. As- 

sume we are in the start state. Alice submits the operation request <Alice, w, if_spec>, 
which is queued. If it were queued as an operation request, the whole invocation of the 

operation, including the new version to be written, would be kept. Later, Alice issues 
an operation request <Alice, r, if_spec>, which is accepted. Now the queued request 
<Alice, w, if_spec> could be accepted and the specified version written. This violates 
the spirit of the pattern, because the new version of if_spec was created before the read 

operation, and therefore cannot depend on the read of the latest version. For the pat- 

tern to allow such operations, the arc from the start state labeled <hlice, w, if_spec, q> 
would have been omitted. 

We solve this problem by queueing operation requests as intentions. That is, when 

an operation request returns queue, an intention for the operation is queued and an 

intention_queued message is returned to the requester. Later, when the request is ac- 

cepted, the member that requested the operation is told that it has an intention for the 

operation. The member can then either issue a new operation request or release the 

intention. The new operation request is generated using information that is currently 
available, and thus does not inadvertently violate the intent of the patterns. 

This solution for queueing intentions only is similar to the approach taken by lock- 
ing schemes. In a system that uses locking for concurrency control, an appropriate lock 

on an object must be requested and granted before an operation can take place on it. 

Lock requests may be queued, but operations are never queued because they are sub- 

mitted only when the object is already locked for the operation. 
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Figure 9. Deadlock example. 

4.2 Queueing and Intention Deadlocks in a Transaction Group. As with locking 
systems, a transaction group may have deadlocks. Since we allow members to continue 

while waiting for queued intentions, the risk in our system is that an intention will never 

be resolved (accepted or rejected) because it is waiting for other operations that will 

also never be resolved. We call this situation an intention deadlock. 

The potential for intention deadlocks is inherent in the structure of the operation 

machines. Consider the example in Figure 9. If both operation machines are in the 

start state, then the only operations that allow either machine to reach a final state are 

<Ml,  r, O l >  for the first machine and < Ml, r, O l >  for the second machine. Unfortu- 

nately, <Ml,  r, O l >  is queued by the second machine, and < Ml, r, O l >  is queued by 

the first machine. Therefore, if both these machines are a part of some group's cor- 

rectness specification, we know there will be a deadlock once both <Ml,r, O l >  and 

< Ml,  r,01> have been submitted and queued. 

In this section, we specify how to construct a waits-for graph within a transaction 

group, how to detect intention deadlocks given the waits-for graph, and how to re- 

solve them. Further details on conflict and intention deadlocks, including algorithms, 

theorems and proofs, can be found in (Nodine, 1991). 

4.2.1 The Waits-For Graph. Each transaction group is responsible for maintaining its 

own waitsfor graph that characterizes which intentions for operations are waiting for 

which other operations at any given time. A waits-for relationship occurs between two 

operations Opl and op2 when an intention to do opl is queued because some machine 

OM has a transition for that operation that currently returns queue, and OM would 

accept oP2. In the example in Figure 9, if M2 (which is in M1) submits an intention to 

do the operation < M ~  r, 01 >,  the waits-for relationship <M2,r, 01 > --~ <Ml,  r, O1 > 

(" <M2, r, O1 > waits for <MI, r, O1 > " )  occurs. Similarly, if M1 submits an intention to 

do the operation <M1, r, 01 >,  the waits-for relationship <Ml,  r, 01 > --~ <Ml,  r, 01 > 

o c c u r s .  
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At any given time, the waits-for graph contains a node for each operation or set of 

operations that is involved in some waits-for relationship, and an arc between any pair 
of nodes representing operations involved in a specific waits-for relationship, indicat- 

ing its direction. Since waits-for relationships are associated with individual machines, 

each arc is labeled with a list waits_for_machines containing the machines causing that 
waits-for relationship. That is, if oPl is waiting for op2 because of machine OM1, 
there is an arc in the waits-for graph from the node representing opl (the head) to 

the node representing op2 (the tail), and waits_for_machines for that arc is {OM1 ). If 

an additional intention is later requested that causes the same waits-for relationship 

because of some machine OM3, the waits_for.machines list on that arc would become 

{ OM1, OM3 }. 
Different nodes in the waits-for graph can represent different things. Nodes that 

are tails of any waits-for relationship represent queued operations. The correspond- 
ing heads represent anything that could allow the queued operation to be resolved, 

including unsubmitted operations, queued intentions in the transaction group, oper- 

ations that have intentions granted for them, or queued intentions in the transaction 

group's parent. 

Waits-for relationships are not necessarily between fully-specified operations. Op- 
erations at the tail of a waits-for relationship are those for which specific intentions 

have been requested, and are therefore fully-specified. However, these operations 
may be queued by a machine when an operation is waiting for some other operation 

that could be done by any one of a set of members. In particular, these may be gener- 

ated by machines with arc labels like <any, w, O, q>  or < M ,  r, O,  q> .  Thus, the 
node at the head of a waits-for relationship may have a less-specified label, with its 

"member" being some set members. 

4.2.2 Updating the Waits-For Graph. The waits-for graph for a transaction group can 

be maintained incrementally. The actions that change the waits-for graph include exe- 
cuting or aborting operations, changing the set of outstanding intentions, and changing 

the correctness specification of the transaction group. 

When an intention is queued, the new waits-for relationships are added to the 
waits-for graph for the transaction group. Similarly, when an intention is accepted or 

refused, waits-for relationships are removed from the graph. When an intention is 
released or an operation is executed outside of the scope of an intention, any node 

that represents that operation is removed from the waits-for graph, along with any 

associated waits-for relationships. 

Modifying the correctness specification for a transaction group means either 
adding new operation machines to the transaction group or removing old ones. When 
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a new machine is added, we need to see if the machine is relevant to any of  the queued 

intentions. For example, if the new machine would queue the intended operation, 

then new waits-for relationships need to be added to the waits-for graph. If the new 

machine would reject the intended operation, then the intention is refused. When a 

machine is removed, any waits-for relationships associated with the machine are re- 

moved from the waits-for graph. 

4.2.3 The Structure of Intention Deadlocks in the Waits-For Graph. Intention dead- 

locks have one of the following forms: 

1. < Mi, o, Oi >---~ . . .  --~< Mi, o, Oi > where Mi is an individual member ID. 

2. < Si ,  o, Oi >--* • • • ---~< Mi ,  o, Oi > where Si is a set of member  IDs and 

e Si. 
3. < Si, o, Oi >---~ . . .  ---~< Sj, o, Oi > where Si and Sj  are sets of  member IDs 

and Sj C_ Si. 

The first situation is detectable as a cycle in the waits-for graph. The second and 

third situations are harder to detect for two reasons. First, no waits-for relationship 

of the form < S i ,  o, Oi>---~<Mi, o, Oj> or < S i ,  o, O i > - * < S j ,  o, Oj> is repre- 

sented explicitly in the waits-for graph, because the arcs in the waits-for graph are all 

associated with specific requests, and therefore any operation at the tail of  an arc is 

always fully-specified. Second, the nodes representing the operations <Si, o, Oi> 
and <Mi, o, O i >  in the second situation, and < S i ,  o, Oi> and <Sj, o, O i >  in the 

third situation are distinct, therefore no easy-to-locate structures such as cycles form 

automatically in the waits-for graph. Fortunately, we can deal with these two problems 

separately, building an augmented waits-for graph which does have specific structures 

associated with deadlocks. 

First, let us deal with the lack of representation of sets of members queued for the 

same (read or write) operation on the same object. This situation arises, for example, 

when more than one member requests an intention for the same operation on the same 

object, and these intentions are queued. If enough such intentions are queued, we can 

deadlock (see the example in Figure 10(a)). Here,  we create generalizes nodes and 

arcs with consolidated representations of each such set of intentions. This is shown 

in Figure 10(b). Note also that these new nodes and arcs add no information that is 

not already in the waits-for graph; they merely consolidate information that is already 

present. 
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Figure 10. Deadlock situation 

(a) <M3,w,O> 

< [MI M2} ,w,O > 

(b) <M3,w,O> <{M1M2M3},w,O> 

<M2,w,O> <Ml,w,O> 

<{M1,M2},w,O> 

(c) <M3,w,O> < {M1,M2,M3},w,O> 

~ l~<{M1,M2},w,O> 

(a) As seen in waits-for graph, (b) Waits-for graph after generalizes node and arc 
are added, (c) Waits-for graph with generalizes node and arc and specializes arcs. 

For the second problem, we add arcs to the graph connecting related nodes. First, 

for each node labeled with an unbounded member set such as M or any, compute a 

bounded member set based on the transaction group's current members. For each pair 

of distinct nodes < $ 1 ,  o, O > ,  < $ 2 ,  o, O > ,  where $1 C_ $2, we create a specializes 
arc. An example of this is shown in Figure 10(c). The specializes arcs also add no new 

waits-for relationships to the waits-for graph, but merely help to relate and consolidate 

waits-for information pertaining to read (or write) intentions on a single object. We 

see that when we add both the generalizes nodes and arcs and the specializes arcs 
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to the waits-for graph, directed cycles are created in the second and third deadlock 

situations. 

Theorem 1. An intention corresponding to node n in the waits-for graph is not dead- 
locked if  and onO if you can reach a sink from n in the augmented waits-for graph. 

The proof for this theorem is found in (Nodine, 1991). 

4.2.4 Detection and Resolution of Intention Deadlocks. Given the previous theorem, 
we can detect deadlocks within a transaction group using the following algorithm: 

1. Copy the waits-for graph into a new graph G ~. 

2. Create the generalizes nodes and arcs in G'. 

3. Bound the unbounded sets and add the specializes arcs to G t. 

4. Repeat until nothing is deleted: 

(a) Select a sink node s in G ~. 

(b) For each node n having an outedge that is also an inedge to s, delete 

all of its outedges. 

(c) Delete s. 

5. Return the set of operations corresponding original nodes in the waits-for graph 

that remain after the previous step. 

The algorithm takes O ( V  2) time, where V is the number of nodes in the original 

waits-for graph. 

When an intention is deadlocked, the members of the transaction group whose 

queued intentions are involved in the deadlock are notified of the problem. The no- 

tification specifies both which of the member's queued intentions are involved, and 

which other members are involved. The members can then cooperate to resolve the 

problem by selectively aborting operations. 

The effect of aborting an operation is to change the current state of one or more 

operation machines, altering the structure of the waits-for graph as a consequence. 

Factors involved in choosing which operation(s) to abort include: 

• Break as many cycles as possible to disconnect the strongly-connected compo- 

nent. 

• Remove arcs associated with the fewest number of intentions (fewest number 

of machines in waits-for-machines on the arc). 

• Abort the most recently accepted operation, so as to minimize the number of 
operations aborted consequently in the invalidation phase. 
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If a new member joins the transaction group, this may also resolve the intention 

deadlock, especially in situations where there is some intention queued waiting for 
anyone else to do some operation; in other words, the head of the waits-for relation- 

ship is of the form < M ,  o, O >  or <any, o, O > .  

4.3 Global Detection of Intention Deadlocks. Detecting and resolving intention 

deadlocks locally within each transaction group is adequate to ensure that no global 

intention deadlocks occur. This can be seen by examining the structure of the local 

waits-for graph. We noted in Section 4.2.1 that operations may be queued waiting for 

other operations either within the same transaction group or within the parent. No 

waits-for relationships point "down" the cooperative transaction hierarchy. Thus, no 

waits-for relationships that point "up" the hierarchy can be involved in a cycle associ- 

ated with some intention deadlock. Thus, any waits-for relationships that form a cycle 

must be associated only with local intention deadlocks, and detecting intention dead- 

locks locally within each transaction group is sufficient to detect all intention deadlocks 

in the hierarchy. 

5. Histories and Logging 

A history is the partial order of operations associated with a transaction group. The 
operations in a transaction group's history include those executed in the group by its 

members, and those executed by the group in its parent. The operations in the history, 

along with other information needed for recovery, are recorded in a/og. The log for 
a transaction group is updated as the members execute their operations. Operations 

that execute simultaneously may be recorded in any order. The log also records the 

dependencies between operations. When an operation fails or aborts, the log is used 

to determine which operations are affected by the failure, both directly and indirectly. 

5.1 Histories. A history is a partially-ordered sequence of operations. An operation 

is represented in the history as a tuple <M,o,O> with the fields as in the operation 

request. The history is partially ordered according to a happens-before ordering (< ) ,  

where if opl and op2 are operations, and if opl executes before op2 ), then (opl < 

oP2 ). 
The history conforms to the following constraints: 

• It contains exactly one entry for every operation that has executed but not aborted. 

• It contains no operations that either have not executed or that have been aborted. 

• Any operation opl in the history that depends on some operation op2 has (opz < 
opl ). 
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5.2 Operation Dependencies. Dependency information in a cooperative transac- 

tion hierarchy is recorded at the granularity of operations rather than transactions. We 

use these dependencies among operations in a history to determine what is affected, 

both directly and indirectly, when an operation aborts. This information is needed to 

ensure that the database is recovered to a correct state. 

For each defined pattern in a transaction group, pattern dependencies are formed 

among operations that participate in that pattern. Since patterns define allowable 

operation sequences, each operation in the sequence relevant to some pattern depends 

on the correctness of the previous operations in that sequence. However, since the 

sequence of operations associated with a pattern is fully ordered in the history, the 

definition of a pattern dependency can be simplified to say that each operation op is 
pattern.dependent on the previous operation in each pattern in which op participates. 

Reads-from dependencies occur because a read of an object version by member 

M is only correct if the operation that wrote that version is also correct. If the write 

operation later becomes invalid, then M's  read operation read incorrect information, 

and is also invalid. 

Parent-child dependencies occur among operations at adjacent levels of the trans- 

action hierarchy. For example, when a memberMof a transaction group TG first reads 

an object, the object must be copied into TG first. M's read is correct only if TG read 

a correct version. If that version is later invalidated as a result of some abort, then M's 

read is also invalid. A similar situation exists with writes; when TG writes a version 

to its parent, the validity of that write is based on the validity of the most recent write 

operation by one of its members. 

Figure 11(a) shows two operation machines associated with the Root transaction 

group, and Figure 11(b) shows an excerpt from the history of the Root transaction 

group containing traversals of those machines. To the right of the operation sequence 

in (b) are three columns of dependencies. The leftmost column shows the pattern de- 

pendencies associated with the pattern machine (upper machine in (a)). The middle 

column shows the pattern dependencies associated with the synchronization machine 

(lower machine in (a)). The rightmost column shows the read-write dependency asso- 

ciated with the display.c object. This set of dependencies is by no means complete, in 

that there are other machines associated with the members and objects in the history 

that we have not shown, and therefore we have not shown the dependencies associated 

with their traversals as well. An example of a machine not shown is the synchroniza- 

tion machine for the Display transaction's interaction with the display.c object. Also, 

since this is an excerpt from the Root transaction group's history, no parent-child de- 
pendencies are shown. 
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Figure 11. Operation machines and associated history. 

(a) Display.w.display.c.a ~5~'w'if-spec'a~Display,r,if_spec~ 
0 E 

any,w.if_ spec,a ~ )  

Processing,r.if_spec.a 

~eprocessi::iwng.:.s~e:~ 

. Processing ,r/w,ifsp ec ,a 

(b) <Display,w,display.c> 

<Processing,r, if_spec> • 
l 

<Processing,w,if spec> t 1 

<Processing,w,if_spee> I 

<Proeessing,w,processing.e> 

<Display,r,if_spec> I1~ 
A 

<Display,r, display.e> i i 

<Display,w,display.c> 

<Processing,w,if_spec> • 

(a) Two operation machines. (b) Associated history excerpt with dependencies. 

The dependencies associated with a specific operation are computable. Each op- 
eration participates in some subset of the patterns defined in the transaction group's 
active set of operation machines. Since each operation has at most one pattern de- 
pendency per active machine, the number of pattern dependencies is upper-bounded 
by the number of operation machines active in the transaction group. Also, since each 
operation touches a single object, it can have at most one reads-from dependency and 
at most one parent-child dependency. 

5.3 Logs. A log records the history of a transaction group and the associated depen- 

dency information needed for recovery. The log is created as the transaction group 
and its members execute their operations. If a member M of TG is itself a transaction 
group, each operation by M is recorded in both logs. In TG's log there is a member 

entry for the operation, and in M's log there is a group entry. 
An entry in the log is a tuple £ E  = <  I ,  M,  o, O, S, V, D > ,where  

I is m ' s  unique identifier for the operation as specified in the request. 

M is the identifier of the member that did the operation. 
o E {r, w} is the operation, where r is read and w is write. 
0 is the object identifier of the target object. 
S E {SUBMITTED, PENDING, COMPLETE, INVALID} is the 

operation state. 
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V points to the (possibly null) version created by the operation. Versions 

are used for recovery only. 
D is the set of log entries for operations on which this one depends. 

Log entries are identified uniquely by < I ,  M >  pairs. They are totally ordered in 

the log, with their order consistent with the happens-before order in the history. 

When a transaction group's history as recorded in its log is correct, its internal 

protocols guarantee that the effects of the changes done by its members on its ob- 

ject copies are identical to the changes done by its operations on its parent's copies. 

Otherwise, the transaction group's internal protocols are incorrect. 

6. Invalidation and Recovery 

Recovery is a two-phase process. In the invalidation phase, all operations that depend 

on some invalid operation are also invalidated. Any version written by an invalidated 
operation is also invalidated. In the recovery phase, members whose operations are 

invalidated work together to compensate for the failure. The invalidation and recovery 

phases preserve the correctness of the history. 

6.1 Invalidation 
6.1.1 Overview. The invalidation phase begins when some member aborts one of its 

operations. The abort process begins by marking the log entries for the aborted opera- 
tions as INVALID. It then finds the operations that transitively depend on the aborted 

operation using thepattem, reads-from andparent-child dependencies in the log, and 

invalidates them in the same way. It also invalidates any operations that conflict in 
the new history and the operations that transitively depend on them. Note that be- 

cause of the parent-child dependencies, invalidations not only cascade from member 

to member in the transaction group, but also may cascade up and down the cooperative 

transaction hierarchy. 

The log entry for each write operation points to the version it created. We in- 
validate a version when we invalidate the write operations that created it. After the 
invalidation phase, the latest valid version of each object is the most recent version cre- 

ated by some traversal in the history. Thus, all effects caused by invalidated operations 

are purged from the database. 

Once all affected operations are invalidated, any object that has had some version 
invalidated is restored to its state at the time just after the last valid version was written. 

The invalidation of an operation breaks each traversal that the operation participated 
in. Thus, each operation machine is restored to whatever state it was in just before the 
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first invalid operation in its traversal was executed. 

Figure 11 from the previous section showed an excerpt of a history containing de- 

pendencies associated with the traversal of the pattern machine from Figure ll(a). 

Consider what happens if Processing aborts its second <Processin~w, if_spec> opera- 

tion. The operations <Display, r, if_spec > , <Display, w, display.c > and <Process/ngw, 

if_spec> are also invalidated because of pattern dependencies. The pattern machine 

is reset to be in the initial state, and the versions created by the two write operations 

in its traversal are invalidated. The synchronization machine is backed up one tran- 

sition because the last operation in its traversal is invalidated. The last valid ver- 

sion of the if_spec object is the one created by the first write. The last valid ver- 

sion of the display.c object is the one that was current just before the write operation 

<Display, w, display.c>. No other operations are invalidated because of dependencies 

shown in Figure 11, but there may be other operations invalidated because of pattern 

or reads-from dependencies not shown in the figure. 

As a second example, consider what happens if the last <Display, w, display.c > op- 

eration is aborted. Then the last <Processing~w, if_spec> operation must also be inval- 

idated because the upper machine in (a) is in a different state, and now with any write 

of if_spec conflicts. 

6.1.2 Correctness. The database is left in a correct state after the invalidation phase. 

Assume that the database was correct before the abort occurred. The abort breaks 

some traversals relevant to the history. For each such traversal, the first invalidated 

operation is called the breakpoint. Because of the pattern dependencies, all operations 

in the traversal after the break point also are invalidated. The only part of the traversal 

left in the history is the part preceding the break point. Thus, for each pattern in the 

history, we are left with a correct traversal ending just before the break point. 

New conflicts appear because not all patterns are in the same state at a given point 

in the history as they were during the original processing. An operation at a specific 

point may conflict in the new history even though it was accepted in the old history. In 
the invalidation process, we maintain a new conflict list and check each operation in 

turn against that list. Any operation that conflicts in the new history is correctly found 

because it is present in the new conflict list at the time it is processed in the invalidation 

phase. Note that the invalidation of conflicting operations may cause invalidation to 

cascade to other traversals. 

The reads-from dependencies show places where one member's read depends on 

another member's write. The read operation becomes invalid when the write oper- 

ation is invalid. Thus, other traversals may be severed because of the reads-from 

dependency. Similarly, the parent-child dependencies indicate where an operation 
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participates in traversals in more than one history (the history of the member and the 

history of the parent). Invalidations may also cascade from traversal to traversal within 

a single transaction group's history when an invalidated operation participates in more 

than one pattern. 

Correctness with respect to the patterns is maintained because the use of pattern 

dependencies guarantees that all operations in a traversal that follow its break point 

are invalidated as well. The process of checking and enforcing any new conflicts en- 

sures that the new history is not incorrect because it now contains operation sequences 

that would not have originally been accepted. We limit the performance penalty due 

to this cascading with proper definition of the patterns. In particular, we do not define 

patterns over a set of operations that are not related by data- or application-specific 

constraints. 

6.2 Recovery 
6.2.10vorview. Once the invalidation phase is complete, members are notified of any 

of their operations that have been invalidated, and the recovery phase begins. Since 

the members may cooperate on a task, we allow them to cooperate in the recovery pro- 

cess. This process is cooperative in the same sense as the initial work, and is governed 

by the same synchronization protocols. However, other members may wish to take re- 

sponsibility for some of the changes that would otherwise be invalidated. Therefore, 

we allow members to do the following during recovery: 

. Abort any uncheckpointed operations. A traditional abort operation can be 

mimicked by immediately aborting all uncheckpointed operations and then ter- 

minating. This option also is useful when the member that initiated the invali- 

dated operations fails. 

2. Reread any invalid object versions previously read by the member. This allows 

the member reread what it has seen, and use that information to determine 

what operations to submit for recovery. Since the read of old versions involves 

allowing the member to remember only what it is already seen, it bypasses the 

synchronization mechanism. 

. Request new operations to recapture any work that was lost inadvertently as 

a result of the abort. This assumes that the application is either driven by a 
user or is intelligent, in that it can analyze what needs to be done to recover. 

During recovery, correctness is ensured because operations are scheduled and 

processed in the normal manner. 



74 

Given the first example above, Display could recover after the invalidation phase 

by rereading the if_spec object, adjusting the code for the part of the display module 

that implements the interface appropriately, and writing the new display.c object. 

6.2.2 Correctness. The recovery phase maintains correctness. 'This is shown by prov- 

ing that each action a member can take during recovery is individually correct. If 

abort requests are issued during recovery, we know from the previous argument that 

the subsequent invalidation phase maintains correctness. Assume by induction that 

the recovery phase also maintains correctness. This is acceptable because there are 

only a finite number of operations. Therefore, even if all members decide to abort, we 

eventually reach cases where a member that has an operation invalidated has no valid 

operations left to abort If a member reads an invalid version that it has already seen, 

this is equivalent to the situation where it kept a copy of the invalid version. Therefore, 

the read does not give the member any new information. Since this read is not a part 

of the history, it does not affect it. If compensating operations are issued, they must be 

accepted by the operation machines. Since the invalidation phase leaves each machine 

in the state it was in immediately before its traversars break point, these operations 

continue existing traversals correctly. Therefore, they maintain correctness as well, so 

the recovery phase as a whole is correct. 

7. Communication 

In a cooperative transaction hierarchy, we not only allow members to share interme- 

diate versions; we also allow them to communicate using notification messages. There 

are two basic types of notifications that can occur, operation nott~fications and invalida- 
tion notifications. Operation notifications are generated on request, and indicate that 

some other member has done some interesting operation on some object Invalida- 

tion notifications are generated automatically, and indicate abnormal situations such 

as aborted or failed operations, or intention deadlocks. 

Operation notifications are sent when a particular operation is done on a par- 

ticular object. They are only generated on request; when a member is interested in 

knowing when an object has been accessed in a particular way, it can request that a 

notification be generated on an event-driven basis. Each time the operation occurs, a 

nott~fication response is sent to the member that made the request. When the member 

no longer is interested in the operation, it can terminate the request using a nott~cation 
cancellation. 
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A member in the transaction hierarchy can request an operation notification for 

any valid operation whose results would be visible to it. A notification request is a 

tuple .AfT~ = <N, CP, o,O>, where 

N is a unique notification identifier, 

CP is the complete path from the member to the root transaction group 

(using member IDs), 

o E {r~ w} is the operation the member wants to be notified about, 

where r is read and w is write, and 

O is the object ID of the object on which the operation would be done. 

Each member can only see the results of operations on object copies in its own 

cache, or in the caches of its ancestor transaction groups. Therefore, notification re- 

quests are propagated towards the root of the transaction hierarchy only. When a 

transaction group receives a notification request, it associates the notification ID and 

the path to the member that sent the request with the object ID specified in the re- 

quest. It then forwards the request up the hierarchy. 

Notification responses are sent when the specified operation is done on some copy 

of the object in one of the members' ancestors' caches. A notification response is a 

tuple .Af.A =<R/~N>,  where 

RP is the relative path to the requesting member, for routing. 

N is the notification identifier from the notification request. 

Each notification message is routed down the tree, following its specified path RP, 

until it reaches the member that made the initial request. 

A notification cancellation by a member terminates the corresponding notification 

request. A notification cancellation is a tuple .ArC = <N,o,O>, where N, o, and O are 

as specified in the notification request. Notification cancellations traverse the same 

route as notification requests, towards the root of the transaction hierarchy. When a 

transaction group receives a notification cancellation, it uses the notification ID N to 

remove the notification request from the list associated with object O. 

8. Related Research 

Several proposals have been made for supporting more Ilexible and long-lived trans- 

actions. The approaches related to ours include nesting the transactions (Moss, 1985; 

Korth, 1987), augmenting traditional locking protocols (Skarra, 1991), and specifying 

a longer transaction as an envelope that contains a sequence of shorter transactions 

(Garcia-Molina, 1987). 
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Nested transactions (Moss, 1985) provide a framework for decomposing a trans- 

action hierarchically. A transaction may define subtransactions that execute concur- 
rcntly. The subtransactions must all be serializable with respect to the parent trans- 

action. If a subtransaction fails or aborts, the parent transaction has the option to 

restart it. Kim et. al. (Kim, 1984) presents a three-layer hierarchy tailored for design 

transactions. It differs from nested transactions in that it allows copies of objects to be 

"checked out" from a parent transaction into a private database. Because these trans- 
action models require (at some level) that child transactions of the same parent are 

serializable, they work best in design environments where the tasks decompose easily 

into small, independent subtasks. 

Klahold et. al. (Klahold, 1985) proposed a transaction model that allows coop- 

crating user transactions to work together in the context of a group transaction. While 
the group transactions maintain a two-phase locking protocol, the user transactions 

within a group transaction may share data. The group transactions use a relaxed lock- 
ing scheme that allows data sharing, but does not guarantee that the data remains 

consistent. 

The constraint-based models, for example NT/PV (Korth, 1987, 1988) allow more 

cooperation by relaxing scrializability at the lower levels of the transaction hierarchy. 
At these levels, transactions can cooperate as long as each transaction preserves its 

specified consistency constraint. The constraints arc enforced using a modified lock- 
ing protocol (predicatewise 2PL). This model defines the constraints implicitly; the 

users cannot tailor them to the task at hand. This work was later extended to define a 

weaker notion of correctness (entity-wise serializabtTity) (Korth, 1990). This model also 
includes work on compensation-based recovery. 

Sagas (Garcia-Molina, 1987) define a way of breaking up a longer transaction into 

shorter ones, and using compensation for recovery when the longer transaction fails. 
Recently, sagas have been generalized to nested sagas (Garcia-Molina, 1990). Both 

schemes allow arbitrary interleaving of the shorter transactions or nested sagas within 

a specific saga. 

Multilevel atomicity (Lynch, 1983) is a framework for relaxing atomicity. It al- 

lows the specification of a hierarchy of breakpoints between operations for a particu- 
lar transaction execution. The breakpoint specification states how other transactions 

can interleave their operations with this one. Multilevel atomicity assumes that the set 
of transactions in the system is fairly static; adding a new transaction requires speci- 
fying its relationships to all other transactions. It is also not clear how to specify the 
breakpoint hierarchy for an interactive transaction before it has executed. 

Other approaches used to increase the flexibility of design transactions the flexible 
transaction model proposed by Kaiser (1990) operation transformation for groupware 
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systems by Ellis and Gibbs (1989) and the flexible consistency model of Sutton, Jr. 

(1990). 

An approach to process synchronization similar to our transaction synchronization 

mechanism ispath expressions (Campbell, 1974). Path expressions are regular expres- 

sions that define how operations on a single module should be synchronized. It is like 

our notion of patterns (without conflict), except that patterns are more expressive, in 

that they can be defined over multiple objects. Also, patterns can restrict who does an 

operation, as well as when it can occur. 

Version control systems such as RCS (Tichy, 1982) are normally used by groups of 

designers to control concurrent access to files. Our work is more expressive than these, 

both in that it allows other types of protection than just preventing the overwriting of 

files, and that it allows explicit cooperation. 

Transaction groups as used in this paper were first defined by Fernandez and 

Zdonik (1989). 

We have also taken the use of patterns, conflicts, and operation machines to specify 
correct histories from Skarra's work (1989). Her model uses the methods defined on 

abstract data types in the database as the underlying operation set, while we restrict our 

operations to read and write. Her work touches mainly on methods of representing 

correctness, especially when the methods associated with the objects can be nested. 

While she examines the synchronization problem, she does not address recovery or 

deadlocks at all. Also, she keeps only a single copy of each object at the root of her 

transaction hierarchy, while we keep private copies for each transaction group that is 

accessing the object. Her model is more complex than ours, in that her patterns allow 

arbitrary variables on their transitions; thus, patterns can be used to emulate a Turing 

machine. Based on our work in (Nodine, 1991), we feel that deciding online whether 

or not a history is correct in her scheme may not be possible, because it potentially 

requires looking ahead in the history. 

9. Conclusion 

Cooperative transaction hierarchies are a new framework for providing database sup- 

port for cooperative applications such as design applications. Serializability is not 

necessarily an appropriate requirement for transactions in cooperative applications, 

because these transactions tend to be open-ended, long-lived, and interactive. 

A cooperative transaction hierarchy reflects the structure of the underlying design 

task. Each node in the hierarchy is responsible for some specific subtask, and has its 

own private set of versions of the objects it is currently using in accomplishing that 
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subtask. The internal nodes (transaction groups) accomplish their tasks through the 

cooperation of their children (members). The leaf nodes (cooperative transactions) 
represent individual designers or individual design applications. 

We have defined a programmable synchronization method based onpatterns and 

conflicts that structures the interactions among cooperative transactions and allows 

for controlled data sharing. Conflicts are like locks in the sense that they specify when 

certain operations cannot occur. Patterns specify operation sequences that must occur 

in a history for it to be correct. Operation machines are used to specify the patterns 

and conflicts. We also provide notifications so that different transactions can receive 

messages relevant to their work. 

Cooperative transactions are not atomic. The largest unit in a cooperative trans- 

action that is guaranteed to be atomic is an operation. Because of this, deadlocks 

occur among operations rather than transactions. This means that deadlock detection 

and resolution occur at the level of operations. Deadlock resolution is also affected by 

the queueing semantics of cooperative transactions, which dictate that a cooperative 

transaction may continue to operate even if it has queued operations. We have speci- 

fied how deadlocks can be detected in the cooperative transaction hierarchy, and also 

given guidelines for deadlock resolution. 

Because cooperative transactions are inherently long-lived and interactive, we also 

allow them to abort individual operations (as opposed to entire cooperative transac- 

tions). We maintain operation dependencies in the log of each transaction group. 

When an operation is aborted, we use these recorded dependencies to limit the op- 

erations that are undone to those dependent on the aborted operation and those that 

conflict in the new history. Thus, while the effects of an abort may cascade from one 

cooperative transaction to others, we restrict that cascading to the operations affected 

by the original abort. 

Once a failure or abort has occurred, and the effects of all of the dependent oper- 

ations are removed from the database, we allow the members of a transaction group to 

cooperate in recovering from that point. The operations that can occur during recov- 

ery must conform to the same synchronization specifications as the original operations. 

Applications that require interaction, such as design applications, may place non- 

traditional requirements on any underlying database support. Patterns and conflicts 

provide a useful correctness specification for these applications. In this paper, we have 

summarized how they can be used, and how they affect basic database operations such 

as synchronization, deadlock detection, and recovery. These schemes are meant to re- 

place the more traditional schemes used in centralized databases. Extensions to other 

types of architectures, such as distributed architectures, should be feasible. However, 

their implementation is a subject of further research. 
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