
VL,DBdourna~l, 41-80 0992) T.L. Kunii, Editor 41
©VLDB

Cooperative Transaction Hierarchies:
Transaction Support for Design Applications

Marian H. Nodine and Stanley B. Zdonik

Received March 25, 1991; revised version received August 21, 1991; accepted October 22,
1991.

Abstract. Traditional atomic and nested transactions are not always well-suited
to cooperative applications, such as design applications. Cooperative applications
place requirements on the database that may conflict with the serializability re-
quirement. They require transactions to be long, possibly nested, and able to in-
teract with each other in a structured way. We define a transaction framework,
called a cooperative transaction hierarchy, that allows us to relax the requirement for
atomic, seriaUzable transactions to better support cooperative applications. In co-
operative transaction hierarchies, we allow the correctness specification for groups
of designers to be tailored to the needs of the application. We use patterns and con-
flicts to specify the constraints imposed on a group's history for it to be correct. We
also provide some primitives to smooth the operation of the members. We charac-
terize deadlocks in a cooperative transaction hierarchy, and provide mechanisms
for deadlock detection and resolution. We examine issues associated with failure
and recovery.

Key Words. Cooperation, design transactions, transaction hierarchies, non-serial-
izability, transaction synchronization, deadlock detection, version management.

1. Introduction

Design applications such as C A D tools genera te requirements for underlying data-

base suppor t that do not conform well to tradit ional database structure. Traditional

databases were developed to support on-line data processing applications and are op-

timized for short, a tomic transactions. W h e n using a database, design applications

tend to genera te long transactions that are not necessarily atomic. Because the design

Marian H. Nodine is a Ph.D. Candidate, and Stanley B. Zdonik, Ph.D. is Professor, Computer Science
Department, Brown University, Providence, RI. (Reprint requests to Dr. S. Zdonik, Computer Science
DepL, Box 1910, Brown University, Providence, RI 02912, USA.)

42

Figure 1. Word processing system design

Display

Processing

~ User Command lnput I

I' ,erna'Oocuoen ainfenance
I [Display Output]

Storage

process is interactive, design transactions also interact with each other, specifically
through the sharing of data. Because the design process is both interactive and itera-

five, design transactions are not completely specified at the time they begin. Rather,
they are open-ended. Because the design task often decomposes hierarchically, the
transactions that support that task also may be structured to reflect that decomposi-

tion. All of these properties complicate the issues of synchronizing these transactions

and recovering from failure. On the other hand, we can assume that the transactions

are controlled ultimately by experienced users who can respond intelligently to prob-

lems.

Design applications are an example of cooperative applications. Transactions that

support cooperative applications are correct when they interact and share data only
in ways acceptable to the application environment. We do not believe that a single,
monolithic correctness criterion such as serializability suffices. Instead, we provide

a way to program application-specific correctness specifications for the cooperative

transactions.

In this paper, we will use as an example a CASE tool being used to write a simple

word processing system. The word processing system has three modules, as shown in

Figure 1.

The Display module manages the user interface, the Process/ng module maintains

the document in its internal format, changing it according to the commands received

from the Display module, and the Storage module deals with the disk I/O. The Process-

/rig module has submodules that take the commands specified to the display module

and compute the appropriate changes in the document itself. Each module and sub-

module has designers responsible for designing and programming it. The objects in

43

the database include design specifications for each module, the interfaces between
modules, the internal format of the document, and header and source files containing
the code.

In this example, the specification for the interface between the Display and Pro-

cessing modules may be manipulated by more than one designer. The Display module

designer may change it as he gives the users new capabilities. For example, if he al-

lows the user of the word processor to specify new commands, new procedures will

be added to the interface specification. The Processing module designers, specifically

the one working on the User Command Input submodule, may need to change the

specification to define the information that they need to execute the new command.

In the word processor design, each designer completes only part of the design task

and maintains only partial consistency in the database. For instance, the part of the
interface discussed above that is in the Display module is maintained by the designer of

that module, and similarly for the part of the interface in the User Command Input sub-

module. However, the two parts of the interface design are interdependent, because
the various designers corporately implement the interface, and therefore must agree

on any changes made to it. The interactions between the designers are structured ac-
cording to the task they are working on; using the example in the previous paragraph,

if the Display module designer changes the interface, the Processing module designers
must ensure that the changes are reasonable from their perspective. The designers

also may iterate through several refinements or changes in the design as they work.
Because of the complexity of the design process, the individual designers dynamically

determine what is necessary to complete their part of the task. Also, all designers

involved in a task must agree that it is complete before it should be committed.

From the point of view of the database, each designer starts a cooperative trans-
action for each major design change he participates in. Groups of designers working

together join transaction groups. In the above example, each of the Display, Processing,
and Storage modules is represented by a transaction group. Three transaction groups

are nested within the Processing group. Figure 2 shows this structure.

Each designer has started up a cooperative transaction. For example, Bob works

on the User Command Input submodule of the Processing module. We call the whole

tree-like structure a cooperative transaction hierarchy.
The cooperative transaction hierarchy for a particular design task is typically struc-

tured according to the task's natural decomposition. The internal nodes in the tree
represent transaction groups, and the external nodes represent cooperative transac-

tions. For any given transaction group, we call its direct children its members. The
transaction group itself is its members' parent. The Root transaction group is at the
top of the transaction hierarchy.

44

Figure 2. Word processing hierarchy

Display Storage I

Alice Ellen

Root I

User [~ ~ l
Command / .Oo .ument I I Oisptay
Input] Maintenance II output

Bob Carol Dave

Cooperative transactions are sequences of related atomic read and write opera-

tions. Because cooperative transactions in the same transaction group may need to

read and modify the same set of objects, they may read or overwrite each others' un-

committed object versions (as in the previous interface example). Consequently, con-

current cooperative transactions may be interdependent, and atomicity may be too
strict a requirement for correct execution. Transaction groups correspond to some

task, and that task is done cooperatively by its members. Since transaction groups

may themselves cooperate, and thus may also be interdependent, atomicity may be

too strict a requirement for them as well.

In this paper we define a method for specifying correctness for a cooperative trans-

action hierarchy. This method, which is related to one originally proposed (Skarra,

1991), allows each transaction group to tailor the correctness specification for its mem-

bers to the needs of the group's task. Correctness is specified not only by how the

different members cannot interact, as in a locking system, but also in how they must

interact to complete the task. Thus, we can both support interactions between coop-

erative transactions that share uncommitted data, and control the extent to which this

data sharing is allowed.

Each transaction group has its own local set of copies of the objects that its mem-

bers are currently accessing. An object is copied into this set the first time a member

reads it. An object is removed from the set when all members that have interacted

with it have terminated. Each group makes its own guarantees about thepersistence of

the object copies in its set, i.e., their resilience to certain types of failure. For example,

a transaction group may have its own backing store where it keeps its object copies in

case of system failure.

45

Each transaction group also has its own correctness specification that defines the

order in which its members' operations can interleave. The transaction group is re-

sponsible for ensuring that its members' operations follow that order. This includes

determining the acceptability of the operations as they are submitted to the transaction

group (synchronization), and ensuring that the correctness of the transaction group is

upheld even after the failure or abort of a member.

A transaction group history is the actual sequence of operations by its members

on the objects in the database. In this paper, we consider only histories that contain

nonnested read and write operations. Each transaction group's correctness specifica-

tion defines how its members should operate and how their operations should inter-

leave in its own history. We use a notion of patterns and conflicts to specify correct

histories for each transaction group. Each pattern defines a set of acceptable order-

ings of operations in a transaction group's history. For example, a pattern might say,

',.Alice must read the Display~Processing Interface Specification object (if_spec) before

she writes it." Conflicts are defined within the context of patterns, and specify order-

ings of operations that must not occur. For example, "Once Alice has written if_spec,
Bob cannot write it until he reads Alice's version." Every transaction group has many

patterns and conflicts defined for the objects and members, and they work together to

define correctness.

Although we use only read-write semantics in this paper, we expect that this model

can support any set of operations that do not nest. This would include methods in

simple object-oriented systems.

Once we have defined a notion of correct operation interleaving in a transaction

group's history, we need to ensure that the actual history produced by a transaction

group corresponds to that notion of correctness. The synchronization process exam-

ines each operation submitted to the transaction group in turn, and queues or rejects

any operation that cannot occur at the time it was submitted. Unfortunately, once

we allow for operation queueing, deadlocks can develop among operations submitted

by different members. Thus, the transaction groups are also responsible for deadlock

detection and resolution within the cooperative transaction hierarchy. Deadlock de-

tection and resolution here have some similarities to that of a lock-based database.

However, we may not want to abort an entire member because one of its operations

is deadlocked, if only because the member may be long-lived.

In fact, there are many compelling reasons why a deadlock, failure, or abort should

not cause the effects of a whole transaction to be backed out of the database. In ad-

dition to the fact that cooperative transactions may be long-lived and open-ended, we

also know that they may have complex interdependencies that would cause a severe

cascading abort problem (Haerder, 1987). These interdependencies need to be dealt

46

with during recovery; however, we may want the cascading only to propagate to the

parts of the other cooperative transactions that actually were affected by the failed or

aborted operation.

Transaction groups also provide a few facilities that, while not required for cor-

rect operation, do facilitate the process of cooperation. Intentions allow a member to

reserve the capability to do some specific operation in the future. Once a member is

granted an intention to do an operation, any conflicting operation is queued until the

intention is released.

Intentions allow members to make either optimistic or pessimistic assumptions

about whether other members will interfere with their work. For example, say Alice

needs to make a large modification to if_spec. The result of this modification will be the

writing of the new version of the object at some possibly distant point in the future.

If she wants to guarantee that she will be able to do the write, she can first request

an intention for it. The granting of the intention by the transaction group guarantees

that the write operation will not be queued or refused. On the other hand, if she is

optimistic that the operation will be accepted, she can go ahead and do the modifica-

tion without requesting the intention. However, if the write operation is rejected or

queued, she may have to redo her work.

Nott~ication allows a member to be informed of other members' operations that it

may be interested in. Notification facilitates the working of the transaction groups be-

cause it allows the members to know when they may need to do something in response

to a change in some object in the database. For instance, the designers responsible for

the Processing module in our example may request to be notified when if_spec changes.

This paper covers the basic operation of a cooperative transaction hierarchy. In

the next section, we define cooperative transaction hierarchies in more detail. In Sec-

tion 3 we discuss patterns and their associated conflicts, and describe how they are

specified(operation machines). We then discuss the basic synchronization algorithm,

including how we coordinate the synchronization among the different groups in a co-

operative transaction hierarchy to make the database operate more smoothly. In Sec-

tion 4 we discuss the queueing semantics and the mechanisms for deadlock detection

and resolution. In Sections 5 and 6 we discuss what information needs to be kept for

recovery, and provide a procedure for backing changes out of a database after a failure

or abort. We also provide guidelines for how operations can be redone cooperatively.

Finally, in Section 7, we discuss database support for mediated communication among

the cooperative transactions. A brief summary of related research is provided in Sec-

tion 8.

47

2. The Model

A cooperative transaction hierarchy is a structured set of cooperative transactions,

where the structure of the interaction among the cooperative transactions reflects the

underlying hierarchical decomposition of the task they are working on together. The

internal nodes are the transaction groups, and the leaves are cooperative transactions.
A transaction group contains a set of members that ctx~perate to do a single task. It

actively controls the interaction of its cooperating members. A member may be either

an individual cooperative transaction or another transaction group. No member may

have more than one parent. The Root transaction group always exists at the top of the

hierarchy.

2.1 Transact ion Groups. Each transaction group is tailored to the task its mem-

bers are working on. The procedures and rules defining the operation of a transaction

group (e.g. its definition of correct operation) are called its protocols. A transaction

group's internalprotocols specify the allowable interactions among its members. The

internal protocols include a correctness specification that defines the patterns and asso-

ciated conflicts that must hold in the transaction group's history. Its externalprotocols
specify how the transaction group may interact with its siblings in the transaction hier-

archy. At any level in the tree, the external protocols of a transaction group member

are defined to be the internal protocols of its parent.

A transaction group has a local set of object versions being accessed by its mem-

bers. There may be several versions of an object scattered throughout the hierarchy.

We do not follow a general versioning scheme; in this scheme a member's version of an

object always directly subsumes its parent's version. The object versions in a particular

transaction group's set may be accessed (read or written) only by members below it in

the hierarchy. The Root transaction group has a version of every object in its set, and

this version may be accessed by all members.

Each transaction group makes its own guarantees about how resilient its copies

are to various failures (permanence). Because the Root transaction group is at the top

of the hierarchy, it contains the most stable versions of the objects. All of the other

versions of an object in the hierarchy are either identical to Root's version, or are more

recent intermediate versions. Because of this, the Root transaction group must make

the strongest guarantees about the persistence of its copies. This means that these

copies should be rigorously backed up on disk, and routinely archived on tape or some
other off-line storage medium.

An object version is copied automatically into a member transaction group's set

from that of its parent when the member initiates a read operation on that object. A

48

new version of the object is written back to the parent transaction group's set when the

member indicates that it has finished modifying the object. All read and write opera-

tions must be allowed by the transaction group's correctness specification. Because of

the long-lived and interactive nature of the cooperative transactions, we also allow the
individual members to selectively commit or undo parts of their work as they progress.

Becausse the members of a transaction group cooperate, they are no longer self-

contained. This means that the sequence of operations by a single member might not

leave the database in a correct state. The transaction group is responsible for ensur-

ing that the combined history produced by its members conforms to its correctness

specification.

When a member (M) of a transaction group (T G) commits some portion of its

work, the effects of that work on the database must be propagated to its parent (P) .

This involves encapsulating the operations done by M into a sequence of operations

initiated by T G on P ' s object copies. This sequence of operations must be compatible

with P ' s correctness specification, because each transaction group must adhere to its
own notion of correctness. It also must be equivalent to the committed operations, in

that it leaves P ' s object copies in the same state as the copies in TG. For example, a

write operation followed by a sequence of read and write operations on a single object

in TG may be encapsulated into a single write operation by TG on P ' s object version.
This encapsulation hides the internal operations of the transaction group's members
from its parents, allowing groups of non-serializable transactions to be members of
other serializable groups, among other things.

Because we cannot determine the transaction groups a priori, the transaction hi-
erarchy can be modified dynamically. The Root transaction group, whose task is to
maintain the database, always exists. Other transaction groups and cooperative trans-

actions may join and leave the hierarchy as the overall task progresses.

2.2 Cooperative Transactions. In our model, cooperative transactions represent
designers or intelligent design applications. Because the lifetime of a design task is in-
determinate, we assume that cooperative transactions are long-lived and open-ended.

We also assume that cooperative transactions can interact with each other both exter-
nally and through the objects in the database. Thus, they may know what the other

members in their transaction group are doing.

During its lifetime, a cooperative transaction issues read and write operations on

object versions in its transaction group. These operations are executed by the trans-

action group if they conform to its correctness specification. The transaction group's

synchronization mechanism examines each operation as it is submitted, and returns

a(ccepO if the operation can be executed immediately, r(efuse) if the operation can-

49

not be executed, or q(ueue) if the operation may be doable later. If q is returned, the

operation itself is not actually queued. Instead, the intention to do the operation is

queued, and the transaction is notified once the operation can definitely either be ac-

cepted or refused. In the meantime, the cooperative transaction is allowed to dequeue

this intention and/or continue processing. As with transaction groups, operations are

individually checkpointed or aborted by the cooperative transaction as the design task

progresses.

2.3 Operational Overview. This section describes how members begin, access the
database, and terminate. These operations are similar in spirit to the familiar transac-

tion begin, commit, and abort operations, though there are differences because of the

different requirements cooperative applications place on the database.

Members are created using the member_begin command. The command specifies

the new member's name and its parent. If the member is a transaction group, its in-

ternal protocols must be specified as well. These indicate how the members of the

transaction group interact, including information such as an enumeration of its mem-

bers or a procedure for authenticating new members and a correctness specification.

The new member also must authenticate itself to its parent, using its parent's authen-

tication procedure.

There are several functions that are not specified during the member definition

process, but rather are inherent in the way the transaction hierarchy is managed. These

include the rules for managing object versions, and the rules for requesting, sending,

and receiving notifications.

Once a member has been established, it may operate on its parent's object copies

in any way allowable by its parent's correctness specification. Objects are copied into

its parent's object set as they are needed by the member. Each operation is checked by

the transaction group as it is submitted to see that it conforms to the group's correct-

ness specification. The only operations that are accepted are those that are correctly

ordered.

When the members of a transaction group complete some set of changes, the

operations that effected that change can be checkpointed (committed) using a mem-
ber_checkpoint operation. The decision to checkpoint may be made either manually or

automatically. Because the group's patterns capture the structure of all interactions

among its members, all patterns a member participates in must be complete when the

checkpoint takes effect.

The checkpoint operation causes the internal operations by the members to be

encapsulated into an equivalent set of external operations by the transaction group.

Since we restrict the operation set in this paper to {read, write}, this means that new

50

versions of the objects that have been modified by the members of the group are prop-

agated up to its parent. To do this, the transaction group issues its own (external) write

request to the parent for each such object, specifying its latest version as the one to be

written. The requests are issued in the order in which the last modification of each ob-

ject occurred. They must be acceptable according to the parent's correctness criteria.

Each write introduces a new object version to the parent transaction group, making

the changes accessible by the transaction group's other siblings. The changes also be-

come recoverable from the parent transaction group if the member fails. Since the

different groups in the transaction hierarchy may guarantee different levels of perma-

nence, the member_checkpoint procedure only guarantees that the new object versions

are as permanent as the parent transaction group guarantees them to be.

As an example of how a member operates, consider what happens when Alice,

who is a member of the Display transaction group in Figure 2, decides to make her

changes to the if_spec object. When she first tries to read the specification, a copy of

the object is read into Display's object set from the Root transaction group. Alice's

read operation is then checked for correctness. Provided it is correct, Alice can then

read the object into her editor. As Alice edits the object over time, she issues a series

of write operations. Provided the Display transaction group accepts these operations

as correct, new versions of if_spec are introduced in Display's object set. When she has

completed the edit, she checkpoints. At this time, the Display transaction group issues

a write operation to the Root transaction group to propagate the new version up the

hierarchy. The write operation must be accepted by the Root transaction group for the

checkpoint to succeed.
Occasionally, a member may wish to abort one or more of its uncheckpointed

operations. This means that the operation is no longer a part of the operation his-

tory of the transaction group, and that any object version created by the operation no

longer properly exists in the object server. An operation can be aborted either be-

cause the member actually failed in some way, causing its transaction group to abort

the uncheckpointed operations by the member, or because the member decided that

its changes were inappropriate in some way and aborted its own operations. The mem-
ber_abort operation causes a specified set of operations to become invalid. The oper-

ations need not be contiguous, and aborting an operation does not necessarily mean

aborting all subsequent operations by the member. The abort makes it appear to the

transaction group members as if those operations had never happened. The process of

aborting must also leave the transaction group's history in a correct state. This means

that any operations that are incorrect as a result of the abort must also be removed

from the history, as well as any versions they created.

51

Figure 3. State transition diagram for cooperative transactions and
transaction groups.

~ member checkpoint C H E C ~ _ - m e m b e r begin

do operation ~ e r m i n a t e

When a member is completely finished and all its valid operations are check-
pointed, it may remove itself from the transaction group using the member_terminate

command. However, some of the operations done by the member may be dependent
on other members' operations, and consequently may become invalid if one of those
members aborts. When a member terminates, its transaction group becomes respon-
sible for recovery if any of its operations are subsequently invalidated.

The member operations differ from the traditional transaction operations begin,

commit, and abort in two ways. First, member_checkpoint and member_abort do not
terminate the member. This is because we view the member as an ongoing operator
doing a long sequence of operations, each of which it may selectively commit or abort.
The second reason is that they may be done by any member, not just by a leaf trans-
action. This is necessary because we want the operations done within the context of a
transaction group to be local to that group, and not affected by other members closer
to the leaves of the hierarchy.

At any time, each member in the transaction hierarchy is in one of the following

states:

• Running- the member may have some outstanding uncheckpointed operations.

• Checkpointed - all existing operations by the member are correct and final, ac-
cording to both itself and the transaction group's correctness criteria.

• Terminated - the member has explicitly terminated.

The state transition diagram is shown in Figure 3.

52

2.4 Data Structures. A transaction group is responsible for a single task within the

database, and that task is accomplished through the cooperation of its members. Be-

cause of this, it also controls the interaction among its members, only allowing op-

erations that are consistent with its correctness specification. The transaction group

records each of its members' operations, as well as all of its own operations. When

one of its members fails or when some operation is aborted, the transaction group

also ensures that its object versions are recovered to a consistent state.

A transaction group acts on behalf of its members when submitting operations

to its parent. This means that it must map sets of operations by its members which

are correct according to its correctness specification into single operations by itself

which are correct according to its parent's correctness specification, as described in

the previous section.

A transaction group is a tuple 7"~ = < TID, 79, S , .A4, IP >, where

TID is the unique member ID,

P is the member ID of the parent transaction group,

S E {Running Checicpointeg Terminated) is the member's state.

M contains the member IDs of TG's members, and

IP specifies TG's internal protocols.

A cooperative transaction is not necessarily atomic. The sequence of operations

for a single transaction does not have to be individually correct and consistent, ia that it

may not in itself leave the database in a consistent state. However, it must be validated

according to its parent transaction group's internal protocols.

A cooperative transaction is a tuple C'T = < TID, P, S >, where TID, P, and

S are defined as for transaction groups.

2.5 Operations. Members access and update their local object versions using oper-
ations. An operation defines an atomic action on a single object by a single member

of a transaction group. When an operation is checkpointed, its effects are propagated

towards the root transaction group. An operation can also be aborted.

An operation is a tuple (.9 = < M , o, O > , where

M E { a n y , mi, ~ } is the ID of some member, where any is any member,

mi identifies member i, and ~ is any member except mi.
o E {r, w} is an operation, where r is read and w is write, and

O is an object identifier.

When a member needs to access or update an object, it submits the operation to

its parent transaction group. Before an operation can be executed, it must be accepted

by the transaction group to which the member that requested the operation belongs.

Once the operation has been accepted, we know that its execution at this time does

53

Figure 4. State transition diagram for operations.

checkpoint ~

not conflict. Therefore, we can read or write the object as requested. If the member

that did the operation decides later that it is incorrect in some way, it can abort the

individual operation. Otherwise, the operation checkpoints the next time the member

checkpoints, and the process of making any changes resulting from the operation more

permanent begins. However, there is a gap between the time the member checkpoints

the operation (indicating that it will not abort it later) and the time the operation

cannot be undone for any reason (e.g., if some other operation aborts). Once the

operation cannot be undone for any reason, it is complete.

At any time, and operation is in one of the following states:

• Submitted. The operation has been accepted by the transaction group's internal

protocols, and executed. Its effects are temporary.

• Pending. The operation has been checkpointed by the member that requested

it. It cannot be aborted by that member, though it may be indirectly invalidated

if some other operation is aborted.

• Invalid. The operation has been aborted. Its effects are not reflected in the

database.

• Complete. This operation has been checkpointed, and all of the earlier opera-

tions in the history are Complete. It cannot be undone.

The possible state transitions are shown in Figure 4.

2.6 Histories. The history of a transaction group is a partially-ordered sequence of

operations. It contains both the operations submitted to the transaction group by its

members, and the operations submitted by the transaction group to its parent. In

54

other words, each operation in the cooperative transaction hierarchy potentially par-

ticipates in two histories - it always participates in the history of the transaction group

the operation is submitted to, but it also participates in the history of the member that

submitted it if that member is also a transaction group.

3. Synchronization

Each transaction group in a cooperative transaction hierarchy defines and enforces its

own correctness specification using patterns and conflicts. The patterns and conflicts

defined in the Root transaction group specify the correctness constraints on the data-

base. The patterns and conflicts defined in other transaction groups specify their own

correctness constraints. A transaction group's synchronization process ensures that its

members generate a history that conforms to group's correctness specification.

3.1 Operation Machines. Synchronization protocols for cooperative transaction hi-

erarchies need to control not only the concurrent access of objects, but also the order

in which different objects are accessed by different members. They need not constrain

the members' operations to a specific execution; rather they specify the general form of
the allowable member interactions. We use patterns and conflicts to specify required

and prohibited operation sequences by the members of a transaction group, as well as

the interleaving of the members' operation sequences.

Operation machines are user-definable synchronization mechanisms for specifying
patterns and conflicts. They were first proposed by (Skarra, 1991). An operation ma-

chine is a finite-state automaton. Each transition in an operation machine is labeled

with the symbol o" = < My o r O, P > that defines the operation associated with it,

where

M E {any, mi, ~ } is the ID of a member or set of members any of whom

can initiate the operation, where any is any member, ml identifies member
i, and ~ identifies any member except mi.

o E {r, w} is an operation, where r is read and w is write,

O is an object identifier, and

P E {a, r, q} is a return value, where a is accept, r is refuse and q is queue.

In an operation machine, the start state represents the beginning of a pattern.

Machine transitions represent operations on an object by some member. They are
annotated with return values that are either a(ccept) if the operation conforms to the

pattern, r(efuse) if the operation conflicts, or q(ueue) if the operation conflicts now

but may conform to the pattern if done later. The lack of a transition for an operation

55

from some state indicates that the operation is not relevant to the pattern at that time,

therefore the pattern cannot cause the operation to be rejected or queued. The final

states of an operation machine indicate when its pattern is complete in the history.

The active set of a transaction group is the set of operation machines currently

being used to define and enforce correctness in the group. The operation machines

in a group's active set may be defined directly or instantiated from operation machine

templates. An operation machine template is defined in the same way as an operation

machine, but the transition functions may have variables for the member and object

identifiers. A machine template is instantiated by making a copy of its definition and

binding the variables in the copy to specific object and member IDs.

3.2 Synchronization Algorithm. In a given transaction group, the correctness cri-
teria are specified by an active set of operation machines, each of which describes a

specific pattern and its associated conflicts. When an operation is submitted by some

member to the transaction group, the group first finds the set of operation machines in

its active set that are relevant to that operation. A machine is relevant to the operation

if there is some arc from the machine's current state that specifies explicitly whether

the operation should be accepted, queued, or refused. An operation is only accepted

by the group if it is accepted by every operation machine in its active set that considers

that operation to be relevant. An operation is refused if any relevant machine specifies

the operation should be refused. Otherwise, if any relevant machine specifies that the

operation should be queued, then it is queued. Executing an operation causes an are

traversal in each machine in the active set that considers that operation to be relevant.

Since the operation machines together specify the correct operation of the members

of the group, a database maintains consistency if every member checkpoints only when

every machine that considered one or more of its operations relevant is in a final state.

3.3 Operation Machlne Functions. Operation machines can be used for various
functions in a cooperative database. Example functions include synchronizing the ac-

cess of an object by multiple members, protecting an object from being accessed by

specific members, and enforcing a pattern among a specific set of operations by multi-

ple members. Some of the operation machines are defined manually, either when the

transaction group is set up or when new members are added. Some may be instantiated

automatically as needed from operation machine templates.

Pattern machines and protection machines are examples of machines that are de-

fined manually for specific functions. Pattern machines define the sequences of oper-

ations needed to do some current task. Consider the machine defined in Figure 7(a).

56

Figure 5. Synchronization machine templates

(a) () M,r/w,O,a (b)

M,r,O ,a

(a) serializable; (b) cooperative.

M,r,O,a

M,r/w,O ,a

When operation machines are shown diagrammatically, the start state is indicated by

a caret (>), final states have bullets (e) in them, and transitions are represented by

labeled arrows (-+). This pattern forces Display to read the interface specification

(if.spec) after the last write before it can actually make the corresponding changes in

the module (display.c). It also forces display.c to be current with if_spec before the task

is complete. These machines put a general form on the allowable executions consis-

tent with the transaction group's task. They do not necessarily restrict the transactions

to conform to one specific execution, though they may. Protection machines are used

to prohibit specific members from doing specific operations on an object. They are

implemented using refuse arcs.

Synchronization machines define the patterns that enforce the underlying concur-

rency control mechanism (e.g., cooperative, serializable). Since a transaction group

usually wants to enforce concurrent access of objects in a uniform way, each transac-

tion group instantiates the synchronization machines as needed from its synchroniza-
tion machine template. The template looks like an operation machine, except that the

arcs are labeled with the variables M for a single member identifier and O for a single

object. When a member first accesses an object, the transaction group instantiates the

template by copying it, binding all instances of the variable M to the member's ID

and all instances of the variable O to the object's ID, and placing the new machine in

its active set. When a member terminates, its synchronization machines are removed

from the active set.

Figure 5 gives two examples of synchronization machine templates. Figure 5(a)

shows a machine that enforces seriallzability in a similar manner to two-phase lock-

ing. If the transaction is in the lower middle state the object is basically read-locked.

57

Figure 6. Synchronization machine governing Alice's interaction with
the iLspec object.

Alice,r,if_spec,a

~ A lice ,w,if _sp ec,) a ~

Alice,w,if spec,q
Alice,r/w,if_spec,a

Similarly, if the transaction is in the upper middle state, it is basically write-locked.

The locks persist until the member terminates. At that point, the operation machine

is removed. Figure 5(b) shows a synchronization machine template to enforce one

type of cooperation. Before member M can write the object, it must have read it.

Furthermore, if some other member writes the object, then member M must read the

written changes before it can write the object again. This machine prevents a member

from overwriting another member's changes. As an example, say the Display transac-

tion group enforces the cooperative synchronization protocol defined by the template

in Figure 5(b). When Alice first reads the (iff_spec) object, the synchronization ma-

chine shown in Figure 6 is instantiated and placed in Display's active set of operation

machines.

A traversal of an operation machine is a sequence of operations associated with

consecutive traversals of accept arcs for the machine, beginning at the start state and

ending at the current state. If we view the operation machine as a directed graph, a

traversal is a path in the graph that begins at the start state, ends at the current state,

and traverses only arcs whose return value labels are a.

Figure 7 shows examples of traversals. Given the operation machine shown in

Figure 7a, the operation sequence 1 in Figure 7b is a traversal. Sequence 2 is not a

traversal because the third operation causes the traversal of an arc that returns refuse.

Sequence 3 is not a traversal because the first operation does not cause an arc traversal

at all, though it would be accepted by the machine. A complete traversal ends at a final

state, e.g. sequence 4. The null traversal of this machine is correct, though it is only

complete because the start state is also a final state.

We can use operation machine traversals to formalize our definition of correct-

ness. For each operation in a history, we know which arcs were traversed when it was

executed. Define the sequence IlOM associated with operation machine OM as

58

Figure 7.

(a)

Operation machines and traversals

Display,w ,display.c,a

~ a n y w if spec a Display r if spec
, ,._ , ~ . , , '_ ,r any,w,ifspec,r

any,w,if _spec,a

1. { <Processinbw, g_spec>,
2 { <Processinbw, if_spec>,
3. { <Processing;r, if_spec >,
4. { <Processing; w, if_spec >,

<Processinb w, if_spec >,
<Display, r, if _spec > ,
<Processing w, if _spec >,
<Display, r, if _spec > ,

<Display, r, if_spec > }
<Display, w, g_spec > }
<Displa~r, if.spec > }

.<Display, w, display.c> }

IIoM = {op I operation op caused an arc traversal in machine O M }

That is, IIoM is the projection of the pattern defined by the machine OM from

the history. These operations were acceptable according to the pattern specification
at the time they were executed. A history is correct when it satisfies both thepattern and

conflict criteria.

• Pattern criterion
All sequences rXoM for the machines that were active during the history are

traversals.

Conflict criterion
The history contains no operations that would conflict based on the state of
any operation machine active at the point in the history where the operation is

recorded.

Correctness is an ongoing notion; it applies to histories of transaction groups that may

not have completed their task yet. However, correctness in itself does not guarantee
that the work thus far preserves global consistency. A history is complete when all its

59

sequences are complete traversals. A complete history both is correct and preserves

global consistency.

3.5 Intentions. Each transaction group in a hierarchy has a local set of versions of

the objects that it is currently accessing. Since multiple copies of the same object exist,

different members in the hierarchy may be doing operations on different copies of the

object that will ultimately conflict. The conflict will be detected eventually, but resolv-

ing it requires that some operations be aborted. If a member wishes to ensure that

an operation will eventually succeed, it may declare an intention to do the operation

before any work is actually done. Intentions reserve the capability for a member to do

a single operation on a single object. When a member M o f a transaction group TG is

granted an intention, TG's version of the object is restricted in such a way that no other

operations can be done that will cause the intended operation to be rejected. This

also means that new operation machines cannot be added to the transaction group's

correctness specification if they would cause the intended operation to be rejected or

queued. This could occur, for instance, if the database administrator decided to add a

protection machine to the group's active set that rejects the operation.

When the member M is a transaction group, the intended operation represents

the combined effects of a sequence of operations by M's members on the object. For

example, many reads and writes by the members of Mcan be consolidated into a single

write by M to TG. Thus, there may be more complex patterns in M associated with the

single operation in TG. We call this phenomenon hatching.

The sequence of steps required to gain and release intentions is very similar to

that of locks. When a member M wants an intention, it makes an intention request

to the transaction group TG. Once TG ascertains that the operation can be done im-

mediately, it accepts the intention. Once an intention has been accepted, TG ensures

that M can do the operation at any time by preventing any conflicting operations from

being processed. M may release the intention at any time.

Intentions are like locks in that they take a pessimistic approach to concurrency

control. However, intentions differ from locks in that they reserve the capability to

do only one operation, while locks reserve the capability to do an arbitrary number of

operations from a fixed operation set. Locking is used to prevent transactions from

interleaving their operations, and would further restrict the allowable operation se-

quences in the transaction group. Intentions are more flexible because they do not

generate these restrictions.

A member may request an operation without having acquired an intention. This

is similar to taking an optimistic approach to concurrency control. The operation is still

60

Figure 8. Intention machines

(a) Display,w,ifspec,
 w specr yr/wifspecr

(b) ~ any,w,if-spec'a~

~ny,r,if speC,lny,r/w t~f spec, a

done, provided that it is currently acceptable according to the patterns and conflicts

defined in its parent. It also may be queued or refused.

3.5.1 Intention Machines. Two restrictions need to be enforced for intentions to work

properly. At the transaction group level (TG), we need to ensure that no other mem-

ber does an operation that conflicts with the operation requested by member M. I fM

is itself a transaction group, we need to ensure that its members do operations only

according to a pattern that will batch to the single intended operation. We associate

two operation machines with each type of intention (read or write), one to bc bound

to the object copy at TG's level and one to be bound to the object copy atM's level i fM

itself is a transaction group. These machines are in the active sets of their respective

transaction groups for the duration of the intention.

Figure 8 shows an example of the intention machines that are put in place when

the Root transaction group accepts an intention request for the operation <D/sp/ay~ w,

if_spec>. Figure 80) shows the machine bound to the if_spec object at Root's level. It

prevents any write of the object by any other member, while allowing exactly one write
by D/sp/ay. This machine also allows anyone to read the original version ofif_spec until

the newversion is created. If the read operation causes a change of state in any existing

machine bound to the object, the intention machine should not allow the read. Figure

8(b) shows the machine specifying the allowable operations by the members of Display
that can be batched into the single intended write in Root. It allows many read and

write operations by its members, but at least one member must do a write operation

first. These patterns assume that Display has already read the if_spec object.

3.5.2 Implementation. A memberMdeclares its intention to do an operation by send-

ing an intention request to its parent transaction group TG. This request is either ac-

cepted, queued, or refused depending on whether the intended operation would be

accepted, queued, or refused. If TG accepts the intention, it associates an additional

61

operation machine with its version of the object to block any operations that conflict

with the intended one. For example, this machine has the same structure as the one

in Figure 8(a) if the intention is for a write operation. If M is a transaction group, it

associates an operation machine with its object version to ensure that the combined

effect of all of its member operations is as intended. For a write operation, this ma-

chine would be similar to the one in Figure 8(b). These machines can be constructed

automaticaliy from standard read and write intention machine templates.

Intention requests cascade up the transaction hierarchy until a copy of the object

is found.

Members may wish to change their intentions if they decide to do something else

or augment their intentions if they have completed the intended operation and want to

do another one. As with intention requests, the database may accept, queue, or refuse

these requests. If the change or augment request is refused, the old intention is still

retained. Change and augment requests have priority over initial requests.

Intentions may be released at any time, regardless of whether the operation has

been done. Once an operation's effects can no longer be revoked by anymember_abort,
its intention is released automatically.

4. Conflict, Queueing, and Deadlock

Operation conflict occurs when a member cannot do a requested operation immedi-

ately because one of the machines associated with the member returns queue or refuse.
Normally, this situation arises because some other member has done some operation

that cannot be followed immediately by the requested operation, or because some

member has declared an intention that prevents the requested operation from taking

place immediately.

Conflict may also occur when a member is requesting an intention. If the intention

cannot be granted, it may also be queued or refused.

Queueing an operation or intention does not block the requesting member.

Rather, a message indicating that it was queued is returned to the member, and the

member is allowed to continue normally. The member may also cancel the request.

Refusing an operation means the operation cannot be done. The transaction

group keeps no record of what operations and intentions have been refused.

4.1 The Semantics of Queuelng. Each transaction group has a queue of requests

waiting to be accepted or refused ordered by the time of the request. That is, the de-

queuing of earlier requests is always attempted before the dequeuing of later requests.

62

This set does not mimic a FIFO queue, however; two requests may be dequeued in a

different order than the one in which they were inserted. This could occur, for instance,

if the two requested operations were relevant to different patterns.

When an intention request is queued, a copy of the request is placed at the tail of

the queue and an intention.queued message is sent to the requester. The requester may

continue processing. At any time, it can cancel its request by sending a cancel_request
to its transaction group. If the request is not canceled, the transaction group eventually

responds by either accepting or refusing the intention request. If the intention request
is accepted, then the requesting member can either resubmit the operation or release

the intention.

Operation requests are not queued directly, because an operation request con-

tains an entire invocation of the operation. Write operations, for instance, not only

specify the member and object to be written, but also the new version. Consider the

following scenario derived from the pattern in Figure 6. Recall that the purpose of this

pattern is to ensure that Alice cannot overwrite some other member's changes. As-

sume we are in the start state. Alice submits the operation request <Alice, w, if_spec>,
which is queued. If it were queued as an operation request, the whole invocation of the

operation, including the new version to be written, would be kept. Later, Alice issues
an operation request <Alice, r, if_spec>, which is accepted. Now the queued request
<Alice, w, if_spec> could be accepted and the specified version written. This violates
the spirit of the pattern, because the new version of if_spec was created before the read

operation, and therefore cannot depend on the read of the latest version. For the pat-

tern to allow such operations, the arc from the start state labeled <hlice, w, if_spec, q>
would have been omitted.

We solve this problem by queueing operation requests as intentions. That is, when

an operation request returns queue, an intention for the operation is queued and an

intention_queued message is returned to the requester. Later, when the request is ac-

cepted, the member that requested the operation is told that it has an intention for the

operation. The member can then either issue a new operation request or release the

intention. The new operation request is generated using information that is currently
available, and thus does not inadvertently violate the intent of the patterns.

This solution for queueing intentions only is similar to the approach taken by lock-
ing schemes. In a system that uses locking for concurrency control, an appropriate lock

on an object must be requested and granted before an operation can take place on it.

Lock requests may be queued, but operations are never queued because they are sub-

mitted only when the object is already locked for the operation.

63

Figure 9. Deadlock example.

4.2 Queueing and Intention Deadlocks in a Transaction Group. As with locking
systems, a transaction group may have deadlocks. Since we allow members to continue

while waiting for queued intentions, the risk in our system is that an intention will never

be resolved (accepted or rejected) because it is waiting for other operations that will

also never be resolved. We call this situation an intention deadlock.

The potential for intention deadlocks is inherent in the structure of the operation

machines. Consider the example in Figure 9. If both operation machines are in the

start state, then the only operations that allow either machine to reach a final state are

<Ml, r, O l > for the first machine and < Ml, r, O l > for the second machine. Unfortu-

nately, <Ml, r, O l > is queued by the second machine, and < Ml, r, O l > is queued by

the first machine. Therefore, if both these machines are a part of some group's cor-

rectness specification, we know there will be a deadlock once both <Ml,r, O l > and

< Ml, r,01> have been submitted and queued.

In this section, we specify how to construct a waits-for graph within a transaction

group, how to detect intention deadlocks given the waits-for graph, and how to re-

solve them. Further details on conflict and intention deadlocks, including algorithms,

theorems and proofs, can be found in (Nodine, 1991).

4.2.1 The Waits-For Graph. Each transaction group is responsible for maintaining its

own waitsfor graph that characterizes which intentions for operations are waiting for

which other operations at any given time. A waits-for relationship occurs between two

operations Opl and op2 when an intention to do opl is queued because some machine

OM has a transition for that operation that currently returns queue, and OM would

accept oP2. In the example in Figure 9, if M2 (which is in M1) submits an intention to

do the operation < M ~ r, 01 >, the waits-for relationship <M2,r, 01 > --~ <Ml, r, O1 >

(" <M2, r, O1 > waits for <MI, r, O1 > ") occurs. Similarly, if M1 submits an intention to

do the operation <M1, r, 01 >, the waits-for relationship <Ml, r, 01 > --~ <Ml, r, 01 >

o c c u r s .

64

At any given time, the waits-for graph contains a node for each operation or set of

operations that is involved in some waits-for relationship, and an arc between any pair
of nodes representing operations involved in a specific waits-for relationship, indicat-

ing its direction. Since waits-for relationships are associated with individual machines,

each arc is labeled with a list waits_for_machines containing the machines causing that
waits-for relationship. That is, if oPl is waiting for op2 because of machine OM1,
there is an arc in the waits-for graph from the node representing opl (the head) to

the node representing op2 (the tail), and waits_for_machines for that arc is {OM1). If

an additional intention is later requested that causes the same waits-for relationship

because of some machine OM3, the waits_for.machines list on that arc would become

{ OM1, OM3 }.
Different nodes in the waits-for graph can represent different things. Nodes that

are tails of any waits-for relationship represent queued operations. The correspond-
ing heads represent anything that could allow the queued operation to be resolved,

including unsubmitted operations, queued intentions in the transaction group, oper-

ations that have intentions granted for them, or queued intentions in the transaction

group's parent.

Waits-for relationships are not necessarily between fully-specified operations. Op-
erations at the tail of a waits-for relationship are those for which specific intentions

have been requested, and are therefore fully-specified. However, these operations
may be queued by a machine when an operation is waiting for some other operation

that could be done by any one of a set of members. In particular, these may be gener-

ated by machines with arc labels like <any, w, O, q> or < M , r, O, q> . Thus, the
node at the head of a waits-for relationship may have a less-specified label, with its

"member" being some set members.

4.2.2 Updating the Waits-For Graph. The waits-for graph for a transaction group can

be maintained incrementally. The actions that change the waits-for graph include exe-
cuting or aborting operations, changing the set of outstanding intentions, and changing

the correctness specification of the transaction group.

When an intention is queued, the new waits-for relationships are added to the
waits-for graph for the transaction group. Similarly, when an intention is accepted or

refused, waits-for relationships are removed from the graph. When an intention is
released or an operation is executed outside of the scope of an intention, any node

that represents that operation is removed from the waits-for graph, along with any

associated waits-for relationships.

Modifying the correctness specification for a transaction group means either
adding new operation machines to the transaction group or removing old ones. When

65

a new machine is added, we need to see if the machine is relevant to any of the queued

intentions. For example, if the new machine would queue the intended operation,

then new waits-for relationships need to be added to the waits-for graph. If the new

machine would reject the intended operation, then the intention is refused. When a

machine is removed, any waits-for relationships associated with the machine are re-

moved from the waits-for graph.

4.2.3 The Structure of Intention Deadlocks in the Waits-For Graph. Intention dead-

locks have one of the following forms:

1. < Mi, o, Oi >---~ . . . --~< Mi, o, Oi > where Mi is an individual member ID.

2. < Si , o, Oi >--* • • • ---~< Mi , o, Oi > where Si is a set of member IDs and

e Si.
3. < Si, o, Oi >---~ . . . ---~< Sj, o, Oi > where Si and Sj are sets of member IDs

and Sj C_ Si.

The first situation is detectable as a cycle in the waits-for graph. The second and

third situations are harder to detect for two reasons. First, no waits-for relationship

of the form < S i , o, Oi>---~<Mi, o, Oj> or < S i , o, O i > - * < S j , o, Oj> is repre-

sented explicitly in the waits-for graph, because the arcs in the waits-for graph are all

associated with specific requests, and therefore any operation at the tail of an arc is

always fully-specified. Second, the nodes representing the operations <Si, o, Oi>
and <Mi, o, O i > in the second situation, and < S i , o, Oi> and <Sj, o, O i > in the

third situation are distinct, therefore no easy-to-locate structures such as cycles form

automatically in the waits-for graph. Fortunately, we can deal with these two problems

separately, building an augmented waits-for graph which does have specific structures

associated with deadlocks.

First, let us deal with the lack of representation of sets of members queued for the

same (read or write) operation on the same object. This situation arises, for example,

when more than one member requests an intention for the same operation on the same

object, and these intentions are queued. If enough such intentions are queued, we can

deadlock (see the example in Figure 10(a)). Here, we create generalizes nodes and

arcs with consolidated representations of each such set of intentions. This is shown

in Figure 10(b). Note also that these new nodes and arcs add no information that is

not already in the waits-for graph; they merely consolidate information that is already

present.

66

Figure 10. Deadlock situation

(a) <M3,w,O>

< [MI M2} ,w,O >

(b) <M3,w,O> <{M1M2M3},w,O>

<M2,w,O> <Ml,w,O>

<{M1,M2},w,O>

(c) <M3,w,O> < {M1,M2,M3},w,O>

~ l~<{M1,M2},w,O>

(a) As seen in waits-for graph, (b) Waits-for graph after generalizes node and arc
are added, (c) Waits-for graph with generalizes node and arc and specializes arcs.

For the second problem, we add arcs to the graph connecting related nodes. First,

for each node labeled with an unbounded member set such as M or any, compute a

bounded member set based on the transaction group's current members. For each pair

of distinct nodes < $ 1 , o, O > , < $ 2 , o, O > , where $1 C_ $2, we create a specializes
arc. An example of this is shown in Figure 10(c). The specializes arcs also add no new

waits-for relationships to the waits-for graph, but merely help to relate and consolidate

waits-for information pertaining to read (or write) intentions on a single object. We

see that when we add both the generalizes nodes and arcs and the specializes arcs

67

to the waits-for graph, directed cycles are created in the second and third deadlock

situations.

Theorem 1. An intention corresponding to node n in the waits-for graph is not dead-
locked if and onO if you can reach a sink from n in the augmented waits-for graph.

The proof for this theorem is found in (Nodine, 1991).

4.2.4 Detection and Resolution of Intention Deadlocks. Given the previous theorem,
we can detect deadlocks within a transaction group using the following algorithm:

1. Copy the waits-for graph into a new graph G ~.

2. Create the generalizes nodes and arcs in G'.

3. Bound the unbounded sets and add the specializes arcs to G t.

4. Repeat until nothing is deleted:

(a) Select a sink node s in G ~.

(b) For each node n having an outedge that is also an inedge to s, delete

all of its outedges.

(c) Delete s.

5. Return the set of operations corresponding original nodes in the waits-for graph

that remain after the previous step.

The algorithm takes O (V 2) time, where V is the number of nodes in the original

waits-for graph.

When an intention is deadlocked, the members of the transaction group whose

queued intentions are involved in the deadlock are notified of the problem. The no-

tification specifies both which of the member's queued intentions are involved, and

which other members are involved. The members can then cooperate to resolve the

problem by selectively aborting operations.

The effect of aborting an operation is to change the current state of one or more

operation machines, altering the structure of the waits-for graph as a consequence.

Factors involved in choosing which operation(s) to abort include:

• Break as many cycles as possible to disconnect the strongly-connected compo-

nent.

• Remove arcs associated with the fewest number of intentions (fewest number

of machines in waits-for-machines on the arc).

• Abort the most recently accepted operation, so as to minimize the number of
operations aborted consequently in the invalidation phase.

68

If a new member joins the transaction group, this may also resolve the intention

deadlock, especially in situations where there is some intention queued waiting for
anyone else to do some operation; in other words, the head of the waits-for relation-

ship is of the form < M , o, O > or <any, o, O > .

4.3 Global Detection of Intention Deadlocks. Detecting and resolving intention

deadlocks locally within each transaction group is adequate to ensure that no global

intention deadlocks occur. This can be seen by examining the structure of the local

waits-for graph. We noted in Section 4.2.1 that operations may be queued waiting for

other operations either within the same transaction group or within the parent. No

waits-for relationships point "down" the cooperative transaction hierarchy. Thus, no

waits-for relationships that point "up" the hierarchy can be involved in a cycle associ-

ated with some intention deadlock. Thus, any waits-for relationships that form a cycle

must be associated only with local intention deadlocks, and detecting intention dead-

locks locally within each transaction group is sufficient to detect all intention deadlocks

in the hierarchy.

5. Histories and Logging

A history is the partial order of operations associated with a transaction group. The
operations in a transaction group's history include those executed in the group by its

members, and those executed by the group in its parent. The operations in the history,

along with other information needed for recovery, are recorded in a/og. The log for
a transaction group is updated as the members execute their operations. Operations

that execute simultaneously may be recorded in any order. The log also records the

dependencies between operations. When an operation fails or aborts, the log is used

to determine which operations are affected by the failure, both directly and indirectly.

5.1 Histories. A history is a partially-ordered sequence of operations. An operation

is represented in the history as a tuple <M,o,O> with the fields as in the operation

request. The history is partially ordered according to a happens-before ordering (<) ,

where if opl and op2 are operations, and if opl executes before op2), then (opl <

oP2).
The history conforms to the following constraints:

• It contains exactly one entry for every operation that has executed but not aborted.

• It contains no operations that either have not executed or that have been aborted.

• Any operation opl in the history that depends on some operation op2 has (opz <
opl).

69

5.2 Operation Dependencies. Dependency information in a cooperative transac-

tion hierarchy is recorded at the granularity of operations rather than transactions. We

use these dependencies among operations in a history to determine what is affected,

both directly and indirectly, when an operation aborts. This information is needed to

ensure that the database is recovered to a correct state.

For each defined pattern in a transaction group, pattern dependencies are formed

among operations that participate in that pattern. Since patterns define allowable

operation sequences, each operation in the sequence relevant to some pattern depends

on the correctness of the previous operations in that sequence. However, since the

sequence of operations associated with a pattern is fully ordered in the history, the

definition of a pattern dependency can be simplified to say that each operation op is
pattern.dependent on the previous operation in each pattern in which op participates.

Reads-from dependencies occur because a read of an object version by member

M is only correct if the operation that wrote that version is also correct. If the write

operation later becomes invalid, then M's read operation read incorrect information,

and is also invalid.

Parent-child dependencies occur among operations at adjacent levels of the trans-

action hierarchy. For example, when a memberMof a transaction group TG first reads

an object, the object must be copied into TG first. M's read is correct only if TG read

a correct version. If that version is later invalidated as a result of some abort, then M's

read is also invalid. A similar situation exists with writes; when TG writes a version

to its parent, the validity of that write is based on the validity of the most recent write

operation by one of its members.

Figure 11(a) shows two operation machines associated with the Root transaction

group, and Figure 11(b) shows an excerpt from the history of the Root transaction

group containing traversals of those machines. To the right of the operation sequence

in (b) are three columns of dependencies. The leftmost column shows the pattern de-

pendencies associated with the pattern machine (upper machine in (a)). The middle

column shows the pattern dependencies associated with the synchronization machine

(lower machine in (a)). The rightmost column shows the read-write dependency asso-

ciated with the display.c object. This set of dependencies is by no means complete, in

that there are other machines associated with the members and objects in the history

that we have not shown, and therefore we have not shown the dependencies associated

with their traversals as well. An example of a machine not shown is the synchroniza-

tion machine for the Display transaction's interaction with the display.c object. Also,

since this is an excerpt from the Root transaction group's history, no parent-child de-
pendencies are shown.

70

Figure 11. Operation machines and associated history.

(a) Display.w.display.c.a ~5~'w'if-spec'a~Display,r,if_spec~
0 E

any,w.if_ spec,a ~)

Processing,r.if_spec.a

~eprocessi::iwng.:.s~e:~

. Processing ,r/w,ifsp ec ,a

(b) <Display,w,display.c>

<Processing,r, if_spec> •
l

<Processing,w,if spec> t 1

<Processing,w,if_spee> I

<Proeessing,w,processing.e>

<Display,r,if_spec> I1~
A

<Display,r, display.e> i i

<Display,w,display.c>

<Processing,w,if_spec> •

(a) Two operation machines. (b) Associated history excerpt with dependencies.

The dependencies associated with a specific operation are computable. Each op-
eration participates in some subset of the patterns defined in the transaction group's
active set of operation machines. Since each operation has at most one pattern de-
pendency per active machine, the number of pattern dependencies is upper-bounded
by the number of operation machines active in the transaction group. Also, since each
operation touches a single object, it can have at most one reads-from dependency and
at most one parent-child dependency.

5.3 Logs. A log records the history of a transaction group and the associated depen-

dency information needed for recovery. The log is created as the transaction group
and its members execute their operations. If a member M of TG is itself a transaction
group, each operation by M is recorded in both logs. In TG's log there is a member

entry for the operation, and in M's log there is a group entry.
An entry in the log is a tuple £ E = < I , M, o, O, S, V, D > ,where

I is m ' s unique identifier for the operation as specified in the request.

M is the identifier of the member that did the operation.
o E {r, w} is the operation, where r is read and w is write.
0 is the object identifier of the target object.
S E {SUBMITTED, PENDING, COMPLETE, INVALID} is the

operation state.

71

V points to the (possibly null) version created by the operation. Versions

are used for recovery only.
D is the set of log entries for operations on which this one depends.

Log entries are identified uniquely by < I , M > pairs. They are totally ordered in

the log, with their order consistent with the happens-before order in the history.

When a transaction group's history as recorded in its log is correct, its internal

protocols guarantee that the effects of the changes done by its members on its ob-

ject copies are identical to the changes done by its operations on its parent's copies.

Otherwise, the transaction group's internal protocols are incorrect.

6. Invalidation and Recovery

Recovery is a two-phase process. In the invalidation phase, all operations that depend

on some invalid operation are also invalidated. Any version written by an invalidated
operation is also invalidated. In the recovery phase, members whose operations are

invalidated work together to compensate for the failure. The invalidation and recovery

phases preserve the correctness of the history.

6.1 Invalidation
6.1.1 Overview. The invalidation phase begins when some member aborts one of its

operations. The abort process begins by marking the log entries for the aborted opera-
tions as INVALID. It then finds the operations that transitively depend on the aborted

operation using thepattem, reads-from andparent-child dependencies in the log, and

invalidates them in the same way. It also invalidates any operations that conflict in
the new history and the operations that transitively depend on them. Note that be-

cause of the parent-child dependencies, invalidations not only cascade from member

to member in the transaction group, but also may cascade up and down the cooperative

transaction hierarchy.

The log entry for each write operation points to the version it created. We in-
validate a version when we invalidate the write operations that created it. After the
invalidation phase, the latest valid version of each object is the most recent version cre-

ated by some traversal in the history. Thus, all effects caused by invalidated operations

are purged from the database.

Once all affected operations are invalidated, any object that has had some version
invalidated is restored to its state at the time just after the last valid version was written.

The invalidation of an operation breaks each traversal that the operation participated
in. Thus, each operation machine is restored to whatever state it was in just before the

72

first invalid operation in its traversal was executed.

Figure 11 from the previous section showed an excerpt of a history containing de-

pendencies associated with the traversal of the pattern machine from Figure ll(a).

Consider what happens if Processing aborts its second <Processin~w, if_spec> opera-

tion. The operations <Display, r, if_spec > , <Display, w, display.c > and <Process/ngw,

if_spec> are also invalidated because of pattern dependencies. The pattern machine

is reset to be in the initial state, and the versions created by the two write operations

in its traversal are invalidated. The synchronization machine is backed up one tran-

sition because the last operation in its traversal is invalidated. The last valid ver-

sion of the if_spec object is the one created by the first write. The last valid ver-

sion of the display.c object is the one that was current just before the write operation

<Display, w, display.c>. No other operations are invalidated because of dependencies

shown in Figure 11, but there may be other operations invalidated because of pattern

or reads-from dependencies not shown in the figure.

As a second example, consider what happens if the last <Display, w, display.c > op-

eration is aborted. Then the last <Processing~w, if_spec> operation must also be inval-

idated because the upper machine in (a) is in a different state, and now with any write

of if_spec conflicts.

6.1.2 Correctness. The database is left in a correct state after the invalidation phase.

Assume that the database was correct before the abort occurred. The abort breaks

some traversals relevant to the history. For each such traversal, the first invalidated

operation is called the breakpoint. Because of the pattern dependencies, all operations

in the traversal after the break point also are invalidated. The only part of the traversal

left in the history is the part preceding the break point. Thus, for each pattern in the

history, we are left with a correct traversal ending just before the break point.

New conflicts appear because not all patterns are in the same state at a given point

in the history as they were during the original processing. An operation at a specific

point may conflict in the new history even though it was accepted in the old history. In
the invalidation process, we maintain a new conflict list and check each operation in

turn against that list. Any operation that conflicts in the new history is correctly found

because it is present in the new conflict list at the time it is processed in the invalidation

phase. Note that the invalidation of conflicting operations may cause invalidation to

cascade to other traversals.

The reads-from dependencies show places where one member's read depends on

another member's write. The read operation becomes invalid when the write oper-

ation is invalid. Thus, other traversals may be severed because of the reads-from

dependency. Similarly, the parent-child dependencies indicate where an operation

73

participates in traversals in more than one history (the history of the member and the

history of the parent). Invalidations may also cascade from traversal to traversal within

a single transaction group's history when an invalidated operation participates in more

than one pattern.

Correctness with respect to the patterns is maintained because the use of pattern

dependencies guarantees that all operations in a traversal that follow its break point

are invalidated as well. The process of checking and enforcing any new conflicts en-

sures that the new history is not incorrect because it now contains operation sequences

that would not have originally been accepted. We limit the performance penalty due

to this cascading with proper definition of the patterns. In particular, we do not define

patterns over a set of operations that are not related by data- or application-specific

constraints.

6.2 Recovery
6.2.10vorview. Once the invalidation phase is complete, members are notified of any

of their operations that have been invalidated, and the recovery phase begins. Since

the members may cooperate on a task, we allow them to cooperate in the recovery pro-

cess. This process is cooperative in the same sense as the initial work, and is governed

by the same synchronization protocols. However, other members may wish to take re-

sponsibility for some of the changes that would otherwise be invalidated. Therefore,

we allow members to do the following during recovery:

. Abort any uncheckpointed operations. A traditional abort operation can be

mimicked by immediately aborting all uncheckpointed operations and then ter-

minating. This option also is useful when the member that initiated the invali-

dated operations fails.

2. Reread any invalid object versions previously read by the member. This allows

the member reread what it has seen, and use that information to determine

what operations to submit for recovery. Since the read of old versions involves

allowing the member to remember only what it is already seen, it bypasses the

synchronization mechanism.

. Request new operations to recapture any work that was lost inadvertently as

a result of the abort. This assumes that the application is either driven by a
user or is intelligent, in that it can analyze what needs to be done to recover.

During recovery, correctness is ensured because operations are scheduled and

processed in the normal manner.

74

Given the first example above, Display could recover after the invalidation phase

by rereading the if_spec object, adjusting the code for the part of the display module

that implements the interface appropriately, and writing the new display.c object.

6.2.2 Correctness. The recovery phase maintains correctness. 'This is shown by prov-

ing that each action a member can take during recovery is individually correct. If

abort requests are issued during recovery, we know from the previous argument that

the subsequent invalidation phase maintains correctness. Assume by induction that

the recovery phase also maintains correctness. This is acceptable because there are

only a finite number of operations. Therefore, even if all members decide to abort, we

eventually reach cases where a member that has an operation invalidated has no valid

operations left to abort If a member reads an invalid version that it has already seen,

this is equivalent to the situation where it kept a copy of the invalid version. Therefore,

the read does not give the member any new information. Since this read is not a part

of the history, it does not affect it. If compensating operations are issued, they must be

accepted by the operation machines. Since the invalidation phase leaves each machine

in the state it was in immediately before its traversars break point, these operations

continue existing traversals correctly. Therefore, they maintain correctness as well, so

the recovery phase as a whole is correct.

7. Communication

In a cooperative transaction hierarchy, we not only allow members to share interme-

diate versions; we also allow them to communicate using notification messages. There

are two basic types of notifications that can occur, operation nott~fications and invalida-
tion notifications. Operation notifications are generated on request, and indicate that

some other member has done some interesting operation on some object Invalida-

tion notifications are generated automatically, and indicate abnormal situations such

as aborted or failed operations, or intention deadlocks.

Operation notifications are sent when a particular operation is done on a par-

ticular object. They are only generated on request; when a member is interested in

knowing when an object has been accessed in a particular way, it can request that a

notification be generated on an event-driven basis. Each time the operation occurs, a

nott~fication response is sent to the member that made the request. When the member

no longer is interested in the operation, it can terminate the request using a nott~cation
cancellation.

75

A member in the transaction hierarchy can request an operation notification for

any valid operation whose results would be visible to it. A notification request is a

tuple .AfT~ = <N, CP, o,O>, where

N is a unique notification identifier,

CP is the complete path from the member to the root transaction group

(using member IDs),

o E {r~ w} is the operation the member wants to be notified about,

where r is read and w is write, and

O is the object ID of the object on which the operation would be done.

Each member can only see the results of operations on object copies in its own

cache, or in the caches of its ancestor transaction groups. Therefore, notification re-

quests are propagated towards the root of the transaction hierarchy only. When a

transaction group receives a notification request, it associates the notification ID and

the path to the member that sent the request with the object ID specified in the re-

quest. It then forwards the request up the hierarchy.

Notification responses are sent when the specified operation is done on some copy

of the object in one of the members' ancestors' caches. A notification response is a

tuple .Af.A =<R/~N>, where

RP is the relative path to the requesting member, for routing.

N is the notification identifier from the notification request.

Each notification message is routed down the tree, following its specified path RP,

until it reaches the member that made the initial request.

A notification cancellation by a member terminates the corresponding notification

request. A notification cancellation is a tuple .ArC = <N,o,O>, where N, o, and O are

as specified in the notification request. Notification cancellations traverse the same

route as notification requests, towards the root of the transaction hierarchy. When a

transaction group receives a notification cancellation, it uses the notification ID N to

remove the notification request from the list associated with object O.

8. Related Research

Several proposals have been made for supporting more Ilexible and long-lived trans-

actions. The approaches related to ours include nesting the transactions (Moss, 1985;

Korth, 1987), augmenting traditional locking protocols (Skarra, 1991), and specifying

a longer transaction as an envelope that contains a sequence of shorter transactions

(Garcia-Molina, 1987).

76

Nested transactions (Moss, 1985) provide a framework for decomposing a trans-

action hierarchically. A transaction may define subtransactions that execute concur-
rcntly. The subtransactions must all be serializable with respect to the parent trans-

action. If a subtransaction fails or aborts, the parent transaction has the option to

restart it. Kim et. al. (Kim, 1984) presents a three-layer hierarchy tailored for design

transactions. It differs from nested transactions in that it allows copies of objects to be

"checked out" from a parent transaction into a private database. Because these trans-
action models require (at some level) that child transactions of the same parent are

serializable, they work best in design environments where the tasks decompose easily

into small, independent subtasks.

Klahold et. al. (Klahold, 1985) proposed a transaction model that allows coop-

crating user transactions to work together in the context of a group transaction. While
the group transactions maintain a two-phase locking protocol, the user transactions

within a group transaction may share data. The group transactions use a relaxed lock-
ing scheme that allows data sharing, but does not guarantee that the data remains

consistent.

The constraint-based models, for example NT/PV (Korth, 1987, 1988) allow more

cooperation by relaxing scrializability at the lower levels of the transaction hierarchy.
At these levels, transactions can cooperate as long as each transaction preserves its

specified consistency constraint. The constraints arc enforced using a modified lock-
ing protocol (predicatewise 2PL). This model defines the constraints implicitly; the

users cannot tailor them to the task at hand. This work was later extended to define a

weaker notion of correctness (entity-wise serializabtTity) (Korth, 1990). This model also
includes work on compensation-based recovery.

Sagas (Garcia-Molina, 1987) define a way of breaking up a longer transaction into

shorter ones, and using compensation for recovery when the longer transaction fails.
Recently, sagas have been generalized to nested sagas (Garcia-Molina, 1990). Both

schemes allow arbitrary interleaving of the shorter transactions or nested sagas within

a specific saga.

Multilevel atomicity (Lynch, 1983) is a framework for relaxing atomicity. It al-

lows the specification of a hierarchy of breakpoints between operations for a particu-
lar transaction execution. The breakpoint specification states how other transactions

can interleave their operations with this one. Multilevel atomicity assumes that the set
of transactions in the system is fairly static; adding a new transaction requires speci-
fying its relationships to all other transactions. It is also not clear how to specify the
breakpoint hierarchy for an interactive transaction before it has executed.

Other approaches used to increase the flexibility of design transactions the flexible
transaction model proposed by Kaiser (1990) operation transformation for groupware

77

systems by Ellis and Gibbs (1989) and the flexible consistency model of Sutton, Jr.

(1990).

An approach to process synchronization similar to our transaction synchronization

mechanism ispath expressions (Campbell, 1974). Path expressions are regular expres-

sions that define how operations on a single module should be synchronized. It is like

our notion of patterns (without conflict), except that patterns are more expressive, in

that they can be defined over multiple objects. Also, patterns can restrict who does an

operation, as well as when it can occur.

Version control systems such as RCS (Tichy, 1982) are normally used by groups of

designers to control concurrent access to files. Our work is more expressive than these,

both in that it allows other types of protection than just preventing the overwriting of

files, and that it allows explicit cooperation.

Transaction groups as used in this paper were first defined by Fernandez and

Zdonik (1989).

We have also taken the use of patterns, conflicts, and operation machines to specify
correct histories from Skarra's work (1989). Her model uses the methods defined on

abstract data types in the database as the underlying operation set, while we restrict our

operations to read and write. Her work touches mainly on methods of representing

correctness, especially when the methods associated with the objects can be nested.

While she examines the synchronization problem, she does not address recovery or

deadlocks at all. Also, she keeps only a single copy of each object at the root of her

transaction hierarchy, while we keep private copies for each transaction group that is

accessing the object. Her model is more complex than ours, in that her patterns allow

arbitrary variables on their transitions; thus, patterns can be used to emulate a Turing

machine. Based on our work in (Nodine, 1991), we feel that deciding online whether

or not a history is correct in her scheme may not be possible, because it potentially

requires looking ahead in the history.

9. Conclusion

Cooperative transaction hierarchies are a new framework for providing database sup-

port for cooperative applications such as design applications. Serializability is not

necessarily an appropriate requirement for transactions in cooperative applications,

because these transactions tend to be open-ended, long-lived, and interactive.

A cooperative transaction hierarchy reflects the structure of the underlying design

task. Each node in the hierarchy is responsible for some specific subtask, and has its

own private set of versions of the objects it is currently using in accomplishing that

78

subtask. The internal nodes (transaction groups) accomplish their tasks through the

cooperation of their children (members). The leaf nodes (cooperative transactions)
represent individual designers or individual design applications.

We have defined a programmable synchronization method based onpatterns and

conflicts that structures the interactions among cooperative transactions and allows

for controlled data sharing. Conflicts are like locks in the sense that they specify when

certain operations cannot occur. Patterns specify operation sequences that must occur

in a history for it to be correct. Operation machines are used to specify the patterns

and conflicts. We also provide notifications so that different transactions can receive

messages relevant to their work.

Cooperative transactions are not atomic. The largest unit in a cooperative trans-

action that is guaranteed to be atomic is an operation. Because of this, deadlocks

occur among operations rather than transactions. This means that deadlock detection

and resolution occur at the level of operations. Deadlock resolution is also affected by

the queueing semantics of cooperative transactions, which dictate that a cooperative

transaction may continue to operate even if it has queued operations. We have speci-

fied how deadlocks can be detected in the cooperative transaction hierarchy, and also

given guidelines for deadlock resolution.

Because cooperative transactions are inherently long-lived and interactive, we also

allow them to abort individual operations (as opposed to entire cooperative transac-

tions). We maintain operation dependencies in the log of each transaction group.

When an operation is aborted, we use these recorded dependencies to limit the op-

erations that are undone to those dependent on the aborted operation and those that

conflict in the new history. Thus, while the effects of an abort may cascade from one

cooperative transaction to others, we restrict that cascading to the operations affected

by the original abort.

Once a failure or abort has occurred, and the effects of all of the dependent oper-

ations are removed from the database, we allow the members of a transaction group to

cooperate in recovering from that point. The operations that can occur during recov-

ery must conform to the same synchronization specifications as the original operations.

Applications that require interaction, such as design applications, may place non-

traditional requirements on any underlying database support. Patterns and conflicts

provide a useful correctness specification for these applications. In this paper, we have

summarized how they can be used, and how they affect basic database operations such

as synchronization, deadlock detection, and recovery. These schemes are meant to re-

place the more traditional schemes used in centralized databases. Extensions to other

types of architectures, such as distributed architectures, should be feasible. However,

their implementation is a subject of further research.

79

Acknowledgments

Support for this research was provided in part by an IBM Graduate Fellowship, and in
part by IBM under contract No. 559716, by DEC under award No. DEC686, and by
ONR under contract N00014-83-K-0146. The authors also would like to thank Andrea
Skarra and Mary Fernandez for their helpful insights.

References

Campbell, R.H. and Habermann, A.N. The specification of process synchronization
by path expressions, Lecture Notes in Computer Science, 16:89-102, 1974.

Ellis, C.A. and Gibbs, S.J. Concurrency control in groupware systems. Proceedings
of the ACM SIGMOD International Conference on Management of Data, Portland,
OR, 1990, pp 399-407.

Fernandez, M. and Zdonik, S. Transaction groups: A model for controlling coopera-
tive transactions. Third International Workshop On Persistent Object Systems, New-
castle, Austrafia, 1989.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K. Coordinat-
ing multi-transaction activities. Technical Report CS-TR-247-90, Princeton, NJ:
Princeton University Department of Computer Science, 1990.

Garcia-Molina, H. and Salem, K. Sagas. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, San Francisco, CA, 1987, pp 249-259.

Haerder, T. and Rothermel, K. Concepts for transaction recovery in nested transac-
tions. Proceedings of the ACM SIGMOD International Conference on Management
of Data, San Francisco, CA, 1987, pp 239-248.

Kaiser, G.E. A flexible transaction model for software engineering. Proceedings of the
6th International Conference on Data Engineering, Los Angeles, CA, 1990.

Kim, W., Lorie, R., McNabb, D., and Ploufle, W. A transaction mechanism for engi-
neering design databases. Proceedings of the l Oth International Conference on Fbry
Large Databases, Singapore, 1984, pp 355-362.

Klahold, P., Schlageter, G., Unland, R., and Wilkes, W. A transaction model supporting
complex applications in integrated information systems. Proceedings of the ACM
SIGMOD International Conference on Management of Data, Austin, TX, 1985, pp
388-401.

Korth, H.E, Kim, W., and Bancilhon, E On long-duration (CAD) transactions. Infor-
mation Sciences, 46:73-107, 1988.

Korth, H.E, Levy, E., and Silberschatz, .A. A formal approach to recovery by compen-
sating transactions. Proceedings of the 16th International Conference on l~ry Large
Data Bases, Brisbane, Australia, 1990, pp 95-106.

80

Korth, H.E and Speegle, G.D. Formal model of correctness without serializability.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Chicago, IL, 1988, pp 379-386.

Lynch, N.A. Multilevel atomicity-a new correctness criterion for database concur-
rency control. ACM Transactions on Database @stems, 8:484-502, 1983.

Eliot, J. and Moss, B. Nested Transactions: An Approach to Reliable Distributed Com-
puting. Cambridge, MA: MIT Press, 1985.

Nodine, M.H. Conflict, queueing and deadlocks in cooperative transaction hierar-
chies. Technical Report CS-91-27, Providence, RI: Brown University Department
of Computer Science, 1991.

Nodine, M.H., Ramaswamy, S., and Zdonik, S.B. A cooperative transaction model
for design databases. In: Elmagarmid, A., ed. Database Transaction Models for
Advanced Applications. San Mateo, CA: Morgan Kauffman, 1992.

Nodine, M.H., Skarra, A.H., and Zdonik, S.B. Synchronization and recovery in co-
operative transactions. In: Dearle, A., Shaw, G.M., and Zdonik, S.B., eds.Imple-
menting Persistent Object Bases: Principles and Practice, San Mateo, CA: Morgan
Kaufmann, 1990, pp 329-342. Also:Proceedings of the 4th International Work-
shop on Persistent Object Systems, Martha's Vineyard, MA, 1990.

Nodine, M.H. and Zdonik, S.B. Cooperative transaction hierarchies: A transaction
model to support design applications. Proceedings of the 16th International Confer-
ence on l,~ry Large Databases, Brisbane, Australia, 1990, pp 83-94.

Skarra, A.H. Concurrency control for cooperating transactions in an object-oriented
database. SIGPLANNotices, 24:4 (1989).

Skarra, A.H. Localized correctness specifications for cooperating transactions in an
object-oriented database. Office Knowledge Engineering, 4:1 (1991).

Skarra, A.H., Zdonik, S.B., and Reiss, S.P. An object server for an object-oriented
database system. Proceedings of the International Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, 1986, pp 196-204.

Sutton, S.M., Jr. A flexible concurrency model for persistent data in software-process
programming languages. Dearie, A., Shaw, G.M., and Zdonik, S.B., eds. Imple-
menting Persistent Object Bases: Principles and Practice, San Mateo, CA: Morgan
Kaufmann, 1990, 305-318. Also: Proceedings of the 4th lnt'l Workshop on Persistent
Object Systems, Martha's Vineyard, MA, 1990.

Tichy, W.E Design, implementation, and evaluation of a revision control system. Pro-
ceedings of the 6th International Conference on So.f~vare Engineering, Tokyo, Japan,
1982.

