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Probabilistic graphical models provide a framework for
compact representation and efficient reasoning about the
joint probability distribution of several interdependent vari-
ables. This is a classical topic with roots in statistical physics.
In recent years, spurred by several applications in unstruc-
tured data integration, sensor networks, image processing,
bio-informatics, and code design, the topic has received re-
newed interest in the machine learning, data mining, and
database communities. Techniques from graphical models
have also been applied to many topics directly of interest
to the database community including information extrac-
tion, sensor data analysis, imprecise data representation and
querying, selectivity estimation for query optimization, and
data privacy. As database research continues to expand be-
yond the confines of traditional enterprise domains, we ex-
pect both the need and applicability of probabilistic graphi-
cal models to increase dramatically over the next few years.
With this tutorial, we are aiming to provide a foundational
overview of probabilistic graphical models to the database
community, accompanied by a brief overview of some of the
recent research literature on the role of graphical models in
databases.

Part I: Foundations of graphical models

The first part of the tutorial will be an approachable intro-
duction to the foundations of probabilistic graphical mod-
els [15]. We will cover basic representation issues of directed
and undirected graphical models, and algorithms for answer-
ing various kinds of queries on such models. Finally, we will
cover techniques for learning the parameters and structure
of a graphical model given example data.

Representation

Graphical models provide a compact representation of the
full joint distribution of a set of variables: X1 . . . Xn as
a graph whose nodes are the variables and whose edges
connect variables that interact directly. Variables that are
not directly connected are conditionally independent under
some combination of the other variables. A key concept in
the graphical model formalism is the use of these indepen-
dencies to represent the full joint distribution as a product
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of factors involving smaller subsets of variables.
We will discuss three types of models in detail:

• Directed graphical models, popularly known as Bayesian
networks, are typically used to represent causal or assy-
metric interactions amongst variables. Some popular ex-
amples of Bayesian networks are Hidden Markov Models,
Kalman Filters, and QMR networks.

• Probabilistic Relational Models [8] are a class of Bayesian
networks particularly suited for representing relational
databases. A PRM contains a relational component that
describes the relational schema of the domain, and a prob-
abilistic component that captures the probabilistic depen-
dencies that hold in the domain. The result is a rich and
powerful formalism that allows reasoning about data that
is inherently relational in nature.

• Undirected graphical models (MRFs, CRFs), or Markov
Random Fields, are useful for representing distributions
over variables where there is no natural directionality of
the influence of one variable over another and where the
interactions are more symmetric. Examples are the in-
teractions between atoms in a molecular structure, the
dependency between the labels of pixels of an image, or
the interactions between environmental properties sensed
by geographically co-located sensors [6].

Inference Queries

Once the prior knowledge about the environment or the ap-
plication domain has been encoded in the form of a prob-
abilistic graphical model (with the probability distribution
parameters possibly learned from historical data), three kinds
of tasks may be performed using the model:

• Adding evidence: additional knowledge about the vari-
ables, possibly gained by observing them, needs to be
incorporated into the model.

• Marginal probability queries over a small subset of vari-
ables: At any point, we may wish to find out the marginal
probability distribution over a subset of the variables.

• Computing most likely labels of a subset of variables: These
queries are similar to above, but we are only interested in
the most likely values of the subset of variables. In many
cases, these queries can be executed more efficiently than
marginal probability queries.

We will discuss algorithms for both exact and approximate
evaluation of these tasks.

Part II: Database Applications

In the second part, we will survey several representative
database applications where graphical models have proven
to be useful.
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• Probabilistic databases: An increasing number of real-
world applications are demanding support for manag-
ing, storing, and querying probabilistic data in relational
database systems. This has led to a recent resurgence
of research in this area, spanning a wide range of issues
from theoretical development of data models and data
languages to practical aspects such as indexing [9, 4] and
creating imprecise databases to represent uncertain data
sources [11]. Probabilistic graphical models present per-
haps the most attractive option for both capturing and
representing the uncertainty in the data and also for effi-
cient evaluation of queries over such data [25, 4].

• Information extraction and integration: Modern
techniques for information extraction rely on a number of
inter-related clues to automatically extract structured en-
tities from unstructured text. Some of the most success-
ful information extraction systems are therefore based on
graphical models for combining evidence. We will review
early probabilistic extraction systems based on Hidden
Markov Models [7, 1] and Maximum Entropy Models [18]
and then cover the state-of-the-art methods based on
Conditional Random Fields [16] and Max-margin markov
networks [26]. We will present various graphical models
for extraction, starting with traditional chain models for
plain text to segmentation models [24, 3, 23] for exploiting
matches with existing entities, and general graph models
for extracting from visual 2D layouts as in web pages.

• Sensor data management: Many common sensor pro-
cessing tasks can be seen as applications of specific in-
stances of graphical models, specifically dynamic Bayesian
networks [20, 19, 14], to streaming sensor data. Examples
of such tasks include (a) eliminating measurement noise
(sometimes called “white noise”) from the observed data
using filtering techniques such as Kalman filters [27], (b)
predicting missing readings using historical data, (c) in-
ferring hidden variables using hidden Markov models [22]),
and (d) automatically detecting novel or anomalous be-
havior [17]. Probabilistic graphical models have also been
shown to be useful in approximate querying [6] and data
collection in sensor networks [13, 2].

• Selectivity estimation for query optimization: Prob-
abilistic graphical models can be used to capture the cor-
relations present in the data, to aid in better selectiv-
ity estimation. Getoor et al. [10] used probabilistic re-
lational models (PRMs) for this purpose. Deshpande et
al. [5] proposed dependency-based histograms, based on a
class of undirected models, called decomposable models.
Pavlov et al. [21] explore similar techniques for approxi-
mate querying over large sparse binary transaction data.
Ilyas et al. [12] identify and exploit dependency structures
similar to graphical models for discovering soft functional
dependencies.
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