
Adaptive Query Processing: Why, How, When, What Next?

Amol Deshpande Zachary Ives Vijayshankar Raman
University of Maryland University of Pennsylvania IBM Almaden

ABSTRACT
Adaptive query processing has been the subject of a great
deal of recent work, particularly in emerging data man-
agement environments such as data integration and data
streams. We provide an overview of the work in this area,
identifying its common themes, laying out the space of query
plans, and discussing open research problems. We discuss
why adaptive query processing is needed, how it is being im-
plemented, where it is most appropriately used, and finally,
what next, i.e., open research problems.

1. INTRODUCTION
In recent years, there has been increasing use of adaptive

query processing (AQP) as a solution to the problems of
query optimization and execution — across relational, text,
or XML data, regardless of whether the data is accessed
locally, from the Web, or in a continuous stream. Much
of this is motivated by the emergence of domains where
Selinger-style query optimization fails, either due to insuf-
ficient statistics or dynamic data. The result has been a
flurry of intriguing new algorithms and systems (e.g., Nia-
garaCQ, TelegraphCQ, STREAM, Tukwila, YFilter, CAPE,
etc). Vendors like IBM, Microsoft, and Oracle are also inves-
tigating and deploying adaptivity features for their database
products.

In this tutorial we attempt to articulate a “big picture”
covering existing techniques, and to understand how tech-
niques generalize beyond their initial implementations. Tak-
ing into account time and audience interest, we cover a va-
riety of the major methods developed in the literature, with
a focus on techniques used in conventional (non-streaming)
queries. Two particular dimensions we consider are the plan
space explored, and the way execution and optimization are
interleaved via a measure/analyze/plan/actuate loop. We
also discuss the benefits and drawbacks of the various tech-
niques and identify open research problems. Our goal is
to simplify and abstract where possible. A more compre-
hensive survey, which includes a discussion of stream query
processing and a full list of references for the work discussed
in this tutorial, can be found in our recent survey paper [1].

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

2. MOTIVATIONS FOR AQP
Declarative queries are a central value proposition of the

relational model, letting the users specify only what re-
sults they want without having to worry about the strat-
egy (plan) used to access and combine the data. Finding
the best plan (query optimization) was addressed in even
the first RDBMSs — most successfully by Selinger et al.’s
dynamic programming algorithm in System R. System R
divided query processing into separate optimization and ex-
ecution stages and used cost-based enumeration of possi-
ble query plans. Over time, this optimization approach has
been improved (exploring more exhaustive plans, using his-
tograms, adding cross-block query rewrites), but the basic
System R architecture lives on in most query processors.
Unfortunately, as database-style query processing has ex-
tended to new domains, e.g., data streams, wide-area data
sources, and interactive query environments, that approach
has run into limitations. Similar problems have been en-
countered in settings with correlated predicates, query pa-
rameters, and self-tuning installations.

Several techniques have been proposed to extend the query
optimization process to solve some of these problems: (1) in-
corporating feedback from previous query executions for bet-
ter selectivity/cardinality estimation; (2) parametric tech-
niques to systematically postpone making certain decisions
as late as possible; and (3) least expected cost and robust
optimization techniques that take into account probability
distributions that may be associated with certain selectivity
estimates. These techniques require minimal changes to the
query processor itself; however, they are based on maintain-
ing elaborate statistics on the data, and hence are limited in
scope compared to the more ambitious adaptive techniques
we discuss in this tutorial.

3. CLASSES OF ADAPTATION
We divide our study of adaptive techniques into two cases.

3.1 Adaptive Selection Ordering
We begin the tutorial with a restricted query processing

problem, namely selection ordering. Selection ordering de-
termines an order in which to apply a given set of commu-
tative filters (selections) to all the tuples of a relation, so as
to find the tuples that satisfy all the filters. This is a central
problem in query optimization, and it has received renewed
attention in the context of environments such as the Web,
continuous high-speed data streams, and sensor networks.
The problem of selection ordering is now well-understood,
with several analytical and theoretical results, in large part
due to the “stateless” nature of selection ordering queries.

We first present an adaptive technique called A-Greedy

1426



that, at runtime, continuously monitors the properties of the
tuples seen recently, and changes (adapts) the query plan
in response to changes in these properties. We next con-
sider adapting using the eddy operator, which enables fine-
grained adaptivity by treating query execution as a process
of routing tuples through operators, and adapts by changing
the order in which tuples are routed through the operators
(thereby, in effect, changing the query plan being used for
the tuple). We briefly discuss extensions of the selection
ordering problem to parallel and distributed scenarios.

3.2 Adaptive Join Processing
The design and analysis of adaptive techniques for join

queries is more complicated than selection ordering: The
space of execution plans is much larger and more complex,
due to the large number of possible join orders and al-
gorithms, but more importantly, join operators typically
maintain internal state (e.g., hash tables) that depends on
the tuples processed by the operator. Due to this internal
state, the execution environment itself plays a much larger
role in determining the characteristics of query execution:
in particular, the type and rate of access to the data can
drastically change the nature and trade-offs of query exe-
cution. To tackle this complexity, the research community
has developed a diverse set of techniques designed for spe-
cific execution environments and/or specific join operators.
These adaptation techniques apply in different underlying
plan spaces, though this space is rarely made explicit. We
present these techniques in three parts, roughly based on
the space of the query execution plans they explore.

3.2.1 History-Independent Pipelined Execution
We first consider pipelines of non-blocking join and selec-

tion operators, with one further restriction: the state built
in the operators during execution is largely independent of
the adaptation choices made by the query processor. This
space includes a fairly large class of traditional pipelined
query plans, as well as many data stream query processors.
This simplifies analysis and design of algorithms, but the
algorithms tend to suffer from suboptimal performance be-
cause they do not store and reuse any intermediate tuples
during query execution. The simplest case is pipelined plans
with a single driver, and we show how the adaptive selec-
tion ordering techniques can be used directly to adapt these
queries. We then consider query execution where multiple
drivers are permitted, and discuss adaptation using MJoins
and unary operators called SteMs (used in conjunction with
eddies). We finally discuss a technique called A-Caching
that uses intermediate result caches to alleviate one of the
performance concerns with history-independent execution.

3.2.2 History-Dependent Pipelined Execution
This class of techniques also exclusively uses pipelined op-

erators, but the operators may internalize state that depends
on the routing choices made by the query processor. This
internalized state (the “burden of routing history”) makes it
hard to change from one query plan to another: an adaptive
algorithm must reason about the built-up state and ensure
that in switching plans, no output tuples will be lost and
no false duplicates will be output. We describe corrective
query processing, which uses a conventional (binary) query
plan at any time, but may use multiple different plans over

the entire execution. We then revisit the eddies architec-
ture, and consider adaptation when binary join operators
are used with eddies. We next present the STAIR operator,
which attempts to lift the burden of routing history by al-
lowing explicit state manipulation. Finally, we discuss how
how state manipulation is used in the CAPE system to affect
plan changes.

3.2.3 Non-pipelined Execution
Our final segment on adaptive techniques covers plans

with blocking operators like SORT — the dominant style of
plan considered by most DBMSs today. Blocking operators
provide materialization points (where an intermediate result
is created in entirety before proceeding with further oper-
ators of the plan), at which it is easy to re-evaluate query
execution decisions and change “downstream” portions of
the plan. Techniques that adapt at materialization points
are easy to retrofit into existing DBMS engines and some
have been prototyped in commercial systems. Plan staging
simply interleaves optimization and execution: first it opti-
mizes and runs one plan stage to completion, and then, using
the first result as input, it optimizes and runs the next stage,
etc. The optimization of each stage can use statistics (cardi-
nality, histograms) computed on the outputs of the previous
stages. Mid-query re-optimization, progressive optimization,
and proactive re-optimization instead initially optimize the
entire plan; they monitor the intermediate result sizes dur-
ing query execution, and re-optimize only if results diverge
from the original estimates. Query scrambling reacts to ad-
dress delays in processing data from wide area sources, by
rescheduling the order of evaluation of query plan operators
and occasionally introducing new operators into the query
plan.

4. OPEN PROBLEMS
We conclude with the major tradeoffs in adaptive query

processing and present some important open problems in
this area:

Parametric query optimization: While this approach
has been on the back-burner in recent years, it promises to
precompute sets of alternative plans that might avoid the
need for adaptive query processing in many cases.

Parallelism: Another open area is extending adaptive tech-
niques to shared-nothing or distributed scenarios: adapting
a query plan in a distributed environment can be expensive.

Routing/adaptation policies: Work on eddies and other
adaptive techniques often focuses on performance of the tu-
ple routing or plan modification mechanisms, rather than
the actual routing or adaptation policies — which could po-
tentially leverage techniques from online learning and re-
lated research areas.

Larger-than-memory execution: While adaptive tech-
niques seldom consider paging to disk, this is key to their
broader adoption and scale-up.

5. REFERENCES
[1] Amol Deshpande, Zachary Ives, and Vijayshankar

Raman. Adaptive query processing. Foundations and
Trends in Databases, 1(1), 2007. To appear.

1427


