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ABSTRACT 
In this paper we discuss advances in self-tuning database systems 
over the past decade, based on our experience in the AutoAdmin 
project at Microsoft Research. This paper primarily focuses on the 
problem of automated physical database design. We also highlight 
other areas where research on self-tuning database technology has 
made significant progress. We conclude with our thoughts on 
opportunities and open issues. 

1. HISTORY OF AUTOADMIN PROJECT 
Our VLDB 1997 paper [26] reported our first technical results 
from the AutoAdmin project that was started in Microsoft 
Research in the summer of 1996. The SQL Server product group 
at that time had taken on the ambitious task of redesigning the 
SQL Server code for their next release (SQL Server 7.0).  Ease of 
use and elimination of knobs was a driving force for their design 
of SQL Server 7.0. At the same time, in the database research 
world, data analysis and mining techniques had become popular.  
In starting the AutoAdmin project, we hoped to leverage some of 
the data analysis and mining techniques to automate difficult 
tuning and administrative tasks for database systems. As our first 
goal in AutoAdmin, we decided to focus on physical database 
design. This was by no means a new problem, but it was still an 
open problem. Moreover, it was clearly a problem that impacted 
performance tuning. The decision to focus on physical database 
design was somewhat ad-hoc. Its close relationship to query 
processing was an implicit driving function as the latter was our 
area of past work. Thus, the paper in VLDB 1997 [26] described 
our first solution to automating physical database design.  

In this paper, we take a look back on the last decade and review 
some of the work on Self-Tuning Database systems. A complete 
survey of the field is beyond the scope of this paper. Our 
discussions are influenced by our experiences with the specific 
problems we addressed in the AutoAdmin project. Since our 
VLDB 1997 paper was on physical database design, a large part 
of this paper is also devoted to providing details of the progress in 
that specific sub-topic (Sections 2-6). In Section 7, we discuss 
briefly a few of the other important areas where self-tuning 
database technology have made advances over the last decade. 
We reflect on future directions in Section 8 and conclude in 
Section 9.  

2. AN INTRODUCTION TO PHYSICAL 
DATABASE DESIGN         

2.1 Importance of Physical Design  
A crucial property of a relational DBMS is that it provides 
physical data independence. This allows physical structures such 
as indexes to change seamlessly without affecting the output of 
the query; but such changes do impact efficiency.  Thus, together 
with the capabilities of the execution engine and the optimizer, 
the physical database design determines how efficiently a query is 
executed on a DBMS.  

The first generation of relational execution engines were 
relatively simple, targeted at OLTP, making index selection less 
of a problem. The importance of physical design was amplified as 
query optimizers became sophisticated to cope with complex 
decision support queries. Since query execution and optimization 
techniques were far more advanced, DBAs could no longer rely 
on a simplistic model of the engine. But, the choice of right index 
structures was crucial for efficient query execution over large 
databases.  

2.2 State of the Art in 1997 
The role of the workload, including queries and updates, in 
physical design was widely recognized. Therefore, at a high level, 
the problem of physical database design was - for a given 
workload, find a configuration, i.e. a set of indexes that minimize 
the cost. However, early approaches did not always agree on what 
constitutes a workload, or what should be measured as cost for a 
given query and configuration.  

Papers on physical design of databases started appearing as early 
as 1974.  Early work such as by Stonebraker [63]  assumed a 
parametric model of the workload and work by Hammer and Chan 
[44] used a predictive model to derive the parameters. Later 
papers increasingly started using an explicit workload 
[40],[41],[56]. An explicit workload can be collected using the 
tracing capabilities of the DBMS. Moreover, some papers 
restricted the class of workloads, whether explicit or parametric, 
to single table queries. Sometimes such restrictions were 
necessary for their proposed index selection techniques to even 
apply and in some cases they could justify the goodness of their 
solution only for the restricted class of queries.  

All papers recognized that it is not feasible to estimate goodness 
of a physical design for a workload by actual creation of indexes 
and then executing the queries and updates in the workload. 
Nonetheless, there was a lot of variance on what would be the 
model of cost. Some of the papers took the approach of doing the 
comparison among the alternatives by building their own cost 
model. For columns on which no indexes are present, they built 
histograms and their custom cost model computed the selectivity 
of predicates in the queries by using the histograms.  
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Another set of papers, starting with [40], used the query 
optimizer’s cost model instead of building a new external cost 
model. Thus the goodness of a configuration for a query was 
measured by the optimizer estimated cost of the query for that 
configuration. In this approach, although histograms still needed 
to be built on columns for which no indexes existed, no new cost 
model was necessary. This approach also required metadata 
changes to signal to the query optimizer presence of (fake) 
indexes on those columns. A concern in this approach is the 
potential impact on performance on the server and therefore there 
was a need to minimize the number of optimizer calls [40,41]. 
Some of the techniques to reduce optimizer calls introduced 
approximations, and thus led to lack of full fidelity with the 
optimizer’s cost model.  

The hardness result for selecting an optimal index configuration 
was shown by Shapiro [60]. Therefore, the challenge was similar 
to that in the area of query optimization – identifying the right set 
of heuristics to guide the selection of physical design. One set of 
papers advocated an approach based on rule-based expert 
systems. The rules took into account query structures as well as 
statistical profiles and were “stand-alone” applications that 
recommended indexes. A tool such as DEC RdbExpert falls in 
this category. Rozen and Shasha [56] also used an external cost 
model but their cost model was similar to that of a query 
optimizer. They suggested a search paradigm that used the best 
features of an individual query (using heuristics, without 
optimizer calls) and restricting the search to the union of those 
features. The latter idea of using best candidates of individual 
queries as the search space is valuable, as we will discuss later.  

The “stand-alone” approaches described above suffered from a 
key architectural drawback as pointed out by [40], the first paper 
to propose an explicit workload model and also to use the query 
optimizer for estimating costs.  This paper argued that the 
optimizer’s cost model must be the basis to evaluate the impact of 
a physical design for a query. It also proposed building database 
statistics for non-existent indexes and making changes to system 
catalog so that optimizers can estimate costs for potential physical 
design configurations. Despite its key architectural contributions, 
there were several important limitations of this approach as will 
be discussed shortly.  

3. REVIEW OF VLDB 1997 PAPER 
3.1 Challenges 
The AutoAdmin project started considering the physical design 
problem almost a decade after [40]. During this decade, 
tremendous progress was made on the query processing 
framework. The defining application of this era was decision-
support queries over large databases. The execution engine 
supported new logical as well as physical operators. The engines 
used indexes in much more sophisticated ways; for example, 
multiple indexes per table could be used to process selection 
queries using index intersection (and union). Indexes were also 
used to avoid accessing the base table altogether, effectively being 
used for sequential scans of vertical slices of tables. These are 
known as “covering indexes” for queries, i.e., when a covering 
index for a query is present, the query could avoid accessing the 
data file. Indexes were used to eliminate sorts that would 
otherwise have been required for a GROUP BY query. The 
optimization technology was able to handle complex queries that 
could leverage these advances in execution engine. The workload 

that represented usage of the system often consisted of many 
queries and stored procedures coming from a variety of 
applications and thus no longer limited to a handful of queries. 

While this new era dramatically increased the importance of the 
physical database design problem, it also exposed the severe 
limitations of the past techniques. The “expert system” based 
approach was no longer viable as building an external accurate 
model of index usage was no longer feasible. Therefore, the 
approach taken in [40] to use the optimizer’s cost model and 
statistics was the natural choice. However, even there we faced 
several key gaps in what [40] offered. First, the necessary 
ingredients for supporting the needed API functionality in a 
client-server architecture was not discussed. Specifically, given 
that the databases for decision support systems were very large 
and had many columns, creating statistics using traditional full 
scan techniques was out of question for these databases. Second, 
the new execution engines offered many more opportunities for 
sophisticated index usage. Thus the elimination heuristics to 
reduce the search space of potential indexes (e.g., at most one 
index per table) was no longer adequate. Third, it was imperative 
that multi-column indexes were considered extensively as they are 
very important to provide “covering indexes”. The search strategy 
of [40] did not consider multi-column indexes as they were of 
relatively low importance for execution engines and application 
needs of a decade ago. Finally, the scalability of the tool with 
respect to the workload size was also quite important as traces, 
either generated or provided by DBAs, could consist of many 
(often hundreds of thousands of) queries and updates, each of 
which can be quite complex. 

3.2 Key Contributions 
The first contribution of our AutoAdmin physical design project 
was to support creation of a new API that enabled a scalable way 
to create a hypothetical index. This was the most important 
server-side enhancement necessary. A detailed description of this 
interface, referred to as “what-if” (or hypothetical) index, 
appeared in [27] (see Figure 1). The key aspects are: (1) A 
“Create Hypothetical Index” command that creates metadata entry 
in the system catalog which defines the index. (2) An extension to 
the “Create Statistics” command to efficiently generate the 
statistics that describe the distribution of values of the column(s) 
of a what-if index via the use of sampling [25],[20].  
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A related requirement was use of an optimization mode that 
enabled optimizing a query for a selected subset of indexes 
(hypothetical or actually materialized) and ignoring the presence 
of other access paths. This too was important as the alternative 

Figure 1. “What-if” analysis architecture for 
physical database design.  
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would have been repeated creation and dropping of what-if 
indexes, a potentially costly solution that was used by [40]. This 
is achieved via a “Define Configuration” command followed by 
an invocation of the query optimizer.  

The importance of this interface went far beyond just automated 
physical design. Once exposed, it also made the manual physical 
design tuning much more efficient. A DBA, who wanted to 
analyze the impact of a physical design change, could do so 
without disrupting normal database operations.  

The next contribution was the key decision of defining the search 
space as consisting of the best configuration(s) for each query in 
the workload, where the best configuration itself is the one with 
lowest optimizer estimated cost for the query. Intuitively, this 
leverages the idea (see also [41]) that an index that is not part of 
an optimal (or close to optimal) configuration for at least one 
query, is unlikely to be optimal for the entire workload. Unlike  
[41], the selection of a set of candidate indexes on a per-query 
basis is done in AutoAdmin in a cost-based manner keeping the 
optimizer in the loop. This candidate selection step is key to 
scalable search.  

Our VLDB 1997 paper also presented a set of optimizations for 
obtaining the optimizer estimated cost of a query for a given 
configuration (denoted by Cost (Q,C)) without having to invoke 
the query optimizer. The essential idea was to show how Cost 
(Q,C)  could be derived from the costs of certain important 
subsets of C. Given the richness of the query processing 
capabilities of DBMS engines, a key challenge, addressed in [26] 
was defining what configurations should be considered atomic for 
a given query. By caching the results of the optimizer calls for 
atomic configurations, optimizer invocations for several other 
configurations for that query could be eliminated (often by an 
order of magnitude).  

Finally, a search paradigm that was able to scale with the large 
space of multi-column indexes was proposed. The idea was to 
iteratively expand the space of multi-column indexes considered 
by picking only the winning indexes of one iteration and 
augmenting the space for the next iteration by extending the 
winners with an additional column. Intuitively, this exploits the 
idea that a two-column index (on say (A,B)) is unlikely to be 
beneficial for a workload unless the single column index on its 
leading column (i.e., index on (A)) is beneficial.  

The above key ideas formed the basis of the Index Tuning Wizard 
that shipped in Microsoft SQL Server 7.0 [29], the first tool of its 
kind in a commercial DBMS. In the subsequent years, we were 
able to refine and improve our initial design.  

4. INCORPORATING OTHER PHYSICAL 
DESIGN STRUCTURES 
The VLDB 1997 paper [26] focused on how to recommend 
indexes for the given workload. Today’s RDBMSs however 
support other physical design structures that are crucial for 
workload performance. Materialized views are one such structure 
that is widely supported and can be very effective for decision 
support workloads. Horizontal and vertical partitioning are 
attractive since they provide the ability to speed up queries with 
little or no additional storage and update overhead. The large 
additional search space introduced by these physical design 
structures requires new methods to deal with challenges in 
scalability. In this section we describe the significant extensions 

to the search architecture of [26] for incorporating materialized 
views and partitioning (horizontal and vertical).  We begin with a 
brief review of materialized views and partitioning and the new 
challenges they introduce.  

4.1 Physical Design Structures 
4.1.1 Materialized Views 
A materialized view (MV) is a more complex physical design 
structure than an index since a materialized view may be defined 
over multiple tables, and can involve selection, projection, join 
and group by. This richness of structure of MVs makes the 
problem of selecting materialized views significantly more 
complex than that of index selection. First, for a given query (and 
hence workload) the space of materialized views that must be 
considered is much larger than the space of indexes. For example, 
MVs on any subset of tables referenced in the query may be 
relevant. For each such subset many MVs with different selection 
conditions and group by columns may need to be considered. 
Furthermore, a materialized view itself can have clustered and 
non-clustered indexes defined on it. Finally, if there are storage 
and update constraints, then it is important to consider 
materialized views that can serve multiple queries. For example, if 
there are two candidate multi-table MVs, one with a selection 
condition Age BETWEEN 25 and 35 and another with the 
selection condition Age BETWEEN 30 and 40, then a MV with 
the selection condition Age BETWEEN 25 and 40 can be used to 
replace the above two materialized views but with potentially 
reduced storage and update costs. The techniques for searching 
the space of MVs in a scalable manner are of paramount 
importance.  

4.1.2 Partitioning 
Similar to a clustered index on a table, both horizontal and 
vertical partitioning are non-redundant, i.e., they incur little or no 
storage overhead. Also, in the same way that only one clustering 
can be chosen for a table, only one partitioning can be chosen for 
a table. This makes partitioning particularly attractive in storage 
constrained or update intensive environments.  

Commercial systems today support hash and/or range horizontal 
partitioning, and in some cases hybrid schemes as well. 
Horizontal partitioning can be useful for speeding up joins, 
particularly when each of the joining tables are partitioned 
identically (known as a co-located join). Horizontal range 
partitioning can also be exploited for processing range queries.  
Finally, not only can a table be horizontally partitioned, but so can 
indexes on the table. Thus a large new search space of physical 
design alternatives is introduced. Another important scenario for 
using horizontal partitioning is manageability, in particular to 
keep a table and its indexes aligned, i.e., partitioned identically. 
Alignment makes it easy to load new partitions of a table (and 
remove old partitions) without having to rebuild all indexes on the 
tables. From the perspective of physical design tuning, alignment 
therefore becomes an additional constraint that must be obeyed 
while tuning.  

Major commercial relational database systems do not natively 
support vertical partitioning. Thus achieving the benefits of 
vertical partitioning in such systems raises additional 
considerations. Specifically, the logical schema (i.e. table 
definitions) needs to change [8]. In turn, this requires that 
application queries and updates may need to be modified to run 
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against the new schema. Alternatively, views can be defined that 
hide the schema changes from application queries. If the above 
class of views is updateable, then update statements in the 
application do not need to be modified either.  

4.2 Search Algorithms 
The introduction of materialized views and partitioning results in 
an explosion in the space of physical design alternatives. In this 
section, we present three techniques that enable physical design 
tools to explore this large space in a scalable manner. The use of 
these techniques led to significant extensions and changes in the 
search architecture presented in [26]. These techniques are general 
in the sense that the concepts are applicable to all physical design 
structures discussed in this paper. They enable a uniform search 
architecture for structuring the code of a physical design tool. The 
architecture that evolved as a result of these advances is shown in 
Figure 2. These extensions are in fact part of the product releases 
of Index Tuning Wizard in SQL Server 2000 [4] and Database 
Engine Tuning Advisor in SQL Server 2005 [8].  In the rest of 
this section we describe the key steps in this architecture; 
highlighting the challenges and solutions. Note that the candidate 
selection step is unchanged with respect to [26] and hence we do 
not focus on it here.  

Workload
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4.2.1 Pruning Table and Column Sets 
Whenever there is a query over multiple tables in the workload, 
materialized views over tables mentioned in the query (henceforth 
called table sets), or subsets of those tables, can be relevant. 
Therefore it becomes crucial to prune the search space early on, 
since otherwise even the candidate selection step does not scale as 
there could be a very large number of materialized views over 
table sets in the workload. One key observation presented in [5] is 
that in many real workloads, a large number of table sets occur 
infrequently. However, any materialized views on table sets that 
occur infrequently cannot have a significant impact on overall 
workload performance. Of course, the impact cannot be measured 
by frequency alone, but needs to be weighted by the cost of 
queries. The above observation allows leveraging a variation of 
frequent itemsets technique [3] to eliminate from consideration a 

large number of such table sets very efficiently. Only table sets 
that survive the frequent itemset pruning are considered during 
the candidate selection step. The same intuition was subsequently 
extended in [10] to prune out a large number of column sets. 
Column sets determine which multi-column indexes and 
partitioning keys are considered during the candidate selection 
step. This technique allowed the elimination of the iterative multi-
column index generation step in [26] (see Section 3.2), while still 
retaining the scalability and quality of recommendations. 

4.2.2 Merging 
The initial candidate set results in an optimal (or close-to-optimal) 
configuration for queries in the workload, but often is either too 
large to fit in the available storage, or causes updates to slow 
down significantly. Given an initial set of candidates for the 
workload, the merging step augments the set with additional 
structures that have lower storage and update overhead without 
sacrificing too much of the querying advantages. The need for 
merging indexes becomes crucial for decision support queries, 
where e.g., different queries are served best by different covering 
indexes, yet the union of those indexes do not fit within the 
available storage or incur too high an update cost. Consider a case 
where the optimal index for query Q1 is (A,B) and the optimal 
index for Q2 is (A,C). A single “merged” index (A,B,C) is sub-
optimal for each of the queries but could be optimal for the 
workload e.g., if there is only enough storage to build one index. 
In general, given a physical design structure S1 that is a candidate 
for query Q1 and a structure S2 for query Q2, merging generates a 
new structure S12 with the following properties: (a) Lower 
storage: |S12| < |S1| + |S2|. (b) More general: S12 can be used to 
answer both Q1 and Q2. Techniques for merging indexes were 
presented in [28]. The key ideas were to: (1) define how a given 
pair of indexes is merged, and (2) generate merged indexes from a 
given set, using (1) as the building block.  

View merging introduces challenges over and beyond index 
merging. Merging a pair of views (each of which is a SQL 
expression with selections, joins, group by) is non-trivial since the 
space of merged views itself is very large. Furthermore, the 
expressiveness of SQL allows interesting transformations during 
merging. For example, given a multi-table materialized view V1 
with a selection condition (State=’CA’) and V2 with (State = 
‘WA’), the space of merged views can also include a view V12 in 
which the selection condition on the State column is eliminated, 
and the State column is pushed into the projection (or group by) 
list of the view. Scalable techniques for merging views that 
explored this space are presented in [5],[16].  

An alternative approach for generating additional candidate MVs 
that can serve multiple queries in the workload by leveraging 
multi-query optimization techniques was presented in [70]. An 
open problem is to analyze and compare the above approaches in 
terms of their impact on the quality of recommendations and 
scalability of the tool.  

4.2.3 Enumeration 
Given a workload and a set of candidates, obtained from the 
candidate selection step and augmented by the merging step, the 
goal of the enumeration is to find a configuration (i.e., subset of 
candidates) with the smallest total cost for the workload. Note 
also that we also allow DBAs to specify a set of constraints that 
the enumeration step must respect, e.g., to keep all existing 

Figure 2. Search Architecture of a Physical 
Database Design tool. 
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indexes, or to respect a storage bound (See Section 6.1 for 
details). Since the index selection problem has been shown to be 
NP-Hard [21],[60], the focus of our work has been on developing 
heuristic solutions that give good quality recommendations and 
can scale well. 

One important challenge is that solutions that naively stage the 
selection of different physical design structures (e.g., select 
indexes first followed by materialized views) can result in poor 
recommendations. This is because: (1) The choices of these 
structures interact with one another (e.g., optimal choice of index 
can depend on how the table is partitioned and vice versa). (2) 
Staged solutions can lead to redundant recommendations. For 
example, assume that a beneficial index is picked first. In the next 
stage when MVs are considered, a materialized view that is 
significantly more beneficial than the index is picked. However, 
once the materialized view is picked, the index previously 
selected may contribute no additional benefit whatsoever. (3) It is 
not easy to determine a priori how to partition the storage bound 
across different physical design structures [5]. Thus, there is a 
need for integrated recommendations that search the combined 
space in a scalable manner.  

Broadly the search strategies explored thus far can be categorized 
as bottom-up [26],[55],[69] or top-down [15] search, each of 
which has different merits. The bottom up strategy begins with the 
empty (or pre-existing configuration) and adds structures in a 
greedy manner. This approach can be efficient when available 
storage is low, since the best configuration is likely to consist of 
only a few structures. In contrast, the top-down approach begins 
with a globally optimal configuration but it could be infeasible if 
it exceeds the storage bound. The search strategy then 
progressively refines the configuration until it meets the storage 
constraints. The top-down strategy has several key desirable 
properties [15] strategy can be efficient in cases where the storage 
bound is large.  It remains an interesting open issue as to whether 
hybrid schemes based on specific input characteristics such as 
storage bound can improve upon the above strategies.  

5. RECENT ADVANCES IN PHYSICAL 
DATABASE DESIGN 
In Section 4 we described impact on the physical design problem 
that arises from going beyond indexes to incorporate materialized 
views and partitioning. In this section we discuss more recent 
advances that revisit some of the basic assumptions made in the 
problem definition thus far. The importance of a physical design 
tool to stay in-sync with the optimizer using the “what-if” 
interfaces [27] was highlighted earlier. First (in Section 5.1), we 
describe recent work on enhancing this interface to improve both 
the degree to which the tool is in sync with the optimizer, 
resulting in both improved quality of recommendation as well as 
scalability. Next, in Section 5.2, we discuss alternative tuning 
models that can potentially serve a different class of scenarios. 

5.1 Enhancing the “What-if” Interface 
The idea of selecting a set of candidate indexes per query in a 
cost-based manner is crucial for scalability of a physical database 
design tool (Section 3). Observe that the approach of [26] requires 
the client tool to search for the best configuration for each query, 
potentially using heuristics such as those discussed in Section 4. 
This can result in selection of candidates that are not optimal. A 
more recent idea presented in [15] is to instrument the optimizer 

itself to generate the candidate set for each query. Most query 
optimizers (such as those based on System-R [59] or Cascades 
[43] frameworks) rely on a crucial component that transforms 
single-table logical sub-expressions into index-based execution 
sub-plans. This procedure considers the set of available indexes to 
generate execution sub-plans including index scans, index 
intersections, lookups, etc. In the approach of [15], each such 
transformation request is intercepted. The logical sub-expression 
is then analyzed to identify the indexes that would result in the 
optimal execution sub-plan. The metadata for such indexes is then 
added to the system catalogs and optimization is resumed as 
normal (see Figure 3). This ensures that the optimizer picks the 
optimal access methods for the query. This approach leverages the 
observation that the set of transformation requests issued by the 
optimizer does not depend on the existing set of indexes. 

 
 

Thus the candidate selection step is now more in-sync with the 
optimizer than in the earlier approach of [26]. Since requests are 
intercepted during optimization, the above technique does not 
miss candidates as in [26]. Also, unlike [69] it does not propose 
candidates that are syntactically valid but might not be exploited 
by the optimizer. The number of such requests and the number of 
candidates for such requests is shown to be relatively small even 
for complex workloads. Thus this extension to the “what-if” 
interface can result in: (a) the solution being more deeply in-sync 
with the optimizer and (b) improved scalability for obtaining 
candidates by reducing the number of optimizer calls. Finally, as 
described in [15] we note that this technique can also be extended 
to deal with materialized views.  

5.2 Alternative Tuning Models 
Even for DBAs who would like to depend exclusively on their 
insights without using a physical design advisor, the “what-if” 
physical design analysis capabilities [27] is helpful as they are 
now able to quantitatively explore the impact of their proposed 
changes using optimizer’s cost estimates.  Thus, they are now able 
to iteratively refine and evaluate their alternatives without having 
to ever create/drop any physical design structures. 

The tuning model discussed thus far in this paper requires the 
DBA to provide a workload, and the tool provides a 
recommended physical design configuration. As will be discussed 
in Section 6, this is indeed the model of physical design tool that 
the commercial relational database systems support. Although the 
tool frees DBAs from having to choose specific physical design 
structures one at a time, the DBA needs to: (1) Decide when to 

Figure 3. Instrumenting the optimizer to generate 
candidate indexes. 
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invoke the tool. (2) Decide what “representative” workload to 
provide as input to the tool. (3) Run the tool and examine the 
recommended physical design changes, and implement them if 
appropriate. In this section, we describe some of our recent work 
in trying to further simplify the above tasks that the DBA faces. 
While Sections 5.2.1 and 5.2.2 describe techniques that still 
retains the model of physical design tuning based on static 
workload, the work on Dynamic Tuning, described in Section 
5.2.3, describes initial work on an online approach that 
continuously monitors the workload and makes changes without 
the DBA having to intervene.  

5.2.1 Alerter (When to Tune) 
One way to address the issue of changing workloads and data 
characteristics requirement on the DBA is deciding when the 
physical design tool must be invoked. This can be challenging 
particularly since the workload pattern and data distributions may 
change. Therefore, a useful functionality is having a lightweight 
“alerter” capability that can notify the DBA when significant 
tuning opportunities exist. The work in [14] (see also Section 
7.2.2) presents a low overhead approach that piggybacks on 
normal query optimization to enable such functionality. The idea 
is to have a lightweight adaptation of the optimizer 
instrumentation techniques presented in Section 5.1 by only 
recording index requests for the plan chosen by the optimizer. As 
detailed in [14], this enables the alerter to provide a lower bound 
on the improvement that would be obtained if the workload were 
to be tuned by a physical design tool.  

5.2.2 Workload as a Sequence 
Our tuning model assumes that the workload is a set of queries 
and updates. If we were to instead view the workload as a 
sequence or a sequence of sets, then better modeling of real world 
situations are possible. For example, in many data warehouses, 
there are mostly queries during the day followed by updates at 
night. Thus, viewing workload a sequence of “set of read queries” 
followed by a “set of update queries” makes it possible to handle 
variations in workload over time and to exploit properties of the 
sequence to give a better performance improvement by creating 
and dropping structures at appropriate points in the sequence. Of 
course, the tool has to now take into account the cost of 
creating/dropping the physical design structure as well (e.g., in the 
data warehouse situation, the  cost to drop the index before the 
nightly updates, and recreate indexes after the updates are 
completed). A framework for automated physical design when the 
workload is treated as a sequence is presented in [9].  

5.2.3 Dynamic (Online) Tuning 
The goal of Dynamic Tuning is to have a server-side “always-on” 
solution for physical database design that requires little or no 
DBA intervention [13],[57],[58]. Thus, dynamic tuning 
component tracks the workload and makes an online decision to 
make changes to physical design as needed. In fact, in some 
situations where the workload may change too unpredictably, 
dynamic tuning may be the only option.  For example, in a hosted 
application environment, a new application can be deployed, run 
and removed, all in a relatively short period of time. Naturally, 
dynamic tuning needs to depend on the enabling technology of 
online index creation and drop, which is supported by today’s 
commercial DBMSs.  

There are three key new challenges for a continuous tuning 
system. First, since it is always-on, the solution has to have very 
low overhead and not interfere with the normal functioning of the 
DBMS. Second, the solution must balance the cost of 
transitioning between physical design configurations and the 
potential benefits of such design changes. Finally, the solution 
must be able to avoid unwanted oscillations, in which the same 
indexes are continuously created and dropped.  

 

 

The work in [13] presents an online algorithm that can modify the 
physical design as needed. It is prototyped inside the Microsoft 
SQL Server engine. The broad architecture of the solution is 
shown in Figure 4. At query optimization time, the set of 
candidate indexes desirable for the query are recorded by 
augmenting the execution plan. During execution time the Online 
Tuning Engine component tracks the potential benefits that are 
lost by not creating these candidate indexes, as well as the utility 
of existing indexes. When sufficient evidence has been gathered 
that a physical design change is beneficial, then the index creation 
(or deletion) is triggered online. Since an online algorithm cannot 
see the future, its choices are bound to be suboptimal compared to 
an optimal offline solution (which knows the future), but the 
design of the algorithm attempts to bound the degree of such sub-
optimality. The work in [57],[58] share similar goals as [13] but 
differ in the design points of: (a) the degree to which they are 
coupled with the query optimizer (b) permissible overheads for 
online index tuning.  

A new approach for online physical design tuning is database 
cracking [45],[46]. In this work, each query is interpreted not only 
as a request for a particular result set, but also as a suggestion to 
crack the physical database store into smaller pieces. Each piece 
is described by a query expression, and a “cracker index” tracks 
the current pieces so that they can be efficiently assembled as 
needed for answering queries. The cracker index is built 
dynamically while queries are processed and thus can adapt to 
changing query workloads. In the future, a careful comparison of 
database cracking to other online tuning approaches such as the 
ones described above, needs to be done. 

6. IMPACT ON COMMERCIAL DBMS  
All major commercial database vendors today ship automated 
physical design tools. We discuss these commercial tools in 
Section 6.1. Building an industrial strength physical design tool 
poses additional challenges not discussed thus far. We highlight 
three such challenges and approaches for handling them in 
Section 6.2-6.4.  

Figure 4. An architecture for online index tuning. 
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6.1 Physical Design Tuning Tools in 
Commercial DBMS 
In 1998, Microsoft SQL Server 7.0 was the first commercial 
DBMS to ship a physical database design tool, called the Index 
Tuning Wizard (ITW) based on the techniques presented in 
[26],[27]. In the next release, Microsoft SQL Server 2000, ITW 
was enhanced to provide integrated recommendations for indexes, 
materialized views (known as indexed views in Microsoft SQL 
Server) and indexes on indexed views. In the most recent release 
of Microsoft SQL Server 2005, the functionality of ITW was 
replaced by a full-fledged application called the Database Engine 
Tuning Advisor (DTA) [7]. DTA can provide integrated 
recommendations for indexes, indexed views, indexes on indexed 
views and horizontal range partitioning. DTA allows DBAs to 
express constraints including aligned partitioning (see Section 
4.1.2), storage constraints, existing physical design structures that 
must be retained, etc. In addition, DTA exposes a rich set of 
tuning options, e.g., which tables to tune, etc. An important usage 
scenario for DTA is tuning a single problem query. Therefore 
DTA functionality can also be invoked directly from the SQL 
Server Management Studio, the tool environment from which 
DBAs often troubleshoot queries. DTA’s recommendations are 
accompanied by a set of detailed analysis reports that quantify the 
impact of accepting DTA’s recommendations. The tool also 
exposes “what-if” analysis functionality to facilitate manual 
tuning by advanced DBAs. More details of DTA, its usage and 
best practices are available in a white paper [8].  

IBM’s DB2 Universal Database (UDB) version 6 shipped the 
DB2 Advisor [66] in 1999 that could recommend indexes for a 
given workload. Subsequently, the DB2 Design Advisor tool in 
DB2 version 8.2 [69] provides integrated recommendations for 
indexes, materialized views, shared-nothing partitioning and 
multi-dimensional clustering. One difference between this tool 
and DTA (or ITW) is how an integrated recommendation for 
different physical design structures is produced. Unlike DTA 
where the search over all structures is done together, DB2 Design 
Advisor is architected to have independent advisors for each 
physical design structure.  The search step that produces the final 
integrated recommendation iteratively invokes each of the 
advisors in a staged manner. 

Oracle 10g shipped the SQL Access Advisor [37], which takes as 
input a workload and a set of candidates for that workload 
(generated by the Oracle Automatic Tuning Optimizer on a per-
query basis), and provides a recommendation for the overall 
workload. The tool recommends indexes and  materialized views. 

Finally, we note that recent textbooks on database design e.g., 
[49] devote significant coverage to advances in this area over the 
past ten years and suggest use of automated physical design tools 
in commercial DBMS systems. 

6.2 Tuning Large Workloads 
One of the key factors that affect the scalability of physical design 
tools is the size of the workload. DBAs often gather a workload 
by using server tracing tools such as DB2 Query Patroller or 
Microsoft SQL Server Profiler, which log all statements that 
execute on the server over a representative window of time. Thus, 
the workloads that are provided to physical database design 
tuning tools can be large [7]. Therefore, techniques for 
compressing large workloads become essential. A constraint of 
such compression is to ensure that tuning the compressed 

workload gives a recommendation with approximately the same 
quality, (i.e., reduction in cost for the entire workload) as the 
recommendation obtained by tuning the entire workload. 

One approach for compressing large workloads in the context of 
physical design tuning is presented in [22]. The idea is to exploit 
the inherent templatization in workloads by partitioning the 
workload based on the “signature” of each query, i.e., two queries 
have same signature if they are identical in all respects except for 
the constants referenced in the query (e.g. different instances of a 
stored procedure). The technique picks a subset from each 
partition using a clustering based method, where the distance 
function captures the cost and structural properties of the queries. 
Adaptations of this technique are used in DTA in Microsoft SQL 
Server 2005. It is also important to note that, as shown in [22], the 
obvious strategies such as uniformly sampling the workload or 
tuning only the most expensive queries (e.g., top k by cost) suffer 
from serious drawbacks, and can lead to poor recommendations.  

6.3 Tuning Production Servers 
Ideally, DBAs would like to perform physical design tuning 
directly against the production server. The tuning architecture 
described above can however impose non-trivial load since a 
physical design tuning tool may need to make repeated calls to the 
query optimizer. A key idea is to transparently leverage test 
servers that are typically available in enterprises. We can leverage 
the fact that the “what-if” analysis architecture [27] does not 
require the physical design structures to be actually materialized 
since queries are only optimized and never executed. Thus only a 
“shell” database is imported into the test server [7] before tuning. 
A shell database contains all metadata objects (including 
statistics) but not the data itself. Observe that since physical 
design tools may need to create statistics while tuning, any 
required statistics are created on the production server and 
imported into the test server. Finally, the “what-if” interfaces of 
the query optimizer need to be extended to take as input the H/W 
characteristics such as CPU and memory. This allows the tool to 
simulate H/W characteristics of the production server on a test 
server whose actual H/W characteristics may be different, and 
thereby ensure that the recommendations obtained are identical as 
if the production server was tuned directly.  

6.4 Time Bound Tuning 
In many enterprise environments, there is a periodic batch 
window in which database maintenance and tuning tasks are 
performed. DBAs therefore would like to run physical database 
design tools so that they complete tuning within the batch 
window. Intuitively, we need to find a good recommendation very 
quickly and refine it as time permits. To address this requirement 
at each step during tuning, the physical database design tool must 
make judicious tradeoffs such as: (1) Given a large workload 
should we consume more queries from the workload or tune the 
ones consumed thus far? (2) For a given query, should we tune 
both indexes and materialized views now or defer certain physical 
design structures for later if time permits? (e.g., an index may be 
useful for many queries whereas a materialized view may be 
beneficial only for the current query). Thus the techniques 
described in Sections 3 and 4 require adaptations to be effective in 
the presence of such a time constraint. We note that current 
commercial physical design tuning tools such as [7],[37],[69] 
support time bound tuning.  
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7. ADVANCES IN OTHER SELF-TUNING 
DATABASE TECHNOLOGY 
Self-tuning databases is a wide area of research and it is hard to 
even draw boundaries around it. Our coverage of recent advances 
in this area is by no means exhaustive. There are several good 
resources that give additional details of recent work in self-tuning 
databases, e.g., the VLDB ten-year award paper from 2002 [67], a 
tutorial on self-tuning technology in commercial databases [18], a 
tutorial on foundations of automated tuning that attempts to break 
down the area into paradigms [33]. We have discussed several 
recent advances in the areas of physical database design in 
previous sections.  

In Sections 7.1 and 7.2, we focus on statistics management and 
DBMS monitoring infrastructure, two research ideas that the 
AutoAdmin project explored. Given the large breadth of the area, 
we are able to highlight only a few of the many notable advances 
in other self-tuning database topics in Section 7.3.  

7.1 Statistics Management 
Absence of the right statistical information can lead to poor 
quality plans. Indeed, when we discussed automated selection of 
physical design, along with our recommendation for indexes, we 
needed to recommend a set of database statistics to ensure that the 
optimizer has the necessary statistics to generate plans that 
leverage the recommended indexes. However, the problem of 
selection of database statistics arises even if we are not 
contemplating any changes in physical design. Thus, in Sec 7.1.1, 
we discuss the problem of selecting statistics to create and 
maintain in a database system. In Section 7.1.2, we focus on self-
tuning histograms, an active area of research. The key idea behind 
self-tuning histograms is to see how an individual statistics object 
(specifically histograms) can leverage execution feedback to 
improve its accuracy. Thus, these two problems are 
complementary to each other.  

7.1.1 Selection of Statistics  
Determining which statistics to create is a difficult task, since the 
decisions impact quality of plans and also the overhead due to 
creation/update of statistics. Microsoft SQL Server 7.0 pioneered 
in 1998 use of auto-create-statistics, which causes the server to 
automatically generate all single-column histograms (via 
sampling) required for the accurate optimization of an ad-hoc 
query. This technology is now available among all commercial 
relational database management systems. A recent paper [39] 
suggests expanding the class of such statistics (beyond single 
column statistics) that are auto-created in response to an incoming 
ad-hoc query. While attractive from the perspective of improving 
quality of plans, such proposals need careful attention so that the 
incremental benefit of auto-creating such structures does not make 
the cost of optimization disproportionately high. 

A fundamental problem underlying the selection of statistics to 
auto-create is evaluating the usefulness of a statistic without 
creating it. Today’s technology for auto-create-statistics uses 
syntactic criteria. However, for a wider class of statistics (such as 
multi-column), syntactic criteria alone are not sufficient and more 
powerful pruning of candidate set is desirable. Magic number 
sensitivity analysis (MNSA) [30] was proposed as a technique to 
address this problem. The key idea is to impose a necessary 
condition before a syntactically relevant statistics is materialized. 
Specifically, if the statistics for a join or a multi-column selection 

predicate p in a query Q is potentially relevant, then the choice of 
query plan for Q will vary if we optimize the query Q by injecting 
artificially extreme selectivities for p (e.g., 1-ε, 0.5, ε). If the plan 
for Q does not change, then we consider the candidate statistics 
irrelevant and do not build it. MNSA was initially proposed to 
solve the problem of finding an ideal set of statistics for a given 
static workload (referred to as the essential set of statistics in 
[30]) and further improvements are desirable to adapt the 
technique for completely ad-hoc queries. Note also that the 
decision to determine which statistics to create can be driven not 
only by ad-hoc queries or by a static workload, but also by 
leveraging execution feedback to determine where statistical 
information may be lacking [2]. Finally, the challenge of 
maintenance is also non-trivial and needs to rely on coarse 
counters to track modification of tables (and potentially columns) 
as well as execution feedback.  

All the above challenges of selection of statistics are significantly 
magnified as the class of statistics supported in DBMS expands. 
Recent proposals [17],[42] suggest using statistics on the result of 
a view expression (including joins and selections). Such statistics 
can lead to improved estimates as effects of correlation among 
columns and tables can be directly captured. In addition to the 
increased creation and maintenance cost, including such statistics 
also greatly expands the space of database statistics. The 
challenging problems of automated selection of such statistics and 
leveraging query execution feedback to refine them remain mostly 
unexplored thus far.  

7.1.2 Self-Tuning Histograms  
Histograms represent compact structures that represent data 
distributions.  Self-tuning histograms, first proposed in [1], use 
execution feedback to bias the structure of the histogram so that 
frequently queried portions of data are represented in more detail 
compared to data that is infrequently queried. Use of self-tuning 
histograms can result in better estimates if incoming queries 
require cardinality estimation for point or range queries in the 
interval that have been queried in the past. Thus, instead of 
keeping observations from execution feedback as a separate 
structure as in [62], self-tuning histograms factor in execution 
feedback by modifying the histogram itself. Naturally, self-tuning 
histograms are especially attractive for multi-dimensional 
histograms where biasing the structure of the histogram based on 
usage pattern can be especially beneficial as the space represented 
by the histograms grow exponentially with number of dimensions. 
It should be noted that while online execution feedback is needed 
to record the observed cardinalities, the actual changes to the 
histogram structure can be done offline as well. 

The challenge in building self-tuning histogram is to ensure that 
online execution feedback can be used in a robust manner without 
imposing a significant runtime overhead. The original technique 
proposed in [1] monitored only the overall actual cardinality of 
selection queries and was a low overhead technique. The actual 
cardinality of the query was compared with the estimated 
cardinality and the error was used to adjust the bucket boundaries 
as well as the frequency of each bucket. However, the histogram 
modification technique was based on relatively simple heuristics 
that could lead to inaccuracies. A subsequent work [18] made two 
significant improvements. First, it proposed using a multi-
dimensional histogram structure that is especially suited to 
incorporate execution feedback. Next, it also recognized that a 
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finer granularity of execution feedback can significantly improve 
accuracy of tuning the histogram structure. Thus, it suggested 
techniques to track differences between execution and estimated 
feedback at individual bucket level of the histogram.  However, 
despite improvement with respect to accuracy, the added 
monitoring raised the overhead of execution. A recent paper [61] 
addressed this concern by using the same multi-dimensional 
structure as proposed in [18] but restricting monitoring to the 
coarse level as in [1]. Instead of additional monitoring, ISOMER 
uses the well-known maximum entropy principle to reconcile the 
observed cardinalities and to approximate the data distribution.  

7.2 Monitoring Infrastructure 
In the past, database management systems provided rather limited 
visibility into the internal state of the server. Support for database 
monitoring (in addition to monitoring tools provided by operating 
systems) included ability to generate event traces, e.g., IBM 
Query Patroller or SQL Server Profiler. Awareness that 
transparency of relevant server state can greatly enhance 
manageability has led to significant extensions to monitoring 
infrastructure in commercial database systems. Examples of such 
extensions include Dynamic Management Views and functions 
(DMV) in Microsoft SQL Server that return server state 
information which can be used to monitor the health of a server 
instance, diagnose problems, and tune performance. These 
views/functions can represent information that is scoped for the 
entire server or can be specific to database objects. Another 
example of advanced monitoring infrastructure is Oracle’s 
Automatic Workload Repository (AWR) that represents 
performance data-warehouse of information collected during 
execution of the server.  Despite these significant developments, 
we consider this area to be very promising for further work. We 
illustrate this promise by pointing out the difficulty of answering a 
simple monitoring task such as query progress estimation (Section 
7.2.1) and then the challenge of providing a platform to enable ad-
hoc DBA defined monitoring tasks (Sec 7.2.2).  

7.2.1 Query Progress Estimation 
For a given query, one can query its historically aggregated usage 
information or its current state of execution. A very natural 
monitoring task is to be able to estimate “query progress”, i.e. to 
estimate the percentage of a query’s execution that has completed. 
In fact, one can view query progress estimation as an instance of a 
property of current execution. This information can be useful to 
help the DBA of an overloaded system select queries to be killed 
or to enforce admission control.  The problem of estimating 
progress of a sequential scan is easy. Of course, query progress 
estimation is a harder problem than estimating the cost of a 
sequential scan since SQL queries can have selection, join, 
aggregation and other operators.  Indeed, it has been shown that 
even for the simple class of SPJ queries, this problem is 
surprisingly hard. In the worst case, with the limited statistics 
available in today’s database systems, no progress estimator can 
guarantee constant factor bounds [23]. Despite this negative 
result, the properties of the execution plan, data layout, and 
knowledge of execution feedback can be effectively used to have 
robust progress estimators that are able to overcome exclusive 
dependence on query optimizer’s cardinality estimates 
[31],[50],[51],[52],[54]. This is analogous to query optimization – 
despite the problem being difficult, many queries are well served 
by our repertoire of query optimization techniques.  

7.2.2 Ad-hoc Monitoring and Diagnostics  
Despite availability of more capable monitoring infrastructure as 
mentioned at the beginning of Sec 7.1, support for ad-hoc 
monitoring is limited to selection of attributes to monitor and their 
thresholding. For example, it is hard for DBAs to pose a question 
such as: “Identify instances of a stored procedure that execute 
more than twice as slow as the average instance over a window of 
last 10 executions”. Of course, the challenge in supporting such 
ad-hoc monitoring queries is to ensure that the overhead is not 
high. In [24], we presented a preliminary proposal for the SQL 
Continuous Monitoring (SQLCM) infrastructure that is built on 
the server-side with the goal of supporting such ad-hoc 
monitoring queries. This infrastructure supports aggregation of 
system state and allows the user to also specify ad-hoc monitoring 
tasks by using lightweight Event-Condition-Action (ECA) rules.  
Finally, the area of database system diagnostics has received 
much less attention so far than it deserves. The Automatic 
Diagnostic Monitor (ADDM) in Oracle database system 
represents an example of a diagnostic system that is able to 
analyze information in its performance data-warehouse and can 
invoke appropriate performance tuning tool based on pre-defined 
rules [37].  In our opinion, ad-hoc monitoring and diagnostics 
deserves much more attention than it has received so far.  

7.3 Examples of Key Self-Tuning Initiatives 
The COMFORT project [68] was one of the early self-tuning 
efforts that focused on important problems such as load control 
for locking, dynamic data placement in parallel disk systems, and 
workflow server configuration. Although feedback control loops 
are used in setting the appropriate tuning knobs, problem specific 
techniques were needed to achieve robust auto-tuning [67].  

Improving accuracy of cardinality estimates using execution 
feedback has been an active area of work. The first paper 
leveraging execution feedback was [34] and was followed by 
papers on self-tuning histograms, discussed earlier. The Learning 
Optimizer (LEO) project [62], part of IBM’s autonomic 
computing initiative, identifies incorrect cardinality estimates and 
saves the execution feedback for future optimization. Their goal is 
to serve a larger class of query expressions through such feedback 
beyond selection queries. Although a recent effort proposed using 
their execution feedback to create a self-tuning histogram [61], it 
remains an open problem on how effectively and efficiently 
execution feedback can be leveraged for more general class of 
query expressions, even if an incoming query does not exactly 
match the query expressions observed in the past.  

Note that exploiting query execution feedback is useful not only 
for cardinality estimates for the future queries or for progress 
estimation, but such feedback has been leveraged for dynamic 
query re-optimization [47][53]. A novel query processing 
architecture that fundamentally relies on adaptive approaches 
rather than on careful static optimization was proposed in [12]. An 
upcoming survey [38] summarizes this direction of work.  

All commercial relational database systems today consider 
manageability and self-tuning features as key requirements. In the 
earlier sections, we have described product features related to 
physical design tuning, statistics management, monitoring and 
diagnostics. Two other areas where there has been significant 
progress in the past decade include automated memory as well as 
automated storage/data layout management. For example, 
automated memory management in database servers makes it 
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possible to leverage adaptive operators and adjust memory 
assigned to each operator’s working memory dynamically 
depending on its own needs as well as on global memory 
demands [19],[36], [63].   

Finally, we would like to end our discussion of past work by 
mentioning two other directions of work that strike us as thought-
provoking. The GMAP framework [65] suggested that physical 
designs can be specified as expressions over logical schema 
coupled with references to key storage organization primitives. 
The vision underlying the approach is to represent different 
physical organizations uniformly. Another topic that could be 
potentially interesting from the perspective of self-tuning 
technology is virtualization. While hardware and operating 
systems virtualization is increasingly popular, the ability to 
support high performance database applications on shared virtual 
machines raise many challenges since database systems 
traditionally use machine resources in a deliberate and careful 
manner [64]. 

8. FUTURE DIRECTIONS  
As mentioned in the previous section, there are many active 
directions of work in the context of self-tuning database 
technology. In this section, we highlight a few of the interesting 
open issues: 

• Today’s commercial database systems include physical 
database design tools as part of the products. However, the 
ability to compare the quality of automated physical design 
solutions in these products remains an elusive task. To be 
fair, this is no different than the state of the art in comparing 
the quality of the query optimizers. But, from a research 
perspective, this situation is quite unsatisfactory and requires 
further thought.  

• For large databases, any changes in the physical design are 
“heavyweight” operations. There have been proposals on 
more lightweight approaches towards defining physical 
design structures, e.g., partial indexes/materialized views 
[48], database “cracking” [45][46]. Such changes can 
redefine our approaches to physical database design.  

• Emerging shopping, CRM, and social network services on 
the internet use database systems on the backend and they 
bring unique self-tuning challenges. Specifically, they 
employ multi-tenancy, i.e., data from different tenants 
(customers of their services) co-reside in the same database 
objects. Multi-tenancy makes self-tuning harder as workload 
characteristics and performance tuning are less predictable. 
Furthermore, efficient distributed monitoring and 
serviceability to handle failure and performance problems is 
an essential requirement for such internet services. This 
requirement provides a rare opportunity to rethink system 
architectures with self-tuning and self-manageability in 
mind. In fact, there are already several initiatives towards 
new generation of distributed architectures for storage, 
computing and data analysis that are being built with such 
monitoring and serviceability requirements, e.g., Amazon’s 
S3 and EC2, Google Map Reduce, Microsoft Dryad.   

• Machine learning techniques, control theory, and online 
algorithms have the potential to be leveraged even more for 
self-tuning tasks that we face for our data platforms. The 
main challenges here are in modeling the self-tuning tasks 

for which any of these paradigms could be applied in a 
robust way. For example, in order to apply machine learning, 
we need a clear understanding of what features (observed as 
well as computed) should be used for learning. 

9. CONCLUSION 
The widespread use of relational database systems for mission 
critical OLTP and decision support applications has made the task 
of reducing the cost of managing relational database systems an 
important goal. It has been a decade since we started the 
AutoAdmin research project. During this time, other research 
projects and industrial efforts also began to address this important 
problem. In some areas such as automated physical design and 
monitoring, our progress has had led to incorporation of new tools 
and infrastructure in relational database systems. Other areas 
remain active areas of research. Nonetheless, the challenge in 
making database systems truly self-tuning is a tall task. For 
example, the nature of tuning a buffer pool or tuning allocation of 
working memory for queries is very different from that of 
selecting the right set of indexes or statistics. Each such tuning 
problem has different abstractions for workloads and different 
constraints on the desired solution. Therefore, it will probably be 
impossible to make database systems self-tuning by a single 
architectural or algorithmic breakthrough. As a consequence, it 
will be a long journey before this goal is accomplished just as it 
took the automobile industry a sustained effort to reduce the cost 
of ownership. However, one worrisome factor that will slow our 
progress towards making relational database systems self-tuning 
is the complexity of internal components that have been fine 
tuned for performance for a powerful language such as SQL. As 
argued in [32],[67], it is worthwhile to explore alternative 
architectures of database servers for performance (and 
functionality) vs. manageability trade-off.  While the business 
need for backward compatibility makes it difficult to revisit such 
trade-offs for traditional enterprise relational servers, the 
emergence of extremely scalable storage and application services 
over the internet that absolutely demand self-manageability could 
lead to development of newer structured store that is built 
grounds-up with self-manageability as a critical requirement. 
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