

Self-Tuning Database Systems: A Decade of Progress
Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

 Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

ABSTRACT
In this paper we discuss advances in self-tuning database systems
over the past decade, based on our experience in the AutoAdmin
project at Microsoft Research. This paper primarily focuses on the
problem of automated physical database design. We also highlight
other areas where research on self-tuning database technology has
made significant progress. We conclude with our thoughts on
opportunities and open issues.

1. HISTORY OF AUTOADMIN PROJECT
Our VLDB 1997 paper [26] reported our first technical results
from the AutoAdmin project that was started in Microsoft
Research in the summer of 1996. The SQL Server product group
at that time had taken on the ambitious task of redesigning the
SQL Server code for their next release (SQL Server 7.0). Ease of
use and elimination of knobs was a driving force for their design
of SQL Server 7.0. At the same time, in the database research
world, data analysis and mining techniques had become popular.
In starting the AutoAdmin project, we hoped to leverage some of
the data analysis and mining techniques to automate difficult
tuning and administrative tasks for database systems. As our first
goal in AutoAdmin, we decided to focus on physical database
design. This was by no means a new problem, but it was still an
open problem. Moreover, it was clearly a problem that impacted
performance tuning. The decision to focus on physical database
design was somewhat ad-hoc. Its close relationship to query
processing was an implicit driving function as the latter was our
area of past work. Thus, the paper in VLDB 1997 [26] described
our first solution to automating physical database design.

In this paper, we take a look back on the last decade and review
some of the work on Self-Tuning Database systems. A complete
survey of the field is beyond the scope of this paper. Our
discussions are influenced by our experiences with the specific
problems we addressed in the AutoAdmin project. Since our
VLDB 1997 paper was on physical database design, a large part
of this paper is also devoted to providing details of the progress in
that specific sub-topic (Sections 2-6). In Section 7, we discuss
briefly a few of the other important areas where self-tuning
database technology have made advances over the last decade.
We reflect on future directions in Section 8 and conclude in
Section 9.

2. AN INTRODUCTION TO PHYSICAL
DATABASE DESIGN

2.1 Importance of Physical Design
A crucial property of a relational DBMS is that it provides
physical data independence. This allows physical structures such
as indexes to change seamlessly without affecting the output of
the query; but such changes do impact efficiency. Thus, together
with the capabilities of the execution engine and the optimizer,
the physical database design determines how efficiently a query is
executed on a DBMS.

The first generation of relational execution engines were
relatively simple, targeted at OLTP, making index selection less
of a problem. The importance of physical design was amplified as
query optimizers became sophisticated to cope with complex
decision support queries. Since query execution and optimization
techniques were far more advanced, DBAs could no longer rely
on a simplistic model of the engine. But, the choice of right index
structures was crucial for efficient query execution over large
databases.

2.2 State of the Art in 1997
The role of the workload, including queries and updates, in
physical design was widely recognized. Therefore, at a high level,
the problem of physical database design was - for a given
workload, find a configuration, i.e. a set of indexes that minimize
the cost. However, early approaches did not always agree on what
constitutes a workload, or what should be measured as cost for a
given query and configuration.

Papers on physical design of databases started appearing as early
as 1974. Early work such as by Stonebraker [63] assumed a
parametric model of the workload and work by Hammer and Chan
[44] used a predictive model to derive the parameters. Later
papers increasingly started using an explicit workload
[40],[41],[56]. An explicit workload can be collected using the
tracing capabilities of the DBMS. Moreover, some papers
restricted the class of workloads, whether explicit or parametric,
to single table queries. Sometimes such restrictions were
necessary for their proposed index selection techniques to even
apply and in some cases they could justify the goodness of their
solution only for the restricted class of queries.

All papers recognized that it is not feasible to estimate goodness
of a physical design for a workload by actual creation of indexes
and then executing the queries and updates in the workload.
Nonetheless, there was a lot of variance on what would be the
model of cost. Some of the papers took the approach of doing the
comparison among the alternatives by building their own cost
model. For columns on which no indexes are present, they built
histograms and their custom cost model computed the selectivity
of predicates in the queries by using the histograms.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

3

Another set of papers, starting with [40], used the query
optimizer’s cost model instead of building a new external cost
model. Thus the goodness of a configuration for a query was
measured by the optimizer estimated cost of the query for that
configuration. In this approach, although histograms still needed
to be built on columns for which no indexes existed, no new cost
model was necessary. This approach also required metadata
changes to signal to the query optimizer presence of (fake)
indexes on those columns. A concern in this approach is the
potential impact on performance on the server and therefore there
was a need to minimize the number of optimizer calls [40,41].
Some of the techniques to reduce optimizer calls introduced
approximations, and thus led to lack of full fidelity with the
optimizer’s cost model.

The hardness result for selecting an optimal index configuration
was shown by Shapiro [60]. Therefore, the challenge was similar
to that in the area of query optimization – identifying the right set
of heuristics to guide the selection of physical design. One set of
papers advocated an approach based on rule-based expert
systems. The rules took into account query structures as well as
statistical profiles and were “stand-alone” applications that
recommended indexes. A tool such as DEC RdbExpert falls in
this category. Rozen and Shasha [56] also used an external cost
model but their cost model was similar to that of a query
optimizer. They suggested a search paradigm that used the best
features of an individual query (using heuristics, without
optimizer calls) and restricting the search to the union of those
features. The latter idea of using best candidates of individual
queries as the search space is valuable, as we will discuss later.

The “stand-alone” approaches described above suffered from a
key architectural drawback as pointed out by [40], the first paper
to propose an explicit workload model and also to use the query
optimizer for estimating costs. This paper argued that the
optimizer’s cost model must be the basis to evaluate the impact of
a physical design for a query. It also proposed building database
statistics for non-existent indexes and making changes to system
catalog so that optimizers can estimate costs for potential physical
design configurations. Despite its key architectural contributions,
there were several important limitations of this approach as will
be discussed shortly.

3. REVIEW OF VLDB 1997 PAPER
3.1 Challenges
The AutoAdmin project started considering the physical design
problem almost a decade after [40]. During this decade,
tremendous progress was made on the query processing
framework. The defining application of this era was decision-
support queries over large databases. The execution engine
supported new logical as well as physical operators. The engines
used indexes in much more sophisticated ways; for example,
multiple indexes per table could be used to process selection
queries using index intersection (and union). Indexes were also
used to avoid accessing the base table altogether, effectively being
used for sequential scans of vertical slices of tables. These are
known as “covering indexes” for queries, i.e., when a covering
index for a query is present, the query could avoid accessing the
data file. Indexes were used to eliminate sorts that would
otherwise have been required for a GROUP BY query. The
optimization technology was able to handle complex queries that
could leverage these advances in execution engine. The workload

that represented usage of the system often consisted of many
queries and stored procedures coming from a variety of
applications and thus no longer limited to a handful of queries.

While this new era dramatically increased the importance of the
physical database design problem, it also exposed the severe
limitations of the past techniques. The “expert system” based
approach was no longer viable as building an external accurate
model of index usage was no longer feasible. Therefore, the
approach taken in [40] to use the optimizer’s cost model and
statistics was the natural choice. However, even there we faced
several key gaps in what [40] offered. First, the necessary
ingredients for supporting the needed API functionality in a
client-server architecture was not discussed. Specifically, given
that the databases for decision support systems were very large
and had many columns, creating statistics using traditional full
scan techniques was out of question for these databases. Second,
the new execution engines offered many more opportunities for
sophisticated index usage. Thus the elimination heuristics to
reduce the search space of potential indexes (e.g., at most one
index per table) was no longer adequate. Third, it was imperative
that multi-column indexes were considered extensively as they are
very important to provide “covering indexes”. The search strategy
of [40] did not consider multi-column indexes as they were of
relatively low importance for execution engines and application
needs of a decade ago. Finally, the scalability of the tool with
respect to the workload size was also quite important as traces,
either generated or provided by DBAs, could consist of many
(often hundreds of thousands of) queries and updates, each of
which can be quite complex.

3.2 Key Contributions
The first contribution of our AutoAdmin physical design project
was to support creation of a new API that enabled a scalable way
to create a hypothetical index. This was the most important
server-side enhancement necessary. A detailed description of this
interface, referred to as “what-if” (or hypothetical) index,
appeared in [27] (see Figure 1). The key aspects are: (1) A
“Create Hypothetical Index” command that creates metadata entry
in the system catalog which defines the index. (2) An extension to
the “Create Statistics” command to efficiently generate the
statistics that describe the distribution of values of the column(s)
of a what-if index via the use of sampling [25],[20].

Database Server

Create
hypothetical

physical design

Create statistics Define
configuration

Optimize
query

Query Execution
Plan

Physical Database Design Tool

A related requirement was use of an optimization mode that
enabled optimizing a query for a selected subset of indexes
(hypothetical or actually materialized) and ignoring the presence
of other access paths. This too was important as the alternative

Figure 1. “What-if” analysis architecture for
physical database design.

4

would have been repeated creation and dropping of what-if
indexes, a potentially costly solution that was used by [40]. This
is achieved via a “Define Configuration” command followed by
an invocation of the query optimizer.

The importance of this interface went far beyond just automated
physical design. Once exposed, it also made the manual physical
design tuning much more efficient. A DBA, who wanted to
analyze the impact of a physical design change, could do so
without disrupting normal database operations.

The next contribution was the key decision of defining the search
space as consisting of the best configuration(s) for each query in
the workload, where the best configuration itself is the one with
lowest optimizer estimated cost for the query. Intuitively, this
leverages the idea (see also [41]) that an index that is not part of
an optimal (or close to optimal) configuration for at least one
query, is unlikely to be optimal for the entire workload. Unlike
[41], the selection of a set of candidate indexes on a per-query
basis is done in AutoAdmin in a cost-based manner keeping the
optimizer in the loop. This candidate selection step is key to
scalable search.

Our VLDB 1997 paper also presented a set of optimizations for
obtaining the optimizer estimated cost of a query for a given
configuration (denoted by Cost (Q,C)) without having to invoke
the query optimizer. The essential idea was to show how Cost
(Q,C) could be derived from the costs of certain important
subsets of C. Given the richness of the query processing
capabilities of DBMS engines, a key challenge, addressed in [26]
was defining what configurations should be considered atomic for
a given query. By caching the results of the optimizer calls for
atomic configurations, optimizer invocations for several other
configurations for that query could be eliminated (often by an
order of magnitude).

Finally, a search paradigm that was able to scale with the large
space of multi-column indexes was proposed. The idea was to
iteratively expand the space of multi-column indexes considered
by picking only the winning indexes of one iteration and
augmenting the space for the next iteration by extending the
winners with an additional column. Intuitively, this exploits the
idea that a two-column index (on say (A,B)) is unlikely to be
beneficial for a workload unless the single column index on its
leading column (i.e., index on (A)) is beneficial.

The above key ideas formed the basis of the Index Tuning Wizard
that shipped in Microsoft SQL Server 7.0 [29], the first tool of its
kind in a commercial DBMS. In the subsequent years, we were
able to refine and improve our initial design.

4. INCORPORATING OTHER PHYSICAL
DESIGN STRUCTURES
The VLDB 1997 paper [26] focused on how to recommend
indexes for the given workload. Today’s RDBMSs however
support other physical design structures that are crucial for
workload performance. Materialized views are one such structure
that is widely supported and can be very effective for decision
support workloads. Horizontal and vertical partitioning are
attractive since they provide the ability to speed up queries with
little or no additional storage and update overhead. The large
additional search space introduced by these physical design
structures requires new methods to deal with challenges in
scalability. In this section we describe the significant extensions

to the search architecture of [26] for incorporating materialized
views and partitioning (horizontal and vertical). We begin with a
brief review of materialized views and partitioning and the new
challenges they introduce.

4.1 Physical Design Structures
4.1.1 Materialized Views
A materialized view (MV) is a more complex physical design
structure than an index since a materialized view may be defined
over multiple tables, and can involve selection, projection, join
and group by. This richness of structure of MVs makes the
problem of selecting materialized views significantly more
complex than that of index selection. First, for a given query (and
hence workload) the space of materialized views that must be
considered is much larger than the space of indexes. For example,
MVs on any subset of tables referenced in the query may be
relevant. For each such subset many MVs with different selection
conditions and group by columns may need to be considered.
Furthermore, a materialized view itself can have clustered and
non-clustered indexes defined on it. Finally, if there are storage
and update constraints, then it is important to consider
materialized views that can serve multiple queries. For example, if
there are two candidate multi-table MVs, one with a selection
condition Age BETWEEN 25 and 35 and another with the
selection condition Age BETWEEN 30 and 40, then a MV with
the selection condition Age BETWEEN 25 and 40 can be used to
replace the above two materialized views but with potentially
reduced storage and update costs. The techniques for searching
the space of MVs in a scalable manner are of paramount
importance.

4.1.2 Partitioning
Similar to a clustered index on a table, both horizontal and
vertical partitioning are non-redundant, i.e., they incur little or no
storage overhead. Also, in the same way that only one clustering
can be chosen for a table, only one partitioning can be chosen for
a table. This makes partitioning particularly attractive in storage
constrained or update intensive environments.

Commercial systems today support hash and/or range horizontal
partitioning, and in some cases hybrid schemes as well.
Horizontal partitioning can be useful for speeding up joins,
particularly when each of the joining tables are partitioned
identically (known as a co-located join). Horizontal range
partitioning can also be exploited for processing range queries.
Finally, not only can a table be horizontally partitioned, but so can
indexes on the table. Thus a large new search space of physical
design alternatives is introduced. Another important scenario for
using horizontal partitioning is manageability, in particular to
keep a table and its indexes aligned, i.e., partitioned identically.
Alignment makes it easy to load new partitions of a table (and
remove old partitions) without having to rebuild all indexes on the
tables. From the perspective of physical design tuning, alignment
therefore becomes an additional constraint that must be obeyed
while tuning.

Major commercial relational database systems do not natively
support vertical partitioning. Thus achieving the benefits of
vertical partitioning in such systems raises additional
considerations. Specifically, the logical schema (i.e. table
definitions) needs to change [8]. In turn, this requires that
application queries and updates may need to be modified to run

5

against the new schema. Alternatively, views can be defined that
hide the schema changes from application queries. If the above
class of views is updateable, then update statements in the
application do not need to be modified either.

4.2 Search Algorithms
The introduction of materialized views and partitioning results in
an explosion in the space of physical design alternatives. In this
section, we present three techniques that enable physical design
tools to explore this large space in a scalable manner. The use of
these techniques led to significant extensions and changes in the
search architecture presented in [26]. These techniques are general
in the sense that the concepts are applicable to all physical design
structures discussed in this paper. They enable a uniform search
architecture for structuring the code of a physical design tool. The
architecture that evolved as a result of these advances is shown in
Figure 2. These extensions are in fact part of the product releases
of Index Tuning Wizard in SQL Server 2000 [4] and Database
Engine Tuning Advisor in SQL Server 2005 [8]. In the rest of
this section we describe the key steps in this architecture;
highlighting the challenges and solutions. Note that the candidate
selection step is unchanged with respect to [26] and hence we do
not focus on it here.

Workload

Recommendation

Candidate
Selection

Merging

Enumeration

Prune Table /
Column Sets

Physical
Database

Design Tool
“What-If” Database Server

4.2.1 Pruning Table and Column Sets
Whenever there is a query over multiple tables in the workload,
materialized views over tables mentioned in the query (henceforth
called table sets), or subsets of those tables, can be relevant.
Therefore it becomes crucial to prune the search space early on,
since otherwise even the candidate selection step does not scale as
there could be a very large number of materialized views over
table sets in the workload. One key observation presented in [5] is
that in many real workloads, a large number of table sets occur
infrequently. However, any materialized views on table sets that
occur infrequently cannot have a significant impact on overall
workload performance. Of course, the impact cannot be measured
by frequency alone, but needs to be weighted by the cost of
queries. The above observation allows leveraging a variation of
frequent itemsets technique [3] to eliminate from consideration a

large number of such table sets very efficiently. Only table sets
that survive the frequent itemset pruning are considered during
the candidate selection step. The same intuition was subsequently
extended in [10] to prune out a large number of column sets.
Column sets determine which multi-column indexes and
partitioning keys are considered during the candidate selection
step. This technique allowed the elimination of the iterative multi-
column index generation step in [26] (see Section 3.2), while still
retaining the scalability and quality of recommendations.

4.2.2 Merging
The initial candidate set results in an optimal (or close-to-optimal)
configuration for queries in the workload, but often is either too
large to fit in the available storage, or causes updates to slow
down significantly. Given an initial set of candidates for the
workload, the merging step augments the set with additional
structures that have lower storage and update overhead without
sacrificing too much of the querying advantages. The need for
merging indexes becomes crucial for decision support queries,
where e.g., different queries are served best by different covering
indexes, yet the union of those indexes do not fit within the
available storage or incur too high an update cost. Consider a case
where the optimal index for query Q1 is (A,B) and the optimal
index for Q2 is (A,C). A single “merged” index (A,B,C) is sub-
optimal for each of the queries but could be optimal for the
workload e.g., if there is only enough storage to build one index.
In general, given a physical design structure S1 that is a candidate
for query Q1 and a structure S2 for query Q2, merging generates a
new structure S12 with the following properties: (a) Lower
storage: |S12| < |S1| + |S2|. (b) More general: S12 can be used to
answer both Q1 and Q2. Techniques for merging indexes were
presented in [28]. The key ideas were to: (1) define how a given
pair of indexes is merged, and (2) generate merged indexes from a
given set, using (1) as the building block.

View merging introduces challenges over and beyond index
merging. Merging a pair of views (each of which is a SQL
expression with selections, joins, group by) is non-trivial since the
space of merged views itself is very large. Furthermore, the
expressiveness of SQL allows interesting transformations during
merging. For example, given a multi-table materialized view V1
with a selection condition (State=’CA’) and V2 with (State =
‘WA’), the space of merged views can also include a view V12 in
which the selection condition on the State column is eliminated,
and the State column is pushed into the projection (or group by)
list of the view. Scalable techniques for merging views that
explored this space are presented in [5],[16].

An alternative approach for generating additional candidate MVs
that can serve multiple queries in the workload by leveraging
multi-query optimization techniques was presented in [70]. An
open problem is to analyze and compare the above approaches in
terms of their impact on the quality of recommendations and
scalability of the tool.

4.2.3 Enumeration
Given a workload and a set of candidates, obtained from the
candidate selection step and augmented by the merging step, the
goal of the enumeration is to find a configuration (i.e., subset of
candidates) with the smallest total cost for the workload. Note
also that we also allow DBAs to specify a set of constraints that
the enumeration step must respect, e.g., to keep all existing

Figure 2. Search Architecture of a Physical
Database Design tool.

6

indexes, or to respect a storage bound (See Section 6.1 for
details). Since the index selection problem has been shown to be
NP-Hard [21],[60], the focus of our work has been on developing
heuristic solutions that give good quality recommendations and
can scale well.

One important challenge is that solutions that naively stage the
selection of different physical design structures (e.g., select
indexes first followed by materialized views) can result in poor
recommendations. This is because: (1) The choices of these
structures interact with one another (e.g., optimal choice of index
can depend on how the table is partitioned and vice versa). (2)
Staged solutions can lead to redundant recommendations. For
example, assume that a beneficial index is picked first. In the next
stage when MVs are considered, a materialized view that is
significantly more beneficial than the index is picked. However,
once the materialized view is picked, the index previously
selected may contribute no additional benefit whatsoever. (3) It is
not easy to determine a priori how to partition the storage bound
across different physical design structures [5]. Thus, there is a
need for integrated recommendations that search the combined
space in a scalable manner.

Broadly the search strategies explored thus far can be categorized
as bottom-up [26],[55],[69] or top-down [15] search, each of
which has different merits. The bottom up strategy begins with the
empty (or pre-existing configuration) and adds structures in a
greedy manner. This approach can be efficient when available
storage is low, since the best configuration is likely to consist of
only a few structures. In contrast, the top-down approach begins
with a globally optimal configuration but it could be infeasible if
it exceeds the storage bound. The search strategy then
progressively refines the configuration until it meets the storage
constraints. The top-down strategy has several key desirable
properties [15] strategy can be efficient in cases where the storage
bound is large. It remains an interesting open issue as to whether
hybrid schemes based on specific input characteristics such as
storage bound can improve upon the above strategies.

5. RECENT ADVANCES IN PHYSICAL
DATABASE DESIGN
In Section 4 we described impact on the physical design problem
that arises from going beyond indexes to incorporate materialized
views and partitioning. In this section we discuss more recent
advances that revisit some of the basic assumptions made in the
problem definition thus far. The importance of a physical design
tool to stay in-sync with the optimizer using the “what-if”
interfaces [27] was highlighted earlier. First (in Section 5.1), we
describe recent work on enhancing this interface to improve both
the degree to which the tool is in sync with the optimizer,
resulting in both improved quality of recommendation as well as
scalability. Next, in Section 5.2, we discuss alternative tuning
models that can potentially serve a different class of scenarios.

5.1 Enhancing the “What-if” Interface
The idea of selecting a set of candidate indexes per query in a
cost-based manner is crucial for scalability of a physical database
design tool (Section 3). Observe that the approach of [26] requires
the client tool to search for the best configuration for each query,
potentially using heuristics such as those discussed in Section 4.
This can result in selection of candidates that are not optimal. A
more recent idea presented in [15] is to instrument the optimizer

itself to generate the candidate set for each query. Most query
optimizers (such as those based on System-R [59] or Cascades
[43] frameworks) rely on a crucial component that transforms
single-table logical sub-expressions into index-based execution
sub-plans. This procedure considers the set of available indexes to
generate execution sub-plans including index scans, index
intersections, lookups, etc. In the approach of [15], each such
transformation request is intercepted. The logical sub-expression
is then analyzed to identify the indexes that would result in the
optimal execution sub-plan. The metadata for such indexes is then
added to the system catalogs and optimization is resumed as
normal (see Figure 3). This ensures that the optimizer picks the
optimal access methods for the query. This approach leverages the
observation that the set of transformation requests issued by the
optimizer does not depend on the existing set of indexes.

Thus the candidate selection step is now more in-sync with the
optimizer than in the earlier approach of [26]. Since requests are
intercepted during optimization, the above technique does not
miss candidates as in [26]. Also, unlike [69] it does not propose
candidates that are syntactically valid but might not be exploited
by the optimizer. The number of such requests and the number of
candidates for such requests is shown to be relatively small even
for complex workloads. Thus this extension to the “what-if”
interface can result in: (a) the solution being more deeply in-sync
with the optimizer and (b) improved scalability for obtaining
candidates by reducing the number of optimizer calls. Finally, as
described in [15] we note that this technique can also be extended
to deal with materialized views.

5.2 Alternative Tuning Models
Even for DBAs who would like to depend exclusively on their
insights without using a physical design advisor, the “what-if”
physical design analysis capabilities [27] is helpful as they are
now able to quantitatively explore the impact of their proposed
changes using optimizer’s cost estimates. Thus, they are now able
to iteratively refine and evaluate their alternatives without having
to ever create/drop any physical design structures.

The tuning model discussed thus far in this paper requires the
DBA to provide a workload, and the tool provides a
recommended physical design configuration. As will be discussed
in Section 6, this is indeed the model of physical design tool that
the commercial relational database systems support. Although the
tool frees DBAs from having to choose specific physical design
structures one at a time, the DBA needs to: (1) Decide when to

Figure 3. Instrumenting the optimizer to generate
candidate indexes.

7

invoke the tool. (2) Decide what “representative” workload to
provide as input to the tool. (3) Run the tool and examine the
recommended physical design changes, and implement them if
appropriate. In this section, we describe some of our recent work
in trying to further simplify the above tasks that the DBA faces.
While Sections 5.2.1 and 5.2.2 describe techniques that still
retains the model of physical design tuning based on static
workload, the work on Dynamic Tuning, described in Section
5.2.3, describes initial work on an online approach that
continuously monitors the workload and makes changes without
the DBA having to intervene.

5.2.1 Alerter (When to Tune)
One way to address the issue of changing workloads and data
characteristics requirement on the DBA is deciding when the
physical design tool must be invoked. This can be challenging
particularly since the workload pattern and data distributions may
change. Therefore, a useful functionality is having a lightweight
“alerter” capability that can notify the DBA when significant
tuning opportunities exist. The work in [14] (see also Section
7.2.2) presents a low overhead approach that piggybacks on
normal query optimization to enable such functionality. The idea
is to have a lightweight adaptation of the optimizer
instrumentation techniques presented in Section 5.1 by only
recording index requests for the plan chosen by the optimizer. As
detailed in [14], this enables the alerter to provide a lower bound
on the improvement that would be obtained if the workload were
to be tuned by a physical design tool.

5.2.2 Workload as a Sequence
Our tuning model assumes that the workload is a set of queries
and updates. If we were to instead view the workload as a
sequence or a sequence of sets, then better modeling of real world
situations are possible. For example, in many data warehouses,
there are mostly queries during the day followed by updates at
night. Thus, viewing workload a sequence of “set of read queries”
followed by a “set of update queries” makes it possible to handle
variations in workload over time and to exploit properties of the
sequence to give a better performance improvement by creating
and dropping structures at appropriate points in the sequence. Of
course, the tool has to now take into account the cost of
creating/dropping the physical design structure as well (e.g., in the
data warehouse situation, the cost to drop the index before the
nightly updates, and recreate indexes after the updates are
completed). A framework for automated physical design when the
workload is treated as a sequence is presented in [9].

5.2.3 Dynamic (Online) Tuning
The goal of Dynamic Tuning is to have a server-side “always-on”
solution for physical database design that requires little or no
DBA intervention [13],[57],[58]. Thus, dynamic tuning
component tracks the workload and makes an online decision to
make changes to physical design as needed. In fact, in some
situations where the workload may change too unpredictably,
dynamic tuning may be the only option. For example, in a hosted
application environment, a new application can be deployed, run
and removed, all in a relatively short period of time. Naturally,
dynamic tuning needs to depend on the enabling technology of
online index creation and drop, which is supported by today’s
commercial DBMSs.

There are three key new challenges for a continuous tuning
system. First, since it is always-on, the solution has to have very
low overhead and not interfere with the normal functioning of the
DBMS. Second, the solution must balance the cost of
transitioning between physical design configurations and the
potential benefits of such design changes. Finally, the solution
must be able to avoid unwanted oscillations, in which the same
indexes are continuously created and dropped.

The work in [13] presents an online algorithm that can modify the
physical design as needed. It is prototyped inside the Microsoft
SQL Server engine. The broad architecture of the solution is
shown in Figure 4. At query optimization time, the set of
candidate indexes desirable for the query are recorded by
augmenting the execution plan. During execution time the Online
Tuning Engine component tracks the potential benefits that are
lost by not creating these candidate indexes, as well as the utility
of existing indexes. When sufficient evidence has been gathered
that a physical design change is beneficial, then the index creation
(or deletion) is triggered online. Since an online algorithm cannot
see the future, its choices are bound to be suboptimal compared to
an optimal offline solution (which knows the future), but the
design of the algorithm attempts to bound the degree of such sub-
optimality. The work in [57],[58] share similar goals as [13] but
differ in the design points of: (a) the degree to which they are
coupled with the query optimizer (b) permissible overheads for
online index tuning.

A new approach for online physical design tuning is database
cracking [45],[46]. In this work, each query is interpreted not only
as a request for a particular result set, but also as a suggestion to
crack the physical database store into smaller pieces. Each piece
is described by a query expression, and a “cracker index” tracks
the current pieces so that they can be efficiently assembled as
needed for answering queries. The cracker index is built
dynamically while queries are processed and thus can adapt to
changing query workloads. In the future, a careful comparison of
database cracking to other online tuning approaches such as the
ones described above, needs to be done.

6. IMPACT ON COMMERCIAL DBMS
All major commercial database vendors today ship automated
physical design tools. We discuss these commercial tools in
Section 6.1. Building an industrial strength physical design tool
poses additional challenges not discussed thus far. We highlight
three such challenges and approaches for handling them in
Section 6.2-6.4.

Figure 4. An architecture for online index tuning.

8

6.1 Physical Design Tuning Tools in
Commercial DBMS
In 1998, Microsoft SQL Server 7.0 was the first commercial
DBMS to ship a physical database design tool, called the Index
Tuning Wizard (ITW) based on the techniques presented in
[26],[27]. In the next release, Microsoft SQL Server 2000, ITW
was enhanced to provide integrated recommendations for indexes,
materialized views (known as indexed views in Microsoft SQL
Server) and indexes on indexed views. In the most recent release
of Microsoft SQL Server 2005, the functionality of ITW was
replaced by a full-fledged application called the Database Engine
Tuning Advisor (DTA) [7]. DTA can provide integrated
recommendations for indexes, indexed views, indexes on indexed
views and horizontal range partitioning. DTA allows DBAs to
express constraints including aligned partitioning (see Section
4.1.2), storage constraints, existing physical design structures that
must be retained, etc. In addition, DTA exposes a rich set of
tuning options, e.g., which tables to tune, etc. An important usage
scenario for DTA is tuning a single problem query. Therefore
DTA functionality can also be invoked directly from the SQL
Server Management Studio, the tool environment from which
DBAs often troubleshoot queries. DTA’s recommendations are
accompanied by a set of detailed analysis reports that quantify the
impact of accepting DTA’s recommendations. The tool also
exposes “what-if” analysis functionality to facilitate manual
tuning by advanced DBAs. More details of DTA, its usage and
best practices are available in a white paper [8].

IBM’s DB2 Universal Database (UDB) version 6 shipped the
DB2 Advisor [66] in 1999 that could recommend indexes for a
given workload. Subsequently, the DB2 Design Advisor tool in
DB2 version 8.2 [69] provides integrated recommendations for
indexes, materialized views, shared-nothing partitioning and
multi-dimensional clustering. One difference between this tool
and DTA (or ITW) is how an integrated recommendation for
different physical design structures is produced. Unlike DTA
where the search over all structures is done together, DB2 Design
Advisor is architected to have independent advisors for each
physical design structure. The search step that produces the final
integrated recommendation iteratively invokes each of the
advisors in a staged manner.

Oracle 10g shipped the SQL Access Advisor [37], which takes as
input a workload and a set of candidates for that workload
(generated by the Oracle Automatic Tuning Optimizer on a per-
query basis), and provides a recommendation for the overall
workload. The tool recommends indexes and materialized views.

Finally, we note that recent textbooks on database design e.g.,
[49] devote significant coverage to advances in this area over the
past ten years and suggest use of automated physical design tools
in commercial DBMS systems.

6.2 Tuning Large Workloads
One of the key factors that affect the scalability of physical design
tools is the size of the workload. DBAs often gather a workload
by using server tracing tools such as DB2 Query Patroller or
Microsoft SQL Server Profiler, which log all statements that
execute on the server over a representative window of time. Thus,
the workloads that are provided to physical database design
tuning tools can be large [7]. Therefore, techniques for
compressing large workloads become essential. A constraint of
such compression is to ensure that tuning the compressed

workload gives a recommendation with approximately the same
quality, (i.e., reduction in cost for the entire workload) as the
recommendation obtained by tuning the entire workload.

One approach for compressing large workloads in the context of
physical design tuning is presented in [22]. The idea is to exploit
the inherent templatization in workloads by partitioning the
workload based on the “signature” of each query, i.e., two queries
have same signature if they are identical in all respects except for
the constants referenced in the query (e.g. different instances of a
stored procedure). The technique picks a subset from each
partition using a clustering based method, where the distance
function captures the cost and structural properties of the queries.
Adaptations of this technique are used in DTA in Microsoft SQL
Server 2005. It is also important to note that, as shown in [22], the
obvious strategies such as uniformly sampling the workload or
tuning only the most expensive queries (e.g., top k by cost) suffer
from serious drawbacks, and can lead to poor recommendations.

6.3 Tuning Production Servers
Ideally, DBAs would like to perform physical design tuning
directly against the production server. The tuning architecture
described above can however impose non-trivial load since a
physical design tuning tool may need to make repeated calls to the
query optimizer. A key idea is to transparently leverage test
servers that are typically available in enterprises. We can leverage
the fact that the “what-if” analysis architecture [27] does not
require the physical design structures to be actually materialized
since queries are only optimized and never executed. Thus only a
“shell” database is imported into the test server [7] before tuning.
A shell database contains all metadata objects (including
statistics) but not the data itself. Observe that since physical
design tools may need to create statistics while tuning, any
required statistics are created on the production server and
imported into the test server. Finally, the “what-if” interfaces of
the query optimizer need to be extended to take as input the H/W
characteristics such as CPU and memory. This allows the tool to
simulate H/W characteristics of the production server on a test
server whose actual H/W characteristics may be different, and
thereby ensure that the recommendations obtained are identical as
if the production server was tuned directly.

6.4 Time Bound Tuning
In many enterprise environments, there is a periodic batch
window in which database maintenance and tuning tasks are
performed. DBAs therefore would like to run physical database
design tools so that they complete tuning within the batch
window. Intuitively, we need to find a good recommendation very
quickly and refine it as time permits. To address this requirement
at each step during tuning, the physical database design tool must
make judicious tradeoffs such as: (1) Given a large workload
should we consume more queries from the workload or tune the
ones consumed thus far? (2) For a given query, should we tune
both indexes and materialized views now or defer certain physical
design structures for later if time permits? (e.g., an index may be
useful for many queries whereas a materialized view may be
beneficial only for the current query). Thus the techniques
described in Sections 3 and 4 require adaptations to be effective in
the presence of such a time constraint. We note that current
commercial physical design tuning tools such as [7],[37],[69]
support time bound tuning.

9

7. ADVANCES IN OTHER SELF-TUNING
DATABASE TECHNOLOGY
Self-tuning databases is a wide area of research and it is hard to
even draw boundaries around it. Our coverage of recent advances
in this area is by no means exhaustive. There are several good
resources that give additional details of recent work in self-tuning
databases, e.g., the VLDB ten-year award paper from 2002 [67], a
tutorial on self-tuning technology in commercial databases [18], a
tutorial on foundations of automated tuning that attempts to break
down the area into paradigms [33]. We have discussed several
recent advances in the areas of physical database design in
previous sections.

In Sections 7.1 and 7.2, we focus on statistics management and
DBMS monitoring infrastructure, two research ideas that the
AutoAdmin project explored. Given the large breadth of the area,
we are able to highlight only a few of the many notable advances
in other self-tuning database topics in Section 7.3.

7.1 Statistics Management
Absence of the right statistical information can lead to poor
quality plans. Indeed, when we discussed automated selection of
physical design, along with our recommendation for indexes, we
needed to recommend a set of database statistics to ensure that the
optimizer has the necessary statistics to generate plans that
leverage the recommended indexes. However, the problem of
selection of database statistics arises even if we are not
contemplating any changes in physical design. Thus, in Sec 7.1.1,
we discuss the problem of selecting statistics to create and
maintain in a database system. In Section 7.1.2, we focus on self-
tuning histograms, an active area of research. The key idea behind
self-tuning histograms is to see how an individual statistics object
(specifically histograms) can leverage execution feedback to
improve its accuracy. Thus, these two problems are
complementary to each other.

7.1.1 Selection of Statistics
Determining which statistics to create is a difficult task, since the
decisions impact quality of plans and also the overhead due to
creation/update of statistics. Microsoft SQL Server 7.0 pioneered
in 1998 use of auto-create-statistics, which causes the server to
automatically generate all single-column histograms (via
sampling) required for the accurate optimization of an ad-hoc
query. This technology is now available among all commercial
relational database management systems. A recent paper [39]
suggests expanding the class of such statistics (beyond single
column statistics) that are auto-created in response to an incoming
ad-hoc query. While attractive from the perspective of improving
quality of plans, such proposals need careful attention so that the
incremental benefit of auto-creating such structures does not make
the cost of optimization disproportionately high.

A fundamental problem underlying the selection of statistics to
auto-create is evaluating the usefulness of a statistic without
creating it. Today’s technology for auto-create-statistics uses
syntactic criteria. However, for a wider class of statistics (such as
multi-column), syntactic criteria alone are not sufficient and more
powerful pruning of candidate set is desirable. Magic number
sensitivity analysis (MNSA) [30] was proposed as a technique to
address this problem. The key idea is to impose a necessary
condition before a syntactically relevant statistics is materialized.
Specifically, if the statistics for a join or a multi-column selection

predicate p in a query Q is potentially relevant, then the choice of
query plan for Q will vary if we optimize the query Q by injecting
artificially extreme selectivities for p (e.g., 1-ε, 0.5, ε). If the plan
for Q does not change, then we consider the candidate statistics
irrelevant and do not build it. MNSA was initially proposed to
solve the problem of finding an ideal set of statistics for a given
static workload (referred to as the essential set of statistics in
[30]) and further improvements are desirable to adapt the
technique for completely ad-hoc queries. Note also that the
decision to determine which statistics to create can be driven not
only by ad-hoc queries or by a static workload, but also by
leveraging execution feedback to determine where statistical
information may be lacking [2]. Finally, the challenge of
maintenance is also non-trivial and needs to rely on coarse
counters to track modification of tables (and potentially columns)
as well as execution feedback.

All the above challenges of selection of statistics are significantly
magnified as the class of statistics supported in DBMS expands.
Recent proposals [17],[42] suggest using statistics on the result of
a view expression (including joins and selections). Such statistics
can lead to improved estimates as effects of correlation among
columns and tables can be directly captured. In addition to the
increased creation and maintenance cost, including such statistics
also greatly expands the space of database statistics. The
challenging problems of automated selection of such statistics and
leveraging query execution feedback to refine them remain mostly
unexplored thus far.

7.1.2 Self-Tuning Histograms
Histograms represent compact structures that represent data
distributions. Self-tuning histograms, first proposed in [1], use
execution feedback to bias the structure of the histogram so that
frequently queried portions of data are represented in more detail
compared to data that is infrequently queried. Use of self-tuning
histograms can result in better estimates if incoming queries
require cardinality estimation for point or range queries in the
interval that have been queried in the past. Thus, instead of
keeping observations from execution feedback as a separate
structure as in [62], self-tuning histograms factor in execution
feedback by modifying the histogram itself. Naturally, self-tuning
histograms are especially attractive for multi-dimensional
histograms where biasing the structure of the histogram based on
usage pattern can be especially beneficial as the space represented
by the histograms grow exponentially with number of dimensions.
It should be noted that while online execution feedback is needed
to record the observed cardinalities, the actual changes to the
histogram structure can be done offline as well.

The challenge in building self-tuning histogram is to ensure that
online execution feedback can be used in a robust manner without
imposing a significant runtime overhead. The original technique
proposed in [1] monitored only the overall actual cardinality of
selection queries and was a low overhead technique. The actual
cardinality of the query was compared with the estimated
cardinality and the error was used to adjust the bucket boundaries
as well as the frequency of each bucket. However, the histogram
modification technique was based on relatively simple heuristics
that could lead to inaccuracies. A subsequent work [18] made two
significant improvements. First, it proposed using a multi-
dimensional histogram structure that is especially suited to
incorporate execution feedback. Next, it also recognized that a

10

finer granularity of execution feedback can significantly improve
accuracy of tuning the histogram structure. Thus, it suggested
techniques to track differences between execution and estimated
feedback at individual bucket level of the histogram. However,
despite improvement with respect to accuracy, the added
monitoring raised the overhead of execution. A recent paper [61]
addressed this concern by using the same multi-dimensional
structure as proposed in [18] but restricting monitoring to the
coarse level as in [1]. Instead of additional monitoring, ISOMER
uses the well-known maximum entropy principle to reconcile the
observed cardinalities and to approximate the data distribution.

7.2 Monitoring Infrastructure
In the past, database management systems provided rather limited
visibility into the internal state of the server. Support for database
monitoring (in addition to monitoring tools provided by operating
systems) included ability to generate event traces, e.g., IBM
Query Patroller or SQL Server Profiler. Awareness that
transparency of relevant server state can greatly enhance
manageability has led to significant extensions to monitoring
infrastructure in commercial database systems. Examples of such
extensions include Dynamic Management Views and functions
(DMV) in Microsoft SQL Server that return server state
information which can be used to monitor the health of a server
instance, diagnose problems, and tune performance. These
views/functions can represent information that is scoped for the
entire server or can be specific to database objects. Another
example of advanced monitoring infrastructure is Oracle’s
Automatic Workload Repository (AWR) that represents
performance data-warehouse of information collected during
execution of the server. Despite these significant developments,
we consider this area to be very promising for further work. We
illustrate this promise by pointing out the difficulty of answering a
simple monitoring task such as query progress estimation (Section
7.2.1) and then the challenge of providing a platform to enable ad-
hoc DBA defined monitoring tasks (Sec 7.2.2).

7.2.1 Query Progress Estimation
For a given query, one can query its historically aggregated usage
information or its current state of execution. A very natural
monitoring task is to be able to estimate “query progress”, i.e. to
estimate the percentage of a query’s execution that has completed.
In fact, one can view query progress estimation as an instance of a
property of current execution. This information can be useful to
help the DBA of an overloaded system select queries to be killed
or to enforce admission control. The problem of estimating
progress of a sequential scan is easy. Of course, query progress
estimation is a harder problem than estimating the cost of a
sequential scan since SQL queries can have selection, join,
aggregation and other operators. Indeed, it has been shown that
even for the simple class of SPJ queries, this problem is
surprisingly hard. In the worst case, with the limited statistics
available in today’s database systems, no progress estimator can
guarantee constant factor bounds [23]. Despite this negative
result, the properties of the execution plan, data layout, and
knowledge of execution feedback can be effectively used to have
robust progress estimators that are able to overcome exclusive
dependence on query optimizer’s cardinality estimates
[31],[50],[51],[52],[54]. This is analogous to query optimization –
despite the problem being difficult, many queries are well served
by our repertoire of query optimization techniques.

7.2.2 Ad-hoc Monitoring and Diagnostics
Despite availability of more capable monitoring infrastructure as
mentioned at the beginning of Sec 7.1, support for ad-hoc
monitoring is limited to selection of attributes to monitor and their
thresholding. For example, it is hard for DBAs to pose a question
such as: “Identify instances of a stored procedure that execute
more than twice as slow as the average instance over a window of
last 10 executions”. Of course, the challenge in supporting such
ad-hoc monitoring queries is to ensure that the overhead is not
high. In [24], we presented a preliminary proposal for the SQL
Continuous Monitoring (SQLCM) infrastructure that is built on
the server-side with the goal of supporting such ad-hoc
monitoring queries. This infrastructure supports aggregation of
system state and allows the user to also specify ad-hoc monitoring
tasks by using lightweight Event-Condition-Action (ECA) rules.
Finally, the area of database system diagnostics has received
much less attention so far than it deserves. The Automatic
Diagnostic Monitor (ADDM) in Oracle database system
represents an example of a diagnostic system that is able to
analyze information in its performance data-warehouse and can
invoke appropriate performance tuning tool based on pre-defined
rules [37]. In our opinion, ad-hoc monitoring and diagnostics
deserves much more attention than it has received so far.

7.3 Examples of Key Self-Tuning Initiatives
The COMFORT project [68] was one of the early self-tuning
efforts that focused on important problems such as load control
for locking, dynamic data placement in parallel disk systems, and
workflow server configuration. Although feedback control loops
are used in setting the appropriate tuning knobs, problem specific
techniques were needed to achieve robust auto-tuning [67].

Improving accuracy of cardinality estimates using execution
feedback has been an active area of work. The first paper
leveraging execution feedback was [34] and was followed by
papers on self-tuning histograms, discussed earlier. The Learning
Optimizer (LEO) project [62], part of IBM’s autonomic
computing initiative, identifies incorrect cardinality estimates and
saves the execution feedback for future optimization. Their goal is
to serve a larger class of query expressions through such feedback
beyond selection queries. Although a recent effort proposed using
their execution feedback to create a self-tuning histogram [61], it
remains an open problem on how effectively and efficiently
execution feedback can be leveraged for more general class of
query expressions, even if an incoming query does not exactly
match the query expressions observed in the past.

Note that exploiting query execution feedback is useful not only
for cardinality estimates for the future queries or for progress
estimation, but such feedback has been leveraged for dynamic
query re-optimization [47][53]. A novel query processing
architecture that fundamentally relies on adaptive approaches
rather than on careful static optimization was proposed in [12]. An
upcoming survey [38] summarizes this direction of work.

All commercial relational database systems today consider
manageability and self-tuning features as key requirements. In the
earlier sections, we have described product features related to
physical design tuning, statistics management, monitoring and
diagnostics. Two other areas where there has been significant
progress in the past decade include automated memory as well as
automated storage/data layout management. For example,
automated memory management in database servers makes it

11

possible to leverage adaptive operators and adjust memory
assigned to each operator’s working memory dynamically
depending on its own needs as well as on global memory
demands [19],[36], [63].

Finally, we would like to end our discussion of past work by
mentioning two other directions of work that strike us as thought-
provoking. The GMAP framework [65] suggested that physical
designs can be specified as expressions over logical schema
coupled with references to key storage organization primitives.
The vision underlying the approach is to represent different
physical organizations uniformly. Another topic that could be
potentially interesting from the perspective of self-tuning
technology is virtualization. While hardware and operating
systems virtualization is increasingly popular, the ability to
support high performance database applications on shared virtual
machines raise many challenges since database systems
traditionally use machine resources in a deliberate and careful
manner [64].

8. FUTURE DIRECTIONS
As mentioned in the previous section, there are many active
directions of work in the context of self-tuning database
technology. In this section, we highlight a few of the interesting
open issues:

• Today’s commercial database systems include physical
database design tools as part of the products. However, the
ability to compare the quality of automated physical design
solutions in these products remains an elusive task. To be
fair, this is no different than the state of the art in comparing
the quality of the query optimizers. But, from a research
perspective, this situation is quite unsatisfactory and requires
further thought.

• For large databases, any changes in the physical design are
“heavyweight” operations. There have been proposals on
more lightweight approaches towards defining physical
design structures, e.g., partial indexes/materialized views
[48], database “cracking” [45][46]. Such changes can
redefine our approaches to physical database design.

• Emerging shopping, CRM, and social network services on
the internet use database systems on the backend and they
bring unique self-tuning challenges. Specifically, they
employ multi-tenancy, i.e., data from different tenants
(customers of their services) co-reside in the same database
objects. Multi-tenancy makes self-tuning harder as workload
characteristics and performance tuning are less predictable.
Furthermore, efficient distributed monitoring and
serviceability to handle failure and performance problems is
an essential requirement for such internet services. This
requirement provides a rare opportunity to rethink system
architectures with self-tuning and self-manageability in
mind. In fact, there are already several initiatives towards
new generation of distributed architectures for storage,
computing and data analysis that are being built with such
monitoring and serviceability requirements, e.g., Amazon’s
S3 and EC2, Google Map Reduce, Microsoft Dryad.

• Machine learning techniques, control theory, and online
algorithms have the potential to be leveraged even more for
self-tuning tasks that we face for our data platforms. The
main challenges here are in modeling the self-tuning tasks

for which any of these paradigms could be applied in a
robust way. For example, in order to apply machine learning,
we need a clear understanding of what features (observed as
well as computed) should be used for learning.

9. CONCLUSION
The widespread use of relational database systems for mission
critical OLTP and decision support applications has made the task
of reducing the cost of managing relational database systems an
important goal. It has been a decade since we started the
AutoAdmin research project. During this time, other research
projects and industrial efforts also began to address this important
problem. In some areas such as automated physical design and
monitoring, our progress has had led to incorporation of new tools
and infrastructure in relational database systems. Other areas
remain active areas of research. Nonetheless, the challenge in
making database systems truly self-tuning is a tall task. For
example, the nature of tuning a buffer pool or tuning allocation of
working memory for queries is very different from that of
selecting the right set of indexes or statistics. Each such tuning
problem has different abstractions for workloads and different
constraints on the desired solution. Therefore, it will probably be
impossible to make database systems self-tuning by a single
architectural or algorithmic breakthrough. As a consequence, it
will be a long journey before this goal is accomplished just as it
took the automobile industry a sustained effort to reduce the cost
of ownership. However, one worrisome factor that will slow our
progress towards making relational database systems self-tuning
is the complexity of internal components that have been fine
tuned for performance for a powerful language such as SQL. As
argued in [32],[67], it is worthwhile to explore alternative
architectures of database servers for performance (and
functionality) vs. manageability trade-off. While the business
need for backward compatibility makes it difficult to revisit such
trade-offs for traditional enterprise relational servers, the
emergence of extremely scalable storage and application services
over the internet that absolutely demand self-manageability could
lead to development of newer structured store that is built
grounds-up with self-manageability as a critical requirement.

10. ACKNOWLEDGMENTS
We thank the VLDB 10-year Best Paper Award Committee for
selecting our paper for the award. Working with members of the
AutoAdmin research team has been a great experience for both of
us. Sanjay Agrawal and Manoj Syamala made significant
contributions to physical database design tuning including
incorporation of this technology to the Microsoft SQL Server
product. Nicolas Bruno has driven much of the recent AutoAdmin
advances on physical design tuning. Raghav Kaushik, Christian
Konig, Ravi Ramamurthy, and Manoj Syamala contributed to the
monitoring aspects of the AutoAdmin project. The shipping of the
Index Tuning Wizard and subsequently the Database Engine
Tuning Advisor in Microsoft SQL Server was made possible due
to the commitment and support of many people in the SQL Server
team over the past 10+ years. We sincerely thank them for their
continued support. We are indebted to David Lomet for his
support and encouragement. Over the years several visitors to our
group at Microsoft Research made important contributions to the
AutoAdmin project. Specifically, in this paper, we referred to the
work done by Ashraf Aboulnaga, Eric Chu, Mayur Datar, Ashish
Gupta, Gerhard Weikum, and Beverly Yang. Last but not least,

12

we thank Arvind Arasu, Nicolas Bruno, Raghav Kaushik, and
Ravi Ramamurthy for their thoughtful comments on drafts this
paper.

11. REFERENCES
[1] Aboulnaga, A. and Chaudhuri, S. Self-Tuning Histograms:

Building Histograms Without Looking at Data. Proceedings
of ACM SIGMOD, Philadelphia, 1999.

[2] Aboulnaga, A., Haas, P., Lightstone,S., Lohman,G., Markl,
V., Popivanov, I., Raman, V.: Automated Statistics
Collection in DB2 UDB. In Proceedings of VLDB 2004.

[3] Agrawal, R., Ramakrishnan, S. Fast Algorithms for Mining
Association Rules in Large Databases. In Proceedings of
VLDB 1994.

[4] Agrawal S., Chaudhuri S., Kollar L., and Narasayya V. Index
Tuning Wizard for Microsoft SQL Server 2000.
http://msdn2.microsoft.com/en-
us/library/Aa902645(SQL.80).aspx

[5] Agrawal, S., Chaudhuri, S. and Narasayya, V. Automated
Selection of Materialized Views and Indexes for SQL
Databases. In Proceedings of the VLDB, Cairo, Egypt, 2000..

[6] Agrawal, S., Chaudhuri, S., Das, A, and Narasayya, V.:
Automating Layout of Relational Databases. In Proceedings
of ICDE 2003.

[7] Agrawal, S. et al. Database Tuning Advisor for Microsoft
SQL Server 2005. In Proceedings of the 30th VLDB,
Toronto, Canada, 2004.

[8] Agrawal, S. et al. Database Tuning Advisor in SQL Server
2005. White paper.
http://www.microsoft.com/technet/prodtechnol/sql/2005/sql2
005dta.mspx

[9] Agrawal,S., Chu, E., and Narasayya, V.: Automatic physical
design tuning: workload as a sequence. In Proceedings of
ACM SIGMOD Conference 2006.

[10] Agrawal, S., Narasayya, V., and Yang, B.: Integrating
Vertical and Horizontal Partitioning Into Automated Physical
Database Design. In Proceedings of ACM SIGMOD
Conference 2004.

[11] Anderson, E. et al. Hippodrome: running circles around
storage administration. Conference on File and Storage
Technology (FAST'02) pp. 175-188 (28-30 January 2002,
Monterey, CA).

[12] Avnur, R., and Hellerstein, J. Eddies: Continuously Adaptive
Query Processing. In Proceedings of ACM SIGMOD
Conference 2000.

[13] Bruno, N., and Chaudhuri, S. An Online Approach to
Physical Design Tuning. Proceedings of the 2007 ICDE
Conference.

[14] Bruno N. and Chaudhuri S. To Tune or not to Tune? A
Lightweight Physical Design Alerter. In Proceedings of the
VLDB Conference, 2006.

[15] Bruno, N., and Chaudhuri, S. Automatic Physical Design
Tuning: A Relaxation Based Approach. Proceedings of the
ACM SIGMOD, Baltimore, USA, 2005.

[16] Bruno N. and Chaudhuri S. Physical Design Refinement.
The Merge-Reduce Approach. In Proceedings of the EDBT
Conference, 2006.

[17] Bruno, N., and Chaudhuri, S.: Exploiting statistics on query
expressions for optimization. In Proceedings of ACM
SIGMOD Conference 2002.

[18] Bruno,N, Chaudhuri, S., Gravano, L.: STHoles: A
Multidimensional Workload-Aware Histogram. In
Proceedings of ACM SIGMOD Conference 2001.

[19] Chaudhuri, S. Christensen, E., Graefe, G., Narasayya, V.,
and Zwilling, M.: Self-Tuning Technology in Microsoft SQL
Server. IEEE Data Eng. Bull. 22(2): 20-26 (1999)Chaudhuri,
S, Dageville, B., and Lohman, G.: Self-Managing
Technology in Database Management Systems. VLDB 2004.

[20] Chaudhuri, S., Das, G., and Srivastava, U. Effective Use of
Block-Level Sampling in Statistics Estimation. In
Proceedings of ACM SIGMOD Conference 2004.

[21] Chaudhuri, S., Datar, M., and Narasayya V. Index Selection
for Databases: A Hardness Study and a Principled Heuristic
Solution. IEEE Transactions on Knowledge and Data
Engineering, VOL. 16, NO. 11, November 2004.

[22] Chaudhuri, S., Gupta, A., and Narasayya, V. Compressing
SQL Workloads. Proceedings of the ACM SIGMOD,
Madison, USA, 2001.

[23] Chaudhuri S., Kaushik, R, and Ramamurthy R. When Can
We Trust Progress Estimators For SQL Queries? In
Proceedings of the ACM SIGMOD, Baltimore, USA, 2005.

[24] Chaudhuri S., König, A., and Narasayya V. , SQLCM: A
Continuous Monitoring Framework for Relational Database
Engines. In Proceedings of ICDE, Boston, USA, 2004

[25] Chaudhuri, S., Motwani, R., and Narasayya V. Random
Sampling for Histogram Construction: How much is enough?
In Proceedings of ACM SIGMOD 1998.

[26] Chaudhuri, S. and Narasayya, V. An Efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server. In
Proceedings of the VLDB, Athens, Greece, 1997.

[27] Chaudhuri, S. and Narasayya, V. AutoAdmin “What-If”
Index Analysis Utility. In Proceedings of ACM SIGMOD,
Seattle, WA, 1998.

[28] Chaudhuri S. and Narasayya V. Index Merging. In
Proceedings of ICDE, Sydney, Australia 1999.

[29] Chaudhuri S., and Narasayya V. Index Tuning Wizard for
Microsoft SQL Server 7.0. Microsoft SQL Server 7
Technical Articles. http://msdn2.microsoft.com/en-
us/library/aa226167(SQL.70).aspx

[30] Chaudhuri, S. and Narasayya, V.: Automating Statistics
Management for Query Optimizers. In Proceedings of ICDE
2000.

[31] Chaudhuri S., Narasayya V., and Ramamurthy R., Estimating
Progress of Execution for SQL Queries. In Proceedings of
the ACM SIGMOD, Paris, France, 2004.

[32] Chaudhuri S. and Weikum G., Rethinking Database System
Architecture: Towards a Self-tuning, RISC-style Database
System . In Proceedings VLDB, Cairo, Egypt, 2000.

[33] Chaudhuri, S., and Weikum, G.: Foundations of Automated
Database Tuning. In Proceedings of VLDB 2006.

[34] Chen, C., and Roussopoulos, N.: Adaptive Selectivity
Estimation Using Query Feedback. SIGMOD Conference
1994.

[35] Consens, M., Barbosa, D., Teisanu, A., Mignet, L.: Goals
and Benchmarks for Autonomic Configuration
Recommenders. SIGMOD Conference 2005.

[36] Dageville, B., Zaït, M.: SQL Memory Management in
Oracle9i. In Proceedings of VLDB 2002.

[37] Dageville, B., Das, D., Dias, K., Yagoub, K., Zaït, M.,
Ziauddin, M.: Automatic SQL Tuning in Oracle 10g. In
Proceedings of VLDB 2004.

13

[38] Deshpande, A., Ives, Z., and Raman, V. Adaptive Query
Processing. Foundations and Trends in Databases, 2007.

[39] El-Helw, A., Ilyas, I., Lau, W., Markl, V., and Zuzarte, C.
Collecting and Maintaining Just-in-time statistics. In
Proceedings of ICDE 2007.

[40] Finkelstein, S., Schkolnick, M., and Tiberio, P. Physical
Database Design for Relational Databases. ACM Trans. on
Database Systems, Vol 13, No 1, March 1988.

[41] Frank,M,, Omiecinski, E., Navathe, S.: Adaptive and
Automated Index Selection in RDBMS. EDBT 1992.

[42] Galindo-Legaria, C., Joshi, M., and Waas, F., Wu, M.:
Statistics on Views. In Proceedings of VLDB 2003.

[43] Graefe, G. The Cascades framework for query optimization.
Data Engineering Bulletin, 18(3), 1995.

[44] Hammer, M. and Chan, A., Index Selection in a Self-
Adaptive Data Base Management System”, In Proceedings
of ACM SIGMOD 1976.

[45] Idreos, S., Kersten, M., and Manegold, S.: Database
Cracking. In Proceedings of CIDR 2007.

[46] Idreos, S., Kersten, M., Manegold, S.: Updating a cracked
database. In Proceedings of SIGMOD Conference 2007.

[47] Kabra, N. and DeWitt, D. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
Proceedings of SIGMOD Conference 1998.

[48] Larson, P., Goldstein, J., Guo, H., and Zhou, J: MTCache:
Mid-Tier Database Caching for SQL Server. IEEE Data Eng.
Bull. 27(2): 35-40 (2004)

[49] Lightstone, S., Teorey, T., and Nadeau, T. Physical Database
Design: the database professional's guide to exploiting
indexes, views, storage, and more, Morgan Kaufmann Press,
2007. ISBN: 0123693896.

[50] Luo, G., Naughton, J., Ellmann, C. and Watzke, M.: Toward
a Progress Indicator for Database Queries. In Proceedings of
ACM SIGMOD 2004.

[51] Luo, G., Naughton, J., Ellmann, C.,and Watzke, M.:
Increasing the Accuracy and Coverage of SQL Progress
Indicators. In Proceedings of ICDE 2005.

[52] Luo, G., Naughton, J, and Yu, P.: Multi-query SQL Progress
Indicators. In Proceedings of EDBT 2006.

[53] Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh,
H.: Robust Query Processing through Progressive
Optimization. In Proceedings of ACM SIGMOD Conference
2004.

[54] Mishra, C., Koudas, N.: A Lightweight Online Framework
For Query Progress Indicators. In Proceedings of ICDE
2007.

[55] Papadomanolakis,S., and Ailamaki, A.: AutoPart:
Automating Schema Design for Large Scientific Databases
Using Data Partitioning. In Proceedings of SSDBM 2004.

[56] Rozen,S. and Shasha, D.: A Framework for Automating
Physical Database Design. In Proceedings of VLDB 1991.

[57] Sattler, K, Geist, I. Schallehn, E. Quiet: Continuous query-
driven index tuning. In Proceedings of VLDB, 2003.

[58] Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: COLT:
continuous on-line tuning. In Proceedings of ACM SIGMOD
Conference 2006.

[59] Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., and
Price, T. Access path selection in a relational database
management system. In Proceedings of SIGMOD 1979.

[60] Shapiro, G.P: The Optimal Selection of Secondary Indices is
NP-Complete. SIGMOD Record 13(2): 72-75 (1983).

[61] Srivastava, U. et al. ISOMER: Consistent Histogram
Construction Using Query Feedback. In Proceedings of
ICDE, 2006.

[62] Stillger, M., Lohman, G., Markl,V., and Kandil, M.: LEO -
DB2's LEarning Optimizer. In Proceedings of VLDB 2001.

[63] Stonebraker, M. The Choice of Partial Inversions and
Combined Indices. International Journal of Computer and
Information Sciences, 3(2), June 1974.

[64] Soror, A., Aboulnaga, A., Salem, K. Database Virtualization:
A New Frontier for Database Tuning and Physical Design. In
2nd International Workshop on Self-Managing Database
Systems (SMDB 2007).Storm, A., Garcia-Arellano, C.,
Lightstone, S, Diao, Y. and Surendra, M.: Adaptive Self-
tuning Memory in DB2. In Proceedings of VLDB 2006.

[65] Tsatalos, O, Solomon, M, and Ioannidis, Y.: The GMAP: A
Versatile Tool for Physical Data Independence. In
Proceedings of VLDB 1994.

[66] Valentin, G., Zuliani, M., Zilio, D., Lohman, G. and Skelley,
A. DB2 Advisor: An Optimizer Smart Enough to
Recommend its Own Indexes. In Proceedings of ICDE, San
Diego, USA, 2000.

[67] Weikum,G., Mönkeberg, A., Hasse, C., and Zabback, P.:
Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. In
Proceedings of VLDB 2002.

[68] Weikum, G., Hasse,C., Moenkeberg, A., Zabback, P.: The
COMFORT Automatic Tuning Project, Invited Project
Review. Inf. Syst. 19(5): 381-432 (1994)

[69] Zilio et al. DB2 Design Advisor: Integrated Automatic
Physical Database Design. In Proceedings of the VLDB,
Toronto, Canada, 2004.

[70] Zilio et al. Recommending Materialized Views and Indexes
with IBM DB2 Design Advisor. In Proceedings of ICAC
2004.

14

