
Depth Estimation for Ranking Query Optimization

Karl Schnaitter
UC Santa Cruz

karlsch@soe.ucsc.edu

Joshua Spiegel ∗
BEA Systems, Inc.

jspiegel@bea.com

Neoklis Polyzotis
UC Santa Cruz

alkis@cs.ucsc.edu

ABSTRACT
A relational ranking query uses a scoring function to limit the re-
sults of a conventional query to a small number of the most relevant
answers. The increasing popularity of this query paradigm has led
to the introduction of specialized rank join operators that integrate
the selection of top tuples with join processing. These operators ac-
cess just “enough” of the input in order to generate just “enough”
output and can offer significant speed-ups for query evaluation. The
number of input tuples that an operator accesses is called the input
depth of the operator, and this is the driving cost factor in rank join
processing. This introduces the important problem of depth estima-
tion, which is crucial for the costing of rank join operators during
query compilation and thus for their integration in optimized phys-
ical plans.

We introduce an estimation methodology, termed DEEP, for ap-
proximating the input depths of rank join operators in a physical
execution plan. At the core of DEEP lies a general, principled
framework that formalizes depth computation in terms of the joint
distribution of scores in the base tables. This framework results in
a systematic estimation methodology that takes the characteristics
of the data directly into account and thus enables more accurate es-
timates. We develop novel estimation algorithms that provide an
efficient realization of the formal DEEP framework, and describe
their integration on top of the statistics module of an existing query
optimizer. We validate the performance of DEEP with an extensive
experimental study on data sets of varying characteristics. The re-
sults verify the effectiveness of DEEP as an estimation method and
demonstrate its advantages over previously proposed techniques.

1. INTRODUCTION
Ranking queries, which have been popularized mainly in the

context of information retrieval, have become increasingly popu-
lar in the context of relational databases. In a nutshell, a relational
ranking query (also referred to as a top-K query) specifies a scor-
ing function over the results of a SELECT query and limits the
result set to the K tuples with the highest scores. Ranking queries
∗Work performed while the author was a graduate student at UC
Santa Cruz.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

SELECT hl.name, rt.name, ev.title
FROM Hotel hl, Restaurant rt, Event ev
WHERE hl.city = rt.city AND rt.city = ev.city
RANK BY 0.4∗hl.rating + 0.2∗rt.rating+ 0.4∗matches(ev.title,“music”)
LIMIT 10

Figure 1: An example ranking query.

are invaluable in the interactive exploration of large data stores, as
they allow a user to reduce a massive result set to a few of the most
relevant answers. As an example, consider a database comprising
information on a touristic area. A visitor that wants to plan out a
short stay in the area can issue the query shown in Figure 1 to re-
trieve the top 10 combinations of a hotel, a restaurant, and an event
that are located in the same city. The scoring function encodes the
preferences of the visitor and combines the rating of the restaurant
and the hotel with a boolean indicator on the event title (whether it
matches the keyword “music”).

Clearly, it is possible to evaluate a ranking query by generating
the results of the join, ordering them by score, and retaining the first
K tuples. This approach can result in wasted work, however, as the
physical plan may need to process all of the input tuples in order to
return only a few results. As a potentially more efficient alternative,
recent studies [6, 7] have introduced specialized rank join physical
operators that enable a physical plan to integrate top-K selection
with join processing. Figure 2 illustrates the main idea behind this
approach. The figure shows a sample physical plan for the above
query that uses rank join operators. (The specifics of the plan and
the notation are described later.) The ordered answers are obtained
by performing K pull requests at the top operator. Each pull re-
quest, in turn, accesses and combines tuples from the base tables in
descending order of their “importance” as specified by the query.
(For instance, restaurant tuples will be accessed in descending or-
der of their rating.) Overall, the idea is to generate the answers
by accessing only a subset of each input table that contains the
most “important” tuples. (The figure illustrates the accessed sub-
sets as shaded regions over the rectangles that represent the com-
plete tables.) Depending on the input data and the specifics of the
query, this rank-aware processing can offer significant performance
improvements compared to a conventional plan that generates and
sorts the results of the join [6, 7, 11].

The use of a rank join operator in a physical plan hinges on the
ability of the optimizer to obtain estimates for the cost factors of
the operator. In this specific context, the driving cost factor is the
number of tuples that the operator accesses from each input, which
we refer to as the input depth of the operator. This raises the impor-
tant problem of depth estimation that is crucial for the integration
of rank join operators in query optimization. At an abstract level,
depth estimation is analogous to the problem of estimating the out-
put cardinality of a conventional join operator, for which previous

902

studies have introduced a host of effective techniques (e.g., based
on histograms [15], wavelets [14], or samples [12]). The formu-
lation of the problem, however, is essentially reversed: the output
cardinality of the physical plan is known to be the number K of
requested tuples, and we wish to estimate the amount of the input
that is accessed.

Prior Work. As hinted earlier, previous works on conventional se-
lectivity estimation are not well suited for the semantics of depth
estimation. The same observation applies to estimation techniques
in more relevant domains, such as quantile estimation for single
tables [13] and the cost optimization of skyline queries [3], since
they essentially ignore the specifics of rank joins and their oper-
ation within a complex query plan. To address this issue, recent
studies have introduced specialized techniques that are tailored to
the problem of depth estimation. More concretely, Ilyas et al. [7]
have proposed a technique that derives estimates of input depths
using a probabilistic model of the data. The particular data model,
however, assumes that scores are uniformly distributed and joins
are independent, and it is thus not obvious whether a similar es-
timation method can be applied to a more general model of score
distributions and join dependencies. Moreover, the estimator re-
quires that all relations have equal size and the scoring function is
a weighted sum. Extending the methodology to a different class of
inputs requires a non-trivial modification to the estimators. A dif-
ferent approach is taken in the work of Li et al. [11], where the es-
timator uses independent samples of the base relations as the core
summarization method. The key idea is to process the physical
plans over the samples, and then scale up the observed depths in
order to obtain estimates. Independent table samples, however, are
known to perform poorly in capturing key/foreign key joins or com-
plex join dependencies, which makes this method likely to exhibit
high estimation errors in practice.

The main shortcoming of previously proposed methods is the
lack of a formal framework that links depth estimation to the sta-
tistical characteristics of the data distribution. Such a framework
determines the type of data statistics that need to be maintained by
the optimizer, and also provides a principled method for comput-
ing depth estimates based on the stored statistics. In addition, the
estimation framework can clarify whether the depth statistics are
realizable with existing data summarization techniques, or if we
need to invest in new types of data synopses. Overall, it becomes
clear that this missing link is essential for the effective integration
of rank join operators in the query optimizer.

Contributions. Motivated by the previous observations, we present
a new technique for estimating the input depth of physical opera-
tors used by ranking queries. Our individual contributions can be
summarized as follows:

• DEEP Estimation Framework. We introduce DEEP (short for
DEpth Estimation for Physical plans), a formal framework for depth
estimation in rank-aware physical plans that employ monotonic
scoring functions. The key novelty of DEEP is the rigorous com-
putation of input depths in terms of aggregate data statistics. The
proposed framework relies on frequency tensors in order to capture
score distributions, and formalizes depth computation as a set of
operations over the tensors that describe the output and inputs of a
join operator. This computation is designed for two rank join op-
erators that represent the state-of-the-art: Nested Loops Rank Join,
and the HRJN∗ variant of Hash Rank Join algorithms.

• Realization of DEEP with Efficient Estimation Algorithms.
We develop estimation algorithms that provide an efficient imple-
mentation of the formal DEEP framework. Our algorithms take ad-

Hotel h Restaurant r

HRJN

Event eHRJN

k results

S(hl) = S(T1(hl), 1, 1)
S(rt) = S(1, T2(rt), 1)

S(hl · rt) = S(T1(hl), T2(rt), 1)

S(hl · rt · ev) = S(T1(hl), T2(rt), T3(ev)){

S(ev) = S(1, 1, T3(ev))

Figure 2: A physical plan with rank-join operators.

vantage of the monotonicity of the scoring function in order to pro-
cess only the relevant portion of the data statistics, and thus signif-
icantly improve the performance of depth estimation. We describe
a simple interface that these algorithms use to access the statistics
module of the query optimizer, and demonstrate how it can be im-
plemented on top of summarization techniques that are commonly
used in relational systems. This demonstrates the practicality of our
approach and its feasibility as an estimation method.

• Theoretical Analysis of Hash Rank Join. The design of DEEP
focuses on HRJN∗ rather than other Hash Rank Join algorithms
that have been studied. In order to justify this decision, we perform
a theoretical analysis of the HRJN∗ join algorithm and show that it
exhibits strong optimality properties compared to other variants of
Hash Rank Join. Our analysis corroborates the empirical results of
previous studies, while making major extensions to the known the-
oretical properties of HRJN∗. Hence our results are also of general
interest for the further development of rank join algorithms.

• Experimental Study Validating the Effectiveness of DEEP. We
validate the effectiveness of the proposed estimation methodology
with an extensive experimental study on data sets and workloads
of varying characteristics. The results verify the effectiveness of
DEEP in computing accurate depth estimates for complex physical
plans and show that, in several cases, DEEP offers between one to
two orders of magnitude improvement in relative error over previ-
ously proposed estimation techniques.

2. PRELIMINARIES
In this section, we introduce some basic concepts related to rela-

tional ranking queries and formally define the estimation problem.

2.1 A Primer in Ranking Query Processing
Query Model. We adopt the notation of previous works and ex-
press a ranking query in the following SQL-like language:

SELECT Target List
FROM R1 τ1, R2 τ2, . . . , Rn τn

WHERE Join Predicates AND Selection Predicates
RANK BY S(T1(τ1), T2(τ2), . . . , Tn(τn))
LIMIT K

Let τ be a tuple resulting from the SPJ portion of the query, and let
τi denote its witness in relation Ri (1 ≤ i ≤ n). Each function
Ti, termed a ranking criterion, assigns a base score Ti(τi) ∈ [0, 1]
to the witness τi of τ . (We often use Ti(τ) to denote this base
score.) The base scores are combined with the scoring function S

903

Procedure NRJN.getNext()
Data structures: priority queue O
Initializations: t←∞
begin
1.while L is not exhausted and (O is empty OR S(O.top()) < t)
2. λ← L.getNext()
3. Join λ with R and push results in O
4. t← S(λ)
5.done
6.return O.pop()
end

Figure 3: NRJN Algorithm.

in order to assign a final score S(T1(τ1), . . . , Tn(τn)) ≡ S(τ) to
τ . The result of the query comprises the top K tuples of the SPJ
query, ranked according to their scores. Returning to the example
of Figure 1, the ranking criteria are defined as T1(hl) = hl.rating,
T2(rt) = rt.rating, T3(ev) = matches(ev.title,“music”), and the
overall scoring function is a weighted average of the base scores.

Following common practice, we assume that S is monotonic,
i.e., S(x1, x2, . . . , xn) ≥ S(y1, y2, . . . , yn) if xi ≥ yi ∀1 ≤
i ≤ n. This property is essential in the context of ranking query
processing as it allows the computation of upper bounds on the
scores of final tuples. More specifically, let τ ′ be a partial re-
sult tuple that is generated by processing a subset of relations, say,
R1, . . . , Rm, and let τ be a complete result tuple that results from
processing τ ′ further with the remaining relations. Clearly, it holds
that Ti(τ) = Ti(τ

′) for the corresponding criteria T1, . . . , Tm,
while Ti(τ) ≤ 1 for the remaining criteria Tm+1, . . . , Tn. By
virtue of the monotonicity property of S, we can use S(τ ′) =
S(T1(τ

′), . . . , Tm(τ ′), 1, . . . , 1) as an upper bound on the result
score S(τ), i.e., S(τ) ≤ S(τ ′). We note that it is possible to com-
pute a tighter bound if we substitute the missing scores with the
actual maxima of functions Ti, i = m + 1, . . . , n, but we omit this
optimization to simplify the presentation.

Query Processing. Recent studies [6, 7] have introduced special-
ized rank join physical operators that enable a physical plan to in-
tegrate top-K selection with join processing. As mentioned earlier,
the main idea is to generate the desired results by accessing only
the high-scoring tuples of the input tables. In this paper, we focus
on two well known rank join operators that represent the state-of-
the-art: Nested Loops Rank Join (NRJN) [6], and Hash Rank Join
(HRJN) [6]. The next paragraphs provide a brief overview of the
two operators.

Figure 3 shows the pseudo-code for the NRJN operator. The im-
plementation uses the well known iterator interface [5]. The opera-
tor accesses tuples from L in descending order of the upper bound
S and generates the result of L 1 R (via successive calls to the
getNext() method) also in descending order of S. The operator
works similar to a nested loops join, reading a tuple from L and
joining it with all the tuples in R. One important difference is that
the results are not returned immediately to the parent operator, but
instead are buffered in a priority queue O based on their S bound.
The algorithm also maintains a bound t (termed the threshold) on
the score of any result tuple that can be generated by accessing
more tuples from L. A call to NRJN.getNext() returns the top
tuple ω in the output buffer O if S(ω) ≥ t, i.e., if it is guaranteed
that the operator cannot generate a result with a higher score by
accessing more tuples in L. Otherwise, NRJN generates more join
results in the output buffer until the condition on the threshold is
met. The threshold is set to t ≡ S(λ), λ being the last accessed
tuple, based on the property that all tuples after λ have an upper
bound less than or equal to S(λ).

Procedure HRJN〈P 〉.getNext()
Operator parameter: pull strategy P
Data structures: priority queue O; hash tables HTL and HTR

Initializations: t←∞;λ← ∅; ρ← ∅
begin
1.while inputs are not exhausted AND (O is empty OR S(O.top()) < t)
2. choice← P.chooseInput(L, R, λ, ρ)
3. if (choice = L) then
4. λ← L.next()
5. Join λ with HTR and push results in O
6. Insert λ in HTL

7. else
8. Perform symmetric actions based on R
9. endif
10. if ρ 6= ∅ AND λ 6= ∅ then t← max(S(λ),S(ρ))
11.end while
12.return O.pop()
end

Figure 4: HRJN Algorithm.

Figure 4 depicts the pseudo-code for the HRJN operator. HRJN
is an abstract operator that is instantiated by a parameter P , which
we call a pull strategy. The role of the pull strategy will be de-
scribed shortly. The idea of HRJN is similar to a symmetric hash-
join as it uses two hash tables HTL and HTR to hold the tuples ac-
cessed from the child operators. One difference is that both L and
R are accessed in descending order of S. Each time an input tuple
is read, the pull strategy determines whether the tuple comes from
L or R, possibly taking the scores of the previously pulled tuples
into account. As was the case with NRJN, the output is buffered to
a priority queue O and the top tuple is returned only if it satisfies
the threshold condition. The difference is that the threshold is de-
fined based on both inputs as t = max(S(λ),S(ρ)), where λ and
ρ are the most recent tuples accessed from L and R respectively.
Thus, compared to NRJN, HRJN places more assumptions on its
inputs (both have to be accessed in order of S), but it will access a
prefix of R instead of performing repeated scans.

As mentioned earlier, rank join operators allow the composition
of physical plans that generate the top K results without exhausting
their inputs. Figure 2 shows a sample physical plan with two hash
rank join operators for the query of Figure 1. The top operator Op1

accesses the output of Op2 in descending order of S(hl · rt) ≡
S(T1(hl), T2(rt), 1) and the Event table in descending order of
S(ev) ≡ S(1, 1, T3(ev)), and generates output tuples hl · rt · ev
in descending order of S(hl · rt · ev) ≡ S(T1(hl), T2(rt), T3(ev)).
Thus, the result of the ranking query is formed by performing K
calls to Op1.getNext(). Operator Op2 works similarly to Op1,
accessing its inputs Hotel and Restaurant in descending order of
S(hl) ≡ S(T1(hl), 1, 1) and S(rt) ≡ S(1, T2(rt), 1) respectively,
and generating joined tuples hl·rt in decreasing order of S(hl·rt) ≡
S(T1(hl), T2(rt), 1). The main difference is that the pull requests
to Op2 are controlled by operator Op1 and their total count is thus
not necessarily equal to K. Overall, the physical plan generates
the answers by accessing only a “prefix” of each input table Ri

that contains the high scoring tuples from criterion Ti. This is il-
lustrated in Figure 2 as the shaded regions over the rectangles that
represent the complete relations.

2.2 Depth Estimation: Problem Statement
We use the term input depth to refer to the number of tuples that

a rank join operator accesses from a ranked input in order to answer
all the getNext requests of its parent operator. (Thus, NRJN has
a left depth only as L is its only ranked input.) In what follows,

904

we use l and r to denote the left and right input depth respectively
of a rank join operator, and L[l] and R[r] to denote the prefixes
of L and R respectively up to the specific depths. The notion of
input depth extends also to selection operators that consume and
return results in sorted order of S. As an example, consider again
the physical plan of Figure 2, and assume that there is a selection
operator cuisine=“Italian” over the access method for Restaurant1.
The selection operator will still access Restaurant in sorted order of
S but it will return only tuples that match the predicate. The depth
of the selection is defined as the number of accessed Restaurant
tuples in order to satisfy r requests to getNext(), where r is the
right depth of the parent join operator Op2. In general, the input
depth of the selection operator depends on the correlation between
the base scores and attribute values of Restaurants.

The input depths of rank join operators directly affect the cost of
a physical plan. First and foremost, the depths determine how many
requests are issued at the access methods of the input tables and
thus determine the I/O cost of the plan. Moreover, the depths can
characterize the memory requirements of the rank join operators
during execution and thus provide some indication of the expected
memory footprint of the plan. To illustrate this idea, consider an
HRJN operator with depths l and r. These depths indicate exactly
the size of the two hash tables HTL and HTR, and enable an upper
bound on the size of the output buffer as |L[l] 1 R[r]|. Similar
observations can be made for an NRJN operator, where the size of
the output buffer can be bound as |L[l] 1 R|.

As the previous discussion indicates, the ability of the optimizer
to cost a rank-aware physical plan, and thus to integrate rank join
operators in query compilation, hinges upon the existence of an es-
timation framework that can approximate the input depths for every
operator in the plan. This is precisely the problem that we tackle in
this paper.

Depth Estimation Given a physical plan P that consists of HRJN,
NRJN, and selection operators, estimate the input depth(s)
of any operator in the plan.

As mentioned in Section 1, depth estimation has unique features
that set it apart from conventional selectivity estimation and thus
render existing estimation techniques ineffective for ranking plans.
A major difference is that depth estimation concerns the number of
accessed input tuples, whereas conventional selectivity estimation
concerns the number of output tuples. Another distinguishing fea-
ture is that rank join algorithms are closely coupled in a pipelined
physical plan, since the input depths of an operator depend on the
number of getNext() requests from the parent operator. This fea-
ture is absent in conventional selectivity estimation, where the out-
put size of an operator depends only on the statistical characteristics
of its input tables. These points, raised also by previous studies on
ranking query processing [7, 8, 11], motivate the development of
new estimation techniques that are tailored to the problem of depth
estimation.

3. THE DEEP ESTIMATION FRAMEWORK
In this section, we introduce the proposed DEEP framework for

estimating the input depths of operators in a rank-aware physical
plan. The distinguishing feature of DEEP is that it employs a prin-
cipled methodology in order to link depth computation to the distri-
bution of scores in the inputs. This approach results in a systematic
framework that takes directly into account the characteristics of the
data distribution and thus yields accurate approximations.
1If the selection is pushed in the access method, we may model it
as a separate operator in order to determine the plan cost.

Procedure chooseInput(L, R, λ, ρ)
Input: The inputs L and R; the corresponding last accessed tuples λ and ρ.
Output: Indicator L or R.
begin
1.if ρ = ∅ then return R
2.else if λ = ∅ then return L
3.end if
4.if S(λ) > S(ρ) then return L
5.else if S(λ) < S(ρ) then return R
6.else if left depth < right depth then return L
7.else return R
8.end if
end

Figure 5: Pull strategy for HRJN∗.

One complicating factor in the estimation problem is that the
depths of an HRJN operator are directly affected by the choice of
the pulling strategy (Figure 4). Since it is clearly impractical to de-
sign an estimation framework for all possible strategies, this leads
to the problem of determining a “good” set of supported pulling
strategies. To address this issue, we have performed a theoretical
analysis of pulling strategies for HRJN and we have identified that
a particular variant, termed the threshold-adaptive strategy [6], has
several desirable properties. The pseudo-code of the strategy is
shown in Figure 5. The main idea is to pull from the input with the
highest upper bound S in an attempt to lower the overall threshold t
and thus allow the operator to return the top buffered result without
accessing more of its inputs. The instantiation of HRJN with this
strategy is commonly referred to as HRJN∗. Our analysis shows
the optimality of HRJN∗ in several scenarios and corroborates pre-
vious empirical studies that have verified the good performance of
HRJN∗. (Section 5 provides a more detailed discussion.) Overall,
these results provide strong evidence for the use of HRJN∗ as the
default HRJN realization, and essentially allow us to focus DEEP
on this particular pulling strategy. We note that we can easily ex-
tend our techniques to the variant of HRJN∗ that accesses tuples
in batches, and also to pulling strategies that alternate deterministi-
cally between the two inputs. We discuss these extensions further
in Section 3.4.

The following sections describe the details of the proposed DEEP
estimation framework. To simplify exposition, we assume that the
physical plan consists only of HRJN∗ and NRJN operators, i.e.,
we exclude selections for now. We extend our framework to selec-
tions in Section 3.4. We also restrict the plan to binary join opera-
tors, as the extension to multi-way operators is straightforward.

3.1 Modeling Data Statistics
Consider a join of m ≥ 1 relations R1 1 · · · 1 Rm where each

relation Ri has a ranking criterion Ti. We use Ti[Ri] to denote
the set of base scores that Ti assigns to tuples in Ri. Let b =
(b1, . . . , bm) be a combination of base scores such that bi ∈ Ti[Ri]
for all i. We model the distribution of scores with a frequency score
tensor F , where F (b) is defined as the number of join results with
the combination of base scores b.

DEEP relies on the aforementioned score frequency tensors in
order to compute depth estimates. This approach lends some nice
properties to the estimation methodology. More concretely, ob-
serve that a frequency score tensor takes into account the joint dis-
tribution of scores and joins, and hence DEEP does not inherently
assume any independence between attributes. Moreover, the use
of tensors allows us to decouple the estimation methodology from
the details of particular ranking criteria. In other words, DEEP can
support any ranking criterion as long as the database system can

905

provide this information on the distribution of base scores. Finally,
note that tensors describe only the base scores and join attributes;
we do not assume any statistics or properties for the overall scoring
function, except that it is monotonic.

In practice, we expect the system to provide these tensor-based
statistics using data synopses such as histograms, wavelets, or sam-
pling. This means that the available information about score dis-
tributions may not be totally accurate. In particular, (1) the sys-
tem may only have approximations of the true frequencies given
by F , and (2) the precise sets Ti[Ri] of assigned scores may not be
known. From this point onward, we allow for these inaccuracies
whenever we refer to a frequency tensor or a set of assigned base
scores.

The algorithms of DEEP use a specific interface to access fre-
quency information. The interface comprises the following two
methods, which we define using the above notation:

getFreq(F,b) This method simply returns the frequency of b that
is indicated by F .

nextScore(F,b, i) This method returns the next score below bi in
the i-th dimension of the domain of F . In other words, this
is the maximum score assigned by Ti that is less than bi.

These methods provide a simple and clean interface for the integra-
tion of DEEP on top of an existing query optimizer. We show how
this is possible in Section 3.3, where we discuss the implementation
of this interface using common summarization techniques. More-
over, this interface allows the system to optimize the computation
of score frequency information, as it is possible to compute the re-
quested statistics on-the-fly without materializing the tensors. For
instance, a call to getFreq(F,b) can be evaluated by combining
frequency tensors of individual relations with statistical informa-
tion on the distribution of join keys in the relations. This approach
can lead to a very efficient estimator, since DEEP typically uses
only a few cells from each tensor.

3.2 DEEP Estimation
We now introduce the details of the DEEP estimation method-

ology. DEEP provides a simple interface that takes a query along
with relevant statistics, and produces depth estimates for the inputs
of each operator. This interface is enabled by a central algorithm,
ESTIMATEDEPTHS, that computes estimates of the left and right
input depths for a specific join operator given the number of pull re-
quests from the parent operator. We denote an invocation of the al-
gorithm as ESTIMATEDEPTHS(FL, FR, FO, d), where FL and FR

are the score frequency tensors of the left and right input respec-
tively, FO is the frequency tensor of the output, and d the number
of pull requests. DEEP derives depth estimates on all the inputs of a
specific physical plan by applying ESTIMATEDEPTHS at each oper-
ator in a top-down traversal of the plan structure. We illustrate this
process with the left-deep physical plan (Hotel 1 Restaurant) 1

Event of Figure 2. DEEP considers first the top operator and in-
vokes ESTIMATEDEPTHS(FHR, FE , FHRE , k), where: FHR is the
frequency tensor of Hotel 1 Restaurant; FE is the frequency ten-
sor of Event; FHRE is the frequency tensor of the three-way join;
and, K is the number of query results. This call provides estimates
lHR and rE on the left and right depth respectively of the top oper-
ator. The resulting estimate lHR is subsequently used as the num-
ber of pull requests for the bottom join operator, which leads to a
second invocation ESTIMATEDEPTHS(FH , FR, FHR, lHR), where
FH and FR are the score frequency tensors of relations Hotel and
Restaurant respectively. This second call provides estimates on the
depths of relations Hotel and Restaurant and thus concludes esti-
mation. We note that this top-down approach is inherent in ranking

Procedure ESTIMATEDEPTHS(FL,FR,FO ,d)
Input: Frequency tensor FL of the left input L;

Frequency tensor FR of the right input R;
Frequency tensor FO of the output O;
count d of pull requests from parent operator.

Output: Estimates l and r for left and right input depths.
begin
1.S(ωd) = TERMSCOREESTIMATE(FO, d)
2.[lB , lW] = LEFTDEPTHESTIMATE(FL,S(ωd))
3.[rB , rW] = RIGHTDEPTHESTIMATE(FR,S(ωd)) /** for HRJN∗ **/
4.l = (lB + lW)/2
5.r = (rB + rW)/2 /** Only for HRJN∗ **/
6.return l, r
end

Figure 6: Algorithm ESTIMATEDEPTHS.

query plans, due to the close coupling of physical operators and the
fact that the number of pull requests is known a-priori only for the
top operator.

Before describing ESTIMATEDEPTHS in detail, we need to intro-
duce some terminology. Consider a rank join operator with inputs
L and R and output O. Recall that the operator generates its output
in descending order of the upper bound S. We use ωi to denote the
i-th output tuple in this ordering. Similarly, we use λi to denote
the i-th tuple of the left input L when the latter is accessed in de-
scending order of S, and define ρi similarly. (Hence, the notation
ρi applies only to HRJN∗.)

Consider an invocation ESTIMATEDEPTHS(FL, FR, FO, d). The
main observation behind our methodology is that the depths of an
HRJN∗ or an NRJN operator are closely tied to the score S(ωd) of
the last result tuple. More concretely, let lB be defined as the mini-
mum depth in L such that S(λlB) ≤ S(ωd), i.e., the left threshold
does not exceed the termination score. Based on the definition of
the two operators, it becomes obvious that both HRJN∗ and NRJN
will pull at least up to λlB , since it is the first tuple of L that satisfies
the termination condition. Similarly, let lW be defined as the min-
imum depth in L such that S(λlW) < S(ωd), i.e., the left thresh-
old falls below the termination score. It can be shown that neither
HRJN∗ nor NRJN will pull past λlW . (The proof of this fact is
straightforward, and is omitted due to space constraints.) Based
on these observations, we can define [lB , lW] as a tight range for
the left depth l, and similarly define a range [rB , rW] for the right
depth r in the case of HRJN∗. These bounds provide the optimizer
with useful statistics on the best- and worst-case cost of an opera-
tor, and can also be used to derive an estimate of the depth. One
possibility, for instance, is to set the estimates at the midpoint of
the ranges, e.g., l = (lB + lW)/2, in order to capture an average
case.

The previous discussion captures the main idea behind the
ESTIMATEDEPTHS algorithm: first, it derives an estimate of S(ωd);
then, it uses the estimate on S(ωd) to compute the ranges [lB , lW]
and [rB , rW] for l and r respectively; finally, it computes estimates
of l and r based on the ranges. The corresponding pseudo-code is
depicted in Figure 6.

The following sections describe the details of estimating S(ωd)
(algorithm TERMSCOREESTIMATE) and deriving the ranges
[lB , lW] and [rB , rW] (algorithms LEFTDEPTHESTIMATE and
RIGHTDEPTHESTIMATE respectively). In each case, we first for-
malize the computation of the needed information assuming that
the complete tensors are known. Subsequently, we present an al-
gorithm that implements the formalism using the selective access
interface presented in Section 3.1. Figure 7 shows the running ex-
ample that we will use in the presentation of our techniques.

906

b1 b2 b3 FO(b1, b2, b3)
1 1 1 9
1 .8 1 6
1 1 .5 16
.9 1 .5 8
1 1 0 6
.9 .6 .5 8
1 .8 0 4

O

1

~~
~~

~~
~~

AA
AA

AA
A

L R

b1 b2 FL(b1, b2)
1 1 7
.9 1 2
1 .8 2
.9 .8 3
.9 .6 2
.8 .6 10

b3 FR(b3)
1 3
.5 4
0 2

Figure 7: Running example for estimation algorithms.

3.2.1 Estimating the Termination Score
In this section, we discuss the estimation of the termination score

S(ωd) based on the frequency output tensor FO (line 1 in Figure 6).

Computation. We provide the intuition behind our approach with
the computation of S(ωd) on the output tensor of Figure 7. For
the example, we assume that the score is a simple sum of base
scores and the number of pull requests is d = 10. We start our
computation by listing the possible combinations of base scores in
descending order of their score bound:

bi S(bi) FO(bi)
b1 = (1, 1, 1) 3 9
b2 = (.9, 1, 1) 2.9 0
b3 = (1, .8, 1) 2.8 6
b4 = (.8, 1, 1) 2.8 0
b5 = (.9, .8, 1) 2.7 0

. . .

First, we observe that the 9 highest scores correspond to b1. An-
other way to view this is that b1 “generates” FO(b1) = 9 answers
ω1, . . . , ω9 with the score S(b1). In a similar manner, b2 gen-
erates FO(b2) = 0 answers, and b3 generates FO(b3) = 6 an-
swers ω10, . . . , ω15 with the score S(b3). We see that S(ω10) is
generated by b3 in this process, and hence we conclude that the
termination score is equal to S(b3).

The previous example illustrates the crux behind our approach.
The main idea is to identify the score combination that suffices to
compute at least d result tuples in nonincreasing order of S val-
ues. This idea is formalized as follows. Let b1, . . . ,bN denote the
possible combinations of base scores in the domain of FO , in de-
scending order of their score bound. In other words, our ordering
assumes S(bi) ≥ S(bj) for all i < j. The goal is to find bx such
that

Px−1
i=1 FO(bi) < d ≤

Px
i=1 FO(bi). The termination score

can then be computed exactly as S(bx). The following theorem
provides a formal statement of this methodology:

THEOREM 3.1. Let b1, . . . ,bN denote the nonincreasing
ordering of base score combinations defined above, and define

x ≡ min{j |
Pj

i=1 FO(bi) ≥ d}. The termination score is com-
puted as S(ωd) = S(bx).

One realization of Theorem 3.1 is to sort the elements of FO

and then iterate over the sorted sequence b1, . . . ,bN until the ac-
cumulated frequency is at least d. Clearly, the iteration terminates
exactly at the desired combination bx. This approach, however,
implies the materialization of F which can be prohibitively expen-
sive for the stringent time constraints of estimation. Moreover, we
expect only a few entries from F to actually contribute to the com-
putation of S(ωd), which implies that sorting the entire tensor is
likely to be wasted work. To address these issues, we introduce be-
low the TERMSCOREESTIMATE algorithm, that takes advantage of
the monotonicity property of S in order to provide a more efficient
realization of Theorem 3.1.

Algorithm TERMSCOREESTIMATE. The proposed algorithm uses
the monotonicity property of S in order to efficiently iterate over
b1, . . . ,bN by selectively accessing the underlying tensor. Essen-
tially, TERMSCOREESTIMATE stays true to the spirit of ranking
query processing: it reads just “enough” statistics in order to com-
pute its estimate.

Consider a base score bi in the combination b = (b1, . . . , bm),
and let b−i denote the immediately lower score in Ti[Ri]. We define
the dominated neighbor of b on dimension i as the score combina-
tion b′ that results from substituting bi with b−i . In other words,
b′ = (b′1, . . . , b

′
m | b′j = bj∀j 6= i ∧ b′i = b−i). Symmetrically, we

call b a dominant neighbor of b′. The monotonicity of S guaran-
tees that S(b) ≥ S(b′) for every dominant neighbor b of b′. In
turn, this implies that b′ appears in the ordering b1, . . . ,bN after
all of its dominant neighbors. This is the key property on which
TERMSCOREESTIMATE relies in order to simulate the traversal
over b1, . . . ,bN .

Procedure TERMSCOREESTIMATE(FO ,d)
Input: Output score frequency tensor FO ; number of pull requests d
Output: Estimate of the termination score S(ωd)
begin
1.Q← ∅
2.b← (1, 1, . . . , 1)
3.topCount ← getFreq(FO,b)
4.exhausted ← false
5.while topCount < d and exhausted = false do
6. for each i = 1, . . . , m do /** Visit dominated neighbors of b **/
7. b−i ← nextScore(FO,b, i)

8. if b−i 6= ∅ then
9. b′ ← (b′1, . . . , b′m | b′j = bj∀j 6= i ∧ b′i = b−i)

10. dc[b′]← dc[b′] + 1
11. if dc[b′] = nb(b′) then Q.push(b′) end if
12. end if
13. end for
14. if Q 6= ∅ then /** Retrieve next combination **/
15. b← Q.pop()
16. topCount += getFreq(FO,b)
17. else
18. exhausted = true
19. endif
20.end while
21.return S(b)
end

Figure 8: Algorithm TERMSCOREESTIMATE.

The pseudo-code for TERMSCOREESTIMATE is shown in Fig-
ure 8. The algorithm maintains two data structures: a hash table
dc that maps each score combination to the count of its dominant
neighbors that have been processed by the algorithm, and a priority

907

Queue Q Queue Q Queue Q Queue Q

b S(b) FO(b)
(.9, 1, 1) 2.9 0
(1, .8, 1) 2.8 6
(1, 1, .5) 2.5 16

b S(b) FO(b)
(1, .8, 1) 2.8 6
(1, 1, .5) 2.5 16

b S(b) FO(b)
(1, .8, 1) 2.8 6
(.8, 1, 1) 2.8 0
(1, 1, .5) 2.5 16

b S(b) FO(b)
(.8, 1, 1) 2.8 0
(1, 1, .5) 2.5 16

b = b1 = (1, 1, 1) b = b2 = (.9, 1, 1) b = b2 = (.9, 1, 1) b = b3 = (1, .8, 1)

topCount = 9 topCount = 9 topCount = 9 topCount = 15

(a) After processing b1 (b) b2 is popped from Q (c) After processing b2 (d) b3 is popped from Q

Figure 9: Example run of TERMSCOREESTIMATE.

queue Q that stores combinations b prioritized based on S(b) first
and FO(b) second. The pseudo-code also uses nb(b) to denote
the total number of dominant neighbors of b. (We note that nb(b)
can be computed easily as the number of scores in b that are not
equal to the top score, that is, nb(b) = |{i | bi 6= 1}|.) The algo-
rithm proceeds in iterations until the condition of Theorem 3.1 is
satisfied or tensor F is exhausted. At the beginning of the n-th iter-
ation, the algorithm has already accessed combinations b1, . . . ,bn

and their frequencies have been aggregated in variable topCount .
Variable b tracks the most recent combination bn. The first part
of the iteration (lines 6–13) examines the current combination bn,
and increases the count dc[b′] for every dominated neighbor b′ of
bn. If dc[b′] becomes equal to the total number of dominant neigh-
bors nb(b′), this implies that the prefix b1, . . . ,bn contains all the
combinations that dominate b′; hence, b′ becomes a candidate for
the next score combination bn+1 and is inserted in Q. Once these
steps are completed for all dominated neighbors, the top element
in Q is guaranteed to be the next combination bn+1. The algo-
rithm thus retrieves this element, updates topCount accordingly,
and starts a new iteration.

EXAMPLE 3.1.: Consider the application of our algorithm on
tensor FO of Figure 7. At iteration 1, the algorithm examines
b1 = (1, 1, 1) and increments the dc counts of dominated neigh-
bors (.9, 1, 1), (1, .8, 1), and (1, 1, .5). Since these combinations
have b1 only as their neighbor, they are inserted immediately in
Q (Figure 9(a)). Subsequently, (.9, 1, 1) is identified as b2 and
topcount is increased to FO(b1) + FO(b2) (Figure 9(b)).

The second iteration examines b2 = (.9, 1, 1) and increases the
dc counts of neighbors (.8, 1, 1), (.9, .8, 1), and (.9, 1, .5). In this
case, only (.8, 1, 1) is entirely covered by the prefix b1,b2 and is
thus inserted in Q (Figure 9(c)). Combination (.9, .8, 1) is domi-
nated by (1, .8, 1) which is still in Q, and hence cannot be a can-
didate for the next combination b3. The same holds for (.9, 1., 5)
that is dominated by (1, 1, .5).

The third iteration selects (1, .8, 1) as b3 and the total count
becomes topCount = FO(b1) + FO(b2) + FO(b3) = 15 ≥
10 (Figure 9(d)). At this point, the algorithm stops and correctly
returns S(1, .8, 1) = 2.8 as the termination score.

The running time of TERMSCOREESTIMATE depends heavily
on the implementation of the underlying tensor, but each individual
tensor operation is typically fast enough to be considered constant
time. In addition, the dimension m of the base score vectors is nor-
mally a small constant. With these assumptions, the running time
is dominated by the priority queue operations. In the worst case,
each of the N score combinations in the domain of FO needs to
be pushed and popped once. Each of these operations takes loga-
rithmic time, implying a cost of O(N log N). This worst case is

essentially equivalent to the naive approach of sorting the cells of
the tensor.

It is useful to reiterate that TERMSCOREESTIMATE relies on the
access interface defined in Section 3.1 in order to retrieve informa-
tion from tensor FO . As mentioned earlier, this interface allows
the system to compute the requested information on-the-fly, with-
out needing to materialize the tensor FO . We revisit this point in
more detail in Section 3.3, where we discuss the implementation
of DEEP on top of common summarization techniques such as his-
tograms [15].

3.2.2 Estimating Depth Bounds
Having the means to compute S(ωd), we now switch our at-

tention to the computation of the ranges [lB , lW], and [rB , rW]
for l and r respectively (lines 2–3 in Figure 6). In the interest of
space, we only discuss the derivation of [lB , lW], as the case for
[rB , rW] is completely symmetrical. Without loss of generality,
we assume that the left input tensor FL is defined on the domain
T1[R1]× · · · × Tm′ [Rm′] for some m′ < m.

Computation. We first provide the intuition behind our approach
with the computation of lB and lW over the left tensor FL of Fig-
ure 7. Recall that our running example uses a sum of base scores as
the scoring function. This means that the score bound is computed
as S(b1, b2) = S(b1, b2, 1) = b1 + b2 + 1. As in the previous
section, the first step is to list the possible base score combinations
of FL in descending order of their score bounds:

bi S(bi) FL(bi)
b1 = (1, 1) 3 7
b2 = (.9, 1) 2.9 2
b3 = (1, .8) 2.8 2
b4 = (.9, .8) 2.7 3

. . .

Similar to our methodology in the previous section, we can view
each combination as a “generator” of the tuples in input L. For
instance, b1 generates FL(b1) = 7 tuples in L with score S(b1),
b2 generates FL(b2) = 2 more tuples with score S(b2), and so
on. We note that b3 is the first combination bi such that S(bi) ≤
S(ωd) = 2.8. Thus, the first tuple in the group generated by b3

corresponds to the best-case input depth lB , i.e., lB = FL(b1) +
FL(b2)+1 = 9. Similarly, b4 is the first combination bi such that
S(bi) < S(ωd), and hence there are exactly FL(b1) + FL(b2) +
FL(b3) tuples whose score is not less than ω(d). Using the same
argument as before, this implies that lW = FL(b1) + FL(b2) +
FL(b3) + 1 = 12.

As illustrated in the previous example, the main idea behind our
approach is to iterate over the score combinations b1, . . . ,bNL

in descending order of their corresponding bounds and identify

908

Procedure LEFTDEPTHESTIMATE(FL,Sterm)
Input: Score frequency tensor FL; termination score Sterm.
Output: Bounds lB and lW .
begin
1.Q← ∅; exhausted ← false
2.b← (1, 1, . . . , 1)
3.l← 0; lB ← 0; lW ← 0
4.if S(b) = Sterm then lB = 1 end if
5.while S(b) ≥ Sterm and exhausted = false do
6. l += getFreq(FL,b)
7. for each i = 1, . . . , m′ do /** Visit dominated neighbors of b **/
8. b−i ← nextScore(FL,b, i)

9. if b−i 6= ∅ then
10. b′ ← (b′1, . . . , b′

m′ | b′j = bj∀j 6= i ∧ b′i = b−i)

11. dc[b′]← dc[b′] + 1
12. if dc[b′] = nb(b′) then Q.push(b′) end if
13. end if
14. end for
15. if Q 6= ∅ then /** Retrieve next combination **/
16. b← Q.pop()
17. if S(b) ≤ Sterm and lB = 0 then lB ← l + 1 end if
18. if S(b) < Sterm then lW ← l + 1 end if
19. else
20. exhausted = true; lW = l
21. end if
22.end while
23.return lB , lW

end

Figure 10: Algorithm LEFTDEPTHESTIMATE

the first combinations by and bz such that S(by) ≤ S(ωd) and
S(bz) < S(ωd) respectively. The bounds lB and lW can then be
computed in terms of the accumulated frequency up to those com-
binations. More formally, we have the following result:

THEOREM 3.2. Let b1, . . . ,bNL be defined as previously. If
S(bNL) is less than the termination score S(ωd), then the bounds
lB and lW are computed as follows:

lB = min

 P
1≤i<y

FL(bi) 1 ≤ y ≤ NL ∧ S(by) ≤ S(ωd)
ff

+ 1

lW = min

 P
1≤i<z

FL(bi) 1 ≤ z ≤ NL ∧ S(bz) < S(ωd)
ff

+ 1

If S(bNL
) = S(ωd), then lB remains the same, but lW is computed as

lW =
PNL

i=1 FL(bi).

Algorithm LEFTDEPTHESTIMATE. Similar to the estimation of
S(ωd), a naive implementation of the previous formalization can
prove prohibitively expensive for the stringent (time and space) re-
quirements of query optimization. To address this issue, we in-
troduce the LEFTDEPTHESTIMATE algorithm that computes these
bounds by accessing selective parts of the tensor.

Figure 10 shows the pseudo-code for LEFTDEPTHESTIMATE.
The algorithm relies on the same general principle as
TERMSCOREESTIMATE in order to perform the ordered traversal
over b1, . . . ,bNL . The same data structures are used, namely, a
hash table dc for counts of dominant neighbors that have been pro-
cessed, and a priority queue Q of score combinations in decreas-
ing order of S. (Ties are broken again in decreasing order of fre-
quency.) Also recall that nb(b) denotes the number of dominant
neighbors of b. Each iteration (lines 6–21) proceeds in two stages.
The first stage (lines 7–14) increments the dc counts for the domi-
nated neighbors of the current combination bn, and updates Q with

combinations whose dominant neighbors all appear in the prefix
b1, . . . ,bn. The second stage (lines 15–21) retrieves the next ele-
ment bn+1 from Q, and updates lB and/or lW if S(bn+1) satisfies
the corresponding inequality with Sterm. The algorithm terminates
once lW has been set, or if the input tensor is exhausted.

Similar to TERMSCOREESTIMATE, the LEFTDEPTHESTIMATE
algorithm uses the two-method interface (Section 3.1) to access the
input tensor FL, and thus does not assume the tensor is material-
ized. Another similarity is that the worst-case cost of the algorithm
is equivalent to the cost of sorting the cells of the input tensor.

3.3 Integrating DEEP in an Optimizer
In this section, we discuss the integration of DEEP in a query

optimizer, which essentially amounts to the implementation of the
getFreq /nextScore interface for accessing score frequency tensors.
We show that it is possible to implement this interface efficiently
for a wide range of ranking criteria, using information that is com-
monly available from the data statistics of the optimizer. This pro-
vides strong evidence for the practicality of DEEP as a depth esti-
mation framework.

To make the presentation more concrete, we henceforth assume
that the optimizer uses multi-dimensional histograms [15] to store
data statistics. The methodology extends naturally to other tech-
niques such as wavelet summaries [2, 14] or samples [1]. Consider
a base table Ri with an attribute set Ai = {A1, . . . , Ani} and let
Dom(Ak) denote the value domain of attribute Ak ∈ Ai. Given a
combination of values v ∈ Dom(A1)× · · · ×Dom(Ani), we use
Fri(v) to denote the frequency of tuples in Ri that match v, so Ri

comprises the combinations with non-zero frequency. A histogram
Hi provides an approximation of the frequency distribution Fri by
partitioning the domain Dom(A1) × · · · × Dom(Ani) in hyper-
rectangles, termed buckets, and storing aggregate statistical infor-
mation per bucket. We will use Hi(v) to denote the histogram-
provided frequency of combination v and Vi for the set of combi-
nations such that Hi(v) > 0. We extend this notation to Vi(Ak)
for the projection of Vi on the attribute Ak. The set Vi provides an
approximation of the distinct values in Ri, since Hi performs some
approximation of the values present in Ri. One such approxima-
tion, for instance, is through the uniform spread assumption [15].

In what follows, we describe a mechanism that uses Hi to imple-
ment access to the frequency tensor Fi for a ranking criterion Ti.
To simplify exposition, we henceforth assume that Ri contains two
attributes A1 and A2. As the first case in our discussion, we assume
that Ti computes the score of a tuple by applying a function on A1

that is invertible and increasing or decreasing. This represents a
frequent case that arises most commonly when Ti ranks tuples in
the order given by a specific attribute, e.g. ordering Restaurant tu-
ples by decreasing rating or increasing cost. We use the shorthand
notation Ti(v1) to denote the value of Ti on any combination of
values with v1 in the first column, and T−1

i (bi) to denote the value
in Dom(A1) that Ti maps to bi. Under these assumptions, we can
implement access to the tensor as follows:

getFreq(Fi, bi) =
X

v2∈Vi(A2)

Hi(T
−1
i (bi), v2)

nextScore(Fi, bi, 1) =

8>>><>>>:
Ti(max{v1 ∈ Vi(A1) | v1 < T−1

i (bi)})
if Ti is increasing

Ti(min{v1 ∈ Vi(A1) | v1 > T−1
i (bi)})

if Ti is decreasing

The getFreq method simply returns the approximate frequency of
T−1

i (bi) based on the underlying histogram. When Ti is increasing
the nextScore method finds the maximum value v ∈ Vi(A1) that

909

is less than T−1
i (bi), which yields the maximum score Ti(v1) < bi

since Ti is increasing. The case when Ti is decreasing is symmet-
rical. We note that it is possible to take advantage of the specifics
of the value-based summarization in order to quickly find the clos-
est approximate value to T−1

i (bi). For example, if the histogram
uses the uniform spread assumption, then the closest value can be
computed algebraically without examining the contents of Vi(A1).
The computation on histograms implies that the scores returned to
DEEP are essentially quantized based on the value approximation
Vi. This point arises in conventional selectivity estimation as well,
and the setting of the quantization is part of the physical tuning of
the database.

We observe that we can extend the previous methodology to in-
vertible ranking criteria that are not monotonic, and to ranking cri-
teria that map a limited number of attribute values to the same base
score. As an example of the latter, we consider a “distance” cri-
terion that assigns a score based on the distance from some target
constant, e.g., Ti(v) = |c−v1|. Note that each possible base score
bi can come from at most two values of v1, namely c − bi and
bi − c. We can thus implement the tensor interface by combining
the information that Hi yields about these two values, using the
same concept as above.

The previously described mechanism provides adequate support
for a significant class of practical ranking criteria. For more com-
plex criteria, or for criteria that require more complex statistics than
what can be stored in a histogram, we propose a catch-all mecha-
nism that relies on the typical assumptions of uniformity and in-
dependence. More concretely, we assume that there are s distinct
base scores that are uniformly distributed in [0, 1], independent of
attribute values. The value of s is a system parameter and it may be
some fixed number, such as 100, or it may vary for different crite-
ria. Under our assumptions, each score value occurs with frequency
|Ri|

s
, where |Ri| denotes the cardinality of the relation, and distinct

scores are separated by a gap of 1
s−1

. Hence the computation of

the tensor can be expressed as follows: getFreq(Fi, bi) = |Ri|
s

,
and nextScore(Fi, bi, 1) = bi − 1

s−1
. Of course, these assump-

tions may not be valid on the input data and this will introduce
error in the estimation process. A more effective solution requires
the development of specialized data synopses that enable the com-
putation of score frequency tensors for complex ranking functions.

Up to this point, we have considered access to the score tensor
of a single relation. Access to the tensor of a join output is imple-
mented similarly, by combining the statistics for the single-table
tensors. (We note that a similar methodology is employed in re-
lational systems in order to estimate the frequency distribution for
the result of a conventional join.) As an example, consider a rela-
tion Rj(A2, A3) with a ranking criterion Tj that is invertible and
computed on attribute A3. Consider the join Ri 1 Rj on attribute
A2. The score tensor F of the join can be computed as follows:

getFreq(F, (bi, bj)) =
X

v2∈Vi(A2)∪Vj(A2)

Hi(T
−1
i (bi), v2) ·Hj(v2, T−1

j (bj))

(The nextScore methods remain the same as before.) Again, the
key idea is that the optimizer does not need to materialize the in-
termediate tensor F , but can instead compute entries on-the-fly as
they are requested by DEEP. We note that this expression can be
optimized further by “aligning” the buckets of the two histograms
and performing the computation on a per-bucket basis. (This opti-
mization is similar to techniques for approximate query answering
over histograms [10].) We can derive a similar set of expressions
for the case where one of the criteria is not invertible (or both of

them), by adopting the solution outlined earlier. We do not discuss
this further as it is a straightforward extension.

3.4 Extensions
Handling Selections. Up to this point, we have assumed that the
physical plan consists solely of HRJN∗ and NRJN operators. It
is possible to apply our techniques to plans that include selection
operators as well, by performing a transformation that substitutes
each selection operator with an equivalent NRJN join operator.
More concretely, consider a selection operator Opσ with input L
and assume that the operator applies a range predicate on an in-
teger attribute. We define a conceptual relation R that contains a
single attribute with the values in the selected range. It is straight-
forward to show that the results of the plan do not change if Opσ is
substituted with an NRJN operator on inputs L and R and a equi-
join condition on the predicated attribute. Moreover, the left input
depth of the join operator is exactly the input depth of the original
operator Opσ .

Other pulling strategies. We can extend our estimation method-
ology to the variant of HRJN∗ that reads tuples in batches, and to
a pulling strategy that alternates between the two inputs in a round-
robin fashion. The main idea is to compute the depths that HRJN∗

would pull, and translate these depths for the alternate pulling strat-
egy. We explain how this works for the round-robin version of
HRJN (the extension to batch access is simpler). Let [lW , lB] and
[rW , rB] denote the ranges of depths for the left and right input
respectively, as computed by DEEP for the HRJN∗ operator. The
round-robin strategy must drop the score threshold down to the ter-
minal score S(ωd) on both the left and right. This means that it
pulls at least max(lB , rB) from both sides. Using similar logic,
we can observe that a worst-case bound on the input depths of
both sides is given by max(lW , rW). However, to be precise, these
bounds may be off by one depending on which side is pulled first.

4. EXPERIMENTAL STUDY
In this section, we present the results of an extensive experimen-

tal study that we have conducted to validate the effectiveness of our
estimation framework.

4.1 Methodology
Techniques. We have used the following techniques in our study:

- DEEP. We have completed a prototype implementation of the
DEEP framework that we introduce in this paper. Our prototype
implements score frequency tensors using TuG synopses [16] as
the underlying data summarization technique (see Section 3.3). We
have chosen this particular method as it yields reasonably accurate
approximations, but, as described in Section 3.3, DEEP is readily
portable to other methods as well. The overall space for the data
statistics was set to 150KB.
- Probabilistic Estimator. We have implemented the probabilistic
estimation methodology introduced by Ilyas et al. [8]. In order to
make a fair comparison, we assume that the estimator uses the same
underlying 150KB TuG synopses as our DEEP prototype in order
to retrieve estimates on join selectivity. The original formulation of
the methodology assumes that all relations have the same size and
is thus not applicable on the data sets in our study. To overcome
this restriction, we have developed a modification of the estimator
that lifts this assumption but works only on single-join queries. Ex-
tending our modifications to more than one join is non-trivial and
beyond the scope of our paper.

910

LINEITEM

!HRJN*

!RDATE

ISCANLSCORE

!HRJN*

❶

❷

❸

❹
❻

❼

ORDERS

!ODATE

ISCANOSCORE
CUSTOMER

!ACCTBAL

ISCANCSCORE

ORDERS

!HRJN*

!ODATE

ISCANOSCORE

❶

❷

❸

❹

CUSTOMER

!ACCTBAL

ISCANCSCORE

❺

(a) (b)

Figure 11: Plan templates for workload generation.

- Sample-Based Estimator. We have implemented the sample-based
estimation technique introduced by Li et al. [11]. Each table-sample
is created with a 5% sampling rate, resulting in a total of 4.6MB
for the samples of all tables. We note that this is significantly
larger than the 150KB of statistics that we use for our DEEP imple-
mentation. We resorted to this relatively large sample size, since
lower sampling rates caused the estimator to severely underesti-
mate join selectivities. To ensure some statistical robustness, we
derive a depth estimate by averaging the estimates over 5 such in-
dependently created samples.

Data sets. Our data sets are based on a scale 1.0 (1GB), skewed
version of the TPC-H data set. We have augmented each relation
with a score attribute that serves the role of a ranking criterion on
the relation. The values in score attributes follow a Zipfian distri-
bution with the same skew z for all relations. In our experiments,
we vary z as 0, 0.5, 1.0, and 1.5, creating data sets that range from
uniform score distributions to relatively skewed scores.

Workloads. We generate a workload of physical plans by creat-
ing several instantiations of a plan template. In this paper, we re-
port experiments using the two templates shown in Figure 11. (The
numbers on the inputs serve as identifiers for easy reference in the
experiments.) The templates generate single- and two-join physi-
cal plans with selection criteria on all the inputs, and thus model
physical plans of varying complexity. We only include HRJN∗ in
the plans, as it is the most complex of the two operators that we
consider in our work. We use the sum of attribute scores as the
scoring function S. We note that we have performed experiments
with other physical plans and have obtained similar results to the
previous two templates.

A workload corresponds to a specific template and value of K,
and contains 250 matching plans with randomly generated selec-
tion criteria. To create meaningful ranking queries, we ensure that
each generated plan produces at least 10,000 output tuples if the
top-K selection is removed. We vary K as 10, 100, and 1000, thus
resulting in six workloads overall.

Evaluation Metric. We use the average absolute relative error of
estimation to quantify the accuracy of each technique. More con-
cretely, let d and bd denote the true and estimated depth respectively
for an input depth. We compute the absolute relative error of the
estimate as ARE(d, bd) = |d− bd|/max(d, sn), where sn is a san-
ity bound that avoids an inordinately high percentage when d is
small. Given a workload, we set sn to the 10th percentile of actual
depths2 and we report the average estimation error per input in the
corresponding templates (see Figure 11).

In addition to the average, we employ the Cumulative Distribu-
tion Frequency (CDF) of the ARE as a more detailed metric of
accuracy. The CDF consists of pairs (x, y) that are interpreted as

2Hence, 90% of the considered true depths are above the sanity
bound.

follows: y% of estimates have an ARE that is less than or equal
to x%. Thus, when comparing two techniques, a dominating curve
denotes higher estimation accuracy for a larger part of the work-
load.

4.2 Experimental Results
In this section, we present a subset of the most representative

results of our study. Unless otherwise noted, we use the following
parameters in our experiments: K = 10 and z = 1.5.

The Effect of Skew. The goal of this experiment is to evaluate the
effectiveness of the three techniques relative to the skew in the base
scores. We vary parameter z as 0, 0.5, 1.0, and 1.5, and measure
the estimation error against a workload generated by the single-join
template. We report the error on input number 1, as the results for
other inputs are similar.

Figure 12(a) shows the estimation error of the three techniques
as a function of skew in the base scores. (In all plots, we use a
logarithmic scale for the y-axis and also print the magnitude of the
error above each bar.) As the results demonstrate, DEEP yields ac-
curate estimates for all values of z and consistently outperforms the
other techniques. For z = 1.5, for instance, DEEP has a low esti-
mation error of 2%, compared to 44% for the probabilistic method
and 342% for the sample-based estimate. This difference in error
can be explained as follows. DEEP takes directly into account the
distribution of scores in the base tables, and thus remains accurate
as long as the optimization statistics provide a good model of the
score distribution. Conversely, the other two techniques fail to cap-
ture accurately the distribution of scores and this inevitably leads to
high errors. More concretely, the sample-based estimator tends to
underestimate the selectivity of the join, and in turn overestimates
the number of tuples that need to be joined in order to generate
the top K results. (We note that this type of underestimation is
common for sample-based estimators.) The probabilistic estimator
is based on an analysis that assumes uniformly distributed scores,
and thus its accuracy quickly deteriorates as the actual score distri-
bution deviates from uniform scores. This is shown more clearly in
Figure 12(b), which charts the CDF of the estimation error of the
probabilistic estimator for z = 0 and z = 1.0. For comparison, we
also plot the estimation error for DEEP. (Recall that DEEP and the
probabilistic estimator utilize the same underlying data statistics in
all cases.) While the two techniques have essentially the same accu-
racy for z = 0, the performance of the probabilistic estimator drops
significantly when the scores are not uniform (z = 1.0). DEEP, on
the other hand, actually improves in accuracy over z = 0, since it
does not make a-priori assumptions on the distribution of scores.

We henceforth focus our analysis on data sets with z > 0, since
skewed distributions are common in real-life data. As a result,
we exclude the probabilistic estimator from the remaining exper-
iments, as it is well suited only for uniform score distributions.

Estimation Error Across Inputs. In this set of experiments, we
evaluate the accuracy of the techniques at the different points in
each template plan shown in Figure 11.

Figure 13(a) shows the average estimation error for DEEP and
the sample-based estimator at different points in the template plan
for a single-join workload. DEEP continues to perform well, con-
sistently yielding estimation errors of at most 5% for all inputs.
Given the diversity of the workload, which consists of single-join
queries with randomly generated selection predicates over the ranked
inputs, this demonstrates again that DEEP manages to model accu-
rately depth computation with respect to the dependencies among
join relationships, score values, and attribute values. In contrast,
the error of the sampled-based estimator remains high on all in-

911

342%

3%

12%

2%

18% 16%

44%39%

489% 501%

297%

1

10

100

1000

0 0.5 1 1.5
z

A
R

E
(%

)

DEEP Probabilistic Sampling

(a)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
e
r
c
e
n
t
a
g
e

o
f

P
l
a
n
s

ARE

DEEP, z=0
Probabilistic, z=0

DEEP, z=1
Probabilistic, z=1

(b)

Figure 12: Varied skew [k=10, Input 1,
single-join workload]: (a) average esti-
mation error; (b) error CDF for DEEP
and the probabilistic estimator.

2%
3% 3%

5%

342% 330% 340% 338%

1

10

100

1000

1 2 3 4
Input

A
R

E
(%

)

DEEP Sampling

(a)

697% 683% 696% 679%

284%

695% 644%

28% 28% 28% 28%28%25%
35%

1

10

100

1000

10000

1 2 3 4 5 6 7
Input

A
R

E
(%

)

DEEP Sampling

(b)

Figure 13: Average estimation error
for different plan inputs [k=10, z=1.5]:
(a) single-join workload; (b) two-join
workload.

2%

7%

1%

342% 402%
283%

1

10

100

1000

10 100 1000
k

A
R

E
(%

)

DEEP Sampling

(a)

28% 27%
16%

309%

139%

697%

1

10

100

1000

10 100 1000
k

A
R

E
(%

)

DEEP Sampling

(b)

Figure 14: Average estimation error for
different K [z=1.5, Input 1]: (a) single-
join workload; (b) two-join workload.

puts, due again to the inability of independent samples to capture
accurately the key/foreign key joins.

Figure 13(b) shows the results of the same experiment on a two-
join workload. The estimation error is increased for both tech-
niques, since the plans become more complex and the input depths
depend on the correlations of three inputs (vs. two in the previous
case). The increase in error for complex plans is analogous to re-
sults in selectivity estimation [9]. Nonetheless, DEEP continues to
outperform the sample-based estimator by a wide margin, yielding
an average error of less than 30% in most cases.

Estimation Error With Respect to k. The final set of experiments
evaluates the effectiveness of the estimation techniques as we vary
the number of top results from the plan. We set K equal to 10,
100, and 1000, and examine the estimation error at input 1 of each
template. (The errors at other inputs were comparable.)

Figure 14(a) shows the average estimation error of DEEP and
the sample-based estimator as a function of K, for the single-join
workload. The results show that DEEP enables accurate depth es-
timates across a wide range of K values. The error of the sample-
based estimator, on the other hand, remains consistently high and
at about two orders of magnitude higher than DEEP.

Figure 14(b) shows the results of the same experiment for the
two-join workload. Similar to the previous set of experiments, the
higher complexity of the plans leads to increased estimation errors.
DEEP, however, remains the most accurate technique, yielding er-
rors that are reasonable in the context of query optimization.

5. ANALYSIS OF HRJN*
As mentioned in the previous sections, the estimation framework

that we introduce is centered around the HRJN∗ variant of the
HRJN operator. In this section, we present a theoretical analysis

that shows the optimality of HRJN∗ and thus justifies its selection
as the default implementation of HRJN.

The basic thresholding scheme used in HRJN∗ has been intro-
duced by Fagin et al. [4] and its performance has been analyzed
assuming that the join is 1-1, every input has a single ranking cri-
terion, and every tuple in some input generates at least one result
(total join participation). Our analysis considers a more extended
scenario: the join is many-to-many, inputs may carry more than one
ranking criterion, and total participation is not guaranteed. Another
study [6] has examined the optimality of the generic HRJN algo-
rithm within the class of deterministic rank join algorithms, and has
shown that the round-robin pulling strategy ensures instance opti-
mality.3 That analysis, however, assumed that both L and R are
simple relations, and does not extend to the case where one of the
inputs comes from a query sub-plan (which is common in complex
query plans). To the best of our knowledge, this is the first theoret-
ical analysis of HRJN∗ in a broader context, and is thus of general
interest beyond the scope of depth estimation.

We define an instance of the rank join problem as I = (L, R, d),
where L and R are the ranked inputs to be joined and d is the num-
ber of desired results. Given a rank join algorithm A, we define
TotalDepths(A, I) as the sum of the left and right depths when
the algorithm runs on an input instance I . We note that our results
extend to the model where inputs are read in “blocks” of tuples,
and the cost of an algorithm is thus defined as the total number of
accessed blocks. In what follows, we examine the TotalDepths

3Algorithm A is called instance-optimal within a class A of algo-
rithms for a class I of inputs and cost function cost, if there are
constants c and c′ such that for every algorithm B ∈ A and input
I ∈ I it holds that cost(A, I) ≤ c · cost(B, I) + c′. The constant
c is called the optimality ratio of A.

912

cost of HRJN∗ within the class H of HRJN realizations. We first
analyze the performance of HRJN∗ for a restricted class of inputs,
and then extend our analysis to consider all possible inputs. In the
interest of space, we present only the main results of our analysis.
The complete results, along with detailed proofs, can be found in
the full version of the paper [17].

A restricted class of inputs. Let I denote the class of possible
instances of the rank join problem. We structure our analysis based
on two different kinds of ties that may occur between scores in
an instance. There can be intra-input ties where either S(λi) =
S(λj) for some λi 6= λj or S(ρi) = S(ρj) for some ρi 6= ρj .
We also consider inter-input ties, where S(λi) = S(ρj) for some
λi, ρj . We define Ities ⊂ I as the class of instances with both
inter- and intra-input ties. The remaining instances I − Ities may
contain inter- or intra-input ties, but not both. The main intuition
is that Ities contains the most complex problem instances, while
I − Ities represents cases of “controlled ambiguity” in the input
scores, where HRJN∗ exhibits strong optimality properties.

Our first result states the optimality of HRJN∗ within I − Ities.

THEOREM 5.1. Let A ∈ H be an HRJN algorithm that termi-
nates at depths lA and rA for an input instance I ∈ I − Ities.
Let l∗ and r∗ be the termination depths of HRJN∗ on the same
instance. It holds that l∗ ≤ lA and r∗ ≤ rA.

The proof considers the cases of no intra-input ties and no inter-
input ties separately. In each case, we assume for contradiction that
l∗ > lA and then show that HRJN∗ must halt before reading lA+1
tuples from L. Our result shows that HRJN∗ is optimal in terms of
each depth individually, and is therefore optimal with respect to the
combined TotalDepths metric that takes both depths into account.
Thus, for the specific class of algorithms H and inputs I − Ities,
HRJN∗ will compute a solution with the least input access overall.

The general class of inputs. Next, we consider the class I of all
inputs, where tie scores are allowed to simultaneously occur within
and between input relations. The following theorem formalizes the
optimality properties of HRJN∗ in this class.

THEOREM 5.2. HRJN∗ is instance-optimal within H for the
class I of inputs and the cost metric TotalDepths , with an instance
optimality ratio of 2.

The proof works by showing that the maximum of the left and
right depth for HRJN∗ is no larger than any other algorithm in H.
Overall, our analysis demonstrates the nice properties of HRJN∗:
for I −Ities it is the optimal algorithm for each depth individually,
while for Ities it performs at most twice as many accesses as the
optimal algorithm for each specific instance. This provides strong
justification for choosing HRJN∗ as the default algorithm in H.

6. CONCLUSIONS
Accurate depth estimation is a key requirement for the effective

incorporation of ranking queries in a relational database system. In
this paper, we introduce the DEEP estimation framework for ap-
proximating the input depths of a physical plan with rank join op-
erators. DEEP enables a systematic estimation methodology that
takes directly into account the distribution of scores and values in
the underlying data. We develop efficient estimation algorithms
that implement the formalism of DEEP and validate their perfor-
mance experimentally on data sets of diverse characteristics. The
results verify the effectiveness of DEEP as an accurate estimation

methodology, and demonstrate its several advantages over previ-
ously proposed techniques.

Acknowledgments. This work was partially supported by the Na-
tional Science Foundation under Grant No. IIS-0447966p, and by
an IBM Faculty Development Award.

7. REFERENCES
[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and

Sridhar Ramaswamy. Join Synopses for Approximate Query
Answering. In Proceedings of the 1999 ACM SIGMOD Intl. Conf. on
Management of Data, pages 275–286, 1999.

[2] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and
Kyuseok Shim. Approximate Query Processing Using Wavelets. In
Proceedings of the 26th Intl. Conf. on Very Large Data Bases, pages
111–122, 2000.

[3] Surajit Chaudhuri, Nilesh Dalvi, and Raghav Kaushik. Robust
cardinality and cost estimation for skyline operator. Proceedings of
the 22nd Intl. Conf. on Data Engineering, 0:64, 2006.

[4] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation
algorithms for middleware. In Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 102–113, 2001.

[5] Goetz Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73–169, 1993.

[6] F. Ilyas, G. Aref, and K. Elmagarmid. Supporting top-k join queries
in relational databases. International Journal on Very Large
Databases, 13(3):207–221, 2004.

[7] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Hicham
Elmongui, Rahul Shah, and Jeffrey S. Vitter. Adaptive rank-aware
query optimization in relational databases. ACM Trans. Database
Syst., December 2006.

[8] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter, and
Ahmed K. Elmagarmid. Rank-aware query optimization. In
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, pages 203–214, 2004.

[9] Yannis E. Ioannidis and Stavros Christodoulakis. On the Propagation
of Errors in the Size of Join Results. In Proceedings of the 1991 ACM
SIGMOD Intl. Conf. on Management of Data, pages 268–277, 1991.

[10] Yannis E. Ioannidis and Viswanath Poosala. Histogram-Based
Approximation of Set-Valued Query Answers. In Proceedings of the
25th Intl. Conf. on Very Large Data Bases, pages 174–185, 1999.

[11] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin
Song. Ranksql: query algebra and optimization for relational top-k
queries. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pages 131–142, 2005.

[12] Richard J. Lipton, Jeffrey F. Naughton, Donovan A. Schneider, and
S. Seshadri. Efficient sampling strategies for relational database
operations. Theoretical Computer Science, 116(1 & 2):195–226,
1993.

[13] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay.
Approximate medians and other quantiles in one pass and with
limited memory. In SIGMOD ’98: Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pages
426–435, New York, NY, USA, 1998. ACM Press.

[14] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-Based
Histograms for Selectivity Estimation. In Proceedings of the 1998
ACM SIGMOD Intl. Conf. on Management of Data, pages 448–459,
1998.

[15] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J.
Shekita. Improved Histograms for Selectivity Estimation of Range
Predicates. In Proceedings of the 1996 ACM SIGMOD Intl. Conf. on
Management of Data, pages 294 – 305, 1996.

[16] Joshua Spiegel and Neoklis Polyzotis. Graph-based synopses for
relational selectivity estimation. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on Management of
data, pages 205–216, 2006.

[17] Karl Schnaitter, Joshua Spiegel, and Neoklis Polyzotis. Depth
estimation for ranking query optimization. Technical report
UCSC-CRL-07-02, UC Santa Cruz, 2007.

913

