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ABSTRACT
Finding typical instances is an effective approach to under-
stand and analyze large data sets. In this paper, we apply
the idea of typicality analysis from psychology and cognition
science to database query answering, and study the novel
problem of answering top-k typicality queries. We model
typicality in large data sets systematically. To answer ques-
tions like “Who are the top-k most typical NBA players?”,
the measure of simple typicality is developed. To answer
questions like “Who are the top-k most typical guards dis-
tinguishing guards from other players?”, the notion of dis-
criminative typicality is proposed.

Computing the exact answer to a top-k typicality query
requires quadratic time which is often too costly for on-
line query answering on large databases. We develop a se-
ries of approximation methods for various situations. (1)
The randomized tournament algorithm has linear complex-
ity though it does not provide a theoretical guarantee on
the quality of the answers. (2) The direct local typicality
approximation using VP-trees provides an approximation
quality guarantee. (3) A VP-tree can be exploited to index
a large set of objects. Then, typicality queries can be an-
swered efficiently with quality guarantees by a tournament
method based on a Local Typicality Tree data structure. An
extensive performance study using two real data sets and a
series of synthetic data sets clearly show that top-k typical-
ity queries are meaningful and our methods are practical.
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1. INTRODUCTION
Learning from examples is an effective strategy exten-

sively adopted in practice. For instance, what should a
teacher do to teach a kid the concept of mammal? A helpful
approach is to show her/him some typical examples of mam-
mals, such as leopard and lions as indicated in Section 6.1.1.
Good examples are often more effective than feature descrip-
tions as the first step to understand a concept or a large set
of objects.

How should good examples be chosen? First of all, those
examples must be typical. Using platypuses (which lay eggs
instead of giving birth to live young) as examples of mam-
mals may mislead kids in learning the concept. In addition,
real examples are strongly preferred. Some virtual objects
made up by assembling perfect features of the concept may
not be easy to understand. More often than not, an ideal
case may not be possible. For example, there exists no a
single bird having all the expected features of birds.

Typicality analysis has been studied extensively in psy-
chology and cognition science (see Section 3 for a brief re-
view). Interestingly, the strategy of using typical examples
to summarize and analyze a large set of objects can be ap-
plied to effective query answering. When a user asks a query
which may return a large number of answers, instead of ex-
amining those answers one by one, the user may want to
obtain a small number of typical answers for digesting.

1.1 Motivating Examples
Jeff is a junior basketball player. His dream is to play in

NBA. As NBA has more than 400 active players, they are
quite diverse. Jeff may want to know some representative
examples of NBA players. Then, top-k typicality queries
can help.

1.1.1 Simple Top-k Typicality Queries
Jeff asks, “Who are the top-3 most typical NBA players?”
We can imagine that, in the space of technical statistics,

there exists a density function of the probability of being
NBA players. The player who has the largest probability
density is the most typical. This leads to our first typicality
measure – the simple typicality. A top-k typicality query
finds the k most typical objects in a set of objects.

1.1.2 Top-k Discriminative Typicality Queries
Jeff is particularly interested in becoming a guard. “Who

are the top-2 most typical guards distinguishing guards from
other players?”

Simple typicality on the set of guards is insufficient to
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Figure 1: Medians, means and typical objects.

answer the question, since it is possible that a typical guard
may also be typical among other players. Instead, players
that are typical among all guards but are not typical among
all non-guard players should be found.

In order to address this demand, we need the notion of
discriminative typicality, which measures how an object is
typical in one set but not typical in the another set. Given
a set of objects and a target subset, a top-k discriminative
typicality query finds the k objects with the highest discrim-
inative typicality values.

1.1.3 Medians, Means and Typical Objects
In many previous studies, medians and means are often

used to represent the aggregate of a set of objects. The mean
of a set of points is the geometric center of the set, while the
median is the point in the set that is closest to the mean.
Can medians and means approximate typical objects well?

Consider a set of points in Figure 1. Points A and C are
the median and the mean of the set, respectively, and point
B (the white point) is the most typical point. Clearly, the
most typical point B is quite different from the median and
the mean in this example.

As the geometric centers, medians and means are not nec-
essarily related to probability distribution which is captured
by the typical objects.

In Section 6 (Table 4), we will use a real data set to fur-
ther elaborate the differences between medians, means, and
typical objects, and their different roles in data analysis.

1.1.4 Efficient Query Answering
Top-k typicality queries can be used to provide good ex-

amples for effective learning and understanding. The above
scenarios may happen in many other applications, such as
students learning concepts, medical analysts investigating
medical cases, and city administration analyzing traffic ac-
cidents and crimes. In our empirical study (Section 6), we
will illustrate the effectiveness of typicality queries using two
real data sets.

As more and more data are accumulated, top-k typicality
queries may be applied on large data sets. It is practically
desirable that the queries can be answered online. However,
However, we will show that, with a proper notion of top-k
typicality, computing the exact answer to a top-k typicality
query needs quadratic time which is often too costly for on-
line query answering on large data sets. On the other hand,
typical enough examples are often sufficient for understand-
ing and analyzing large data sets. Thus, there are practical
demands to have approximation methods to answer top-k
typicality queries.

1.2 Our Contributions
In this paper, we formulate and tackle the problem of

efficiently answering top-k typicality queries, and make the

following contributions.
First, we extend the idea of typicality analysis from psy-

chology and cognition science to database query answering
and search, and identify the novel problem of top-k typi-
cality query answering on large databases. We develop two
effective measures for typicality.

Second, as computing exact answers to top-k typicality
queries on large databases can be costly, we develop a se-
ries of approximation query answering algorithms for various
situations. (1) The randomized tournament algorithm has
linear complexity though it does not provide a theoretical
guarantee on the quality of the answers. (2) The direct local
typicality approximation using VP-trees provides an approx-
imation quality guarantee. (3) A VP-tree can be exploited
to index a large set of objects. Then, typicality queries can
be answered efficiently with quality guarantees by an LT-
tree tournament method.

Last, we conduct an extensive performance study on both
real data sets and synthetic data sets to verify the effective-
ness of top-k typicality query answering and the efficiency
of our methods.

1.2.1 How Is This Study Different from Others?
To the best of our knowledge, this paper is the first study

to systematically use typicality in ranking query answers
from large databases. We also address the efficient query
answering issue.

Top-k queries (also as known as ranking queries) have
been heavily employed in many applications, such as search-
ing web databases, similarity search, recommendation sys-
tems, etc. According to a user-specified preference func-
tion, a top-k query returns the best k results. Many previ-
ous studies investigated efficient approaches to answer top-k
queries using aggregate scoring functions. Such an aggregate
function maps an object to a certain preference score. The
score depends on only the attribute values of the object, and
is often independent to other objects in the database.

Top-k typicality queries are a special type of top-k queries,
however, the typicality of an object depends on the distri-
bution of the other objects in question. This poses a major
challenge for efficient top-k typicality query answering. To
the best of our knowledge, how to answer top-k queries ef-
ficiently using such “relative” score functions has not been
studied well.

The rest of the paper is organized as follows. We propose
the typicality measurements in Section 2. We systemati-
cally review the related work and point out the differences
between this paper and the state-of-the-art studies in Sec-
tion 3. We develop a randomized tournament query an-
swering algorithm in Section 4, and the local typicality ap-
proximation methods in Section 5. We report a systematic
performance study in Section 6. The paper is concluded in
Section 7.

2. TOP-K TYPICALITY QUERIES
In this section, we define the two types of top-k typicality

queries that will be addressed in this paper.

2.1 Simple Typicality
In a set of objects S, which object is the most typical? To

answer this query, we introduce simple typicality.
By intuition and as also suggested by the previous research
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Figure 2: A set of points.
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Figure 3: Typicality.

in psychology and cognition science (as will be reviewed in
section 3), an object o in S is more typical than the others
if o is more likely to appear in S. The probability density
of membership of an object provides a measure of the confi-
dence that an object may appear compared to other objects
in the same data set. Thus, the probability density of o in
S can be used to measure the typicality of o.

Definition 1 (Simple typicality). Given a set of ob-
jects S, we treat S as an independently and identically dis-
tributed sample of a continuous random variable S. The
simple typicality of an object o ∈ S is defined as T (o, S) =
f(o) where f is the probability density function of S.

We will discuss how to estimate the probability density
function in Section 4.1. In practice, typicality relies on a set
of attributes as captured by the typicality queries as follows.

A top-k simple typicality query is in the following
form.

SELECT A1, . . . , An FROM S WHERE P
ORDER BY SIMPLE TYPICALITY ON (Ai1 , . . . , Ail)
LIMIT k

where A1, . . . , An are attributes in table S, P is a predi-
cate on tuples from S, 1 ≤ ij ≤ n (1 ≤ j ≤ l), and k is
a positive integer. From the subset of tuples in S satisfy-
ing predicate P , the query returns the top k tuples having
the largest simple typicality values that are computed on
attributes Ai1 , . . . , Ail .

Example 1 (Top-k simple typicality queries).
Consider the following query on the set of points in Fig-
ure 2.

SELECT X, Y FROM S
WHERE COLOR = white
ORDER BY SIMPLE TYPICALITY ON (X)
LIMIT 3

The query asks for the top-3 typical points in the set of
white points, where the typicality should be computed using
attribute X only.

Figure 3 projects the points in S to attribute X. The
probability density function of the white points and that of
the black points are also plotted, while we will discuss how
to compute the probability density functions in Section 4.1.
Points a, b and c have the highest probability density values
among all white points, and thus should be returned as the
answer to the query.

2.2 Discriminative Typicality
Simple typicality works when a set of objects are consid-

ered independently from other objects not in the set. In
some scenarios, a user may have multiple classes of objects,

such as the guards and all the other NBA players as illus-
trated in Section 1. To understand the discriminative fea-
tures of one class against the others, one may want to find
the objects that are typical in the target class, but not in
the others.

Given a set of objects S and a target subset C, which
object is the most typical in C but not in (S − C)? We use
the discriminative typicality to answer such a question.

By intuition, for an object o, the difference between the
probability density that o is a member of C and the prob-
ability density that o is a member of (S − C) measures the
discriminative typicality.

Definition 2 (Discriminative typicality). Given a
set of objects S and a target subset C ⊂ S, the discrim-
inative typicality of an object o ∈ C is DT (o, C, S) =
[f(C|o)− f((S − C)|o)]× f(o), where f(C|o), f((S − C)|o)
and f(o) are the conditional probability densities.

In the definition, f(C|o) is the posterior probability den-
sity that o is a member of target subset C. f(C|o)− f((S−
C)|o) is between −1 and 1. If f(C|o) − f((S − C)|o) > 0,
then the density of object o in subset C is larger than the
density of o in subset (S − C). Moreover, a larger value of
f(C|o) − f((S − C)|o) indicates the better discriminability
of o in distinguishing subset C from the other objects in S.

The rationale of the definition of discriminative typicality
can be justified using the Bayesian theory.

Theorem 1 (Discriminative typicality).

DT (o, C, S) = f(o|C)f(C)− f(o|(S − C))f(S − C)

Proof sketch. Using Bayesian theorem, we have f(C|o) =
f(C)f(o|C)

f(o)
, and f((S−C)|o) = f((S−C))f(o|(S−C))

f(o)
. The the-

orem follows with Definition 2 and the two equations.

A top-k discriminative typicality query is in the form
as follows.

SELECT A1, . . . , An FROM S WHERE P
ORDER BY DISC TYPICALITY ON (Ai1 , . . . , Ail)
LIMIT k

where A1, . . . , An are attributes in table S, P is a predi-
cate on tuples in S, 1 ≤ ij ≤ n (1 ≤ j ≤ l), and k is a
positive integer. The query treats the subset of tuples in S
that satisfying P as the target subset, and returns the top-k
tuples in the target subset having the largest discriminative
typicality values computed using attributes Ai1 , . . . , Ail .

Example 2 (Top-k discriminative typicality queries).
Consider the set S of points in Figure 2 again and the fol-
lowing query.

SELECT X, Y FROM S
WHERE COLOR = white
ORDER BY DISC TYPICALITY ON (X)
LIMIT 3

In Figure 3, we also plot DT (o, C, S), where C is the set
of white points, and S is the set of all points.

To see the difference between discriminative typicality and
simple typicality, consider objects a, b, c, which have a large
simple typicality value among all white points. However,
they also have a relatively high probability density value as
a member in the subset of black points comparing to other
white points. Therefore, they are not discriminative.

White points d, e, f are the answer to the query, since they
are discriminative.
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3. RELATED WORK
Our study is mainly related to the previous work in the

following aspects: typicality in psychology and cognition sci-
ence, top-k queries (also as known as ranking queries) in
databases, the 1-median problem, typicality probability and
spatially-decaying aggregation.

3.1 Typicality Analysis in Psychology and Cog-
nition Science

Typicality of objects has been widely discussed in psy-
chology and cognition science [19, 35].

People judge some objects to be “better examples” of a
concept than others. This is known as the graded struc-
ture [32] of a category. It is reported in [32] that every cat-
egory observed so far has been found to have graded struc-
ture. Generally, the graded structure is a continuum of cat-
egory representativeness, beginning with the most typical
members of a category and continuing through less typical
members to its atypical members.

There are several determinants of graded structure. One
determinant is the central tendency [5] of a category. Central
tendency is either one or several very representative exem-
plar(s), either existing in the category or not. An exemplar’s
similarities to the central tendency determine its typicality
in this category. Another determinant of typicality is the
stimulus similarity [28]. Generally, the more similar an in-
stance is to the other members of its category, and the less
similar it is to members of the contrast categories, the higher
the typicality rating it has.

The prototype view [31] suggests that a concept be rep-
resented by a prototype, such that objects “closer to” or
“more similar to” the prototype are considered to be better
examples of the associated concept. The exemplar view [10]
is an alternative to the prototype view that proposes us-
ing real objects as exemplars instead of abstract prototypes
that might not exist in real life. Finally, the schema view [13]
improves the prototype view by model concepts in schema
theory and AI knowledge representation.

Feature-frequency model defines typicality from a differ-
ent scope [29]. A typical member of a category will share
many attributes with other members of the category and
few attributes with members of other categories. An at-
tribute can be scored based on how many members possess
that attribute. A family resemblance score for each mem-
ber sums up the numerical scores of all attributes possessed
by that member. A category member with a higher family
resemblance score is considered more typical.

Although typicality has not been used before in query
answering on large databases, the idea of typicality was re-
cently introduced into ontology design and conceptual mod-
eling [4, 3], which are generally related to database design.

How Is Our Study Related?
Our typicality measures resemble the general spirit of typi-
cality measures used in psychology and cognition science. As
suggested by the previous studies in psychology and cogni-
tion science, typicality measures may vary in different appli-
cations. In our study, we propose simple typicality and dis-
criminative typicality for different application requirements.

Studies on typicality in psychology and cognition science
often do not address the concerns about efficient query an-
swering from large databases. Complementary to those stud-
ies, we focus on efficient query answering.

3.2 Top-k (Ranking) Queries
As pointed out in Section 1.2.1, top-k typicality queries

can be viewed as one special type of top-k (ranking) queries.
There are numerous query answering algorithms proposed
for top-k queries in the literature. The threshold algorithm
(TA) [27] is one of the best algorithms. TA first sorts the
values in each attribute and stores them into a set of sorted
lists. Then, TA scans the sorted lists in parallel. Each time
a new tuple appears, TA looks up in all lists to calculate its
score. Also, TA maintains a “stopping value”, which acts
as a threshold to prune the tuples in the rest of the lists if
they cannot have better scores than the threshold. Several
variants of TA have also been proposed, such as [20].

The recent development and extension of top-k query an-
swering include using views to answer top-k queries effi-
ciently [16], removing redundancy in top-k patterns [36], ap-
plying multidimensional analysis in top-k queries [37], con-
tinuous monitoring of top-k queries over a fixed-size window
of the most recent data [26], and so forth.

How Is Our Study Related?
Our top-k typicality queries aim at providing a list of objects
with the highest typicality scores according to the proposed
typicality measures. This is similar to the existing ranking
queries in general.

However, our scoring functions (typicality measures) are
different from most of the scoring functions studied before in
top-k queries. The typicality score for each object is based
on its relationship with the other objects in question. This
is much more complicated than scoring an individual ob-
ject based on its own attributes independently, like most
other scoring functions do. Therefore, some classic and ef-
ficient query answering algorithms for top-k queries cannot
be directly applied to answer top-k simple typicality and
discriminative typicality queries. We have to develop new
efficient query answering algorithms.

3.3 The (Discrete) 1-Median Problem
Finding typical objects is also broadly related to the 1-

median problem in computational geometry. Given a set
S of n points, the 1-median problem is to find a point M
minimizing the sum of distances from all points in S to M .
Point M is called the median of the data set. Under the
constraint that M belongs to S, it is known as the discrete
1-median problem. We can always find the exact median in
O(n2) time.

Several approximation algorithms have been proposed to
compute the approximate median efficiently. [7] proposes a
quad-tree based data structure to support finding the ap-
proximate median with a constant approximation ratio and
O(n log n) time complexity. A randomized algorithm was
proposed in [12], which computes the approximate median
in linear time. Although the approximation ratio cannot
be bounded, it performs well in practice. [23] also provides
a (1 + δ)-approximation algorithm with runtime O(n/δ5)
which is based on sufficiently large sampling. [6] proposes
an algorithm to solve the median problem in L1 metric in
O(n log n) time.

How Is Our Study Related?
The top-k simple typicality query is somewhat similar to the
discrete 1-median problem in that they both want to find the
objects in a data set optimizing the scores with respect to
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their relationship to other objects. However, as will be clear
in Section 4.1, the functions to optimize are different. The
methods of the 1-median problem cannot be applied directly
to answer top-k typicality queries.

3.4 Other Related Models
Typicality probability [11, 21] in statistic discriminant anal-

ysis is defined as the Mahalanobis distance between an ob-
ject and the centroid of a specified group, which provides an
absolute measure of the degree of membership to the speci-
fied group. Given an observation o, [11, 21] also define the
probability of group membership as the posterior probabil-
ity of o as a member of group g. o will then be classified
into group g with maximal probability of group membership.
This is also known as maximal likelihood classification.

Spatially-decaying aggregation [14, 15] is defined as the
aggregation values influenced by the distance between data
items. Generally, the contribution of a data item to the ag-
gregation value at certain location decays as its distance to
that location increases. Nearly linear time algorithms are
proposed to compute the ε-approximate aggregation values
when the metric space is defined on a graph or on the Eu-
clidean plane.

How Is Our Study Related?
Although typicality probability also looks into the typicality
of group members, it tackles a different problem. The use of
Mahalanobis distance somewhat restricts the applications
of this definition, while our definition of typicality can be
applied to data sets in generic metric spaces.

Discriminant analysis using probability of group member-
ship mainly focuses on how to correctly classify the objects.
It does not consider the typicality of group members. Our
definition of discriminative typicality combines both the dis-
criminability and the typicality of the group members, which
is more powerful in capturing the “important” instances in
multi-class data sets.

Moreover, [11, 21] do not discuss how to answer those
queries efficiently on large data sets.

Spatially-decaying sum with exponential decay function [14,
15] is similar to our definition of simple typicality. However,
in [14, 15], the spatially-decaying aggregation problem is de-
fined on graphs or Euclidean planes, while we assume only a
generic metric space. On the one hand, the efficiency in [14,
15] may not be carried forward to the more general metric
space. The techniques developed in this paper may be useful
to compute spatially-decaying aggregation on a general met-
ric space. On the other hand, when typicality queries are
computed on graphs or Euclidean planes, some ideas in [14,
15] may be borrowed.

4. QUERY ANSWERING ALGORITHMS
In this section, we first discuss how to estimate probabil-

ity density, then, we show that answering top-k typicality
queries is quadratic in nature. Last, we present a random-
ized tournament approximation algorithm (RT).

4.1 Probability Density Estimation
Estimating probability density is essential in typicality

computation. There are several model estimation techniques
in the literature [18], including parametric and non-parametric
density estimation. Parametric density estimation requires

Input: a set of n objects o1, . . . , on and positive integer k;
Output: the top-k objects with the highest simple typicality

values;
Method:
1: FOR each object o, set T (o) = 0;
2: FOR i = 0 TO (n− 1)
3: FOR j = i + 1 TO n

4: w = 1
(n−1)

√
2π

e
− d(oi,oj)2

2h2 ;

5: T (oi) = T (oi) + w; T (oj) = T (oj) + w;
END-FOR

END-FOR
6: return the top-k objects according to T (o);

Figure 4: An exact algorithm to answer top-k simple
typicality queries.

a certain distribution assumption, while non-parametric es-
timation does not. Among the various techniques proposed
for non-parametric density estimation [17], histogram esti-
mation [24], kernel estimation [1, 9] and nearest neighbor
estimation [25] are the most popular. In this paper, we use
kernel estimation, because it can estimate unknown data
distribution effectively [22].

Kernel estimator is a generalization of sampling. In ran-
dom sampling, each sample point carries a unit weight. How-
ever, an observation of the sample point increases the chance
of observing other points nearby. Therefore, kernel estima-
tor distributes the weight of each point in the nearby space
around according to a kernel function K. Moreover, the
bandwidth parameter (also as known as the smoothing pa-
rameter) h is introduced to control the distribution among
the neighborhood of the sample. As shown in [34], the accu-
racy of the kernel estimation depends mostly on the band-
width h and lightly on the choice of the kernel K. In this
paper, we choose the commonly used Gaussian kernels. Our
approach can also be adapted using other kernel functions.

We want to address the top-k typicality problem in a
generic metric space. The only parameter we use in den-
sity estimation is the distance (or similarity) between two
objects. Formally, given a set of objects S = (o1, o2, . . . , on)
in a generic metric space, the underlying probability density
function f̂(x) is approximated as follows:

f̂(x) =
1

n

nX
i=1

Gh(x, oi) =
1

n
√

2π

nX
i=1

e
− d(x,oi)

2

2h2

where d(x, oi) is the distance between x and oi in the metric

space, and Gh(x, oi) = 1√
2π

e
− d(x,oi)

2

2h2 is a Gaussian kernel.

4.2 An Exact Algorithm and Complexity
Theoretically, given a set of objects S, if the probability

density of an object o ∈ S f(o) ∝ 1P
o′∈S d(o,o′) , then the

discrete 1-median problem can be reduced to a special case
of the top-1 simple typicality query problem. As so far no
better than quadratic algorithm has been found for exact
solutions to the general discrete 1-median problem (except
in L1 metric space), it is challenging to find a better than
quadratic algorithm for computing exact answers to general
top-k similarity queries.

Figure 4 gives a straightforward quadratic algorithm that
computes the exact answer to a top-k simple typicality query.

Quadratic algorithms are often too costly for online queries
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Figure 5: The illustration of the randomized algo-
rithm.

on large databases. On the other hand, good approxima-
tions of the exact answers are often good enough for typi-
cality analysis. This motivates our development of approxi-
mation algorithms.

4.3 RT: A Randomized Tournament Algorithm
Inspired by the randomized tournament method [12] for

the discrete 1-median problem, we propose a randomized
tournament algorithm for answering top-k simple typicality
queries as follows.

Let t be a small integer, called the tournament group size.
To find the most typical object in a set S of n objects, we
partition the objects into dn

t
e groups randomly such that

each group has t objects. For each group, we use the exact
algorithm to find the object that has the largest simple typi-
cality value in the group. Those winner objects in the groups
are selected to the next round, as illustrated in Figure 5.

The winners of the previous round are again partitioned
randomly into groups such that each group contains t ob-
jects. The most typical object in each group is selected and
sent to the next round. The tournament terminates until
only one object is the winner. The final winner is an ap-
proximation of the most typical object.

To approximate the second most typical object, we run
the randomized tournament again with the following con-
straint: the most typical object already chosen in the pre-
vious tournament cannot be selected as the winner in this
tournament. The final winner in the second tournament is
the approximation of the second most typical object. So
forth we can find the approximations of the top-k typical
objects in k times of tournaments.

In order to achieve a higher accuracy, we can run this
randomized tournament several times for selecting the ap-
proximation of the i-th most typical object (1 ≤ i ≤ k), and
pick the object with the largest simple typicality among all
the final winners. The algorithm is shown in Figure 6.

The typicality computation within one group has the com-
plexity of O(t2). There are dlogt ne tournament rounds in
total. Without loss of generality, let us assume n = tm.
Then, the first round has n

t
groups, the second round has

n
t
t

= n
t2

groups, and so forth. The total number of groups

is
P

1≤i≤logt n
n
ti = n

t−1
(1 − 1

tm ) = O(n
t
). The complex-

ity of selecting the final winner is O(t2 · n
t
) = O(tn). If

we run each tournament v times for better accuracy, and
run tournaments to choose top-k typical objects, the overall
complexity is O(kvtn).

The randomized algorithm runs in linear time with respect
to the number of objects. However, the accuracy of the

Input: a data set S, positive integer k, tournament size t and
number of validations v;

Output: approximation to the answer to a top-k simple
typicality query;

Method:
1: FOR i = 1 TO k
2: set the candidate set to empty;
3: FOR j = 1 TO v
4: REPEAT
5: randomly partition the objects in S into groups, each

group has t objects;
6: FOR EACH group g
7: compute the typicality of each points in g within

the group;
8: select one object other than any already output

object with the largest typicality in g and remove
the other objects;

END FOR-EACH
9: UNTIL there is only one object left in S;
10: add the winner to the candidate set;

END FOR
11: compute the simple typicality of all the points in the

candidate set over the whole data set;
12: output the object with the largest simple typicality as the

approximation of the i-th most typical object;
END FOR

Figure 6: The randomized tournament algorithm
(RT) for answering top-k simple typicality queries.

approximation to the answer is not guaranteed in theory,
though in practice it often has reasonable performance.

Discriminative typicality can be calculated using Theo-
rem 1. The randomized tournament algorithm can also be
used to answer top-k discriminative typicality queries if the
discriminative typicality measure is applied. Limited by
space, we omit the details here.

5. LOCAL TYPICALITY APPROXIMATION
While the randomized tournament method is efficient, it

cannot guarantee the approximation quality. Can we pro-
vide some quality guarantee and at the same time largely
retain the efficiency? In this section, we develop several
heuristic local typicality approximation methods. We use
simple typicality as the example most of the time. It can be
extended to discriminative typicality straightforwardly.

5.1 Locality of Typicality Approximation
In Gaussian kernel estimation, given two points a and p,

the contribution from p to f̂(a) is 1

n
√

2π
e
− d(a,p)2

2h2 , where n

is the size of the data set. The contribution of p decays
exponentially as the distance between a and p increases.
Therefore, if p is remote from a, p contributes very little to
the density of a.

Moreover, in a metric space, given three points a, b and
p, the triangle inequality |d(a, p) − d(b, p)| < d(a, b) holds.
If d(a, p) À d(a, b), then d(a, p) ≈ d(b, p). Therefore, the
objects far away from a and b will have similar contributions
to the probability density values f̂(a) and f̂(b).

Based on the above observations, given a set of objects S
and a subset C ⊆ S, can we use the locality to approximate
the object having the largest simple typicality value in C?

Definition 3 (Local neighborhood). Given a set of
objects S, a neighborhood threshold σ, and a subset C ⊆ S,
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The σ-local neighborhood of C

LN(C, σ) = {o|o ∈ S, min
o′∈C

{d(o, o′)} ≤ σ}

is the set of objects whose distance to at least one object in
C is at most σ.

We can use the local neighborhood to compute the local
typicality defined as follows.

Definition 4 (Local simple typicality). Given a
set of objects S, a neighborhood threshold σ, and a sub-
set C ⊆ S, the local simple typicality of an object o ∈ C
is defined as LT (o, C, σ) = f(o|LN(C, σ)).

The following result uses local simple typicality to approx-
imate the simple typicality with a quality guarantee.

Theorem 2 (Local typicality approximation).
Given a set of objects S, neighborhood threshold σ, and a
subset C ⊆ S, let eo = arg maxo1∈C{LT (o1, C, σ)} be the
object in C having the largest local simple typicality value,
and o = arg maxo2∈C{T (o, S)} be the object in C having the
largest simple typicality value. Then,

T (o, S)− T (eo, S) ≤ 1√
2π

e
− σ2

2h2 (1)

Moreover, for any object x ∈ C,

T (x, S)− LT (x, C, σ) <
1√
2π

e
− σ2

2h2 (2)

Proof. For any object x ∈ C,

T (x, S) =
1

|S| (
X

y∈LN(C,σ)

Gh(x, y) +
X

z∈(S−LN(C,σ))

Gh(x, z))

Since LT (x, C, σ) = 1
|LN(C,σ)|

P
y∈LN(C,σ) Gh(x, y),

T (x, S) =
1

|S| (|LN(C, σ)|·LT (x, C, σ)+
X

z∈(S−LN(C,σ))

Gh(x, z))

(3)

Because LN(C, σ) ⊆ S, |LN(C,σ)|
|S| ≤ 1. Thus,

T (x, S) ≤ LT (x, C, σ) +
1

|S|
X

z∈(S−LN(C,σ))

Gh(x, z)) (4)

According to the definition of local neighborhood, d(x, z) >
σ for any z ∈ (S − LN(C, σ)). Thus,

1

|S|
X

y∈(S−LN(C,σ))

Gh(x, y) <
1√
2π

e
− σ2

2h2 (5)

Inequality 2 follows with Inequalities 4 and 5 immediately.
Applying Equation 3 to o and eo, respectively, we have

T (o, S)− T (eo, S)

= |LN(C,σ)|
|S| (LT (o, C, σ)− LT (eo, C, σ))+

1
|S|
P

z∈(S−LN(C,σ))(Gh(o, z)−Gh(eo, z))

Using Inequality 5, we have 1
|S|
P

z∈(S−LN(C,σ))(Gh(o, z)−
Gh(eo, z)) ≤ 1√

2π
e
− σ2

2h2 .

Since LT (eo, C, σ) ≥ LT (o, C, σ), LT (o, C, σ)−LT (eo, C, σ) ≤
0. Thus,

T (o, S)− T (eo, S) ≤ 1√
2π

e
− σ2

2h2

Inequality 1 is shown.

a
h

b

c e
f

gd

Figure 7: Decom-
posing a set of ob-
jects in a VP-tree.

a b c d e f g h

N6N4 N5

N1

N2 N3

N7

Final winner: e C(N6)=e

Neighbor(N6)={N6, N7, c}
R(N6)=d(e,f)

Winner(N6)=e

Figure 8: The VP-tree.

5.2 DLTA: Direct Local Typicality Approxi-
mation Using VP-trees

Inequality 2 in Theorem 2 can be used immediately to ap-
proximate simple typicality computation with quality guar-
antee. Given a neighborhood threshold σ, for each object
x ∈ S, we compute the σ-local neighborhood of {x}, i.e.,
LN({x}, σ), and the local simple typicality LT (x, {x}, σ).
We use the local simple typicality LT (x, {x}, σ) as the ap-
proximation of the simple typicality T (x), and pick the k
objects with the highest local simple typicality values as the
approximation to the answer of the top-k simple typicality
query. As ensured by Theorem 2, the error in simple typi-

cality is less than 1√
2π

e
− σ2

2h2 .

Searching the σ-neighborhood (i.e., the neighbors with
distance up to σ) for each object can be very costly. To im-
plement the direct local typicality approximation efficiently,
we can use a VP-tree which can support σ-neighborhood
searches effectively.

A VP-tree [38] is a binary space partitioning (BSP) tree.
Given a set of objects S, a VP-tree T indexes the objects in
S. Each node in a VP-tree represents a subset of S. Roughly
speaking, for each non-leaf node N and the set of nodes SN

at N , a vantage point is selected to divide the set SN into
two exclusive subsets SN1 and SN2 (SN = SN1 ∪ SN2) such
that, to search the nearest neighbor within distance σ for
an object p ∈ N , likely we only need to search either SN1

or SN2 but not both. SN1 and SN2 are used to construct
the two children of N . For example, consider the objects in
Figure 7. A VP-tree in Figure 8 indexes the objects.

A VP-tree can be constructed top-down starting from the
root which represents the whole set of objects. A sampling
method is given in [38] to select vantage points for internal
nodes. Then, the first half subset of objects that are close
to the vantage point form the left child of the root, and
the second half subset of objects that are far away from the
root form the right child. The left and the right children are
further divided recursively until a node contains only one
object (a leaf node). A VP-tree can be constructed with
cost O(|S| log |S|).

Searching a VP-tree for the σ-neighborhood of a query
point is straightforward using the recursive tree search. Once
an internal node in the tree can be determined in the σ-
neighborhood of the query point, all descendant objects of
the internal node are in the neighborhood and no subtrees
need to be searched.

The cost of computing the local simple typicality of an ob-
ject x is O(|LN(x, σ)|). Then, the cost of computing the lo-
cal simple typicality of all objects is O(

P
x∈S |LN({x}, σ)|).

Although the local neighborhood search can be sped up us-
ing a VP-tree (i.e., reducing V ), the σ-neighborhoods may
still contain many objects. In the worst case where σ is
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larger than the diameter (i.e., the largest pairwise distance)
of the data set, the σ-neighborhood of each object contains
all other objects, and thus the method of direct local typi-
cality approximation, even using a VP-tree, is O(|S|2).

5.3 LT3: Local Typicality Approximation Us-
ing Tournaments

Can we reduce the cost of computing local simple typical-
ity further?

5.3.1 Randomized Tournaments
Straightforwardly, Inequality 1 in Theorem 2 can be ap-

plied to the randomized tournament algorithm to guarantee
the answer quality immediately.

In a tournament selecting the most typical object in a
group C, instead of computing the simple typicality in C, we
can find the object eo in C having the largest local typicality
as the winner of the group, and send it to the next round of
tournament. We have the following quality guarantee.

Theorem 3. In a set S, let o be the object of the largest
simple typicality and eo be an object computed by a random-
ized tournament method using local typicality approximation
and the tournament group size t. Then,

T (o, S)− T (eo, S) <
1√
2π

e
− σ2

2h2 · dlogt |S|e

Proof sketch. We only need to notice that because of the
triangle inequality in metric spaces, by each level of tourna-

ment, an error up to 1√
2π

e
− σ2

2h2 in terms of the difference of

simple typicality is introduced, as indicated by Inequality 1
in Theorem 2. For a set S of objects, there are dlogt |S|e
levels of tournaments.

The quality guarantee depends on the group size t in the
tournaments. By setting values of σ and t properly, we can
ensure the required approximation quality.

To compute the local simple typicality, we need to con-
sider all objects in the local neighborhood. However, in the
randomized tournament algorithm, objects are partitioned
into groups randomly. If the objects in a group are not local
to each other, then the σ-local neighborhood may include
many objects. In the worst case, each local neighborhood
includes all the other objects in the data set. Then, com-
puting the local simple typicality values of the objects in the
group takes the cost of O(nt + t2) = O(nt). As discussed in
Section 4.3, there are O(n

t
) groups, the cost of the algorithm

can still be as large as O(nt) ·O(n
t
) = O(n2).

5.3.2 Local Typicality Trees (LT-trees)
Can we partition the objects systematically so that the

groups tend to be local? Moreover, as a VP-tree can facili-
tate neighborhood search, can we use a VP-tree? Here, we
propose a sampling method employing these tactics.

Given a set S of objects. We construct a VP-tree as de-
scribed in [38]. Since a VP-tree is a binary tree, to reduce
the number of rounds of tournaments, we can also use an
MVP-tree [8], a t-nary VP-tree that uses more than one van-
tage point to partition the space. Without loss of generality,
let us assume t = 2l and the data set contains tm objects.

We assign a layer number to each node in the VP-tree.
The root node has layer number 0, and a node is assigned
layer number (i + 1) if its parent has layer number i. We

remove all those nodes in the VP-tree whose layer number is
not a multiple of t. For a node N of layer number jt (j ≥ 1),
we connect N to its ancestor in the VP-tree of layer (j−1)t.
We call the resulting tree the LT-tree (for local typicality
tree).

In addition, each node in the LT-tree records the follow-
ing three pieces of information: the approximate center, the
radius, and the σ-neighborhood.

For a node N in the LT-tree, let SN be the set of objects at
N . To compute the approximate center at a node N in the
LT-tree, we draw a sample R of

p
|SN | objects from SN , and

compute the pairwise distance between every two objects in
R. Then, for each object x ∈ R, the center-score of x is
the maximal distance from x to another point in R. The
object in R of the minimum center-score is chosen as the
center. This center approximation procedure is popularly
used in computational geometry. It takes O(|SN |) time for
each node N , and O(|S| logt |S|) time for all nodes in the
LT-tree.

Once the center c of a node N is chosen, the radius is given
by the maximum distance between c and the other objects
at N . This can be computed in time O(|SN |) for each node
N , and O(|S| logt |S|) for all nodes in the LT-tree.

We use a range query in the LT-tree to compute a super-
set of the σ-neighborhood of SN for every node N in the
LT-tree, which always achieves a better typicality approx-
imation than using the σ-neighborhood. To compute the
superset, we start from the root and iteratively search for
the nodes that completely lies in the σ-neighborhood of N ,
using the approximate center and radius of N . Once all ob-
jects at a node N ′ in the VP-tree are in the σ-neighborhood
of N , we use N ′ to represent them and do not search any
subtree of N ′.

5.3.3 Query Answering
To answer a top-k simple typicality query, we run tour-

naments on the LT-tree bottom-up. First, a tournament is
run for each leaf node in the LT-tree. The winner enters the
tournament at the parent node. The winner o1 at the root
node is the approximation of the most typical object. The
approximation quality is guaranteed by Theorem 3.

To find the approximation of the second most typical ob-
ject, we do not need to completely run the tournaments
again. Instead, we can reuse most of the results in the tour-
naments finding the most typical object o1. The only tour-
naments we need to run are on the nodes containing o1. We
run those tournaments bottom-up, too. First, we run a new
tournament at the leaf node N1 containing o1, but do not in-
clude o1 in the new tournament. Then, the winner o′1 is sent
to N2, the parent of N1, and a new tournament is run there
by replacing o1 by o′1. A series of m tournaments are needed
to find a new winner o2 in the root node, which is the ap-
proximation of the second most typical object. At each level
of the LT-tree, only one node needs to run a tournament.

As shown in our experiments, using the LT-tree we can
improve both the quality and the efficiency of local typical-
ity approximation. The approximation of the most typical
objects is very close to the exact ones.

By using the LT-tree, the objects in a group are relatively
local to each other. Thus, the neighborhood may likely be
local, too.

5.3.4 A Sampling Method for Bounding Runtime
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Category # tuples Most typical Most discriminative typical Most atypical

Mammal 40 Boar, Cheetah, Leopard, Lion, Boar, Cheetah, Leopard, Lion, Platypus (T = 0.01)
Lynx, Mongoose, Polecat, Puma, Lynx, Mongoose, Polecat, Puma,

Raccoon, Wolf (T = 0.16) Raccoon, Wolf (DT = 0.08)
Bird 20 Lark, Pheasant, Sparrow, Lark, Pheasant, Sparrow, Penguin (T = 0.04)

Wren (T = 0.15) Wren (DT = 0.04)
Fish 14 Bass, Catfish, Chub, Herring, Bass, Catfish, Chub, Herring, Carp (T = 0.03)

Piranha (T = 0.15) Piranha (DT = 0.03)
Invertebrate 10 Crayfish, Lobster (T = 0.16) Crayfish, Lobster (DT = 0.01) Scorpion (T = 0.08)

Insect 8 Moth, Housefly (T = 0.13) Gnat (DT = 0.02) Honeybee (T = 0.06)
Reptile 5 Slowworm (T = 0.17) Pitviper (DT = 0.007) Seasnake (T = 0.08)

Amphibian 3 Frog (T = 0.2) Frog (DT = 0.008) Newt, Toad (T = 0.16)

Table 1: The most typical, the most discriminatively typical, and the most atypical animals (T =simple
typicality value, DT =discriminative typicality value).

To make the analysis complete, here we provide a sam-
pling method which provides an upper bound on the cost of
local typicality computation with quality guarantee.

Suppose we want to compute the local simple typicality
LT (p, C, σ). We consider the contribution of an object o ∈
LN(C, σ) to LT (p, C, σ), denoted by

η(o) =
1

|LN(C, σ)|Gh(p, o) =
e
− d(p,o)2

2h2

|LN(C, σ)|√2π

We can draw a sample of LN(C, σ) to estimate the expec-
tation of η(o). Please note that LT (p, C, σ) = |LN(C, σ)| ·
E[η(o)], where E[η(o)] is the expectation of η(o) for o ∈
LN(C, σ).

Theorem 4. For any δ (0 < δ < 1) and ε (ε > 0) and a
sample R of LN(C, σ), if

|R| > 3
√

2π · e σ2

2h2 · ln 2
δ

ε2

then

f{| |LN(C, σ)|
|R|

X
o∈R

η(o)−LT (p, C, σ)| > ε ·LT (p, C, σ)} < δ

Proof sketch. The theorem can be proved using a special
form of the Chernoff-Hoeffding bound due to Angluin and
Valiant [2]. Limited by space, we omit the details here.

Theorem 4 provides an upper bound of the sample size,
which is independent of the size of data sets. For example,
the sample size is 1, 171 when ε = 0.3, δ = 0.3, σ = 2h, and
is 202, 735 when ε = 0.1, δ = 0.1, σ = 3h. The larger ε and
δ, the smaller the sample size. The larger σ, the larger the
sample size.

Using the sampling method suggested by Theorem 4, we
can have a tournament algorithm using an LT-tree of cost
O(n log n). However, we observe from the experiments that,
since the LT-tree already exploits the locality of objects
nicely, the sampling method does not bring in too much
gain in efficiency, but may loose much in quality. Limited
by space, we do not include the experimental results on this
sampling method.

6. EMPIRICAL EVALUATION
In this section, we report a systematic empirical study

using real data sets and synthetic data sets. All the exper-
iments were conducted on a PC computer with a 3.0 GHz

Pentium 4 CPU, 1.0 GB main memory, and a 160 GB hard
disk, running the Microsoft Windows XP Professional Edi-
tion operating system. Our algorithms were implemented in
Microsoft Visual C++ V6.0.

By default we set the bandwidth of the Gaussian kernel
estimator h = 1.06s

5√n
as suggested in [33], where n is the size

of the data set and s is the standard deviation of the data
set which can be estimated by sampling.

6.1 Typicality Queries on Real Data Sets
In this section, we use two real data sets to illustrate the

effectiveness of typicality queries on real applications.

6.1.1 Typicality Queries on the Zoo Data Set
We use the Zoo Database from the UCI Machine Learning

Database Repository1. It is a small data set of 100 tuples on
15 Boolean attributes and 2 numerical attributes. All tuples
are classified into 7 categories (mammals, birds, reptiles, fish,
amphibians, insects and invertebrates).

We compute the simple typicality and the discriminative
typicality for each animal in the data set. Table 1 shows
the most typical, the most discriminatively typical, and the
most atypical animals of each category. Since some tuples,
such as those 10 most typical animals in category mammals,
have the same values on all attributes, they have the same
typicality value.

The results match our common sense of typicality. The
most typical animals in each category can serve as good ex-
emplars of the category. For example, in category mammals,
the most typical animals are more likely to be referred to as
a mammal than the most atypical one, platypuses, which are
one of the very few mammal species that lay eggs instead of
giving birth to live young. As another (possibly arguable)
justification, searching “lion, mammal” in Google returns
881, 000 results, but searching “platypus, mammal” returns
only 141, 000 results.

Sometimes, animals from different categories are also sim-
ilar to each other. For example, in the Zoo Database, slugs
from category invertebrates and termites from category in-
sects are different only in attribute number of legs. More-
over, slowworm, the most typical reptiles in the Zoo Database,
is also similar to newts in category amphibians, as well as
basses and catfish in category fish. The differences are only
on two or three attributes. Therefore, a typical instance
in one category may also resemble some instances in other

1http://www.ics.uci.edu/∼mlearn/MLRepository.html.

898



Name T Position Minuts Points per game 3 point throw Rebounds Assists Blocks Personal Fouls

Danny Granger 0.0383 Forwards 22.6 7.5 1.6 4.9 1.2 0.8 2.7
Devean George 0.0382 Forwards 21.7 6.3 3 3.9 1.0 0.5 2.2
Michael Finley 0.0378 Guards 26.5 10.1 5 3.2 1.5 0.1 1.3

Table 2: The most typical NBA players in 2005-2006 Season (T for simple typicality values).

Name T DT 3 point throw Rebounds Assists Blocks

Top-2 discriminative Delonte West 0.021 0.0095 4.3 4.1 4.6 0.7
typicality query David Wesley 0.021 0.0092 5.2 2.5 2.9 0.1
Top-2 simple Ronald Murray 0.076 0.0059 2.4 2 2.6 0.1

typicality query Marko Jaric 0.075 0.0046 2.3 3.1 3.9 0.3

Table 3: The most discriminatively typical guards (T for simple typicality values, DT for discriminative
typicality values).

Category (position) Median/mean/most typical Name Simple typicality # games Avg. min. per game

median Ryan Gomes 0.0271 61 22.6
All players mean N/A 0.0307 54.4 20.51

most typical Danny Granger 0.3830 78 22.6
median Jake Voskuhl 0.0903 51 16

Centers mean N/A 0.0679 52.42 17.36
most typical Francisco Elson 0.1041 72 21.9

median Al Jefferson 0.0747 59 18
Forwards mean N/A 0.0509 54.83 19.97

most typical Maurice Taylor 0.0910 67 18.1
median Charlie Bell 0.0488 59 21.7

Guards mean N/A 0.0230 54.54 21.73
most typical Ronald Murray 0.0756 76 27.8

Table 4: Comparison among medians, means, and typical players in the NBA data set.

categories, which makes this typical instance not so distin-
guishing.

Thus, we apply discriminative typicality analysis on the
Zoo Database to find the discriminative typical animals for
each category that can best distinguish the category from
other categories. In some categories, the tuples having the
largest simple typicality value also have the highest discrim-
inative typicality value, such as categories mammals, birds,
fish, invertebrates, and amphibians.

In some categories such as insects and reptiles, the most
typical animals are not the most discriminatively typical.
For example, in category reptiles, the most discriminatively
typical animal is pitvipers in stead of slowworm, because
slowworm are also similar to some animals in other cate-
gories besides reptiles, such as newts in category amphib-
ians. On the other hand, pitvipers are venomous. Very few
animals in the other categories are venomous. The result
matches the analysis above.

By the typicality queries on the Zoo Database, we can
identify typical cases which cannot be easily captured by
other queries.

6.1.2 Typicality Queries on the NBA Data Set
We also apply typicality queries on the NBA 2005-2006

Season Statistics2. The data set contains the technical statis-
tics of 458 NBA players, including 221 guards, 182 forwards
and 55 centers, on 16 numerical attributes.

Table 2 shows the top-3 most typical players, and some of
the attribute values. The results answer Jeff’s question in
Section 1.1.1.

2http://sports.yahoo.com/nba/stats/.

To answer Jeff’s question in Section 1.1.2, we conduct
a top-2 discriminative typicality query on position guards.
The results are shown in Table 3. For comparison, in the
same table we also list the answer to the top-2 simple typ-
icality query on position guards. To explain the results, we
list some selected attributes as well. The most discrimi-
natively typical guards have better performance in 3 point
throw than those of the highest simple typicality. 3 point
throw is a skill popular in guards, but may not be common
in other players.

6.1.3 Medians, Means and Typical Objects
Figure 1 elaborates the differences among medians, means,

and typical objects in a data set. To further understand the
differences in the real data sets, we compute the medians,
the means and the typical objects in the NBA data set. The
results are shown in Table 4.

We can clearly see that, in this data set, the simple typ-
icality scores of the medians and the means are often sub-
stantially lower than the most typical players. This clearly
justifies that the geometric centers may not reflect the prob-
ability density distribution.

In the table, we also list the values on attributes number

of games played and average number of minutes played

in each game to illustrate the differences among medians,
means and the most typical players. A typical player can
be very different from the median player and the mean. For
example, Ronald Murray is identified as the most typical
guard, but Charlie Bell is the median guard. Murray makes
fewer rebounds than Bell, but contributes more assists. To
this extent, Murray is more typical than Bell as a guard.

In principle, typicality analysis is based on the probabil-
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Figure 9: Approximation quality.
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Figure 10: Efficiency and scalability.

ity density distribution, and is essentially different from the
geometric aggregate analysis using medians and means.

6.2 Approximation Quality
To evaluate the query answering quality on large data sets,

we use the Quadraped Animal Data Generator also from
the UCI Machine Learning Database Repository to generate
synthetic data sets with 72 attributes. Limited by space, we
only report the results on top-k simple typicality queries
here. We use up to 25 numeric attributes, and compute the
typicality of a tuple in the whole data set.

To measure the error made by an approximation algo-
rithm, we use the following error rate measure. For a top-k
typicality query Q, let A be the set of k objects returned by

the exact algorithm, and eA be the set of k objects returned
by an approximation algorithm. Then,

Error rate =

P
o∈A T (o)−Po∈ eA T (o)P

o∈A T (o)
× 100%

The error rate of the exact algorithm (Figure 4) is al-
ways 0. We compare three approximation algorithms: the
randomized tournament method (RT, Figure 6), the direct
local typicality approximation method (DLTA, Section 5.2),
and the LT-tree tournament method (LT3, Section 5.3). By
default, we set the number of tuples to 10, 000, the dimen-
sionality to 5 attributes, and conduct top-10 simple typical-
ity queries. When local typicality is computed, by default
we set the neighborhood threshold to 2h, where h is the
bandwidth of the Gaussian kernel. In the randomized tour-
nament method, by default the tournament group size is
10 and 4 times validation are conducted. We observe that
although with more rounds of validations, the quality of ran-
domized tournament may increase, but after 3 rounds, the
quality improvement is very small.

Figure 9(a) shows the change of approximation quality
with respect to the neighborhood threshold. In the figure,
the error bounds given by Theorems 2 and 3 are also plot-

ted. That is, UB(DLTA) =
|A|· 1√

2π
e
− σ2

2h2

Σo∈AT (o)
× 100% and

UB(LT3) =
|A|· 1√

2π
e
− σ2

2h2 ·dlogt |S|e
Σo∈AT (o)

× 100%. To make the

curves legible, the error rates are in the logarithmic scale.
Clearly, the larger the neighborhood threshold, the more
accurate the local typicality approximation. Our methods
perform much better than the error bounds. This clearly
shows that our methods are effective in practice.

In Figure 9(b), we vary the number of k in the top-k
queries. The approximation quality of RT is not sensitive
to k, since it runs k times to select the top-k answers. Both
DLTA and LT3 see a larger error rate with a larger value of
k. The error rate of DLTA increases from 0.004% to 0.015%
when k increases from 5 to 25. When more objects are
returned, those distant neighbors may get a better chance
to play a role in typicality.

Figure 9(c) shows the impact of dimensionality on the er-
ror rate. DLTA achieves the best approximation quality,
the error rate is up to 0.066%. LT3 has an accuracy close
to DLTA, and is much better than RT. The error rate de-
creases as the dimensionality increases. As the dimensional-
ity increases, the data set becomes sparse, and the average
pair-wise distance in the data set also increases. The local
typicality approximation becomes more effective.

Figure 9(d) tests the approximation quality versus the
number of tuples in the data set. When the cardinality
increases, the data set becomes dense, and the local typ-
icality approximation is more accurate. That is why LT3
and DLTA perform better with larger data sets. However,
the approximation quality of RT decreases in large data sets,
since with a fixed tournament group size, the larger the data
set, the more likely the most typical object in a random
group biases.

In summary, DLTA and LT3 can achieve good approxima-
tion quality, and DLTA is a little bit better. This strongly
justifies that our local typicality approximation technique
is effective. Both DLTA and LT3 are much more accurate
than RT. Moreover, DLTA and LT3 perform well on large
and high-dimensional data sets.

6.3 Efficiency and Scalability

900



To test the efficiency and the scalability of our methods,
we report the runtime in the experiments conducted in Fig-
ure 9. The results are shown in Figure 10.

As shown in Figure 10(a), the runtime of DLTA increases
substantially when the neighborhood threshold increases,
but the increase of LT3 is mild. LT3 conducts tournaments
using an LT-tree, and the σ-neighborhoods are indexed.

Figure 10(b) shows that the runtime of DLTA and LT3
is insensitive to the increase of the number of answers to
be computed. LT3 incrementally computes other top-k an-
swers after the top-1 answer is computed. Thus, computing
more answers only takes minor cost. RT has to run the
tournaments k rounds, and thus the cost is linear to k.

As shown in Figure 10(c), among the four methods, RT
is the fastest and the exact algorithm is the slowest. LT3
and DLTA are in between, and LT3 is faster than DLTA. All
methods are linearly scalable with respect to dimensionality.

Figure 10(d) shows the scalability of the four algorithms
with respect to database size. RT has a linear scalability,
while the runtime of the exact algorithm increases dramat-
ically on large data sets. LT3 clearly has the better perfor-
mance and scalability than DLTA on large data sets.

In summary, as RT has linear complexity, when runtime is
the only concern, RT should be used. While DLTA and LT3
are much more scalable than the exact algorithm and are
much more accurate than RT, they are good for situations
where both accuracy and efficiency matter. LT3 has the
better efficiency and scalability than DLTA, and can achieve
comparable accuracy to DLTA.

7. CONCLUSIONS
In this paper, we apply the idea of typicality analysis

from psychology and cognition science to query answering,
and study the novel problem of answering top-k typicality
queries. The simple typicality and the discriminative typi-
cality measures are proposed for different applications. As
computing the exact answers to top-k typicality queries on
large data sets can be too costly, we develop a series of ap-
proximation methods. By a systematic empirical evaluation
using both real data sets and synthetic data sets, we illus-
trate the effectiveness of top-k typicality queries, and verify
the accuracy and the efficiency of our methods.

Typicality can find other applications in databases. As
future work, we would like to explore the potential of typi-
cality analysis in data summarization, data warehousing and
data mining.
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