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ABSTRACT

Publish-subscribe applications are an important class of content-

based dissemination systems where the message transmission is

defined by the message content, rather than its destination IP ad-

dress. With the increasing use of XML as the standard format

on many Internet-based applications, XML aware pub-sub applica-

tions become necessary. In such systems, the messages (generated

by publishers) are encoded as XML documents, and the profiles

(defined by subscribers) as XML query statements. As the num-

ber of documents and query requests grow, the performance and

scalability of the matching phase (i.e. matching of queries to in-

coming documents) become vital. Current solutions have limited

or no flexibility to prune out queries in advance. In this paper, we

overcome such limitation by proposing a novel early pruning ap-

proach called Bounding-based XML Filtering or BoXFilter. The

BoXFilter is based on a new tree-like indexing structure that orga-

nizes the queries based on their similarity and provides lower and

upper bound estimations needed to prune queries not related to the

incoming documents. Our experimental evaluation shows that the

early profile pruning approach offers drastic performance improve-

ments over the current state-of-the-art in XML filtering.

1. INTRODUCTION
Publish-subscribe applications (or simply pub-sub) are an im-

portant class of asynchronous content-based dissemination systems

where the message transmission is defined by the message content,

rather than its destination IP address. Examples of pub-sub sys-

tems include notification websites (such as hotwire.com or ticket-

master.com), where a user can subscribe for events of interest (new

deals on their favorite travel destinations, concerts of their favorite

artists in their local area etc.) and get automatic notifications when

relevant events arrive in the system.

Many pub-sub systems have already been proposed with differ-

ent architectures (centralized within a server [1, 9, 11] or distributed

over a network of brokers [5, 8]) but they all follow the same asyn-

chronous event-based communication paradigm. The events are
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Figure 1: Architecture of a pub-sub system.

announced with a message generated outside of the system by third-

party applications referred as publishers. These messages are then

selectively delivered to interested subscribers that have announced

their interest by submitting profiles to the system. At the center of a

pub-sub system is the matching process, which is in charge of find-

ing (filtering) which messages satisfy which profile subscriptions.

Figure 1 shows the interaction of the main components within a

pub-sub system.

Regarding message content and profile definitions, pub-sub sys-

tems have evolved from simple topic-based communication [24,

35], to predicate-based systems [10, 11], to recently designed XML-

aware systems [7, 8, 9, 18, 36, 37]. Given the adoption of XML

as the standard format for data exchange, in this paper we focus on

the XML-aware pub-sub systems. In such scenario, messages are

encoded as XML documents and the profiles (query subscriptions)

are expressed using XML query languages, such as XPath [3].

The efficiency of a pub-sub system is heavily dependable on how

effective the matching process is, especially under very large vol-

umes of messages and profiles. There have been three predominant

strategies to design the matching process. The first one utilizes the

standard relational approach and translates profiles and messages to

the Relational Model [34]. Then, the matching can be expressed as

join operations between the sets of messages and profiles. The sec-

ond one is to aggregate the profiles using some indexing technique

[6]. The matching process then reads the input message and tra-

verses the index in order to select the profiles satisfied. Finally, the

most common approach is based on Finite State Machines (FSM)

[1, 9, 14, 17, 28, 36, 37], where the techniques differ in the type of

FSM used. One or more FSMs are built and enable processing the

common parts of the queries only once. Typically the processing is

performed in a top-down fashion.
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A different perspective is to evaluate the XML document in a

bottom-up manner, as presented in [20]. Such approach takes ad-

vantage of the (usual) fact that an XML document has its more

selective elements located at its leaves. Hence, a bottom-up evalu-

ation of both message documents and profile queries improves the

matching performance by considering less queries than the tradi-

tional approaches that use top-down approaches. Moreover, a se-

quence matching technique may be employed, as opposed to the

previous FSM-based ones.

All the previous approaches provide different advantages for var-

ious types of queries. However, they all have the same limitation:

they do not provide any early pruning feature in their matching

algorithm so as to quickly identify (and thus discard) queries that

are bound not to match any documents. Considering the increasing

volume of incoming message documents and incoming queries, an

early pruning technique is essential for saving processing time on

the matching process.

In this paper, we propose a new matching approach that focuses

on early pruning. The approach is based on a new tree-like indexing

structure that organizes the query requests based on their similarity

(using their Prüfer code [29]) and provides lower bound estimation

needed to prune queries not related to the incoming documents.

Specifically, the contributions of this paper are as follows.

• We propose an index-based filtering technique, named BoX-

Filter (Bounding-based XML Filtering), that performs early

pruning of the query profile space. The index enables a very

efficient search for a match during the filtering process by

grouping similar queries and by using lower and upper bounds

to prune out many of those queries. The index structure is

also able to accommodate a huge volume of profiles, even

when exceeding the memory space available. Furthermore,

the incoming documents can also be stored on a similar struc-

ture such that the matching phase can take advantage of batch

processing as well.

• As a by-product of this research, we propose a new FSM-

based approach, named BUFF (Bottom-Up Filtering FSM),

that improves the performance of regular FSM by perform-

ing a bottom-up evaluation of the document. Hence, BUFF

takes advantage of the bottom-up processing against the typ-

ical top-down processing of FSM-based methods. Moreover,

it serves as a good representative of the bottom-up processing

class in our experimental evaluation.

• We perform an extensive experimental evaluation that com-

pares the performance of the BoXFilter with the state-of-the-

art methods. This includes both top-down (such as Yfilter

[9]) and bottom-up (BUFF) approaches. We consider a wide

range of datasets and queries by varying different parameters

that can influence the algorithms performance. We are able

to verify the scalability and robustness of our new approach

regarding the number of queries as well as the number of

documents evaluated. Our results show that the early prun-

ing of BoXFilter provides much better filtering performance

over the previous solutions.

We proceed by presenting background information in Section

2. Then, section 3 details our new FSM-based approach (BUFF),

while section 4 presents the BoXFilter approach. Section 5 pro-

vides the experimental study. Finally, section 6 presents related

work, and section 7 concludes the paper.

Figure 2: XML document and its tree representation.

2. BACKGROUND
XML Data and Queries. An XML document is formed by a se-

quence of elements that enclose text values and other elements. The

XML document is typically represented by a tree structure where

the nodes correspond to elements, attributes or text values, and the

edges represent immediate element-subelement or element-value

relationships [3]. An XML database is then modeled as a forest

of unranked, node-labeled trees, one tree per document [3]. An

example of this model is illustrated in Figure 2.

Data can be retrieved from an XML document by an XML query

language (e.g. XPath [3], XQuery [4]). XML query languages con-

sider the inherent structure of the data and enable querying on both

structure and simple values. The structural constraints are usually

specified by a path expression that may contain predicates for fur-

ther refinement. For example, consider the path expression:

//article[/author[@last=“Smith”]]//procs[@conf=“VLDB”]

that requests all proceedings of articles that have an author with last

name “Smith” and have appeared in a “VLDB” conference. This

query consists of two types of conditions. First, @last=“Smith”

and @conf=“VLDB” are value-based and select elements or at-

tributes according to their values. Second, the path (or twig) //ar-

ticle[/author]//procs defines structural constraints as it imposes re-

strictions on the structure of the retrieved elements (e.g. a procs

element must exist under an article that has least one author ele-

ment as child).

The previous query example also shows the types of constraints

we consider in this work. Specifically, we assume that the query ex-

pressions are formed by a path composed of elements that related to

each other through ancestor-descendant axis (“//”) and parent-child

axis (“/”) and by predicates that specify nested paths and branches

as well as value constraints on both attributes and elements.

Pub-Sub Systems. Usually, a pub-sub system has a distributed

architecture over a set of network nodes (brokers). Each broker is

connected to a set of publishers (that inject messages through this

broker), a set of subscribers (that are awaiting notifications) and

other brokers within the network. We assume that the network of

brokers is already specified. The process for building the network

and the routing among the brokers is out of the scope of this pa-

per and has been covered elsewhere (e.g. [33]). For our purposes,

we focus on the matching process that takes place within a broker.
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Every broker has a routing table that keeps information regarding

the profile subscriptions and the messages destinations (possibly

accessed via other brokers through the network).

A central function within an XML-aware pub-sub system is to

perform XML filtering efficiently, i.e. matching the profile queries

to the message documents. This is a more crucial issue than in

topic- or predicate-based pub-sub systems, since the profiles are

now more complex. Note that XML filtering differs significantly

from the typical XML query processing, in which the main goal is

to find the specific parts within an XML document where a query

pattern occurs. Such “pattern discovery” is typically done in static

environments where the documents are indexed for fast processing

of the incoming queries (e.g. [19, 23, 25]). In the XML filtering

context, the roles of the query and the document are reversed. Also,

the documents usually arrive in the system in higher rates than the

queries. Therefore, the query patterns are the ones to be indexed in

order to determine which documents need to be filtered.

Prüfer Sequence. Prüfer sequence (or Prüfer code) is a term

used in graph theory to describe a unique sequential encoding of

a labeled tree [29]. The Prüfer sequence for a tree with n nodes

has length n − 2, and can be generated by a simple algorithm. The

algorithm iteratively removes nodes from the tree until all nodes

but the last two have been removed. At each iteration, the algorithm

finds and removes the leaf with the smallest label and adds to the

Prüfer sequence the label of that leaf’s parent.

Recently, Prüfer sequences have been successfully used in the

XML domain in combination with a tree numbering scheme [20,

30]. The numbering scheme (typically a preorder) associates unique

labels to the document tree nodes which are then processed to de-

fine the Prüfer code. There are two minor differences between the

Prüfer code generated for XML documents and the original defini-

tion from graph theory. First, in the original definition of the Prüfer

encoding, the leaf nodes do not participate in the sequence. Only

nodes which have at least one child form the Prüfer sequence for

the tree. To overcome this problem when processing XML data,

the document tree is expanded by adding an artificial child node to

each leaf in the tree (the tree then grows in height by one level).

Second, in the XML domain, the deletion of nodes from the tree

continues until only one node is left.

The sequence formed by the document numbering scheme is

called Numbered Prüfer Sequence or NPS. The sequence formed

by employing the actual XML tags in the encoding is called La-

beled Prüfer Sequence or LPS. In this paper, we use the term Prüfer

sequence to refer to the LPS of an XML document. Moreover, we

define the LPS of a document by employing a SAX parser [31] to

read the document and to create the sequences. For example, Al-

gorithm 1 illustrates how Prüfer sequences can be generated for an

XML document by reading that document with a SAX parser.

The following theorem guarantees the successful employment of

the Prüfer encoding on XML query matching (we refer to [30] for

its proof).

THEOREM 1. If a query tree Q is a subgraph of a document

tree D then the Prüfer encoding of Q is a subsequence of the Prüfer

encoding of D.

It is possible to have subsequence matching between two Prüfer

encoding of trees D and Q without Q being a subgraph of D.

In other words, Theorem 1 guarantees having no false dismissals

but it is possible to have false positives. The main reason is that

the Prüfer does not consider the structural features of neither the

query nor the XML document. Therefore, after matching the Prüfer

sequences from the queries and the documents, a post-processing

phase is necessary to filter out the false positives.

Algorithm 1 Prüfer code generation

Require: document D
Ensure: The Prüfer V sequence encoding of D
1: Set V = 0 . the resultant Prüfer sequence
2: Set S ← ∅ . auxiliary stack
3: saxParser.parse(D)
4: procedure STARTELEMENT . SAX parameters omitted for clarity
5: S.push(node) . node is the element read

6: procedure ENDELEMENT . SAX parameters omitted for clarity
7: node = S.pop()
8: V .append(node)
9: if the current element is leaf then

10: node = S.pop()
11: V .append(node)

3. BOTTOMUP FILTERING FSM (BUFF)
FSM-based approaches are among the most common methods

for the XML matching process, such as the XFilter [1] and the YFil-

ter [9]. This type of approach evaluates the input document in top-

down fashion (i.e. in-order or depth first order) while advancing

the state machine for each XML element (or attribute) read. Even

though they provide some performance guarantees (as for example,

requiring one pass over the documents), they also need to evaluate

all queries because they do not consider any form of early pruning.

On the other hand, FiST [20, 30] has recently indicated the ad-

vantages of a bottom-up approach for XML filtering. This approach

takes into consideration the (usual) fact that an XML document has

its more selective elements located at its leaves. Hence, such a

bottom-up evaluation can improve the matching performance by

considering less queries than a top-down approach.

When developing our early profile pruning solution (BoXFilter),

we wanted to compare its performance with the best current solu-

tions for both top-down and bottom-up approaches. Influenced by

the FiST performance results, we decided to create an FSM-based

technique that provides the bottom-up functionality as well. The

result is the BUFF approach discussed next.

It is important to note that while BUFF also applies a bottom-up

evaluation, there are various differences from FiST. For example,

FiST translates the document and the queries to Prüfer sequences.

Having the Prüfer sequences, it employs specialized data structures

and algorithms to perform a progressive subsequence matching of

the incoming streams of data. The main goal of our new FSM-

based technique is to add an optimized bottom-up evaluation to

the regular FSM without any unnecessary step. Therefore, BUFF

avoids translating documents and queries to Prüfer sequences, and

employs a more direct evaluation algorithm.

3.1 The Automaton
As the experimental evaluation will show, the BUFF approach

takes advantage of the fact that deeper parts of an XML document

are usually more selective than the upper parts due to the presence

of optional elements. In other words, the selectivity of the docu-

ment leaves is usually higher than the intermediate elements. How-

ever, it is important to notice that by changing the order in which

the document is evaluated, we also need to change the order in

which the query is evaluated. Therefore, instead of evaluating the

query from the query root to the query leaves, we evaluate it from

the query leaves to the query root. As a result, the respective FSM

will be different from the ones used by previous approaches such

as XFilter and YFilter.

The algorithm for building BUFF is similar to that of [9], how-

ever, the queries are inserted in their reverse order. For example,

the query //a/b/c//d is inserted in BUFF as //d//c/b/a. Furthermore,
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Figure 3: An XML document, a set of queries and the re-

spective regular simplified NFA, and reverse NFA employed by

BUFF (states as circles, final states as gray circles, main transi-

tions as arrows).

if the query starts at the root (e.g. /a/b/c) then an additional boolean

constraint is added at the final state of the NFA to check whether

that element is the root or not.

For example, Figure 3b illustrates a set of path queries. Assume

that, for simplicity, all queries consider only ancestor/descendant

axis. The respective simplified NFA for that set of queries is il-

lustrated in Figure 3c and the reverse NFA employed by BUFF is

in Figure 3d. Both state machines have the same number of states,

transitions and final states (note that only the main transitions are il-

lustrated for clarity reasons). The difference between the machines

is that one has the queries represented in a top-down order (i.e.

from the query root to the query leaves) and the other has them in

a bottom-up order (i.e. from the query leaves to the query root).

Note also that while the regular NFA groups the queries according

to their common prefixes, BUFF groups them according to their

common suffixes.

3.2 The Automaton Matching Process
The intuition for the BUFF processing is that a bottom-up eval-

uation of a document should trigger less states than the traditional

top-down approach. For example, considering the input document

from Figure 3a, the top-down NFA (Figure 3c) executes transitions

to states 1, 2 and 3 (after reading elements a, b and c) eleven times

(once for each path -a-b-c) before achieving the final state 4 for

query Q1 (i.e. //a//b//c//d). On the other hand, BUFF executes

transitions to states 1, 2 and 3 only once (when reading the last

path of the document tree, -a-b-c-d), then achieves the final state 4
for the same query. Similar situation happens for query Q2.

Structural Constraints. The algorithm to process the query

matching in BUFF is different than that proposed in [9]. More

specifically, the document is parsed through a SAX parser [31],

which defines events for specific marks in the XML document such

as startElement when an opening tag is read (e.g. <element>) and

endElement when a closing tag is read (e.g. </element>). The

machine keeps a runtime stack RS that stores the current docu-

ment path being processed. In this case, for each opening tag, the

respective element e is pushed to RS. Similarly, for each closing

tag, an element e is popped from RS and is employed to trigger a

Algorithm 2 BUFF processing

Require: D: document, B: BUFF
Ensure: The set of profiles S which are satisfied by D
1: saxParser.parse(D)
2: forward D to the subscriber of each query within S
3: procedure STARTELEMENT . SAX parameters omitted for clarity
4: curList ← B.initialState
5: RS.push(node, curList) . node is the element read

6: procedure ENDELEMENT . SAX parameters omitted for clarity
7: curList ← RS.top().stateList
8: newList ← B.move(node, curList) . BUFF transition
9: RS.pop()

10: RS.top().stateList.add(newList)

11: procedure MOVE(node,stlist) . BUFF machine transitions
12: for all states s ∈ stlist do
13: newState ← B.nextState(node, s)
14: result.add(newState)
15: if newState is final state then S.add(queriesIdentifiers)

16: return result

set of transitions T (all transitions defined by reading that respec-

tive element) within the NFA. The main function of the stack RS is

to store the elements until they can be processed in a post-order (or

bottom-up) manner. The size of the stack is bound by the height of

the document tree. Algorithm 2 illustrates the process.

Note that keeping only the elements within the runtime stack is

not enough. It is also necessary to maintain the transitions that

those elements trigger, so that the machine works properly. With

a top-down evaluation, that is easily done by keeping a list of cur-

rent states, as informed in [25]. At each opening tag, an element is

pushed to the runtime stack and employed to trigger the machine

transitions, then updating both the runtime stack and the list of cur-

rent states. On the other hand, with a bottom-up processing, one

list of current states is not enough because an element triggers the

state machine when its closing tag is read.

BUFF overcomes that problem by keeping one list of states per

element in the runtime stack (each time an element is pushed to the

stack, it is also associated to a list of states that contains only the

NFA initial state). For example, figure 4a illustrates an input doc-

ument and two queries already stored in a BUFF machine. Then,

figures 4b through 4g illustrate different stages of the stack when

the following tags are read: <e8>, </e8>, </d7>, </f10>,

</e9> and </c8>. As the opening tags for elements a1 to d4

are read, each element is pushed to the stack (line 5). The closing

tag </d4> simply pops element d from the stack since no transi-

tion is defined for that element (line 7-9). The same happens when

reading </c3> and </b2>. Then elements b5 to e8 are read and

pushed to the stack. The first element to trigger a BUFF transition

is </e8>, which moves the machine to state 1 (line 8). Then, its

current state list is stored at the top of the stack, i.e. in element d
(line 10). Likewise, </d7> moves the machine to state 2, which

is then sto red at the top of the stack (element c). Note that when

f10 is popped from the stack, element c has its own state list and

element e defines a new one to store the state list defined by ele-

ment f (figure 4f). Finally, as the closing tags for the remaining

elements are processed, the state lists are updated, and the machine

keeps moving until it gets to the final states. When a final state

is reached, the identifiers of the queries defined for that state are

added to the machine results (line-15).

Value Constraints. When the query contains predicates with

value constraints, the respective values are also stored on the BUFF

states. A considerable large number of value predicates can be

added to the NFA state by using an auxiliary structure (e.g. a

Bloom Filter [37]). In this case, the NFA only advances to the next
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Figure 4: Example of BUFF matching: different stages of the

runtime stack.

state when the value constraint is also satisfied. Note that the SAX

parser has a specific procedure (called characters) that deals with

the value of an element. The values of an attribute are accessed

within the startElement function (not shown for clarity reasons).

4. BOUNDINGBASED XML FILTERING

(BOXFILTER)
We proceed with an overview of the core components in the BoX-

Filter approach. Then, we describe our novel indexing scheme that

employs a holistic approach based on the Prüfer sequence repre-

sentation of the profile patterns. Finally, we present the filtering

algorithms for both the streaming and the batch processing mode

that utilize this index. While BoXFilter translates documents and

queries to Prüfer sequences like FiST [20], it is a different approach

because it employs a novel pruning technique based on lower and

upper bound estimates, such that it reduces the query space con-

siderably. As it will be verified in the experimental section, such

pruning provides drastic performance improvements.

4.1 BoXFilter Core Modules
An overview of the main modules and the data flows in the BoX-

Filter is depicted in figure 5. There are two major processes work-

ing asynchronously and in parallel: the profile management and the

matching algorithm.

Profile Management. The first process deals with the profiles

(expressed as XPath queries) and the profile modification requests

that arrive in the Profile Manager module. During the first step of

this process, the incoming profiles are parsed using an XPath parser

and transformed into a Prüfer sequence code using the algorithm

described in section 2. In order to generate small sequences, the

tags in the XPath query are replaced with more compact symbolic

representation (e.g. for example the tag “author” is replaced with

the symbol A, the tag “book” is replaced with the symbol B and so

on). The mapping is then kept in a compact dictionary structure.

The Prüfer encoding of the profile is then inserted in a tree-based

indexing structure called BoXFilter tree (described in section 4.3).

The original profiles expressed in XPath and the destination ad-

dress (where the message has to be forwarded to) are stored in the

routing table. The information in the routing table is used by the

filtering algorithms for verification and routing purposes. The BoX-

Filter tree and the routing table form the core data structures in the

BoXFilter approach.

Figure 5: Matching module components.

Matching Algorithm. The second process handles the actual

document filtering. First, the stream of message documents ar-

rives in the Matching Algorithm module (where the matching pro-

cess is performed). Each incoming document is parsed and trans-

formed into Prüfer sequence encoding in the same way as the pro-

files. Then, the filtering algorithm locates those Prüfer sequence

encoding of profiles that are subsequences of the sequence encod-

ing of the document (i.e. it performs a subsequence matching).

This step is done by traversing the BoXFilter tree. According to

the Theorem 1 in section 2, if a profile encoding is not a subse-

quence of the document encoding, the corresponding XPath query

is not a subtree of the original document tree. Hence, we can fo-

cus only on those profiles returned by the subsequence matching.

Those profiles are called candidate profiles, because even though

the subsequence matching between the document and the profile

encodings is a necessary condition, it is also not sufficient (the sub-

sequence matching does not consider the structural constraints of

the query). Then, the BoXFilter approach verifies the candidate

profiles in order to guarantee that they also satisfy the query struc-

tural constraints. Finally, the documents that matched a profile are

routed to the respective profile’s destination.

4.2 Sequence Envelope
The BoXFilter index tree is based on the concept of a Sequence

Envelope that is introduced next. For simplicity, assume that all se-

quence encodings of profiles have the same length l (the extension

to cover sequences with different lengths is straightforward). Con-

sider a set of k sequences representing Prüfer encoding of profiles,

S1, .., Sk. We propose that this set of sequences can be employed

to derive two new sequences (with length l) called the upper and the

lower bound, or U and L respectively. The L sequence is derived

as follows: for each position i (for all i from 1 to l), the element

in position i is the smallest element on this position for all k se-

quences. Likewise, the U sequence is derived by taking the largest

element for each position. Therefore:

Li = min(S1i, .., Ski)

Ui = max(S1i, .., Ski)

In order to determine which one is the smallest and which one

is the largest element, we use alphabetical order (however, other

orderings may be employed as well). Figure 6 illustrates the struc-

tural constraints of three profiles. The Prüfer sequence encoding for
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Figure 6: Example of query profiles.

each profile is also shown; all sequences have length 11 elements.

The upper and the lower bounds for this set of three sequences are:

L = ABCABABABAB

U = DEDEEEDEDED

Note that L and U form the smallest possible bounding envelope

that encompasses all members of the set of sequences S1, .., Sk.

Figure 7 illustrates a visual interpretation of the bounding enve-

lope for these three profile encodings. The profiles are shown as

sequences in a 2-dimensional space, where one dimension cor-

responds to the discrete set of symbolic values and the other to

all possible positions in a sequence. As a result, ∀i Li ≤
S1i, · · ·Ski ≤ Ui. We use the term sequence envelope for the

combination of L and U , and denote it as SE:

SE ≡ (L, U)

An important property of the sequence envelope structure is that

it can be used as an aggregation of the sustaining set of sequences.

Suppose that we have a Prüfer sequence encoding of a document D
to be matched against the set of profile encodings S1, .., Sk. The

profile encodings can be combined into a single sequence enve-

lope se. Then, the document encoding D can be matched against

se. If there is no subsequence Dj1, Dj2, · · · , Djl of length l in

the document D, such that every element in the subsequence is be-

tween the lower and upper bound on the corresponding position

in the sequence envelope (∀i Li ≤ Dji ≤ Ui), then there is no

subsequence matching between the document and any of the pro-

file encodings S1, .., Sk. We can thus avoid the costly comparison

between the document encoding D and each profile sequence Si.
The above discussion is summarized in the Lemma below (proof is

omitted).

LEMMA 2. If there is no subsequence matching between the

Prüfer sequence of the document D and a sequence envelope SE,

then there is no matching between D and any of the queries whose

sequences are within SE.

Another important property of sequence envelopes is that they

can be nested. This property allows the creation of a hierarchical

index structure over the envelopes, where a parent node in the index

tree has an envelope that contains all the envelopes of its children.

This property emanates from the fact that a single sequence is a

special case of a sequence envelope where both the upper and lower

bounds are identical to the sequence (∀i Li = Si = Ui). Thus a set

of sequence envelopes SE1, .., SEk can be combined into a single

one by finding maximum and minimum values for each position,

from all envelopes, such that:

Li = min(L1i, .., Lki)

Ui = max(U1i, .., Uki)

Figure 7: Sequence envelope.

4.3 BoXFilter Tree
The BoXFilter index organizes efficiently the Prüfer encoding of

the system profiles based on their similarity. We utilize the nesting

property of the sequence envelopes to organize them hierarchically

into a height balanced tree structure, similar to an R-tree [16, 21].

The tree structure splits the value/position space into hierarchically

nested, and possibly overlapping, sequence envelopes.

The nodes in the BoXFilter tree have a variable number of ele-

ments (between some pre-defined minimum and maximum values).

Each leaf node in the BoXFilter tree stores a profile encoded as a

Prüfer sequence as well as a pointer to the routing table where its

original description is stored. Each entry within a non-leaf node

has two fields: a pointer to a child node, and the bounding enve-

lope of all entries within this child node. The proposed structure

is dynamic, which means that insert and delete operations can be

intermixed with search ones.

Tree Search. The matching operation in the BoXFilter tree is

done in way similar to the R-tree family. However, here we are

interested in subsequence matching as opposed to overlapping of

MBR rectangles. The input to the algorithm is a search sequence

R while the output is the set of sequences S1, .., Sk in the leaves

of the BoXFilter tree such that Si is a subsequence of the search

sequence R. The algorithm traverses the index tree from the root

to the leaf nodes. At each step, the algorithm checks the bound-

ing envelopes at the current node: if there is subsequence matching

between a bounding envelope and the search sequence R, the algo-

rithm is executed recursively for its corresponding subtree. Due to

the overlapping sequence envelops, the algorithm may need to visit

more than one subtree under the current node. In the worst case,

the algorithm may have to traverse the whole tree. Nevertheless,

this scenario is quite infrequent. In our experimental evaluations,

the search algorithm was able to eliminate large portions of the

value/position space, resulting in fewer comparisons performed.

Envelope Insertion. Insertions in the BoXFilter tree follow the

R-tree approach. The algorithm examines the bounding envelopes

in the non-leaf nodes, so as to find an envelope that overlaps with

the new sequence. If there are more than one envelopes that overlap

the new sequence, then the algorithm picks the one with smallest

number of children. If there is no such envelope, the algorithm

chooses the one that needs least enlargement to include the new

sequence. After choosing an appropriate envelope, the algorithm is

executed recursively for the corresponding subtree. When the leaf
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Figure 8: Sequence envelope tree.

Table 1: Routing table for sequence envelope tree.

Routing Table

1 /Book/Author[//Author][/Author][//Author][//Author]

2 /Book/Corrector//Chapter/[Author]/[Corrector]//[Chapter]/Author

3 Corrector/Book[//Corrector][/Book]//Corrector[//Corrector]/Corrector

4 Publisher//Publisher/Book[//Publisher/Chapter[//Corrector]/Author]/Book//Corrector

5 Publisher//Book[/Book][//Publisher[/Publisher]//Publisher]/Book

6 Corrector/Corrector[Book//Book/[Book]/Book] [/Corrector]/Corrector//Corrector

7 Distributor//[Distributor]/Distributor/Publisher[//Distributor][//Publisher//Publisher//Publisher]

8 Distributor//[Publisher]/Distributor/Publisher[//Distributor][//Publisher//Publisher//Publisher]

level is reached and there is space available in the current node, the

new element is inserted there.

If the leaf node is full, it splits to accommodate the new enve-

lope. In this case, we adopt the R*-tree approach [21] to determine

the distribution of the sequence envelopes between the nodes which

minimizes the overlapping between the sequence profiles. The in-

tuition behind is that the probability for two sequence envelopes to

satisfy simultaneously the subsequence criteria is proportional to

their overlapping area. The process of splitting nodes is propagated

up to the root of the tree as necessary.

Envelope Deletion. For removing an entry (envelope) from the

BoXFilter tree, the first step is to locate the leaf where it is con-

tained and then delete it. If removing such an entry from the index

causes the leaf to underflow, then the remaining entries are redis-

tributed and the leaf node itself is deleted. Such node elimination

is propagated upward as necessary. An envelope update is simply

treated as a deletion followed by an insertion.

Discussion. There are two important advantages of the BoXFil-

ter tree structure. The first one is its dynamic nature, where insert

and delete operations can be intermixed with search ones. Note

that, this differentiates the BoXFilter from the existing NFA-based

structures, which first go through a phase of construction (inser-

tions) and then become operational (for searches). The second ad-

vantage lies in its scalability. The BoXFilter tree structure can ef-

ficiently handle situations where the available main memory is not

sufficient to accommodate all its entries (in this case, the profile

queries). In such situations, the nodes of the BoXFilter tree can be

paged to secondary storage and loaded upon request.

4.4 Filtering algorithms
Depending on how documents are processed, there are two vari-

ations of the filtering algorithm: (i) sequential, and (ii) batch pro-

cessing. We illustrate the filtering process using an example. As-

sume a pub-sub system which informs its subscribers about newly

published books. There are eight profiles submitted to the system,

as described by the routing table in Table 1. The original XML

tags in the profiles are substituted with symbols using the mapping

shown in Table 2. Then the profiles are transformed into Prüfer se-

quences and are inserted into the BoXFilter tree shown in Figure 8.

For each index node, the figure shows the sequence envelope that

contains all envelopes from its children.

Sequential Processing. In this mode of matching, the incoming

documents are processed sequentially, one after the other. All pro-

files are encoded in Prüfer sequences and organized in a BoXFilter

structure. This matching process is described by Algorithm 3.

The input to the sequential matching algorithm is the root of the

tree and a document. The first step is to replace the original XML

tags and to convert the document into Prüfer sequence encoding

(line 2). Assume that the document processed by the system has

the following Prüfer code:

D = ABCFABABABABF
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Algorithm 3 Document Filtering (sequential mode)

Require: D̄: document, R: BoXFilter tree root, T: routing table
Ensure: The set of profiles S̄ which are satisfied
1: Set S ← ∅; N ← R,
2: D = ConvertToPruferSeq(D̄)
3: while N is not empty do . BoXFilter tree traversal
4: C = N .pop()
5: for each child E of node C do
6: if E is a leaf then

7: if E’s sequence is a substring of D then
8: S.push(E)

9: else
10: if E’s sequence envelope is a substring of D then

11: N .push(E)

12: end for

13: end while

14: while S is not empty do . Verification step
15: S = S.pop()
16: S̄ = T.LookUp(S)
17: if D̄ satisfies S̄ then
18: S̄.push(S̄)

19: end while

After converting the document, the algorithm moves on with a

traversal of the BoXFilter tree by keeping two stacks. The first

stack S keeps pointers to the leaf nodes that contain Prüfer encod-

ing of a profile and is a subsequence of the document encoding D.

The second stack N keeps a list of internal nodes that have a se-

quence envelope that is a subsequence of the document encoding

D. In every iteration an element C is popped from N and its chil-

dren are examined (lines 3-13). If the examined element is a leaf

and the profile sequence in this node is a subsequence of the doc-

ument encoding D, then this element is placed in the stack with

candidate profiles S . If the examined element is an intermediate

node and the sequence envelope for this node is a subsequence of

the document encoding D, then this element is placed in the stack

with subtree roots that need to be further examined N .

After the traversal of the BoXFilter tree, there is a verification

step (lines 14-19) for examining the content of S . For each candi-

date profile, the raw profile data S̄ is loaded from the routing table

(using the function LookUp()) and it is compared with the docu-

ment D̄ in XML format. If the profile satisfies this verification, it

is placed in the result set.

For the example in Figure 8, we start by comparing the tree root

in document D to the query root sequence envelope. Since there

is a match we examine the root’s three children nodes. We have a

subsequence matching only with the first child (node 2) so we ig-

nore the subtrees rooted at the second and the third children nodes.

Then, we examine the children of node 2, which are now leaf nodes.

We do subsequence matching between the document and each of

the strings in these leaf nodes. In this example, there is a match

between the document and leaf number 1.

Table 2: Symbols from mapped XML tags

Symbol XML tag substituted with that symbol

A Author
B Chapter
C Corrector
D Book
E Publisher
F Distributor

Algorithm 4 Document Filtering (batch mode)

Require: R: query BoXFilter root, M: document BoXFilter root, T: routing
table, H document table

Ensure: The set of profiles S̄ which are satisfied
1: Set S ← ∅; N ← (R, M),
2: while N is not empty do . Tree Join step
3: (C1,C2) = N .pop()
4: for each child E1 of node C1 do

5: for each child E2 of node C2 do
6: if both E1 and E2 are leafs then

7: if E1’s sequence is a substring of E2 then
8: S.push(E1,E2)

9: else
10: if E1 is leaf then

11: LSearch(E1,E2,S)

12: else

13: if E2 is leaf then
14: RSearch(E1,E2,S)

15: else
16: if E1’s sequence envelope is a substring of E2 se-

quence envelope then
17: N .push(E1,E2)

18: end for

19: end for

20: end while

21: while S is not empty do . Verification step
22: (S,D) = S.pop()
23: S̄ = T.LookUp(S)
24: S̄ = H.LookUp(D)
25: if D̄ satisfies S̄ then
26: S̄.push(S̄)

27: end while

Batch Processing. A second alternative is to have documents

being processed in batches. In this mode, documents are organized

in a BoXFilter tree in the same way the user profiles are organized.

That is, incoming documents are parsed, the original XML tags are

replaced with symbols, and each document is converted into Prüfer

sequence encoding. The original XML representation of a docu-

ment is stored in a hash table called document table. The document

encodings are inserted in a BoXFilter tree structure referred as the

document tree.

The matching process is performed by joining the BoXFilter tree

containing profile envelopes and the document tree, as illustrated

by Algorithm 4. The join traverses simultaneously both trees in a

top down manner by pairing (at each level) nodes from the doc-

ument tree E2 and the query tree E1, i.e. it checks whether the

sequence envelope of the query node is a substring of the sequence

envelope of the document tree (lines 3-20). This parallel traversing

continues until the leaf level in one of the trees is reached (it is pos-

sible that the document and the query tree have different heights).

After this phase, the join becomes a search operation on the re-

maining subtree using the key in the leaf node, which is performed

by the functions LSearch and RSearch (lines 11 and 14). The joined

pairs of documents and profiles still need to be verified if they actu-

ally match using the raw profile and document data from the routing

table and the document table (lines 21 - 27).

5. EXPERIMENTAL EVALUATION
We have built a simulator of a pub-sub system in order to empir-

ically study the viability of our approaches. We then performed a

series of experiments to assess the behaviors of the new algorithms

BUFF and BoXFilter. Previous work on XML-enabled pub-sub

systems can be broadly categorized into top-down methods (per-

form an in-order evaluation of the document) and bottom-up meth-
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Figure 10: Performance results when varying the number of queries.

Figure 9: Performance results when varying the number of

documents.

ods (perform a post-order evaluation of the document). A tradi-

tional top-down NFA (referred as NFA) is used for representing all

previous top-down FSM-based approaches. As a representative of

the bottom-up approaches we used the proposed BUFF method (as

mentioned earlier, BUFF avoids FiST’s translating of documents

and queries to Prüfer sequences). The main goal of this experimen-

tal section is to show clearly the advantages of our early pruning

methods (BoXFilter and B-BoXFilter) against methods that do not

perform early pruning.

The performance measure is the time (in seconds) from when

a set of documents enters the system, until when these documents

are filtered by the matching process (note that we do not include the

parsing time because that is the same for all approaches). We con-

clude this section by presenting a comparison between the regular

BoXFilter approach, which processes the documents sequentially,

and the batching approach (referred as B-BoXFilter).

5.1 Experimental Setup
We have generated datasets with 1000, 10000 and 100000 small

documents (with up to 8KB). Specifically, we collected 20 different

DTDs with variable structures and used them to generate the input

messages, with the aid of the ToXGene XML document generator

[2]. The queries were then specified for those datasets considering

paths with 3 to 10 elements.

All algorithms were implemented in Java using Sun JDK version

1.4.0. Finally, the experiments were conducted on an Intel Pentium

IV, 2.6GHz machine, with 1GB of memory.

5.2 Experimental Results
The experiments are divided into 3 groups that stress each feature

of the pub-sub systems individually. The first group evaluates the

scalability of the approaches regarding the number of documents

processed. The second group evaluates the scalability regarding the

number of queries processed. Then, the third group evaluates the

ability of the approaches for pruning out the queries, by varying the

selectivity of the group of queries. Each of the experiments eval-

uates the performance of a generic top-down state machine (NFA),

our bottom-up NFA machine (BUFF), and our bound-based ap-

proach (BoXFilter).

Varying the Number of Documents. We first vary the number

of documents processed while keeping the number of queries fixed

to around 10 thousand, and the document selectivity to 50% (i.e.

half of the documents satisfy any of the queries). Also, the number

of queries matched to the documents is around 25% (i.e. around

2500 of those 10 thousand queries have a match with one of the

documents). Figure 9 illustrates the results.

Note that for few documents, the performance of the approaches

is similar. As the number of documents increases, so does the dif-

ference of the methods performances. Specifically, for evaluating

100,000 documents, BUFF is better than NFA by 20%. Nonethe-

less, BoXFilter performance is better than BUFF by a difference of

80%. Such enormous difference is justified by evaluating a rela-

tively small number of queries, compared to the number of docu-

ments. The next group experiments will make that point clear.

Varying the Number of Queries. Now, we vary the number of

queries processed, while keeping the selectivity fixed to 50% (i.e.

half of the documents satisfy any of the queries). Furthermore, for

each set of queries, around 25% have a match with any of the doc-

uments. We also vary the number of documents evaluated. Specif-

ically, Figures 10a to c illustrate the results when evaluating 1000,

10000, and 100000 documents, respectively.

This set of experiments illustrates that the performance of both

NFA and BUFF are linear to the number of documents and queries

evaluated. On the other, BoXFilter has a constant performance for

a relatively small number of queries. Then, its performance starts

to suffer when evaluating 100 thousand queries, even though it is

still much better than the FSM-based approaches.
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Figure 11: Performance results when varying the document se-

lectivity.

Varying the Selectivity. In this set of experiments, we vary the

number of documents that match any of the profile queries. In other

words, we vary the selectivity of the set of queries, such that selec-

tivity 1% means that one percent of the documents satisfy any of

the queries. Furthermore, we keep the number of queries and the

number of documents fixed to 10000. Figure 11 shows the results.

This set of experiments complements the first two groups. Note

that the performance of both NFA and BUFF are linear to the se-

lectivity of the documents. This is justified by the way the state

machines work. Even though the order in which they evaluate the

queries and documents differ, the central process (i.e. state tran-

sitions) is the same. Finally, these results also show that the per-

formance of BoXFilter does not depend on how many documents

have a match.

5.3 Batching BoXFilter
Figures 12 and 13 provide a description of the processing time

spent for the different stages in the BoXFilter (sequential process)

and B-BoXFilter (batch process) query processing algorithms, re-

spectively. The prevailing cost in the algorithms (around 65%) is

the cost of the document processing, i.e., the encoding using Prüfer

sequences. This cost (expressed as a percentage) is similar for both

the BoXFilter and the B-BoXFilter and it is based on a fixed algo-

rithm (i.e. we cannot optimize it further).

The second major share is the time needed for verifying the re-

sults generated by the Prüfer subsequence matching process. Like

the cost for document processing, the verification cost is also un-

avoidable. However, unlike the cost of document encoding, the

verification process is not a function of the input size. Rather, it

depends more on the query selectivity and the similarity between

the documents and profiles sequence encodings. Nevertheless, the

query selectivity is given by the application and is thus out of our

control.

Next, the cost for query processing (i.e., the encoding of pro-

files to Prüfer sequences) is similar for both the BoXFilter and B-

BoXFilter since (like the document encoding) is based on a fixed

algorithm. Similarly, both approaches have the same query tree

creation cost (which is actually very small, around 1%). As a re-

sult, the only cost that can be further optimized is the Matching

(query/document) cost.

Note that in the matching phase, the B-BoXFilter has an extra

step - to create the document envelope tree. For small batches

of documents, this document tree construction time is minimal

(around 1%) of the total time. However, with the increase of the

Figure 12: Time spent for the different stages in the BoXFilter.

Figure 13: Time spent for the different stages in the B-

BoXFilter.

batch size, this cost increases as well and thus the performance of

the algorithm is affected. On the other hand, the matching time

in the B-BoXFilter is smaller than the matching time in the BoX-

Filter because the documents have been already clustered accord-

ing to their similarity in the document tree. During the join phase

which finds the matches between the document envelope tree and

the query envelope tree, only nodes from these trees that contain

similar subsequences are paired. Since the documents are clus-

tered, we can traverse the query tree with an envelope of documents

(instead of a single document) and hence the B-BoXFilter reduces

the cost for document/query matching. As a result, the B-BoxFilter

is advantageous when the time spent for the extra step (the docu-

ment envelope-tree creation) is less than the benefit in the matching

time. We thus expect the B-BoxFilter method to provide improve-

ment for relatively small batches of documents (when compared to

the number of queries).

Figure 14 shows a comparison between the BoXFilter and the

B-BoXFilter for different number of queries and for fixed number

of documents (1000 documents). The selectivity of the queries is

set to 25%. The figure confirms the performance benefit of the

B-BoxFilter: (while the document batch size remains the same

and relatively small) as the query size increases, B-BoxFilter pro-

vides better overall performance because of the improvement in the

matching phase due to the document clustering.
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Figure 14: BoXFilter vs. B-BoXFilter.

6. RELATED WORK
A considerable number of proposals for designing pub-sub sys-

tems have already appeared. Early systems were topic-based,

where the topic of the message would define its destination [24,

35]. Then, the messages evolved to conjunctions of {attribute,

value} pairs and the profiles to predicates over those pairs [5, 10,

11]. Comparing to the focus of our work (XML-aware pub-sub

systems) those systems are much simpler and limited, since XML

allows more expressive messages and profiles.

Among the earlier work on XML filtering, XFilter is probably

the most relevant [1]. It defines a finite state machine for each

query, then it proposes an index over those machines. The ma-

chines are then executed concurrently for each document. When an

accepted state is reached, the document is reported as a match to

the corresponding profile. Later on, YFilter improved the match-

ing performance by proposing one unique FSM for all profiles,

which allowed common query paths to be processed only once [9].

Finally, other FSM-based approaches use different techniques for

building the machine as well as different types of machines. For

example, [15] lazily builds single deterministic pushdown automa-

ton, [13] employs a lazily built Deterministic Finite Automaton

(DFA), [22] builds a transducer (which employs a DFA with a set of

buffers), and [28] employs a hierarchical organization of pushdown

transducers with buffers.

Note that neither XFilter nor YFilter employs any holistic infor-

mation during the matching process. To overcome this problem,

FiST employs a different, bottom-up approach based on sequenc-

ing the twig patterns using Prüfer sequences [20]. Our approaches

differ in two aspects. First, BUFF employs a FSM to perform the

matching. It still is bottom-up, but it avoids translating documents

and queries to Prüfer sequences. Second, BoXFilter does translate

documents and queries to Prüfer sequences but it employs a novel

pruning technique based on lower and upper bound estimates, such

that it reduces the query space considerably.

Even though those methods differ from each other in the type of

FSM employed and the query semantics they support, all of them

suffer from a common weakness. In order to determine if a doc-

ument satisfies a profile, they try to match the document with all

profiles, which can be inefficient considering the high number of

profiles in a typical pub-sub system.

A different approach utilizes the standard relational model to

implement the matching process of pub-sub systems. For exam-

ple, the work in [34] translates the profiles and the messages to

the Relational model. The matching then can be expressed as a

join operation between the sets of messages and profiles. The main

problem with this method is that the number of joins necessary is

proportional to the size of the query, then hampering the matching

performance for long queries.

Yet another methodology is to aggregate the profiles using some

indexing technique [6]. The matching process then reads the input

message and traverses the index in order to select the queries sat-

isfied. Moreover, the index takes advantage only of common par-

ent/child relationships. Nonetheless, our pruning approach is able

to identify earlier on the profiles that will not provide any matches,

then incurring less index probes.

Additionally, pub-sub applications provide other challenges be-

sides efficient matching process (which is the focus of our work).

Recently, [36, 37] proposed RoXSum, a data structure that is able

to optimize not only the matching process, but also the routing

of XML documents within pub-sub systems. RoXSum aggregates

the incoming documents and processes all profiles in the aggre-

gated structure (i.e. the profile matching uses batching processing).

Moreover, it routes the documents using the aggregated content as

well. In this paper, we propose an extension of the BoXFilter that

processes many documents at once. However, the difference is that

the routing is performed for each document individually, rather than

the aggregated content. The integration of the batched-matching

process with batched-routing is left as future work.

Other challenges of pub-sub systems design include the con-

struction of the overlay network structure [12, 26, 33], the distri-

bution of the profiles [8], and message routing policies [27, 32].

However, the matching process is complementary to those issues.

For example, we can consider that the network is built using an ap-

proach similar to [12] and that the profiles are distributed according

to [8].

Finally, the notion of sequence envelopes is reminiscent of the

atomic wedgies presented in [38]. However, wedgies are used

for bounding time series for the purpose of finding similar se-

ries. While in this work, envelopes are used for representing XML

queries and finding exact matches.

7. CONCLUSION
In this paper we considered the problem of XML filtering for

publish-subscribe systems. We first proposed a FSM-based ap-

proach (BUFF) that evaluates the documents in a bottom-up or-

der. We then introduced the idea of early profile pruning and pro-

posed a sequence-based index (BoXFilter) which allows to prune

out queries very efficiently. First, documents and queries are trans-

formed into sequences and grouped into envelopes. Then, the

queries can be pruned out by evaluating the lower and upper bounds

of their envelopes. This is the first time that a concept of envelopes

in employed for XML query processing. Finally, our experimen-

tal evaluation shows that, even though BUFF offers performance

advantages over the traditional FSM-based approach, the pruning

offered by BoXFilter provides drastic performance improvement.
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