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ABSTRACT
The modeling of high level semantic events from low level sen-
sor signals is important in order to understand distributed phenom-
ena. For such content-modeling purposes, transformation of nu-
meric data into symbols and the modeling of resulting symbolic se-
quences can be achieved using statistical models—Markov Chains
(MCs) and Hidden Markov Models (HMMs). We consider the
problem of distributed indexing and semantic querying over such
sensor models. Specifically, we are interested in efficiently answer-
ing (i) range queries: return all sensors that have observed an un-
usual sequence of symbols with a high likelihood, (ii) top-1 queries:
return the sensor that has the maximum probability of observing a
given sequence, and (iii) 1-NN queries: return the sensor (model)
which is most similar to a query model. All the above queries can
be answered at the centralized base station, if each sensor trans-
mits its model to the base station. However, this is communication-
intensive. We present a much more efficient alternative—a dis-
tributed index structure, MIST (Model-based Index STructure), and
accompanying algorithms for answering the above queries. MIST
aggregates two or more constituent models into a single composite
model, and constructs an in-network hierarchy over such composite
models. We develop two kinds of composite models: the first kind
captures the average behavior of the underlying models and the
second kind captures the extreme behaviors of the underlying mod-
els. Using the index parameters maintained at the root of a subtree,
we bound the probability of observation of a query sequence from a
sensor in the subtree. We also bound the distance of a query model
to a sensor model using these parameters. Extensive experimen-
tal evaluation on both real-world and synthetic data sets show that
the MIST schemes scale well in terms of network size and number
of model states. We also show its superior performance over the
centralized schemes in terms of update, query, and total communi-
cation costs.

1. INTRODUCTION
Large scale sensor networks are being deployed for applications

such as habitat monitoring [20], seismic monitoring [2], and loca-
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Figure 1: Distributed indexing and querying of sensor models.

tion tracking systems [18]. As sensors become more inexpensive
and more easily deployable, individual measurements will pave the
way to high level semantically rich events, directly mined from the
raw and noisy sensor data. Given the potentially huge amount of
data streamed by sensors, algorithms to extract and interpret the se-
mantics will become an integral part of content-summarization in
networked sensor applications. For example, the sound, humidity
and light sensors on a MICA mote [1] can sense whether a room
is empty or occupied; similarly, a temperature and chemical sensor
can sense the presence of fire. In the Zebranet project [17], scien-
tists tied acceleration sensors to zebras’ collars in order to observe
their movements. This enabled the scientists to characterize a ze-
bra’s movement in terms of the three main states: grazing, walking
and fast moving.

The transformation from sensor readings to symbolic states can
be achieved at a central node that collects readings from the entire
network [17]. This paper explores a much more efficient alterna-
tive: first transforming the readings into symbolic models locally at
the sensors through semantic interpretation, and then performing an
in-network indexing and aggregation of semantic models to capture
the global patterns. This Model-based Index STructure (MIST) can
then answer semantic queries. The setup is shown schematically in
Figure 1.

Of the several semantic models relevant in a sensor network con-
text [7, 9, 11], Markov Chains [4] and Hidden Markov Models [24]
are the most useful. A Markov Chain (MC) captures the underly-
ing dynamics of the physical phenomena or entity by a generative
model that emits a sequence of symbols. Figure 2 shows a typical
example of an MC. In this example, the speed observed by the sen-
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Figure 2: Markov Chain (MC) for mobility model of Zebranet.
The states are G (grazing), W (walking) and F (fast moving).

sor on a zebra has been quantized into three symbols G (grazing),
W (walking) and F (fast moving). In previous work, MCs were
employed by Elnahraway et al. [11] to capture spatial correlations,
and by Deshpande et al. [9] to capture temporal correlations.

A Hidden Markov Model (HMM), akin to an MC, is a genera-
tive model for a sequence of symbols. However, in an HMM, there
exists a set of underlying system states that are not directly observ-
able, but can be inferred from the observation symbols. Figure 3
illustrates an HMM for the Zebranet project. It consists of two hid-
den states, Predator Present and Predator Absent which emit the
observation symbols G, W and F . Takasu et al. [29] employed
HMMs to distinguish the different states of a toy-satellite using
sensor data streams. Biologists at UCLA [30] trained an HMM
on each acorn woodpecker’s vocal signals (measured by acoustic
sensor arrays) to recognize the identity of the individual.

Given such semantic models, either MCs or HMMs, built on the
observation sequences at each sensor node, users may be interested
in sensors exhibiting a particular behavior. For example, in the Ze-
branet project, scientists might be interested in identifying all nodes
which have observed the FFFFFF sequence (denoting a possi-
ble predator attack) with a likelihood of at least 0.8. These nodes
can be discovered by asking range queries on the sensor network.
In addition to the range queries, we also propose top-1 and 1-NN
queries:

1. Range query: Return the sensors that exhibit a particular be-
havior with a likelihood greater than a certain threshold?

2. Top-1 query: Which sensor is most likely to exhibit a given
behavior?

3. 1-NN query: Which sensor model is the most similar to a
given pattern (model)?

There can be different ways of answering these queries. The first
scheme is a centralized scheme, where models are built locally at
each node, and then transmitted to the base station (BS). Any query
is answered on the models at the BS. To keep the local models
and their copy at the BS synchronized, every update to a model’s
parameters is sent to BS. This is update-intensive. In the second
technique, centralized scheme with slack, a slack is introduced in
updating each parameter. If the query cannot be answered using the
cached-models at BS, then it is sent to the models in the network.

We propose a novel distributed indexing-based scheme to answer
the above queries. In MIST, along with a slack, we construct an in-
network hierarchical index structure to answer queries efficiently.
MIST exploits the high degree of spatial correlations [10, 16] in en-
vironmental sensor networks, by performing a spatial aggregation
of such correlated symbolic data models into a single index model.
The index model is built only on the component model parameters
and not on the underlying sequences. MIST prunes updates much
better than the centralized scheme with slack, as slack is not only
maintained at individual nodes but also at every level of the index
structure. Queries are first sent to the MIST’s hierarchical index. If
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Figure 3: Hidden Markov Model (HMM) for the Zebranet.

they are not pruned, they are sent to the local models.
To answer the queries mentioned above, MIST builds two differ-

ent types of index models, average models and min-max models.
These two models differ in the parameters which are retained and
the manner in which the queries are handled. The min-max mod-
els have more parameters, hence higher update costs, but prune the
query better leading to lower query communication costs.

This paper makes the following contributions:

• We develop a distributed and hierarchical index structure for
sensor networks based on statistical models.

• We design two novel methods of aggregating the statistical
models into a distributed index structure of models. The first
method produces a valid model, the average model, that cap-
tures the average behavior of the constituent models. Spatial
correlation parameters are maintained along with the average
models. The second method produces pseudo-models in the
form of min and max models which are used to capture the
extreme behaviors of the constituent models.

• We capture the dynamic behavior of the model parameters by
introducing a slack at each level of the index hierarchy. We
design algorithms to aggregate the index models using both
spatial and temporal correlations in a distributed setting.

• We propose two probabilistic sequence-based queries, range
and top-1 queries, and one model-based semantic query, 1-
NN query, that are of interest in a distributed sensor network
setting. We design algorithms to answer them efficiently. We
use the index parameters maintained at the root of a subtree
to bound the probability of observation of a query sequence
from a sensor in the subtree. The distance of a query model
to a sensor model is similarly bounded.

• We perform experiments on real and synthetic data sets, us-
ing both MCs and HMMs, and show that MIST schemes not
only scale well with network size and number of model states
but also outperform the competing centralized schemes in
terms of update, query and total communication costs.

2. MARKOV CHAINS AND
HIDDEN MARKOV MODELS

A first-order Markov Chain (MC) [4] is a discrete time stochas-
tic process with a finite number of states in which the probability
of occurrence of a future state depends only on the current state;
past states are inconsequential. This property is called the Markov
property. An MC is defined as:

MC = {n, π, τ}

where n is the number of states, π is the start state probability
vector of length n, and τ is the n × n transition matrix. π(u)

855



denotes the probability of starting from state u in the first step;
τ (u, v) denotes the probability of reaching state v from state u in a
single step.

In an MC, each observation symbol is modeled as a state. A
Hidden Markov Model (HMM) [24], on the other hand, models
the stochastic process assuming that the internal states cannot be
observed directly. Only the observations from these states can be
measured. Thus, there is an observation probability vector of the
symbols for each state of the HMM, in addition to the transition
matrix between the states and the start state probability vector. An
HMM is defined as:

HMM = {n, m, π, τ, ξ}

where n, π and τ are defined as in an MC, m is the number of ob-
servation symbols, and ξ is the n × m observation matrix. ξ(u, x)
denotes the probability of observation of symbol x in state u.

Assume an observation sequence o = o1o2 . . . ok of length k
where each oi is an observation symbol. For an MC to generate
this sequence, it must first start from the state o1, then transit to
state o2 and so on. Hence, the probability of observation of the
sequence o from the MC is:

p(o1o2 . . . ok) = π(o1)τ (o1, o2) . . . τ (ok−1, ok). (1)

The state path that the sequence follows is the same as the sequence
itself. However, in an HMM, the sequence of symbols does not
correspond to a particular state path. All state paths of length k can
possibly generate the sequence. The probability of observation of
sequence o from one such state path s1s2 . . . sk can be calculated.
Adding the probabilities along all the possible paths gives the total
probability of observation of o from the HMM:

p(o1o2 . . . ok) =
X

all paths s1s2...sk

π(s1)ξ(s1, o1)τ (s1, s2) . . . ξ(sk, ok). (2)

The Viterbi algorithm [24] uses dynamic programming to compute
the above probability in O(n2k) time.

3. RELATED WORK
The general problem of content modeling and semantic query-

ing has received considerable interest in the data mining commu-
nity. Automated discovery of non-trivial, useful and previously un-
known content (or knowledge) from raw data has been based on a
few well-established techniques for data analysis such as decision
trees [25], linear regression [23] and HMMs [24].

Linear regression models, e.g., ARIMA [23], fit a model to raw
data values either to observe the underlying trends or to predict fu-
ture data values. Lazardis et al. [19] proposed an online algorithm
to construct a piecewise constant approximation of a time-series
which guarantees that the compressed representation satisfies an
error bound on the L∞ distance. Since sensors do not exhaus-
tively represent data, BBQ [9] proposed to complement raw data
readings with a statistical model. BBQ answers queries by return-
ing approximate values with a probabilistic confidence. Deshpande
et al. [10] modeled conditional probability distributions of various
sensor attributes and introduced the notion of conditional plans for
query optimization with correlated attributes. Temporal correla-
tions are captured by a Markov model in BBQ, and by a Kalman
filter in Jain et al. [15]. Chu et al. [7] capture spatial correlations
using joint probability distributions. Elnahraway et al. [11] also
employed Markov models to estimate the current data values at a
node based on the last observation at the node and those at its im-
mediate neighbors.

Chu et al. [7], Silberstein et al. [27] and Olston et al. [22] main-
tain bounded approximations on actual values. Composition of
MCs and HMMs has been studied by Minnen et al. [21] in order
to cluster sequences. Even though the composite model’s recogni-
tion performance is good, its poor scalability with the number of
constituent models makes it infeasible for large-scale sensor net-
works. Smyth [28] used an expectation-maximization (EM) algo-
rithm to build such composite models. Zeng et al. [31] proposed a
novel fused-HMM model to integrate HMM models from the two
different domains of audio and video. Brand [5] and Saul et al. [26]
have developed tightly-coupled HMM models by introducing state
dependencies between hidden states of the constituent HMMs, but
their models do not scale with the number of constituent HMMs.

4. DISTRIBUTED INDEX STRUCTURE
This section describes the construction of MIST, a distributed and

hierarchical index structure on statistical models. We assume that
every sensor trains an MC or an HMM on its observations. We first
capture the notion of spatial correlation in two neighboring MCs.

DEFINITION 1. ((1 − ε)-correlation) Models λ1 and λ2 are
(1 − ε)-correlated if for all corresponding parameters σ1 of λ1

and σ2 of λ2, the following relationship holds

(1 − ε) ≤
min{σ1, σ2}

max{σ1, σ2}
(3)

For m models having the corresponding ith parameters as σi
1, σi

2,
. . . , σi

m, the correlation among them can be similarly defined. In
this case, the correlation is given by

(1 − ε) = min
∀i

»

min{σi
1, σ

i
2, . . . , σ

i
m}

max{σi
1, σ

i
2, . . . , σ

i
m}

–

(4)

Example: Consider the following pair of two-state MCs:

π1 =
ˆ

0.5 0.5
˜

π2 =
ˆ

0.6 0.4
˜

τ1 =

»

0.3 0.7
0.6 0.4

–

τ2 =

»

0.4 0.6
0.7 0.3

–

The correlation (1 − ε) between them is the minimum of the fol-
lowing set: { 0.5

0.6
, 0.4

0.5
, 0.3

0.4
, 0.6

0.7
}, i.e., ε = 0.25.

The correlation signifies how similar the two models are. When
ε → 0, the two models are highly correlated and are very similar to
each other. On the other hand, when ε → 1, the models are quite
dissimilar. We next define two types of index models.

4.1 Average Model

DEFINITION 2. (Average Model) Given m MCs λ1, λ2, . . . ,
λm, the average MC λavg can be defined as:

∀u, πavg(u) =
π1(u) + π2(u) + · · · + πm(u)

m

∀u, v, τavg(u, v) =
τ1(u, v) + τ2(u, v) + · · · + τm(u, v)

m

In addition to these parameters, λavg also maintains 3 additional
parameters: an ε′ parameter, from which its correlation to the indi-
vidual models can be computed, and βmax and βmin , the maximum
and minimum among all the parameters of the constituent models.

The next theorem captures the correlation between the average
model and any of the constituent models.
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THEOREM 1. Given m models λ1, λ2, . . . , λm that are (1−ε)-
correlated, the correlation between λavg , the average model built
from them, and any of the m models is at least (1 − ε′) where

ε′ =
(1− 1

m
)ε

(1− 1

m
ε)

.

PROOF. See [3].

For two models, the correlation parameter ε′ evaluates to ε/(2−
ε), which is roughly half the correlation parameter ε between the
constituent models, for low values of ε.

4.2 Min-Max Model
The min-max model consists of two separate models: the min-

model, denoted by λmin, and the max-model, denoted by λmax.

DEFINITION 3. (Min-Max Model) Given m MCs λ1, λ2, . . . ,
λm, the min MC and the max MC are defined using the following
parameters:

∀u, πmin(u) = min{π1(u), π2(u), . . . , πm(u)}

∀u, v, τmin(u, v) = min{τ1(u, v), τ2(u, v), . . . , τm(u, v)}

∀u, πmax(u) = max{π1(u), π2(u), . . . , πm(u)}

∀u, v, τmax(u, v) = max{τ1(u, v), τ2(u, v), . . . , τm(u, v)}

Note that the min and max models are pseudo-models, since the
start state probabilities of all the states and the transition probabili-
ties for each state do not necessarily add up to 1. As these models
maintain an upper and lower bound on each parameter, they are
employed to provide an upper and lower bound on the probability
of observation of a query sequence from the underlying models.

4.3 Hidden Markov Model (HMM)
We assume that the number of states in the constituent HMMs

are the same and that there is a one-to-one correspondence between
the states of the constituent models. The parameters of a state in the
composite HMM will then have a one-to-one correspondence with
the parameters of the corresponding states of the constituent mod-
els. With this requirement, correlation can be defined by Eq. (4).
The average model and the min-max models analogously adopt
Definitions 2 and 3. When a priori knowledge of hidden states
is not available, a state correspondence can be established by con-
sidering all possible state mappings [3].

4.4 Hierarchical Index Construction
In this section, we describe how a distributed and hierarchical in-

dex structure is built over the entire sensor network. We overlay a
tree topology on the network and perform a bottom-up aggregation
of the index models. The leaf-level models are the actual mod-
els built by the individual sensors, while the internal index nodes
(models) summarize the statistical behavior of the models under-
neath.

We first explain how average models are indexed. Figure 4 shows
an example of a tree topology with 2 levels of index nodes. Model
R is the average model of its children S1 through Sc. Model S1 is
the average model built from the leaf models L1,. . . ,Lk. Suppose
that the correlation between R and its children S1,. . . ,Sc models is
at least (1− ε′2), and the correlation between any average model Si

and the leaf models under it is at least (1 − ε′1). Theorem 2 shows
how to calculate the correlation parameter ε′ from the model R to
any of the leaf models.

THEOREM 2. Consider an average model R. If the correlation
between R and its children S1,. . . ,Sc models is at least (1 − ε′2),

R

S 1

L 1 L k

S c

’2ε1−

’1ε1−

’ε1−

Figure 4: Correlation of the average model R with any leaf
model Li in its subtree: (1− ε′) = (1− ε′2)(1− ε′1) where ε′1, ε

′

2

are the correlation parameters between the average models and
their children at levels 1 and 2 respectively.

and the correlation between any average model Si and the leaf
models under it is at least (1 − ε′1), then the correlation between
the average model R and any of the leaf models is at least (1−ε′) =
(1 − ε′2)(1 − ε′1).

PROOF. See [3].

The other index parameters are calculated in the following way.
The maximum of the βmax’s of the children gives the βmax for this
node and the minimum of the βmin’s is the new βmin. Employing
these parameters, the average model can estimate the minimum and
the maximum probabilities of observation of a sequence for the set
of nodes in its subtree.

The min-max models are also aggregated in a hierarchical man-
ner. Each parameter of the min-model is the minimum of all cor-
responding parameters from the min-models and each parameter
of the max-model is the maximum of all such parameters of the
max-models.

4.5 Dynamic Maintenance of Models
Once an aggregation of distributed data sources has been carried

out, the underlying data distribution may change. This may lead to
violations of the existing parameters at the higher levels of the tree,
necessitating an expensive re-building of composite models. In this
section, we discuss how to avoid such expensive update costs by
introducing a small slack locally at each node, and at every index
node in the tree. Although this may lead to a degradation in query
pruning capabilities, and hence higher query communication costs,
the amortized benefits in communication are large.

We consider the parameters of each model to be a function of
time, and denote the model at time t by λ(t). As the data distri-
bution changes, the underlying model parameters are recomputed
after every small duration d. Assume that the model transmitted by
a node to its parent at the last update time t = u is λ(u). The child
node does not update its parent at time t + d, as long as λ(t+d) is
(1 − δ)-correlated with λ(u). The idea of the slack parameter δ is
analogous to the correlation parameter ε (Definition 1).

We now explain how the slack parameter δ is incorporated in
maintaining the correlation parameters at every level of the index
structure. Consider an average model. It maintains an ε which
allows it to bound its correlation with any model in its subtree.
However, this ε has been calculated by observing the correlation
of the cached copy of its child models. With time, the child models
may be updated. Consider a single parameter σavg of the aver-
age model and the corresponding parameter σ(u) from the child’s
cached model. The correlation parameter ε guarantees that σ(u) ≥
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(1 − ε)σavg and the slack parameter δ guarantees that at any other
time-point t + d, σ(t+d) ≥ (1 − δ)σ(u). Together, they guar-
antee that σ(t+d) ≥ (1 − δ)(1 − ε)σavg. Similarly, σ(t+d) ≤
σavg/((1 − δ)(1 − ε)). This relationship is true at any level of the
index tree. Using Definition 1, the relationship of the correlation
parameters with and without slack can be expressed by

εslack = 1 − (1 − δ)(1 − εnoslack)

Therefore, aggregating the slack parameters in a bottom-up fash-
ion, as mentioned above, preserves the correctness of the correla-
tion parameter maintained by the index structure. We will see in the
next section how the spatial and temporal correlation parameters, ε
and δ, are employed during query pruning.

5. QUERY ALGORITHMS
This section describes the processing of range, top-1 and 1-NN

queries using MIST’s average and min-max models.

5.1 Range Query
Users may be interested in sensors exhibiting an abnormal be-

havior. These nodes can be discovered by asking range queries of
the form: Return all nodes in the network that have observed a
particular sequence of symbols q with a probability greater than a
certain threshold χ. These queries are like select queries since they
select the set of sensors that satisfy the threshold.

First, we explain how these queries are handled by MIST’s av-
erage models. Along with the average model, every node in the
tree maintains the parameters, βmax, βmin, and the aggregate ε, as
mentioned in Section 4. As the index model maintained at a node is
(1 − ε)-correlated with respect to any constituent model in its sub-
tree, the aggregate model can be used to provide lower and upper
bounds on the probability of observation of a sequence from any
constituent model. The next theorem states the bounds for an MC.

THEOREM 3. Consider an average model λavg . Assume that
the correlation parameter maintained at λavg is ε and the slack
parameter maintained is δ. If q is a sequence of length k, the proba-
bility of observation of q from λavg can be expressed as

Qk

i=1 σi
avg.

The probabilities of observation of q from any model λj in its sub-
tree are then bounded by pl and pr:

pl ≤ pj ≤ pr (5)

where

pl =
k

Y

i=1

h

max
n

σi
avg((1 − ε)(1 − δ)), βmin(1 − δ)

oi

(6)

pr =

k
Y

i=1

h

min
n

σi
avg/((1 − ε)(1 − δ)), βmax/(1 − δ)

oi

(7)

PROOF. See [3].

If the threshold for the range query χ < pl, all sensors in the
subtree are guaranteed to satisfy the query. Similarly, if χ > pr,
no sensor in the subtree can satisfy the query. In these two cases,
the entire subtree below the node where λavg is maintained can be
pruned. If neither of the pruning conditions is satisfied, the query
is percolated down, and this pruning is recursively carried down,
if necessary, till the leaf level models. All the results (nodes that
satisfy the query) are aggregated in a bottom-up fashion at the base
station.

Next, we explain how the base station employs its min-max mod-
els to prune the query. Similar to the average models, min-max

models compute the bounds on the probability of observation of
the query, and use the bounds to prune subtrees. The following
theorem states the bounds for MCs.

THEOREM 4. The probability of observing a sequence q from
any of the child models of an index node is bounded by pl and pr:

pl = p(q|λmin)(1 − δ)k (8)

pr = p(q|λmax)/(1 − δ)k (9)

where λmin and λmax are the min and the max models maintained
by the index node.

PROOF. See [3].

For the case of HMMs, Theorems 3 and 4 can be used to bound
the probabilities of observation of a given query sequence along a
single state path. Since the probability of observation of a sequence
from an HMM is the sum of such probabilities along all possible
paths, the total probability is bounded as well.

5.2 Top-1 Query
Range queries may return all or none of the sensors as the answer

set. In order to avoid the difficulties of finding the right threshold,
users may be interested in the sensor which best describes a par-
ticular behavior. Then, top-1 queries of the following form may be
posed on the sensor network: Given a sequence of symbols q, return
the sensor that has the highest probability of observing it. Using
the answer of such a query, a threshold can be chosen to retrieve
the other sensors via range querying.

MIST answers the top-1 query in the following way. At every
level, the parent node calculates the bounds of observation of the
sequence q from each of its child models in the same way as de-
scribed in Section 5.1. This may be done by employing the average
model and the index parameters or the min and the max models.
Then, it checks whether the maximum value for observation of q
from any child is less than the minimum value of observation of q
from any other child. If so, the former child model and the subtree
below it are pruned. The query is recursively sent to each of the
remaining child nodes.

In general, top-1 queries are more communication intensive than
range queries. This is because, for range queries, at any level of the
index, there is a chance that all children of a particular node may be
pruned as none of them satisfy the threshold. However, for top-1
queries, the bounds of the children are compared against each other.
Therefore, the query will be sent to at least one child. Further, as
the similarities among the children increase, their bounds become
identical making the pruning for top-1 queries less likely.

5.3 1-NN or Model Query
Both range and top-1 queries were sequence-based queries. In

this section, we will consider a higher level semantic query, the
1-NN query. Instead of providing a single observation sequence
as a query, users may provide a model (or a set of observation se-
quences from which a model can be built) and ask the following
model query: Return the sensor model that is most similar to the
given query model Q.

To answer the model query, we first define the notion of distance
between two Markov Chains. The distance between two MCs λ1

and λ2 is defined as

d(λ1, λ2) =

s

X

∀u

`

π1(u) − π2(u)
´2

+
X

∀u,v

`

τ1(u, v) − τ2(u, v)
´2

This distance is a metric distance. This definition can be extended
to HMMs.
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We will first explain how 1-NN queries are handled for average
models. To find the model nearest to the query model, we employ
an M-tree like mechanism [8]. An M-tree is built on the model
parameter space but is physically embedded in the communication
graph. Average models at each node maintain a radius which is the
largest distance from the average model to any of its child models.
Between a parameter σavg of the average model and a correspond-
ing parameter σ of any model in its subtree, the distance can be
calculated as follows:

max



min{σavg/(1 − ε), βmax} − σavg,
σavg − max{σavg(1 − ε), βmin}

The upper bound of σ is given by min{σavg/(1 − ε), βmax} and
hence its distance to σavg can be calculated as shown above. Simi-
larly, the distance of the lower bound of σ to σavg can be calculated,
and consequently the maximum distance can be computed.

Then, radius is calculated as the square root of the sum of squares
of all the distances defined on each parameter σ. The details of how
this radius is used to prune subtrees are in [3, 8].

Min-max models answer the model query by utilizing a princi-
ple similar to the R-tree [14]. For each parameter of the constituent
models, the corresponding parameters in the min-model and the
max-model act as the bounds. In the vector space of model param-
eters, the min and the max parameters form a minimum bounding
rectangle (MBR). The query model is a point in this space. Stan-
dard R-tree pruning techniques are employed [3, 14].

5.4 Effect of Dimensionality
The effect of dimensionality (number of model parameters) on

MIST is observed only for the model queries and not for the se-
quence (range or top-1) queries. Even though MIST maintains min
and max parameters analogous to the R-tree, there is a significant
difference in how these bounds are utilized to prune the sequence
queries. In an R-tree, each index is an MBR, and the query is a
hyper-rectangle (or a point) in the multi-dimensional space. Query
pruning depends on the intersection (or containment) in this high-
dimensional space resulting in the curse of dimensionality. How-
ever, in the case of MIST, given a sequence query of length k, we
compute two values—a lower bound and an upper bound—on the
value of the query observation probability. In the case of MCs,
the lower bound is obtained as the product of k individual min-
model parameters (the corresponding start state and the k − 1 tran-
sition probability parameters). Similarly, the upper bound is ob-
tained from the max-model parameters. For the case of HMMs, the
upper and lower bounds can computed as discussed in Section 5.1.
Pruning depends on whether the query threshold χ lies within these
lower and upper bounds. In other words, pruning takes place in the
single-dimension of probability space—i.e., on the (0, 1) real num-
ber line. Thus, irrespective of the number of dimensions of the
underlying models, the upper and lower bounds on query probabil-
ity depend only on the product of k min-max model parameters.
Similarly, the bounds for the average models are also computed on
the single-dimensional probability line and therefore, there is no
curse of dimensionality.

On the other hand, for model queries, the search is carried over
the m-dimensional space of model parameters. Each sensor model
becomes a point in the multi-dimensional space and the one nearest
to the query model is retrieved. MIST’s min-max models employ
a straightforward R-tree based 1-NN search and its average mod-
els employ M-tree based 1-NN search. As the dimensionality in-
creases, the probability of intersection of the query with the index
nodes increases, and thus, the pruning power of MIST decreases.
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Figure 5: Topology of the laboratory sensor network. There
are 4 rooms and 4 sensors in each room. BS denotes the base
station.

6. SLACK ANALYSIS
A large value of slack minimizes updates, but considerably de-

creases MIST’s query pruning capabilities because of the wider
query probability bounds. On the other hand, a small slack will
have efficient query pruning due to tight bounds, but will lead to
increased update costs. In this section, we characterize the opti-
mal choice of δ to achieve the minimum total communication cost,
comprising both the update and query costs.

We denote the probability that the query will be sent down from
an aggregate model to its children by Pq , and the probability that
an update (for a parameter) will be sent up from the children to its
aggregate by Pu. A detailed analysis [3] based on the random-walk
deviation of a parameter shows that

Pu = 16/ [1/(1 − δ) − (1 − δ)]2 .

Similarly, the analysis [3] of Pq for a range query on a sequence of
length k yields

Pq = (1/2k)
h

1/(1 − ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
i

.

We assume that the communication cost for sending a query pa-
rameter, and the cost of updating a parameter are equal and nor-
malized to 1. Further, assuming that each model has n parameters,
and Q queries each of length k are posed during this duration d, the
total expected communication cost at each index node is

T =
16nd

[1/(1 − δ) − (1 − δ)]2
+

Qk

2k
.s(k)

where s(k) =
ˆ

1/(1 − ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
˜

.
To obtain the optimal δ, we differentiate T with respect to δ

and set it to zero. This yields a polynomial equation of degree
2k + 5. The second derivative of T with respect to δ is greater
than zero, showing that the solution obtained is indeed a mini-
mum. As the second derivative is continuous in the open interval
(0, 1), the solution of the equation can be obtained using Newton’s
method [13], or techniques like finite-difference methods for faster
convergence [12].

Slack estimated by the above method minimizes the communica-
tion cost locally at each index node. The optimal slack δi required
at each node i to minimize the global communication cost [3] for
the entire network can be evaluated only after considering the cost
at all nodes. There are two main bottlenecks involved in this global
optimization: (i) all the εi parameters have to be sent to the base
station to evaluate δi’s, and (ii) it is computationally demanding to
solve for δi’s. Further, as εi parameters keep evolving, the opti-
mal δi parameters will change, and hence recomputing the globally
optimal δi’s is very expensive.
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Since the sensors have limited processing capabilities, the itera-
tive numerical operations involved in the calculation of the locally
optimal slack are also computationally challenging. Therefore, we
use experimental techniques to estimate the slack δ. We estimate
the optimal value of the slack parameter a priori for a wide range
of ε, query rate, and query length settings. Each sensor or an index
node maintains a table, and uses an appropriate δ based on table-
lookup.

7. FAULT-TOLERANCE
Node failures are one of the primary causes of network unreli-

ability. A parent node in the MIST index needs to distinguish be-
tween the case where a child node fails and the case that a child’s
parameters are within the slack δ. To make MIST robust to node
failures, every parent maintains an expected update interval and
poll the child for updates. Detecting node failures using acknowl-
edgment packets is costly. Therefore, MIST employs periodic heart-
beat [7] message exchanges to keep the parent-child nodes synchro-
nized. After a node has failed, its children switch to a new parent,
and transmit their parameters to the new parent. This is a one-time
cost. Subsequently, the correlation and the slack-based update pro-
tocols are followed.

However, if MIST were to handle queries even during node fail-
ures, then replication may be a good alternative mechanism. The
index model (or base model) information can be replicated at a cho-
sen sibling node. There should exist a path between the sibling and
the parent of the node, even if the node fails. The parent and chil-
dren of a node are informed of the identity of the sibling node. At
the sibling node, the replicated index can be maintained with a cor-
relation of (1−φ) with respect to the actual indices. If φ is a small
value, then the replicated index is more up-to-date with the current
index, but incurs larger communication costs. Hence, this protocol
can be seen as a trade-off between consistency and communication
costs, similar to the replication protocols which achieve scalability
by providing loose consistency guarantees [6]. Hence, when a node
fails, its parent transmits the query to the sibling node. The sibling
node attempts to answer the query employing its (1−φ)-correlated
models. If it succeeds, it returns the result; else, it transmits the
query to the children of the original node.

Periodic heartbeat messages can be used to discover link fail-
ures for updates. For queries, if an answer is not returned by the
subtree within a specific time-out, it is assumed that the link has
failed. When a node detects link-failure with respect to its parent,
it switches to a new parent and transmits its model parameters to
the new parent. When a parent detects a link failure to a child, it
notifies it through alternate routes. MIST allows transient data in-
consistencies until the detection of failures. MIST trades-off these
short-lived inconsistencies in favor of the communication savings
accrued by avoiding the robust but expensive ACK protocol.

8. PERFORMANCE EVALUATION
In this section, we present the experimental results for all the

three queries—range, top-1 and 1-NN—on MIST’s min-max and
average models built for MCs and HMMs. First, we describe our
datasets. Then, we explain the different settings for the measure-
ments of query, update and total communication costs.

8.1 Experimental Setup
Our experiments were conducted on two datasets—a real data

set obtained from our laboratory and a synthetically generated data
set. In the laboratory data set, sensors were located in four rooms
and four sensors were placed in four different corners of each room.

The topology is illustrated in Figure 5. The base station is a central
server where the queries are posed.

In the laboratory dataset, sensors were used to measure the tem-
perature inside the laboratory. The sensors sensed temperature ev-
ery 30 seconds for 10 days. The values were quantized into three
symbols: C (cold) for temperatures less than 25◦C, P (pleasant)
for temperatures between 25◦C and 27◦C, and H (hot) for temper-
atures higher than 27◦C. Semantic queries which are of interest,
such as (i) alternating weather patterns, HCHC, (ii) consistently
pleasant temperature, PPPP , etc., were posed. Sequence queries
were generated in random by sampling from a uniform distribution.
For 1-NN queries, query models were sampled from a uniform dis-
tribution. Markov Chains with 3 states and HMMs with 2 states
and 3 symbols were built on each sensor on sequences generated
for each day.

The synthetic dataset was generated for different network sizes
ranging from 16 to 512. The number of model states was varied
from 3 to 11. The base models were generated by controlling the
model correlation or the ε parameter for 5 different values ranging
from 0.001 to 0.5. These models were built for sequences gener-
ated over three hour periods, for five days. Updates to data value
were generated using the uniform random walk method [4].

Communication costs were measured in number of bytes. Trans-
mission messages encoded a model parameter in 2 bytes, and a k
length query string in k bytes. For model queries, the entire model
was encoded in 2m bytes where m is the number of parameters in
the model. The answers for n-size networks were encoded in a bit
vector of length n, or equivalently n/8 bytes.

8.2 Compared Techniques
We first present the two centralized schemes. Then, we present

variations of MIST that are considered in the experimental results.
• Centralized scheme with no slack: Each node transmits its

models to the base station (BS). Every update to a model parameter
is sent to the BS. Queries are posed at the BS, which always main-
tains the latest models. As a result, queries are answered using zero
communication cost.

• Centralized scheme with slack: Initially all models are trans-
mitted to the BS. An update at each node is not transmitted to the
BS if the current parameter is within the slack, i.e., within a (1−δ)-
correlation of the base station’s cached parameter. Query probabil-
ities and distances are bounded using the approximate models at
BS. If a query cannot be answered with certainty, it is injected into
the network to retrieve the required models.

• MIST schemes: Both types of index models—average and
min-max—are maintained under slack and no slack conditions.

We evaluate the performance of our index structure with respect
to query rate, slack and correlation in terms of communication
costs. Our experiments were conducted for the following values
of ε: 0.001, 0.01, 0.1, 0.2, 0.5. Unless mentioned otherwise, the
slack δ is set to the locally optimal value. We experiment with both
MCs and HMMs built from real-life and synthetic data. For brevity,
we only report the representative results.

8.3 Scalability with Query Rate
The first experiment evaluates the scalability of the different sch-

emes with query rate. Figure 6 compares MIST’s schemes with the
centralized schemes on MCs built from synthetic data. The total
communication cost, which is the sum of update costs and (range)
query costs was measured for varying query rates. The query rate is
the number of queries posed to the network between two successive
model construction time instances. This time interval is 3 hours for
our datasets. The centralized scheme with slack performs poorly,
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Figure 6: Total communication costs of MIST and the compet-
ing schemes for varying query rates.
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Figure 7: Total communication costs of MIST and the compet-
ing schemes for varying query rates.

as it injected most of the queries into the network. We notice that
the rest of the schemes scale well with query rate.

Figure 7 magnifies Figure 6 to compare MIST’s average and
min-max models with the centralized scheme without slack. For
small query rates, MIST’s slack-based schemes, which maintain
a slack at every level, outperform those without slack by almost
a factor of two. Up to query rates of 5, we see that average model
with slack performs the best among MIST schemes. At small query
rates, updates become the dominating factor of the total costs, and
as the average model maintains smaller number of parameters than
the min-max model, it outperforms the min-max scheme.

As the query rate increases to 25, the min-max models provide
efficient query pruning and better query communication costs, and
hence outperform the average model. When the query rate in-
creases further up to 50, the cost of slack-based indexing schemes
increases rapidly. This is because those queries which were not
pruned by the slack-based index models are drilled down into the
network. At these query rates, min-max scheme with no-slack pro-
vides the lowest costs. As this scheme maintains up-to-date indices,
it provides tight bounds on the probability of query observation
from the underlying models, and hence prunes most of the queries
at the highest levels of the index structure. At higher query rates,
the centralized scheme which has zero query costs becomes a vi-
able alternative and ultimately becomes the most efficient scheme.

Figure 8 depicts the communication costs of the various schemes
for MCs built from the laboratory data. The overall trend of the
schemes is similar to those observed in synthetic MCs (Figure 7).
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Figure 8: Total communication costs of MIST schemes and the
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Figure 9: Total communication costs of MIST and the compet-
ing schemes for HMMs built on laboratory data.

However, we note that the schemes with no slack outperform the
slack based schemes at medium query rates of 10. Although the
update costs were reduced due to the high δ value of 0.3, these
savings were offset by the large increase in query communication
costs because of the reduced pruning power. The pruning power
was much lower than the synthetic data set because of the high
values of ε for the laboratory data.

Figure 9 shows that for HMMs built from real data, the average
slack scheme is the best for query rates up to 9. After that, the
min-max scheme with slack performs the best. On further analysis,
we found that query pruning is very little on real-world HMMs,
and therefore for low query rates, the update costs become more
significant. This explains why the average models with their low
update costs perform the best.

8.4 Update Costs
We next compare the update costs of the various schemes. Fig-

ure 10 shows the low update costs of MIST-based schemes with
increasing slack, for MCs built on laboratory data. We observe
that the update costs of slack-based schemes were almost half the
costs of the corresponding schemes without slack. We also observe
that the costs of slack-based centralized schemes are twice as high
as MIST’s slack-based indexing schemes. This is because MIST
maintains slack at every level of the hierarchy whereas the central-
ized scheme maintains the slack only for the base models. The
average models transmit a single model and three index parameters
compared to min-max’s two pseudo-models at every level of hierar-
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Figure 10: Update costs of MIST and the competing schemes
for MCs built on laboratory data for varying slack.
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Figure 11: Top-1 query costs for HMMs built on synthetic data
for varying slack.

chy; therefore, the update costs of average models were better than
those of min-max models.

8.5 Query Costs
We finally analyze the costs for answering the three different

queries in terms of the total message size. The centralized scheme
with no slack always has a cost of 0 and is therefore not shown.

Figure 11 depicts the query costs for top-1 queries on HMMs
built on synthetic data. Query costs were plotted against varying
slack parameters. The query cost of the slack-based schemes, in-
cluding the centralized scheme were almost twice as expensive as
the schemes without slack. As the slack is maintained at every
level, the bounds on the query probability at the top levels of MIST
hierarchy are too wide for efficient query pruning. Hence, schemes
without slack performed much better. Min-max models outperform
the average models since it maintains two pseudo-models, which
provide much tighter bounds than a single average model.

Figure 12 depicts query costs for 1-NN queries on MCs built
from synthetic data. Here, the communication costs are measured
against different values of correlation parameter ε. For low values
of ε, the synthetically generated models are highly correlated and
hence the index structure provides very tight bounds on the under-
lying models. Hence, at these values, the query communication
costs for MIST’s indexing schemes without slack are very low. It is
worth noting that at such low values, even the centralized scheme
with slack, can prune queries much more efficiently than the slack-
based schemes. When ε increased to 0.1, we observed that most of
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Figure 12: Model query costs for MCs built on synthetic data
for varying correlation.
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Figure 13: Range query costs for MCs built on synthetic data
for varying query length.

queries could not be pruned by the centralized scheme and hence
were injected into the network. With increasing ε, the bounds for
average models become worse. This explains the increasing costs
for the no-slack schemes. The bounds from the min-max models
also become larger as the minimum and maximum for each param-
eter become more varied.

Figure 13 illustrates the effects of different lengths of the query
sequence on the query costs for the range queries. The experiments
were performed on synthetic MCs. Query length k was varied from
2 to 6 and the threshold set as αk, with α chosen uniformly be-
tween 0 and 1. With increasing query length, the number of bytes
needed to encode the query string goes up. However, the bounds
for the probability of observation of the query becomes tighter with
increasing length. Thus, the chances of a query getting filtered in-
creases. This results in a small increase of query costs, and good
scalability of MIST schemes with query length.

8.6 Optimal Slack
We next performed experiments on real data to evaluate the ef-

fect of the slack parameter on the total communication cost. Fig-
ure 14 shows the total costs for the min-max and the average slack
schemes with δ varied from 0.1 to 0.9 when the query rate was
set to 5. For low values of δ, the update costs are large; whereas
for high values of δ, there is almost no query pruning resulting in
prohibitively high query costs. For δ = 0.3, the total communica-
tion cost was found to be minimum for both the indexing schemes.
At this slack value, not many updates happened and many of the
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Figure 14: Total communication costs of MIST slack schemes
for MCs built on real data for varying slack.
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Figure 15: Scalability of MIST and centralized schemes with
network size.

queries could be pruned at higher levels. Interestingly, the total
costs for the centralized slack scheme kept decreasing with increas-
ing δ. As the query rate was low, update costs dominated the query
costs, and hence decreased the total costs with increasing slack.

8.7 Scalability with Network Size
The centralized schemes scale linearly with network size. In the

centralized scheme without slack, each update message travels the
entire path from the sensor to the BS whereas in the centralized
scheme with slack, a query which could not be answered at the base
station is sent to a sensor in order to retrieve the corresponding re-
sults. Therefore, the total communication costs of the centralized
schemes increase linearly with increasing network size. MIST ex-
ploits spatial correlations among the different sensors and both its
updates and queries are pruned using a tree-based protocol. Hence,
the scalability is better.

Figure 15 depicts the total communication costs of MIST sch-
emes and the competing centralized schemes with varying network
size. The experiments employed MCs built on synthetic data with
ε = 0.1 and δ = 0.05 with (range) query rate 15. The central-
ized scheme with slack has been omitted from the figure due to its
high query communication costs. MIST schemes without slack of-
fer significant savings compared to the slack-based schemes. As
the network size increases, the slack-based schemes achieve low
update costs due to pruning; however, there is a huge increase in
query communication costs due to two reasons: (i) the query prun-
ing decreases considerably at higher levels of the tree due to the
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Figure 16: Scalability of MIST and centralized schemes with
number of states.
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Figure 17: Update costs of MIST with number of states.

slack employed in the parameters, and (ii) the queries traverse a
longer distance to retrieve the results. The centralized scheme with-
out slack incurs large update costs since it transmits every model to
the base station. In MIST, models are sent up only to the next level
and indexed. Therefore, the update costs are small. In sum, this
figure depicts the superior scalability of MIST based schemes with
network size and shows that MIST maintains the performance gain
over the centralized schemes.

8.8 Scalability with Number of Model States
In this section, we describe how MIST and the centralized sch-

emes scale with number of states. Figure 16 depicts the total com-
munication costs with varying number of states for range queries.
The experiments were done with synthetic MCs with ε = 0.1,
δ = 0.05, and query rate 100. We notice an interesting trend.
For small state sizes, the schemes without slack outperformed the
schemes with slack, whereas at larger state sizes the reverse phe-
nomenon was observed. In order to understand the underlying rea-
sons behind such a trend in total costs, we plotted the individual
contributions of the update and the query costs of each scheme in
Figures 17 and 18 respectively.

Figure 17 illustrates that MIST’s slack-based schemes scale well
with increasing state size because of update pruning. On the other
hand, the schemes without slack incur larger transmission costs due
to the increased number of parameters and little update pruning.
The centralized scheme with no slack scales poorly.

However, for the range query costs depicted in Figure 18, it
is interesting to observe that the query costs of each scheme for
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Figure 18: Range query costs of MIST with number of states.
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Figure 19: Curse of dimensionality: Model query costs of
MIST with number of states.

100 random queries decrease with increasing state size. The cen-
tralized scheme without slack has zero query costs and is, there-
fore, omitted. The average transition probabilities and the average
start state probabilities are inversely proportional to the number of
states. Therefore, the probability of observing a query of length k
(which is a product of k−1 transition probabilities and 1 start state
probability for an MC) decreases with increasing number of states.
The bounds are also products of k probabilities. Thus, they become
smaller and their difference shrinks resulting in fewer queries sur-
passing the query threshold. The schemes without slack outper-
formed those with slack because of the tighter probability bounds.
Figure 18 shows the query costs for a very high query rate of 100.
For lower query rates, the update costs dominated. At high query
rates and large state sizes, the query costs became negligible, and
the trend in the update costs was reflected in the total communica-
tion costs. Thus, MIST does not suffer from the “curse of dimen-
sionality” from the number of states for range and top-1 queries.

However, the effect of dimensionality is noticed for model queries,
where the search is carried over the m-dimensional space of model
parameters. Figure 19 shows the degradation of performance in
MIST’s models with increasing m. Even though there is an effect
of dimensionality, the communication costs remain practical up to
large state sizes of 11. MIST schemes without slack provide better
bounds, and hence, lead to lower communication costs.

8.9 Fault-Tolerance Experiments
Figure 20 depicts the scalability of various schemes with failure

probability. Every node fails with a probability of f . The experi-
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Figure 20: MIST’s performance under node failure.
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Figure 21: MIST’s performance under link failure.

ments were performed on MCs with ε = 0.1, δ = 0.05 and query
rate set to 10. At the time of node failures, MIST schemes in-
cur additional costs, as the children of the failed node discover a
new parent and propagate updates to the new parent and its ances-
tors. Therefore, as the probability of node failure increases, MIST
schemes show a moderate increase in total communication costs.

Figure 21 depicts the communication costs of MIST schemes
with increasing link failure probability. As the link failure proba-
bility increases, the percentage of nodes that switch to a new parent
and follow the subsequent expensive update protocol increases pro-
portionally. Hence, the costs of each scheme increase.

Summary: When the spatial data is highly correlated, for low
query rates, the minmax scheme with slack is the best. For high
query rates (over 50), the minmax scheme and the centralized sch-
eme without slack are the best. When the correlations are low,
MIST schemes without slack perform the best for query rates of
more than 10. For large network sizes of more than 100 sensors,
MIST schemes without slack scale the best. For state sizes less than
6, MIST schemes without slack are recommended. For higher state
sizes, MIST schemes with slack are preferred. With increasing link
and node failure probability, the average scheme with slack scales
better than other schemes.

9. CONCLUSION
In this paper, we developed a distributed and hierarchical index

structure for sensor networks, MIST, based on Markov Chains and
Hidden Markov Models. These statistical models capture the se-
mantics of a sensor system by transforming raw signals into sym-
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bols, thus permitting a high-level understanding and analysis.
In order to unearth global semantic patterns, the models at the

individual sensors need to be aggregated. In the light of communi-
cation constraints in a sensor network, aggregation should be based
on the model parameters. We designed two novel distributed algo-
rithms for model aggregation. The first algorithm produces a valid
statistical model, the average model, that captures the average be-
havior of the constituent models. Spatial correlation parameters
and two other index parameters were maintained along with the av-
erage models. The second algorithm produces pseudo-models in
the form of min and max models which were used to capture the
extreme behavior of the constituent models. We also captured the
temporal shift of the parameters of a model by considering a slack
at each level of the index structure.

We proposed two probabilistic sequence-based queries, range
and top-1 queries, and one high-level model-based semantic query,
1-NN query, that are of interest in a distributed sensor network set-
ting. We designed algorithms to answer these queries efficiently.
We used the index parameters maintained at the root of a subtree
to bound the probability of observation of a query sequence from
a sensor in the subtree. We also bounded the distance of a query
model to a sensor model using these parameters.

We designed algorithms to answer them efficiently by bounding
the probability of observation of a query sequence from a sensor
(as well as the distance of a query model from a sensor model) in
a subtree using just the index parameters and the slack parameters
maintained at the root of the subtree.

We compared our schemes against two other centralized schemes,
one with slack and the other without slack. Extensive experimental
evaluation on both real-world and synthetic data sets showed that
MIST’s models outperform the competing centralized schemes in
terms of update, query and total communication costs. The scala-
bility experiments showed that MIST scales well with network size
and number of model states.
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