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ABSTRACT
Sensor networks allow continuous data collection on unprecedented
scales. The primary limiting factor of such networks is energy, of
which communication is the dominant consumer. The default strat-
egy of nodes continually reporting their data to the root results in
too much messaging. Suppression stands to greatly alleviate this
problem. The simplest such scheme is temporal suppression, in
which a node transmits its reading only when it has changed be-
yond some ε since last transmitted. In the absence of a report, the
root can infer that the value remains within±ε; hence, it is still able
to derive the history of readings produced at the node.

The critical weakness of suppression is message failure, to which
sensor networks are particularly vulnerable. Failure creates ambi-
guity: a non-report may either be a suppression or a failure. In-
ferring the correct values for missing data and learning the param-
eters of the underlying process model become quite challenging.
We propose a novel solution, BaySail, that incorporates the knowl-
edge of the suppression scheme and application-level redundancy
in Bayesian inference. We investigate several redundancy schemes
and evaluate them in terms of in-network transmission costs and
out-of-network inference efficacy, and the trade-off between these.
Our experimental evaluation shows application-level redundancy
outperforms retransmissions and basic sampling in both cost and
accuracy of inference. The BaySail framework shows suppression
schemes are generally effective for data collection, despite the pres-
ence of failures.

1 Introduction
The emerging technology of wireless sensor networks is poised to
make data collection practical on unprecedented scales. In areas
where continuous collection was previously cumbersome or im-
possible, nodes are deployed, take sensor measurements at regu-
lar intervals, form an ad hoc network using radio communication,
and deliver messages to a root (base station) node, from which the
user retrieves the data. At the application level, the simplest way
to implement data collection is to instruct each node to transmit its
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readings to the root as it acquires them. The definitive limitation
of sensor networks, however, is their limited battery life, and radio
transmission is the dominant energy consumer. The continuous re-
porting strategy will cause nodes to deplete their batteries and die
relatively quickly. This is especially true for nodes nearest the root,
which must relay readings on behalf of all other nodes. This prob-
lem becomes more severe as the network scales. Our goal is to find
an energy-efficient way to support data collection applications.

Besides the obvious solution of lowering the rate of periodic
sampling, suppression [5, 27] is a promising alternative approach
towards reducing communication. Nodes monitor conditions in-
network and only transmit to the root when those conditions are
triggered. These conditions intuitively capture how “interesting”
each new reading is. For example, consider simple value-based
temporal suppression: A node only transmits its current reading to
the root if it differs from its last transmitted value by more than
some threshold, ε. In the absence of a report, the root assumes the
node’s value is within ±ε of its last received report. If the readings
fluctuate little over time, we would expect a high rate of suppres-
sion and low rate of communication; meanwhile, the root is still
able to bound the reading for every timestep to within ±ε, without
continuous updates from the node.

In many scenarios, such as monitoring environmental data (e.g.,
soil moisture, temperature, light, etc.), node measurements change
infrequently from timestep to timestep. Thus, even value-based
temporal suppression, which only scratches the surface of the scope
of suppression schemes, is likely to greatly reduce communication.
Moreover, measurements may change not only slowly, but often
predictably. We foresee a tremendous amount of work on building
sophisticated suppression schemes that analyze and rely on the ex-
pected behavior of deployments, and need only report deviations
from that, resulting in a high suppression rate. Before moving in
that direction, however, we must address the major problem of fail-
ure, which afflicts all suppression schemes.
Coping with Failure We just stated in the absence of a report
from a node, the root assumes its value is unchanged. We can safely
do so only if we can guarantee all reports generated by the node
reach the root. Unfortunately, this is not the case. Sensor networks
are very prone to message failure. Failure is particularly problem-
atic in conjunction with suppression because combined they create
a state of ambiguity at the root. Is a non-report the result of a sup-
pression or a failure? Whereas in the absence of failure we could
safely bound the node’s value within ε of its last report, interpre-
tation of missing reports now becomes quite challenging. To illus-
trate the challenges and some intuition, we use a simple example.

Example 1. Consider the following sequence received by the root
from node u: yt, ⊥t+1, yt+2, where ⊥ denotes a non-report. If we
know a model governing how the series {yt} evolves over time,
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Figure 1: Missing value.
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Figure 2: Missing value is failure.
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Figure 3: Missing value is suppression.
such as an auto-regressive(1) model, we can set yt+1 in an in-
formed way using the values received, yt and yt+2. Figure 1 de-
picts a sample of possible assignments between the two known end-
point values. Each dot represents an assignment. The box spans the
25th to 75th percentiles of sample values, with the horizontal bar
denoting the median.

Still, we can do better using knowledge about the suppression
scheme in addition to the model. If, for example, yt+2 − yt ≤ ε, a
failure must have occurred on delivery of ⊥t+1. Had ⊥t+1 in-
stead been suppressed, u would have compared yt+2 to yt and
suppressed yt+2. This observation provides a constraint on pos-
sible settings for the missing value and leads to more informative
guesses. Figure 2 again depicts a sample of assignments, but with
very clear boundaries on values ⊥t+1 cannot have. Specifically,
because ⊥t+1 is a failure, |⊥t+1 − yt| > ε and |⊥t+1 − yt+2| >
ε. This example also illustrates a subtle point. u is not aware
of whether its delivery of ⊥t+1 fails. Therefore, its decision on
whether to transmit yt+2 is based on comparison with⊥t+1, rather
than yt, as the root might hope.

Now suppose yt+2 − yt > ε. In this case, we cannot determine
whether ⊥t+1 is a suppression or failure. Suppose, however, using
techniques we will discuss shortly, we determine it is a suppression.
Figure 3 gives the corresponding sample assignments. In this case,
|⊥t+1 − yt| ≤ ε, while no constraint exists between ⊥t+1 and
yt+2.

Although this is a simple example aimed at reconstructing a sin-
gle missing value sandwiched between two reported ones, it illus-
trates the progression of information gained in knowing a model of
node behavior, the suppression scheme, and the cause of missing
values. In reality, e.g., in environmental monitoring applications
that use the observational data to learn about stochastic ecological
processes, we would not even know the process parameters exactly;
the goal is to combine our prior knowledge, the knowledge of the
suppression scheme, and the observational data in a principled way
to infer the model parameters as well as the missing data.
Our Approach In this paper, we propose a framework, BaySail,
to cope with the presence of suppressions and failures, combin-
ing both in-network suppression and out-of-network data analysis.
BaySail abbreviates BAYesian analysis of Suppression and fAIL-
ures. We use this framework to support estimating the missing
values as precisely as possible, as well as estimating the process
parameters for the model generating those values. BaySail is built
on the following key ideas:
• Data analysis is Bayesian, allowing principled use of the re-

ceived values and priors of the model parameters. This ap-
proach also provides posterior distributions of the missing val-
ues and model parameters, which allow better and less mislead-
ing interpretations of these than single-point estimates.
• Non-received data is not treated as generically missing. We in-

stead incorporate knowledge of the suppression scheme into in-
ference, thus effectively accounting for why they are missing.

• To help reduce uncertainty and improve inference, we enhance
the suppression scheme with redundancy. Because the goal of
suppression is to remove redundancy from reporting, however,
we seem now to be rendering suppression irrelevant. This is not
the case; by first removing the naturally occurring redundancy
that comes with continuous reporting (to only receive “interest-
ing” readings), we can then add redundancy back in a controlled
manner, tuning it as we see fit (e.g., to achieve a particular level
of accuracy in inference).

The above list outlines our vision for BaySail. It also raises a
number of challenges, which we tackle in this paper. First, Bay-

Sail requires novel, non-standard application of Bayesian analysis
in order to exploit the knowledge of the suppression scheme and the
extra information provided by the redundancy scheme. We show
that we can capture them as constraints on the posterior distribu-
tion of data and incorporate them into inference based on Gibbs
sampling [15]. We demonstrate that, by incorporating such infor-
mation, BaySail can provide estimates with much greater accuracy
and less uncertainty than the basic Bayesian approach that simply
treats all non-received data as missing.

Second, the choice of the redundancy scheme exposes many in-
teresting trade-offs. What are the costs and benefits of redundancy?
What type of redundant information helps most? Should we intro-
duce redundancy at the application-level or let the communication
layer automatically inject redundancy? We show that not only does
the degree of redundancy affect the quality of inference, the type of
redundancy also plays a critical role. We find application-level re-
dundancy to be easier to control, more flexible, and generally more
effective than built-in redundancy provided by the communication
layer in the form of retransmissions. Moreover, we show that differ-
ent types of redundant information can have dramatic impact on the
efficiency of inference. Certain types of redundancy (e.g., message
counters attached to each transmission) turn out to be computation-
ally more expensive to utilize in inference, while others (e.g., a list
of recent timesteps when transmissions were attempted) are easier
to utilize. We consider this new interesting aspect of redundancy
design for a number of schemes.

A third challenge is ensuring the practicality of BaySail. Be-
cause of difficulties in engineering reliable sensor nodes and net-
works, our philosophy is to make programming nodes as simple as
possible. We argue for simple yet effective suppression and redun-
dancy schemes in-network. Our implementation in TinyOS [2] on
Mica2 motes [7] validates the simplicity of our design. On the other
hand, Bayesian inference can be complex, but it takes place en-
tirely out-of-network at the base station. In choosing the appropri-
ate suppression and redundancy schemes, we carefully balance the
implementation complexity on nodes, efficiency of out-of-network
inference, energy costs, and the quality of inference. Through ex-
periments, we demonstrate that BaySail provides better and more
informative results than previous approaches. Its in-network imple-
mentation is simple, and its out-of-network inference is reasonably
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Figure 4: System overview.
efficient. Hence, it provides a practical and principled solution to
the thorny problem of disambiguating suppression and failure in
sensor networks.

2 Overview of BaySail

BaySail targets two types of users. “Statistical modelers” are the
type of users that we interact with in our own project of deploying
an environmental sensor network in Duke Forest. Our ultimate goal
is to build ecological models of the networked area. The modeler
wants “all the data,” but only for purposes of fitting and comparing
models that help to explain the data. They are ultimately interested
in learning the parameters controlling the model, as well as the
uncertainty associated with an incomplete raw dataset. “Vineyard
owners” refer to more casual users of data, e.g., someone who uses
Crossbow’s SmartDust sensor networks [8] to monitor the growth
and environmental conditions in a vineyard. We do not expect such
users to have a background in statistics; they would prefer to view
raw data and scan for aberrations. It is still useful to quantify the
uncertainty in the data presented to them, however, because differ-
ent confidence levels may call for very different actions. Further-
more, even though the users are not interested in the model param-
eters per se, a well-trained model can still work under the hood to
help improve system efficiency (e.g., by fine-tuning suppression).

Our overall system is illustrated in Figure 4. The sensor mea-
sures raw data y1, y2, . . . , yt from the environment. The sensor
runs a reporting scheme that dictates what data are transmitted to-
ward the base station and when. In general, a reporting scheme
may include both a suppression scheme, which seeks to lower com-
munication cost by suppressing “uninteresting” transmission, and a
redundancy scheme, which injects redundant information in trans-
mission to help cope with potential failures. In this figure, we show
the sequence of readings transmitted out from the sensor, after the
suppression scheme has been applied (we omit redundancy in this
figure); ⊥ denotes a non-reported value. Here, the sensor chooses
not to transmit y2. We discuss the reporting schemes in detail in
Section 3.

These transmissions go through the network, where they are vul-
nerable to failure. In Figure 4, y1 and y4 are lost, denoted ⊥1 and
⊥4. Notice the base station interprets ⊥1, ⊥2 and ⊥4 as missing
values, and cannot distinguished suppressions from failures.

The base station runs the BaySail data analysis procedure, dis-
cussed in detail in Section 4. Data analysis considers a model of the
process being monitored, which the statistical modelers wish to fit.
We might have some prior knowledge of the model parameters, but
in general they are assumed to be unknown. Example 2 below de-

scribes one model of particular relevance to our sensor network.
The data analysis procedure utilizes the observations (including
both readings and any redundant information received by the base
station), as well as the knowledge of what reporting scheme is run-
ning in the network. The result of the analysis provides estimates
of both the model parameters and the missing data, in the form of
a joint probability distribution that fully captures the uncertainty
within and dependencies among the estimates.

As we will see in Section 4, we represent this distribution by a
collection of samples from it; each sample corresponds to a poten-
tial realization of the model parameters and missing readings. It
is straightforward to support expectation and quantile queries us-
ing these samples, e.g.: What is the expected value of this model
parameter? What is the probability that these two missing data
readings are both below a given value?

Example 2. For the data collected from an environmental sensor
network, we are naturally drawn to the class of dynamic spatial
models. Recall the basic linear dynamic model [29]:

Observation equation: yt = Axt + εt;

Transition equation: xt = Bxt−1 + ηt.

If the vectors are n × 1, associated with spatial locations, say
s1, s2, ..., sn, we have a dynamic spatial model. See [14] for more
details and schemes for fitting of such models within a Bayesian
framework. In particular, εt represents observation errors and ηt

represents independent innovations of a colored noise process. At
any t, yt = (vt, wt), where vt represents the components of yt

actually received by the root, and wt represents the components
that are missing (due to either suppression or failure). We seek to
learn about all of the parameters in this dynamic model as well as
wt and xt, which have not been directly observed by the root.

To more clearly reveal the nature of the computational and in-
ferential issues, we focus on the following considerably simplified
model of soil moisture in the subsequent sections. Let ys,t denote
the measure at location s at time t. The spatio-temporal model can
be written as:

ys,t = ct + φys,t−1 + εs,t. (1)

Here, ct is known time series of precipitation amounts for the re-
gion, which is observable directly at the root. The autocorrelation
coefficient |φ| < 1 controls how fast the moisture escapes the soil.
The covariance function for the above model, shown below, takes
into account both the temporal and the spatial correlation:

Cov(ys,t, ys′,t′) = σ2 φ|t−t′|

1 − φ2
exp(−τ ||s− s′||), (2)

where σ2φ|t−t′|/(1−φ2) is the usual autocovariance function for
the AR(1) process, and exp(−τ ||s− s′||) is the exponential spatial
correlation function, with ||s − s′|| denoting the distance between
two locations s and s′. We want to estimate the process parameters
φ, σ2, and τ as well as the missing ys,t’s.

Comparison with Previous Approaches Note that BaySail seeks
to infer missing readings and model parameters simultaneously,
and the result of inference are distributions (represented as sam-
ples) that fully capture uncertainty and dependency in data and
model parameters. This approach differs from most previous ap-
proaches to data cleaning proposed in the database community (e.g.,
HiFi [13]), which are staged: The raw reading stream would be
first subject to a data cleaning stage that produces a single-point es-
timate for each missing reading; then, the sanitized stream can be
used further by the application to, for example, train models.
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BaySail offers several fundamental advantages over these previ-
ous approaches. First, single-point estimates give no indication of
uncertainty and may indeed be misleading (e.g., for a bimodal dis-
tribution, a single-point estimate based on the mean may in fact be a
very unlikely value). On the other hand, BaySail is able to provide
full distributional information, which avoids these problems.

Second, single-point estimates do not help inference of model
parameters, and may in fact hurt if the ensuing model-fitting stage
uses them as its input. For example, linear interpolation for a ran-
dom walk provides reasonable guesses for the missing data, but will
bias parameter estimation to a walk with some drift and zero vari-
ance. Furthermore, in a staged approach, if sanitized data no longer
carries uncertainty, it is impossible for subsequent data analysis to
assess information loss and quantify uncertainty in the model pa-
rameters obtained from such data, which are of particular concern
to statistical modelers.

Finally, we argue that even if the sensor network application tar-
gets only “vineyard owner” types of users, there is a clear benefit to
incorporating models in reconstructing missing data. Naive inter-
polation methods (e.g., linear interpolation between two received
readings, or stepwise constant interpolation that assumes readings
remain unchanged until the next received one) are attractive be-
cause they are computationally very efficient. However, as we
show in experiments (Section 5), these methods can lead to arbi-
trarily wrong estimates and cannot provide any measure of confi-
dence. We note that the model-based approach toward data recon-
struction has also been advocated by BBQ [11]. In contrast to our
work, which treats model parameters as unknowns, BBQ assumes
the model parameters are known, and does not seek to fit the model
using observations. Also, data acquisition in BBQ is pull-based
rather than push-based, so the challenge of incorporating suppres-
sion into inference does not arise. In our approach, the decision of
whether to transmit a reading is independent of the model whose
parameters we are trying to learn; this feature makes our approach
less vulnerable to inadequate models than BBQ.

3 Reporting Schemes
There is a large design space for push-based reporting (i.e., the node
automatically transmits to the root without being queried). Assum-
ing continuous reporting is too expensive, there are many ways to
reduce the number and size of messages, with the goal of main-
taining inference accuracy. Reports can be transmitted according
to a sampling rate or a suppression scheme, where the rate τ or
threshold ε, respectively, can be tuned to adjust energy cost. Fail-
ures can be handled using retransmissions to increase the probabil-
ity any single message successfully reaches the root, or by adding
application-level redundancy to messages, which increases their
payload length. We next present several representative examples
that we have investigated along these design axes.

We begin with two basic schemes (with no redundancy added):
• Samp(1/τ ): fixed-rate sampling. A node reports its current

reading every τ timesteps.
• Supp(ε): value-based temporal suppression. A node maintains

its last transmitted reading, ylast, and only transmits its current
reading y if |y − ylast| > ε.

There is an intuitive appeal to Supp(ε). If there are no failures,
we can bound the reading at every timestep within±ε with absolute
certainty. Samp(1/τ ), on other hand, offers no such feature, and
may miss short-term fluctuations if τ is too long.

We can imagine many other suppression schemes. For example,
the node can use a function f over all readings it has transmitted in
a recent window. The result of the function serves as a prediction

of its current reading. The node only transmits if the actual read-
ing is more than ε away from the prediction. We briefly discuss
how BaySail inference incorporates such suppression schemes in
Section 4.2.

More complex spatial suppression schemes, such as Ken [5] and
Conch [27], are also possible, but incorporating them into BaySail

is beyond the scope of this paper. To briefly illustrate the challenge,
consider the following example. A node u uses temporal suppres-
sion to report its value to another node v, which in turn uses this
value to spatially suppress its own reports to the root. However,
possible failures in u’s messages to v would seriously confuse v
and affect the correctness of spatial suppression. BaySail is de-
signed to resolve such ambiguities out-of-network, but in this case,
v needs to resolve such ambiguities in-network. How to extend
BaySail to cope with failures in dependent suppression schemes is
still an area of our ongoing work.
Adding Redundancy The basic reporting schemes above can be
enhanced with redundancy. The network MAC layer can add re-
ceiver acknowledgments (Acks) in response to all transmissions,
where the sender re-sends if no Ack is received. We denote this
redundancy scheme Ack(r), where r indicates the maximum num-
ber of times the node attempts to transmit before giving up. This
scheme can be used to augment both Samp(1/τ ) and Supp(ε).
Note that while willingness to retransmit lowers effective failure
rate, it cannot eliminate failures entirely. Additionally, the scheme
can bring significant extra cost due to overhead costs of sending
extra messages. All received messages must be followed by an ac-
knowledgment, each its own message. Each retransmission is also
an additional message.

Besides Ack(r), we have spent considerable effort exploring how
to add application-level redundancy to Supp(ε). Any suitable re-
dundancy scheme must satisfy two criteria. 1) It must be simple
to deploy in-network and have a low energy footprint (i.e., it must
only marginally increase the number and size of messages). 2) The
resulting out-of-network inference must be fast (i.e., to provide ac-
ceptable response times to the user). Next, we define and discuss a
progression of redundancy schemes for Supp(ε): Supp(ε)/Ack(r),
Supp(ε)/C, Supp(ε)/T(r), and Supp(ε)/TD(r). Each of these
are for deployment at individual nodes, independent of others. Quan-
titative analysis of cost and inference are in Section 5.

Supp(ε)/Ack(r) is the use of receiver acknowledgments and re-
transmissions described above.

Supp(ε)/C, suppression with counter, was our initial attempt
at application-level redundancy. The node maintains a counter, in-
cremented with each transmission to the root. Each report is aug-
mented with the current counter value. If the root receives consec-
utive reports with non-consecutive counters, it can calculate how
many failures have occurred between. For example, if the root
receives the series {yt,⊥t+1, . . . ,⊥t+9, yt+10}, with yt having
counter 20 and yt+10 counter 23, it knows two failures have oc-
curred in nine timesteps. It cannot, however, determine when they
occurred. The main advantage is cost; we require only a small fixed
cost per message to encode the counter. The disadvantage, as we
will discuss in Section 4, is the difficulty in leveraging the counters
in out-of-network inference.

Supp(ε)/T(r), suppression with last r transmission timestamps,
piggybacks on existing reports, just like Supp(ε)/C. The node aug-
ments each report with a list of the last r timestamps (in addition
to the current timestamp) in which it transmitted. Upon receiving
such a report, the root uses the timestamps therein to infer causes
of previous non-reports. If for any of the r timestamps, no report
was received, that time’s non-report is labeled as a failure. Any
non-reports between these are labeled as suppressions. Note any
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ambiguous non-reports preceding the earliest of the r timestamps
remain ambiguous. Continuing our Supp(ε)/C example, if r = 4
and the report listing yt+10 includes {t + 10, t + 7, t + 2, t}, we
label ⊥t+2 and ⊥t+7 as failures, and all other non-reports as sup-
pressions. While Supp(ε)/T(r) produces longer messages (r ad-
ditional numbers rather than one in Supp(ε)/C), we show in Sec-
tion 4 how they can be leveraged in inference to better bound the
range of possible values for each non-report. Nevertheless, the in-
ference still has poor running time.

Supp(ε)/TD(r) builds just slightly on Supp(ε)/T(r) by includ-
ing additional direction bits to indicate the direction in which each
transmitted value moved relative to the previous transmission: 1
indicates the value has increased since the previous transmission,
and 0 indicates the value has decreased. At the first glance this
redundancy scheme appears to be a very incremental improvement
that lets us constrain each failure and subsequent non-reports to one
range, rather than two (as in Figure 2). It is not at all intuitive why
this is a necessary improvement. As we show in Sections 4 and 5,
Supp(ε)/TD(r) enables much more efficient inference techniques
that run orders of magnitude faster than for Supp(ε)/T(r). With
a cost of only r + 1 additional bits, and the additional benefit of
further constraining non-reports, it is well worth it. An important
conclusion of our experiments is that Supp(ε)/TD(r) strikes the
best balance of the in-network and out-of-network criteria.

4 Data Analysis
Recall that data analysis, which runs at the base station, fulfills two
purposes simultaneously: 1) reconstruction of the missing read-
ings, and 2) estimation of the model process parameters. The result
is a joint distribution of missing values and model parameters.

In this section, we first present BayBase, a basic Bayesian ap-
proach that does not utilize the knowledge of suppression. This
approach can be applied to data collected using Samp(1/τ ) and
Supp(ε), as well as versions of these with Ack(r). It does not ap-
ply to Supp(ε) with C, T(r), and TD(r), because these schemes
inject redundant information specific to suppression, which Bay-

Base does not exploit.
Next, we show how BaySail additionally incorporates both the

knowledge of the suppression scheme and the extra information
provided by the redundancy scheme. BaySail works with Supp(ε)
and all its variants with redundancy. We discuss the computational
issues that arise in implementing inference, and demonstrate how
the choice of redundancy scheme can dramatically affect the com-
putational efficiency of inference.

4.1 Basic Bayesian Inference
Our analysis is Bayesian. Through Bayes’ Rule, we combine prior
information on the model parameters and other unknowns (cap-
tured by prior distributions) with the observed data. The result is
a distribution, named posterior, for the parameters and other un-
knowns, conditioned on the observed data. For lack of space, we
omit a general description; see [16] for more details.

To illustrate, consider the soil moisture model in Example 2.
First, we can encode any prior knowledge on model parameters us-
ing prior distributions; e.g., the prior distribution for σ2 (variance)
can be specified using a fairly vague inverse-gamma distribution
1/σ2 ∼ Gamma(2, 3), which reflects our lack of prior knowledge
of this parameter.

Let V denote all readings that we have received, and W denote
all missing readings (due to either suppression or failure). The pos-
terior distribution of interest is

p
`

W,φ, σ2, τ |V
´

.

In order to sample this posterior distribution, we employ the widely
used Gibbs sampling technique [15]. This technique sequentially
draws samples of W , φ, σ2, and τ using their respective full con-
ditional distributions. The full conditional distribution is the dis-
tribution of one of the unknowns given all the other unknowns and
the known data. An iteration is an update of these unknowns. Af-
ter a sufficient number of iterations, the samples will essentially
come from the true posterior distribution p

`

W,φ, σ2, τ |V
´

. The
algorithm is illustrated below:
1. Set i ← 1 and initialize φ(0), σ2(0), and τ (0) according to the

respective prior distributions.
2. Sample W (i) from the distribution

p
“

W (i)|V, φ(i−1), σ2(i−1), τ (i−1)
”

.

3. Sample φ(i) from the distribution

p
“

φ(i)|V, W (i), σ2(i−1), τ (i−1)
”

.

4. Sample σ2(i) from the distribution

p
“

σ2(i)|V, W (i), φ(i), τ (i−1)
”

.

5. Sample τ (i) from the distribution

p
“

τ (i)|V, W (i), φ(i), σ2(i)
”

.

6. Save W (i), φ(i), σ2(i), τ (i), set i← i + 1, and go to step (2).
Once Gibbs sampling converges, we have obtained a collection of
samples that together approximate the true posterior distribution
p

`

W,φ, σ2, τ |V
´

. For this model, the technique converges very
quickly since all distributions described above are efficient to sam-
ple from. As an example, we illustrate the details in step (2) above.

Example 3. To help illustrate, let us first ignore the spatial aspect
and assume that there is only a single node. Suppose the sensor
has taken a sequence of m readings. Among these, the base station
does not observe k values and correctly receives m − k values.
We denote the k-dimensional vector corresponding to the missing
values by w, and the (m − k)-dimensional vector corresponding
to the received values by v. Our goal in step (2) above is to sam-
ple the distribution p

`

w|v, φ, σ2, τ
´

, where we have omitted the
superscript i (the Gibbs iteration index) for brevity.

We shall partition w into r clusters corresponding to contiguous
sequences of missing values, where each sequence is surrounded
by two received values. We indicate these clusters by

z̃j = [ztj
, ztj+1, . . . , ztj+kj−1], j = 1, . . . , r,

where cluster j is a sequence of kj consecutive missing values, and
tj is the timestamp of the first missing value in the cluster. Because
the temporal evolution of the process is Markovian, we can sample
w one cluster at a time, conditioned on the two known readings
surrounding the cluster. Specifically, cluster j can be sampled from

p
`

z̃j |ytj−1, ytj+kj
, φ, σ2, τ

´

,

where ytj−1 and ytj+kj
are the two known readings surrounding

cluster j. It can be shown that this distribution is a kj-variate
Gaussian, which can be sampled using standard techniques.

Next, we show how to carry out step (2) of Gibbs sampling for
the full spatio-temporal model. Recall that W denotes the set of
missing readings over time across all nodes. For each node u, let
wu denote the set of missing readings over time for just node u.
Instead of sampling all of W at the same time in step (2), we break
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this step down into n mini-steps, where n is the number of nodes.
In each step, we draw wu for a single node u, conditioned on all
the rest of missing values and the model parameters. We use the
cluster-based technique described above for the single-node case,
except now we take spatial correlation into account. Suppose we
need to sample a cluster at node u that starts at time t and ends at
time t′. The appropriate full conditional would be

p
`

Y [u, t : t′]|Y [u, t− 1], Y [u, t′ + 1], Y [−u, t : t′], φ, σ2, τ
´

,

where Y [i, j] denotes the reading at node i at time j, t : t′ denotes
the timestep range [t, t′], and −u, when used to index Y , denotes
all nodes except u. Again, this distribution is simply a (t′− t+ 1)-
variate Gaussian.

Although Gibbs sampling may be unnecessary in special cases
(e.g., when closed-form analytic solutions exist), such simulation-
based methods will be necessary for complex models. Also, as we
will show next, once we incorporate knowledge of suppression and
redundancy into analysis, inference will be further complicated by
constraints over the posterior distribution; in this case, simulation-
based methods become even more crucial.

4.2 Incorporating Suppression/Redundancy
Our novel extension to the basic Bayesian approach toward han-
dling missing data is utilizing the knowledge about the suppression
scheme. The key to incorporating such knowledge and any addi-
tional information from the redundancy scheme is the observation
that we can effectively express them as additional constraints when
sampling from the posterior. A sample is valid only if it satisfies all
constraints derived from the suppression scheme and redundancy.
Different types of redundancy translate into different types of con-
straints, which have different impact on the efficiency of sampling.
In the following, we show, in progression, how to obtain the set
of constraints C from the data obtained under different redundancy
schemes, and how it affects our sampling strategy and efficiency.
Supp(ε) and Supp(ε)/Ack(r) Consider the sequence from a
node, (y0, y1, y2, y3, y4, y5), where the base station receives y0 and
y5, but y1 through y4 are missing. Intuitively, there is little we can
do to constrain the possible settings of missing values in this case.
Note, for example, we cannot conclude y5 differs from y4 by more
than ε, because suppression is based on the last transmitted read-
ing (as opposed to the reading from the previous timestep), and we
have no way of knowing when that occurred.

Nevertheless, it is straightforward to code a constraint (detailed
specification is rather tedious and omitted) that checks, given val-
ues y1 to y4, whether there would be a transmission at timestep
5 according to Supp(ε). Unfortunately, this constraint is com-
plex and non-linear. We check each sample with this constraint,
and reject the sample if the constraint is violated. In practice, we
found this additional constraint does not necessarily result in bet-
ter accuracy (because the constraint is not very tight), but does
increase the overhead of sampling significantly. Thus, in exper-
iments (Section 5), we ignore the combination of Supp(ε) and
Supp(ε)/Ack(r) with BaySail, and use BayBase instead.
Supp(ε)/C Consider the same sequence as above, but now sup-
pose the root receives counter values with y0 and y5, with differ-
ence between them equal to 3. Therefore, the base station can
conclude that two failures have occurred among the four miss-
ing values. Unfortunately, we do not which of the missing values
correspond to failures. Similar to the case above, we can code a
constraint that checks, given values y1 to y4, whether there would
exactly be two transmissions from timesteps 1 through 4 and one
transmission at timestep 5. We found two problems with this ap-

proach. First, the probability of generating a valid sample, which
requires that values are wide enough apart twice to induce the trans-
missions, is low; hence, many samples would be rejected. Second,
because valid samples can place the two failures anywhere within
the cluster, bounds on individual values are still not tight. For these
reasons, this redundancy scheme is dominated by the two below,
and we do not consider it further in experiments (Section 5).
Supp(ε)/T(r) Now, suppose the base station also receives times-
tamp information piggybacked with y5 that identifies y1 and y2 as
suppressions, and y3 and y4 as failures. We can derive following
constraints on the missing values:

|y1 − y0| ≤ ε, |y2 − y0| ≤ ε,
|y3 − y0| > ε, |y4 − y3| > ε, |y5 − y4| > ε.

Each generated sample that meets all these constraints is consis-
tent with the locations of suppressions and failures given by redun-
dancy. This redundancy scheme leads to much tighter bounds in in-
ference. Note, however, each constraint of the form |a−b| > ε rep-
resents the disjunction of two linear inequality constraints (a− b >
ε ∨ b − a > ε) because of the absolute value. Therefore, we do
not quite have a system of linear constraints. Generating a valid
sample that satisfies all these constraints is still a difficult task. In
practice, we find the rejection rate to be quite high, especially for
longer clusters of missing values. On the other hand, this redun-
dancy does reduce uncertainty more than Supp(ε)/C, so we still
study it carefully in experiments (Section 5).

Note that the degree of redundancy r may not be high enough
to distinguish all failures from suppressions in long sequences of
missing data. In that case, we treat the part for which we have
no failure/suppression information as discussed earlier for Supp(ε)
and Supp(ε)/Ack(r).
Supp(ε)/TD(r) Finally, suppose that the base station receives
direction bits 1 for each of y3 and y5 (indicating each of them in-
creased from the previous transmission) and 0 for y4 (indicating it
decreased). We can now derive the following constraints:

−ε ≤ y1 − y0 ≤ ε, −ε ≤ y2 − y0 ≤ ε,
y3 − y0 > ε, y3 − y4 > ε, y5 − y4 > ε.

Although sampling from a constrained multivariate distribution in
general is a difficult task, in this case the distribution is Gaussian
(Example 3) and all constraints are linear. This combination en-
ables us to apply a very efficient sampling method from [26]. Sup-
pose we need to sample a vector y from a k-variate Gaussian sub-
ject to a system C of m linear inequality constraints, i.e.:

Y ∼ NC(µ, σ2
Σ), where C = {y ∈ Rk : By ≤ b}.

Here, the m × k matrix B and the vector b of size m together
specify all constraints. In the example above, we have

B =

2

6

6

6

6

6

6

6

4

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 −1 1
0 0 0 1

3

7

7

7

7

7

7

7

5

, y =

2

6

6

4

y1

y2

y3

y4

3

7

7

5

, b =

2

6

6

6

6

6

6

6

4

−y0 + ε
y0 + ε
−y0 + ε
y0 + ε
−y0 − ε
−ε

y5 − ε

3

7

7

7

7

7

7

7

5

.

The idea is to transform the sample space in such a way that we can
easily sample each component of the vector sequentially. To this
end, let A be a k × k matrix of full rank (obtained using Cholesky
decomposition) that satisfies AΣAT = I, where I is the identity
matrix. We transform y to z as follows: z = Ay. Then, using a
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Figure 5: Suppress(1.0)+BayBase.
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Figure 6: Suppress(1.0)/TD(8)+BaySail.
well-known property of the multivariate Gaussian, we have:

Z ∼ NC′ (Aµ, σ2
I), where C′ = {z ∈ Rk : BA

−1
z ≤ b}.

Note that components of z are now independent of each other,
which makes sampling easier. Applying the Gibbs sampling idea
again, we sample each component zj of z in turn conditioned on
all other components. Specifically, we draw zj from the univari-
ate Gaussian N(αj , σ

2), where αj is the j-th component of Aµ,
subject to C′. With all other components fixed, this system of con-
straints can be simplified into an interval bound on zj . Thus, the
task boils down to sampling from a truncated univariate Gaussian,
which does not involve expensive rejection. Finally, each sample
of z we have obtained is transformed back into the original space
with y = A−1z.
Beyond Value-Based Temporal Suppression Suppose a node
bases suppression not by evaluating |yt − ȳt| ≤ ε, but more gen-
erally by |yt − f(ȳt)| ≤ ε, where f predicts the current reading
based on ȳt, data that has been transmitted previously. Techniques
for deriving constraints can be extended in a straightforward man-
ner. The efficient sampling method for the TD(r) case also ap-
plies when f is linear. However, when f is non-linear we may still
have to resort to rejection sampling. We believe that in practice
most suppression schemes will be linear, because they run on sen-
sor nodes and therefore cannot be very complex or expensive to
evaluate. Nevertheless, it would be interesting to investigate more
efficient inference techniques for non-linear constraints.

5 Experimental Evaluation
The goal of this section is to compare the presented reporting and
inference schemes. We examine the fundamental trade-off between
energy cost and quality of inference to determine how well each
scheme exploits its energy spent (i.e., the most “bang-for-the-buck”)
and to understand the influence of process variance and failure rate.
We also compare the improvement made in BaySail when shifting
from rejection-based to direct sampling, emphasizing the impor-
tance of out-of-network efficiency. Finally, we show results ob-
tained by spatial inference for a spatio-temporal model.

We have evaluated the presented reporting and inference schemes
through a combination of implementation and simulation.
Implementation As stated, one advantage of application-level
redundancy is its ease of implementation. In fact, we have im-
plemented suppression and redundancy in TinyOS with a matter of
less than 50 lines of additional code on top of an existing tutorial
application [2], and successfully executed the resulting applications
on Mica2 motes [7]. We have also implemented lower-level redun-

dancy with acknowledgments and retransmissions; while also not
requiring much additional code, this effort necessitated understand-
ing lower-layer code. Finally, in executing these applications, we
have observed message failure rates that justify the settings made
in experiments.

We have implemented BayBase and BaySail (using both direct
and rejection-based sampling) in R [1]. These run on a standard
computer that serves as the base station of the sensor network.
Simulation The above efforts supply all necessary in-network
and out-of-network code. Nevertheless, to fully control the ex-
perimental environment (i.e., maintaining consistency across runs,
verifying inferred results against true readings and process param-
eters, varying parameters and failure rate, etc.), we simulate raw
sensor readings and transmission failures using the soil moisture
model given in Section 2. This, rather than an actual sensor node,
provides input to the BaySail or BayBase inference code.

We focus on a subset of reporting/analysis schemes:

Samp(1/τ ) + BayBase, Supp(ε)/Ack(r) + BayBase,
Supp(ε)/T(r) + BaySail, Supp(ε)/TD(r) + BaySail.

Packet Sizes In general, our goal is to produce as precise an in-
ference as possible, while transmitting as few bytes as possible.
The packet sizes, taken from standard Tiny OS message types and
the B-MAC protocol [25], are as follows:

Component Size (bytes)
Lower-layer overhead 4

Application 6
Acknowledgment 5

Timestamp(r) r
Direction(r) r + 1 bits

All schemes must transmit at least the overhead and application
components for each message. For Supp(ε)/Ack(r), the receiver
must also transmit an acknowledgment, while the sender poten-
tially must retransmit the overhead and application portions. Fi-
nally, Supp(ε)/T(r) augments its messages with r additional times-
tamps; Supp(ε)/TD(r) adds both timestamps and direction bits.
Missing Data Series As a warm-up, it is helpful to visualize
the benefit gained with Supp(ε)/TD(r) and BaySail. We com-
pare competing reconstructions of a cluster of three missing val-
ues, each of which is a suppression. The two endpoints (at time 10
and 14) have been received by the root. The value-based tempo-
ral scheme uses ε = 1.0. Figure 5 plots samples of the posterior
distribution for each of the three values using BayBase. These are
conditioned only on the endpoints and process parameters. Fig-
ure 6 plots samples for the same three values, but using BaySail,
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Figure 7: Reporting cost comparison.
with sufficient redundancy to identify each value as a suppression.
Again, the depicted boxes stretch from the 25th to 75th quartiles of
each posterior distribution. Reconstructions using linear interpola-
tion and stepwise constant interpolation are shown on both figures
with dashed black lines (linear the upper, stepwise the lower). The
true sequence of values is shown with a solid black line.

The benefit of redundancy is clear between Figures 5 and 6.
When the base station knows nothing about the missing values, it
must produce a wide range of samples for each timestep. When
it knows the values are suppressions, the samples are concentrated
in a tighter, bounded range. Note that while no failures occur in
this sequence, the possibility that they may have adds uncertainty
to BayBase’s inference. BaySail, which alone rules out the possi-
bility, dramatically reduces uncertainty.

Linear interpolation assumes the missing readings increase at a
constant rate between two received readings. Stepwise constant in-
terpolation assumes the readings remain unchanged until the next
received one; it effectively acknowledges the suppression scheme,
but ignores failure, assuming none has occurred. The true sequence,
as shown in the figure, is somewhere in between. Neither of these
approaches gives measures of uncertainty, which is troublesome
given they are often simply incorrect.

This example is subjective, and does not reflect that we must pay
an additional cost for the redundancy that tells us the missing values
are suppressions. To formally evaluate these approaches, we must
compare their energy costs and the quality of their inferences. We
conduct such comparisons over the remainder of this section.

5.1 Quantitative Analysis
We measure scheme cost as the number of bytes transmitted over
the course of time. The energy spent by the network is tied to the
number and size of transmissions. Measuring quality of inference
is trickier. A simple option for generated samples of either miss-
ing readings or process parameters is to compare the error between
the mean of the posterior distribution and the actual value. This
comparison can be misleading sometimes; for example, the mean
of a bimodal distribution is very unlikely to be near the true value.
We use the alternative of high density region (HDR) interval length,
which provides a measure of uncertainty in a distribution for a read-
ing or parameter. Informally, HDR(fZ , θ) finds, for the probability
density function fZ of a random variable Z, a set of intervals such
that the probability of Z lying in any of these intervals is θ (where
0 < θ ≤ 1), and the total length of the intervals is minimal. The
lower the total length, the more certain the fit.

Reporting Costs We first examine reporting costs absent of sub-
sequent analysis. We use a series of 500 readings, generated with
process parameters φ = 0.9 and σ2 = 1.0. Figure 7 plots ε
versus bytes transmitted for a number of reporting schemes. We
plot a number of r and τ settings. Our first task is to understand
the relationship between sampling and suppression, without redun-
dancy. We see that Supp(ε)/T(1), which has almost no redun-
dancy, crosses Samp(1/2) between ε = 0.8 and 1, and continues
to decrease in cost as ε further increases. In general, the lower
ε, the more often Supp(ε)/Ack(r) and Supp(ε)/T(r) transmit.
Samp(1/τ ) is obviously unaffected by ε, transmitting at a regular
interval regardless.

We next consider the marginal cost of redundancy. As evidenced
by Supp(ε)/T(r), the cost of adding additional timestamps is low
compared to varying ε. The price of redundancy appears higher
for Supp(ε)/Ack(r). Our strategy of piggybacking redundancy on
existing messages appears cost-effective, though this claim is not
complete until we examine quality of inference. Because ε = 1.0
appears to be a good point of comparison across reporting schemes,
we use it in the next few experiments. Intuitively, lower ε values
improve inference for suppression schemes, but may induce too
much reporting to make a reasonable comparison against sampling.
Cost vs. HDR We now measure the trade-off between reporting
cost and HDR length as a measure of inference accuracy. Car-
rying over the process settings from the previous experiment and
ε = 1.0, we have produced three time series of 500 readings, and
present results averaged over these. The average mean and standard
deviation over the readings are 0.94 and 3.19. For suppression, on
average, transmissions are attempted in 40% of the timesteps, for a
rate slightly lower than Samp(1/2). Figures 8 and 9 plot the trade-
off for the three schemes. The former plots this trade-off averaged
over the inferred samples for missing raw readings, while the lat-
ter averages over the samples for model parameter φ. Note that
the number of bytes transmitted, shown on the horizontal axes, is a
variable dependent on the redundancy level (r or τ ). Since redun-
dancy level settings are not equivalent across reporting schemes,
we use bytes transmitted to make a fair comparison. For clarity,
we label each plotted point with its redundancy level. HDR cov-
ers 80% of the posterior distribution. Finally, note that measuring
HDR length is only useful if the inference is correct; we have veri-
fied that the HDRs indeed capture the actual value 80% of the time.

Both figures show from best to worst performance, a relative or-
dering of Supp(1.0)/TD(r), Samp(1/τ ), and Supp(1.0)/Ack(r).
The magnitude of improvement is far more dramatic for the missing
readings than φ. In the case of the missing readings, we make two
major observations. First, as initially suspected, the use of retrans-
missions and acknowledgments incurs significant extra cost beyond
sampling. Application-level redundancy, piggybacked on existing
messages, incurs only slight cost beyond sampling. The second ob-
servation is that as we increase the number of allowable retransmis-
sions, and push the effective failure rate toward zero (evidenced by
the fact that increasing retransmissions beyond 4 does not greatly
increase cost), uncertainty does not continue to decrease. The rea-
son is that even as we intuitively expect most non-reports to be sup-
pressions, the base station still cannot ascertain the cause for any
particular non-report. Because of difficulty in devising good fail-
ure models, there is no principled way to assign suppression/failure
probabilities. In contrast, with Supp(ε)/TD(r), when given a suf-
ficient redundancy level, we know definitively whether non-reports
are suppressions or failures. This knowledge reduces uncertainty
to a degree that Supp(ε)/Ack(r) cannot achieve.

Though Figure 9 shows the same relative order of performance
among schemes, the small magnitude of improvement suggests for
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purposes of inferring process parameters, it does not matter which
is used. We do not yet know if this observation is an artifact of
the process in use, or universally true. In either case, if a system
user is only interested in process parameters, there is no need to
support collection of all readings; we can likely design lower-cost
algorithms using in-network processing to just return parameters.
Process Variability and Failure Rate The next set of experi-
ments examine the influence of process variance and transmission
failure rate on performance. Intuitively, as they increase, we expect
performance to degrade.

Figure 10 plots variance versus average HDR length for a num-
ber of Supp(1.0)/TD(r) settings, as well as Samp(1/2) and
Supp(1.0)/Ack(2) for reference. We see that the advantage of
Supp(1.0)/TD(r) over the other schemes carries across different
variance values. Across all Supp(1.0)/TD(r) settings, as variance
increases, HDR length increases. Increased variance induces an in-
creased number of transmissions and, as a consequence, failures.
Uncertainty is always greater for missing values identified as fail-
ures. In addition, when redundancy is not sufficient to identify
some missing values, uncertainty increases. Hence, the effect of
variance is dampened in higher redundancy settings.

Figure 11 plots failure rate versus average HDR length for
Supp(1.0)/TD(r), as well as Samp(1/2) and Supp(1.0)/Ack(2).
As for variance, Supp(1.0)/TD(r)’s advantage holds, and HDR
length increases with failure rate. Once again, while all schemes
are negatively affected by higher failure rates, higher redundancy
rates dampen the effect.

5.2 Effect of Redundancy on Inference
As discussed in Section 4.2, one important factor that needs to be
considered in choosing the type of redundancy for BaySail is how it
affects the efficiency of out-of-network inference. If the type of re-
dundancy added translates into constraints that are difficult to work
with (e.g., C and T(r)), we may need to resort to sampling by rejec-
tion. As the length of a cluster increases, it becomes increasingly
difficult to draw samples that satisfy all constraints, so sampling
takes longer. In our implementation, after a specified number of
unsuccessful attempts to generate a valid sample (which we call re-
jection threshold), we have to give up and generate a sample that
assumes nothing about the missing values. In contrast, TD(r) adds
just an additional byte per message (up to r = 8) compared with
T(r), and TD(r) allows to use a much more efficient direct sam-
pling method without rejection. We now examine the advantages
gained by moving from T(r) to TD(r).

Figure 12 plots ε versus running time (log-scaled) for
Supp(1.0)/T(r) and Supp(1.0)/TD(r). The redundancy is suf-
ficient to identify all non-reports as suppressions or failures. The
main point to discern is that the direct sampling method allowed
by TD(r) is at least two orders of magnitude faster than rejection-
based sampling used in conjunction with T(r). Direct sampling
typically finishes in 5 minutes. Note that ε and running time are
directly correlated. As ε increases, the number of transmissions
decreases, resulting in longer clusters of missing values, and there-
fore longer processing time. The effect is much more severe for
rejection-based sampling. The plotted points for Supp(1.0)/T(r)
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are labeled with the number of times for which we hit the rejection
threshold (10000 in this case). Naturally, running time suffers the
longer BaySail is tied up generating samples. We see some “lucky”
cases where ε = 0.3 and 0.7. Direct sampling does not suffer from
this erratic behavior.

TD(r), through use of direction bits, also has the advantage of
reducing the possible ranges in which missing values can be. Fig-
ure 13 plots ε versus HDR length for the non-reported readings.
TD(r) provides significantly less uncertainty than T(r). Note both
outperform BayBase. Once again, rejection-based sampling is er-
ratic, with “lucky” points providing tighter HDR.

Supp(ε)/TD(r) satisfies the dual criteria of developing redun-
dancy that 1) is lightweight to deploy and results in small number
and size of transmissions, and 2) allows for computationally effi-
cient out-of-network statistical inference. We moved to this non-
intuitive scheme after progressing through schemes that satisfied
the first criterion, but not the second. The improvement is dramati-
cally shown in Figure 12. For minuscule additional in-network cost
(still meeting the first criterion), we improve on the second criterion
by orders of magnitude.

5.3 Spatial Inference
All experiments presented so far have focused on a single node. We
now examine a spatial version of BaySail involving multiple nodes,
and verify the intuition that reports from nearby nodes should serve
as spatial redundancy and reduce uncertainty. In this experiment, 9
nodes are laid in a 3 × 3 grid, and each node independently runs
Supp(1.0)/TD(8). Figure 14 compares average HDR length for
missing readings at each of the nodes using standard single-node
BaySail and the spatial version. We do observe a improvement
across all nodes, achieved through spatio-temporal inference, rather
than solely temporal inference. Further, observe the “corner” nodes
1, 3, 6, and 9, with fewer neighbors in the grid, leverage spatial
redundancy the least and generally show the least improvement.
Meanwhile, the center node 5 shows the most improvement.

Note that while inference is spatial in this experiment, the sup-
pression scheme is not. Recall from Section 3 that we foresee
spatio-temporal suppression schemes where nodes communicate
in-network to remove redundancy. Work on incorporating such
suppression schemes in BaySail is still ongoing.

6 Related Work
Suppression Temporal suppression as described in this paper has
roots in adaptive range caching [24]. In this server-cache setting,
caches field queries for values, while the server fields value up-
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Figure 14: Independent vs. spatial inference.
dates. To minimize cache updates, each cache stores a range (si-
multaneously known at the server) that encompasses a value. The
server only transmits updates when a value escapes its cached range.
This work is followed by complementary work where the data sources
are distributed [23]. Similar work has emerged for sensor networks,
now exploiting the spatio-temporal correlation found in deploy-
ments [18, 28, 5, 27]. Using different strategies, these approaches
avoid transmission when readings can be accurately predicted.
Missing Data There exist a number of ways to address missing
data without classifying them as suppressed or failed. The simplest
is to interpolate missing values from the reported ones in some fash-
ion. For example, linear regression fits lines using reported values.
Data may not realistically transition in this fashion, however. The
main weakness of interpolation is the lack of uncertainty measure-
ment it gives in reconstruction. At times, interpolation may provide
results that are close to, for example, the posterior mean computed
by Bayesian techniques. Nevertheless, interpolation by itself pro-
vides no measure of confidence in its results, which is problematic
to statistical modelers who need to analyzes the data subsequently.

Conceptual reconstruction [3] seems to also assume that missing
data is result of random deletion (at least from the experiments). It
assumes that the remaining data is somehow “representative” of the
original data, which in general may not be true if the missing data
is engineered, as with suppression.

The Ken [5] framework maintains node models in and out of
network, using suppression to only notify the root when there are
significant changes. This approach is as vulnerable to failure as ba-
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sic suppression. They rely on the Markovian nature of their models
to assume any failures will eventually be corrected with future up-
dates, and not be affected by the missed ones. They propose peri-
odic heartbeat updates to ensure models cannot be incorrect indef-
initely. This approach is not suitable for raw value reconstruction;
for any timestep where the model has suffered from failures and is
incorrect, the corresponding raw value samples will be wrong. Our
use of redundancy lets us tolerate incorrect stretches of data. For
parameter inference, we allow for more general models where past
data changes do affect them and cannot be neglected.

Deshpande et al. [10] suggest Bayesian methods for learning a
model of network behavior over time, such that the model can even-
tually be largely substituted for actual network data in query pro-
cessing. Occasional pull-based acquisitions are needed when the
model alone is not sufficient. This can be viewed as an alterna-
tive strategy for supporting queries without continuous messaging.
Since messaging is pull-based, any non-reports are detected as fail-
ures. In BaySail we never trust models enough to use them in lieu
of data; rather, we use them in conjunction with the low-cost, but
valuable information we get from redundancy.
Constraints Khoussainova et al. [20] suggest an RFID scenario
similar to ours. RFID readers provide constant streams of tags in
their area, but can sometimes miss reporting some tags. Thus, if a
particular tag is read by no readers in some timestep, the tag pre-
sumably may be anywhere. They provide constraints to aid in query
processing such as, if the tag was present at a reader one timestep
in the past, the tag is said to still be present there with 30% prob-
ability. These constraints are chosen apart from the data; in our
case, the constraints used in reconstruction are drawn from the net-
work itself as redundancy along with data. This approach also does
not address historical reconstruction. We argue a temporal model
supporting historical reconstruction, in the style of BaySail, would
be very useful. For example, in the case a tag is assigned a 30%
chance of being present in the first timestep the tag is missing, if it
reappears in subsequent timesteps, the probability can be retroac-
tively raised; likewise, if it does not reappear, it can be lowered.

ESP [19] is a language for building methods for cleaning failure-
affected, or “dirty,” sensor data. The language supplies a series of
cleaning methods and the user can declare constraints that should
hold during processing. Once again, in our setting constraints are
not supplied by the user, but are in the data received from the net-
work. Furthermore, we make use of constraints while doing data
reconstruction and model parameter inference simultaneously, in-
stead of performing these tasks in stages, as discussed in Section 2.
Nevertheless, the language proposed by ESP may be helpful in fur-
ther post-processing, e.g., transforming the results of BaySail in-
ference to a format of users’ choosing.
Failure Reduction Our approach is to make sensor networks
more robust to failure by reducing the system’s reliance on reliable
message delivery. The complementary approach, typically handled
at lower network levels, is to increase the probability transmitted
messages reach the root. A fair amount of work has been done on
identifying the causes of failure and suggesting methods for reduc-
ing it. One approach is to identify reliable communication edges,
and limit the network topology to using only them [30, 31]. Hull
et al. point to congestion as a major cause of failure and suggest
several techniques for lowering nodes transmission rates and en-
suring fairness [17]. This latter finding was from an application
constantly generating messages, while we expect suppression to
reduce the threat of congestion. These lower-level efforts are or-
thogonal to our approach, and it is certainly possible to use them in
conjunction. The important point is all efforts that add cost to deal
with failures (i.e. application-layer redundancy and MAC-layer re-

transmission) must be aware of each other to coordinate their target
point in the trade-off between energy cost and accuracy.
Sensor Application Robustness There has been a great deal of
work on making sensor network applications more robust to fail-
ure. Two examples are the sketch [6] and synopsis diffusion [22].
These approaches support duplicate-insensitive aggregate compu-
tation. While computations such as MAX are easy, aggregates such
as SUM and COUNT are non-trivial. Nodes can now transmit mul-
tiple copies of values to hedge against failure, while not affecting
the final result. These techniques do not lend themselves to non-
aggregate data collection. Neither structure can be used to recover
the particular values inserted into them. Further, while in-network
aggregation allows us to send multiple copies of values, and still
bound the size of messages to be constant or quite small compared
to network size, we do not have that luxury here.

The tributary-delta approach [21] addresses the trade-off between
standard tree-based aggregation, which risks losing an entire sub-
tree’s contribution due to a single failure, and duplicate-insensitive
synopsis-based aggregation, which is more robust against failure
but uses larger messages and provides only approximate answers.
The intuition is to initially transmit single copies, but send multiple
copies near the top of the routing tree, when each aggregate is con-
stituted from many values. The overall number of extra messages
amortized over the number of initial single values is low. Once
again, this approach is not applicable in our case, where we cannot
aggregate. Nevertheless, the approach provides some insight into
the idea of choosing different redundancy levels for different nodes,
which we currently do not do but plan to investigate as future work.
Database Support for Uncertain Data The emergence of sen-
sor networks, as well as other venues where data collection is itself
an uncertain process, has drawn interest in representing probability,
uncertainty, and lineage in databases. Some examples include Mis-
tiQ [9], MauveDB [12], and Trio [4]. While out of the scope of this
paper, determining how to represent data collected and processed
with suppression and BaySail is an interesting problem. Our pro-
cessing gives us a wealth of derived probabilistic data, backed by
a small amount of received messages and the suppression scheme
itself. The problem of efficiently storing this data and metadata and
making them available for query processing is challenging.

7 Conclusion
Continuous data collection is an important problem in sensor net-
works. Continuous reporting is not energy-efficient. In contrast,
suppression can drastically cut down the number of reports, and let
the root derive non-reported readings within ±ε of the actual. Sen-
sor networks are prone to message failure, however, which creates
ambiguity at the root: Is a non-report a suppression or failure?

In order to develop a principled approach to resolving uncer-
tainty in the presence of failures, we have proposed BaySail. This
framework combines in-network application-level redundancy and
out-of-network statistical inference to produce a posterior distribu-
tion for missing readings and model parameters we seek to esti-
mate. Our approach is Bayesian and provides a measure of un-
certainty that single-point estimates cannot. Novel to Bayesian in-
ference, it exploits redundancy and knowledge of the suppression
scheme, leading to much lower result uncertainty. We have inves-
tigated several approaches to adding redundancy back to reporting,
and found that carefully designed application-level redundancy is
simple to implement and more effective than sampling or lower-
level acknowledgments and retransmissions. Among the schemes
considered, we have found Supp(ε)/TD(r) to offer the best com-
bination of low transmission costs and precise, efficient inference.
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Future Work We believe the BaySail framework is general
enough to support any suppression scheme with redundancy; it is
simply a matter of properly setting inference constraints. Neverthe-
less, as apparent from our experience in the work presented here,
finding the right scheme is non-trivial. We plan to address more
sophisticated spatio-temporal schemes to leverage their higher po-
tential for reducing communication. These schemes will require
new strategies for redundancy and inference. We must be able to
cope not only with failure of transmissions to the base station, but
also within the network, among nodes that use non-local values
in making suppression decisions. In model-based suppression, we
may want to dynamically adjust the suppression model, which re-
quires updated model parameters to be transmitted between a node
and the root; in this case, we must cope with not only missing read-
ings, but also parameter updates. Our work on these problems is
still ongoing.
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