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ABSTRACT
Real-world datasets exhibit a complex dependency structure among
the data attributes. Learning this structure is a key task in auto-
matic statistics configuration for query optimizers, as well as in data
mining, metadata discovery, and system management. In this pa-
per, we provide a new method for discovering dependent attribute
pairs based on query feedback. Our approach avoids the problem
of searching through a combinatorially large space of candidate
attribute pairs, automatically focusing system resources on those
pairs of demonstrable interest to users. Unlike previous methods,
our technique combines all of the pertinent feedback for a specified
pair of attributes in a principled and robust manner, while being
simple and fast enough to be incorporated into current commercial
products. The method is similar in spirit to the CORDS algorithm,
which proactively collects frequencies of data values and computes
a chi-squared statistic from the resulting contingency table. In the
reactive query-feedback setting, many entries of the contingency
table are missing, and a key contribution of this paper is a variant
of classical chi-squared theory that handles this situation. Because
we typically discover a large number of dependent attribute pairs,
we provide novel methods for ranking the pairs based on degree
of dependency. Such ranking information, e.g., enables a database
system to avoid exceeding the space budget for the system catalog
by storing only the currently most important multivariate statistics.
Experiments indicate that our dependency rankings are stable even
in the presence of relatively few feedback records.

1. INTRODUCTION
Real-world datasets typically exhibit strong and complex depen-

dencies between data attributes. Discovering this dependency struc-
ture is important in a variety of settings. For query optimization in
a relational database management system (DBMS), discovery of
highly dependent columns is crucial in order to avoid erroneous
independence assumptions during selectivity estimation. Such as-
sumptions can lead to selectivity estimates that are too low by or-
ders of magnitude, resulting in highly suboptimal query execu-
tion plans. Commercial database systems currently use knowl-
edge about dependent attributes for statistics configuration, that is,
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for determining which sets of multivariate statistics to maintain in
the system catalog. Although automatic statistics configuration is
the primary motivation behind our research, the potential applica-
tions of methods for dependence discovery are much broader. In
data integration problems, discovering the dependency structure is
a key step when developing mappings between different schemas.
As another example, system monitoring products often maintain a
database of joint observations, over time, of various system metrics,
for purposes of post-mortem problem analysis. Discovery of highly
dependent metrics can play a key role in both root-cause analysis
of system failures, as well as in the design of system monitors [14].

One approach to testing for dependency between attributes A and
B is to proactively examine attribute-value pairs (a,b) from the
dataset, and use the observed frequencies of the pairs to test for
a dependency. The CORDS method for dependency detection [16]
follows this approach, using essentially a chi-squared test to de-
cide whether a dependency exists. CORDS uses random sampling
techniques to make the method scale to large tables, and heuris-
tic pruning methods to limit the number of attribute pairs consid-
ered. Proactive methods such as CORDS, although very useful, do
not by themselves provide a complete solution to the dependency-
detection problem, especially in very large databases. Specifically,
the space of candidate attribute-pairs can be combinatorially huge,
overwhelming any pruning strategy, so that this space cannot be
thoroughly explored.

Reactive methods—in which detection of dependencies is based
on query feedback—complement proactive methods by focusing
system resources on attributes that are of demonstrable interest to
the user, without the need for explicit workload profiling. Reac-
tive methods have the additional desirable property that dependence
testing is based on exact, rather than sampled, frequencies. As dis-
cussed in [23], the feedback information can be collected with min-
imal overhead; even if some dependent attributes escape detection,
it would certainly be wasteful not to opportunistically exploit this
readily available information for purposes of statistics configura-
tion. For these reasons, products such as DB2 have begun to exploit
feedback information to automate statistics collection [1].

An effective solution to the dependency-detection problem can
be obtained by combining the reactive and proactive approaches.
The idea is to use a reactive feedback-based method for reasons
of efficiency, and then supplement this method with a proactive
method such as CORDS, run either periodically or in throttled back-
ground mode [1], to help provide robust selectivity estimates during
the reactive method’s learning period, or when the workload sud-
denly changes. The focus of this paper is on providing the first in-
gredient of this hybrid approach: an effective and practical method
for feedback-based dependency detection.

There is much room for improvement in the simple “correlation
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analyzer” (CA) method, described in [1], that has hitherto been
used by DB2 for feedback-based dependency detection. The CA
method examines each available feedback observation for a given
pair of attributes. For example, a “feedback observation” for the
attribute pair (Color, Year) might comprise the number of tu-
ples that satisfy each of the predicates (Color=’red’), (Year=
’2005’), and (Color=’red’ AND Year = ’2005’). If the re-
lationship between these three cardinalities deviates enough from
what would be expected under the independence assumption, then
this feedback observation would be considered as providing evi-
dence for a dependency between Year and Color. Other feedback
observations would correspond to other possible specific (Color,
Year) combinations; if “enough” indicative feedback observations
are observed, then a dependency is declared. Although this method
is simple and fast enough to be used in a commercial product, it
suffers from several drawbacks. One apparent difficulty with the
CA method is that the individual cardinalities on Year and Color

may not both be available. The solution to this problem is not de-
scribed in [1]; we present a solution in Section 5. Another issue
is that CA method for determining the critical degree of “devia-
tion from independence” is completely ad hoc, as is the number of
non-independent feedback observations required to declare a de-
pendency between an attribute pair. The resulting behavior of the
method can be unstable, with the outcome being unduly influenced
by one or two “outlier” feedback records. In contrast, our new
method considers all of the feedback records pertaining to Year

and Color in a principled manner.
Another approach to detecting dependencies from feedback, ly-

ing at the other end of the complexity spectrum, is the SASH al-
gorithm [18]. The “restructuring phase” of SASH uses feedback
to build a graphical statistical model (a “junction tree”) that repre-
sents the dependency relationships. This graphical model serves to
decompose the set of all attributes into mutually disjoint partitions.
A multivariate, feedback-based histogram is maintained on the at-
tributes within each partition, and an independence assumption is
used to relate attributes that lie in different partitions. The struc-
ture of the graphical model is chosen so as to minimize a scoring
function that measures the discrepancy between observed and esti-
mated selectivities over a query workload; the algorithm performs
essentially a steepest descent search through the space of candidate
model structures. Although SASH can be very accurate, and al-
lows for a very flexible representation of dependency structure, the
scoring operations required when searching for the best model can
be prohibitively expensive. The cost of scoring is exacerbated even
more when more sophisticated histograms, such as the self-tuning
histograms in [22], are used. The scoring costs—together with the
tight coupling between determination of the best graph model and
selection of the number of buckets in the histograms—make this
approach difficult to incorporate into commercial DBMSs. More-
over, in some applications, such as system monitoring, it suffices
to identify dependent attributes, and the additional cost and com-
plexity of maintaining histograms (unavoidable in SASH), is not
needed by the user.

This paper proposes a new approach to feedback-based depen-
dency detection that overcomes the deficiencies of the CA approach
while being simple and fast enough to be used in commercial prod-
ucts. Our method is intermediate in complexity between CA and
SASH. We roughly follow the approach in CORDS, in that, for
each candidate attribute pair, we obtain a “contingency table” of
joint and marginal frequencies, and use this table to test for a de-
pendency. The key technical challenge is that, because our contin-
gency table is based on feedback, there are many missing entries,
e.g., values of Year and Color that the queries did not reference.

This means that we cannot, as in [16], simply appeal to the clas-
sical statistical theory surrounding the chi-squared test. A major
contribution of this paper is a new variant of chi-squared theory
(see Theorem 1 below) that is tailored to the feedback setting. The
resulting algorithm is well suited to the task of automated statis-
tics configuration. Because the method is not tied to any particular
type of multivariate statistic, it can easily be coded into an exist-
ing DBMS, and our experiments indicate that the method is fast
enough to yield acceptable performance for off-line analysis of the
feedback warehouse.

The technique can also be used in other situations where depen-
dency structure needs to be discovered, such as the mining and
monitoring applications mentioned above. Indeed, if the feedback
observations do not need to be “completed” (in the sense of Sec-
tion 5 below), then our method does not require that the feedback
warehouse contain optimizer estimates of selectivities, but merely
the observed selectivity values. This relaxed requirement contrasts
with feedback-based methods such as LEO [23] and SASH [18],
which are specifically targeted at query optimization.

Because dependence between attributes is so prevalent in the
real world, any dependency-detection method is likely to discover a
large number of dependent attribute pairs. Thus the real task is of-
ten to rank discovered pairs in decreasing order of dependency. In
the context of statistics configuration, we can then maintain mul-
tivariate statistics on the “most dependent” attributes, subject to
memory and processing constraints. The CA method uses an ad hoc
dependency measure comprising the sum of errors over all feed-
back observations. As shown experimentally in Section 9, this ap-
proach can lead to erratic dependency rankings that are highly sen-
sitive to the number and nature of the available feedback records.
For CORDS, the test statistic for the dependency analysis can eas-
ily be normalized into a classical dependency measure called the
“mean squared contingency” [7] that can be used for ranking. In
our setting of incomplete contingency tables, normalization is more
complicated. We provide a theoretically rigorous normalization
method, as well a number of ad hoc normalizations that are eas-
ier to implement and numerically more stable. Fortunately, our ex-
periments indicate that all of the resulting rankings are fairly con-
sistent, so that, among a collection of “reasonable” normalizations,
the particular choice of normalization is not all that critical. Our ex-
periments also show that the resulting rankings are extremely stable
with respect to the number and processing order of feedback obser-
vations. Finally, we also show that the new ranking measures lead
to a promising method of robustly pruning away independent or al-
most-independent attribute pairs, so that attention can be focused
on the detailed analysis of the remaining pairs.

The rest of the paper is organized as follows. After reviewing
related work in Section 2, we give some background and introduce
our technical notation in Section 3. In Section 4 we present the new
methodology. Sections 5 and 6 address issues related to missing
and inconsistent feedback. The dependency detection algorithm is
given in Section 7, and our ranking methods are given in Section 8.
Section 9 describes the results of an empirical study, and Section 10
contains our conclusions. An appendix contains the proof of our
key statistical result.

2. RELATED WORK
The problem of discovering dependency structure has been stud-

ied by the database community in the context of automatic statistics
configuration and maintenance. Proactive approaches for determin-
ing sets of attributes on which to maintain multivariate statistics in-
clude CORDS [16]—as discussed in the introduction—as well as
the methods in [9, 10]. The latter methods build statistical mod-

831



els that represent the dependency structure, and are based on a
full off-line scan of the data (unlike CORDS, which is based on
sampling). The methods in [9, 10] are primarily oriented toward a
specific type of multivariate statistic, namely histograms; CORDS
is agnostic about the specific statistic used, as is our current ap-
proach.1 Proactive algorithms have also been proposed for specific
kinds of dependencies, such as exact and approximate functional
dependencies [15] and fuzzy algebraic constraints [13]. The data
mining community has also looked at methods for discovering cor-
related attributes, typically based on a full scan of the data; see, for
example, [6, 25].

As discussed in the introduction, the two main methods for dis-
covering dependencies using feedback are the CA method in [1]
and the SASH method [18]. SASH, as with the proactive methods
in [9, 10], is oriented towards histograms, although the framework
presented in [18] could potentially encompass other multivariate
statistics. There has also been recent work on maintaining multi-
variate histograms based on query feedback [4, 22]; these methods
require, however, that the sets of attributes on which to maintain
the histograms be chosen a priori.

An intermediate approach along the proactive/reactive spectrum
is described in [3, 5]. The given methods determine the set of col-
umns on which to create statistics by analyzing the sensitivity of
query plan selection to certain statistical parameters. The input
to these methods comprises essentially a specified query workload
and a set of catalog statistics that have been gathered previously.
Neither actual nor observed selectivities are used in the calcula-
tions.

Recent work in system monitoring [14] indicates another poten-
tial application of the results in this paper. The idea is to mine a
historical database of tuples of the form 〈t,m1(t),m2(t), . . . ,mk(t)〉,
where t is a measurement time and mi(t) is the value of the ith sys-
tem metric at time t. Here mi(t) might be the utilization of a disk or
the number of active threads in a software application. Many sys-
tem anomalies manifest themselves as departures from the usual
dependency structure, e.g., when m1 = “packets sent by process 1,”
m2 = “packets received by process 2,” and there is a problem with
the network connection between the two processes. Such anoma-
lies can only be detected by setting up a monitor that jointly tracks
the two metric streams. The work in [14] uses a proactive approach
to identify candidate sets of streams for joint monitoring; the cur-
rent technology can be used to identify important sets of metric
streams to monitor, based on analytical queries that users execute
over the historical database during the course of problem analysis.
Such a reactive approach might help address the scalability chal-
lenges inherent in the proactive approach.

3. PRELIMINARIES
In this section, we motivate our results by outlining the statistics-

configuration setting in which our problem arises, give a precise
problem definition, outline our assumptions, and describe both the
CA method and CORDS in more detail.

3.1 Problem Context: Statistics Configuration
As is well known, even the best query optimizers can produce

selectivity estimates that are off by orders of magnitude, often due
to erroneous assumptions of independence between attributes. The
LEO (LEarning Optimizer) approach [23] was originally proposed

1We note that there are many types of multivariate statistics besides
histograms, ranging from simple “column-group statistics” as de-
scribed in [16] to more sophisticated statistics such as wavelets [24]
and sketches [11].
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Figure 1: System architecture for statistics configuration

to combat poor optimizer estimates by exploiting query feedback.
An evolved version of this methodology has been incorporated into
DB2 LUW, and is outlined in [1]. A simplified2 version of the sys-
tem architecture is shown in Figure 1. As queries are processed,
the system records the optimizer’s cardinality estimates, as well as
the actual observed cardinalities, and populates a query feedback
warehouse with these (estimate, actual) pairs. The warehouse is
periodically mined (off line) using the CA analysis technique men-
tioned previously. Based on the analysis, the RUNSTATS statistics-
collection utility may be instructed to collect multivariate “column
group” statistics; the instructions are transmitted to RUNSTATS
via its “profile” (i.e., its configuration file). The work described
in this paper was originally motivated by the need to improve the
mining portion of the feedback loop (indicated by a dashed line in
Figure 1), specifically, the analysis component.

3.2 Problem Definition
Our goal is to detect dependencies between attributes. By “de-

pendency,” we mean a departure from the “independence” condi-
tion

fαβ = fα· f·β (1)

for α ∈ DA and β ∈ DB. Here DX denotes the set of the dis-
tinct values for attribute X that appear in the dataset, fαβ denotes
the fraction of elements t in the dataset such that t.A = α and
t.B = β , and the quantities fα· and f·β are marginal sums: fα· =
∑β∈DB

fαβ and f·β = ∑α∈DA
fαβ . Thus fα· is the fraction of el-

ements t in the dataset such that t.A = α , and similarly for f·β .
Note that the relation in (1) is, strictly speaking, simply an asser-
tion about a factorization property of the frequency distribution of
values in the dataset; however, if an element X is selected randomly
and uniformly and (1) holds, then P{X .A = α and X .B = β } =
P{X .A = α }P{X .B = β }, so that (1) can be interpreted as im-
plying statistical independence in an appropriate sense. Moreover,
if one views the data in the dataset as having been generated by a
probabilistic mechanism that is characterized by independence of
attributes A and B, then one would expect (1) to hold, at least ap-

2The full system uses additional techniques, such as update-insert-
delete counters and goodness-of-fit tests, to determine when to up-
date statistics, and how to prioritize various types of updates. The
results described in this paper comprise “recommendations” to the
prioritization scheme; see [1] for details.
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proximately. As discussed below, we use this latter “superpopula-
tion” point of view to help us characterize dependency in a practical
sense.

Our method takes as input a set of observations O = {O1,O2, . . . ,
On }, where 1≤ n < |DA×DB| and each observation Oi concerns a
conjunctive predicate of the form “A = αi AND B = βi” with αi ∈
DA and βi ∈DB. Each sub-predicate that appears in the conjunctive
predicate, e.g., “A = αi” in the above example, is called a simple
predicate. We assume that (αi,βi) 6= (α j,β j) for j 6= i. Each obser-
vation Oi is a set having one of the forms (i) Oi =

{
fαiβi

, fαi·, f·βi

}
,

(ii) Oi =
{

fαiβi
, fαi·

}
, (iii) Oi =

{
fαiβi

, f·βi

}
, or (iv) Oi =

{
fαiβi

}
,

depending on the feedback that is available. In the context of statis-
tics configuration, the “dataset” may comprise a base table or, more
generally, a view computed from one or more base tables,3 and
the observations in O are derived from the query feedback records
(QFRs) in the feedback warehouse. As discussed in Section 3.1,
a QFR contains the observed cardinality for a (simple or conjunc-
tive) predicate, together with the optimizer’s estimated cardinality.
Whereas the quantity fαiβi

is guaranteed to be available from the
feedback warehouse—otherwise we would not be using this obser-
vation for the dependency analysis—the quantities fαi· and f·βi

may
or may not be available, depending on the query plans that were
chosen by the optimizer. Suppose, for example, that attributes A
and B correspond to columns in a table T . If the simple predicate
p2: “T.B = βi” was applied over the result of the simple predicate
p1: “T.A = αi” in a given query, then only fαi· and fαiβi

would
be available. If, on the other hand, (A,B) is a prefix of an index
on T and both p1 and p2 were applied simultaneously, then only
fαiβi

would be available. As a final example, fαi· and fαiβi
might

have been obtained as described above from an execution of some
query and f·βi

might also be available based on the execution of a
different query in the workload.

We assume throughout that the dataset size M is known, or at
least can be estimated to within an error that is small relative to
other errors. In the DBMS setting, M typically corresponds to the
cardinality of a table T , and might be obtained from the system
catalog; the error can be assumed small because any reasonable
feedback-based statistics-configuration system would ensure that
the basic statistics for T are up to date before proceeding to a de-
pendency analysis. We use our knowledge of M to estimate relative
frequencies such as fαβ , fα·, and f·β from the absolute frequencies
(i.e., cardinalities) in the QFRs.

For the purpose of “completing” feedback observations as de-
scribed in Section 5 below, we also assume that estimates of marg-
inal relative frequencies are available, i.e., estimates of the form
f̂αi· and f̂·βi

; in the setting of statistics configuration, these quan-
tities correspond to the optimizer’s selectivity estimates for simple
predicates. Finally, we assume knowledge of an upper bound δ on
the relative error of these estimates. In particular, we have∣∣∣∣ f̂α·− fα·

fα·

∣∣∣∣≤ δ and

∣∣∣∣∣ f̂·β − f·β
f·β

∣∣∣∣∣≤ δ

for all α ∈ DA and β ∈ DB. For practical purposes, all that is
needed is a reasonable approximate bound; it even suffices that
the bound holds merely with high probability. In the setting of
statistics configuration, a value of δ can be obtained by scanning
all of the records in the feedback warehouse corresponding to sim-
ple predicates and computing relative errors by comparing actual

3Note that we analyze dependency for a pair of attributes with re-
spect to the table or view in which they jointly appear. In principle,
for a given attribute pair, we could obtain different results for dif-
ferent views.

to estimated selectivities. We then compute δ by aggregating these
observed relative errors, e.g., we take δ as the mean, median, or,
more conservatively, an upper percentile of the errors. In this set-
ting, δ is typically small: detection of large selectivity errors on
simple predicates will automatically trigger statistics collection, of-
ten with automatic adjustments to parameters such as the number
of histogram buckets used by the optimizer to estimate selectivities.

3.3 The CA Method
Next, we describe the CA method [1] for detecting a dependency

between attributes A and B. Each feedback observation pertaining
to these attributes is examined. For a particular observation Oi ={

fαiβi
, fαi·, f·βi

}
, an observational dependency is declared if the

relationship

1−Θ ≤
fαiβi

fαi· f·βi

≤ 1+Θ

fails to hold, where Θ is “a small pre-specified” positive parame-
ter less than 1. If a pair of attributes has at least two observational
dependencies, then the attributes are considered dependent. The
number of observational dependencies is used as a measure of the
degree of dependency when ranking attribute pairs. The descrip-
tion in [1] does not specify what to do if fαi· or f·βi

is unavailable;
we give a solution to this problem in Section 5. As discussed in
Section 1, the value of Θ is completely ad hoc. Moreover, the CA
method does not combine all feedback observations pertinent to at-
tributes A and B in a principled manner, which can lead to unstable
behavior of the detection algorithm.

The CA method computes the dependency measure for the at-
tribute pair (A,B) essentially as ∑i | fαiβi

− fαi· f·βi
|. As shown in

Section 9, this measure can lead to unstable, erratic rankings.

3.4 CORDS
We conclude Section 3 by briefly describing the dependency-

analysis method used by CORDS, since this method is closely re-
lated to our new technique. In the proactive setting of CORDS,
we essentially have available (an estimate of) the marginal and
joint frequencies corresponding to every attribute value in DA and
DB. An appropriate test statistic for dependence is the chi-squared
statistic, defined for M observations by

χ
2 = M ∑

α∈DA

∑
β∈DB

( fαβ − fα· f·β )2

fα· f·β
.

The dependence test rests on the fact that standard result [7] that
χ2 has, asymptotically, a chi-squared distribution with r degrees
of freedom as M becomes large, where r = (|DA| − 1)(|DB| − 1).
We can normalize χ2 to obtain a measure of the “distance from in-
dependence.” This distance is called the mean-square contingency
distance (MSCD), and is defined in [7] as φ 2 = χ2/

(
M(d − 1)

)
,

where d = min(|DA|, |DB|). It can be shown that 0≤ φ 2 ≤ 1. More-
over, φ 2 = 0 if and only if (1) holds, and φ 2 = 1 if and only if the
value of one of the attributes is completely determined by the value
of the other, i.e., a functional dependency exists between the at-
tributes. The MSCD can be used to rank attribute pairs by their
degree of dependency.

A note on terminology: in the CORDS scenario, we have a com-
plete contingency table, where this statistical terminology refers to
a display of the (absolute) attribute-value frequencies in a DA ×
DB array, with table entries of the form nαβ = M fαβ ; moreover,
marginal absolute frequencies of the form nα· = M fα· and n·β =
M f·β are displayed as row and column totals, respectively.

A key technical challenge in our reactive setting is that we do not
have frequency information for all attribute-value pairs (α,β ) ∈
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DA ×DB, as required for chi-squared theory. We only have in-
formation for those pairs {(αi,βi) : 1 ≤ i ≤ n} that correspond to
the available feedback observations; i.e., we have an incomplete
contingency table. In the following section, we modify classical
chi-squared theory to obtain an analog (Theorem 1) to the classi-
cal limit theorem alluded to above. The new limit theorem leads
to a more principled test for dependence than the CA method. We
discuss the related issue of how to rank attribute pairs in Section 8.

4. DEPENDENCY DETECTION
We first assume that each observation Oi is of the form (i) given

in Section 3.2, so that the relative frequencies fαiβi
, fαi·, and f·βi

are all available; we discuss the issue of incomplete feedback ob-
servations in the next section. Our approach is to compute a statistic
from {O1,O2, . . . ,On } that measures the departure from the inde-
pendence assumption. The statistic is of the form

HM = MxtQx, (2)

where the superscript “t” denotes matrix transpose, the vector4 x =
(x1,x2, . . . ,xn) is defined by

xi =
fαiβi

− fαi· f·βi

fαi· f·βi

(3)

for 1≤ i≤ n (where we take 0/0 = 1), and the matrix Q is specified
as follows. First define an n×n matrix Σ = ‖σi j‖ by setting

σi j =



(1− fαi ·)(1− f·βi )
fαi · f·βi

if i = j;

− 1− fαi ·
fαi ·

if i 6= j, αi = α j, and βi 6= β j;

− 1− f·βi
f·βi

if i 6= j, αi 6= α j, and βi = β j;

1 if i 6= j, αi 6= α j, and βi 6= β j.

(4)

for 1 ≤ i, j ≤ n. Clearly Σ is symmetric, and there exists a real or-
thogonal matrix G and a diagonal matrix D = diag(d1,d2, . . . ,dn)
such that Σ = GtDG or, equivalently, GΣGt = D; see [12, p. 410].
This representation of Σ is called the (symmetric) Schur decom-
position; in its canonical form, the rows of G are the eigenvectors
of Σ and the diagonal entries of D are the eigenvalues. We show
in the Appendix that each di is nonnegative. Denote by r = r(Q)
the number of strictly positive diagonal entries of D. Set D̃ =
diag(d̃1, d̃2, . . . , d̃n), where

d̃i =

{
1/di if di 6= 0;
0 if di = 0

(5)

for 1 ≤ i ≤ n.5 We then define the matrix Q in (2) as Q = Gt D̃G.
Observe that HM ≥ 0, and it can be shown that HM = 0 if and

only if (1) holds. Thus a naive criterion for dependency would be
that HM > 0. Such a criterion, however, is too stringent. Even
when it is intuitively clear that two attributes are statistically inde-
pendent of each other, the formal independence assumption in (1)
seldom holds exactly, due both to data errors and to idiosyncrasies
in the mechanism by which the data is collected. Thus we consider
attributes A and B to be dependent only if HM > θ , where θ is a
positive threshold parameter.

We can derive a reasonable value of θ using a “superpopula-
tion” model of the kind commonly used in the theory of survey
sampling [21, p. 22]. For simplicity, suppose that A and B are
4All vectors are assumed to be column vectors.
5In practice, we would fix a small number ε—roughly equal to the
machine precision—and set d̃i = 1/di if di > ε and d̃i = 0 other-
wise.

the only attributes in the dataset. The idea is to view the elements
t1, t2, . . . , tM in the dataset as independent and identically distributed
samples from a joint probability distribution p on (DA,DB), where
pαβ = P{ t.A = α and t.B = β } = fα· f·β for each α ∈ DA and
β ∈ DB; here fα·, f·β are defined as before. In other words, we
suppose that t.A and t.B are “truly” statistically independent with
marginal probabilities equal to the observed marginal probabilities
fα· and f·β . Under this model, the statistic HM is a random vari-
able; we choose θ such that, under our “null hypothesis” of inde-
pendence, the probability that HM exceeds θ is small. To this end,
we can use the large-sample result given in Theorem 1 below. In
the theorem, χ2

d denotes the cumulative distribution function for a
χ2 random variable with d degrees of freedom.

THEOREM 1. Under the superpopulation model, and setting
HM = MxtQx, we have P{HM ≤ x} → χ2

r (x) as M → ∞ for all
x ≥ 0, where r = r(Q).

Theorem 1 asserts that if the number of rows M in the dataset
is large, then HM has approximately a χ2

r distribution; see the Ap-
pendix for a proof. Using the theorem, we can choose θ as the
(1− p)-quantile of χ2

r to ensure that P{HM > θ } ≈ p. For exam-
ple, if r = 10 and we want to ensure that P{HM > θ }≈ 0.005, then
we choose θ = 25.2.

Although the foregoing procedure superficially resembles the
classical χ2 test for independence, there is a key difference. The
classical χ2 statistic corresponds to a sum over all |DA×DB| pos-
sible attribute-value combinations, whereas our statistic is a sum
over the d arbitrary combinations in the feedback, and often d �
|DA×DB|.

We note that our new approach is not directly driven by specific
queries in the workload as with [3, 5] or the SASH algorithm, but
rather by observed selectivities induced by the query processing.
Consequently, in the query-optimization setting, our technique is
not quite as efficient in focusing system resources on user queries,
but is more robust in the presence of previously-unseen queries.

5. INCOMPLETE OBSERVATIONS
We have assumed up until now that each observation Oi is as of

the form (i) given in Section 3.2, so that the joint selectivity fαiβi
and the two marginal selectivities fαi· and f·βi

are available. Often,
however, at least one marginal selectivity is missing, so that we
are dealing with an observation of form (ii), (iii), or (iv). In this
section, we describe a simple method for completing a feedback
observation by estimating the missing selectivities.

In practice—and especially in the context of statistics configura-
tion—we need not be concerned with observations of the form (iv),
in which only the joint selectivity is available. As explained previ-
ously, such observations typically result from the application of a
multi-column index. Under this scenario, the presence of a depen-
dency can be determined from the index itself, with no feedback
analysis required.

We therefore focus on observations of the form (ii) or (iii), in
which the joint selectivity and one of the two marginal selectivities
are available. Our approach is to estimate the missing marginal se-
lectivity for each incomplete observation and then apply the meth-
odology for an observation of the form (i). An overall goal in es-
timating a missing marginal selectivity is to be conservative, that
is, to be reluctant to declare the presence of a dependency, be-
cause each such declaration leads to increased processing and stor-
age requirements. We therefore choose the selectivity value that is
“most consistent” with the independence assumption, subject to our
knowledge about the range of possible values for this selectivity.
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Specifically, consider the case in which we know fαiβi
and fαi·

for a given value of i, but do not know f·βi
; we handle the case in

which fαi· is unknown in an analogous manner. By assumption,
we have available an estimate f̂·βi

—e.g., from the optimizer—and
we have assumed a known upper bound δ on the magnitude of the
relative error of this estimate. It follows that li ≤ f·βi

≤ ui, where
li = f̂·βi

/(1+δ ) and

ui =

{
min

(
f̂·βi

/(1−δ ),1
)

if 0 ≤ δ ≤ 1;
1 if δ > 1.

The goal is to choose the estimate f ∗·βi
of f·βi

so as to make the
ratio fαiβi

/( fαi· f
∗
·βi

) as close to 1 as possible. Equivalently, we
want to make ri f ∗·βi

as close to 1 as possible, where ri = fαi·/ fαiβi
.

Complicating the situation is the fact that, for some observation
O j = { fα jβ j

, fα j · } with j 6= i, we may have β j = βi, which implies
that we also want to make r j f ∗·β j

= r j f ∗·βi
close to 1. In general,

setting J = { j : β j = βi }, we want to find the value y such that r jy
is close to 1 for all j ∈ J. We then use this value as our estimate
of f·βi

, and hence also of f·β j
for j ∈ J. The notion of “close” may

be captured via Euclidean distance: choose y to minimize f (y) =
∑ j∈J(r jy−1)2 subject to the constraint that l ≤ y≤ u, where l = li
and u = ui as defined above. Since y0 = ∑ j∈J r j/∑ j∈J r2

j solves the
equation f ′(y) = 0, we take our estimate y∗ as either l, u, or y0,
depending on which of f (l), f (y0), and f (u) is smallest.

The foregoing discussion assumes that fαiβi
> 0. If fαiβi

= 0 and
fαi· > 0, then clearly the value of f·βi

most consistent with the in-
dependence assumption is f·βi

= 0. (Similar reasoning shows that
f·β j

= 0 for j ∈ J.) If fαiβi
= fαi· = 0, then Oi cannot be used to

estimate f·βi
and the above procedure is applied using the obser-

vations
{

O j : j ∈ J−{i}
}

. If none of the O j observations can be
used to estimate f·βi

, then we simply use the estimate f̂·βi
.

6. CONSISTENCY ISSUES
We have assumed so far that the feedback observations are mutu-

ally consistent, i.e., there exists at least one frequency distribution
on DA×DB with marginal and joint frequencies that coincide with
those specified in O . Because feedback observations are obtained
at different time points, however, and because updates, deletions
from, and insertions to the data set may occur in between obser-
vations, inconsistencies can occur in practice. This problem is en-
demic to any feedback-based method, not just ours. A variety of
solutions have been proposed to handle the problem, and most of
these can be applied in our setting. We therefore give a brief de-
scription of some pertinent methods for dealing with inconsisten-
cies, and do not pursue this issue in further detail here.

Since QFRs typically have a timestamp, we can resolve sim-
ple problems, such as the presence of two different observations
of fαi·, by simply discarding the observation with the older times-
tamp. Another technique is to monitor a UDI (update-insert-de-
lete) counter, and purge the warehouse periodically when the UDI
counter exceeds a threshold; the UDI counter is reset to zero at each
purge. This approach limits the extent of possible inconsistencies.
If these measure do not suffice, then a solution along the lines of
the linear-programming method described in [17, 22] can be ap-
plied. Roughly speaking, this method constructs a linear program
in which the feedback observations are treated as constraints, and
in which there are other constraints that embody basic probability
axioms, e.g., constraints of the form fαi· ≥ fαiβi

, and ∑i fαi· ≤ 1. A
pair of “slack variables” is added to each constraint. The slack vari-
ables represent the adjustments (positive or negative) to the con-

Algorithm 1 Detecting a dependency from feedback
1: F : collection of QFRs
2: (A,B): attribute-pair of interest
3: M: number of elements in dataset
4: n: number of feedback observations
5: p: max. allowable probability of falsely detecting dependency
6:
7: Complete the feedback observations; see Section 5
8: Adjust feedback observations for consistency; see Section 6
9: Compute x, Σ for (A,B) from F and M, using (3) and (4)

10: DECOMP(Σ,G,D,n,r) // Schur decomposition of Σ
11: for i = 1 to n do // compute y = M1/2Gx
12: yi = M1/2

∑
n
j=1 gi jx j

13: end for
14: HM = 0
15: for i = 1 to n do // compute HM as yt D̃y
16: HM = HM + y2

i d̃i // d̃i is computed using (5)
17: end for
18: θ = CHI2INV(1− p,r) // compute the threshold value
19: if HM > θ then // apply the dependency test
20: detect dependency
21: else
22: do not detect dependency
23: end if

straints that are required in order for the complete set of constraints
to admit a feasible solution, i.e., for a consistent frequency distri-
bution to exist. The objective function to be minimized is the sum
of the slack variables, which corresponds to the sum of the abso-
lute values of the adjustments. Solving the linear program, e.g.,
using the Simplex Method, yields the minimal adjustments to the
observed frequencies needed to resolve any inconsistencies. As in
[22], the terms in the objective function can be weighted so as to
favor adjustments to older feedback observations.

7. THE DETECTION ALGORITHM
Algorithm 1 gives a high-level description of our off-line method

for detecting a dependency. The function DECOMP that is called in
Step 10 computes the Schur decomposition of Σ, and returns the
matrices G and D, as well as r, the number of nonzero diagonal
elements of D. The Schur decomposition can be obtained by com-
puting the eigenvalues and eigenvectors of Σ using algorithms as
in [20, Sec. 11.2–11.3]; then G is the matrix whose rows are the
eigenvectors, and the diagonal elements of D are the corresponding
eigenvalues. The function CHI2INV(q,r) called in Step 18 com-
putes the q-quantile of χ2

r , i.e., the function evaluates the inverse
of the χ2

r cumulative distribution function at the point q; see, for
example, [20, p. 221] for an implementation of this function.

The overall complexity of Algorithm 1 is O(n3), where n is the
number of feedback observations [20]. The most expensive step is
the Schur decomposition, which has complexity O(n3); all other
steps have complexity at most O(n2). Although the O(n3) cost
may seem expensive, we show in Section 9.6 that sampling and
incremental-maintenance techniques can be used to obtain perfor-
mance that is quite acceptable in practice.

8. RANKING ATTRIBUTE PAIRS
As discussed in the introduction, most real-world data sets have

a large set of dependent attribute pairs that will be identified by
our testing procedure. Thus we often need to rank the attribute
pairs in order of decreasing dependency. In the case when complete
feedback—i.e., complete frequency information and hence the full
contingency table—is available, we can simply compute the MSCD
as described in Section 3.4 by appropriately normalizing our test
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statistic. Such complete information is essentially never available
in our setting, and normalization becomes nontrivial.

It is theoretically possible to normalize our test statistic HM =
MxtQx to lie between 0 and 1, as follows. Suppose that the Schur
decomposition used in Section 4 to compute Q is the canonical
version, so that the diagonal elements of D are the eigenvalues of
Σ. Let d∗ be the smallest of the nonzero diagonal elements and
let d̃∗ = 1/d∗. It is not hard to see that d̃∗ is the largest eigen-
value of Q. The Courant-Fischer Minimax Theorem (see, e.g.,
[12, p. 411]) then implies that d̃∗ = maxu∈ℜn utQu/‖u‖2, where
‖u‖= (utu)1/2. Hence HM/η(x)∈ [0,1], where η(x) = Md̃∗‖x‖2.
This method can be numerically unstable, however, because d∗ can
be close to 0.

We therefore seek some heuristic dependency measures of the
form HM/z that are easy to compute, numerically stable, and yield
intuitively satisfying rankings. Some potential choices of z include:

1. Table cardinality: z = M. Observe that, when comparing at-
tribute pairs in the same dataset, this normalization is equiv-
alent to using the “raw” value of HM .

2. Minimum number of distinct values in the full dataset: z =
min(|DA|, |DB|). This normalization is essentially the nor-
malization used when defining the MSCD.

3. Minimum number of distinct values in the feedback ware-
house: z = min(|D′

A|, |D′
B|). Here D′

A (⊆ DA) is the number
of distinct values of attribute A appearing in the feedback
records, and similarly for D′

B. This normalization is essen-
tially the “feedback version” of the MSCD normalization.

4. Minimum number of distinct values used to compute HM :
z = min(nA,nB). Here nA is the number of distinct αi val-
ues actually used in computing HM , and similarly for nB.6

5. Degrees of freedom: z = r. This normalization can also be
viewed as a feedback version of the MSCD normalization.

6. Threshold θ at p = 0.05: z = 0.95-quantile of χ2
r . This nor-

malization can be viewed as a rough approximation of the
theoretical normalization factor η(x); whereas η(x) repre-
sents an upper bound on HM , the quantity θ represents an ap-
proximate “probabilistic” upper bound that is exceeded with
low probability. Note that this normalization is a monotone
transformation of the previous normalization.

7. Threshold θ at p = 0.005: z = 0.995-quantile of χ2
r . distri-

bution.

Section 9 contains an empirical evaluation of the resulting de-
pendency measures.

9. EXPERIMENTAL RESULTS
We prototyped the new and CA methods as Java programs run-

ning outside DB2; DB2 created dump files during query optimiza-
tion and processing, which were then reformatted to form a feed-
back warehouse file. We mined the warehouse using the new de-
pendency-detection and ranking algorithms, as well as the CA algo-
rithm in [1]. Our goals were to (i) compare the various dependency
rankings resulting from different normalizations, (ii) explore, as the
number of feedback observations varied, both the degree to which
6In general, na ≤D′

A because, e.g., some values of attribute A might
not appear in any conjunctive predicate that also involves attribute
B. Similarly, nB ≤ D′

B.

Attribute MAKE MODEL COLOR YEAR RANDOM
#DVs 20 40 100 80 200

α 1.1 1.1 1.05 1.09 1.0

Table 1: Attribute characteristics for default SYNTH dataset

the new algorithm detects dependencies and the stability of the de-
pendency rankings, (iii) compare the new algorithm to the CA al-
gorithm, and (iv) examine the scalability of the new detection algo-
rithm as the number of feedback observations grows.

9.1 Experimental Setup
All experiments were run on a Pentium III 1.2GHz CPU with

1GB Ram and a 40GB hard disk. We ran our experiments on three
datasets, one real and two synthetic. The first dataset comprised
real-world data from a Department of Motor Vehicles (DMV), We
focused on two tables: the CAR table, which contains informa-
tion on the make, model, color and year of registration for each
car, and the OWNER table, which contains information on the
city, state and country in which each car owner lives. Our ex-
periments showed that, by almost any measure, all attribute pairs
within each table were dependent to some degree. Some pairs,
such as MAKE-MODEL, obey an almost perfect functional de-
pendency, whereas pairs such as COLOR-YEAR are far less de-
pendent (though still not completely independent). As a sanity
check, we generated a couple of columns of random data, to gen-
erate some pairs that are “truly” independent. Our second database
was the TPC-DS database.7 Our third database was a synthetic
database (SYNTH) loosely modeled after the CAR table, for which
we were able to control the frequency distributions and degree of
dependency, and for which we were able to compute complete con-
tingency tables, and hence the “true” MSCD-based dependency
rankings—i.e., the rankings based on complete feedback—for all of
the attribute pairs. In more detail, the SYNTH dataset comprises at-
tributes MAKE, MODEL, COLOR, YEAR, and RANDOM (again
as a sanity check), with the relative number of distinct values for the
attribute matching the pattern in the CAR table. For each attribute,
the attribute-value frequencies were generated according to a gen-
eralized Zipf distribution with parameter α ≥ 0; i.e., the relative
frequency of the ith most frequent attribute value was proportional
to i−α . For our “default” SYNTH dataset, the Zipf parameter was
chosen to match the frequency distribution seen in the CAR table;
Table 1 displays the number of distinct values and Zipf parame-
ter for the default dataset. To control the dependence between a
given attribute pair (i.e., column pair), we first sorted each of the
two columns by attribute value, so that there was an almost perfect
dependency between the attributes. Then we scanned through the
second column and, with probability ρ ∈ [0,1], we swapped the cur-
rent (ith) row with the Jth row, where J was uniformly distributed
on {1,2, . . . , i}. Thus if ρ = 0, no swaps would occur and the two
attributes would remain highly dependent; if ρ = 1, then the sec-
ond column would be randomly shuffled, so that there would be no
dependence between the attributes. By varying ρ we could control
the dependency of each attribute pair. Table 2 displays the values of
ρ used in our experiments. When experimenting with the MAKE-
MODEL pair, we adjusted the data slightly so as to obtain a true
functional dependency, as in the CAR table.

9.2 Detecting Dependencies
In initial experiments, we found that our algorithm, using sig-

nificance levels p = 0.05 and p = 0.005, detected dependencies
7See www.tpc.org/tpcds.
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Figure 2: Rankings for various dependency measures (SYNTH)

Cardinality

Signifcance 0.05
Signifcance 0.005

Figure 3: Rankings for various dependency measures (DMV)

Pair ρ

MAKE-MODEL 0.000
MAKE-YEAR 0.450

MAKE-COLOR 0.005
MODEL-YEAR 0.550

MODEL-COLOR 0.025
YEAR-COLOR 0.700

MAKE-RANDOM 1.000

Table 2: Dependency settings for SYNTH dataset

between virtually every pair of (non-random) attributes, regardless
of the number of feedback observations. To see whether this was
due to the vagaries of using feedback observations, we also ran
several standard chi-squared independence tests (at the same sig-
nificance levels) using all of the available data. In general, the re-
sults for the new procedure were fairly close to that of the standard
chi-squared test, with the feedback-based procedure slightly more
likely to detect dependencies. More specifically, the results for the
pairs of non-random attributes were identical for the standard and
feedback-based tests. On the other hand, the standard chi-squared
test identified all “truly” independent pairs as independent, whereas
the feedback-based procedure, while correctly identifying most of
these pairs as independent, misclassified a couple of the pairs when
HM slightly exceeded the threshold θ .

It follows from these results that, with respect to dependency de-
tection, the new feedback-based test reasonably approximates the
standard chi-squared test based on complete feedback. The use

of either test, however, can result in the identification of many
dependent pairs, due to the ubiquity of dependency in real data.
Fortunately, our test statistic HM exhibited intuitively reasonable
behavior, taking on large values for highly dependent pairs such
as MAKE-MODEL and much lower values for quasi-independent
pairs such as COLOR-YEAR. For this reason we shifted attention
to the problem of ranking the attribute pairs by degree of depen-
dence. The remaining sections focus on this issue.

9.3 Ranking Measures
We computed the various heuristic ranking measures introduced

in Section 8, using both the SYNTH and the DMV datasets. Fig-
ures 2 and 3 display these rankings in a radar plot; the degree of
dependency is lowest at the center and highest at the outer perime-
ter. As can be seen, the different normalizations produce rankings
that are almost identical for the SYNTH dataset (where they are or-
dered correctly) and are quite similar for the DMV dataset (where
they agree with intuition). Thus, as long as we use a reasonable nor-
malization, we will get reasonable results, and the particular choice
of normalization is not that critical.

Normalizations 1 (table cardinality) and 2 (minimum number of
distinct values in full dataset) yield the worst rankings. In Fig-
ure 3, the three normalizations most closely related to the theoret-
ical ranking η(x)—namely, normalizations 5,6, and 7—coincide,
are the closest to the average ranking, and agree most closely with
intuition. (In this radar plot, the curve for normalizations 5–7 has,
e.g., rank 7 for CITY-STATE.) We use normalization 7 as our de-
pendency measure for the remainder of our experiments. We also
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Figure 4: Rank vs. feedback size (SYNTH)

Figure 5: Rank vs. feedback size (DMV)

focus henceforth on the CAR table in the DMV database; results
for other tables in the DMV database are similar.

9.4 Stability of Rankings
For our next experiments, we observed the relative ranking of

the attribute pairs, as well as the value of the ranking measure (nor-
malized HM) as the number of feedback observations8 changed.
As can be seen from Figure 4, the relative rankings attribute pairs
in the SYNTH database table are extremely stable as the number
of feedback observations increases. The rightmost position on the
horizontal axis, labeled MSCD, corresponds to the MSCD rank-
ing based on complete feedback. Thus the normalized HM ranking
agrees with the complete MSCD ranking, and both rankings are
consistent with the relative degrees of dependency that we induced
between the attribute pairs. Observe that the correct ranking is ob-
tained using as few as 20 feedback records. Very similar results
were seen to hold when we varied characteristics of the SYNTH
dataset. For example, when we decreased each Zipf parameter
by 50%, we obtained results almost identical to Figure 4, except
that the correct ranking was obtained for all numbers of feedback
records.

Figure 5 shows analogous results for the real DMV dataset. As
with the synthetic data, the relative rankings for the non-random
attribute pairs in the CAR table are extremely stable as the number
of feedback observations increases. The noise (oscillating rank-
ings) in the lower half of the chart is not surprising, as those com-
binations include at least one random attribute and therefore have
8We use the terms “feedback observation” and “feedback record”
interchangeably in this section.

0

5000

10000

15000

20000

25000

30000

35000

40000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

No. Feedback Records

D
e

p
e

n
d

e
n

c
y

 M
e

a
s

u
re

Make - Model

Make - Year

Make - Color

Model - Year

Model - Color

Year - Color

Make - Random

Figure 6: Dependency measure vs. feedback size (SYNTH)

Figure 7: Dependency measure vs. feedback size (DMV)

the same, negligible degree of dependency. Indeed, the figure sug-
gests a robust method for pruning out independent pairs: compute
the ranking using different numbers of feedback observations, and
eliminate a pair from consideration if there is appreciable variabil-
ity in the resulting ranking numbers.

Figures 6 and 7 show the dependency measure as a function of
the number of feedback records for the SYNTH and DMV datasets.
In both plots, we can only distinguish clearly three separate curves,
for MAKE-MODEL, MAKE-COLOR and MODEL-COLOR. The
dependency measures of the remaining pairs are too close to the
horizontal axis to be clearly visible. Note that the dependency mea-
sure of the functionally dependent attributes MAKE and MODEL
exceeds the measure for next most dependent pair MAKE-COLOR
by an order of magnitude, as would be expected intuitively. All
pairs whose curves are not visible in the diagram have a very small
degree of dependency.

Figures 8 and 9 show ranking and dependency-measure results
for the table of customer addresses in the TPC-DS Again, the rank-
ings are stable, and correspond to intuition.

9.5 Comparison to CA Method
For purposes of comparison, we ran the CA method on the DMV

data, completing missing feedback observations using the method
of Section 5. The results for the ranking and for the dependency
measure are given in Figures 10 and 11, respectively. Comparing,
e.g., Figures 5 and 10, we see that, unlike for our new method,

838



Figure 8: Rank vs. feedback size (TPC-DS)

Figure 9: Dependency measure vs. feedback size (TPC-DS)

the ranking produced by the CA method keeps changing as more
and more feedback observations are observed. Besides being un-
stable, the ranking is erratic; for example, given 200 feedback ob-
servations, the CA method gives the most highly dependent pair
MAKE-MODEL a rank of 6, the lowest rank for a pair that does
not contain a RANDOM attribute.

Similar results hold for the dependency measure. Whereas the
curves for our new dependency measure are concave, with the de-
pendency measure stabilizing as the number of feedback observa-
tions increases, the curves in Figure 11 are convex, again indicating
instability. Figure 11 also helps explain why MAKE-MODEL has
a rank of 6 in Figure 10. The pair MAKE-MODEL has only 36
distinct-value combinations (which is also the distinct number of
models). Therefore, the dependency measure (which is the count
of dependent feedback observations) cannot exceed 36, whereas the
other pairs have much higher dependency measures because of the
higher number of analyzed feedback observations.

In general, the ranking measure for the CA method is especially
inaccurate if highly dependent attribute-pairs are seldom queried or
if the queries only cover a small set of distinct-value combinations,
which is always the case for columns with few such combinations
(e.g. MAKE-MODEL). Our new method appears to avoid these
drawbacks.

9.6 Execution Time
Figure 12 shows the execution time of the dependency detection

algorithm as a function of the number of feedback observations.

Figure 10: Rank vs. feedback size (CA method)

Figure 11: Dependency measure vs. feedback size (CA method)

The empirical results are consistent with the O(n3) complexity re-
sult given in Section 7. As long as there are fewer than a hundred
or so feedback records for a given attribute pair, the algorithm can
achieve subsecond response times, which is acceptably fast for the
off-line warehouse mining task. One way to achieve acceptable
practical performance is to run the mining algorithm on a random
sample of feedback records. Indeed, in plots such as Figure 5, the
feedback records were processed in random order, so that these
plots can also be viewed as displaying the relative rankings as a
function of sample size. As can be seen, accurate rankings can be
obtained with small samples (less than 100 records), thereby keep-
ing the execution cost acceptably low.

If, for some reason, the sampling approach does not suffice, then
it may be possible to reduce the processing cost by incrementally
and approximately maintaining the statistic HM . The key obser-
vation is that the symmetric Schur decomposition Σ = GtDG is
a special case of the more general “singular value decomposition”
(SVD)—see [12, Sec. 2.5.3]—and a large literature exists on low-
cost methods for updating the SVD. For illustrative purposes, we
briefly outline a relatively simple scheme for approximately updat-
ing G and D, and hence HM . Suppose that the dimension of Σ is
currently n×n. If we obtain a new feedback record, then we effec-
tively need to expand Σ by padding it with 2n + 1 elements com-
puted as in (3). We can view this process as appending an n× 1
column vector y and then a 1× (n + 1) row vector z. Recall that
r = r(Q) is the number of positive9 diagonal entries of D, and fix a
positive integer k ≤ r. By appropriately renumbering the feedback
records (and hence permuting the rows and columns of Σ), we can

9As discussed before, “positive,” in practice, means larger than a
small cutoff value ε .
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Figure 12: Execution time vs. feedback size

assume that the diagonal elements of D appear in descending order
from upper left to lower right. Denote by Dk the square diago-
nal submatrix comprising the first k rows and columns of D; ob-
serve that Dk is nonsingular. Let Gk denote the submatrix obtained
from G by dropping all but the first k rows of G. Then the simple
“folding-in” method of [8]—adapted to our setting—proceeds by
appending first the column vector ytGt

kD−1
k and then the row vector

zGt
kD−1

k to Gk; the matrix Dk remains unchanged. The cost of this
update is O(nk). We then have HM ≈Mxt

kGt
kD−1

k Gkxk; computing
HM is an O(k2) operation. When k = r and there are no numeri-
cal roundoff errors, this process is exact; otherwise, error accrues.
Lin [19] proposes a metric for the accrued error; when the metric
value exceeds a threshold, G and D are recomputed from scratch.
The updates can also be batched into blocks of m feedback records,
i.e., the vectors y and z can be replaced by n×m and m× (n + m)
matrices, respectively. If desired, more accurate (and expensive)
updating schemes are available [26].

We conclude by noting that incremental updating and sampling
can be combined. For example, we can flip a coin to decide whether
to use an incoming feedback record to update HM . Because we
have so far obtained performance that is acceptable in practice us-
ing sampling alone, we leave a detailed study of incremental main-
tenance methods to future work.

10. CONCLUSIONS
We have developed a novel feedback-based method for detecting

dependencies between attributes, as well as for ranking attribute
pairs according to degree of dependency. Our approach yields sta-
ble dependency rankings, in the sense that the rankings are rela-
tively insensitive to the number or order of feedback observations.
Especially in combination with sampling of feedback records, our
method is fast and simple enough to be practical for commercial
database systems. Besides being useful in the context of query op-
timization, the method is potentially useful in other settings such as
data mining, data integration, and system monitoring.

A key open research question is how to extend the methodol-
ogy to gracefully deal with higher-order dependencies. The results
in [16] indicate that, for purposes of query optimization, the ben-
efits of identifying kth-order dependencies diminish sharply as k
increases beyond 2. Third-order dependencies may be useful, how-
ever, and even higher-order dependencies may be of interest in set-
tings outside of query optimization. We are currently trying to ap-
ply some classical methods of contingency-table analysis to this
problem.

11. APPENDIX: PROOF OF THEOREM 1
In the following, we write “Xn ⇒ Y ” to denote convergence in

distribution [2, p. 338] of the sequence of random variables {Xn :
n ≥ 1} to the limiting random variable Y . That is, if we denote by
Fn and F the cumulative distribution functions of Xn and Y , then
Xn ⇒ Y if and only if Fn(x) → F(x) for each x at which F is con-
tinuous. We assume for convenience that DA = {1,2, . . . ,LA } and
DB = {1,2, . . . ,LB }, and write L = LALB, f =( f11, f12, . . . , fLALB)∈
[0,1]L, and p = (p11, p12, . . . , pLALB) ∈ [0,1]L.

Under our superpopulation model, the strong law of large num-
bers [2, p. 290] and the multivariate central limit theorem [2, p. 398]
imply that f → p with probability 1 and M1/2(f− p) ⇒ N(0,Λ)
as M → ∞. Here N denotes a multivariate normal random vector,
0 = (0,0, . . . ,0) and the L× L covariance matrix Λ = ‖λi j,kl‖ is
given by

λi j,kl =

{
−pi j pkl if (i, j) 6= (k, l)
pi j(1− pi j) if (i, j) = (k, l).

(6)

As before, (α1,β1),(α2,β2), . . . ,(αn,βn) are the values that ap-
pear in the n feedback observations {O1, . . . ,On }. For u = (u11,
u12, . . . ,uLALB) ∈ [0,1]L and 1 ≤ i ≤ n, set

gi(u) =
uαiβi

uαi·u·βi

=
uαiβi(

∑
LB
j=1 uαi j

)(
∑

LA
j=1 u jβi

) .

Thus, using (3) and noting that gi(p) = 1, we have xi = gi(f)−gi(p)
for 1≤ i≤ n. Let c = (c1,c2, . . . ,cn) be an arbitrary but fixed vector
of real numbers, and set g(u) = c1g1(u)+c2g2(u)+ · · ·+cngn(u).
A “delta-method” argument [2, p. 402] shows that

M1/2(g(f)−g(p)
)
⇒ N(0,htΛh)

as M → ∞, where h = ∇g(p) and ∇ denotes the gradient operator.
(Note that the limit is a univariate normal random variable.) Us-
ing the definition of g, the linearity of the gradient operator, and
standard properties of the normal distribution, we can rewrite the
above result as M1/2ctx ⇒ ctN(0,Σ). Here Σ = ‖σi j‖ is defined
by setting

σi j = ht
iΛh j (7)

for 1≤ i, j ≤ L with hi = ∇gi(p). Because the vector c is arbitrary,
the Cramér-Wold Theorem [2, p. 397] implies that

M1/2x ⇒ N(0,Σ) (8)

as M → ∞.
Note that Σ is the covariance matrix of a normal random vector

Z. Thus D is the covariance matrix of the normal random vector
GtZ, and therefore must have nonnegative diagonal entries, as as-
serted earlier.

We now give a more explicit representation of Σ. Taking deriva-
tives, we find that

∂gi(u)
∂ukl

=


−gi(u)/uαi· if k = αi and l 6= βi;
−gi(u)/u·βi

if k 6= αi and l = βi;
wi(u)/(u2

αi·u
2
·βi

) if k = αi and l = βi;

0 if k 6= αi and l 6= βi,

where wi(u) = uαi·u·βi
− uαiβi

(uαi· + u·βi
). Because gi(p) = 1 for

1≤ i≤ n and pkl = pk·p·l for all 1≤ k, l ≤ L by definition, it follows
that

hi;kl =


−1/pαi· if k = αi and l 6= βi;
−1/p·βi

if k 6= αi and l = βi;
γi if k = αi and l = βi;
0 if k 6= αi and l 6= βi,

(9)
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where hi;kl denotes the kl component of hi and

γi =
(
1− (pαi·+ p·βi

)
)
/(pαi·p·βi

).

Using (6), (7), and (9), a tedious but straightforward calculation
shows that

σi j =



(1−pαi ·)(1−p·βi )
pαi ·p·βi

if i = j;

− 1−pαi ·
pαi ·

if i 6= j, αi = α j, and βi 6= β j;

− 1−p·βi
p·βi

if i 6= j, αi 6= α j, and βi = β j;

1 if i 6= j, αi 6= α j, and βi 6= β j.

(10)

Observe that the definitions of Σ in (4) and (10) coincide, so that
the matrix G defined in Section 4 satisfies GΣGt = D. Let

D̃0 = diag
(√

d̃1,

√
d̃2, . . . ,

√
d̃n

)
,

so that D̃0GΣGt D̃t
0 = D̃0DD̃t

0 = Ir, where Ir is an n× n diagonal
matrix having r diagonal elements equal to 1 and n− r diagonal
elements equal to 0. Thus D̃0GN(0,Σ) = N(0, D̃0GΣGt D̃t

0) =
N(0,Ir) and, using (8) together with the Continuous Mapping The-
orem [2, p. 343], we have

HM = (M1/2D̃0Gx)t(M1/2D̃0Gx)

⇒
(
D̃0GN(0,Σ)

)t(D̃0GN(0,Σ)
)

= N(0,Ir)tN(0,Ir)

as M → ∞. The rightmost term, being distributed as the sum of r
independent N(0,1)2 random variables, is well known to have a χ2

r
distribution, and the desired result follows.
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