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ABSTRACT

The popularity of blogs has been increasing dramaticallr oe
last couple of years. As topics evolve in the blogosphengykeds
align together and form the heart of various stories. liviely we
expect that in certain contexts, when there is a lot of dsioason
a specific topic or event, a set of keywords will be correlatbe
keywords in the set will frequently appear together (paseor in
conjunction) forming a cluster. Note that such keyword @tsare
temporal (associated with specific time periods) and tesmsiAs
topics recede, associated keyword clusters dissolve ubedheir
keywords no longer appear frequently together.

In this paper, we formalize this intuition and present edfitial-
gorithms to identify keyword clusters in large collectionfsblog
posts for specific temporal intervals. We then formalizebfgms
related to the temporal properties of such clusters. Iniqudat,
we present efficient algorithms to identify clusters thasfst over
time. Given the vast amounts of data involved, we present-alg
rithms that are fast (can efficiently process millions ofgslavith
multiple millions of posts) and take special care to makentlet-
ficiently realizable in secondary storage. Although wednsate
our techniques in the context of blogs, our methodology isge
enough to apply equally well to any temporally ordered textrse.

We present the results of an experimental study using bath re
and synthetic data sets, demonstrating the efficiency ofigo-
rithms, both in terms of performance and in terms of the qali
the keyword clusters and associated temporal propertieisiave

tify.
1. INTRODUCTION

The popularity of blogs has been increasing dramaticallgr ov
the last couple of years. It is estimated [15] that the sizdeblo-
gosphere in August 2006 was two orders of magnitude largar th
three years ago. According to the same sources, the totaberum
of blogs is doubling every two hundred days. Technorati, Blage
tracking company, has been tracking fifty million blogs. @ing
is gaining popularity across several age groups. Younglpdap
the age group of 13-29 are generating the bulk (91%) of blaygi
activity [13].
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Figure 1: An example cluster of keywords appearing in the bl-
ogosphere on January 8 2007 corresponding to the following
event: On January 7 2007, scientists at Wake Forest Univeltsi
led by Dr. Anthony Atala report discovery of a new type of stem
cell in amniotic fluid. This may potentially provide an alterna-
tive to embryonic stem cells for use in research and therapy.

Bloggers are producing vastly diverse kinds of informatiGen-
eral topics include personal diaries, experiences (timyekon-
certs), opinions (about products, events, people, musigg; busi-
nesses), information technology, and politics to name a fEfae
importance of this information is highly significant. Theogb-
sphere is an unregulated collective, and it evolves by thmrico
butions of individuals; collecting, monitoring and anahg infor-
mation on blogs can provide key insights on ‘public opiniomn
a variety of topics, for example products, political vievesiter-
tainment, etc. At the University of Toronto we have beenduil
ing BlogScope, a feature-rich search and analysis engineldgs
(ww. bl ogscope. net). The search engine incorporates algo-
rithms to aid navigating the blogosphere, points to evefitgerest
via information bursts, plots relevant blogs on a geogregdimap,
and presents keywords related to a search. At regular titeevais
BlogScope collects, parses and indexes new blog posts aladasp
several structures in its keyword index. At the time of thritiwg,
BlogScope was indexing around 75 million posts containingr o
13 million unique keywords. A complete description of thetgyn
and its architecture is available elsewhere [3, 2].

As topics evolve in the blogosphere, keywords align togethd
form the heart of various stories. Intuitively we expectttimacer-
tain contexts, when there is a lot of discussion on a spedficct
or event, a set of keywords will be correlated: the keywords i
the set will frequently appear together (pair-wise or injoon-
tion) forming a cluster. In other words, keywords are cated if a
large number of bloggers use them together in their respelotog
posts. Note that such keyword clusters are temporal (atsoci
with specific time periods) and transient. As topics recedsp-
ciated keyword clusters dissolve, because their keywoodsad



soccer

Figure 2: An example cluster of keywords appearing in the bl-
ogosphere on January 12 2007 corresponding to the following
event: Soccer star David Beckham announces on Jan 11 he is
to leave Real Madrid and join Major League Soccer (mls) team
LA Galaxy at the end of the season.

appear frequently together anymore. For example, we wauld e
pect that the keywords ‘saddam’, ‘hussein’, ‘trial’ formadluster
when the trial of the former Iraqi president took place (orvélo-
ber 5 2006) as many people blogged about the trial of Saddasy Hu
sein. However the keywords ‘saddam’, ‘hussein’ and ‘deaalila
form a cluster after his execution on December 30 2006. Foemo
examples, consider Figures 1 and 2. Identifying such adisi$te
specific time intervals is a challenging problem. The asgmns
between keywords reveathatterin the blogosphere that may be
of significant actionable value for many domains (e.g., ratinky,
law enforcement). Moreover it can be of value for improvimgl a
refining the quality of search results for specific keywordsa
search query for a specific interval falls in a cluster, trst of the
keywords in that cluster are good candidates for query nefémes.

In this paper we formalize and provide solutions for proldem
related to the temporal association of sets of keywordsaibgo-
sphere. Although we focus on the domain of blogs (since we hav
a large collection of data via BlogScope), our discussiahtaoh-
niques are generic enough to apply to any other temporadigred
text source. In particular, we make the following contribos in
this paper:

e We present fast algorithms to identify sets of correlated ke
words (keyword clusters) in the blogosphere at any specified
temporal interval. BlogScope currently contains more than
13M keywords in its index. Any algorithm aiming to iden-
tify keyword associations at this scale needs to be efficient

We formalize and present algorithms for the notiorstafble
keyword clusters. Since associations of sets of keywords is
dynamic, stable clusters aim to identify sets of keywordé th
exhibit associations over several temporal intervals. hSuc
keyword sets would probably point to events of interest, as
it is evident that there is significant use of the keywords in
the set, in conjunction, for extended periods of time.

Since temporal information sources evolve continuously we
present streaming (online) versions of our algorithms.sThi
enables us to update the result set efficiently as new infor-
mation arrives without re-computing everything. Such a re-
quirement on algorithms is essential in order to cope wigh th
temporal nature of our problem domain.

We present an evaluation of our algorithms demonstrating
their practical significance using real data sets and eislua
their scalability for very large data collections and peshl
settings.
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Our core technology extends beyond blogs to social network-
ing sites making heavy use of tagging, such Bsckr. comand
del . i ci 0. us. Related processing to the one we conduct for key-
words in blogs can be conducted on tags as well. This paper is
organized as follows: in Section 2 we briefly review relatematky
Section 3 presents our methodology for cluster generalinBec-
tion 4 we formally define stable clusters and present ourrélgos
for identifying them. Section 5 presents the results of antjtative
comparison of our algorithms for various parameters ofrege
Qualitative results for clusters discovered from real datalso
presented in the same section. Finally Section 6 concludepa-
per.

2. RELATED WORK

Graph partitioning has been a topic of active research (Eefe [
and references therein). /Away graph partitioning is defined as a
partitioning of a graph G int& mutually exclusive subsets of ver-
tices of approximately the same size such that the numbetgese
of G that belong to different subsets is minimized. The pzobl
is hard, and several heuristic approaches have been prbptse
particular, multilevel graph bisection [10] has attraateskearch at-
tention. Although such heuristic techniques have beerdesh
fairly large graph sizes (on the order of half a million vees and
few million edges) [10], they have the constraint that thenhar of
partitions has to be specified in advance (as is common wit cl
tering algorithms).

Correlation clustering [1] drops this constraint, and ibguices
graph cuts by specifying global constraints for the clissterbe
produced. More specifically given a graph in which each edge i
marked with a '+’ or a ‘-’, correlation clustering producegparti-
tioning of the graph such that the number of ‘+' edges wittaote
cluster and the number of ‘-’ edges across clusters is magidni
Although approximation algorithms are provided for thisigem,
the algorithms presented in [1] (as well in subsequent wa}kdr
a more restricted version of the problem) are very intengdtieo-
retically, but far from practical. Moreover the existingatithms
require the edges to have binary labels, which is not theicabe
applications we have in mind.

Flake et al. [8] present an alternative formulation of grajufs-
tering in which they solve the problem using network flows.eTh
drawback of this approach is that it requires the specifioatif
a sensitivity parametet before executing the algorithm, and the
choice ofa affects the solutions produced significantly. Moreover
the running time of such an algorithm is prohibitively larfge the
graphs we have in mind, as they require solutionshoftiple max-
flow problems. Even the fastest algorithms known for max-flow
areO(V E), for V vertices andF edges, both of which are in the
order of millions in our problem. (In our implementationetalgo-
rithm of Flake et al. required six hours to conduct a graphocua
graph with a few thousand edges and vertices.) Moreovemibtis
clear how to set parameters of this algorithm, and no guidslare
proposed in [8].

Various measures have been utilized in the past to assess ass
ciations between keywords in a corpus [12]. We employ some of
these techniques to infer the strength of association leetey-
words during our cluster generation process.

3. CLUSTER GENERATION

Let D denote the set of text documents for the temporal inter-
val of interest. LetD € D be a document, represented as a bag
of words, in this document collection. For each pair of keyago
u,v, Ap(u,v) is assigned one if both andv are present inD



Date | File Size | # keywords| # edges
Jan 6| 3027MB | 2889449 138340942
Jan 7| 2968MB | 2872363 135869146

Table 1: Sizes of resulting keyword graphs (each for a single
day) for January 6 and 7 2007 after stemming and removal of
stop words.

and zero otherwise. Addition ofip(u,v) over all documents,
A(u,v) = 3 pep Ap(u,v), represents the count of documents
in D that contain bothu andv. This way, triplets of the form
(u, v, A(u,v)) can be computed. Ldt be the union of all key-
words in these triplets. Each triplet represents an eligeith
weight A(u, v) in graphG over verticesV. Further, letA(u) de-
note the number of documentsZfncontaining the keyword. This
additional information is required for computing(u,v), which
represents the number of documents containitgit notv.

For our specific case, the BlogScope crawler fetches allynewl
created blog posts at regular time intervals. The documaligcs
tion D in this case is the set of all blog posts created in a temporal
interval (say every hour or every day). The numbsu, v) rep-
resents the number of blog posts created in the selectecbtamp
interval containing bothv andv. BlogScope is currently indexing
around 75 million blog posts, and fetches over 200,000 nestspo
everyday. The computation of the tripléts, v, A(u,v)) therefore
needs to be done efficiently. We used the following methagiolo
A single pass is performed over all document®inFor each doc-
umentD, output all pairs of keywords that appearlinafter stem-
ming and removal of stop words. Sincgu) also needs to be
computed, for each keyword € D, (u,u) is also included as a
keyword pair appearing i. At the end of the pass ové? a file
with all keyword pairs is generated. The number of times a key
word pair (u, v) appears in this file is exactly the sameAs:, v).
This file is sorted lexicography (using external memory reesgrt)
such that all identical keyword pairs appear together irotitput.

All the triplets are generated by performing a single pass tive
output sorted file. Table 1 presents sizes of two of the kegiwor
graphs (each for a single day) after stemming all keywordsran
moving stop words.

Given graphG we first infer statistically significant associations
between pairs of keywords in this graph. Intuitively if oreytword
appears im; fraction of the posts and another keyword in a fraction
n2 we would expect them both to occur togethemnim fraction
of posts. If the actual co-occurrence percent deviatesfiigntly
from this expected value, the assumption that the two kegsvare
independent is questionable. This effect can be easilyuoagtby

the x? test:
(E(uv) — A(uv))?

2 _ (E(uv) — A(av))*

X = E(uv) E(z‘w) +
(Bwr) — A@)? | (B@D) ~ A@)°
E(up) E(uv)

In this formula, A(uv) is the number of times keywords, v ap-
pear in the same post (documeng(uv) is the expected number
of posts in whichu and v co-occur under the independence as-
sumption. ThusFE(uv) = W where A(u) (A(v)) is the
total number of times keyword appears in posts andis the total
number of posts. Similarlyd(@) is the number of posts not con-
taining keywordu. The valuex? has a chi-squared distribution.
From standard tables, we identify that only 5% of the timesdoe
x* exceed 3.84 if the variables are independent. Thereforenwh
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x? > 3.84 we say thatu andv are correlated at the 95% confi-
dence level. This test can act as a filter omitting edges ffbnot
correlated according to the test at the desired level ofifsignce.
Note that this test can be computed with a single pass of thesed
of G.

While this test is sufficient to detect the presence of a tatios,
it cannot judge its strength. For example, wheandv are indeed
correlated theif? values will increase as the number of data points
(number of posts in our case,= |D|) grows. The correlation co-
efficient p, is a measure of the strength of correlation. It is defined
as follows:

(22i(Ai — ) (Bi — pio))
nyo2o?
wherep,, is the mean of the number of times keywar@ppears in
the document collectiom(documents in total), that iéfL—“), ol is
the variance of the appearancewin the posts andi; is 1 if and
only if post: containsu. It is evident that is between -1 and 1,
and it is zero ifu andv are independent. The correlation coefficient
is important because it is often the case that we have encatgh d
to find weak but significant correlations. For example onchaur
posts might contain two terms together. With enough data ave
day, they? test will (correctly) assess non-independence. The cor-
relation coefficient however will report a weak correlatidtor all
edges that survive thg? test, we compute the correlation coeffi-
cient between the incident vertices. This computation cginebe
conducted efficiently by re-writing Formula 2 as

plu,v) = nA(u,v) — A(u)A(v)
V(n—Au) A(u)/(n — A(v)) A(v)

using the factthap A? = 3 A;.

Given graphG (excluding the edges eliminated by tké test),
assume we have annotated every remaining edge with the eflue
p indicating the strength of the correlation. This graph cariu-
ther reduced by eliminating all edges with valuespdiess than
a specific threshold. Since our problem is binary (a keyward e
ther appears in the post or not) focusing on edges with 0.2
will further eliminate any non truly correlated vertex pairaking
the probability of a false (non correlated pair) being ingd very
small [6]. These correlations are important since the gtromes
offer good indicators for query refinement (e.g., for a quesy-
word we may suggest the strongest correlation as a refinganat
also track the nature of ‘chatter’ around specific keywords.

Let G be the graph induced b after pruning edges based on
x? andp. Observe that grapti’ contains only edges connecting
strongly correlated keyword pairs. We aim to extract keyd@us-
ters of G’. Although we can formally cast our problem as an op-
timization problem for graph clustering [1, 8], adopting/arf the
known approximation algorithms is impossible as such dlgams
are of high polynomial complexity. Running any such aldoriton
the problems of interest in this study is prohibitive. Moreg the
access patterns of such approximation algorithms recugrentire
graphs to be in memory and do not have efficient secondarggsor
realizations. For this reason, we propose a simple and (asillve
demonstrate) effective heuristic algorithm to identifglselusters.
Our algorithm is fast, suitable for graphs of the scale entered
in our setting and efficient for graphs that do not fit in memory
We empirically evaluate the quality of the clusters we idfgrin
Section 5.

Our algorithm identifies all articulation points @&’ and reports
all vertices (with their associated edges) in each bicamgecom-
ponent as a cluster. An articulation point in a graph is aevestich
that its removal makes the graph disconnected. A graph with a

p(u,v) = 2

(©)




Algorithm 1 Algorithm to Identify Biconnected Components
Initialize time = 0 andunu] = 0 for all u

. Algorithm Art(w)

time «— time + 1

unlu] < time

low[u] < time

for each vertexw # u such thatu, w) € E do
if un[w] < unu] then

add(u, w) to Stack

end if

. if unfw] = 0then

10: call Art(w)

11: low[u] «— min{low[u], low[w]}

12:  endif

13:  if low[w] > un[u] then

oNORONE

Biconnected components:

1. (f.d) (e,f) (d,e)
2.(c.a) (b.0) (a.b)

(@ ® T ©

Figure 3: (a) Example graph G’ (each vertex represents a key-
word), (b) DFS tree G, (c) Biconnected components ofy’.

the finalun(u) and low(u) values. Back edgeg, a) and (f, d)
(shown as dashed edgesGH:) lead tolow(u) being updated dur-
ing the backtracking for all parent nodes. Internal nodeand

14: Pop all edges on top of Stack until (inclusively) edge d are articulation points. The biconnected component&/ofire

(u, w), and report as a biconnected component
15: else

16: low[u] — min{low[u], un[w]}
17:  endif
18: end for

least two edges is biconnected if it contains no articutegioints.

shown in (c).

4. STABLE CLUSTERS

Lettq,...tn be (without loss of generality): successive tem-
poral intervals. Lefl} ... T,, be the number of clusters identified
for each of the intervals; . . . t,, using the algorithm in Section 3.
Let c;; be the clusters identified < ¢ < m, 1 < j < T;. Analysis

A biconnected component of a graph is a maximal biconnected of the affinity (e.g., overlap) of the keywords in these austicross

graph. Thus, the set of clusters we report 8ris the set of all
biconnected components 6f plus all trees connecting those com-
ponents. The underlying intuition is that nodes in a bicated
component survived pruning, due to very strong pair-wigeeta-
tions. This problem is a well studied one [7]. We adopt altdponis
for its solution and demonstrate via experiments that theyreem-
ory efficient. LetG . be a depth first tree af’. An edge inG’ is

a back edge iff it is not irG». The root of G (the vertex from
which we initiated the depth first traversal) is an articolatpoint

of G’ if it has at least two children. A non-root vertex c G

is an articulation point o5’ if and only if u has a childw in G
such that no vertex in the subtree rooteduatin G), denoted
subtree(w), is connected to a proper ancestoudiy a back edge.
Let un[w],w € G, be the order in whichv is visited in the dfs
of G’. Such a dfs traversal can be performed efficiently, evereif th
graph is too large to fit in memory [5, 4]. We define:

unjw)

x is joined to subtree(w) via a
back edge where x is a proper
ancestor of w

low[w] = min unla] :

A non root vertexu € G is an articulation point oty if and
only if u has a childw such thatow[w] > un[u]. Algorithm 1
presents pseudocode for the algorithm to identify all bicmed
components of7’. A similar technique can be used to report all

the temporal intervals can provide very valuable inforarati For
example, a cluster of keywords that always appear togetitess
them temporal intervals probably points to an event that trigder
increased use of the keywords in the consecutive tempdealals
by enough people (bloggers) to force a persistent (stahlsjer
across the intervals. Similarly, clusters that appear mesof the
temporal intervals, or clusters that appear for a few irtisrthen
vanish and appear again, might also be of interest as they moi
events that triggered increased use of the keywords for anfen
vals.

Let G1,... G, be the sets of clusters produced for each tem-
poral intervall < i < m. Given two clustersy;, cx/ 1, k # k',
we can quantify the affinity of the clusters by functions e
their overlap. For examplégx; Ncys ;7| OF Jaccard(cr;, e ;) are
candidate choices. Other choices are possible taking ctouat
the strength of the correlation between the common pairepf k
words. Our framework can easily incorporate any of thesécelso
for quantifying cluster affinity. We consider clusters wiffinity
values greater than a specific thresh8l@@ = 0.1) to ensure a
minimum level of keyword persistence. Given the clust&rswe
form a graphG by evaluating the affinity between select pairs of
Gi,Gj,i # j,1 <j+g+1,1 <14, j < m. The choice of pairs
to compute, dictates the structure and connectivitg ofiVe refer
to the value ofy as agapfor a specific construction @. Gaps are
useful to account for clusters (chatter) that are perdistera few
intervals, then vanish and appear again (see Figure 4 fongrd.

articulation points of¥'. The algorithm as presented in the pseudo G is a weighted graph with edge weights equal to the affinity of
code requires as many accesses to disk as the number of edges ithe clusters incident to the edge. For any patlyiwe define the
G’. Since in our graphs we expedt| >> |V|, using the tech- weightof the path by aggregating the weights of the edges com-
niques of [5] we can run it irO((1 + |V |/M)scan(E) + |V]) prising the path. Notice that the types of paths existing iis a
I/0s, whereM is the size of available memory. Since the data construction choice. Grapf may range from am-partite graph

structure in memory is a stack with well defined access pwtter
it can be efficiently paged to secondary storage if its sizeeds
available resources. In our experiments, presented indBegtthis
was never the case.

ExampPLE 1. Figure 3 shows an example of applying the Al-
gorithm 1 toG’ in (a). The DFS tree(@ is shown in (b) with
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to a fully connected graph, depending on the choicg.of is an
undirected graph.

PROBLEM1 (ki-STABLE CLUSTERY). Given agraphj con-
structed using a specific affinity function, we define the lprotof
stable clusters as the problem of identifying thpaths of lengthi
of highest weight.



bapista

arsen bapista
fowler

liverpool arsen liverpool anfield

rosicki

Jan 6 Jan 9 Jan 10

Figure 4. Example of stable clusters with gaps. Three clusts
are shown for Jan 6, 9 and 10 2007 and no clusters were dis-
covered for Jan 7 and 8 (related to this topic). These clustsr
correspond to the following event: English FA cup soccer gam
between Liverpool and Arsenal with double goal by Rosicky at
Anfield on Jan 6. The same two teams played again on Jan 9,
with goals by Baptista and Fowler. Note that the keywords are

Figure 5: An example of cluster graph for three temporal inter-
vals, each with three clusters. The maximum gap size is chase
to be g = 2. Edges are labeled with associated weights (affinity
between clusters).

a non-zero affinity. While conceptually the model has urded

stemmed. e -
edges, we add a source node at the beginning and a sink at the
) ) ] end, and make edges directed. Each edge has a weight in thee ran
A variant of the above problem is the following: (0,1]%. Thus the length of an edge over a single gap of length
PROBLEM2 (NORMALIZED STABLE CLUSTERS. Given a is considered.to be + 1. Edge length i§ Qefiped as the length of
graph g constructed using a specific affinity function we define the the temporal interval between two participating nodes. éx@m-
problem of normalized stable clusters as the problem oftitiéng ple, in Figure 5, the length of edge: c21 andciscz: is one, while
thek paths of length at least,., of the highest weight normalized ~ that of ciicso is two. The gap size is selected @s= 1 in this
by their lengths. example, and therefore all edges have length less than af &xu
g + 1 = 2. The length and weight of edges connecting source or
In order to construct t_he graghfor a set of cluster&ry, ... G, sink with other nodes is assumed to be zero.
each computed for an interval . .. ¢,,, fixing a gap valugy > 0, LetG; = {ci1...ciz, } be the clusters at interva). We refer
we have to compute the affinity between clustersxinG;,i < to a nodec;; as a child of another node ;. if there is an edge

j+g+1,1<4,5<m,0<g<m—1 Assumingl; clusters  petween the two nodes arid> 7. In this caser, ;: is a parent
for each intervat; the suitable affinity predicate (e.g., intersection  of ¢, Letinterval(c) be the index of the temporal interval to the
size) can be computed between each pair of clusters of the-cor  cjyster to which: belongs. For example if € G;, interval(c) =
sponding intervals, assuming the clusters for the pairtefuals fit i

in memory. IfT; (and the associated cluster descriptions in terms
of their keywords) is too large to fit in memory, we can easilyat 4.2 Breadth First Search

technology to quickly compute all pairs of clusters for whitie We fi ' .

- . . . ; e first present a breadth first search based algorithm for de-
?ﬁ'rgty pr_ectj_|cat_e IS ab;avcfa Ifome tgresfl]_cr)lld. l:lr?tlce tglat i tecting stable clusters. At the end of the algorithm we sedintl
er description 1S a Set of keyworas. us, the probiem 18eas o top# paths with highest weights of length As the algorithm

Lo SOMPLIG Sty () wetweVAls | progesses, e annotte each e i the gragh i ks,
threshoglld (Eff'c'ent)sol tions for conductin ys( ch coyr; atEs for each of size less than or equalitoFor a node:;;, we denote this
- EfMicl utl ucting su p data structure a&];, for 1 < z < [, each of which represents

very large data sets are available and can easily be addtpd [ to N o :

. . p-k (or fewer) highest weighting subpaths of lengtlending at
ol C;'t\(/;g g:;g’lg% Wﬁort]gvrhg[et?\zntt ouratsh(;Iunr%r&s ég;ﬁ;tasbrl]zre cij. Observe that annotating each node of an arbitrary gragh wit
C(;Jmmonpsub atﬁs which. de en(ﬁﬁp on tEe cgntext mya not besuch information is a non-trivial task requiring many ramddisk

. P 1, depending » may | 1/0s. We take advantage of the special structure of the giaph
very informative from an information discovery perspeetiwari- our case, which is very similar to anpartite graph (except for the
ants of thekl-stable cluster problem with additional constraints are gaps) Such graphs have a nice property that a node dpwan-
p(.)s.sible to discard paths ‘.Ni.th the same prefix or suffix. P si not have a parent from a temporal interval beforeg — 1, where
plicity, we focus on the original problem and present threies g is the size of the maximum gap allowed. This means that if all
tions that can later be adapted for more refined variantsegbtbb- nodes from temporal intervals — g — 1 i 1} can be kept
lem. The thfee associated algorithms are: (a) an algontamd_b in memory, subpaths ending at all nodes frécan be computed
on breadth first search di, (b) an algorithm based on depth first without performing any /O
search, and (c) an adaptation of the well known thresholokitgm ; .
[14]. Our focus is on cases for which the number of clusteds an For all the nodes belonging 161, all the associated heaps are

their associated descriptions for all temporal intervadstao large initialized to be empty. To compute heaps for a nogec ¢, all
. P emp . a 9 nodes from the previoug + 1 intervals are read in memory along
to fit in memory and we propose efficient solutions for seconda

storage with their I heaps. After reading all the nodes from the previous

ge. g + 1 intervals, nodes frond7; are read one after the other. For
4.1 The Cluster Graph n — : : :

. Some affinity functions such as intersection do not guaeante

Let G denote the cluster graph. Figure 5 shows an example clus- weights to be in the rang®, 1]. In such cases, the maximum score

ter graph over 3 temporal intervals. Each interval has 3 s1¢kiy- seen so far can be maintained to normalize all weights toethger
word clusters). Edges between two nodes indicate that theg h (0, 1].
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Algorithm 2 BFS based algorithm fdtl-clusters
INPUT G ={G1,...,Gm}t, Lk, g

1: Initialize H = ¢, heap of sizé:
2: for i=2tom do

3: ReadG; inmemoryi —g—1<i <i-—1

4: for ¢ € Giydo

5: Initialize h;; = ¢, heap of sizée, 1 <z < 1.

6 for ¢;1j € parents(ci;) do

7 len = i — i’ {comment: since; ;; € Gy, thisis the
length of the edge; ;s ci; }

8 for x =1tol — len do

9: for = € hj,; do

10: 7' = append(m, ¢y jrciz)

11: checkr’ against];H'*"

12: checkr’ againstH {“check” operation onr’
against a fix-sized heap checks for the inclusion
of 7’ in the heap

13: end for

14: end for

15: end for

16: end for

17:  savec;; along withhj; to disk

18: end for

19: return H

each node;; € Gj, all its parents are probed (which are already in
memory) to update its associated heafis Consider the example
cluster graph presented in Figure 5 wite= 2 andk = 2. Com-
puting heaps for nodes from the second temporal intentaipdes

in G; are read in memory. Each node from the second interval will
have only a single heap associated with it, since there apatits

of length two ending there. The heaps for node&inare:

h%1 = {011021}; h%z = {0120227013022}; h%a = {012023}

Computing heaps for nodes fro6is, all nodes fromG, and G-
are kept in memory. Since there are three paths of lehgthching
cs1, only the best two are retained. Since the weightiefaocs1
(which is 0.8) is less than that ofscz2c31 (1.5) and ofciicaic3n
(1.2), it is discarded. Although; is a parent of:so (with direct
edge between the two), due to the gepcs2 is an edge of length
two. Thus,

1 1l .
hzy = {ca1¢31, ca2e31}; hag = {ca1c32};

1 . _ .
h33 = {0220337023033}7 h31 = {0110210317013022031},
2 2

h3s = {c11ca1¢32, cr1ca2}; hzs = {cizcaacas, cracaacas}

G is stored in the form of an adjacency matrix so that for any
clusterc;; we can easily retrievearents(c;;) the set of all clusters
atintervalst,, < t;,i’ € [i—g—1,i—1] with edges incident to;;.

As an invariant assume thaf, ;, 7’ € [i — g — 1,7 — 1] have been
computed while building heaps for nodes frar. We compute
allpaths(cij, x) as the set of all paths of lengthending atc;;
that can be derived from information maintainedimrents(c;;).
More formally:

allpaths(cij, x) = {append(m,c;yrjrcij) | civjr € parents(ciy)
}

whereappend(m, ¢, jrcij) represents the path obtained by append-
ing the edge:; ;- c;; at the end of subpath. Thus,

P
andﬂ' S hzc/;/H»z

hi; = top-k paths among allpaths(cij, x)
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Computinghs; usingparents(c;;) can be conducted in a straight-
forward way by considering each possible elememnttfaths(cij;, x).
In practice, hj; can be computed directly using a heap without
maintaining the intermediate resulipaths(c;;, x). For eachr;;

in memory we need to maintain at mast subpaths of highest
weight ending ate;;. These are the best (highest weight) paths
of lengthsl, 2, .. ., [, maintained using heaps, one for each length.
This means thatllpaths(ci;) is updated for each value af €
[1,1]. Algorithm 2 presents pseudocode.

Maintaining the solution to thkl-stable clusters problem is con-
ducted by maintaining a heafi during the execution of the al-
gorithm in which thek highest weight paths of length exactly
are identified. When a new interval;, is encountered(; 1 is
brought into memory and;_,_1 is discarded. This computation
is performed forl < ¢ < m. After G,, is encountered, the so-
lution to thekl-stable clusters problems is locatedih In the
running example of Figure 5, whenever a new path of length 2 is
discovered, itis checked against the global hHaSix paths, from
h2,, h3,, andhZ,, are checked for candidacy i in this example.
The size ofH is bounded byt = 2. In the end, the best two paths
are identified ag13C22C31 and013022033.

If I = m—1,i.e., when finding full paths frorty to¢,,,, we need
not maintain heapa;; for eachl < 2 < I. Instead, maintaining
one heap per node suffices. For a negec G, only hﬁj needs to
be computed. This reduces the computation by a factbfafthis
special case.

The algorithm as described requires enough memory to niainta
all clusters forg + 1 intervals in memory. Under this assumption
the algorithm requires a single pass over@ll 1 < i < m. The
total number of 1/Os required is linear in the number of inéds
considered and linear in the total number of clusters. Asstirat
accommodating clusters fgr 4+ 1 intervals in memory requires
an amount equal td/,., but only M memory units are available
(M < Myeq). In order to compute heaps for all clusters in tHa
interval M...q/M passes will be required. This situation is very
similar to block-nested loops.

Claim 1. The BFS based algorithm described outputs the correct
set of highest weighting top-paths in the cluster gragh

4.3 Depth First Search

We present a solution to thel-stable clusters problem based
on a depth first search (DFS) traversal of the cluster gtaphit-
ably adapted for secondary storage. DFS can be performad usi
a stack. We show that the size of the stack will be boundeghby
the number of temporal intervals. The complexity of thisoaitihm
in the worst case is linear to the number of edges in the gtayh,
practically can be much less due to pruning. Unlike the BE®-al
rithm presented in the previous subsection, this algoritbquires
significantly less memory to operate, but performs much ri@re

For each node (cluster);, we maintain a list of its children
(nodes inG,/, 4" € [i+1,i+g+1] incident toc;;) aschildren(c;;)
which is precomputed during the generationdofAlso we main-
tain a global topk list as a heap (containing the currénpaths of
length! of highest weight) and a stack, both initialized to be empty
in the beginning. As the algorithm progresses, we will meimthe
following information with each node;; (on disk):

e One flag denoting whether the node has already been visited.
If the flag is set, we are confident that all descendants of the
node have been considered. If not, its descendants may or
may not have been traversed.

e If the objective is to find full paths (of lengtlh — 1), one
number denoting the aggregate weight of the highest weight



path from the source to that node. If the objective is to find Algorithm 3 DFS based algorithm fokl-clusters

subpaths of length one number for each, max(1,! 4 i — INPUT G ={G1,...,Gm}t, Lk, g

m) < x < min(l,4 — 1), denoting the aggregate weight of 4

the highest weighting path of lengthending at that node. 2

We represent this data structure byuzweight(c;;, z) for 3
4
5

. initialize H = ¢, heap of sizé

. initialize stack = ¢

. push(source, children(source)) to stack

. while stack is not emptydo
(¢, children(c)) = peek fromstack {peek operation returns
the top element from the stack without removing it

6: if children(c) is not emptythen

7: ¢’ =remove top element fromhildren(c)

8

9

paths of lengthe, and use this data structure for pruning.

e If the objective is to find full paths of lengtlh — 1, a sin-
gle heap of top: best (highest weighting) paths starting at
that node is maintained. If the objective is to find subpaths
of lengthi, a heap for eaclmax(1,l +i¢ — m) < z <
min(l,i — 1), containing topk best paths of length start-
ing at that node is maintained. We denote this data structure , N ,
by bestpaths(c;j, z) for paths of lengthe. Contrasting this 10: updatebestpaths(c, z) using info frome’, @ < I
: . 11: for each newly added pathin bestpaths(c,l) do
case with the case of the same data structure in the BFS al- . B » X .
: . P 2 checkr againstH {“check” operation onr against
gorithm, we note that paths contained in this case start; at a fix-sized hean checks for the inclusionmofn the
(instead of ending af;;). The size obestpaths for any node P

read from disk information associated with
if ¢’ is visitedthen

is bounded by: when seeking full paths of length — 1, and 13- enr(]jef?)rr}
k - L in the case of subpaths of length :
14: else
The algorithm performs a depth first search on the input efust 15 markc’ visited, and p/usmc’, children(c')) on stack
graph. Pseudocode for this algorithm is presented in Allgori3. 16: .updatema:pwez?ht(c &) usingmazweight(c, r)
We provide an operational description of the algorithmrtSia 17 if CanPrune(c’) then )
pushing thesource node along withchildren(source) onto the 18: unmark visited flag for all nodes ktack
stack. Now iteratively do the following: Take the top elemen 19 pope /from stack. _ _ _
from the stack, remove an elemeritfrom the listchildren(c). 20: saver’ and associated information to disk
Check if ¢’ is already visited. If yes, updatestpaths(c) using 21 end if
bestpaths(c’) as described later, and discard If not, markc’ as 22: end if
visited and push it on the stack. Updateizweight(c’, z) using 23 else .
mazweight(c, z) for eachz. 24: popc from stack and save on disk
25: (¢, children(c')) = peek fromstack
mazweight(c’, x) = max(mazweight(c’, x), 26: updateéestpaths(c, z) using info frome, < I
mazweight(c, x — length(cc')) + weight(cc')) 27. for each newly added pathin bestpaths(c’, 1) do
28: checkr againstH
wherelength(cc') is the length of the edge betweemndc’. The 20: end for
following pruning operation can be conducted (when seagcfor 30: endif
subpaths of length): If for all max(1,! + interval(c’) — m) < 31: end while
x < min(l — 1, interval(c’) — 1), 32: output H

DEFINE CanPrune(c)

min-k = minimum score ind

where min# is the minimum weight among all paths f (the cur- for & = max(1,l + interval(¢) — m) to min(i —
rent topk ), removec’ from the stack. Also unmark the visited flag 1, interval(c’) — 1) do

for all the nodes in the stack (including). This is based on the if mazweights(c',z) + 1 — x > min-k then

observation that, given the current information about tlegim of return false

the path from the source 9, it is unlikely that any of the paths end if

containingec’ can be in the tog: . Therefore we postpone consid- - end for

ering descendants of until we find (if it exists) a higher weighting return true

path from the source td. We unmark the visited flag of all nodes
on the stack since the guarantee that all descendants hawérbe
versed no longer holds true for them. Therefore, pruningrass
that all edge weights are betweé, 1] (which is true for some bestpaths(c,l) for some nodec, 7 is also checked against the

mazweight(c',z) + 1 — z < min-k,

Nogakw

affinity measures like Jaccard; normalization is requikdthers global top% heap for inclusion.
e.g., intersect). The size of the stack is at most entries during the execution
If cis at the top of the stack such thdtildren(c) = ¢, i.e., all of this algorithm. When the algorithm terminates, the gldabp-k

children ofc have been considered (either traversed or discarded by heap H will contain the required result. Furthermore, each node

pruning), remove from the stack. Let’ be the next elementonthe  will be annotated with a list of top- bestpaths starting at that

stack. Updatéestpaths(c’) usingbestpaths(c) (this is actually node.

back tracking an edge in DFS). Addition of each node to the stack requires one random 1/O to
To updatebestpaths(c) using information about one of its chil-  read the associated data structures from disk. Updatireg ttiata

dren ¢’; first find all possible paths starting atby augmenting structures and marking/unmarking of nodes takes place im ma

the edgecc’ with all paths inbestpaths(c’,x), and add them to memory. Removal of a node requires an additional random 1/O

bestpaths(c,x + length(cc')), for all z + length(cc’) < 1. Now for writing back associated data structures. In the absehtiee
prunebestpaths(c,x + length(cc’)) so that it does not contain  pruning condition, the number of read operations is bouyetie
more thank paths. When a new path of length! is added to number of edges, and the number of write operations is balinge
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the number of nodes in the graph. With every pruning operatio Node Action taken and Updates

the worst case, both these numbers can increase by an angoaht e Explored to mazweights andbestpaths
to the size of the stack at that time. But pruning is also etquec C11 none
to discard many nodes and edges without actually calcglatith 21 mazweight(cz1,1) = 0.5
lengths for them, which can reduce 1/Os significantly. 31 , mal”%eight(cl?))h 2){2 1.2 )
Cco1 estpaths(cai, = {C21C31
EXAMPLE 2. We show the execution of the algorithm over the C32 mazweight(csz,2) = 0.9
cluster graph presented in Figure 5 féar = 1 andl = 2. In c21 none
this example, since we are required to find full paths=(2), only {cs2¢21} failed to qualify forbestpaths(ca1, 1)
one heap and onerazweight structure is associated with each c11 bestpaths(ci1,2) = {c11c21031}
node. Table 2 shows the order in which the nodes are considere andH = {ciica1c31}
and actions taken at those steps. Observe that pruning fakes C32 none
whencys is first explored. Howevat,s is explored further when it mazweight(cs2,2) remains unchanged at 0.9
is reached again viais. The final result is printed a&ci3ca2c33 }- c11 none
Note that other execution orders are also possible, depgndn {c32c11 } failed to qualify forbestpaths(cii,1)
how the children lists for each node are sorted. Csource none
c none
Claim 2. The DFS based algorithm described outputs the cor- C;z mazweight(caz,1) = 0.1 and
rect set of highest weighting tappaths in the cluster grapgh. ¢22 is pruned since mik=1.2
For effgctive pruning, it is.important that path; qf high gletis 22 mmweig,;(zgi 1) =04
are considered early. For this reason, as a heuristic, wheieom- Cas mazweight(css, 2) = 0.8
putlng. the list of children fpr all nodes, we sort them in thee d Cos bestpaths(cas, 1) = {cascss)
scendlng order of edge vyelghts. Formally:if co € chzldr.en(c) 1 bestpaths(ciz, 2) = {ci2cascss}
and weight(ci,¢c) > weight(cz, c), thenc; precedes: in the Cooumen none
list children(c). This will ensure that the children connected with s none
edge_s pf _hlgh we_lg_ht are consfldered first. It must be notac_th]ha oo mazweight(caz, 1) = 0.8
heunstlc is for eff|C|ent execution, and correctness ofalgerithm ¢22 is not pruned this time
is unaffected by it. a1 mazweight(cs1,2) = 1.5
4.4 Adapting the Threshold Algorithm €22 bestpaths(cz, 1) = {exzcan}t
i ' 33 mazweight(css,2) = 1.7
The Threshold Algorlthm (TA) [14] can .also be adapt'ed to find oo bestpaths(cas, 1) = {cazcss)
full paths of lengthm — 1 in G. For each pair of temporal intervals 13 bestpaths(cis,2) = {ci3cazcss}

t; andt;, |i — '] < g + 1, one list of edges is maintained. These
lists are sorted in descending order of edge weights.

We read edges from sorted lists in a round robin fashion and Table 2: Example execution of DFS.
maintain a global heaf/ for intermediate topk results. When an
edgec;;jcy ;v (i < i) is encountered, we perform random seeks to
lookup all paths containing the edge. L&be the maximum out-
degree in the grap8. Unlike the vanilla-TA, where each attribute
belongs to exactly one tuple, in this case there may be nhltip as
paths that contair;;c, ;». Perform random seeks in edge lists to
find all the paths that start with;,;,, and all the paths that end
at c;; to construct all paths containing;c; ;. Check all these
paths for inclusion inH, and discard them if they fail to qualify.
Terminate when the score of the lowest scoring path in theebuf
H falls below that of the virtual tuple. The virtual tuple iseth
imaginary path consisting of the highest scoring unseee é&agn

andH = {cizcozcs3}

If the maximum out-degree in the graghis d, this might lead to
many asn?~! random seeks in the absence of gaps=(0). In

the presence of gaps this number can be much higher. Hersce thi
algorithm is not suitable when either of or d is high. We vali-
date this observation in the experimental results sectfamther,

this algorithm is restricted to discovery of full paths omlyd thus
requiresd = m — 1.

45 Normalized Stable Clusters

each list.

A path may be discovered more than once in the above algo- Inthe previous sections we have presented algorithms éotiid
rithm. As an optimization to reduce /O, two additional haah ~ fying ki-Stable Clusters ig. In this section, we present algorithms
bles, startwts and endwts, can be maintained. For a nogde  for identifying normalized stable clusters. Letgth(r) define

startwts(ci;) (endwts(ci;)) records the aggregate weight of the  the length of pathr. Let weight(r) define the aggregate weight
highest weighting path starting (ending)gf. These hash tables ~ (Sum of edge weights) for path. We wish to find topk paths in

are initialized to be empty at start, and are updated as ¢jogitim G with the highest normalized weightstability(m) = %m
progresses. When all paths starting (ending) at a agdere com- To avoid trivial results, we constrain the paths to be of thraf
puted by performing random probegartwts(ci;) (endwts(ci;)) leastlmin.

is updated. When an edggjc; ;- is read from the edge list, and In this case we are not required to provide the lengths ofspath
if startwts(c;;7) andendwts(c;;) are available in the hash ta-  as input. Pruning paths becomes tricky in the absence ofrthis
bles, an upper bound on weight of all paths contairipg, ;; can formation. We make the following observation: if a patltan be

be computed without any I/O. This upper bound can be compared divided in two partsr,,. andmcu,r, SUch thatr = mpremeurr, and
with the score of lowest scoring path I, andc;;c; ;» can be dis- stability of 7, is less than that of ..., irrespective of the suffix
carded without performing any further computation if thenfier is (unseen part)rs, ¢ ¢ to follow, one may dropr,.. from the path.
smaller. This pruning can result in large savings in I/O. Formally,
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THEOREM 1. If mpremmeurr iS @ valid path such that,
stability(mpre) < stability(Teurr),
then for any possible suffix.. ¢,

stability(TpreTeurr) < stability(TpreTeurrTsusf)

= Stability(ﬂ'pre’frcurrﬂ'suff) < Stability(ﬂ-currﬂ—suff)-

Proof (Sketch) We use the fact thatdfb, c,d € R'

a < c PN a < a—+c < c
b d b b+d d
Let weights ofmpre, Teurr, aNd g, rs be wy, we, andws; and
lengths ben,,, n., andn. Givenfj—: < 2e it follows that

ne !

We + Ws
T Ne+Ns

wp+wc
np +Ne —

Wp + We + Ws
Np + Ne + Ns

Wp + We + Ws
Np + Ne + Ns

For brevity we omit the complete algorithm and describe only
modifications to the algorithm presented in Section 4.2 hWéch
nodec;;, we need to maintain:

e All paths of length less thah,,:,» ending at that node. Let
smallpaths(cij, x) denote this for all paths of lengthend-
ing atc;;.

o A list bestpaths(c;;) of top scoring paths of length,;,, or

4.6 Online Version

New data arrive at every time interval. Hence it is important
for the algorithms presented to be amenable to incremediiasa
ment of the data structures. Notice that the BFS based #igoof
Section 4.2 is amenable to such adjustment. Since heapadbr e
temporal interval are computed separately, when nodeséanext
temporal intervalG.,.+1 arrive, heaps for them can be computed
without redoing any past computation. If the heaps for &lritbdes
in G are maintained on disk, a single pass over them is suffiaient t
compute the global tog-.

The DFS based algorithm in its original form is not an online
streaming algorithm since only thsmurceis known and thesink
changes constantly as new data arrives. DFS requires ttvel-kno
edge of asink to operate. Observe that the input graph is symmet-
ric. ThereforeG can be modified by adding the source at the last
temporal interval and the sink at the first interval to perfddFS.

As the data for new intervals arrive, only the source needseto
shifted (while keeping everything else the same). Theegfsince
bestpaths for each node g7 is maintained, DFS can be used in an
incremental fashion as new data arrives.

Note that when streaming, both BFS and DFS actually perform
the same operations at each iteration. The only differesdbd
bootstrap process.

5. EXPERIMENTS

In this section we discuss the results of a detailed expetiahe
evaluation comparing our algorithms in terms of perfornegrand

greater ending at that node. This list can be pruned at eachwe present qualitative results. We first present resultsiocluster

node using Theorem 1. A patt), e Tcurr € bestpaths(cij)
can be pruned to justeu,r if length(meurr) > lmin @and
stability(mpre) < stability(meurr). 1N words, the prefix
can be discarded if its contribution to the stability is ld&m
that of the last,:, edges in the path.

generation procedure and then discuss our stable clustetifida-
tion algorithms.

5.1 Cluster Generation

In our first experiment we assess the performance of ourerlust
generation procedure introduced in Section 3. We impleatktiiis

The algorithm in this case proceeds in the same way as in Sec-g|gorithm, and we report its performance as the pruningstiokl

tion 4.2. The data structures are updated as follows: totepda
smallpaths(c) for nodec after discovery of a new edgéc from
¢’ € parents(c),

smallpaths(c, length(c'c)) = smallpaths(c,length(c'c)) U {c'c}
and forlength(c'c) < z < lmin,

smallpaths(c,z) = smallpaths(c,x)U{append(ﬂ',c'c)

| 7 € smallpaths(c’,z — length(c'c))}.

To updatebestpaths(c), first all possible candidates are computed
as described below

bestpaths(c) = bestpaths(c)

U {append(r,c'c) | ™ € smallpaths(c’, lmin — length(c'c))}
U {append(w,c'c) | 7 € bestpaths(c')}

After computing all the possible candidates, perform pugnilf
w1, T2 € bestpaths(c) andm, is a subpath ofri, thenm, can be
deleted frombestpaths(c). AlSO if TpreTeurr € bestpaths(c),
length(meurr) > lmin @andstability(mpre) < stability(meurr),
then deletérp,cmeurr and addreq,r- t0 bestpaths(c). After updat-

ing bestpaths, check each newly generated path against the global

top-k list of paths for inclusion.

The above algorithm can be used with the DFS framework (pre-

sented in Section 4.3) as well. The basic idea is the samerand
ing uses the result of Theorem 1. Details are omitted forityrev
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(correlation coefficient) increases. Figure 6 presentshaing
time of our entire approach for the data set Jan 6 of Table 1. We
measure the time required by the entire procedure, namaty re
ing the raw data files, conducting tiyé test, pruning based on the
correlation coefficient and then running the Art algorithAigo-
rithm 1) to find biconnected components. The execution ofitie
algorithm is secondary storage based; we only maintain imme
ory the biconnected component edges in the stackp iksreases,
time decreases drastically since the number of edges atideger
remaining in the graph decreases due to pruning.
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Figure 6: Running time of the Art algorithm.

5.2 Stable Clusters

Our algorithms for stable cluster identification were inmpénted
in Java and executed on a Linux machine with a single 2.0 Gétz pr
cessor. To capture the effect of I/O on performance acdyraite



page cache was disabled during the experiments. Enough rpemo
to keep nodes from the lagtt 1 intervals was available during ex-
perimentation with the BFS based algorithms. In order tolile a
to vary the parameters of interest in our performance stody i
consistent fashion (e.g., number of nodes, average nodiegtee,
etc.) we generated synthetic graphs and we report perfaenam
them. We chose the range of our parameters so as to keep sespon
times manageable, while being able to observe performaecds.
The data was generated by first creating a set of nodes of, $tre
each of them temporal intervals. For pairs of temporal intervals
iandi’, i — i < g+ 1 (whereg is the gap size), edges were
added as follows: for each nodg from the first temporal interval,

its out degreel;; was selected randomly and uniformly between
1 and2 - d, and thend;; nodes were randomly selected from the
second temporal interval to construct edgesdigr Edge weights
were selected fron(0, 1] uniformly.

Table 3 presents running times in seconds for identifying3o
full paths (of lengthl = m — 1) comparing the three algorithms.
Each temporal interval had = 400 nodes, gap size was selected
asg = 0, and average out degree of nodes was- 5. Since
the TA based algorithm is exponentialnm, its running times were
significantly higher form > 9 and hence not reported. It can be
observed that the BFS based algorithm outperforms DFS hyge la
margin in terms of running time. But it must be noted that BFS
requires significantly larger amounts of memory as compéoed
the DFS based algorithm. For example, for finding top-3 paths
length 6 on a dataset with = 2000, m = 9 andg = 0, DFS
required less than 2MB RAM as compared to 35MB for BFS.

m= 3 6 9 12 15
BFS | 0.65| 2.09 4.49 7.95| 12.49
DFS | 60.3 | 368.8| 754.8| 805.94| 792.05
TA | 0.35] 11.11| 133.89 > 10 hours

Table 3: Comparing BFS, DFS and TA based algorithms for
different values of m.

Since the TA based algorithm is not applicable to identifi-su
paths (it require$ = m — 1), and due to its high running times
on large data sizes when identifying full paths, we focus loa t
BFS and DFS based algorithms in the sequel. We first explere th
sensitivity of the BFS based algorithm for different valuéghe
gap sizeg in Figure 7. We next show the sensitivity of the same
algorithm for different values of average out degdei@ Figure 8.

In both cases, when either gfor d is increased, the number of
edges grows, leading to an increase in the amount of connmuet
effort required. Running times therefore are positivelyrelated
with bothg andd, as expected.

Figure 9 demonstrates the scalability of the algorithm; tvans
the performance of the BFS algorithm as the number of nodies-(c
ters) for each temporal interval is increased. Observetligatun-
ning times are linear in the number of nodes, establishiatpbd-
ity. The figure shows running times fat = 25 andm = 50.

Figure 10 presents performance results for the BFS algorith
when seeking top-5 subpaths of lengthThe graphs demonstrate
that running times increase ascreases due to the larger number
of heaps maintained with each node. As expected, runningstim
are linear in the number of nodes per temporal interval.

Figure 11 displays running times of the DFS based algorithm f
different values ofim andn. Figure 12 shows the sensitivity of
the same algorithm for different values of the gap size ardee
node out degree. As the average out degree or gap size iesreas
the number of edges increases, directly affecting the ngntime
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Figure 7: Running times for BFS based algorithm seeking top-
5 full paths for different values of g as the number of temporal
intervals is increased from 5 to 25. Number of nodes per tem-
poral interval was fixed at n = 1000 and average out degree
was set tod = 5.
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Figure 8: Running times for BFS based algorithm seeking top-
5 full paths for different values of d as the number of temporal
intervals is increased from 5 to 25. Number of nodes per tem-
poral interval was fixed at n = 1000 and gap size was set to
g=2.
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Figure 9: Running times for BFS based algorithm seeking tofb
full paths for two different values of m as the number of nodes
in each temporal intervals is increased from 2000 to 14000.\A
erage out degree was set td = 5 and gap size was selected as
g=1.

of the DFS based algorithm. Contrast these results withetlods
Figure 7 and observe that the DFS based algorithm is moréisens
towardsg than the BFS based algorithm. The running times of the
DFS based algorithm increases by a factor of more than twp as
is increased from O to 2, unlike Figure 7, where the effectrof a
increase ing is milder. Figure 13 shows the performance of the
DFS algorithm while seeking subpaths for different values és
expected, running times increase with increagiagdn.



o

time required (in seconds)

T T T 1
1000 1500 2000 2500

n (number of nodes per temporal interval)

Figure 10: Running times for BFS based algorithms for differ
ent values ofl over m = 15 temporal intervals, as the number
of nodes in each temporal intervals is increased from 500 to
2500. Average out degree was set i = 5 and gap size was
selected ag = 2.

1500+

=300
I =400
=500

zﬂiﬂﬂi

m (number of temporal intevals)

1250

1000

i}
3
1

2}
=
1

time required {in seconds)

1]
S
1

o
|

Figure 11: Running times for DFS based algorithms seeking
top-5 full paths for different values of m and n. ¢ = 1 and

d = 5 were selected.
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Figure 12: Running times for DFS based algorithms seeking
top-5 full paths for different values of g, as the average out de-
gree of nodes is increasedin = 6 and n = 400 were selected.

Figure 14 displays performance trends for the BFS algorithm
seeking normalized stable clusters. Unlike the previoas,cahere
only paths up to lengthhad to be maintained, the algorithm seek-
ing normalized stable clusters needs to maintain pathd lefregjths
(those which survive pruning). This leads to an increasarming
times asm increases. Experimental results validate this intuition.
Running times are positively correlated with;,, as larger values
of I,m:n results in more paths being maintained with each node. We
omit graphs where we vary, g andd due to space limitations.
Trends are as expected, running times increase gracefiityiny
crease im, g andd.

The impact ofk, the number of top results required, on the per-
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Figure 13: Running times for DFS based algorithms seeking
top-5 sub paths of length! for different values of . m = 6,
d =5, and g = 1 were selected.
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Figure 14: Running times for BFS based algorithms seeking
top-5 normalized stable clusters of length greater or equato
lmin for different values of m. n = 400, d = 3, and g = 0 were
selected.

formance of all the algorithms is minimal, and /ascreases run-
ning times increase slowly. Experimental results obtaiwveditiate
that the BFS based algorithm performs better than the DF&dbas
algorithm. The running time of the BFS algorithm increases |
early with an increase in, while that of DFS increases much more
rapidly. This is because the number of edges is proportionald.
For our problem setting, the running times of the adaptadiofA
based algorithms is exponential 4n and hence not practical for
any realistic problem size. The main advantage of DFS iits |
memory requirement. DFS should be used as an alternativE$o B
in memory constrained environments.

5.3 Qualitative Results

We have tested our algorithms on large collections of retd da
obtained from BlogScope. For purposes of exposition, wasa@n
data obtained for a single week (week on Jan 6 2007) and fresen
results commenting on the output of our algorithms. We set th
temporal interval for our construction of graghto a day, analyz-
ing seven days. Clusters for a single day were computed vsing
methodology in Section 3 using= 0.2. Around 1100-1500 con-
nected components (clusters) were produced for each dégitpf
between clusters was computed using the Jaccard coeffaieht
42 full paths spanning the complete week were discovered.

Table 1 provides data about keyword graph sizes for two days;
sizes for the rest of the days were comparable. Figure 1 apd Fi
ure 2 show example clusters we were able to identify after the
procedure described in Section 3. It is evident that our ouh
ogy can indeed capture clusters of keywords with strongapser
correlations. Taking into account how such correlatiomsganer-
ated (lots of bloggers talking about an event) it is evidéat bur
methodology can identify events that spawn a lot of chattehé
blogosphere. A stable cluster with a path of length 3 @rd 2 is
shown in Figure 4. Figure 15 presents a stable cluster thsisped
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Figure 15: Stable clusters with path of length 3 without gaps
Apple’s iPhone was launched on Jan 9 2007. Discussion stadte
with initial talk of iphone’s features. Clusters shift on Jan 11
to the Cisco-Apple trademark infringement lawsuit announed
on Jan 10. Note that the keywords are stemmed.

for four days without any gaps. An example full length clugie.,
that persisted for all seven days) is shown in Figure 16.

Our definition of stable clusters computes cluster sintifave-
tween clusters from consecutive time periods only, instdanbn-
sidering similarity between all pairs in a path. This allousto
capture the dynamic nature of stories in the blogosphekttegir
evolution with time. For example notice that in Figure 15 we a
able to identify the shift of discussion from iPhone feasute the
Apple vs Cisco lawsuit related to iPhone. The nature of stalis-
ters demonstrated in the figures attests that our methogaag
indeed handle topic drifts.

6. CONCLUSIONS

In this paper, we formally define and provide solutions fartpr
lems related to temporal association of sets of keywordherbt-
ogosphere (or any other streaming text source for that ma@er
technique consists of two steps, (1) generating the keywtust
ters, and (2) identifying stable clusters. For both stepspvee
pose efficient solutions. For the problem/dtstable clusters, we
propose three solutions, based on breadth first searchh €legit
search, and one based on an adaptation of the well-knowstiblce
algorithm. Detailed experimental results are providednolestrat-
ing the efficiency of the proposed algorithms. Qualitatigsults
obtained using real data from BlogScope are reported trestdd
the effectiveness of our techniques.
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