
Seeking Stable Clusters in the Blogosphere

Nilesh Bansal
University of Toronto

nilesh@cs.toronto.edu

Fei Chiang
University of Toronto

fchiang@cs.toronto.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Frank Wm. Tompa
University of Waterloo

fwtompa@uwaterloo.ca

ABSTRACT
The popularity of blogs has been increasing dramatically over the
last couple of years. As topics evolve in the blogosphere, keywords
align together and form the heart of various stories. Intuitively we
expect that in certain contexts, when there is a lot of discussion on
a specific topic or event, a set of keywords will be correlated: the
keywords in the set will frequently appear together (pair-wise or in
conjunction) forming a cluster. Note that such keyword clusters are
temporal (associated with specific time periods) and transient. As
topics recede, associated keyword clusters dissolve, because their
keywords no longer appear frequently together.

In this paper, we formalize this intuition and present efficient al-
gorithms to identify keyword clusters in large collectionsof blog
posts for specific temporal intervals. We then formalize problems
related to the temporal properties of such clusters. In particular,
we present efficient algorithms to identify clusters that persist over
time. Given the vast amounts of data involved, we present algo-
rithms that are fast (can efficiently process millions of blogs with
multiple millions of posts) and take special care to make them ef-
ficiently realizable in secondary storage. Although we instantiate
our techniques in the context of blogs, our methodology is generic
enough to apply equally well to any temporally ordered text source.

We present the results of an experimental study using both real
and synthetic data sets, demonstrating the efficiency of ouralgo-
rithms, both in terms of performance and in terms of the quality of
the keyword clusters and associated temporal properties weiden-
tify.

1. INTRODUCTION
The popularity of blogs has been increasing dramatically over

the last couple of years. It is estimated [15] that the size ofthe blo-
gosphere in August 2006 was two orders of magnitude larger than
three years ago. According to the same sources, the total number
of blogs is doubling every two hundred days. Technorati, a weblog
tracking company, has been tracking fifty million blogs. Blogging
is gaining popularity across several age groups. Young people in
the age group of 13-29 are generating the bulk (91%) of blogging
activity [13].

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Figure 1: An example cluster of keywords appearing in the bl-
ogosphere on January 8 2007 corresponding to the following
event: On January 7 2007, scientists at Wake Forest University
led by Dr. Anthony Atala report discovery of a new type of stem
cell in amniotic fluid. This may potentially provide an alterna-
tive to embryonic stem cells for use in research and therapy.

Bloggers are producing vastly diverse kinds of information. Gen-
eral topics include personal diaries, experiences (traveling, con-
certs), opinions (about products, events, people, music groups, busi-
nesses), information technology, and politics to name a few. The
importance of this information is highly significant. The blogo-
sphere is an unregulated collective, and it evolves by the contri-
butions of individuals; collecting, monitoring and analyzing infor-
mation on blogs can provide key insights on ‘public opinion’on
a variety of topics, for example products, political views,enter-
tainment, etc. At the University of Toronto we have been build-
ing BlogScope, a feature-rich search and analysis engine for blogs
(www.blogscope.net). The search engine incorporates algo-
rithms to aid navigating the blogosphere, points to events of interest
via information bursts, plots relevant blogs on a geographical map,
and presents keywords related to a search. At regular time intervals
BlogScope collects, parses and indexes new blog posts and updates
several structures in its keyword index. At the time of this writing,
BlogScope was indexing around 75 million posts containing over
13 million unique keywords. A complete description of the system
and its architecture is available elsewhere [3, 2].

As topics evolve in the blogosphere, keywords align together and
form the heart of various stories. Intuitively we expect that in cer-
tain contexts, when there is a lot of discussion on a specific topic
or event, a set of keywords will be correlated: the keywords in
the set will frequently appear together (pair-wise or in conjunc-
tion) forming a cluster. In other words, keywords are correlated if a
large number of bloggers use them together in their respective blog
posts. Note that such keyword clusters are temporal (associated
with specific time periods) and transient. As topics recede,asso-
ciated keyword clusters dissolve, because their keywords do not

806

Figure 2: An example cluster of keywords appearing in the bl-
ogosphere on January 12 2007 corresponding to the following
event: Soccer star David Beckham announces on Jan 11 he is
to leave Real Madrid and join Major League Soccer (mls) team
LA Galaxy at the end of the season.

appear frequently together anymore. For example, we would ex-
pect that the keywords ‘saddam’, ‘hussein’, ‘trial’ formeda cluster
when the trial of the former Iraqi president took place (on Novem-
ber 5 2006) as many people blogged about the trial of Saddam Hus-
sein. However the keywords ‘saddam’, ‘hussein’ and ‘dead’ would
form a cluster after his execution on December 30 2006. For more
examples, consider Figures 1 and 2. Identifying such clusters for
specific time intervals is a challenging problem. The associations
between keywords revealschatter in the blogosphere that may be
of significant actionable value for many domains (e.g., marketing,
law enforcement). Moreover it can be of value for improving and
refining the quality of search results for specific keywords.If a
search query for a specific interval falls in a cluster, the rest of the
keywords in that cluster are good candidates for query refinement.

In this paper we formalize and provide solutions for problems
related to the temporal association of sets of keywords in the blogo-
sphere. Although we focus on the domain of blogs (since we have
a large collection of data via BlogScope), our discussion and tech-
niques are generic enough to apply to any other temporally ordered
text source. In particular, we make the following contributions in
this paper:

• We present fast algorithms to identify sets of correlated key-
words (keyword clusters) in the blogosphere at any specified
temporal interval. BlogScope currently contains more than
13M keywords in its index. Any algorithm aiming to iden-
tify keyword associations at this scale needs to be efficient.

• We formalize and present algorithms for the notion ofstable
keyword clusters. Since associations of sets of keywords is
dynamic, stable clusters aim to identify sets of keywords that
exhibit associations over several temporal intervals. Such
keyword sets would probably point to events of interest, as
it is evident that there is significant use of the keywords in
the set, in conjunction, for extended periods of time.

• Since temporal information sources evolve continuously we
present streaming (online) versions of our algorithms. This
enables us to update the result set efficiently as new infor-
mation arrives without re-computing everything. Such a re-
quirement on algorithms is essential in order to cope with the
temporal nature of our problem domain.

• We present an evaluation of our algorithms demonstrating
their practical significance using real data sets and evaluate
their scalability for very large data collections and problem
settings.

Our core technology extends beyond blogs to social network-
ing sites making heavy use of tagging, such asflickr.com and
del.icio.us. Related processing to the one we conduct for key-
words in blogs can be conducted on tags as well. This paper is
organized as follows: in Section 2 we briefly review related work.
Section 3 presents our methodology for cluster generation.In Sec-
tion 4 we formally define stable clusters and present our algorithms
for identifying them. Section 5 presents the results of a quantitative
comparison of our algorithms for various parameters of interest.
Qualitative results for clusters discovered from real dataare also
presented in the same section. Finally Section 6 concludes this pa-
per.

2. RELATED WORK
Graph partitioning has been a topic of active research (see [10]

and references therein). Ak-way graph partitioning is defined as a
partitioning of a graph G intok mutually exclusive subsets of ver-
tices of approximately the same size such that the number of edges
of G that belong to different subsets is minimized. The problem
is hard, and several heuristic approaches have been proposed. In
particular, multilevel graph bisection [10] has attractedresearch at-
tention. Although such heuristic techniques have been tested on
fairly large graph sizes (on the order of half a million vertices and
few million edges) [10], they have the constraint that the number of
partitions has to be specified in advance (as is common with clus-
tering algorithms).

Correlation clustering [1] drops this constraint, and it produces
graph cuts by specifying global constraints for the clusters to be
produced. More specifically given a graph in which each edge is
marked with a ‘+’ or a ‘-’, correlation clustering produces aparti-
tioning of the graph such that the number of ‘+’ edges within each
cluster and the number of ‘-’ edges across clusters is maximized.
Although approximation algorithms are provided for this problem,
the algorithms presented in [1] (as well in subsequent work [9] for
a more restricted version of the problem) are very interesting theo-
retically, but far from practical. Moreover the existing algorithms
require the edges to have binary labels, which is not the casein the
applications we have in mind.

Flake et al. [8] present an alternative formulation of graphclus-
tering in which they solve the problem using network flows. The
drawback of this approach is that it requires the specification of
a sensitivity parameterα before executing the algorithm, and the
choice ofα affects the solutions produced significantly. Moreover
the running time of such an algorithm is prohibitively largefor the
graphs we have in mind, as they require solutions ofmultiplemax-
flow problems. Even the fastest algorithms known for max-flow
areO(V E), for V vertices andE edges, both of which are in the
order of millions in our problem. (In our implementation, the algo-
rithm of Flake et al. required six hours to conduct a graph cuton a
graph with a few thousand edges and vertices.) Moreover it isnot
clear how to set parameters of this algorithm, and no guidelines are
proposed in [8].

Various measures have been utilized in the past to assess asso-
ciations between keywords in a corpus [12]. We employ some of
these techniques to infer the strength of association between key-
words during our cluster generation process.

3. CLUSTER GENERATION
Let D denote the set of text documents for the temporal inter-

val of interest. LetD ∈ D be a document, represented as a bag
of words, in this document collection. For each pair of keywords
u, v, AD(u, v) is assigned one if bothu andv are present inD

807

Date File Size # keywords # edges
Jan 6 3027MB 2889449 138340942
Jan 7 2968MB 2872363 135869146

Table 1: Sizes of resulting keyword graphs (each for a single
day) for January 6 and 7 2007 after stemming and removal of
stop words.

and zero otherwise. Addition ofAD(u, v) over all documents,
A(u, v) =

P

D∈D AD(u, v), represents the count of documents
in D that contain bothu and v. This way, triplets of the form
(u, v, A(u, v)) can be computed. LetV be the union of all key-
words in these triplets. Each triplet represents an edgeE with
weightA(u, v) in graphG over verticesV . Further, letA(u) de-
note the number of documents inD containing the keywordu. This
additional information is required for computingA(u, v), which
represents the number of documents containingu but notv.

For our specific case, the BlogScope crawler fetches all newly
created blog posts at regular time intervals. The document collec-
tionD in this case is the set of all blog posts created in a temporal
interval (say every hour or every day). The numberA(u, v) rep-
resents the number of blog posts created in the selected temporal
interval containing bothu andv. BlogScope is currently indexing
around 75 million blog posts, and fetches over 200,000 new posts
everyday. The computation of the triplets(u, v, A(u, v)) therefore
needs to be done efficiently. We used the following methodology:
A single pass is performed over all documents inD. For each doc-
umentD, output all pairs of keywords that appear inD after stem-
ming and removal of stop words. SinceA(u) also needs to be
computed, for each keywordu ∈ D, (u, u) is also included as a
keyword pair appearing inD. At the end of the pass overD a file
with all keyword pairs is generated. The number of times a key-
word pair(u, v) appears in this file is exactly the same asA(u, v).
This file is sorted lexicography (using external memory merge sort)
such that all identical keyword pairs appear together in theoutput.
All the triplets are generated by performing a single pass over the
output sorted file. Table 1 presents sizes of two of the keyword
graphs (each for a single day) after stemming all keywords and re-
moving stop words.

Given graphG we first infer statistically significant associations
between pairs of keywords in this graph. Intuitively if one keyword
appears inn1 fraction of the posts and another keyword in a fraction
n2 we would expect them both to occur together inn1n2 fraction
of posts. If the actual co-occurrence percent deviates significantly
from this expected value, the assumption that the two keywords are
independent is questionable. This effect can be easily captured by
theχ2 test:

χ2 =
(E(uv)− A(uv))2

E(uv)
+

(E(ūv)− A(ūv))2

E(ūv)
+

(E(uv̄)−A(uv̄))2

E(uv̄)
+

(E(ūv̄)− A(ūv̄))2

E(ūv̄)
(1)

In this formula,A(uv) is the number of times keywordsu, v ap-
pear in the same post (document).E(uv) is the expected number
of posts in whichu and v co-occur under the independence as-
sumption. Thus,E(uv) = A(u)A(v)

n
whereA(u) (A(v)) is the

total number of times keywordu appears in posts andn is the total
number of posts. Similarly,A(ū) is the number of posts not con-
taining keywordu. The valueχ2 has a chi-squared distribution.
From standard tables, we identify that only 5% of the time does
χ2 exceed 3.84 if the variables are independent. Therefore, when

χ2 > 3.84 we say thatu andv are correlated at the 95% confi-
dence level. This test can act as a filter omitting edges fromG not
correlated according to the test at the desired level of significance.
Note that this test can be computed with a single pass of the edges
of G.

While this test is sufficient to detect the presence of a correlation,
it cannot judge its strength. For example, whenu andv are indeed
correlated theirχ2 values will increase as the number of data points
(number of posts in our case,n = |D|) grows. The correlation co-
efficientρ, is a measure of the strength of correlation. It is defined
as follows:

ρ(u, v) =
(
P

i
(Ai − µu)(Bi − µv))

n
√

σ2
uσ2

v

(2)

whereµu is the mean of the number of times keywordu appears in
the document collection (n documents in total), that isA(u)

n
, σ2

u is
the variance of the appearance ofu in the posts andAi is 1 if and
only if post i containsu. It is evident thatρ is between -1 and 1,
and it is zero ifu andv are independent. The correlation coefficient
is important because it is often the case that we have enough data
to find weak but significant correlations. For example once anhour
posts might contain two terms together. With enough data over a
day, theχ2 test will (correctly) assess non-independence. The cor-
relation coefficient however will report a weak correlation. For all
edges that survive theχ2 test, we compute the correlation coeffi-
cient between the incident vertices. This computation can again be
conducted efficiently by re-writing Formula 2 as

ρ(u, v) =
nA(u, v)− A(u)A(v)

p

(n− A(u))A(u)
p

(n− A(v))A(v)
(3)

using the fact that
P

A2
i =

P

Ai.
Given graphG (excluding the edges eliminated by theχ2 test),

assume we have annotated every remaining edge with the valueof
ρ indicating the strength of the correlation. This graph can be fur-
ther reduced by eliminating all edges with values ofρ less than
a specific threshold. Since our problem is binary (a keyword ei-
ther appears in the post or not) focusing on edges withρ > 0.2
will further eliminate any non truly correlated vertex pair, making
the probability of a false (non correlated pair) being included very
small [6]. These correlations are important since the strong ones
offer good indicators for query refinement (e.g., for a querykey-
word we may suggest the strongest correlation as a refinement) and
also track the nature of ‘chatter’ around specific keywords.

Let G′ be the graph induced byG after pruning edges based on
χ2 andρ. Observe that graphG′ contains only edges connecting
strongly correlated keyword pairs. We aim to extract keyword clus-
ters ofG′. Although we can formally cast our problem as an op-
timization problem for graph clustering [1, 8], adopting any of the
known approximation algorithms is impossible as such algorithms
are of high polynomial complexity. Running any such algorithm on
the problems of interest in this study is prohibitive. Moreover, the
access patterns of such approximation algorithms require the entire
graphs to be in memory and do not have efficient secondary storage
realizations. For this reason, we propose a simple and (as wewill
demonstrate) effective heuristic algorithm to identify such clusters.
Our algorithm is fast, suitable for graphs of the scale encountered
in our setting and efficient for graphs that do not fit in memory.
We empirically evaluate the quality of the clusters we identify in
Section 5.

Our algorithm identifies all articulation points inG′ and reports
all vertices (with their associated edges) in each biconnected com-
ponent as a cluster. An articulation point in a graph is a vertex such
that its removal makes the graph disconnected. A graph with at

808

Algorithm 1 Algorithm to Identify Biconnected Components

Initialize time = 0 andun[u] = 0 for all u
1: Algorithm Art(u)
2: time← time + 1
3: un[u]← time
4: low[u]← time
5: for each vertexw 6= u such that(u, w) ∈ E do
6: if un[w] < un[u] then
7: add(u, w) to Stack
8: end if
9: if un[w] = 0 then

10: call Art(w)
11: low[u]← min{low[u], low[w]}
12: end if
13: if low[w] ≥ un[u] then
14: Pop all edges on top of Stack until (inclusively) edge

(u, w), and report as a biconnected component
15: else
16: low[u]← min{low[u], un[w]}
17: end if
18: end for

least two edges is biconnected if it contains no articulation points.
A biconnected component of a graph is a maximal biconnected
graph. Thus, the set of clusters we report forG′ is the set of all
biconnected components ofG′ plus all trees connecting those com-
ponents. The underlying intuition is that nodes in a biconnected
component survived pruning, due to very strong pair-wise correla-
tions. This problem is a well studied one [7]. We adopt algorithms
for its solution and demonstrate via experiments that they are mem-
ory efficient. LetGπ be a depth first tree ofG′. An edge inG′ is
a back edge iff it is not inGπ. The root ofGπ (the vertex from
which we initiated the depth first traversal) is an articulation point
of G′ if it has at least two children. A non-root vertexu ∈ Gπ

is an articulation point ofG′ if and only if u has a childw in Gπ

such that no vertex in the subtree rooted atw (in Gπ), denoted
subtree(w), is connected to a proper ancestor ofu by a back edge.
Let un[w], w ∈ Gπ be the order in whichw is visited in the dfs
of G′. Such a dfs traversal can be performed efficiently, even if the
graph is too large to fit in memory [5, 4]. We define:

low[w] = min

8

>

>

<

>

>

:

un[w]

un[x] :
x is joined to subtree(w) via a
back edge where x is a proper
ancestor of w

A non root vertexu ∈ Gπ is an articulation point ofG′ if and
only if u has a childw such thatlow[w] ≥ un[u]. Algorithm 1
presents pseudocode for the algorithm to identify all biconnected
components ofG′. A similar technique can be used to report all
articulation points ofG′. The algorithm as presented in the pseudo
code requires as many accesses to disk as the number of edges in
G′. Since in our graphs we expect|E| >> |V |, using the tech-
niques of [5] we can run it inO((1 + |V |/M)scan(E) + |V |)
I/Os, whereM is the size of available memory. Since the data
structure in memory is a stack with well defined access patterns,
it can be efficiently paged to secondary storage if its size exceeds
available resources. In our experiments, presented in Section 5, this
was never the case.

EXAMPLE 1. Figure 3 shows an example of applying the Al-
gorithm 1 toG′ in (a). The DFS tree,Gπ is shown in (b) with

Figure 3: (a) Example graphG′ (each vertex represents a key-
word), (b) DFS treeGπ, (c) Biconnected components ofG′.

the finalun(u) and low(u) values. Back edges(c, a) and (f, d)
(shown as dashed edges inGπ) lead tolow(u) being updated dur-
ing the backtracking for all parent nodes. Internal nodesb and
d are articulation points. The biconnected components ofG′ are
shown in (c).

4. STABLE CLUSTERS
Let t1, . . . tm be (without loss of generality)m successive tem-

poral intervals. LetT1 . . . Tm be the number of clusters identified
for each of the intervalst1 . . . tm using the algorithm in Section 3.
Let cij be the clusters identified1 ≤ i ≤ m, 1 ≤ j ≤ Ti. Analysis
of the affinity (e.g., overlap) of the keywords in these clusters across
the temporal intervals can provide very valuable information. For
example, a cluster of keywords that always appear together across
them temporal intervals probably points to an event that triggered
increased use of the keywords in the consecutive temporal intervals
by enough people (bloggers) to force a persistent (stable) cluster
across the intervals. Similarly, clusters that appear in some of the
temporal intervals, or clusters that appear for a few intervals then
vanish and appear again, might also be of interest as they point to
events that triggered increased use of the keywords for a fewinter-
vals.

Let G1, . . . Gm be the sets of clusters produced for each tem-
poral interval1 ≤ i ≤ m. Given two clustersckj , ck′j′ , k 6= k′,
we can quantify the affinity of the clusters by functions measuring
their overlap. For example,|ckj ∩ck′j′ | or Jaccard(ckj , ck′j′) are
candidate choices. Other choices are possible taking into account
the strength of the correlation between the common pairs of key-
words. Our framework can easily incorporate any of these choices
for quantifying cluster affinity. We consider clusters withaffinity
values greater than a specific thresholdθ (θ = 0.1) to ensure a
minimum level of keyword persistence. Given the clustersGi, we
form a graphG by evaluating the affinity between select pairs of
Gi, Gj , i 6= j, i ≤ j + g + 1, 1 ≤ i, j ≤ m. The choice of pairs
to compute, dictates the structure and connectivity ofG. We refer
to the value ofg as agap for a specific construction ofG. Gaps are
useful to account for clusters (chatter) that are persistent for a few
intervals, then vanish and appear again (see Figure 4 for example).
G is a weighted graph with edge weights equal to the affinity of
the clusters incident to the edge. For any path inG we define the
weightof the path by aggregating the weights of the edges com-
prising the path. Notice that the types of paths existing inG is a
construction choice. GraphG may range from anm-partite graph
to a fully connected graph, depending on the choice ofg. G is an
undirected graph.

PROBLEM 1 (kl-STABLE CLUSTERS). Given a graphG con-
structed using a specific affinity function, we define the problem of
stable clusters as the problem of identifying thek paths of lengthl
of highest weight.

809

Figure 4: Example of stable clusters with gaps. Three clusters
are shown for Jan 6, 9 and 10 2007 and no clusters were dis-
covered for Jan 7 and 8 (related to this topic). These clusters
correspond to the following event: English FA cup soccer game
between Liverpool and Arsenal with double goal by Rosicky at
Anfield on Jan 6. The same two teams played again on Jan 9,
with goals by Baptista and Fowler. Note that the keywords are
stemmed.

A variant of the above problem is the following:

PROBLEM 2 (NORMALIZED STABLE CLUSTERS). Given a
graphG constructed using a specific affinity function we define the
problem of normalized stable clusters as the problem of identifying
thek paths of length at leastlmin of the highest weight normalized
by their lengths.

In order to construct the graphG for a set of clustersG1, . . . Gm,
each computed for an intervalt1 . . . tm fixing a gap valueg ≥ 0,
we have to compute the affinity between clusters inGi, Gj , i ≤
j + g + 1, 1 ≤ i, j ≤ m, 0 ≤ g ≤ m − 1. AssumingTi clusters
for each intervalti the suitable affinity predicate (e.g., intersection
size) can be computed between each pair of clusters of the corre-
sponding intervals, assuming the clusters for the pair of intervals fit
in memory. IfTi (and the associated cluster descriptions in terms
of their keywords) is too large to fit in memory, we can easily adapt
technology to quickly compute all pairs of clusters for which the
affinity predicate is above some threshold. Notice that eachclus-
ter description is a set of keywords. Thus, the problem is easily
reduced to that of computing similarity (affinity) between all pairs
of strings (clusters) for which the similarity (affinity) isabove a
threshold. Efficient solutions for conducting such computations for
very large data sets are available and can easily be adapted [11].

Given graphG, we now present our solutions to thekl stable
clusters problem. Note that the top-k paths produced may share
common subpaths which, depending on the context, may not be
very informative from an information discovery perspective. Vari-
ants of thekl-stable cluster problem with additional constraints are
possible to discard paths with the same prefix or suffix. For sim-
plicity, we focus on the original problem and present three solu-
tions that can later be adapted for more refined variants of the prob-
lem. The three associated algorithms are: (a) an algorithm based
on breadth first search onG, (b) an algorithm based on depth first
search, and (c) an adaptation of the well known threshold algorithm
[14]. Our focus is on cases for which the number of clusters and
their associated descriptions for all temporal intervals are too large
to fit in memory and we propose efficient solutions for secondary
storage.

4.1 The Cluster Graph
Let G denote the cluster graph. Figure 5 shows an example clus-

ter graph over 3 temporal intervals. Each interval has 3 nodes (key-
word clusters). Edges between two nodes indicate that they have

Figure 5: An example of cluster graph for three temporal inter-
vals, each with three clusters. The maximum gap size is chosen
to beg = 2. Edges are labeled with associated weights (affinity
between clusters).

a non-zero affinity. While conceptually the model has undirected
edges, we add a source node at the beginning and a sink at the
end, and make edges directed. Each edge has a weight in the range
(0, 1]1. Thus the length of an edge over a single gap of lengthg
is considered to beg + 1. Edge length is defined as the length of
the temporal interval between two participating nodes. Forexam-
ple, in Figure 5, the length of edgec11c21 andc13c22 is one, while
that of c11c32 is two. The gap size is selected asg = 1 in this
example, and therefore all edges have length less than or equal to
g + 1 = 2. The length and weight of edges connecting source or
sink with other nodes is assumed to be zero.

Let Gi = {ci1 . . . ci|Ti|} be the clusters at intervalti. We refer
to a nodecij as a child of another nodeci′j′ if there is an edge
between the two nodes andi > i′. In this case,ci′j′ is a parent
of cij . Let interval(c) be the index of the temporal interval to the
cluster to whichc belongs. For example ifc ∈ Gi, interval(c) =
i.

4.2 Breadth First Search
We first present a breadth first search based algorithm for de-

tecting stable clusters. At the end of the algorithm we seek to find
the top-k paths with highest weights of lengthl. As the algorithm
progresses, we annotate each node in the graph with up tol heaps,
each of size less than or equal tok. For a nodecij , we denote this
data structure ashx

ij , for 1 ≤ x ≤ l, each of which represents
top-k (or fewer) highest weighting subpaths of lengthx ending at
cij . Observe that annotating each node of an arbitrary graph with
such information is a non-trivial task requiring many random disk
I/Os. We take advantage of the special structure of the graphin
our case, which is very similar to ann-partite graph (except for the
gaps). Such graphs have a nice property that a node fromGi can-
not have a parent from a temporal interval beforei− g − 1, where
g is the size of the maximum gap allowed. This means that if all
nodes from temporal intervals{i − g − 1, . . . , i − 1} can be kept
in memory, subpaths ending at all nodes fromGi can be computed
without performing any I/O.

For all the nodes belonging toG1, all the associated heaps are
initialized to be empty. To compute heaps for a nodecij ∈ Gi, all
nodes from the previousg + 1 intervals are read in memory along
with their l heaps. After reading all the nodes from the previous
g + 1 intervals, nodes fromGi are read one after the other. For

1Some affinity functions such as intersection do not guarantee
weights to be in the range(0, 1]. In such cases, the maximum score
seen so far can be maintained to normalize all weights to the range
(0, 1].

810

Algorithm 2 BFS based algorithm forkl-clusters

INPUT G = {G1, . . . , Gm}, l, k, g

1: InitializeH = φ, heap of sizek
2: for i = 2 tom do
3: ReadGi′ in memory,i− g − 1 ≤ i′ ≤ i− 1
4: for cij ∈ Gi do
5: Initializehx

ij = φ, heap of sizek, 1 ≤ x ≤ l.
6: for ci′j′ ∈ parents(cij) do
7: len = i − i′ {comment: sinceci′j′ ∈ Gi′ , this is the

length of the edgeci′j′cij}
8: for x = 1 to l − len do
9: for π ∈ hx

i′j′ do
10: π′ = append(π, ci′j′cij)

11: checkπ′ againsthx+len
ij

12: checkπ′ againstH {“check” operation onπ′

against a fix-sized heap checks for the inclusion
of π′ in the heap}

13: end for
14: end for
15: end for
16: end for
17: savecij along withhx

ij to disk
18: end for
19: return H

each nodecij ∈ Gi, all its parents are probed (which are already in
memory) to update its associated heapshx

ij . Consider the example
cluster graph presented in Figure 5 withl = 2 andk = 2. Com-
puting heaps for nodes from the second temporal interval, all nodes
in G1 are read in memory. Each node from the second interval will
have only a single heap associated with it, since there are nopaths
of length two ending there. The heaps for nodes inG2 are:

h1
21 = {c11c21}; h1

22 = {c12c22, c13c22}; h1
23 = {c12c23}

Computing heaps for nodes fromG3, all nodes fromG1 andG2

are kept in memory. Since there are three paths of length2 reaching
c31, only the best two are retained. Since the weight ofc12c22c31

(which is 0.8) is less than that ofc13c22c31 (1.5) and ofc11c21c31

(1.2), it is discarded. Althoughc11 is a parent ofc32 (with direct
edge between the two), due to the gap,c11c32 is an edge of length
two. Thus,

h1
31 = {c21c31, c22c31}; h1

32 = {c21c32};
h1

33 = {c22c33, c23c33}; h2
31 = {c11c21c31, c13c22c31};

h2
32 = {c11c21c32, c11c32}; h2

33 = {c13c22c33, c12c22c33}

G is stored in the form of an adjacency matrix so that for any
clustercij we can easily retrieveparents(cij) the set of all clusters
at intervalsti′ < ti, i

′ ∈ [i−g−1, i−1] with edges incident tocij .
As an invariant assume thathx

i′j , i
′ ∈ [i − g − 1, i− 1] have been

computed while building heaps for nodes fromGi. We compute
allpaths(cij , x) as the set of all paths of lengthx ending atcij

that can be derived from information maintained inparents(cij).
More formally:

allpaths(cij , x) = {append(π, ci′j′cij) | ci′j′ ∈ parents(cij)

andπ ∈ hx−i+i′

i′j′ }

whereappend(π, ci′j′cij) represents the path obtained by append-
ing the edgeci′j′cij at the end of subpathπ. Thus,

hx
ij = top-k paths among allpaths(cij , x)

Computinghx
ij usingparents(cij) can be conducted in a straight-

forward way by considering each possible element ofallpaths(cij , x).
In practice,hx

ij can be computed directly using a heap without
maintaining the intermediate resultallpaths(cij , x). For eachcij

in memory we need to maintain at mostkl subpaths of highest
weight ending atcij . These are the best (highest weight) paths
of lengths1, 2, . . . , l, maintained using heaps, one for each length.
This means thatallpaths(cij) is updated for each value ofx ∈
[1, l]. Algorithm 2 presents pseudocode.

Maintaining the solution to thekl-stable clusters problem is con-
ducted by maintaining a heapH during the execution of the al-
gorithm in which thek highest weight paths of length exactlyl
are identified. When a new intervalti+1 is encountered,Gi+1 is
brought into memory andGi−g−1 is discarded. This computation
is performed for1 ≤ i ≤ m. After Gm is encountered, the so-
lution to thekl-stable clusters problems is located inH . In the
running example of Figure 5, whenever a new path of length 2 is
discovered, it is checked against the global heapH . Six paths, from
h2

31, h
2
32, andh2

33, are checked for candidacy inH in this example.
The size ofH is bounded byk = 2. In the end, the best two paths
are identified asc13c22c31 andc13c22c33.

If l = m−1, i.e., when finding full paths fromt1 to tm, we need
not maintain heapshx

ij for each1 ≤ x ≤ l. Instead, maintaining
one heap per node suffices. For a nodecij ∈ Gi, only hi

ij needs to
be computed. This reduces the computation by a factor ofl for this
special case.

The algorithm as described requires enough memory to maintain
all clusters forg + 1 intervals in memory. Under this assumption
the algorithm requires a single pass over allGi, 1 ≤ i ≤ m. The
total number of I/Os required is linear in the number of intervals
considered and linear in the total number of clusters. Assume that
accommodating clusters forg + 1 intervals in memory requires
an amount equal toMreq but onlyM memory units are available
(M < Mreq). In order to compute heaps for all clusters in thei-th
interval Mreq/M passes will be required. This situation is very
similar to block-nested loops.

Claim 1. The BFS based algorithm described outputs the correct
set of highest weighting top-k paths in the cluster graphG.

4.3 Depth First Search
We present a solution to thekl-stable clusters problem based

on a depth first search (DFS) traversal of the cluster graphG suit-
ably adapted for secondary storage. DFS can be performed using
a stack. We show that the size of the stack will be bounded bym,
the number of temporal intervals. The complexity of this algorithm
in the worst case is linear to the number of edges in the graph,but
practically can be much less due to pruning. Unlike the BFS algo-
rithm presented in the previous subsection, this algorithmrequires
significantly less memory to operate, but performs much moreI/O.

For each node (cluster)cij , we maintain a list of its children
(nodes inGi′ , i

′ ∈ [i+1, i+g+1] incident tocij) aschildren(cij)
which is precomputed during the generation ofG. Also we main-
tain a global top-k list as a heap (containing the currentk paths of
lengthl of highest weight) and a stack, both initialized to be empty
in the beginning. As the algorithm progresses, we will maintain the
following information with each nodecij (on disk):

• One flag denoting whether the node has already been visited.
If the flag is set, we are confident that all descendants of the
node have been considered. If not, its descendants may or
may not have been traversed.

• If the objective is to find full paths (of lengthm − 1), one
number denoting the aggregate weight of the highest weight

811

path from the source to that node. If the objective is to find
subpaths of lengthl, one number for eachx, max(1, l + i−
m) ≤ x ≤ min(l, i − 1), denoting the aggregate weight of
the highest weighting path of lengthx ending at that node.
We represent this data structure bymaxweight(cij, x) for
paths of lengthx, and use this data structure for pruning.

• If the objective is to find full paths of lengthm − 1, a sin-
gle heap of top-k best (highest weighting) paths starting at
that node is maintained. If the objective is to find subpaths
of length l, a heap for eachmax(1, l + i − m) ≤ x ≤
min(l, i − 1), containing top-k best paths of lengthx start-
ing at that node is maintained. We denote this data structure
by bestpaths(cij, x) for paths of lengthx. Contrasting this
case with the case of the same data structure in the BFS al-
gorithm, we note that paths contained in this case start atcij

(instead of ending atcij). The size ofbestpaths for any node
is bounded byk when seeking full paths of lengthm−1, and
k · l in the case of subpaths of lengthl.

The algorithm performs a depth first search on the input cluster
graph. Pseudocode for this algorithm is presented in Algorithm 3.

We provide an operational description of the algorithm. Start by
pushing thesource node along withchildren(source) onto the
stack. Now iteratively do the following: Take the top element c
from the stack, remove an elementc′ from the list children(c).
Check if c′ is already visited. If yes, updatebestpaths(c) using
bestpaths(c′) as described later, and discardc′. If not, markc′ as
visited and push it on the stack. Updatemaxweight(c′, x) using
maxweight(c, x) for eachx.

maxweight(c′, x) = max(maxweight(c′, x),

maxweight(c, x− length(cc′)) + weight(cc′))

wherelength(cc′) is the length of the edge betweenc andc′. The
following pruning operation can be conducted (when searching for
subpaths of lengthl): If for all max(1, l + interval(c′) −m) ≤
x ≤ min(l − 1, interval(c′)− 1),

maxweight(c′, x) + l − x < min-k,

where min-k is the minimum weight among all paths inH (the cur-
rent top-k), removec′ from the stack. Also unmark the visited flag
for all the nodes in the stack (includingc′). This is based on the
observation that, given the current information about the weight of
the path from the source toc′, it is unlikely that any of the paths
containingcc′ can be in the top-k . Therefore we postpone consid-
ering descendants ofc′ until we find (if it exists) a higher weighting
path from the source toc′. We unmark the visited flag of all nodes
on the stack since the guarantee that all descendants have been tra-
versed no longer holds true for them. Therefore, pruning assumes
that all edge weights are between(0, 1] (which is true for some
affinity measures like Jaccard; normalization is required for others
e.g., intersect).

If c is at the top of the stack such thatchildren(c) = φ, i.e., all
children ofc have been considered (either traversed or discarded by
pruning), removec from the stack. Letc′ be the next element on the
stack. Updatebestpaths(c′) usingbestpaths(c) (this is actually
back tracking an edge in DFS).

To updatebestpaths(c) using information about one of its chil-
dren c′; first find all possible paths starting atc by augmenting
the edgecc′ with all paths inbestpaths(c′, x), and add them to
bestpaths(c, x + length(cc′)), for all x + length(cc′) ≤ l. Now
prunebestpaths(c, x + length(cc′)) so that it does not contain
more thank paths. When a new pathπ of length l is added to

Algorithm 3 DFS based algorithm forkl-clusters

INPUT G = {G1, . . . , Gm}, l, k, g

1: initializeH = φ, heap of sizek
2: initializestack = φ
3: push(source, children(source)) to stack
4: while stack is not emptydo
5: (c, children(c)) = peek fromstack {peek operation returns

the top element from the stack without removing it}
6: if children(c) is not emptythen
7: c′ = remove top element fromchildren(c)
8: read from disk information associated withc′

9: if c′ is visitedthen
10: updatebestpaths(c, x) using info fromc′, x ≤ l
11: for each newly added pathπ in bestpaths(c, l) do
12: checkπ againstH {“check” operation onπ against

a fix-sized heap checks for the inclusion ofπ in the
heap}

13: end for
14: else
15: markc′ visited, and push(c′, children(c′)) on stack
16: updatemaxweight(c′, x) usingmaxweight(c, x)
17: if CanPrune(c′) then
18: unmark visited flag for all nodes instack
19: popc′ from stack
20: savec′ and associated information to disk
21: end if
22: end if
23: else
24: popc from stack and save on disk
25: (c′, children(c′)) = peek fromstack
26: updatebestpaths(c′, x) using info fromc, x ≤ l
27: for each newly added pathπ in bestpaths(c′, l) do
28: checkπ againstH
29: end for
30: end if
31: end while
32: output H

DEFINE CanPrune(c′)

1: min-k = minimum score inH
2: for x = max(1, l + interval(c′) − m) to min(l −

1, interval(c′)− 1) do
3: if maxweights(c′, x) + l − x ≥min-k then
4: return false
5: end if
6: end for
7: return true

bestpaths(c, l) for some nodec, π is also checked against the
global top-k heap for inclusion.

The size of the stack is at mostm entries during the execution
of this algorithm. When the algorithm terminates, the global top-k
heapH will contain the required result. Furthermore, each node
will be annotated with a list of top-k bestpaths starting at that
node.

Addition of each node to the stack requires one random I/O to
read the associated data structures from disk. Updating these data
structures and marking/unmarking of nodes takes place in main
memory. Removal of a node requires an additional random I/O
for writing back associated data structures. In the absenceof the
pruning condition, the number of read operations is boundedby the
number of edges, and the number of write operations is bounded by

812

the number of nodes in the graph. With every pruning operation, in
the worst case, both these numbers can increase by an amount equal
to the size of the stack at that time. But pruning is also expected
to discard many nodes and edges without actually calculating path
lengths for them, which can reduce I/Os significantly.

EXAMPLE 2. We show the execution of the algorithm over the
cluster graph presented in Figure 5 fork = 1 and l = 2. In
this example, since we are required to find full paths (l = 2), only
one heap and onemaxweight structure is associated with each
node. Table 2 shows the order in which the nodes are considered
and actions taken at those steps. Observe that pruning takesplace
whenc22 is first explored. Howeverc22 is explored further when it
is reached again viac13. The final result is printed as{c13c22c33}.
Note that other execution orders are also possible, depending on
how the children lists for each node are sorted.

Claim 2. The DFS based algorithm described outputs the cor-
rect set of highest weighting top-k paths in the cluster graphG.

For effective pruning, it is important that paths of high weights
are considered early. For this reason, as a heuristic, whileprecom-
puting the list of children for all nodes, we sort them in the de-
scending order of edge weights. Formally ifc1, c2 ∈ children(c)
and weight(c1, c) > weight(c2, c), thenc1 precedesc2 in the
list children(c). This will ensure that the children connected with
edges of high weight are considered first. It must be noted that this
heuristic is for efficient execution, and correctness of thealgorithm
is unaffected by it.

4.4 Adapting the Threshold Algorithm
The Threshold Algorithm (TA) [14] can also be adapted to find

full paths of lengthm− 1 in G. For each pair of temporal intervals
ti andti′ , |i − i′| ≤ g + 1, one list of edges is maintained. These
lists are sorted in descending order of edge weights.

We read edges from sorted lists in a round robin fashion and
maintain a global heapH for intermediate top-k results. When an
edgecijci′j′ (i < i′) is encountered, we perform random seeks to
lookup all paths containing the edge. Letd be the maximum out-
degree in the graphG. Unlike the vanilla-TA, where each attribute
belongs to exactly one tuple, in this case there may be multiple
paths that containcijci′j′ . Perform random seeks in edge lists to
find all the paths that start withci′j′ , and all the paths that end
at cij to construct all paths containingcijci′j′ . Check all these
paths for inclusion inH , and discard them if they fail to qualify.
Terminate when the score of the lowest scoring path in the buffer
H falls below that of the virtual tuple. The virtual tuple is the
imaginary path consisting of the highest scoring unseen edge from
each list.

A path may be discovered more than once in the above algo-
rithm. As an optimization to reduce I/O, two additional hashta-
bles, startwts and endwts, can be maintained. For a nodec,
startwts(cij) (endwts(cij)) records the aggregate weight of the
highest weighting path starting (ending) atcij . These hash tables
are initialized to be empty at start, and are updated as the algorithm
progresses. When all paths starting (ending) at a nodecij are com-
puted by performing random probes,startwts(cij) (endwts(cij))
is updated. When an edgecijci′j′ is read from the edge list, and
if startwts(ci′j′) and endwts(cij) are available in the hash ta-
bles, an upper bound on weight of all paths containingcijci′j′ can
be computed without any I/O. This upper bound can be compared
with the score of lowest scoring path inH , andcijci′j′ can be dis-
carded without performing any further computation if the former is
smaller. This pruning can result in large savings in I/O.

Node Action taken and Updates
Explored to maxweights andbestpaths

c11 none
c21 maxweight(c21, 1) = 0.5
c31 maxweight(c31, 2) = 1.2
c21 bestpaths(c21, 1) = {c21c31}
c32 maxweight(c32, 2) = 0.9
c21 none

{c32c21} failed to qualify forbestpaths(c21, 1)
c11 bestpaths(c11, 2) = {c11c21c31}

andH = {c11c21c31}
c32 none

maxweight(c32, 2) remains unchanged at 0.9
c11 none

{c32c11} failed to qualify forbestpaths(c11, 1)
csource none

c12 none
c22 maxweight(c22, 1) = 0.1 and

c22 is pruned since min-k=1.2
c12 none
c23 maxweight(c23, 1) = 0.4
c33 maxweight(c33, 2) = 0.8
c23 bestpaths(c23, 1) = {c23c33}
c12 bestpaths(c12, 2) = {c12c23c33}

csource none
c13 none
c22 maxweight(c22, 1) = 0.8

c22 is not pruned this time
c31 maxweight(c31, 2) = 1.5
c22 bestpaths(c22, 1) = {c22c31}
c33 maxweight(c33, 2) = 1.7
c22 bestpaths(c22, 1) = {c22c33}
c13 bestpaths(c13, 2) = {c13c22c33}

andH = {c13c22c33}

Table 2: Example execution of DFS.

If the maximum out-degree in the graphG is d, this might lead to
as many asmd−1 random seeks in the absence of gaps (g = 0). In
the presence of gaps this number can be much higher. Hence this
algorithm is not suitable when either ofm or d is high. We vali-
date this observation in the experimental results section.Further,
this algorithm is restricted to discovery of full paths onlyand thus
requiresl = m− 1.

4.5 Normalized Stable Clusters
In the previous sections we have presented algorithms for identi-

fying kl-Stable Clusters inG. In this section, we present algorithms
for identifying normalized stable clusters. Letlength(π) define
the length of pathπ. Let weight(π) define the aggregate weight
(sum of edge weights) for pathπ. We wish to find top-k paths in
G with the highest normalized weights,stability(π) = weight(π)

length(π)
.

To avoid trivial results, we constrain the paths to be of length at
leastlmin.

In this case we are not required to provide the lengths of paths
as input. Pruning paths becomes tricky in the absence of thisin-
formation. We make the following observation: if a pathπ can be
divided in two partsπpre andπcurr, such thatπ = πpreπcurr, and
stability ofπpre is less than that ofπcurr, irrespective of the suffix
(unseen part)πsuff to follow, one may dropπpre from the path.
Formally,

813

THEOREM 1. If πpreπcurr is a valid path such that,

stability(πpre) ≤ stability(πcurr),

then for any possible suffixπsuff ,

stability(πpreπcurr) ≤ stability(πpreπcurrπsuff)

⇒ stability(πpreπcurrπsuff) ≤ stability(πcurrπsuff).

Proof (Sketch) We use the fact that ifa, b, c, d ∈ R+

a

b
<

c

d
⇔ a

b
<

a + c

b + d
<

c

d

Let weights ofπpre, πcurr, andπsuff be wp, wc, andws; and
lengths benp, nc, andns. Given wp

np
< wc

nc
, it follows that

wp + wc

np + nc

≤ wp + wc + ws

np + nc + ns

⇒ wp + wc + ws

np + nc + ns

≤ wc + ws

nc + ns

For brevity we omit the complete algorithm and describe only
modifications to the algorithm presented in Section 4.2. With each
nodecij , we need to maintain:

• All paths of length less thanlmin ending at that node. Let
smallpaths(cij, x) denote this for all paths of lengthx end-
ing atcij .

• A list bestpaths(cij) of top scoring paths of lengthlmin or
greater ending at that node. This list can be pruned at each
node using Theorem 1. A pathπpreπcurr ∈ bestpaths(cij)
can be pruned to justπcurr if length(πcurr) ≥ lmin and
stability(πpre) ≤ stability(πcurr). In words, the prefix
can be discarded if its contribution to the stability is lessthan
that of the lastlmin edges in the path.

The algorithm in this case proceeds in the same way as in Sec-
tion 4.2. The data structures are updated as follows: to update
smallpaths(c) for nodec after discovery of a new edgec′c from
c′ ∈ parents(c),

smallpaths(c, length(c′c)) = smallpaths(c, length(c′c)) ∪ {c′c}

and forlength(c′c) < x < lmin,

smallpaths(c, x) = smallpaths(c, x)
[

{append(π, c′c)

| π ∈ smallpaths(c′, x− length(c′c))}.

To updatebestpaths(c), first all possible candidates are computed
as described below

bestpaths(c) = bestpaths(c)
[

{append(π, c′c) | π ∈ smallpaths(c′, lmin − length(c′c))}
[

{append(π, c′c) | π ∈ bestpaths(c′)}

After computing all the possible candidates, perform pruning. If
π1, π2 ∈ bestpaths(c) andπ2 is a subpath ofπ1, thenπ2 can be
deleted frombestpaths(c). Also if πpreπcurr ∈ bestpaths(c),
length(πcurr) ≥ lmin andstability(πpre) ≤ stability(πcurr),
then deleteπpreπcurr and addπcurr to bestpaths(c). After updat-
ing bestpaths, check each newly generated path against the global
top-k list of paths for inclusion.

The above algorithm can be used with the DFS framework (pre-
sented in Section 4.3) as well. The basic idea is the same, andprun-
ing uses the result of Theorem 1. Details are omitted for brevity.

4.6 Online Version
New data arrive at every time interval. Hence it is important

for the algorithms presented to be amenable to incremental adjust-
ment of the data structures. Notice that the BFS based algorithm of
Section 4.2 is amenable to such adjustment. Since heaps for each
temporal interval are computed separately, when nodes for the next
temporal intervalGm+1 arrive, heaps for them can be computed
without redoing any past computation. If the heaps for all the nodes
in G are maintained on disk, a single pass over them is sufficient to
compute the global top-k .

The DFS based algorithm in its original form is not an online
streaming algorithm since only thesourceis known and thesink
changes constantly as new data arrives. DFS requires the knowl-
edge of asink to operate. Observe that the input graph is symmet-
ric. Therefore,G can be modified by adding the source at the last
temporal interval and the sink at the first interval to perform DFS.
As the data for new intervals arrive, only the source needs tobe
shifted (while keeping everything else the same). Therefore, since
bestpaths for each node inG is maintained, DFS can be used in an
incremental fashion as new data arrives.

Note that when streaming, both BFS and DFS actually perform
the same operations at each iteration. The only difference is the
bootstrap process.

5. EXPERIMENTS
In this section we discuss the results of a detailed experimental

evaluation comparing our algorithms in terms of performance, and
we present qualitative results. We first present results forour cluster
generation procedure and then discuss our stable cluster identifica-
tion algorithms.

5.1 Cluster Generation
In our first experiment we assess the performance of our cluster

generation procedure introduced in Section 3. We implemented this
algorithm, and we report its performance as the pruning threshold
(correlation coefficient) increases. Figure 6 presents therunning
time of our entire approach for the data set Jan 6 of Table 1. We
measure the time required by the entire procedure, namely read-
ing the raw data files, conducting theχ2 test, pruning based on the
correlation coefficient and then running the Art algorithm (Algo-
rithm 1) to find biconnected components. The execution of theArt
algorithm is secondary storage based; we only maintain in mem-
ory the biconnected component edges in the stack. Asρ increases,
time decreases drastically since the number of edges and vertices
remaining in the graph decreases due to pruning.

Figure 6: Running time of the Art algorithm.

5.2 Stable Clusters
Our algorithms for stable cluster identification were implemented

in Java and executed on a Linux machine with a single 2.0 GHz pro-
cessor. To capture the effect of I/O on performance accurately, the

814

page cache was disabled during the experiments. Enough memory
to keep nodes from the lastg +1 intervals was available during ex-
perimentation with the BFS based algorithms. In order to be able
to vary the parameters of interest in our performance study in a
consistent fashion (e.g., number of nodes, average node outdegree,
etc.) we generated synthetic graphs and we report performance on
them. We chose the range of our parameters so as to keep response
times manageable, while being able to observe performance trends.
The data was generated by first creating a set of nodes of sizen for
each of them temporal intervals. For pairs of temporal intervals
i and i′, i − i′ ≤ g + 1 (whereg is the gap size), edges were
added as follows: for each nodecij from the first temporal interval,
its out degreedij was selected randomly and uniformly between
1 and2 · d, and thendij nodes were randomly selected from the
second temporal interval to construct edges forcij . Edge weights
were selected from(0, 1] uniformly.

Table 3 presents running times in seconds for identifying top-5
full paths (of lengthl = m − 1) comparing the three algorithms.
Each temporal interval hadn = 400 nodes, gap size was selected
as g = 0, and average out degree of nodes wasd = 5. Since
the TA based algorithm is exponential inm, its running times were
significantly higher form > 9 and hence not reported. It can be
observed that the BFS based algorithm outperforms DFS by a large
margin in terms of running time. But it must be noted that BFS
requires significantly larger amounts of memory as comparedto
the DFS based algorithm. For example, for finding top-3 pathsof
length 6 on a dataset withn = 2000, m = 9 andg = 0, DFS
required less than 2MB RAM as compared to 35MB for BFS.

m = 3 6 9 12 15
BFS 0.65 2.09 4.49 7.95 12.49
DFS 60.3 368.8 754.8 805.94 792.05
TA 0.35 11.11 133.89 > 10 hours

Table 3: Comparing BFS, DFS and TA based algorithms for
different values ofm.

Since the TA based algorithm is not applicable to identify sub-
paths (it requiresl = m − 1), and due to its high running times
on large data sizes when identifying full paths, we focus on the
BFS and DFS based algorithms in the sequel. We first explore the
sensitivity of the BFS based algorithm for different valuesof the
gap sizeg in Figure 7. We next show the sensitivity of the same
algorithm for different values of average out degreed in Figure 8.
In both cases, when either ofg or d is increased, the number of
edges grows, leading to an increase in the amount of computational
effort required. Running times therefore are positively correlated
with bothg andd, as expected.

Figure 9 demonstrates the scalability of the algorithm; we show
the performance of the BFS algorithm as the number of nodes (clus-
ters) for each temporal interval is increased. Observe thatthe run-
ning times are linear in the number of nodes, establishing scalabil-
ity. The figure shows running times form = 25 andm = 50.

Figure 10 presents performance results for the BFS algorithm
when seeking top-5 subpaths of lengthl. The graphs demonstrate
that running times increase asl increases due to the larger number
of heaps maintained with each node. As expected, running times
are linear in the number of nodes per temporal interval.

Figure 11 displays running times of the DFS based algorithm for
different values ofm and n. Figure 12 shows the sensitivity of
the same algorithm for different values of the gap size and average
node out degree. As the average out degree or gap size increases,
the number of edges increases, directly affecting the running time

Figure 7: Running times for BFS based algorithm seeking top-
5 full paths for different values of g as the number of temporal
intervals is increased from 5 to 25. Number of nodes per tem-
poral interval was fixed at n = 1000 and average out degree
was set tod = 5.

Figure 8: Running times for BFS based algorithm seeking top-
5 full paths for different values of d as the number of temporal
intervals is increased from 5 to 25. Number of nodes per tem-
poral interval was fixed at n = 1000 and gap size was set to
g = 2.

Figure 9: Running times for BFS based algorithm seeking top-5
full paths for two different values of m as the number of nodes
in each temporal intervals is increased from 2000 to 14000. Av-
erage out degree was set tod = 5 and gap size was selected as
g = 1.

of the DFS based algorithm. Contrast these results with those of
Figure 7 and observe that the DFS based algorithm is more sensitive
towardsg than the BFS based algorithm. The running times of the
DFS based algorithm increases by a factor of more than two asg
is increased from 0 to 2, unlike Figure 7, where the effect of an
increase ing is milder. Figure 13 shows the performance of the
DFS algorithm while seeking subpaths for different values of l. As
expected, running times increase with increasingl andn.

815

Figure 10: Running times for BFS based algorithms for differ-
ent values ofl over m = 15 temporal intervals, as the number
of nodes in each temporal intervals is increased from 500 to
2500. Average out degree was set tod = 5 and gap size was
selected asg = 2.

Figure 11: Running times for DFS based algorithms seeking
top-5 full paths for different values of m and n. g = 1 and
d = 5 were selected.

Figure 12: Running times for DFS based algorithms seeking
top-5 full paths for different values of g, as the average out de-
gree of nodes is increased.m = 6 and n = 400 were selected.

Figure 14 displays performance trends for the BFS algorithm
seeking normalized stable clusters. Unlike the previous case, where
only paths up to lengthl had to be maintained, the algorithm seek-
ing normalized stable clusters needs to maintain paths of all lengths
(those which survive pruning). This leads to an increase in running
times asm increases. Experimental results validate this intuition.
Running times are positively correlated withlmin as larger values
of lmin results in more paths being maintained with each node. We
omit graphs where we varyn, g andd due to space limitations.
Trends are as expected, running times increase gracefully with in-
crease inn, g andd.

The impact ofk, the number of top results required, on the per-

Figure 13: Running times for DFS based algorithms seeking
top-5 sub paths of lengthl for different values of l. m = 6,
d = 5, and g = 1 were selected.

Figure 14: Running times for BFS based algorithms seeking
top-5 normalized stable clusters of length greater or equalto
lmin for different values of m. n = 400, d = 3, and g = 0 were
selected.

formance of all the algorithms is minimal, and ask increases run-
ning times increase slowly. Experimental results obtainedvalidate
that the BFS based algorithm performs better than the DFS based
algorithm. The running time of the BFS algorithm increases lin-
early with an increase inn, while that of DFS increases much more
rapidly. This is because the number of edges is proportionalto n·d.
For our problem setting, the running times of the adaptationof TA
based algorithms is exponential inm and hence not practical for
any realistic problem size. The main advantage of DFS is its low
memory requirement. DFS should be used as an alternative to BFS
in memory constrained environments.

5.3 Qualitative Results
We have tested our algorithms on large collections of real data

obtained from BlogScope. For purposes of exposition, we focus on
data obtained for a single week (week on Jan 6 2007) and present
results commenting on the output of our algorithms. We set the
temporal interval for our construction of graphG to a day, analyz-
ing seven days. Clusters for a single day were computed usingour
methodology in Section 3 usingρ = 0.2. Around 1100-1500 con-
nected components (clusters) were produced for each day. Affinity
between clusters was computed using the Jaccard coefficientand
42 full paths spanning the complete week were discovered.

Table 1 provides data about keyword graph sizes for two days;
sizes for the rest of the days were comparable. Figure 1 and Fig-
ure 2 show example clusters we were able to identify after the
procedure described in Section 3. It is evident that our methodol-
ogy can indeed capture clusters of keywords with strong pairwise
correlations. Taking into account how such correlations are gener-
ated (lots of bloggers talking about an event) it is evident that our
methodology can identify events that spawn a lot of chatter in the
blogosphere. A stable cluster with a path of length 3 andg = 2 is
shown in Figure 4. Figure 15 presents a stable cluster that persisted

816

Figure 15: Stable clusters with path of length 3 without gaps.
Apple’s iPhone was launched on Jan 9 2007. Discussion started
with initial talk of iphone’s features. Clusters shift on Jan 11
to the Cisco-Apple trademark infringement lawsuit announced
on Jan 10. Note that the keywords are stemmed.

for four days without any gaps. An example full length cluster (i.e.,
that persisted for all seven days) is shown in Figure 16.

Our definition of stable clusters computes cluster similarity be-
tween clusters from consecutive time periods only, insteadof con-
sidering similarity between all pairs in a path. This allowsus to
capture the dynamic nature of stories in the blogosphere, and their
evolution with time. For example notice that in Figure 15 we are
able to identify the shift of discussion from iPhone features to the
Apple vs Cisco lawsuit related to iPhone. The nature of stable clus-
ters demonstrated in the figures attests that our methodology can
indeed handle topic drifts.

6. CONCLUSIONS
In this paper, we formally define and provide solutions for prob-

lems related to temporal association of sets of keywords in the bl-
ogosphere (or any other streaming text source for that matter). Our
technique consists of two steps, (1) generating the keywordclus-
ters, and (2) identifying stable clusters. For both steps wepro-
pose efficient solutions. For the problem ofkl-stable clusters, we
propose three solutions, based on breadth first search, depth first
search, and one based on an adaptation of the well-known threshold
algorithm. Detailed experimental results are provided, demonstrat-
ing the efficiency of the proposed algorithms. Qualitative results
obtained using real data from BlogScope are reported that attest to
the effectiveness of our techniques.

7. REFERENCES
[1] N. Bansal, A. Blum, and S. Chawla. Correlation Clustering. Machine

Learning, pages 89–113, 2004.
[2] N. Bansal and N. Koudas. BlogScope: A System for Online Analysis

of High Volume Text Streams. InVLDB, 2007.
[3] N. Bansal and N. Koudas. Searching the Blogosphere. InWebDB,

2007.
[4] A. L. Buchsbaum, M. H. Goldwasser, S. Venkatasubramanian, and

J. Westbrook. On external memory graph traversal. InSODA, 2000.
[5] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D.E.

Vengroff, and J. S. Vitter. External-memory graph algorithms. In
SODA, 1995.

[6] W. Conover.Practical Non Parametric Statistics. Wiley, 1980.

Figure 16: Stable clusters with path of full length. The event
corresponds to the battle of Ras Kamboni fought by Islamist
militia against the Somali forces and Ethiopian troops. Observe
the increase in cluster sizes on Jan 9 after Abdullahi Yusuf ar-
rives in Mogadishu, Somalia on Jan 8 for the first time after
being elected as the president. On Jan 8, gunships belongingto
the US military had attacked suspected Al-Qaeda operativesin
Southern Somalia. Note that the keywords are stemmed.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. McGraw Hill and MIT Press, 1990.

[8] G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph Clustering and
Minimum Cut Trees.Internet Mathematics, 2005.

[9] I. Giotis and V. Guruswami. Correlation Clustering witha Fixed
Number of Clusters.ACM SODA, 2006.

[10] G. Karypis and V. Kumar. Multilevel k-way partitioningscheme for
irregular graphs.J. Parallel Distributed Computing, 1998.

[11] N. Koudas, A. Marathe, and D. Srivastava. Approximate String
Processing Against Large Databases in Practice.VLDB, 2004.

[12] C. Manning and H. Schütze.Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[13] Perseus - blog survey weblog.
http://www.perseus.com/blogsurvey/blogsurvey.html.

[14] R. Fagin, A. Lotem and M. Naor. Optimal Aggregation Algorithms
For Middleware.PODS, June 2001.

[15] State of the Blogosphere - aug 2006.
http://www.sifry.com/alerts/archives/000436.html.

817

