
Adaptive Fastest Path Computation on a Road Network: A
Traffic Mining Approach∗

Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, John Paul Sondag
Department of Computer Science

University of Illinois at Urbana-Champaign

ABSTRACT

Efficient fastest path computation in the presence of varying
speed conditions on a large scale road network is an essential
problem in modern navigation systems. Factors affecting
road speed, such as weather, time of day, and vehicle type,
need to be considered in order to select fast routes that
match current driving conditions. Most existing systems
compute fastest paths based on road Euclidean distance and
a small set of predefined road speeds. However, “History is
often the best teacher”. Historical traffic data or driving
patterns are often more useful than the simple Euclidean
distance-based computation because people must have good
reasons to choose these routes, e.g., they may want to avoid
those that pass through high crime areas at night or that
likely encounter accidents, road construction, or traffic jams.

In this paper, we present an adaptive fastest path algo-
rithm capable of efficiently accounting for important driv-
ing and speed patterns mined from a large set of traffic
data. The algorithm is based on the following observa-
tions: (1) The hierarchy of roads can be used to partition the
road network into areas, and different path pre-computation
strategies can be used at the area level, (2) we can limit
our route search strategy to edges and path segments that
are actually frequently traveled in the data, and (3) drivers
usually traverse the road network through the largest roads
available given the distance of the trip, except if there are
small roads with a significant speed advantage over the large
ones. Through an extensive experimental evaluation on real
road networks we show that our algorithm provides desirable
(short and well-supported) routes, and that it is significantly
faster than competing methods.

1. INTRODUCTION

∗The work was supported in part by the U.S. National Sci-
ence Foundation (NSF) IIS-05-13678/06-42771 and BDI-05-
15813. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Route planning systems such as MapQuest, MapPoint, or
Google Maps have become essential tools for obtaining driv-
ing directions. In 2006 MapQuest alone reported that it had
computed more than 10 billion routes since the online ser-
vice launched in 1996. If we combine routes served by other
websites and routes computed by car navigation systems,
the number is much larger. It is only expected to grow as
GPS and GIS systems become commonplace on ubiquitous
devices such as cell phones. However, it is surprising to find
that most route planning services have a very simple model
for road speeds: for the most part roads are assumed to have
constant speeds determined by their road class (e.g., high-
way, interstate, city road, etc.); more recently these systems
have started to track average road speeds for certain areas
of the country, and when available this information is used
to provide faster routes. But even with the use of current
speed conditions at some edges, the model does not con-
sider a multitude of other factors that are very important in
the computation of desirable routes. Let us examine these
factors with some illustrative examples.

Example 1 (Importance of driving patterns). Sup-
pose you are new to an area and need to drive to a nearby
town to catch a flight at the airport. You would like to get
to the airport safely and as quickly as possible. If you have
the opportunity to ask a local driver on how to drive there,
s/he will likely give you a nice and quick route, although it
may not be necessarily the quickest. The suggested route,
for example, will not send you through a high crime area,
or if there is a snow storm, it will avoid the roads that are
more likely to become icy and dangerous. Local experts will
consider a multitude of important factors that are difficult
to explicitly incorporate into a path finding algorithm. We
propose that instead of trying to model all such factors ex-
plicitly, we mine historic traffic data and learn from the past
driving behavior. In our algorithm we give preference to fast
routes that have high support, i.e., that are frequently trav-
eled, over those, though fast, rarely taken by drivers.

Example 2 (Importance of speed patterns). Suppose
as a new comer, you would like to go downtown to work,
your experienced locals will suggest to you the best routes
by taking into the consideration many factors that influence
your driving speed, e.g., the time of departure, weather con-
ditions, whether you are qualified to drive on a car pool lane,
etc.. These important factors are also neglected by the cur-
rent route planning software. Clearly, it is essential to have
a new system that can learn from historic traffic data, con-
struct a multi-condition-based road speed model, and plan
the fastest route adaptively and dynamically.

794

In this work, we develop a traffic-mining-based path-finding
method that first mines speed and driving models from his-
toric traffic data, and when a query is posed to the system
(which contains the start point, the end point, and departure
time, or some other information, e.g., car pool), it computes
the fastest route, based on additional conditions, such as
weather forecast, or road construction/closure information.
In contrast with the current route planning systems, our
method is based on traffic data mining and has the follow-
ing unique features:

• The suggested route is composed of as many frequent
path segments as possible, i.e., it matches historic driving
behavior, and thus should account for subtle and difficult
to model conditions.

• The suggested route takes into consideration the speed
conditions expected to be encountered during the trip,
given multiple factors that may influence the speed, such
as relevant locations, time, type of vehicles, etc..

The key technical contributions of the paper can be sum-
marized as follows:

• Road hierarchy-based partitioning. We use the nat-
ural hierarchy present in road networks to partition the
network into semantically meaningful areas. We con-
struct high level areas by dividing the graph using the
largest possible roads: Each area at this level is enclosed
by large highways and will probably contain a large num-
ber of nodes and edges. We recursively subdivide areas
by progressively decreasing the road-scale. An efficient
algorithm is developed that automatically partitions an
arbitrary road network and constructs a natural hierar-
chy of areas. These areas are essential to the algorithm
as they will be used to guide the driving pattern mining
and adaptive fastest path pre-computation.

• Speed rule mining. We take a traffic database that
records observed road speeds under a variety of condi-
tions (e.g., weather, time of day, and accidents) and in-
duce a set of concise rules of the form “if conditions c
for edge e then speed factor = f”, where speed factor is
the speedup or slowdown for an edge with respect to the
edge’s base-speed. Speed factors are clustered to increase
rule support. The concise set of rules is mined through a
decision tree induction algorithm.

• Driving pattern mining. We mine frequently trav-
eled edges or edge-sequences in order to obtain important
driving hints that are hidden in the data and otherwise
difficult to model. We propose a novel area-level mining
that computes frequent path-segments at the area level
with a support relative to the traffic in the area, e.g.,
lower support thresholds for edges in rural areas than
those in big cities. Such adaptive support will avoid gen-
erating too many or too few driving patterns.

• Adaptive pre-computation. Fastest path algorithms
usually pre-compute a subset of fastest paths in order
to speedup path computation at runtime. The problem
is that pre-computation schemes assume unique fastest
paths, and when we have variable edge speeds, fastest
paths can be valid only for a given set of conditions. We
develop an area-level pre-computation strategy that pre-
computes high benefit paths at the area level, i.e., the
fastest paths do not change too much. This strategy al-
lows us to speed up query processing without exploding
the space requirements.

• Road upgrading. We observe that people usually drive
between end points by going through the largest possible
roads available unless there are smaller roads that are
faster than the large ones. Based on this idea, we develop
an algorithm that for each area computes the set of small
roads that should be upgraded, i.e., considered in routing
because they have a significant advantage over large roads
enclosing the area.

• Adaptive fastest path algorithm. Finally, we pro-
pose an efficient routing algorithm that uses the road
hierarchy and pre-computed areas to limit the search
space. This improves trip duration by using upgraded
roads whenever beneficial, and finds routes that take into
consideration both speed and driving patterns.

The rest of the paper is organized as follows. Section 2
presents a formal definition of the problem. Section 3 de-
scribes the structure of the database of traffic observations.
Section 4 introduces the idea of road network partitioning
and gives an efficient algorithm for automated road network
segmentation. Section 5 proposes a method to mine speed
and driving patterns. Section 6 presents the ideas of path
pre-computation and road upgrades. Section 7 develops the
fastest path algorithm. Section 8 reports on experimental
results. We discuss related work in Section 9 and conclude
our study in Section 10.

2. PROBLEM DEFINITION
In this section we first define a set of key concepts: road

network, driving patterns, speed patterns, and forecast func-
tions, and then present the problem statement.

Definition 2.1. A road network is a directed graph G(V, E),
where V is a set of vertices representing road intersections
and terminal points, and E is a set of edges representing
road segments each connecting two vertices.

Figure 1 presents the road network for the town of San
Joaquin in California. Larger roads are shown in bold. The
graph contains 24,123 edges and 18,496 nodes, and was ob-
tained from TIGER line files provided by the US census 1.

Definition 2.2. A speed pattern is a tuple of the form
〈edege id, t start, t end, (d1, d2, . . . , dk) : m〉, where edge id
is an edge, (t start, t end) is a time interval, each di is a
value for speed factor Di, and m is an aggregate function
computed on edge speed.

Speed patterns describe road speeds under a variety of
conditions. Table 2 presents an example of speed patterns
for a particular edge (road segment) in a road network. In
the example we list edge speeds for three conditions: time-
of-day, D1 = weather, and D2 = vehicle-type. In reality, it
is possible to consider many more factors, such as road con-
struction and accidents at nearby edges. The speed table
can be constructed by integrating information from multi-
ple sources, e.g., we can obtain information on road speed,
based on time, location, weather data, and road construc-
tion information. Currently, it is possible to obtain speed
conditions for roads at certain important metropolitan areas
like San Francisco and Chicago, and there is a trend for an
increased availability of such information, evidenced by the

1http://www.census.gov/geo/www/tiger/tgrcd108/
tgr108cd.html

795

Time Weather Vehicle Speed
8am-10am Good Car 45 mph
8am-10am Bad Car 35 mph
8am-10am Good Truck 40 mph
8am-10am Bad Truck 25 mph
10am-5pm Good Car 65 mph

...

Table 1: Speed Pattern for a Particular Edge

recent incorporation of speed conditions into major route
planning software from Google and Microsoft. Information
on speed-affecting factors such as weather and road con-
struction are readily available for most areas of the United
States; and other factors such as accident data are expected
to become available in the near future.

Definition 2.3. A driving pattern is a sequence s of edges
e(1), e(2), . . . , e(l) that appears more than min sup times in
the path database, and that is a valid path in the road net-
work graph G(V, E). We define support(s) as the number
of paths that contain the sequence s. We define the length
of the sequence, length(s), as the number of edges that it
contains.

Driving patterns are edge sequences that are frequently
traversed by drivers. A path database is a set of trajectories,
one per driving session. Currently, the availability of path
databases is quite limited, but there is a trend for the usage
of sophisticated tracking mechanisms, such as RFID enabled
tags in cars that can be read by toll ways’ tag readers, road
sensors, GPS devices, and cameras capable of identifying
cars by their license plates. Currently, we do have edge-level
traffic information available, and such data can be used to
mine frequent driving patterns of length one, which can be
quite useful in finding fast roads (at the edge level) that are
consistently taken by drivers.

Definition 2.4. An edge forecast model F (edge id, t), re-
turns a tuple (d1, d2, . . . , dk) with the expected driving con-
ditions for edge edge id at time t.

The forecast model is a way for the route planner to esti-
mate driving conditions at different edges in the graph. This
is analogous, for example, to looking at the wether predic-
tion for the day, before taking an extended trip to plan the
route accordingly. An example of the forecast function may
be: “At 5 pm [time], for highway 74 between Champaign
and Normal [edge], Weather = rain, and Construction = no
[conditions]”.

With the above definitions available, we are ready to state
our problem:
Problem Statement. Given a road network G(V, E),
a set of speed patterns S, an edge forecast model F , and a
query q ← (s, e, start time), compute a fast route qr between
nodes s and e starting from s at time start time, such that
qr contains a large number of frequent driving patterns.

We can see from the problem definition that we are inter-
ested in finding fast paths, that are aware of the expected
driving conditions for the trip, and that give preference to
routes that are historically preferred by drivers. This prob-
lem definition encompasses factors beyond what traditional
research on fastest path computation has considered. And

we believe these factors can be essential in selecting desirable
driving routes in addition to being fast.

Figure 1: San Joaquin Road Network

3. TRAFFIC DATABASE
A traffic tracking system can generate information on the

speed conditions for different times of day for each road in
the network, such information can be represented as a set of
traffic observations of the form (edge id, time, speed), where
edge id is an edge, time is the time when the observation
took place, and speed is the observed speed. A more so-
phisticated system, such as the one used to monitor the
San Francisco Bay Area traffic conditions 2, can use radio-
frequency tags placed in each car to track the paths tra-
versed by individual vehicles. These tags can be the same
ones used for automated toll collection, the city would just
install readers at many non-toll roads. In this case, each
traffic observation will be of the form (car id, edge id, time,
speed), where car id is a vehicle identifier, and other val-
ues are defined as before. Vehicle-level observations can be
sorted on car id and t to generate a path database, where
each entry is the sequence of edges traversed by a car dur-
ing a driving session. We can use either form of data to
determine frequent driving patterns. If only edge-level data
is available, we can use the number of edge observations as
support, but in this case only frequent length-1 patterns can
be mined. If we have vehicle-level data, we can mine longer
frequent driving patterns.

In addition to speed information at each edge, we can
augment the traffic database with the set of driving condi-
tions present during each edge observation. Given a set of
available driving factors D1, . . . , Dn, we can augment each
traffic observation with the tuple (d1, . . . , dn) where each di

is a value for driving factor Di. Table 3 presents an example
traffic database in path format, where each path stage is of

2http://511.org

796

car id path 〈(edge id, start time, end time), . . . 〉
1 (e1, 10, 15)(e2, 15, 23)(e7, 23, 29)
2 (e3, 20, 29)(e1, 29, 33)
3 (e1, 9, 16)(e2, 16, 22)
4 (e9, 10, 11)(e2, 11, 17)(e8, 17, 20)

.

Table 2: Traffic Database

the form (edge id, start time, end time), where start time
is the time when the car entered the edge, and end time is
the time when the car exited the edge. For lack of space we
do not show observed driving conditions at path stages.

In the above example we have that support(e1) = 3,
support(e2) = 3, support(e7) = 1, etc.

4. ROAD NETWORK PARTITIONING

4.1 Road Hierarchy
Road networks are organized around a well-defined hi-

erarchy of roads. An example of a typical road hierarchy
is the road network of the United States, where highways
connect multiple large regions, interstate roads connect lo-
cations within a region, multi-lane roads connect city areas,
and small roads reach into individual houses. Information
on road categories is available for both the Unites States
where roads are classified into 4 levels, and for the Euro-
pean Union where roads are classified at a higher level of
detail into 13 levels. For our San Joaquin example in Figure
1, we draw roads at the two highest levels in bold, and all
other roads in gray.

Most existing work on hierarchical shortest path algo-
rithms assume that a partition of the road network is pro-
vided, or that the partition can be generated by imposing
a fixed grid over the network [18, 19]. Other approaches
such as [26] use the idea of Highways to divide the graph,
but their definition of Highway is graph theoretic, designed
to preserve optimality of routes, and does not necessarily
match the road size classification. We believe that the nat-
ural partition induced by the road hierarchy itself can be
used to divide the network into semantically meaningful ar-
eas, with well defined driving and speed patterns. This idea
can provide a significant speedup for fastest path queries
when compared to arbitrary partitioning methods such as
the grid-based one.

The partitioning process can first use the highest-level
roads to divide the road network into large regions enclosed
by such roads. Each large region can in turn be further sub-
divided by using the next lower-level roads. This process
can be recursively applied until an area contains only roads
at the lowest level of the hierarchy, or until a threshold on
the minimum number of nodes in an area is reached.

Definition 4.1. Given a road network G(V, E), with pre-
defined edges classes class(e) for each edge e, the class of a
node n denoted class(n), is defined as the biggest (lowest
class number) of any incoming or outgoing edge to/from n.

The definition indicates that for an intersection of two
highway segments with a small road (i.e., the entry point
into the highway), the intersection will be at the level of the
highway, not at the level of the small incoming road.

Definition 4.2. Given edges of class k, a partition P (k)
of a road network G(V, E) divides nodes into areas V k

1 , . . .,
V k

n , with V =
⋃

i
V k

i . Areas are defined as all sets of strongly
connected components after the removal of nodes with class(n)
< k from G. A node n, with class(n) > k in strongly con-
nected component i, belongs to area V k

i , and it is said to be
interior to the area. A node n, with class(n) ≤ k belongs to
all areas V k

i such that there is an edge e, with class(e) > k,
connecting n to n′ and n′ ∈ V k

i , such nodes are said to be
border nodes of all the areas they connect to.

Given a road hierarchy with l levels, we can construct a
hierarchy of areas as a tree of depth l − 1: The root node
represents the entire road network, children of the root node
represent the areas formed by partitioning the root using
level-1 edges, the nodes in each area form a graph them-
selves, and all the edges from E connecting two nodes in an
area are said to belong to the area. A node at level-k results
from the partition of its parent node using the edges of class
k − 1. Notice that according to this convention, road class
1 is the largest, and road class l the smallest.

3:1

3:2

4:11:1

2:1 4:2

5:1

5:2
5:3

5:4

5:5

5:6

Figure 2: San Joaquin Partitioned Map

Figure 2 presents the partition of the road network for
San Joaquin, CA. We have numbered each large area with
two numbers a : b, a is the area number when roads of level
1 are used, and b is the subarea of a when roads of level
2 are used to subdivide a. We can see in the upper left
corner that we have not marked individual areas, the reason
is that there are quite a few strongly connected components
in this region, and each has its own area, i.e., nodes inside
each component cannot reach nodes in other components
except by going through border nodes. We have marked one
such component in the figure by encircling it with a dotted
line to illustrate the point. As we can see the partition is
quite natural. We also experimented with partitioning the
entire road network for the San Francisco Bay Area, and
for the complete state of Illinois among others (Figures not

797

included for lack of space), and in every case the hierarchical
partitioning algorithm found balanced partitions, with may
areas in dense regions of the graph, and less but larger areas
at more sparse regions of the graph.

4.2 Area partitioning algorithm
In this section we develop an efficient algorithm that can

automatically generate a semantically meaningful partition
of the road network by using road hierarchy information.
The algorithm uses a flood filling technique to identify strongly
connected components delimited by high level edges. We
take as input the road network G and the edge class k used
for partitioning. Fist we assign to each node an empty set
of areas. We then choose a node n with class(n) > k (i.e.,
connected to edges less important than the ones used for
partitioning), and add area a to this node’s area set; at this
point we move to all neighbors of the node that are reach-
able through the edges of the classes greater than k, and add
a to their area sets. This process repeats until no further
nodes can be reached. We are basically walking in every
possible direction from the node until we reach large roads
used for partitioning and we stop. At this point we increase
our area number, move to the next node with an empty area
set, and repeat the process until all nodes are assigned to at
least one area. One nice feature of the algorithm is that it
automatically identifies interior nodes (those with a single
area in their area set), and border nodes (those with multiple
areas in their area set).
Analysis. Algorithm 1 examines each interior node O(1)
times, and border nodes O(|a|), where |a| is the number of
areas. So the order of the overall algorithm is O(n×|a|). In
general, |a| ¿ n. So the algorithm can be considered linear
in the number of nodes. In our experiments we partitioned
real road network graphs with more than a million nodes in
just a few seconds.

Algorithm 1 Area partitioning

Input: G(V, E), k edge class used to partition G.
Output: Partition P (k) = V k

1 , V k
2 , . . . , V k

n

Method:

1: area = 0;
2: Areas[ni] = φ for all node ni;
3: for Each node ni do
4: if Area[ni] = φ and class(ni) > k then
5: q.push(ni);
6: while not q.empty() do
7: n ← q.pop(); n.mark = true;
8: Area[n] = Area[n]

⋃
{area};

9: push into q all neighbors of n reachable through
edges of class greater than k, s.t., n.mark = false;

10: end while
11: area = area + 1;
12: q.clear();
13: end if
14: end for
15: for each area i construct V k

i as the set of nodes n such
that i ∈ Area[n]

5. TRAFFIC MINING
An important contribution of our work is to take into

consideration the factors that affect driving speed as well as
driving behavior in the adaptive fastest path computation

algorithm. We think that route planning software has to
account for all such factors in order to provide routes that
are not only fast and relevant given the conditions encoun-
tered by the driver, but also well supported, in the sense
that many drivers in the past have opted for such a route
under similar circumstances.

5.1 Speed pattern mining
In any road network multiple factors influence the speed

at which we can travel through different roads. Weather,
time of day, vehicle class, and road construction are just
a few among the many dimensions that can influence road
speed. In this section we will develop a method that mines,
from a large database, a set of concise rules that identify the
most relevant factors influencing road speed.

As we mentioned before, the traffic database augmented
with extra factors, contains a collection of traffic tuples of
the form 〈edge id, time, (d1, . . . , dk) : speed〉 (if we have ve-
hicle level traffic data, we compute the average speed for
the edge under every condition for all cars). We can see the
problem of speed pattern mining, as a classification problem
where we would like to predict edge speed based on time
and feature values d1, . . . , dk. We can derive rules such as
“if area = a1 and weather = icy and time = rush hour then

speed = 1/4 × base speed”. Looking at this rule we notice
a few things. First, feature values reside at different levels
of abstraction, i.e., each factor has an associated concept
hierarchy and the rules can use values at any level. Second,
speed has been expressed as a relative value with respect to
a base speed, such transformation allows us to build more
general rules; in the above example “1/4 × base speed” in-
dicates that regardless of the initial speed of the road, it
slows down to a quarter of its initial value. Third, in this
case the class label which is speed, or more concretely, speed
factor, is a continuous attribute that requires some form of
discretization in order to perform rule induction.

There are several methods to perform rule induction, in
this paper we chose decision tree induction [25] as it pro-
vides rule predicates of the desired form, which in general
have good accuracy and generality, and the method can be
applied to very large datasets efficiently [12]. Before run-
ning a decision tree algorithm we run a preprocessing step
to discretize speed factors, which will be treated as our class
label. Speed factors can be discretized through clustering
[17], with each traffic tuple assigned to a cluster centroid.
This is beneficial for route planning applications, as it allows
us to derive speed rules that are supported by a large num-
ber of observations and are thus statistically significant. For
the time dimension, we can use its concept hierarchy to reg-
ister values at a higher level of abstraction than that of the
raw data, e.g., from seconds to minutes. We can then treat
time at the minute level as a continuous attribute which can
be handled by decision tree algorithms through binary splits
[24], or multi-interval discretization methods [8].

5.2 Driving pattern mining
One of the most common ways that drivers use to de-

termine good driving routes in an unfamiliar area is to ask
local people for tips, we may find for example that route
R1 is very good in the summer but that in winter the road
become unsafe, or that route R2 although fast, goes through
a high crime area and should be avoided at night. This is
valuable information that has been largely ignored by route

798

planning algorithms, and that cannot be derived by looking
at just distance and edge speeds.

Driving patterns can be derived from the traffic database
by using frequent pattern mining [1, 15, 23]. We can define a
minimum support level, and go through the traffic database
identifying frequent edges, and when we have access to in-
dividual vehicle data, longer frequent path segments can be
mined. The problem with this approach is that a uniform
minimum support level is difficult to define, and it may fil-
ter many important local roads, or may keep infrequently
traveled high-level roads.

We propose a frequent pattern mining method guided by
the area and road hierarchies: Frequent edges are mined
at the area level, using a minimum support relative to the
traffic volume of each edge class in the area. This will allow
us, for example, to distinguish support for edges at different
levels of the road hierarchy.

With driving pattern mining, each edge (or path segment)
in the road network can be marked as frequent or infre-
quent given a time interval and a set of driving conditions
(d1, ..., dk). The path-finding algorithm will use this infor-
mation to guide the search mostly through frequent edges,
and only expand infrequent ones when absolutely necessary
(e.g., usually at the start or end of a road when we may need
to go into nearby neighborhoods).

6. PRE-COMPUTATION AND UPGRADES
In this section we will present two techniques aimed at

improving the performance both in terms of run time and
path accuracy of fastest path algorithms by the utilization
of two techniques. The first is area level pre-computation of
stable paths in order to improve efficiency. The second is to
upgrade certain small but very fast roads to a higher level in
the road hierarchy in order to improve the accuracy (path
duration vs. best possible path duration) of the algorithm.

6.1 Area level pre-computation
Many fastest path algorithms rely on pre-computing a

small set of fastest paths in order to improve performance
[19, 5, 26]. At one end of the spectrum we can use algorithms
such as Floyd Warshall [9] that pre-compute the shortest
path between every pair of nodes. In this case fastest path
queries can be answered in O(1) lookups, but we need O(n2)
space for storing those pairs, and O(n3) time for the initial
computation. At the other end of the spectrum we can per-
form no pre-computation and dynamically find the shortest
path using an algorithm such as A∗ [16]. In between these
two extremes we have several algorithms that do hierarchi-
cal decomposition of the original graph, and pre-compute a
subset of paths that are helpful in connecting different areas
in the graph [19, 5].

Most methods that do fastest path pre-computation as-
sume that there is a unique path (or several but equally
attractive, and thus undistinguishable) between any two
nodes. When edge speed is a function of factors such as
time, weather, or road conditions, the fastest path between
two nodes may be different for different times and condi-
tions, e.g., it may differ when we leave at 8:00 am than at
10:00 am, or if we have to drive through icy roads or dry
roads. In the presence of variable edge speeds, pre-computed
fastest paths need to be annotated with the set of conditions
under which they are valid.

Definition 6.1. We say that fastest path p between nodes

(s, e) is conditionally stable for starting time interval 〈t1, t2〉
given condition c = (d1, . . . , dn), where each di is a value for
factor Di or the special value * to indicate any value for Di

is valid, if duration(p) is minimal among all possible paths
between (s, e), when the starting time is between t1 and t2,
and when condition (d1, . . . , dn) is forecasted for all edges
along paths connecting s and e.

The benefit of pre-computing a path between two nodes
is proportional to the number of path queries for which the
path can be used to speedup the fastest path algorithm.
We can check two conditions to determine benefit. First,
how many fastest path queries will go through nodes of the
pre-computed path. For example, pre-computing the fastest
path between two houses in an area has little value, as it will
likely help a single query, while pre-computing a path be-
tween two important intersections may benefit many queries.
Second, how stable is the path, i.e., for how long, and for
how many speed patterns is the path a fastest path. For
example, pre-computing a path that is valid only between
10:07am and 10:11am has less value than pre-computing a
path that applies for the entire rush hour interval, 8:00am
- 10:00am. A sensible strategy is thus to pre-compute high
benefit value paths.

A naive method to determine what paths to pre-compute
would be to list every fastest path in the road network, un-
der every possible condition, and rank them according to
benefit value. This strategy would yield optimal results but
it is clearly unfeasible as the number of paths and condi-
tions to consider is enormous. We propose an area level
pre-computation strategy where we compute certain fastest
paths only within the nodes inside the area. We first define
a minimum level lm in the area hierarchy at which path pre-
computation will be conducted. Within each area at level
lm we choose the set of nodes Sp of class lm + 1 (one level
smaller than the borders of the area), and class lm, and pre-
compute fastest paths between nodes in Sp. For this step, we
guide our pre-computation by the set of speed rules mined
for the area, and limit the analysis paths involving edges
with few speed rules. We can handle time intervals by using
the algorithm presented in [20], which efficiently computes
the set of fastest paths between two nodes for different time
intervals.

6.2 Small road upgrades
The main assumption of hierarchical path finding algo-

rithms is that drivers take the largest road available in or-
der to reach their destination, and thus the search space for
route finding can be significantly reduced. Our observation
is that although this strategy is generally true, there is an
important exception, if there is a small road that is faster
than a large road, people will take it. For example, people
driving to or from cities usually do it through highways, but
during rush hour highways can become so congested that
taking smaller roads yields shorter travel times. If we ig-
nore such cases we may incur significant error.

Our strategy in dealing with this problem will be to up-
grade certain edges inside an area if under some driving con-
ditions they have a significantly higher speed than the edges
at the area borders under the same driving conditions. For
the above example, we would upgrade the internal edges in
the area where the city resides, to the level of highways but
only for the driving condition of rush hour. This way we
can still compute most routes considering only highways,

799

and incur the extra cost of looking at the upgraded edges
only when absolutely necessary.

More formally, an edge e, residing in area a with border
edges at level l of the road hierarchy, will be upgraded to
level l if three conditions are met (i) the edge speed under
driving conditions (d1, . . . , dn) for some time t is faster than
the average edge speed of border edges in the area under
the same conditions and time, (ii) edge e is at level l + 1,
and (iii) the edge is frequent. For all such edges we will reg-
ister a conditional road class tuple 〈edge id, t, (d1, . . . , dn) :
upgraded class〉.

Algorithm 2 Edge upgrading

Input: G(V, E): road network, T : area hierarchy, s: speed
threshold
Output: List of upgraded edges
Method:

1: Precompute the average border speed for every area un-
der every valid driving condition and time

2: q ← push all leaf areas in T ;
3: while q not empty do
4: A ← q.pop();
5: for each edge e in A do
6: if e.level = A.level + 1 and e is frequent then
7: for each driving condition c and time t for which

e.speed > s× average border speed for c in A,
make e.level = a.level and output 〈e, t, c, e.level〉;

8: end if
9: end for

10: q.push(A.parent);
11: end while

Analysis. Algorithm 2 presents the method used to up-
grade internal area edges when they are faster than the bor-
der. The algorithm starts by computing the average speed
of border edges in an area for all valid conditions. This can
be done efficiently in a single scan of the list of edges. We
then traverse the area tree in a bottom up order, upgrading
edges at the lowest areas, before upgrading edges at larger
areas. Notice that an edge can be upgraded multiple times
if it is consistently faster than the borders of several succes-
sively larger areas. During the edge upgrade process each
edge is touched O(l) times where l is the number of levels
in the tree, so in total we touch at most O(|E| × l) edges.

7. FASTEST PATH COMPUTATION
In this section we will introduce an approximate fastest

path algorithm for road networks, that computes fast paths
between a source and destination node, such that the com-
puted route has the following properties:

• Fast routes should be well supported by the historical
driver behavior, i.e., they should contain as many fre-
quent driving patterns as possible.

• Fast routes between a source and a destination will go
through the largest possible roads connecting the two lo-
cations as long as there are no smaller roads along the
way that have a significant advantage over the large ones.

• Fast routes will account for all relevant factors affecting
driving speed expected to occur during the trip such as
weather, time of day, and road construction status.

Before running the algorithm we assume that the following
components have been computed:

• The road network G has already been partitioned using
algorithm 1, and we have an area hierarchy tree T that
encodes the parent/child relationship between areas.

• Speed patterns have been mined and we can use the
function get edge speed (edge id,t,(d1, . . . , dk)) to get the
speed of edge id when it is taken at time t, and for driv-
ing conditions (d1, . . . , dk). This information is retrieved
from our mined set of rules for driving conditions, by
selecting most specific rule(s) applicable given the condi-
tions.

• Driving patterns have been mined and we can use the
function is frequent(edge seq, t, (d1, . . . , dn)) to deter-
mine if the edge sequence edge seq is frequent under con-
ditions (d1, . . . , dn) at time t.

• We have pre-computed a set of area-level fastest paths
with high benefit value.

• We have used algorithm 2 to upgrade internal roads to an
area when they are faster than roads along the area bor-
der for a given set of time and driving conditions. We can
retrieve upgraded edges with the function get edge class
(edge id, t, (d1, . . . , dk)) that returns the class of edge id
for driving conditions (d1, . . . , dk) at time t.

7.1 Algorithm
At this point we are ready to state our fastest path algo-

rithm, it is a variation of A∗, where we dynamically com-
pute edge costs, take advantage of pre-computed paths, fol-
low edges in ascending/descending order of their level in the
road hierarchy, and give priority to frequent edges (or edge
sequences).

The key technical contributions of the algorithm are three.
First, it incorporates previously neglected factors such as
speed and driving patterns into route finding. Second, we
improve performance by utilizing a novel area level pre-
computation scheme. And third, although hierarchical path
finding has been used in the past, to the best of our knowl-
edge this is the first study that uses the idea of small road
upgrading to improve path quality with minor impact to
efficiency.

The key concepts of the algorithm are summarized below:

1. We maintain a priority queue of expanded paths (repre-
sented by the last node of the path), for each path we
keep g(n) the current cost (travel time) spent to get from
start to n, and h(n) the expected cost to reach the end
node from n.

2. At each step of the search process we pick the node with
lowest g(n) + h(n) value that is frequent3, if no frequent
node is present in the queue we pick the best infrequent
one. We prefer to travel through frequent roads, but
sometimes it is necessary to pick a small number of in-
frequent paths in order to reach the destination. This is
especially true around the starting and ending nodes.

3. At the beginning of the search we determine, using the
area hierarchy tree T , what is the lowest common ances-
tors of both start and ending nodes. We use the lowest
common ancestor to set the phase of the algorithm, which
can be Ascending or Descending. We are in an Ascend-
ing phase when the currently examined node is in an

3A more sophisticated strategy is possible, we can give pref-
erence to paths that have longer frequent driving patterns,
than shorter ones.

800

area that is below or at same level of the lowest common
ancestor, and we are in a Descending phase otherwise.

4. At each iteration we look at the neighbors of the node
currently being examined. If we are ascending, we only
consider neighbors that are connected through edges that
have an edge class lower or equal to the previous edge
(bigger road) in the path. If we are descending, we
only take edges with class greater or equal to the previ-
ous edge (smaller road) in the path. The class of each
edge is dynamically computed by calling the function
get edge class (edge id, t, F (edge id, t)), where F is the
predictor function that returns the tuple (d1, . . . , dk) of
expected driving conditions (e.g., weather, road construc-
tion, etc) for the edge at time t, t is the projected time at
which the edge will be taken. The set of neighbors of a
node are all those nodes directly reachable through a sin-
gle edge, or indirectly reachable through a pre-computed
path.

5. Whenever we insert a new path into the priority queue,
we update its g(n) value by adding to the path’s total
travel time the time to traverse the new edge, which is
computed by dividing the edge distance by the expected
edge speed retrieved with the function
get edge speed (edge id, t, F (edge id, t)). h(n) is also
updated for the path by using a conservative estimate of
the total travel time from the current node to the goal
node. Several different estimation policies are possible,
more accurate ones can significantly speed up the search
[6]. In our implementation we used the simple heuris-
tic h(n) = distance(n, end)/max speed, but any other
heuristic could be plugged into the algorithm.

Lemma 7.1. The adaptive fastest path algorithm, when
computing a path between (start, end) nodes, in areas ai, aj

respectively will consider at most O(|ai|+ |aj |+ |bn|+ |un|)
distinct nodes, where |ai| is the number of nodes in area
ai, |aj | is the number of nodes in area aj, |bn| is the total
number of border nodes in all areas, and |un| is the number
of nodes connected to upgraded edges in all areas.

Proof Sketch. The worst case for path finding is when
no pre-computed path is available. In this case we need to
examine all nodes in the starting area until border nodes are
reached, and all nodes in the ending area until we reach the
destination. Once we have reached the border nodes of the
first area, the algorithm only goes through border nodes, or
upgraded nodes until the destination area is reached.

The implication of lemma 7.1 is that our search algorithm
will need to consider significantly fewer nodes than tradi-
tional A∗ even in the case when no area pre-computation
is possible. We verify this result running the search algo-
rithm on real road networks for the United States where we
observed an order of magnitude savings in the number of
nodes examined by the algorithm.

Example 3 (Search). Figure 3 presents a road network,
there are 3 levels of roads, and we have partitioned the graph
along the first 2 levels. The first level gives us the large grid,
and the second level the finer grid (shown only for two areas).
The size of nodes indicate the level at which they are, larger
nodes are associated with edges at higher level. The graph
also shows edges that have been upgraded by painting them
with dotted lines. The name of an area indicates its position

Area 1

Area 1:7

Area 1:3

Start Area 1:7:5

End Area 1:3:5

Figure 3: Example Hierarchical Search

1

...1:3 1:7

...

1:3:1 1:1:9

Class 1 roads

Class 2 roads

... ...

...

1:7:1 1:7:91:3:5 1:7:5

......

Descending Phase Ascending Phase

Figure 4: Example Area Hierarchy

in the area tree, i.e., area 1 : 7 : 5 is a child of area 1 : 7
which in turn is a child of area 1 (more clearly seen in Figure
4). The total number of nodes in this graph is 28×28 = 784.

We would like to find the fastest path between a starting
node in area 1 : 7 : 5, and an ending node in area 1 : 3 : 5.
Figure 4 presents the area hierarchy, in this case see that
the lowest common ancestor of the start and end nodes is
area 1. The algorithm will proceed in two phases: First, it
ascends from area 1 : 7 : 5 to area 1, and then it descends
to area 1 : 3 : 5. We first expand nodes in area 1 : 7 : 5 by
following roads of level 3, until we reach edges in the border
of the area which are at level 2, and are inside area 1 : 7. At
this point we are still ascending, as we have not reached the
lowest common ancestor, and we will not look at roads of
level 3 any more. We now move along edges of level 2 until
we reach the borders of area 1 : 7, which are roads of level
1. At this point we will consider only roads of level 1, and
roads of level 2 upgraded to level 1 (the dotted ones) until
we reach area 1 : 3, at which point we enter the descending
phase of the algorithm and the order of road classes to follow
is reversed. We follow roads of level 2 to area 1 : 3 : 5, and
finally roads of level 3 to the destination node.

In this example, in order to simplify the explanation we

801

have ignored edge frequency. But if we consider that all
edges of level 3 are infrequent, it should be clear that when
we start the search, and when we end the search, the prior-
ity queue will contain only nodes that are reached through
an infrequent edge and thus we would have to use it. We
have also assumed that there are no pre-computed paths;
otherwise, the search process is the same, but instead of fol-
lowing direct neighbors of the node we also follow indirect
neighbors connected through pre-computed paths.

In this example the maximum number of distinct nodes
that the algorithm would have to consider is 32 at the start
and end areas, 32 at the level 2 areas, 64 at level 1, and 7
nodes along upgraded edges. This is much smaller than the
potential nodes examined by A* which in the worst case is
the entire network, 784 nodes.

7.2 Online path re-computation
When we compute a fastest route, the predictor function

F is used to estimate driving conditions throughout the en-
tire trip, but it is possible that our initial estimate is wrong.
For example, if we computed the route using a prediction
of good weather for the duration of the trip, but halfway
into the trip a snow storm happens, our fastest path may
be far from optimal. Another example of changing condi-
tions would be an unexpected road closure or an accident.
If we plan a complete trip before the starting time using
a static model, there is not much that the system can do
about these unexpected cases (e.g., when we ask a site such
as MapQuest to give us a route before the trip starts). But
if we are operating in an online navigation environment, we
can do better, as it is possible to recompute the best route
as driving conditions change. In this case we can just ap-
ply the algorithm presented in the previous section with a
starting node changed to the current position, starting time
to the current time, and an updated forecast model.

In an online navigation system, having access to an effi-
cient route computation algorithm is even more critical than
in the static route computation model, and the power of our
proposed method would be more evident. Another possible
change to our algorithm, when forecast is updated, would
be to invalidate our speed model for edges near the vehicle’s
current location, as we may know the exact speed for those,
and use mined speed patterns only for farther away edges.

8. EXPERIMENTAL EVALUATION
In this section we perform a thorough analysis of the adap-

tive fastest path finding algorithm proposed in the paper,
and compare its performance against a basic A* implemen-
tation, and a version of the adaptive of our own algorithm
that does not perform area pre-computation. All the exper-
iments were conducted on a single core of an AMD Athlon
64 X2 Dual Core processor with 2GB of RAM. The system
ran cygwin and gcc 3.4.4.

8.1 Data Synthesis
In all of our experiments we used real road maps from ar-

eas of the United States. We used three maps. San Francisco
Bay area (90 by 125 miles) with 175,343 nodes, and 223,606
edges. A map for the entire state of Illinois with 831,524
nodes, and 1,048,080 edges. A smaller map for San Joaquin,
CA with 18,496 nodes, and 24,123 edges. We simulated dif-
ferent traffic conditions using the Network-based Generator
of Moving Objects by Thomas Brinkhoff [3], which is a well

known traffic simulator. For each map we ran two simula-
tions, one with 10,000 objects used to generate rush hour like
speed conditions, and one with 1,000 objects used to sim-
ulate non-rush hour speed conditions. In each simulation
we defined two object classes, cars with faster speeds, and
trucks with slower speeds. We also incorporated a weather
factor into the simulation by running the simulation with
and without external objects, which in the data generator
can be used to slow down certain areas of the road network
as if bad weather were occurring. The output of the simu-
lation was a list of edge observations of the form 〈edge id,
car id, time, weather, speed〉. The output files were a few
hundred megabytes long. Using this information we mine
speed patterns for each edge, such patterns involve the di-
mensions of time, weather, and vehicle type.

In most of the experiments we compare three methods.
The first is an implementation of A∗, we run this algorithm
on the entire road network. We maintain a priority queue of
paths to expand. At each iteration we select the path with
minimal g(n) + h(n), where g(n) is the current cost of the
path, and h(n) is the expected cost to the goal. For each
path we update g(n) by retrieving the appropriate speed
for the edge at the time when it will be taken, and for the
type of vehicle for which the route is being planned, and for
the forecasted weather. A∗ always finds the fastest possible
path, and is thus our baseline for correctness. The second
algorithm Hier is our adaptive fastest path algorithm imple-
mented without area pre-computation, i.e., no fastest paths
have been pre-computed at all, and without considering road
upgrades, i.e., small roads through an area that are faster
than roads in the area border. The third algorithm, Adapt
is the fastest path algorithm proposed in this paper.

8.2 Query Length
In this set of experiments we vary the distance between

the starting node and the ending node of the query. For
this experiment we used the San Francisco road network.
The road network was partitioned with edges of level 1, and
level 2. We artificially upgraded a single random path in
20% of the lowest level areas, and set the speed for edges in
upgraded paths higher than the average speed of the border
edges of the area. We pre-compute fastest paths in 30%
of the lowest level areas. Results are the average of 100
random queries. We varied the average distance between
the starting and ending nodes. The longer the distance the
larger the search space. Query Length measures the distance
of the end points in the query as a percentage of the map
diameter.

In Figure 5, we see the number of expanded nodes for the
three algorithms. We see that the number of nodes expanded
by A∗ grows very rapidly for large paths. This is expected
as there are many more possible paths to consider between
nodes that are separated by a large number of edges. At the
same time we see that Hier and Adapt expand a number
of paths that is almost constant. The reason is that both
algorithms limit their search to larger roads and only go into
individual areas at the start or end of the search. We see
that although Adapt has to consider all upgraded edges, it
only expands slightly more nodes than Hier which ignores
those edges.

Figure 6 presents the travel time for the three methods.
We see that A∗ always gives us the fastest path. The path
found by Adapt is almost as good as the A∗ path, but at

802

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6

n
o

d
e

s

query length

A*
Hier

Adapt

Figure 5: Query Length vs. Ex-
panded Nodes. Depth: 2

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

0 0.1 0.2 0.3 0.4 0.5 0.6

tr
a

v
e

l
ti
m

e
 (

m
in

u
te

s
)

query length

A*
Adapt

Hier

Figure 6: Query Length vs. Travel
time. Depth: 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

c
p

u
 t
im

e
 (

s
e

c
o

n
d

s
)

query length

A*
Hier

Adapt

Figure 7: Query Length vs. CPU
time. Depth: 2

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6

n
o

d
e

s

upgraded areas

A*
Hier

Adapt

Figure 8: Upgraded paths vs. Ex-
panded Nodes. Depth: 2

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

0 0.1 0.2 0.3 0.4 0.5 0.6

tr
a

v
e

l
ti
m

e
 (

m
in

u
te

s
)

upgraded areas

A*
Adapt

Hier

Figure 9: Upgraded paths vs.
Travel time. Depth: 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6

c
p

u
 t

im
e

 (
s
e

c
o

n
d

s
)

upgraded areas

A*
Hier

Adapt

Figure 10: Upgraded paths vs.
CPU time. Depth: 2

only a fraction of the cost. Hier suffers significantly in terms
of path travel time, the reason is that it completely ignores
roads internal to areas that are faster than border roads.
This experiment shows the power of our algorithm, not only
in terms of efficiency, but also accuracy, and highlights the
relevance of considering small fast roads in addition to large
roads. In Figure 7, which presents the average CPU time per
query using the 3 algorithms, we observe the same pattern
as in the expanded nodes figure.

8.3 Upgraded paths
In this set of experiments we vary the percentage of lowest

level areas that contain a path that is faster than the border
paths and thus needs to be upgraded (Given that the speed
of the edges in the areas along paths that need upgrading is
changed, A∗ may need to expand slightly different edges).
For this experiment we used the San Francisco road network.
Average path length is 50% of the area diameter, and all the
conditions are the same as the ones used for the query length
experiments, except for upgraded paths which we vary.

We can see in Figures 8 and 10 that neither A∗ or Hier
are significantly affected in terms of the number of expanded
nodes, or the CPU speed. This is because A∗ always con-
siders the entire network, and Hier disregards upgraded
edges completely. The performance of Adapt suffers as we
have more upgraded edges that need to be considered in the
search process. But we can see that the degrade in per-
formance is quite gradual we go from around an average of
18,000 expanded nodes when no edges are upgraded to just
around 20,000 when 60% of the areas contain an upgraded
path. Where we really see the importance of upgraded edges

is in Figure 9, we see that when no edges are upgraded both
Hier and Adapt perform equally, as we increase the num-
ber of upgraded edges Adapt starts closing the gap with A∗.
This is expected as we have ever more options to find a good
path, while the quality of paths found by Hier continues to
decrease. This experiment is important because we see that
we can use a fairly aggressive edge updating strategy to
improve path quality without incurring any significant per-
formance penalty. We could consider, for example, interior
edges as long as they are 80% as fast as border edges to
improve path quality.

8.4 Area Pre-computation
In this experiment we examine the performance gain for

different levels of pre-computation. We use the San Fran-
cisco road network, partitioned using roads of classes 1 and
2. The average path length used is 50% of the area diame-
ter. The percentage of areas with an upgraded path is 20%.
We compare two methods, Adapt which is our algorithm,
and Adapt nopre which is the same algorithm but without
using pre-computed areas. For this experiment we select a
percentage of the lowest level areas, and pre-compute every
fastest path in it. We vary the number of pre-computed ar-
eas at the lowest level from 0% to 100%. We can see that
the performance improvement is very significant as we can
use more pre-computed areas, i.e., the algorithm is basically
reaching for the destination taking very long jumps. In this
experiment we did not pre-compute any higher level area,
if we had done it, the performance gains would have been
even more noticeable.

803

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 0 0.2 0.4 0.6 0.8 1

n
o

d
e

s

materialized areas

Adapt_nopre
Adapt

Figure 11: Pre-computed areas vs Expanded Nodes.
Depth: 2

8.5 Road Network Size
In this experiment we compare query processing efficiency

for 3 road networks in the United States of different sizes:
San Joaquin (sj) with 18,496 nodes and 24,123 edges, San
Francisco (sf) with 175,343 nodes and 223,606 edges, and
Illinois (il) with 831,524 nodes and 1,048,080 edges. All the
maps where partitioned using the top two levels of roads.
Average path length was 50% of map diameter. 20% of
areas had a single path upgraded.

We can see in Figure 12 that the adaptive algorithm has
excellent scalability in terms of road network size. The rea-
son is that the number of nodes usually grow much slower
than the number of small roads, and thus our algorithm is
able to significantly restrict the search space to a manage-
able size even in the presence of millions of nodes and edges.
This result is encouraging, as it indicates that the algorithm
can handle route planning in very large maps quickly, a fac-
tor that is essential when we consider that the number of
queries that such system needs to handle is in the billions.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

sj sf il

n
o

d
e

s

graph size

A*
Hier

Adapt

Figure 12: Graph size vs Expanded Nodes. Depth:
2

9. RELATED WORK
Shortest path computation is an area that has received

extensive research attention for almost half a century. There
are so many results in this area that we can only highlight a
few selected publications to put our work into perspective.
A good survey of shortest path methods is found in [22, 11].

Exact algorithms for static graphs have used the idea of
edge hierarchies to reduce computation time. [19, 18] and
more recently [26, 5] have looked at the techniques to decom-
pose the graph using hierarchies and pre-computed selected
paths. The hierarchy defined by these methods is similar in
spirit to ours, but theirs is usually graph theoretic and not
based on the physical size of roads. Approximate algorithms
have also considered the idea of graph partitioning. [4] uses
large roads to partition the graph, but they do it manu-
ally, and no driving or speed patterns are considered. Other
graph-theoretic algorithms have focused on improving the
heuristics used by A∗. [6] is a recent example of work along
this direction. It uses the concept of landmarks to improve
route cost estimation. These algorithms are a complement
to our method, we could directly use them to estimate h(n)
and improve performance.

Shortest path computation on dynamic graphs has two in-
terpretations. The first is graphs where edges are updated,
deleted, and added. Under this interpretation the idea of
most methods is to apply a static shortest path algorithm
such as Dijsktra’s [7] only to the subset of the graph where
fastest paths change after the upgrade. [10, 6] compare the
performance of a few of the most popular single source dy-
namic shortest path methods. [21] presents an all-pair dy-
namic fastest path algorithm. The second interpretation is
that edge speed is a function of time. [20] looks at this
problem, they define the CapeCod pattern to match time
of day to edge speed. Their algorithm is an adaptation of
A*: Instead of sorting the priority queue on a scalar cost,
they maintain a function of cost based on starting time. The
focus of this work is to provide the complete set of fastest
paths for a given time interval. This technique can be used
by our algorithm in performing path pre-computation at the
area level. [2] uses a statistical approach based on clustering
to compute rules useful in predicting fastest paths. We are
different to this work in that our approach to route finding
is search, not prediction.

We make use of different data mining techniques in or-
der to derive driving and speed patterns. Frequent driving
patterns can be computed using frequent pattern algorithms
such as [1, 15], or sequential pattern mining algorithms such
as [23]. Speed patterns are computed using an efficient deci-
sion tree [25] induction algorithm such as [12]. Speed factors
can be clustered using a number of algorithms [17]. And the
treatment of time, and other continuous attributes in speed
pattern induction can be handled through the methods pre-
sented in [24, 8].

Finally, our traffic database, especially when individual
vehicle tracking information is available, is similar to path
databases studied in the management of RFID data [13, 14].
But these models are based on the concept of bulky object
movements and predictable flow patterns, which for the case
of cars in a road network are not directly applicable.

10. CONCLUSIONS
We developed an adaptive fastest path algorithm, that

bases routing decision on driving and speed patterns mined
from historical data. This is a radical departure from tradi-
tional algorithms that have focused only on speed and Eu-
clidean distance considerations. The routes computed by
our algorithm are not only fast given a set of driving con-
ditions but also reflect observed driving preferences. This
is in sharp contrast to existing algorithms that may send a

804

driver through high crime areas of a city at night, or through
unsafe roads in order to save a few minutes of travel time.

A road network partitioning algorithm was introduced.
The algorithm uses the hierarchy of roads to segment the
network into areas that are enclosed by large roads. This
method yields very natural partitions, where large areas are
observed at regions with low road densities, and much finer
areas are observed at dense regions such as big cities. Ar-
eas are a central concept to route planning, as they pro-
vide the basis for hierarchical path finding, area level pre-
computation, and area sensitive support of driving patterns.

We showed that significant query processing gains can
be obtained, by following the principle that drivers tend to
travel through the largest roads available for the trip, unless
small roads along the way have a speed advantage over the
large ones. We also presented a method to identify such fast
roads, and efficiently incorporate them into route planning.
In our experimental study we demonstrated that incorpo-
rating fast small roads into the hierarchical path finding al-
gorithm can significantly improve the quality of routes.

Through an empirical study, on real road networks, us-
ing a realistic traffic information, we verify the large perfor-
mance gains of our algorithms vs. competing methods, while
showing that computed routes are close to optimal.

11. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In Proc. Int. Conf. on Data Engineering
(ICDE’95), 1995.

[2] A. Awasthi, Y. Lechevallier, M. Parent, and J.-M.
Proth. Rule based prediction of fastest paths on urban
networks. In Proc. Conf. on Intelligent Transportation
Systems, 2005.

[3] T. Brinkhoff. Network-based generator of moving
objects. Technical report, IAPG,
http://www.fh-oow.de/institute/iapg/personen/

brinkhoff/generator/.

[4] Y.-L. Chou, H. E. Romeijn, and R. L. Smith.
Approximating shortest paths in large-scale networks
with an application to intelligent transportation
sytems. INFORMS Journal on Computing,
10:163–179, 1998.

[5] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Highway hierarchies star. In Proc. 9th DIMACS
Implementation Challenge, 2006.

[6] C. Demetrescu, S. Emiliozzi, and G. F. Italiano.
Experimental analysis of dynamic all pairs shortest
path algorithms. In Proc. Symposium on Discrete
Algorithms (SODA’04), 2004.

[7] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[8] T. Elomaa and J. Rousu. General and efficient
multisplitting of numerical attributes. Machine
Learning, 36(3):201–244, 1999.

[9] R. W. Floyd. Algorithm 97: Shortest path.
Communications of the ACM, 5(6):345, 1962.

[10] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasquale.
Experimental analysis of dynamic algorithms for the
single-source shortest-path problem. ACM Journal of
Experimental Algorithms, 3:5, 1998.

[11] L. Fu, D. Sun, and L. R. Rilett. Heuristic shortest
path algorithms for transportation applications: state

of the art. Computers in Operations Research,
33(11):3324–3343, 2006.

[12] J. Gehrke, R. Ramakrishnan, and V. Ganti.
Rainforest: A framework for fast decision tree
construction of large datasets. In Proc. Int. Conf. on
Very Large Data Bases (VLDB’98), 1998.

[13] H. Gonzalez, J. Han, and X. Li. Flowcube:
Constructuing RFID flowcubes for multi-dimensional
analysis of commodity flows. In Proc. Int. Conf. on
Very Large Data Bases (VLDB’06), 2006.

[14] H. Gonzalez, J. Han, X. Li, and D. Klabjan.
Warehousing and analysis of massive RFID data sets.
In Proc. Int. Conf. on Data Engineering (ICDE’06),
2006.

[15] J. Han and J. Pei. Mining frequent patterns by
pattern-growth: Methodology and implications.
SIGKDD Explorations (Special Issue on Scalable Data
Mining Algorithms), 2:14–20, 2000.

[16] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on system science and
cybernetics, 4:100–107, 1968.

[17] J. A. Hartigan. Clustering Algorithms. John Wiley &
Sons, 1975.

[18] N. Jing, Y.-W. Huang, and E. A. Rundensteiner.
Hierarchical optimization of optimal path finding for
transportaton applications. In Proc. Int. Conf. on
Information and Knowledge Management (CIKM’96),
1996.

[19] S. Jung and S. Pramanik. HiTi graph model of
topographical road maps in navigation systems. In
Proc. Int. Conf. on Data Engineering (ICDE’96),
1996.

[20] E. Kanoulas, Y. Du, T. Xia, and D. ZXhang. Finding
fastest paths on a road network with speed patterns.
In Proc. Int. Conf. on Data Engineering (ICDE’06),
2006.

[21] V. King. Fully dynamic algorithms for maintaining
all-pairs shortest paths and transitive closure in
digraphs. In Proc. Symposium on Foundations of
Computer Science, 1999.

[22] S. Pallottino and M. G. Scutellà. Shortest path
algorithms in transportation models: classical and
innovative aspects. Technical Report TR-97-06, 14,
1997.

[23] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In Proc. Int. Conf. Data Engineering
(ICDE’01), 2001.

[24] J. Quinlan. Improved use of continuous attributes in
c4.5. Journal of Artificial Intelligence Research,
4:77–90, 1996.

[25] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[26] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In Proc. 17th
European Symposium on Algorithms (ESA), 2005.

805

