
iTrails: Pay-as-you-go Information Integration in
Dataspaces∗

Marcos Antonio Vaz Salles Jens-Peter Dittrich Shant Kirakos Karakashian
Olivier René Girard Lukas Blunschi

ETH Zurich
8092 Zurich, Switzerland

dbis.ethz.ch | iMeMex.org

ABSTRACT
Dataspace management has been recently identified as a new agen-
da for information management [17, 22] and information integra-
tion [23]. In sharp contrast to standard information integration ar-
chitectures, a dataspace management system is a data-coexistence
approach: it does not require any investments in semantic inte-
gration before querying services on the data are provided. Rather,
a dataspace can be gradually enhanced over time by defining re-
lationships among the data. Defining those integration semantics
gradually is termed pay-as-you-go information integration [17], as
time and effort (pay) are needed over time (go) to provide integra-
tion semantics. The benefits are better query results (gain). This
paper is the first to explore pay-as-you-go information integration
in dataspaces. We provide a technique for declarative pay-as-you-
go information integration named iTrails. The core idea of our ap-
proach is to declaratively add lightweight ‘hints’ (trails) to a search
engine thus allowing gradual enrichment of loosely integrated data
sources. Our experiments confirm that iTrails can be efficiently im-
plemented introducing only little overhead during query execution.
At the same time iTrails strongly improves the quality of query re-
sults. Furthermore, we present rewriting and pruning techniques
that allow us to scale iTrails to tens of thousands of trail definitions
with minimal growth in the rewritten query size.

1. INTRODUCTION
Over the last ten years information integration has received con-

siderable attention in research and industry. It plays an impor-
tant role in mediator architectures [23, 27, 34, 32], data warehous-
ing [7], enterprise information integration [24], and also P2P sys-
tems [39, 33]. There exist two opposite approaches to querying a
set of heterogeneous data sources: schema first and no schema.
Schema first: The schema first approach (SFA) requires a seman-
tically integrated view over a set of data sources. Queries formu-
lated over that view have clearly defined semantics and precise an-

∗This work was partially supported by the Swiss National Science
Foundation (SNF) under contract 200021-112115.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

swers. SFA is implemented by mediator architectures and data
warehouses. To create a semantically integrated view, the imple-
mentor of the SFA must create precise mappings between every
source’s schema and the SFA’s mediated schema. Therefore, al-
though data sources may be added in a stepwise fashion, integrating
all the desired data sources is a cumbersome and costly process. �

Due to the high integration cost of sources, in typical SFA de-
ployments, only a small set of the data sources is available for
querying when the system first becomes operational. This draw-
back causes users, developers, and administrators to choose no
schema solutions, e.g., desktop, enterprise, or Web search engines,
in many real-world scenarios.
No schema: The no schema approach (NSA) does not require a
semantically integrated view over the data sources. It considers
all data from all data sources right from the start and provides ba-
sic keyword and structure queries over all the information on those
sources. NSA is implemented by search engines (e.g. Google, Bea-
gle, XML/IR engines [10, 40]). The query model is either based on
a simple bag of words model, allowing the user to pose keyword
queries, or on an XML data model, allowing the user to pose struc-
tural search constraints, e.g., using a NEXI-like query language
(Narrowed eXtended XPath1 [41]). �

Unfortunately, NSAs do not perform any information integra-
tion. Furthermore, query semantics in NSAs are imprecise, as
schema information is either non-existent or only partially avail-
able. Thus, the quality of search answers produced depends heavily
on the quality of the ranking scheme employed. Although effective
ranking schemes are known for the Web (e.g. PageRank [6]), there
is still significant work to be done to devise good ranking methods
for a wider range of information integration scenarios.

In this paper, we explore a new point in the design space in-
between the two extremes represented by SFA and NSA:
Trails: The core idea of our approach is to start with an NSA but
declaratively add lightweight ‘hints’ (trails) to the NSA. The trails
add integration semantics to a search engine and, therefore, allow
us to gradually approach SFA in a “pay-as-you-go” fashion. We
present a declarative solution for performing such pay-as-you-go
information integration named iTrails. Our work is an important
step towards realizing the vision of a new kind of information inte-
gration architecture called dataspace management system [17]. �

1.1 Motivating Example
Figure 1 shows the dataspace scenario used throughout this paper

as a running example. The example consists of four data sources:
1NEXI is a simplified version of XPath that also allows users to
specify keyword searches. All of those queries could also be ex-
pressed using XPath 2.0 plus full-text extensions.

663

Network
File Server

Email
Server

LaptopDBMS

mike

INBOX

IMAP

Message 1

SIGMOD42.pdf

Message 2

SIGMOD44.pdf

jane

INBOX

mike

research

SMB

PIM

SIGMOD42.pdf

SIGMOD44.pdf

jane

QP

VLDB12.pdf

...

mike

papers

home

PIM

SIGMOD42.pdf

SIGMOD44.pdf

QP

VLDB12.pdf

projects

PIM

SIGMOD42.pdf

HR DB

Students

DBMS

Row 1

Row 2

Employees

Row 1

Row 2

DBLP

Authors

Row 1

Row 2

Papers

Row 1

Row 2

... ...

......

SIGMOD42.pdf

(a) (b)

(c) (d)

...

VLDB12.pdf

VLDB10.pdf

0

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

18
17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

40

41

42

43

44

45

46

47

48

49

50

51

35

36

PersonalIM
...

7

Figure 1: Running Example: a Dataspace consisting of four
heterogeneous data sources. The data provided by the data
sources is represented using our graph model proposed in [11].
The four components of the graph are disconnected.

(a) an email server containing emails and pdf attachments, (b) a
network file server containing files and folders, (c) a DBMS con-
taining relational data but also pdfs as blobs, and (d) a laptop con-
taining files and folders. We assume that all data is represented
using a graph model as proposed in [11]. For instance, in Fig-
ure 1(a), each structural element is represented by a separate node:
the email account of user ‘mike’ is represented by Node 1. This
node has a directed edge to Mike’s ‘INBOX’, which is represented
by Node 2. Node 2 has directed edges to all emails, which again are
represented by separate nodes. Also in Figures 1(b,c,d), files, fold-
ers, databases, tables, and rows are represented by separate nodes.
It is important to understand that we do not require that the data
be stored or materialized as a graph. We just represent the original
data logically using a graph model.

In the following, we present two example scenarios on how to
query the data presented in Figure 1.

EXAMPLE 1 (PDF YESTERDAY) ‘Retrieve all pdf documents that
were added or modified yesterday.’
State-of-the-art: Send a query to the search engine returning all
documents matching *.pdf. Depending on the data source the
constraint ‘yesterday’ has to be evaluated differently: first, for the
email server select all pdfs that are attachments to emails that have
an attribute received set to yesterday; second, for the DBMS, se-
lect the pdfs that are pointed to by rows that were added or changed
yesterday; third, for the network file server and the laptop, select
the pdfs that have an attribute lastmodified set to yesterday. In
any case, the user has to specify a complex query considering all of
the above schema knowledge.
Our goal: To provide a method that allows us to specify the same
query by simply typing the keywords pdf yesterday. To achieve
this goal, our system exploits ‘hints’, in this paper called trails, that
provide partial schema knowledge over the integrated information.
Consider the system has the following hints:
1. The date attribute is mapped to the modified attribute;
2. The date attribute is mapped to the received attribute;

3. The yesterday keyword is mapped to a query for values of the
date attribute equal to the date of yesterday;

4. The pdf keyword is mapped to a query for elements whose names
end in pdf.
As we will see, our method allows us to specify the hints above

gradually and to exploit them to rewrite the keyword search into
a structural query that is aware of the partial schema information
provided by the hints. �

EXAMPLE 2 (MULTIPLE HIERARCHIES) ‘Retrieve all information
about the current work on project PIM.’
State-of-the-art: User Mike has some knowledge of the hierar-
chy (schema) he has used to organize his data on his laptop. Thus,
Mike would send the following path query to the search engine:
//projects/PIM. However, that query would retrieve only part of
the information about project PIM. In order to retrieve all the in-
formation, Mike must manually send other queries to the search
engine that are aware of the hierarchies (schemas) used to store
the data in all the sources. On the network file server, that would
amount to sending another query for //mike/research/PIM; on
the email server, //mike/PersonalIM. Note that not all folders
containing the keyword PIM are relevant. For example, the path
//papers/PIM in Mike’s laptop might refer to already published
(not current) work in the PIM project. In summary, Mike must be
aware of the schemas (hierarchies) used to store the information in
all the sources and must perform the integration manually.
Our goal: To provide a method for specifying the same query by
simply typing the original path expression //projects/PIM. To
achieve this goal, we could gradually provide the following hints:
1. Queries for the path //projects/PIM should also consider the

path //mike/research/PIM;
2. Queries for the path //projects/PIM should also consider the

path //mike/PersonalIM.
As we will see, our method allows us to exploit these hints to
rewrite the original path expression to also include the additional
schema knowledge encoded in the other two path expressions. �

1.2 Contributions
In summary, this paper makes the following contributions:

1. We provide a powerful and generic technique named iTrails for
pay-as-you-go information integration in dataspaces. We present
how to gradually model semantic relationships in a dataspace
through trails. Trails include traditional semantic attribute map-
pings as well as traditional keyword expansions as special cases.
However, at no point a complete global schema for the dataspace
needs to be specified.

2. We provide query processing strategies that exploit trails. These
strategies comprise three important phases: matching, transfor-
mation, and merging. We explore the complexity of our query
rewrite techniques and refine them by presenting several possi-
ble trail-rewrite pruning strategies. Some of these pruning strate-
gies exploit the fact that trails are uncertain in order to tame the
complexity of the rewrite process while at the same time main-
taining acceptable quality for the rewrite. Furthermore, as trail
expanded query plans may become large, we discuss a material-
ization strategy that exploits the knowledge encoded in the trails
to accelerate query response time.

3. We perform an experimental evaluation of iTrails considering
dataspaces containing highly heterogeneous data sources. All
experiments are performed on top of our iMeMex Dataspace Man-
agement System [4]. Our experiments confirm that iTrails can
be efficiently implemented introducing only little overhead dur-
ing query execution but at the same time strongly improving

664

http://www.imemex.org

the quality of query results. Furthermore, using synthetic data
we show that our rewriting and pruning techniques allow us to
scale iTrails to tens of thousands of trail definitions with minimal
growth in the rewritten query size.

This paper is structured as follows. Section 2 introduces the data
and query model as well as the query algebra used throughout this
paper. Section 3 presents the iTrails technique and discusses how to
define trails. Section 4 presents iTrails query processing algorithms
and a complexity analysis. Section 5 presents trail-rewrite pruning
techniques. Section 6 presents the experimental evaluation of our
approach. Section 7 reviews related work and its relationship to
iTrails. Finally, Section 8 concludes this paper.

2. DATA AND QUERY MODEL
2.1 Data Model

The data model used in this paper is a simplified version of the
generic iMeMex Data Model (iDM) [11]. As illustrated in the in-
troduction and in Figure 1, iDM represents every structural com-
ponent of the input data as a node. Note that, using iDM, all tech-
niques presented in this paper can easily be adapted to relational
and XML data.

DEFINITION 1 (DATA MODEL) We assume that all data is repre-
sented by a logical graph G. We define G := (RV,E) as a set of
nodes RV := {V1, ..,Vn} where the nodes V1, ..,Vn are termed re-
source views. E is a sequence of ordered pairs (Vi,V j) of resource
views representing directed edges from Vi to V j. A resource view Vi
has three components: name, tuple, and content.

Component of Vi Definition
Vi.name Name (string) of the resource view
Vi.tuple Set of attribute value pairs(

〈att0,value0〉,〈att1,value1〉, . . .
)
.

Vi.content Finite byte sequence of content (e.g. text)

Table 1: Components of a resource view Vi
If a resource view V j is reachable from Vi by traversing the edges
in E, we denote this as Vi{V j . �

As shown in [11], we assume that the graph G may represent a
variety of different data including XML, Active XML [31], rela-
tional data, file&folder graphs, and structural elements inside files
(e.g., LATEX, XML). How this graph of data is generated or materi-
alized by a system is orthogonal to the work presented here. Please
see [11] for details.

2.2 Query Model
DEFINITION 2 (QUERY EXPRESSION) A query expression Q se-
lects a subset of nodes R := Q(G)⊆ G.RV . �

DEFINITION 3 (COMPONENT PROJECTION) A component projec-
tion C ∈ {.name,.tuple.<atti>,.content} obtains a projection
on the set of resource views selected by a query expression Q, i.e.,
a set of components R′ := {Vi.C |Vi ∈ Q(G)}. �

For instance, in Figure 1(c), if a query expression selects R =
{33}, then R.name returns the string “Row 1”.

Our query expressions are similar in spirit to NEXI [41]. Ta-
bles 2 and 3 show the syntax and semantics of the query expres-
sions used throughout this paper.

2.3 Query Algebra
Query expressions are translated into a logical algebra with the

operators briefly described in Table 4. As the query language we
use is close in spirit to NEXI [41] (and therefore, XPath), our al-
gebra resembles a path expression algebra [5]. In contrast to [5],

QUERY_EXPRESSION := (PATH | KT_PREDICATE) (UNION QUERY_EXPRESSION)*
PATH := (LOCATION_STEP)+
LOCATION_STEP := LS_SEP NAME_PREDICATE (’[’ KT_PREDICATE ’]’)?
LS_SEP := ’//’ | ’/’
NAME_PREDICATE := ’*’ | (’*’)? VALUE (’*’)?
KT_PREDICATE := (KEYWORD | TUPLE) (LOGOP KT_PREDICATE)*
KEYWORD := ’"’ VALUE (WHITESPACE VALUE)* ’"’

| VALUE (WHITESPACE KEYWORD)*
TUPLE := ATTRIBUTE_IDENTIFIER OPERATOR VALUE
OPERATOR := ’=’ | ’<’ | ’>’
LOGOP := ’AND’ | ’OR’

Table 2: Syntax of query expressions (Core grammar)

Query Expression Semantics
//* {V |V ∈ G.RV}
a {V |V ∈ G.RV ∧ ‘a’⊆V.content}
a b {V |V ∈ G.RV ∧ ‘a’⊆V.content ∧ ‘b’⊆V.content}
//A {V |V ∈ G.RV ∧V.name = ‘A’}
//A/B {V |V ∈ G.RV ∧V.name = ‘B’

∧(∃(W,V) ∈ G.E : W.name = ‘A’}
//A//B {V |V ∈ G.RV ∧V.name = ‘B’

∧(∃(W,Z1),(Z1, ...), ..,(..,Zn),(Zn,V) ∈ G.E : W.name = ‘A’}
b=42 {V |V ∈ G.RV ∧∃V.tuple.b : V.tuple.b = 42}
b=42 a := b=42 ∩ a
//A/B[b=42] := //A/B ∩ b=42

Table 3: Semantics of query expressions

Operator Name Semantics
G All resource views

{
V |V ∈ G.RV

}
σP(I) Selection

{
V |V ∈ I ∧ P(V)

}
µ(I) Shallow unnest

{
W | (V,W) ∈ G.E ∧V ∈ I

}
ω(I) Deep unnest

{
W |V {W ∧ V ∈ I

}
I1 ∩ I2 Intersect

{
V |V ∈ I1 ∧ V ∈ I2

}
I1 ∪ I2 Union

{
V |V ∈ I1 ∨ V ∈ I2

}
Table 4: Logical algebra for query expressions

our algebra operates not only on XML documents but on a gen-
eral graph model that represents a heterogeneous and distributed
dataspace [11]. We will use the algebraic representation to discuss
the impact of trails on query processing. We represent every query
by a canonical form.

DEFINITION 4 (CANONICAL FORM) The canonical form Γ(Q) of
a query expression Q is obtained by decomposing Q into loca-
tion step separators (LS_SEP) and predicates (P) according to the
grammar in Table 2. We construct Γ(Q) by the following recursion:

tree :=

G if tree is empty,
ω(tree) if LS_SEP = // ∧ not first location step,

µ(tree) if LS_SEP = / ∧ not first location step,

tree ∩ σP(G) otherwise.

Finally, Γ(Q) := tree is returned. �

For instance, the canonical form
of //home/projects//*["Mike"]
is displayed on the right. Each
location step (//home, /projects,
and //*["Mike"], resp.) is con-
nected to the next by shallow
or deep unnests. The predicates
of each location step are repre-
sented by separate subtrees.

3. iTRAILS
In this section, we present our iTrails technique. We first present a

formal definition of trails. Then we present several use cases (Sec-
tion 3.2). After that, we discuss how to obtain trails (Section 3.3).
Finally, we show how to extend trails to probabilistic trails (Sec-
tion 3.4) and scored trails (Section 3.5).

665

3.1 Basic Form of a Trail
In the following, we formally define trails.

DEFINITION 5 (TRAIL) A unidirectional trail is denoted as

ψi := QL[.CL]−→ QR[.CR].

This means that the query (resp. component projection) on the left
QL[.CL] induces the query (resp. component projection) on the right
QR[.CR], i.e., whenever we query for QL[.CL] we should also query
for QR[.CR]. A bidirectional trail is denoted as

ψi := QL[.CL]←→ QR[.CR].

The latter also means that the query on the right QR[.CR] induces
the query on the left QL[.CL]. The component projections CL and
CR should either appear on both sides of the trail or on none. �

Before we formally define the impact of a trail on a query Q (see
Section 4), we present some trail use cases.

3.2 Trail Use Cases
USE CASE 1 (FUNCTIONAL EQUIVALENCE) Assume the follow-
ing trail definitions:

ψ1 := //*.tuple.date−→//*.tuple.modified

ψ2 := //*.tuple.date−→//*.tuple.received

ψ3 := yesterday−→date=yesterday()

ψ4 := pdf−→//*.pdf

Now, whenever there is a keyword search for pdf yesterday, that
keyword search should include the results of the original query pdf
yesterday but also the results of the structural query:

//*.pdf[modified=yesterday() OR received=yesterday()].

So instead of making a complex query simpler as done in query
relaxation [1], we do the opposite: we extend the original query to
a more complex one. This solves Example 1. Note that in contrast
to [28] we do not depend on heuristics to detect meaningfully re-
lated substructures. Instead, we explore the hints, i.e., trails, that
were defined by the user or administrator in advance. �

USE CASE 2 (TYPE RESTRICTION) Assume a trail definition
ψ5 := email−→class=email.

The query expression class=email selects all resource views of
type ‘email’ in the dataspace. Then, a simple keyword query for
email should be rewritten to union its results with all emails con-
tained in the dataspace no matter whether they contain the key-
word ‘email’ or not. So, in contrast to P2P integration mappings
(e.g. [39]), which define equivalences only between data sources,
trails define equivalences between any two sets of elements in the
dataspace. Thus, our method can model equivalences both between
data sources and between arbitrary subsets of the dataspace. �

USE CASE 3 (SEMANTIC SEARCH) Semantic search is just one
special case of iTrails. Semantic search includes query expansions
using dictionaries, e.g., for language agnostic search [2], using the-
sauri like wordnet [44], or synonyms [35]. The benefit of our tech-
nique is that it is not restricted to a specific use case. For example, a
trail car−→auto could be automatically generated from [44]. The
same could be done for the other types of dictionaries mentioned
above. In contrast to the previous search-oriented approaches, how-
ever, iTrails also provides information integration semantics. �

USE CASE 4 (HIDDEN-WEB DATABASES) If data sources present
in the dataspace are mediated, e.g. hidden-web databases, then trails
may be used to integrate these sources. Consider the trail:

ψ6 := train home−→
//trainCompany//*[origin="Office str."

AND dest="Home str."].
The query on the right side of the trail definition returns a resource
view whose content is the itinerary given by the trainCompany web
source. Thus, this trail transforms a simple keyword query into a
query to the mediated data source. �

3.3 Where do Trails Come From?
We argue that an initial set of trails should be shipped with the

initial configuration of a system. Then, a user (or a company) may
extend the trail set and taylor it to her specific needs in a pay-as-
you-go fashion.

We see four principal ways of obtaining a set of trail defini-
tions: (1) Define trails using a drag&drop frontend, (2) Create trails
based on user-feedback in the spirit of relevance feedback in search
engines [38], (3) Mine trails (semi-) automatically from content,
(4) Obtain trail definitions from collections offered by third parties
or on shared web platforms. As it is easy to envision how options
(1) and (2) could be achieved, we discuss some examples of options
(3) and (4). A first example of option (3) is to exploit available
ontologies and thesauri like wordnet [44] to extract equivalences
among keyword queries (see Use Case 3). A second example is
to leverage information extraction techniques [20] to create trails
between keyword queries and their schema-aware counterparts. In
addition, trails that establish correspondences among attributes can
be obtained by leveraging methods from automatic schema match-
ing [36]. As an example of (4), sites in the style of bookmark-
sharing sites like del.icio.us could be used to share trails. In
fact, a bookmark can be regarded as a special case of a trail, in
which a set of keywords induce a specific resource in the dataspace.
Sites for trail sharing could include specialized categories of trails,
such as trails related to personal information sources (e.g., email,
blogs, etc), trails on web sources (e.g., translating location names
to maps of these locations), or even trails about a given scientific
domain (e.g., gene data). All of these aspects are beyond the scope
of this paper and are interesting avenues for future work.

However, the trail creation process leads to two additional re-
search challenges that have to be solved to provide a meaningful
and scalable trail rewrite technique.

1. Trail Quality. Depending on how trails are obtained, we argue
that it will make sense to collect quality information for each
trail: we have to model whether a trail definition is ‘correct’. In
general, a hand-crafted trail will have much higher quality than
a trail that was automatically mined by an algorithm.

2. Trail Scoring. Some trails may be more important than others
and therefore should have a higher impact on the scores of query
results: we have to model the ‘relevance’ of a trail. For instance,
trail ψ5 from Use Case 2 should boost the scores of query results
obtained by class=email whereas a mined trail car−→auto
should not favor results obtained from auto.

In order to support the latter challenges we extend our notion of
a trail by the definitions in the following subsections.

3.4 Probabilistic Trails
To model trail quality we relax Definition 5 by assigning a prob-

ability value p to each trail definition.

DEFINITION 6 (PROBABILISTIC TRAIL) A probabilisitc trail as-
signs a probability value 0≤ p≤ 1 to a trail definition:

ψi := QL[.CL]−→
p

QR[.CR].
�

666

The intuition behind this definition is that the probability p re-
flects the likelihood that results obtained by trail ψi are correct.
Obtaining Probabilities. Note that the problem of obtaining trail
probabilities is analog to the problem of obtaining data probabili-
ties [26] in probabilistic databases [3]. Therefore, we believe that
techniques from this domain could be adapted to obtain trail prob-
abilities. Furthermore, methods from automatic schema match-
ing [36] could also be leveraged for that purpose. In Section 5 we
will show how probabilistic trail definitions help us to accelerate
the trail rewrite process.

3.5 Scored Trails
A further extension is to assign a scoring factor for each trail:

DEFINITION 7 (SCORED TRAIL) A scored trail assigns a scoring
factor s f ≥ 1 to a trail definition:

ψi := QL[.CL]−→
s f

QR[.CR]. �

The intuition behind this definition is that the scoring factor s f
reflects the relevance of the trail. The semantics of scoring factors
are that the additional query results obtained by applying a trail
should be scored s f times higher than the results obtained with-
out applying this trail. Thus, scored trails will change the original
scores of results as obtained by the underlying data scoring model.
Obtaining Scoring Factors. If no scoring factor is available, s f =
1 is assumed. Scoring factors are obtained in the same way as trail
probabilities (see Section 3.4).

4. iTRAILS QUERY PROCESSING
This section discusses how to process queries in the presence

of trails. After that, Section 5 extends these techniques to allow
pruning of trail applications.

4.1 Overview
iTrails query processing consists of three major phases: match-

ing, transformation, and merging.
1. Matching. Matching refers to detecting whether a trail should

be applied to a given query. The matching of a unidirectional
trail is performed on the left side of the trail. For bidirectional
trails, both sides act as a matching side. In the latter case, we
consider all three iTrails processing steps successively for each
side of the trail. In the following, we focus on unidirectional
trails. We denote the left and right sides of a trail ψi by ψL

i and
ψR

i , respectively. The corresponding query and component pro-
jections are denoted by ψ

L.Q
i , ψL.C

i , and ψ
R.Q
i , ψR.C

i , respectively.
If a query Q matches a trail ψi we denote the match as QM

ψi
.

2. Transformation. If the left side of a trail ψi was matched by a
query Q, the right side of that trail will be used to compute the
transformation of Q. It is denoted QT

ψi
.

3. Merging. Merging refers to composing the transformation QT
ψi

with the original query Q into a new query. The new query Q∗{ψi}
extends the semantics of the original query based on the infor-
mation provided by the trail definition.

4.2 Matching
We begin by defining the conditions for matching trails with and

without component projections to a query. For the remainder of
this paper, query containment is understood as discussed in [30].

DEFINITION 8 (TRAIL MATCHING) A trail ψi matches a query Q
whenever its left side query, ψ

L.Q
i , is contained in a query subtree

QS of the canonical form Γ(Q) (see Section 2.3). We denote this

Figure 2: Trail Processing: (a) canonical form of Q1 including
matched subtrees QM

1 ψ7
, QM

1 ψ8
, and QM

1 ψ9
, (b) left side of ψ8, (c)

transformation QT
1 ψ8

, (d) final merged query Q∗1 {ψ8}.

as ψ
L.Q
i ⊆ QS. Furthermore, QS must be maximal, i.e., there must

be no subtree QŜ of Q, such that ψ
L.Q
i ⊆ QŜ and QS is a subtree

of QŜ. If ψi does not contain a component projection, we require
QS not to contain ψ

R.Q
i , i.e., ψ

R.Q
i * QS. We then take QM

ψi
:= QS.

On the other hand, i.e., if ψi contains a component projection, we
require that the component projection ψL.C

i be referenced in the
query in a selection by an operator immediately after QS in Γ(Q).
The matching subtree QM

ψi
is then obtained by extending QS by the

portion of the query referencing the component projection ψL.C
i . �

EXAMPLE 3 Consider query Q1 := //home/projects//*["Mike"].
Its canonical form is shown in Figure 2(a). Suppose we have a set
of four trails, Ψ = {ψ7,ψ8,ψ9,ψ10} with

ψ7 := Mike−→Carey

ψ8 := //home/*.name−→//calendar//*.tuple.category

ψ9 := //home/projects/OLAP//*["Mike"]−→
//imap//*["OLAP" "Mike"]

ψ10 := //home//*−→//smb//*.

Here, trails ψ7 and ψ8 match Q1 as ψ
L.Q
7 and ψ

L.Q
8 are contained

in query subtrees of Γ(Q1). Furthermore, for ψ7, the query subtree
is maximal and does not contain ψ

R.Q
7 ; for ψ8, the query operator

immediately after one maximal subtree is a selection on the compo-
nent projection name, i.e., name="projects" in the example. We
display the matching query subtrees QM

1 ψ7
and QM

1 ψ8
in Figure 2(a).

Note that the left side of a trail does not have to occur literally in
Γ(Q), but rather be contained in some query subtree of Γ(Q). This
is illustrated by ψ9, which matches Q1 as ψ

L.Q
9 ⊆ Q1 = QM

1 ψ9
. On

the other hand, trail ψ10 does not match Q1 as ψ
L.Q
10 is not contained

in any subtree QS of Γ(Q1) such that QS does not contain ψ
R.Q
10 . �

In order to test whether a trail matches, we have to test path query
containment. A sound containment test algorithm based on tree

667

pattern homomorphisms is presented in [30] and we followed their
framework in our implementation. The algorithm is polynomial in
the size of the query trees being tested.

4.3 Transformation
The transformation of a trail is obtained by taking the right side

of the trail and rewriting it based on the matched part of the query.

DEFINITION 9 (TRAIL TRANSFORMATION) Given a query expres-
sion Q and a trail ψi without component projections, we compute
the transformation QT

ψi
by setting QT

ψi
:= ψ

R.Q
i . For a trail ψ j with

component projections, we take QT
ψ j

:= ψ
R.Q
j ∩σP(G). The predi-

cate P is obtained by taking the predicate at the last location step
of QM

ψ j
and replacing all occurrences of ψL.C

j for ψR.C
j . �

EXAMPLE 4 To illustrate Definition 9, consider again the trail ψ8
and query Q1 of Example 3. We know that ψ8 matches Q1 and
therefore, QM

1 ψ8
has as the top-most selection a selection σ on name.

Figures 2(a) and (b) show QM
1 ψ8

and query ψ
L.Q
8 on the left side of

trail ψ8, respectively. The transformation of ψ8 is performed by
taking ψ

R.Q
8 and the predicate of the last selection of QM

1 ψ8
, i.e.,

name="projects". Both are combined to form a new selection
category="projects". Figure 2(c) shows the resulting transfor-
mation QT

1 ψ8
= //calendar//*[category="projects"]. �

4.4 Merging
Merging a trail is performed by adding the transformation to the

matched subtree of the original query. We formalize this below.

DEFINITION 10 (TRAIL MERGING) Given a query Q and a trail
ψi, the merging Q∗{ψi} is given by substituting QM

ψi
for QM

ψi
∪ QT

ψi

in Γ(Q). �

EXAMPLE 5 Recall that we show the match of trail ψ8 to query Q1,
denoted QM

1 ψ8
, in Figure 2(a). Figure 2(c) shows the transformation

QT
1 ψ8

. If we now substitute QM
1 ψ8

for QM
1 ψ8
∪ QT

1 ψ8
in Γ(Q1), we

get the merged query Q∗1 {ψ8} as displayed in Figure 2(d). The new
query corresponds to:

Q∗1 {ψ8} = //home/projects//*["Mike"] ∪
//calendar//*[category="projects"]//*["Mike"].

Note that the merge was performend on a subtree of the original
query Q1. Therefore, the content filter on Mike now applies to the
transformed right side of trail ψ8. �

4.5 Multiple Trails
When multiple trails match a given query, we must consider is-

sues such as the possibility of reapplication of trails, order of appli-
cation, and also termination in the event of reapplications. While
reapplication of trails may be interesting to detect patterns intro-
duced by other trails, it is easy to see that a trail should not be re-
matched to nodes in a logical plan generated by itself. For instance,
as Q∗{ψi} always contains Q, then, if ψi originally matched Q, this
means that ψi must match Q∗{ψi} (appropriately rewritten to canon-
ical form). If we then merge Q∗{ψi} to obtain Q∗{ψi,ψi}, once again
ψi will match Q∗{ψi,ψi} and so on indefinitely. That also happens for
different trails with mutually recursive patterns.
Multiple Match Colouring Algorithm (MMCA). To solve this
problem, we keep the history of all trails matched or introduced
for any query node. Algorithm 1 shows the steps needed to rewrite
a query Q given a set of trails Ψ. We apply every trail in Ψ to
Q iteratively and color the query tree nodes in Q according to the
trails that already touched those nodes.

Figure 3: Algorithm 1 applied to Example 1. (a) original query,
(b) rewritten query after one level, (c) after two levels.

EXAMPLE 6 (MULTIPLE TRAILS REWRITE) Recall the query
pdf yesterday and the trails introduced in Use Case 1 of Sec-
tion 3.2. Figure 3(a) shows the canonical form of that query. In the
first level, Algorithm 1 matches and merges both trails ψ3 and ψ4
with the query. The result is shown in Figure 3(b). Now, all nodes
in the merged subtrees have been colored according to the trails ap-
plied. During the second level, the algorithm successively matches
trails ψ1 and ψ2 because the query now contains the merging of
trail ψ3. Figure 3(c) shows the final query tree after two levels.
As nodes are colored with the history of trails applied to them, it
is no longer possible to find a query subtree in which a trail from
Use Case 1 is matched and that is not already colored by that trail.
Thus, the algorithm terminates. �

4.6 Trail Rewrite Analysis
THEOREM 1 (WORST CASE OF MMCA) Let L be the total num-
ber of leaves in the query Q. Let M be the maximum number of
leaves in the query plans introduced by a trail ψi. Let N be the
total number of trails. Let d ∈ {1, . . . ,N} be the number of levels.
The maximum number of trail applications performed by MMCA
and the maximum number of leaves in the merged query tree are
both bounded by

O
(

L ·Md
)
.

Proof. Recall that if a trail ψi is matched and merged to a query
Q, it will color leaf nodes in Q (the matched part QM

ψi
as well as

the entire transformation QT
ψi

). Thus, any subtree containing only
these leaf nodes may not be matched again by ψi. In the worst case,
in each level only one of the N trails matches, say ψi, for each of the
L leaves of Q. Each trail match introduces M new leaves for each
of those leaves. This leads to a total of LM new nodes plus L old
nodes. In summary, we get L(M+1) leaves and L trail applications
for the first level. At the second level, ψi may not match any of the
leaves anymore as they are all coloured by the color i. However,
all leaves may be matched against N−1 colors. In the worst case,
again, only one of the trails matches for each of the existing leaf
nodes. Thus, in the d-th level, this will lead to L(M + 1)d−1 trail
applications and a total of L(M +1)d leaves. �

COROLLARY 1 (MMCA TERMINATION) MMCA is guaranteed to
terminate in O(L ·Md) trail applications. �

668

THEOREM 2 (AVERAGE CASE OF MMCA) To model the average
case we assume that at each level half of all remaining trails are
matched against all nodes. Then, the maximum number of leaves is
bounded by

O
(

L · (NM)log(N)
)
.

Proof. At the first level, N/2 trails will match L nodes. This
leads to LN/2 trail applications and L(N

2 M + 1) leaves. At the
second level, half of the remaining N/2 nodes will match. Thus
we get L(N

2 M + 1) N
4 trail applications and L(N

2 M + 1)(N
4 M + 1)

leaves. Note that the number of levels in this scenario is bounded
by log2(N). Consequently, the number of leaves at the last level
d = blog2(N)c is developed as:

L
blog2(N)c

∏
i=1

(NM
2i +1

)
≤ L

blog2(N)c

∏
i=1

(
2

NM
2i

)
≤ L · (NM)log2(N).

�

This means that the total number of leaves in the rewritten query
is exponential in the logarithm of the number of trails: log2(N).
As this rewrite process may still lead to large query plans, we have
developed a set of pruning techniques to better control the number
of trail applications (see Section 5).

4.7 Trail Indexing Techniques
This section briefly presents indexing techniques for iTrails.

Generalized Inverted List Indexing. To provide for efficient query
processing of trail enhanced query plans, one could use traditional
rule and cost-based optimization techniques. However, it is impor-
tant to observe that trails encode logical algebraic expressions that
co-occur in the enhanced queries. Therefore, it may be beneficial
to precompute these trail expressions in order to speed-up query
processing. Note that the decision of which trails to materialize
is akin to the materialized view selection problem (see e.g. [25]).
However, in contrast to traditional materialized views which repli-
cate the data values, in many cases it suffices to materialize the ob-
ject identifiers (OIDs) of the resource views. This allows us to use a
very space-efficient materialization that is similar to the document-
ID list of inverted lists [45]. For this reason, our indexing technique
can be regarded as a generalization of inverted lists that allows the
materialization of any query and not only keywords. An important
aspect of our approach is that we do not materialize the queries but
only the trails.

Materialize Mat := ψ
L.Q
i . Our first materialization option is to

materialize the results of the query on the left side of a trail ψi as
an inverted OID list. When QM

ψi
= ψ

L.Q
i , the materialization of ψ

L.Q
i

may be beneficial. However, we may not always benefit from this
materialization in general.

Materialize Mat := ψ
R.Q
i . We may choose to materialize the query

expression on the right side of a trail definition. That is beneficial
as ψ

R.Q
i is a subtree of QT

ψi
.

5. PRUNING TRAIL REWRITES
In this section we show that it is possible to control the rewrite

process of trail applications by introducing a set of pruning tech-
niques. While we certainly do not exhaust all possible pruning
techniques and trail ranking schemes in this section, the schemes
proposed here demonstrate that trail rewrite complexity can be ef-
fectively controlled to make MMCA scalable.

5.1 Trail Ranking
Several of the pruning strategies presented in the following re-

quire the trails to be ranked. For that we define a trail weighting
function as follows:

Algorithm 1: Multiple Match Colouring Algorithm (MMCA)
Input: Set of Trails Ψ = {ψ1,ψ2, . . . ,ψn}
Canonical form of query Γ(Q)
Maximum number of levels maxL
Output: Rewritten query tree QR
Set mergeSet← <>1
Query QR← Γ(Q)2
Query previousQR← nil3
currentL← 14
// (1) Loop until maximum allowed level is reached:5
while

(
currentL≤ maxL ∧ QR , previousQR

)
do6

// (2) Perform matching on snapshot of input query QR:7
for ψi ∈Ψ do8

if
(
QM

R ψi
exists ∧ root node of QM

R ψi
is not colored by ψi

)
then9

Calculate QT
R ψi10

Color root node of QT
R ψi

with color i of ψi11
Node annotatedNode ← root node of QM

R ψi12
Entry entry ← mergeSet.getEntry(annotatedNode)13
entry.trans f ormationList.append(QT

R ψi
)14

end15
end16
// (3) Create new query based on {node, transformationList} entries:17
previousQR← QR18
for e ∈ mergeSet do19

ColorSet CS ← (all colors in e.annotatedNode) ∪20
(all colors in root nodes of e.trans f ormationList)21

Node mergedNode ←22
e.annotatedNode ∪ QT

R ψi1
∪ . . . ∪ QT

R ψik
,23

for all colors {i1, . . . , ik} in e.trans f ormationList24
Color all nodes in mergedNode with all colors in color set CS25
Calculate Q∗R {ψi1 ,...,ψik }

by replacing e.annotatedNode by26
mergedNode in QR27

QR ← Q∗R {ψi1 ,...,ψik }28
end29
// (4) Increase counter for next level:30
currentL← currentL+131
mergeSet← <>32

end33
return QR34

DEFINITION 11 (TRAIL WEIGHTING FUNCTION) For every match
QM

ψi
of a trail ψi the function w(QM

ψi
, ψi) computes a weighting for

the transformation QT
ψi

. �

We will use two different ranking strategies: the first takes into
account the probability values assigned to the trails; the second also
considers scoring factors (see Sections 3.4 and 3.5).

5.1.1 Ranking Trails by Probabilities
The first strategy to rank trails is to consider the probabilities

assigned to the trails (see Section 3.4).

DEFINITION 12 (PROBABILISTIC TRAIL WEIGHTING FUNCTION)
Let p be the probability assigned to a trail ψi. Then, wprob

(
QM

ψi
,

ψi
)
:= p defines a probabilistic weighting function on QT

ψi
. �

Here, the probability p provides a static (query-independent)
ranking of the trail set – analogue to PageRank [6], which provides
a query independent ranking of Web sites. An interesting exten-
sion would be to rank the trail set dynamically (query-dependent),
e.g., by considering how well a query is matched by a given trail.
Dynamic trail ranking is an interesting avenue for future work.

5.1.2 Ranking Trails by Scoring Factors
The second strategy to rank trails is to also consider the scoring

factors assigned to the trails (see Section 3.5).

669

DEFINITION 13 (SCORED TRAIL WEIGHTING FUNCTION) Let s f
be the scoring factor assigned to a trail ψi. Then, wscor

(
QM

ψi
, ψi

)
:=

wprob
(
QM

ψi
, ψi

)
× s f defines a scored weighting function on QT

ψi
. �

Ranking Query Results. The scoring factor determines how rele-
vant the scores of results obtained by QT

ψi
are. Therefore, whenever

a scoring factor is available, the trail transformation in Algorithm 1
(Line 11) is extended to multiply the scores of all results obtained
from QT

ψi
by s f . In our implementation we achieve this by introduc-

ing an additional scoring operator on top of QT
ψi

. We also exploit
this for Top-K processing [16] (see experiments in Section 6.2).

5.2 Pruning Strategies
Based on the trail ranking defined above we use the following

pruning strategies:
1. Prune by Level, i.e., punish recursive rewrites. The deeper the

recursion, the further away the rewrite will be from the original
query. We prune by choosing a value maxL < N in Algorithm 1.

2. Prune by Top-K Ranked Matched Trails. Trails with the high-
est scores will provide the greatest benefit. Therefore, in this
strategy we modify Algorithm 1 to only apply the K < N top-
ranked trails that matched in the current level.

3. Other Approaches. One approach is to use a timeout (similar to
plan enumeration in cost based optimization), i.e., trail rewrite
could be stopped after a given time span. Another interesting
approach would be to progressively compute results, i.e., deliver
a first quick result to the user but continue the rewrite process in
the background. Then, whenever a better result based on more
trail rewrites is found, results could be updated progressively.

5.3 Rewrite Quality
Pruning may diminish the quality of the rewritten query with

respect to the no pruning case. Ideally, one would measure the
quality of the queries obtained using standard metrics such as pre-
cision and recall. Obtaining actual precision and recall values im-
plies executing the queries against a data collection with relevance
judgements. However, for a pay-as-you-go information integration
scenario such dataset does not exist yet. Furthermore, we would
like to have a means to estimate the plan quality during the rewrite
process without having to execute the plan beforehand. Our so-
lution to this challenge is to provide estimates on the plan quality
based on the trail probabilities.

The intuition behind our model lies in two assumptions: 1. the
original query Q returns only relevant results (precision=1), 2. each
trail rewrite adds more relevant results to the query (i.e., increases
recall). If the trail probability is smaller than 1, this may come at
the cost of precision.

We first discuss how to estimate the number of relevant results
for an intermediary rewrite QR. We assume that every leaf l in the
query plan of QR contributes a constant num-
ber of results c to the final query result. Out
of these c results, a fraction πl is relevant,
i.e. πl · c results. In the original query, we set
πl = 1,∀l (Assumption 1). Suppose trail ψi,
with probability pi, matches QR. The match
QM

R ψi
includes leaves l1, . . . , lm of QR. This is visualized in the

figure on the right. The average proportion of expected relevant
results produced by these leaves is π̄l = ∑

m
j=1 πl j /m. We compute

the proportion πt of relevant results produced by every leaf node t
of QT

R ψi
by πt = π̄l · pi. So, if pi=1, we expect QT

R ψi
to contribute

the same proportion of relevant results to the query as QM
R ψi

. If pi <
1, then that proportion is affected by our certainty about ψi. Thus,
every leaf in QT

R ψi
contributes πt · c relevant results to QR.

The expected precision for QR is computed as follows. Consider
that QR has L leaves. Then, the expected precision EPrec(QR) is:

EPrec(QR) :=
∑

L
i=1 πi · c
L · c

=
∑

L
i=1 πi

L
.

This means we sum the expected number of relevant results pro-
duced by each leaf and divide by the total expected number of re-
sults produced by all leaves.

The expected recall is more difficult to compute, as we do not
know the total number of relevant results that exist in the dataset for
QR. However, we may estimate the expected number of relevant
results ERel returned by QR, which is directly proportional to the
recall of QR. Thus, ERel is given by:

ERel(QR) :=
L

∑
i=1

πic.

This means we sum the expected number of relevant results pro-
duced by each leaf.

6. EXPERIMENTS
In this section we evaluate our approach and show that the iTrails

method strongly enhances the completeness and quality of query
results. Furthermore, our experiments demonstrate that iTrails can
be efficiently implemented and scales for a large number of trails.

We compare three principal approaches (as mentioned in the In-
troduction):
1. Semi-structured Search Baseline (No-schema, NSA). A search

engine for semi-structured graph data providing keyword and
structural search using NEXI-like expressions. We use queries
that have no knowledge on integration semantics of the data.

2. Perfect query (Schema first, SFA). Same engine as in the base-
line but we use more complex queries that have perfect knowl-
edge of the data schema and integration semantics.

3. iTrails (Pay-as-you-go). We use the same simple queries as in
the baseline but rewrite them with our iTrails technique.
We evaluate two major scenarios for iTrails.

Scenario 1: Few high-quality trails. Trails have high quality and
a small to medium amount of trails are defined with human assis-
tance. In this scenario, recursive trail rewrites may still exhibit high
quality; in fact, trails may have been designed to be recursive.
Scenario 2: Many low-quality trails. A large number of trails are
mined through an automatic process (see Section 3.3). Recursivity
may be harmful to the final query plan quality and query rewrite
times. Thus, it is necessary to prune trail rewrites.

The setup for both scenarios is presented in Section 6.1. The
results for Scenario 1 are presented in Sections 6.2 and 6.3. The
results for Scenario 2 are presented in Sections 6.4 and 6.5.

6.1 Data and Workload
System. All experiments were performed on top of our iMeMex
Dataspace Management System [4]. iMeMex was configured to
simulate both the baseline and the perfect query approaches. We
have also extended iMeMex by an iTrails implementation. Our sys-
tem is able to ship queries, to ship data or to operate in a hybrid
mode in-between. However, as the latter features are orthogonal
to the techniques presented here, we shipped all data to a central
index and evaluated all queries on top2. The server in which the
experiments were executed is a dual processed AMD Opteron 248,
2.2 Ghz, with 4 GB of main memory. Our code (including iTrails)
is open source and available for download from www.imemex.org.
Data. We conducted experiments on a dataspace composed of
four different data sources similar to Figure 1. The first collec-
2Thus, we made our system behave like an XML/IR search engine.
In the future, we plan to explore mediation features of our system.

670

http://www.imemex.org
http://www.imemex.org
http://www.imemex.org
http://www.imemex.org

tion (Desktop) contained all files as found on the desktop of one of
the authors. The second collection (Wiki4V) contained all English
Wikipedia pages converted to XML [43] in four different versions,
stored on an SMB share. The third collection (Enron) consisted of
mailboxes of two people from the Enron Email Dataset [15], stored
on an IMAP server. The fourth collection was a relational DBLP
dataset [14] as of October 2006, stored on a commercial DBMS.
Table 5 lists the sizes of the datasets.

Desktop Wiki4V Enron DBLP ∑

Gross Data size 44,459 26,392 111 713 71,675
Net Data size 1,230 26,392 111 713 28,446

Table 5: Datasets used in the experiments [MB]

The total size of the data was about 71.7 GB. As several files in
the Desktop data set consisted of music and picture content that is
not considered by our method we subtracted the size of that content
to determine the net data size of 28.4 GB. The indexed data had a
total size of 24 GB.

pics−→ //photos//* ∪ //pictures//*
//*.tuple.date←→ //*.tuple.lastmodified
//*.tuple.date←→ //*.tuple.sent
pdf−→ //*.pdf
yesterday−→ date=yesterday()
publication−→ //*.pdf ∪ //dblp//*
//*.tuple.address←→ //*.tuple.to
//*.tuple.address←→ //*.tuple.from
excel←→ //*.xls ∪ *.ods
//*.xls←→ //*.ods
//imemex/workspace−→
//ethz/testworkspace ∪ //ethz/workspace

//ethz/testworkspace←→ //ethz/workspace
music−→ //*.mp3 ∪ //*.wma
working−→ //vldb//* ∪ vldb07//*
paper−→ //*.tex
//vldb−→ //ethz/workspace/VLDB07
email−→ class=email
mimeType=image−→ mimeType=image/jpeg

Trails used in Scenario 1

Workload. For the first
scenario we employed
an initial set of 18 man-
ually defined, high qual-
ity trails, displayed on
the right. Furthermore,
we defined a set of que-
ries including keyword
queries but also path ex-
pressions. These que-
ries are shown in Table 6.
We present for each que-
ry the original query tree
size, the final query tree
size after applying trails, and the number of trails applied. As we
may notice from the table, only a relatively small number of trails
matched any given query (≤ 5). Nevertheless, as we will see in the
following, the improvement in quality of the query results is signifi-
cant. This improvement is thus obtained with only little investment
into providing integration semantics on the queried information.

No. Query Original Final # Trails
Expression Tree Size Tree Size Applied

1 //bern//*["pics"] 6 14 1
2 date > 22.10.2006 2 8 2
3 pdf yesterday 5 44 4
4 Halevy publication 5 12 1
5 address=raimund.grube@enron.com 2 8 2
6 excel 2 8 2
7 //imemex/workspace/VLDB07/*.tex 14 35 2
8 //*Aznavour*["music"] 5 11 1
9 working paper 5 41 5

10 family email 5 8 1
11 lastmodified > 16.06.2000 2 8 2
12 sent < 16.06.2000 2 8 2
13 to=raimund.grube@enron.com 2 8 2
14 //*.xls 2 5 1

Table 6: Queries for Trail Evaluation

For the second scenario, we have randomly generated a large
number of trails (up to 10,000) and queries with a mutual uniform
match probability of 1%. This means that we expect 1% of the trails
defined in the system to match any initial query. Furthermore, we
expect that every right side introduced by a trail application will
again uniformly match 1% of the trails in the system and so on
recursively. We have also assigned probabilities to the trails using
a Zipf distribution (skew = 1.12).

baseline iTrails

 0

 0.2

 0.4

 0.6

 0.8

 1

1413121110987654321

R
ec
al
l

baseline iTrails

 0

 0.2

 0.4

 0.6

 0.8

 1

1413121110987654321

T
op

-K
 p
re

ci
si

on

Figure 4: Trails: Recall and Top-K precision (K = 20) of query
results: iTrails compared to baseline.

6.2 Quality and Completeness of Results
In this section we evaluate how iTrails affects the quality of query

results. We measured quality of query results using standard pre-
cision and recall metrics, where the relevant results were the ones
computed by the perfect query approach. Thus, the perfect query
approach has both precision and recall always equal to 1.
Trails vs. Baseline. Figure 4 shows the total recall and Top-K pre-
cision for iTrails compared to the baseline approach. The baseline
approach achieves only low recall and sometimes even zero re-
call. In contrast, iTrails achieves perfect recall for many queries,
e.g. Q1–Q3, Q6–Q9. This happens because our approach exploits
the trails to rewrite the query. For Top-K precision, the baseline ap-
proach fails to obtain any relevant result for queries 1–10, whereas
it achieves perfect precision for queries 11–14. This happens be-
cause queries 11–14 are queries with partial schema knowledge that
favor the baseline approach. In contrast, iTrails shows perfect pre-
cision for all queries except for Query 1, which still achieves 95%
precision, and Query 10, which only achieves 5% precision. This
low precision can be sharply improved by adding more trails in
a pay-as-you-go fashion. For instance, by simply adding a trail
family−→ //family//* precision and recall for Query 10 could
both be increased to 1. The same holds for Queries 4, 5, and 13,
where the definition of three additional trails would improve recall.

In summary, our experiments show that iTrails sharply improves
precision and recall when compared to the baseline approach.

6.3 Query Performance
In this section we evaluate how the iTrails method affects query

response time.

Q. Perfect iTrails
No. Query with with

with Basic Basic Trail
Indexes Indexes Mat.

1 0.99 2.18 0.21
2 1.10 0.74 0.52
3 4.33 10.72 0.39
4 0.39 1.86 0.07
5 0.29 0.56 0.44
6 0.14 0.32 0.05
7 0.63 1.73 0.67
8 1.55 5.27 0.48
9 186.39 179.02 1.50

10 0.65 10.14 0.29
11 0.68 0.60 0.60
12 0.67 0.60 0.60
13 0.28 0.49 0.44
14 0.14 0.14 0.14

Execution times [sec]

Trails vs. Perfect Query. We com-
pared iTrails with the perfect query
approach. Note that we did not
compare against the original que-
ries and keyword searches as they
had unacceptably low precision
and recall. Moreover, w.r.t. ex-
ecution time it would be simply
unfair to compare keyword search-
es against complex queries with
structural constraints. The table
on the right shows the results of
our experiment. In the first two
columns of the table, we show the
response times for iTrails and for
the perfect query approach using
only the basic indexes provided
by our system. These indexes include keyword inverted lists and
a materialization for the graph edges. The table shows that iTrails-
enhanced queries, for most queries, needed more time than the per-
fect queries to compute the result. This means that the overhead
introduced by the trail rewrite is not negligible. This, however, can
be fixed by exploiting trail materializations as presented in Sec-
tion 4.7. The results in the third column of the table show that
almost all queries benefit substantially from trail materializations.

671

 0

 50

 100

 150

 200

 100 1000 10000

Q
ue

ry
 tr

ee
 s

iz
e

Number of Trails (Log scale)

Top-5, Levels 2
Levels 2

Top-10
No pruning

 0.01

 0.1

 1

 10

 100 1000 10000

R
ew

rit
e

tim
e

(s
ec

.)
Lo

g
sc

al
e

Number of Trails (Log scale)

Top-5, Levels 2
Levels 2

Top-10
No pruning

(a) Impact of pruning [query tree size & rewrite time]

 0

 50

 100

 150

 200

 100 1000 10000

Q
ue

ry
 tr

ee
 s

iz
e

Number of Trails (Log scale)

Top-5, Levels 2
Top-5, Levels 4

Top-10, Levels 2
Top 10, Levels 4

 0.01

 0.1

 1

 10

 100 1000 10000

R
ew

rit
e

tim
e

(s
ec

.)
Lo

g
sc

al
e

Number of Trails (Log scale)

Top-5, Levels 2
Top-5, Levels 4

Top-10, Levels 2
Top 10, Levels 4

(b) Sensitivity of pruning [query tree size & rewrite time]

Figure 5: Scalability of Trail Pruning: Impact and Sensitivity

In contrast to iTrails, the perfect query approach is not aware of the
queries encoded in the trails and, therefore, cannot materialize trail
queries in advance. Furthermore, as we assume that queries 1–14
are not known to the system beforehand, additional materialization
for the perfect queries cannot be used. With trail materialization,
Query 3 can now be executed in 0.39 seconds instead of 10.72 sec-
onds (factor 27). For Query 9 the improvement is from 179.02 to
1.50 seconds (factor 119). In summary, using trail materializations
all queries executed in less than 0.7 seconds, except for Query 9
which took 1.50 seconds. However, for this query the majority of
the execution time was wasted in a deep unnest operator. The latter
could be further improved, e.g., by adding a path index.

In summary, our evaluation shows that trail materialization sig-
nificantly improves response time w.r.t. the perfect query approach.

6.4 Rewrite Scalability
In Figure 5(a) we show how the number of operators in the

rewritten query grows as the number of trails in the system is scaled.
We have evaluated the following strategies: (1) no pruning, (2) top-
K matched pruning, (3) maximum level pruning, (4) combined top-
K and maximum level pruning (see Section 5.2). Although we have
experimented with a number of different parameters for the maxi-
mum number of trails matched per level (K) and for the maximum
number of levels (Levels), in Figure 5(a) we show only represen-
tative parameter choices for each of the strategies. As expected
according to our rewrite analysis (see Section 4.6), the No prun-
ing approach exhibits exponential growth in the query plan sizes,
thus becoming inviable for barely more than a hundred trails. It
may seem surprising that the growth of the Top-10 pruning ap-
proach is as steep (or even steeper as the graph for rewrite times
in Figure 5(a) suggests) as the growth for the No pruning approach.
However, that observation is also backed by the worst and average
case analyses of Section 4.6: given that we do not limit the num-
ber of levels, the fewer trails matched at each level, the more trails
will be available for matching when the tree size is larger. Thus, as
demonstrated in Section 4.6, the worst-case behavior occurs when
only one trail matches per level at each of the query leaves.

Maximum level pruning imposes a constant limit on the number
of levels. Therefore, the growth function is no longer bounded by
an exponential but rather by a polynomial of the number of levels
chosen (see Section 4.6). If we take the number of levels equal to 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

Ex
pe

ct
ed

 P
re

ci
si

on

Number of Trails (Log scale)

Top-5, Levels 2
Levels 2

Top-10
No pruning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 1000 10000

Ex
pe

ct
ed

 R
el

ev
an

t R
es

ul
ts

Number of Trails (Log scale)

Top-5, Levels 2
Levels 2

Top-10
No pruning

(a) Impact of pruning [precision (EPrec) & relevant results (ERel)]

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

Ex
pe

ct
ed

 P
re

ci
si

on

Number of Trails (Log scale)

Top-5, Levels 2
Top-5, Levels 4

Top-10, Levels 2
Top 10, Levels 4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 1000 10000

Ex
pe

ct
ed

 R
el

ev
an

t R
es

ul
ts

Number of Trails (Log scale)

Top-5, Levels 2
Top-5, Levels 4

Top-10, Levels 2
Top 10, Levels 4

(b) Sensitivity of pruning [precision (EPrec) & relevant results (ERel)]
Figure 6: Quality of Trail Pruning: Impact and Sensitivity

as shown in Figure 5(a), up to about 1,000 trails, we obtain reason-
ably sized query plans with a rewrite time below 1 second. How-
ever, as we scale beyond that threshold both tree sizes and rewrite
times become unacceptable. We remedy this situation by combin-
ing top-K and maximum level pruning. Figure 5(a) shows that this
combination is the most effective rewrite pruning technique (Top-5,
Levels 2). The combined technique effectively provides for a max-
imum number of trail applications that may be performed on the
query. Thus, as the number of matching trails grow, we eventually
reach a plateau on the number of trails that can be applied. As we
always choose the trails to be applied based on their rank, we expect
to expand the query with only the most relevant trail applications.

Figure 5(b) displays the sensitivity of the combined pruning tech-
nique to the settings of K and maximum number of levels. Taking
larger values for K and for the number of levels allows us to pro-
duce larger query trees that include the application of more trails.
Depending on the level of skew of the trail ranks and on the focus
on precision or recall, different applications may choose different
combinations of the parameters K and number of levels. For all
settings explored in Figure 5(b), rewrite time has remained below
1 second. Rewrite time, just as tree size, also reaches a plateau.
This is explained by the fact that our trail ranking scheme exploits
only static ranking. Dynamic ranking schemes would lead to an ex-
pected slight growth in the rewrite time, as we would need to apply
threshold-style algorithms [16] to calculate the top-ranked trails.

In summary, our experiments show that our pruning techniques
can effectively control the complexity of the trail rewrite process.

6.5 Rewrite Quality
We evaluate the impact on expected quality as defined in Sec-

tion 5.3 using the strategies studied in Section 6.4. Figure 6 shows
the results. We computed expected relevant results (ERel) by tak-
ing c=100 (see Section 5.3). Both the No pruning and the Top-10
strategies could not be scaled beyond 1000 trails due to their long
rewrite times. Levels 2 could not be scaled beyond 5000 trails.

Figure 6(a) shows that expected precision drops significantly for
the No pruning, Top-10, and Levels 2 strategies as the number of
trails increases. This is due to the fact that these rewrite strategies
consider many trails with very low probabilities. Therefore, al-
though these strategies obtain increasing expected numbers of rel-
evant results as the number of trails grow, they pay a high cost in

672

terms of precision. On the other hand, the combined top-K and
maximum level pruning strategy (Top-5, Levels 2) shows improve-
ments in expected precision for larger number of trails. As dis-
cussed in Section 6.4, this strategy effectively limits the rewrite
size, performing only up to a fixed number of trail applications.
This means that, as more trails are available, the combined strategy
has more higher-probability matching trails to pick from.

We experiment further with the expected precision versus ex-
pected relevant results trade-off by varying K and maximum num-
ber of levels in the combined strategy. Figure 6(b) shows the re-
sults. For all combinations of parameters, we observe that there is
a decrease in precision for lower numbers of trails. For example,
expected precision decreases for Top-5, Levels 4, while the number
of trails is below 300. This is due to the fact that when relatively
few matching trails are available, we still apply many trails with
low probabilities. As the number of trails increases, expected pre-
cision also starts to increase.

The effect of picking trails with low probabilities is also evi-
denced by the fact that the more trail applications that are allowed
by the settings of K and maximum number of levels, the lower
overall precision is observed (e.g., precision for Top-5, Levels 2 is
higher overall than for Top-10, Levels 4). At the same time, the
same settings produce higher numbers of expected relevant results.
When 10,000 trails are defined, the number of relevant results is
three times higher for Top-10, Levels 4, than for Top-5, Levels 2. In
addition, the numbers of relevant results rise for larger number of
trails for all parameter settings. This trend is expected since, when
a large number of trails is available, the trails picked by the pruning
strategies have higher probabilities.

In summary, our experiments show that our pruning techniques
provide high expected precision rewrites, while allowing us to trade-
off for the expected number of relevant results produced.

7. RELATED WORK
Query processing in Dataspace Management Systems raises is-

sues related to several approaches in data integration and data man-
agement in the absence of schemas. We discuss how our approach
compares to important existing methods below.
Data Integration. Information integration systems (IIS) aim to
provide a global, semantically integrated view of data. Classi-
cal systems either express the mediated schema as a view on the
sources (GAV, e.g., TSIMMIS [34]), source schemas as views on
the mediated schema (LAV, e.g. Information Manifold [27]), or
a mix of these approaches (GLAV [18]). An extension to tradi-
tional IIS is quality-driven information integration [32]. It enriches
query processing in a mediator system by associating quality cri-
teria to data sources. One deficiency of these data integration so-
lutions is the need for high upfront effort to semantically integrate
all source schemas and provide a global mediated schema. Only
after this startup cost, queries may be answered using reformula-
tion algorithms [21]. Peer-to-peer data management [39, 33] tries
to alleviate this problem by not requiring semantic integration to
be performed against all peer schemas. Nevertheless, the data on
a new peer is only available after schema integration is performed
with respect to at least one of the other peers in the network. In
contrast to all of these approaches, dataspace management systems
provide basic querying on all data from the start. iTrails comes into
play as a declarative mechanism to enable semantic enrichment of
a dataspace in a pay-as-you-go fashion.
Search Engines. Traditional search engines, such as Google, do
not perform any semantic integration but offer a basic keyword
search service over a multitude of web data sources. XML search
engines, e.g. [10, 40], go one step further and provide queries com-

bining structure and content over collections of XML documents.
One important concern in these systems is ranking. The strategy
chosen for ranking query answers is orthogonal to our approach for
pay-as-you-go query evaluation. In fact, many ranking schemes
may be used, including schemes that exploit scores assigned to
trails. Unlike our approach, these systems do not provide inte-
gration semantics. The same holds for systems that use relevance
feedback to improve search results. The focus of these approaches,
e.g. [38], is to improve search quality in terms of a single data
set rather than using the feedback to provide integration seman-
tics to integrate multiple data sets. Therefore, we consider all of
the above search-based approaches variants of our semi-structured
search baseline (No-schema).
Schema Matching. Much work has been done to semi-automatical-
ly generate schema matches and, ultimately, schema mappings. We
may regard iTrails as a generalized method to specify equivalences
among schema and instance elements. Unlike in previous work
on schema matching [36], however, our approach is much more
lightweight, allowing users to provide arbitrary hints over time in a
pay-as-you-go fashion.
Fuzzifying Schemas. In architectures where structured and un-
structured information is mixed, tools are necessary to allow query-
ing without or with partial schema knowledge. Data guides [19]
derive schema information from semi-structured data and make it
available to users. However, data guides do not allow users to pose
queries that are schema unaware. Schema-Free XQuery [28] at-
tacks this problem by employing heuristics to detect meaningfully
related substructures in XML documents. These substructures are
used to restrict query results. Furthermore, tag names may also be
expanded using synonyms similarly to [35]. In contrast, iTrails are
not restricted to synonyms or semantic relationships in a search-
based scenario, allowing richer semantic equivalences to be spec-
ified, i.e., for information integration. In addition, our approach
does not require any heuristic assumptions about what are mean-
ingful relationships among nodes in the dataspace graph.
Malleable schemas [13] fuzzify the specification of attribute names,
by associating several keywords or keyword patterns to each mal-
leable attribute. Our approach generalizes and includes malleable
schemas, as we may specify trails with semantic equivalences on
attribute names. Chang and Garcia-Molina [9] approximate Bool-
ean predicates to be able to consider the closest translation available
on a data source’s interface. They also enable users to provide rules
to specify semantic correspondences among data source predicates,
but their approach is restricted to structured sources, while our ap-
proach works for structured and unstructured data. Surf trails [8]
are simple logs of a users’ browsing history. They are explored
to provide context in query processing. In sharp contrast, iTrails
is semantically more expressive, allowing several types of query
reformulation and not merely providing context information.
Ontologies. RDF and OWL [37, 42] allow data representation and
enrichment using ontologies. RDF and OWL are reminiscent of
schema-based approaches to managing data, requiring significant
effort to declare data semantics through a complex ontology to en-
rich query processing. iTrails, in contrast, allows a much more light-
weight specification that enables gradual enrichment of a loosely
integrated dataspace, adding integration information in a pay-as-
you-go fashion. It could be argued that trail rewriting may be
seen as similar to reasoning with ontologies. Our trail rewriting al-
gorithms, however, coupled with ranking and pruning techniques,
provide a simpler and more scalable mechanism to control the com-
plexity of the rewriting process.
Initial Dataspace Research. Franklin, Halevy and Maier [17, 22]
have proposed dataspaces as a new abstraction for information man-

673

agement. Dataspaces have been identified as one key challenge in
information integration [23]. Recently, web-scale pay-as-you-go
information integration for the Deep Web and Google Base is ex-
plored in [29]. However, the authors present only a high-level view
on architectural issues — the underlying research challenges are
not tackled. In contrast to the latter work, our paper is the first
to provide an actual framework and algorithms for pay-as-you-go
information integration. In previous work, we have proposed a
unified data model for personal dataspaces [11] and the iMeMex
Dataspace Management System [12, 4].

8. CONCLUSIONS
This paper is the first to explore pay-as-you-go information in-

tegration in dataspaces. As a solution, we have proposed iTrails, a
declarative method that allows us to provide integration semantics
over time without ever requiring a mediated schema. Our approach
is an important step towards the realization of dataspace manage-
ment systems [17]. We have discussed rewrite strategies for trail
enriched query processing. Our rewrite algorithm is able to control
recursive firings of trail matchings. Furthermore, we extended that
algorithm to allow pruning of trail rewrites based on quality estima-
tions. Our experiments showed the feasibility, benefits and scalabil-
ity of our approach. It is also worth mentioning that the techniques
presented in this paper are not restricted to a specific data model,
e.g., the relational model or XML, but work for a highly heteroge-
neous data mix [11], including personal, enterprise, or web sources.

As part of future work, we plan to explore other trail classes
that allow us to express different integration semantics than the
ones currently expressible by iTrails. In particular, we will explore
in more detail the specification of join semantics. Furthermore,
we plan to investigate techniques for (semi-)automatically mining
trails from the contents of a dataspace. In that context, defining
trails for mediated sources, such as hidden-web databases, is an
especially interesting research challenge.
Acknowledgements. First of all, we would like to thank the anony-
mous reviewers for their helpful comments. In addition, we would
like to thank our colleagues Nesime Tatbul, Peter Fischer, and Cris-
tian Duda for comments on earlier versions of this paper.

9. REFERENCES
[1] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath:

Flexible Structure and Full-Text Querying for XML. In ACM
SIGMOD, 2004.

[2] L. Ballesteros and W. B. Croft. Phrasal Translation and Query
Expansion Techniques for Cross-language Information Retrieval. In
ACM SIGIR, 1997.

[3] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with Uncertainty and Lineage. In VLDB, 2006.

[4] L. Blunschi, J.-P. Dittrich, O. R. Girard, S. K. Karakashian, and
M. A. V. Salles. A Dataspace Odyssey: The iMeMex Personal
Dataspace Management System (Demo). In CIDR, 2007.

[5] M. Brantner, S. Helmer, C.-C. Kanne, and G. Moerkotte. Full-fledged
Algebraic XPath Processing in Natix. In ICDE, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks, 30(1-7), 1998.

[7] D. Calvanese. Data Integration in Data Warehousing (Keynote
Address). In CAiSE Workshops, 2003.

[8] S. Chakrabarti et al. Memex: A Browsing Assistant for Collaborative
Archiving and Mining of Surf Trails (Demo Paper). In VLDB, 2000.

[9] K. C.-C. Chang and H. Garcia-Molina. Mind Your Vocabulary:
Query Mapping Across Heterogeneous Information Sources. In ACM
SIGMOD, 1999.

[10] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic
Search Engine for XML. In VLDB, 2003.

[11] J.-P. Dittrich and M. A. V. Salles. iDM: A Unified and Versatile Data
Model for Personal Dataspace Management. In VLDB, 2006.

[12] J.-P. Dittrich, M. A. V. Salles, D. Kossmann, and L. Blunschi.
iMeMex: Escapes from the Personal Information Jungle (Demo). In
VLDB, 2005.

[13] X. Dong and A. Halevy. Malleable Schemas: A Preliminary Report.
In WebDB, 2005.

[14] DBLP Dataset. http://dblp.uni-trier.de/xml/.
[15] Enron Dataset. http://www.cs.cmu.edu/ enron/.
[16] R. Fagin. Combining Fuzzy Information: an Overview. SIGMOD

Record, 31(2):109–118, 2002.
[17] M. Franklin, A. Halevy, and D. Maier. From Databases to

Dataspaces: A New Abstraction for Information Management.
SIGMOD Record, 34(4):27–33, 2005.

[18] M. Friedman, A. Levy, and T. Millstein. Navigational Plans For Data
Integration. In AAAI - Proceedings of the National Conference on
Artificial intelligence, 1999.

[19] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases. In
VLDB, 1997.

[20] R. Grishman. Information Extraction: Techniques and Challenges. In
SCIE, 1997.

[21] A. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[22] A. Halevy, M. Franklin, and D. Maier. Principles of Dataspace
Systems. In PODS, 2006.

[23] A. Halevy, A. Rajaraman, and J. Ordille. Data Integration: The
Teenage Years. In VLDB, 2006. Ten-year best paper award.

[24] A. Y. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka. Enterprise information integration:
successes, challenges and controversies. In ACM SIGMOD, 2005.

[25] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. In ACM SIGMOD, 1996.

[26] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian.
ProbView: A Flexible Probabilistic Database System. ACM
Transactions on Database Systems (TODS), 22(3):419–469, 1997.

[27] A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous
Information Sources Using Source Descriptions. In VLDB, 1996.

[28] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In VLDB,
2004.

[29] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery,
D. Ko, and C. Yu. Web-Scale Data Integration: You can afford to Pay
as You Go. In CIDR, 2007.

[30] G. Miklau and D. Suciu. Containment and Equivalence for an XPath
Fragment. In PODS, 2002.

[31] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D. Ngoc.
Exchanging Intensional XML Data. In ACM SIGMOD, 2003.

[32] F. Naumann, U. Leser, and J. C. Freytag. Quality-driven Integration
of Heterogenous Information Systems. In VLDB, 1999.

[33] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Y. Zhou. PeerDB: A
P2P-based System for Distributed Data Sharing. In ICDE, 2003.

[34] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object
Exchange Across Heterogeneous Information Sources. In ICDE,
1995.

[35] Y. Qiu and H.-P. Frei. Concept Based Query Expansion. In ACM
SIGIR, 1993.

[36] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4), 2001.

[37] Resource Description Framework. http://www.w3.org/rdf. (rdf).
[38] R. Schenkel and M. Theobald. Feedback-Driven Structural Query

Expansion for Ranked Retrieval of XML Data. In EDBT, 2006.
[39] I. Tatarinov and A. Halevy. Efficient query reformulation in peer data

management systems. In ACM SIGMOD, 2004.
[40] M. Theobald, R. Schenkel, and G. Weikum. An Efficient and

Versatile Query Engine for TopX Search. In VLDB, 2005.
[41] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I

(NEXI). In INEX Workshop, 2004.
[42] Web Ontology Language (OWL). http://www.w3.org/2004/owl. .
[43] Wikipedia Database Dump. http://download.wikimedia.org.
[44] WordNet. http://wordnet.princeton.edu/.
[45] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM

Computing Surveys, 38(2), 2006.

674

http://www.imemex.org

	Introduction
	Motivating Example
	Contributions

	Data and Query Model
	Data Model
	Query Model
	Query Algebra

	iTrails
	Basic Form of a Trail
	Trail Use Cases
	Where do Trails Come From?
	Probabilistic Trails
	Scored Trails

	iTrails Query Processing
	Overview
	Matching
	Transformation
	Merging
	Multiple Trails
	Trail Rewrite Analysis
	Trail Indexing Techniques

	Pruning Trail Rewrites
	Trail Ranking
	Ranking Trails by Probabilities
	Ranking Trails by Scoring Factors

	Pruning Strategies
	Rewrite Quality

	Experiments
	Data and Workload
	Quality and Completeness of Results
	Query Performance
	Rewrite Scalability
	Rewrite Quality

	Related Work
	Conclusions
	References

