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ABSTRACT

Incompleteness due to missing attribute values (aka “null values”) is very

common in autonomous web databases, on which user accesses are usually

supported through mediators. Traditional query processing techniques that

focus on the strict soundness of answer tuples often ignore tuples with crit-

ical missing attributes, even if they wind up being relevant to a user query.

Ideally we would like the mediator to retrieve such possible answers and

gauge their relevance by accessing their likelihood of being pertinent an-

swers to the query. The autonomous nature of web databases poses several

challenges in realizing this objective. Such challenges include the restricted

access privileges imposed on the data, the limited support for query patterns,

and the bounded pool of database and network resources in the web envi-

ronment. We introduce a novel query rewriting and optimization framework

QPIAD that tackles these challenges. Our technique involves reformulating

the user query based on mined correlations among the database attributes.

The reformulated queries are aimed at retrieving the relevant possible an-

swers in addition to the certain answers. QPIAD is able to gauge the rel-

evance of such queries allowing tradeoffs in reducing the costs of database

query processing and answer transmission. To support this framework, we

develop methods for mining attribute correlations (in terms of Approxi-

mate Functional Dependencies), value distributions (in the form of Naı̈ve

Bayes Classifiers), and selectivity estimates. We present empirical studies

to demonstrate that our approach is able to effectively retrieve relevant pos-

sible answers with high precision, high recall, and manageable cost.

1. INTRODUCTION
Data integration in autonomous web database scenarios has

drawn much attention in recent years, as more and more data be-

comes accessible via web servers which are supported by back-
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end databases. In these scenarios, a mediator provides a unified

query interface as a global schema of the underlying databases.

Queries on the global schema are then rewritten as queries over

autonomous databases through their web interfaces. Current medi-

ator systems [20, 15] only return to the user certain answers that

exactly satisfy all the user query predicates. For example, in a

used car trading application, if a user is interested in cars made by

Honda, all the returned answers will have the value “Honda” for at-

tribute Make. Thus, an Accord which has a missing value for Make

will not be returned by such systems. Unfortunately, such an ap-

proach is both inflexible and inadequate for querying autonomous

web databases which are inherently incomplete. As an example, Ta-

ble 1 shows statistics on the percentage of incomplete tuples from

several autonomous web databases. The statistics were computed

from a randomly probed sample. The table also gives statistics on

the percentage of missing values for the Body Style and Engine at-

tributes.

Website # of Total Incomplete Body Engine

Attributes Tuples Tuples % Style % %

www.AutoTrader.com 13 25127 33.67% 3.6% 8.1%

www.CarsDirect.com 14 32564 98.74% 55.7% 55.8%

Google Base 203+ 580993 100% 83.36% 91.98%

Table 1: Statistics on missing values in web databases

Such incompleteness in autonomous databases should not be sur-

prising as it can arise for a variety of reasons, including:

Incomplete Entry: Web databases are often populated by lay indi-

viduals without any central curation. For example, web sites such

as Cars.com and Yahoo! Autos, obtain information from individual

car owners who may not fully specify complete information about

their cars, thus leaving such databases scattered with missing val-

ues (aka “null” values). Consider a car owner who leaves the Make

attribute blank, assuming that it is obvious as the Model of the car

she is selling is Accord.

Inaccurate Extraction: Many web databases are being populated

using automated information extraction techniques. As a result of

the inherent imperfection of these extractions, many web databases

may contain missing values. Examples of this include imperfec-

tions in web page segmentation (as described in [10]) or imperfec-

tions in scanning and converting handwritten forms (as described

in [2]).

Heterogenous Schemas: Global schemas provided by mediator

systems may often contain attributes that do not appear in all of

the local schemas. For example, a global schema for the used car

trading domain has an attribute called Body Style, which is sup-

ported by Cars.com, but not by Yahoo! Autos. Given a query on
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the global schema for cars having Body Style equal to Coupe, me-

diators which only return the certain answers are not able to make

use of information from the Yahoo! Autos database thereby failing

to return a possibly large portion of the relevant tuples.1

User-defined Schemas: Another type of incompleteness occurs in

the context of applications like Google Base [22] which allow users

significant freedom to define and list their own attributes. This often

leads to redundant attributes (e.g. Make vs. Manufacturer), as well

as proliferation of null values (e.g. a tuple that gives a value for

Make is unlikely to give a value for Manufacturer and vice versa).

Although there has been work on handling incompleteness in

databases (see Section 2), much of it has been focused on single

databases on which the query processor has complete control. The

approaches developed–such as the “imputation methods” that at-

tempt to modify the database directly by replacing null values with

likely values–are not applicable for autonomous databases where

the mediator often has restricted access to the data sources. Conse-

quently, when faced incomplete databases, current mediators only

provide the certain answers thereby sacrificing recall. This is partic-

ularly problematic when the data sources have a significant fraction

of incomplete tuples, and/or the user requires high recall (consider,

for example, a law-enforcement scenario, where a potentially rele-

vant criminal is not identified due to fortuitous missing information

or a scenario where a sum or count aggregation is being performed).

To improve recall in these systems, one naı̈ve approach would be

to return, in addition to all the certain answers, all the tuples with

missing values on the constrained attribute(s) as possible answers

to the query. For example, given a selection query for cars made

by “Honda”, a mediator could return not only those tuples whose

Make values are “Honda” but also the ones whose Make values are

missing(null). This approach, referred to as ALLRETURNED, has

an obvious drawback, in that many of the tuples with missing val-

ues on constrained attributes are irrelevant to the query. Intuitively,

not every tuple that has a missing value for Make corresponds to

a car made by Honda! Thus, while improving recall, the ALLRE-

TURNED approach can lead to drastically lower precision.

In an attempt to improve precision, a more plausible solution

could start by first retrieving all the tuples with null values on the

constrained attributes, predicting their missing values, and then de-

ciding the set of relevant query answers to show to the user. This

approach, that we will call ALLRANKED, has better precision than

ALLRETURNED. However, most of the web-accessible database in-

terfaces we’ve found, such as Yahoo Autos, Cars.com, Realtor.com,

etc, do not allow the mediator to directly retrieve tuples with null

values on specific attributes. In other words, we cannot issue

queries like “list all the cars that have a missing value for Body

Style attribute”. Even if the sources do support binding of null val-

ues, retrieving and additionally ranking all the tuples with missing

values involves high processing and transmission costs.

Our Approach: In this paper, we present QPIAD,2 a system for

mediating over incomplete autonomous databases. To make the re-

trieval of possible answers feasible, QPIAD bypasses the null value

binding restriction by generating rewritten queries according to a

set of mined attribute correlation rules. These rewritten queries are

1Moreover, an attribute may not appear in a schema intentionally
as the database manager may suppress the values of certain at-
tributes. For example, the travel reservation website Priceline.com
suppresses the airline/hotel name when booking tickets and hotel.
2QPIAD is an acronym for Query Processing over Incomplete

Autonomous Databases. A 3-page poster description of QPIAD
first appeared in [18].

designed such that there are no query predicates on attributes for

which we would like to retrieve missing values. Thus, QPIAD

is able to retrieve possible answers without binding null values or

modifying underlying autonomous databases. To achieve high pre-

cision and recall, QPIAD learns Approximate Functional Depen-

dencies (AFDs) for attribute correlations, Naı̈ve Bayesian Classi-

fiers (NBC) for value distributions, and query selectivity estimates

from a database sample obtained off-line. These data source statis-

tics are then used to provide a ranking scheme to gauge the rele-

vance of a possible answer to the original user query. Furthermore,

instead of ranking possible answers directly, QPIAD orders the

rewritten queries in the order of the number of relevant answers they

are expected to bring as determined by the attribute value distribu-

tions and selectivity estimations. The rewritten queries are issued in

this order, and the returned tuples are ranked in accordance with the

query that retrieved them. By ordering the rewritten queries rather

than ranking the entire set of possible answers, QPIAD is able to

optimize both precision and recall while maintaining efficiency. We

extend this general approach to handle selection, aggregation and

join queries, as well as supporting multiple correlated sources.

Contributions: QPIAD’s query rewriting and ranking strategies

allow it to efficiently retrieve relevant possible answers from au-

tonomous databases given mediator’s query-only capabilities and

limited query access patterns to these databases. To the best of our

knowledge, the QPIAD framework is the first that retrieves rele-

vant possible answers with missing values on constrained attributes

without modifying underlying databases. Consequently, it is suit-

able for querying incomplete autonomous databases. The idea of

using learned attribute correlations, value distributions, and query

selectivity to rewrite and rank queries, which consider the natural

tension between precision and recall, is also a novel contribution

of our work. In addition, our framework can leverage attribute cor-

relations among data sources in order to retrieve relevant possible

answers from data sources not supporting the query attribute (e.g.

local schemas which do not support the entire set of global schema

attributes). Our experimental evaluation over selection, aggrega-

tion, and join queries shows that QPIAD retrieves most relevant

possible answers while maintaining low query processing costs.

Assumptions: In this paper we assume that tuples contain-

ing more than one null over the set of query constrained at-

tributes are less relevant to the user. Therefore, such tu-

ples are not ranked but simply output after the ranked tuples

containing zero or a single null over the set of query con-

strained attributes. For example, assume the user poses a

query Q : σModel=Accord∧Price=10000∧Y ear=2001 on the relation

R(Make, Model, Price, Mileage, Y ear, BodyStyle). In this

case, a tuple t1(Honda, null, 10000, 30000, null, Coupe) would

be placed below ranked tuples because it has missing values on two

of its constrained attributes, namely Model and Y ear. However,

we assume a tuple t2(Honda, null, 10000, null, 2001, Coupe)
would be ranked as it only contains a null on one constrained at-

tribute, namely Model. The second missing value is on Mileage,

which is not a constrained attribute.

Organization: The rest of the paper is organized as follows. In

the next section we discuss related work on handling incomplete

data. Next, we cover some preliminaries and an overview of our

framework in Section 3. Section 4 proposes online query rewriting

and ranking techniques to retrieve relevant possible answers from

incomplete autonomous databases in the context of selection, ag-

gregation, and join queries, as well as retrieving possible answers

from data sources which do not support the query attribute in their
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local schemas. Section 5 provides the details of learning attribute

correlations, value distributions, and query selectivity used in our

query rewriting phase. A comprehensive empirical evaluation of

our approach is presented in Section 6. We conclude the paper in

Section 7.

2. RELATED WORK

Querying Incomplete Databases: Traditionally, incompleteness

in databases has been handled by one of two broad approaches. The

first–which we call possible world approaches [14, 21, 2]–tracks

the completions of all incomplete tuples. All feasible completions

are considered equally likely and the aim of query processing is to

return certain vs. possible answers without making any distinctions

among the possible answers. To help track all possible worlds, null

values are typically represented using one of three different meth-

ods, each of increasing generality: (i) Codd Tables where all the

null values are treated equally; (ii) V-tables which allow many dif-

ferent null values marked by variables; and (iii) Conditional tables

which are V-tables with additional attributes for conditions.

The second type of approaches for handling incomplete

databases–which we call probabilistic approaches ([6, 3, 31])–

attempt to quantify the distribution over the completions of an in-

complete tuple, and use this information to distinguish between the

likelihood of various possible answers. Our work falls in this sec-

ond category. The critical novelty of our work is that our approach

learns the distribution automatically, and also avoids modifying the

original database in any way. It is therefore suitable for query-

ing incomplete autonomous databases, where a mediator is not

able to store the estimation of missing values in sources. [6] han-

dles incompleteness for aggregate queries in the context of OLAP

databases, by relaxing the original queries using the hierarchical

OLAP structure. Whereas our work learns attribute correlations,

value distributions and query selectivity estimates to generate and

rank rewritten queries.

Querying Inconsistent Databases: Work on handling inconsistent

databases also has some connections. While most approaches for

handling inconsistent databases are more similar to the “possible

worlds approaches” used for handling incompleteness (e.g. [4]),

some recent work (e.g. [1]) uses probabilistic approaches for han-

dling inconsistent data.

Querying Probabilistic Databases: Incomplete databases are sim-

ilar to probabilistic databases (c.f. [29, 7, 28, 30]) once the prob-

abilities for missing values are assessed. [29] gives an overview

of querying probabilistic databases where each tuple is associated

with an additional attribute describing the probability of its exis-

tence. Some recent work on the TRIO [28, 30] system deals with

handling uncertainty over probabilistic relational databases. In such

systems, the notion of incompleteness is closely related to uncer-

tainty: an incomplete tuple can be seen as a disjunction of its pos-

sible completions. However, we go a step further and view the

incomplete tuple as a probability distribution over its completions.

The distribution can be interpreted as giving a quantitative estimate

of the probability that the incomplete tuple corresponds to a specific

completion in the real world. Furthermore we address the problem

of retrieving incomplete tuples from autonomous databases where

the mediator does not have capabilities to modify the underlining

databases.

Query Reformulation & Relaxation: Our work has some rela-

tions to both query reformulation and query relaxation [25, 24] ap-

proaches. An important difference is our focus on retrieving tuples

with missing values on constrained attributes. Towards this, our

rewritten queries modify constrained attributes as well as their val-

ues.

Ranked Joins: The part of our query processing framework which

handles join queries over autonomous sources is similar to work

on ranked joins[13]. However, we use predicted values learnt from

the data itself to perform joins without modifying the underlying

databases.

Learning Missing Values: There has been a large body of work on

missing values imputation [8, 26, 27, 31, 3]. Common imputation

approaches include substituting missing data values by the mean,

the most common value, default value of the attribute in question,

or using k-Nearest Neighbor [3], association rules [31], etc. An-

other approach used to estimate missing values is parameter esti-

mation. Maximum likelihood procedures that use variants of the

Expectation-Maximization algorithm [8, 26] can be used to esti-

mate the parameters of a model defined for the complete data. In

this paper, we are interested not in the standard imputation prob-

lem but a variant that can be used in the context of query rewriting.

In this context, it is important to have schema level dependencies

between attributes as well as distribution information over missing

values.

3. PRELIMINARIES AND ARCHITEC

TURE OF QPIAD
We will start with formal definitions of certain answers and pos-

sible answers with respect to selection queries.

DEFINITION 1 (COMPLETE/INCOMPLETE TUPLES). Let

R(A1, A2, · · · , An) be a database relation. A tuple t ∈ R is said

to be complete if it has non-null values for each of the attributes

Ai; otherwise it is considered incomplete. A complete tuple t is

considered to belong to the set of completions of an incomplete

tuple t̂ (denoted C(t̂)), if t and t̂ agree on all the non-null attribute

values.

Now consider a selection query Q : σAm=vm over relation

R(A1, · · · , An) where (1 ≤ m ≤ n).

DEFINITION 2 (CERTAIN/POSSIBLE ANSWERS). A tuple ti

is said to be a certain answer for the query Q : σAm=vm if

ti.Am=vm. ti is said to be an possible answer for Q if

ti.Am=null, where ti.Am is the value of attribute Am in ti.

Notice an incomplete tuple is a certain answer to a query, if its null

values are not on the attributes constrained in the query.

There are several key functionalities that QPIAD needs in order

to retrieve and rank possible answers to a user query: (i) learning

attribute correlations to generate rewritten queries, (ii) assessing

the value probability distributions of incomplete tuples to provide

a ranking scheme for possible answers, (iii) estimating query se-

lectivity to estimate the recall and determine how many rewritten

queries to issue, and based on the above (iv) ordering rewritten

queries to retrieve possible tuples that have a high degree of rel-

evance to the query.

The system architecture of the QPIAD system is presented in

Figure 1. A user accesses autonomous databases by issuing a query

to the mediator. The query reformulator first directs the query to the

autonomous databases and retrieves the set of all certain answers

(called the base result set). In order to retrieve highly relevant pos-

sible answers in ranked order, the mediator dynamically generates
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Figure 1: QPIAD System Architecture.

rewritten queries based on the original query, the base result set,

and attribute correlations in terms of Approximate Functional De-

pendencies(AFDs) learned from a database sample. The goal of

these new queries is to return an extended result set, which consists

of highly relevant possible answers to the original query. Since not

all rewritten queries are equally good in terms of retrieving rele-

vant possible answers, they are ordered before being posed to the

databases. The ordering of the rewritten queries is based on their

expected F-Measure which considers the estimated selectivity and

the value distributions for the missing attributes.

QPIAD mines attribute correlations, value distributions, and

query selectivity using a small portion of data sampled from the au-

tonomous database using random probing queries. The knowledge

mining module learns AFDs and AFD-enhanced Naı̈ve Bayesian

Classifiers (where the AFDs play a feature selection role for the

classification task) from the samples. Then the knowledge min-

ing module estimates the selectivity of rewritten queries. Armed

with the AFDs, the corresponding classifiers, and the selectivity es-

timates, the query reformulator is able to retrieve the relevant pos-

sible answers from autonomous databases by rewriting the original

user query and then ordering the set of rewritten queries such that

the possible answers are retrieved in the order of their ranking in

precision.

4. RETRIEVING RELEVANT POSSIBLE

ANSWERS
In this section, we describe the QPIAD query rewriting approach

for effectively and efficiently retrieving relevant possible answers

from incomplete autonomous databases. We support queries in-

volving selections, aggregations and joins.3 This query rewriting

framework can also retrieve relevant answers from data sources not

supporting the entire set of query constrained attributes.

4.1 Handling Selection Queries
To efficiently retrieve possible answers in their order of preci-

sion, QPIAD follows a two-step approach. First, the original query

3In QPIAD we assume a projection over the entire set of attributes.
In cases where users may wish to project a subset of the attributes,
QPIAD can project all the attributes and then simply return to the
user only those attributes contained in the subset

ID Make Model Year Body Style

1 Audi A4 2001 Convt

2 BMW Z4 2002 Convt

3 Porsche Boxster 2005 Convt

4 BMW Z4 2003 null

5 Honda Civic 2004 null

6 Toyota Camry 2002 Sedan

Table 2: Fragment of a Car Database

is sent to the database to retrieve the certain answers which are then

returned to the user. Next, a group of rewritten queries are intelli-

gently generated, ordered, and sent to the database. This process

is done such that the query patterns are likely to be supported by

the web databases, and only the most relevant possible answers are

retrieved by the mediator in the first place.

Generating Rewritten Queries: The goal of the query rewriting

is to generate a set of rewritten queries to retrieve relevant possi-

ble answers. Let’s consider the same user query Q asking for all

convertible cars. We use the fragment of the Car database shown

in Table 2 to explain our approach. First, we issue the query Q to

the autonomous database to retrieve all the certain answers which

correspond to tuples t1, t2 and t3 from Table 2. These certain

answers form the base result set of Q. Consider the first tuple

t1=〈Audi, A4, 2001, Convt〉 in the base result set. If there is a

tuple ti in the database with the same value for Model as t1 but

missing value for Body Style, then ti.Body Style is likely to be

Convt. We capture this intuition by mining attribute correlations

from the data itself.

One obvious type of attribute correlation is “functional depen-

dencies”. For example, the functional dependency Model→Make

often holds in automobile data records. There are two problems in

adopting the method directly based on functional dependencies: (i)

often there are not enough functional dependencies in the data, and

(ii) autonomous databases are unlikely to advertise the functional

dependencies. The answer to both these problems involves learn-

ing approximate functional dependencies from a (probed) sample

of the database.

DEFINITION 3 (APPROXIMATE FUNCTIONAL DEPENDENCY).

XÃA over relation R is an approximate functional depen-

dency(AFD) if it holds on all but a small fraction of the tuples. The

set of attributes X is called the determining set of A denoted by

dtrSet(A).

For example, an AFD ModelÃBody Style may be mined,

which indicates that the value of a car’s Model attribute sometimes

(but not always) determines the value of its Body Style attribute.

According to this AFD and tuple t1, we issue a rewritten query

Q′
1 : σModel=A4 with constraints on the determining set of the at-

tribute Body Style, to retrieve tuples that have the same Model

as t1 and therefore are likely to be Convt in Body Style. Simi-

larly, we issue queries Q′
2 : σModel=Z4 and Q′

3 : σModel=Boxster

to retrieve other relevant possible answers.

Ordering Rewritten Queries: In the query rewriting step of

QPIAD, we generate new queries according to the distinct value

combinations among the base set’s determining attributes for

each of the constrained attributes. In the example above, we

used the three certain answers to the user query Q to gener-

ate three new queries: Q′
1 : σModel=A4, Q′

2 : σModel=Z4 and

Q′
3 : σModel=Boxster. Although each of these three queries retrieve
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possible answers that are likely to be more relevant to Q than a ran-

dom tuple with missing value for Body Style, they may not all be

equally good in terms of retrieving relevant possible answers.

Thus, an important issue in query rewriting is the order in which

to pose the rewritten queries to the database. This ordering depends

on two orthogonal measures: the expected precision of the query–

which is equal to the probability that the tuples returned by it are

answers to the original query, and the selectivity of the query–which

is equal to the number of tuples that the query is likely to bring in.

As we shall show in Section 5, both the precision and selectivity

can be estimated by mining a probed sample of the database.

For example, based on the value distributions in the sample

database, we may find that a Z4 model car is more likely to

be a Convertible than a car whose model is A4. As we discuss

in Section 5.2, we build AFD-enhanced classifiers which give

the probability values P (Body Style=Convt|Model=A4),

P (Body Style=Convt|Model=Z4) and

P (Body Style=Convt|Model=Boxster). Similarly, the

selectivity of these queries can be different. For example, we may

find that the number of tuples having Model=A4 is much larger

than that of Model=Z4.

Given that we can estimate precision and selectivity of the

queries, the only remaining issue is how to use them to order the

queries. If we are allowed to send as many rewritten queries as we

would like, then ranking of the queries can be done just in terms

of the expected precision of the query. However, things become

more complex if there are limits on the number of queries we can

pose to the autonomous source. Such limits may be imposed by

the network/processing resources of the autonomous data source or

possibly the time that a user is willing to wait for answers.

Given the maximum number of queries that we can issue to a

database, we have to find a reasonable tradeoff between the preci-

sion and selectivity of the queries issued. Clearly, all else being

equal, we will prefer high precision queries to low precision ones

and high selectivity queries to low selectivity ones. The tricky is-

sue is how to order a query with high selectivity and low precision

in comparison to another with low selectivity and high precision.

Since the tension here is similar to the precision vs. recall ten-

sion in IR, we decided to use the well known F-Measure metric

for query ordering. In the IR literature, F-Measure is defined as

the weighted harmonic mean of the precision (P ) and recall (R)

measures:
(1+α)∗P∗R

α∗P+R
. We use the query precision for P . We es-

timate the recall measure R of the query by first computing query

throughput, i.e., expected number of relevant answers returned by

the query (which is given by the product of the precision and se-

lectivity measures), and then normalizing it with respect to the ex-

pected cumulative throughput of all the rewritten queries. Notice

that the F-Measure based ordering reduces to precision-based or-

dering when α = 0.

In summary, we use the F-measure ordering to select k top

queries, where k is the number of rewritten queries we are allowed

to issue to the database. Once the k queries are chosen, they are

posed in the order of their expected precision. This way the rele-

vant possible answers retrieved by these rewritten queries need not

be ranked again, as their rank – the probability that their null value

corresponds to the selected attribute– is the same as the precision

of the retrieving query.

Note that the parameter α in the F-measure, as well as the pa-

rameter k (corresponding to the number of queries to be issued to

the sources), can be chosen according to source query restrictions,

source response times, network/database resource limitations, and

user preferences. The unique feature of QPIAD is its flexibility

to generate rewritten queries accordingly to satisfy the diverse re-

quirements. It allows the tradeoff between precision and recall to

be tuned by adjusting the α parameter in its F-Measure based or-

dering. When α is set to be 0, the rewritten queries are ordered

solely in terms of precision. When α is set to be 1, the precision

and recall are equally weighted. The limitations on the database and

network resources are taken into account by varying k–the number

of rewritten queries posed to the database.

4.2 Query Rewriting Algorithm
In this section, we describe the algorithmic details of the QPIAD

approach. Let R(A1, A2, · · · , An) be a database relation. Suppose
dtrSet(Am) is the determining set of attribute Am (1 ≤ m ≤ n),
according to the highest confidence AFD (to be discussed in Sec-
tion 5.3). QPIAD processes a given selection query Q : σAm=vm

according to the following two steps.

1. Send Q to the database and retrieve the base result set RS(Q) as the
certain answers of Q. Return RS(Q) to the user.

2. Generate a set of new queries Q′, order them, and send the most rel-

evant ones to the database to retrieve the extended result set R̂S(Q)
as relevant possible answers of Q. This step contains the following
tasks.

(a) Generate rewritten queries. Let πdtrSet(Am)(RS(Q)) be

the projection of RS(Q) onto dtrSet(Am). For each dis-
tinct tuple ti in πdtrSet(Am)(RS(Q)), create a selection

query Q′
i in the following way. For each attribute Ax in

dtrSet(Am), create a selection predicate Ax=ti.vx. The se-
lection predicates of Q′

i consist of the conjunction of all these
predicates.

(b) Select rewritten queries. For each rewritten query Q′
i, com-

pute the estimated precision and estimated recall using its es-
timated selectivity derived from the sample. Then order all
Q′

is in order of their F-Measure scores and choose the top-K
to issue to the database.

(c) Re-order selected top-K rewritten queries. Re-order the se-
lected top-K set of rewritten queries according to their esti-
mated precision which is simply the conditional probability of
PQ′

i
=P (Am=vm|ti) . /* By re-ordering the top-K queries

in order of their precision we ensure that each of the returned

tuples will have the same rank as the query that retrieved it. */

(d) Retrieve extended result set. Given the top-K queries
{Q′

1, Q′
2, · · · , Q′

K} issue them in the according to their
estimated precision-base orderings. Their result sets
RS(Q′

1), RS(Q′
2), · · · , RS(Q′

K) compose the extended re-

sult set R̂S(Q). /* All results returned for a single query are

ranked equally */

(e) Post-filtering. If database does not allow binding of null val-
ues, (i.e. access to database is via a web form) remove from

R̂S(Q) the tuples with Am 6= null. Return the remaining

tuples in R̂S(Q) as the relevant possible answers of Q.

Multi-attribute Selection Queries: Although we described the

above algorithm in the context of single attribute selection queries,

it can also be used for rewriting multi-attribute selection queries

by making a simple modification to Step 2(a). Consider a multi-

attribute selection query Q : σA1=v1∧A2=v2∧···∧Ac=vc . To gener-

ate the set of rewritten queries Q′, the modification requires Step

2(a) to run c times, once for each constrained attribute Ai, 1 ≤ i ≤
c. In each iteration, the tuples from πdtrSet(Ai)(RS(Q)) are used

to generate a set of rewritten queries by replacing the attribute Ai

with selection predicates of the form Ax=ti.vx for each attribute

Ax ∈ dtrSet(Ai). For each attribute Ax ∈ dtrSet(Am) which is

not constrained in the original query, we add the constraints on Ax

to the rewritten query. As we have discussed in Section 1, we only
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rank the tuples that contain zero or one null in the query constrained

attributes. If the user would like to retrieve tuples with more than

one null, we output them at the end without ranking.

For example, consider the multi-attribute selection query

Q : σModel=Accord∧Price between 15000 and 20000 and the mined

AFDs {Make, Body Style} Ã Model and {Y ear, Model} Ã

Price. The algorithm first generates a set of rewritten queries

by replacing the attribute constraint Model=Accord with se-

lection predicates for each attribute in the determining set of

Model using the attribute values from the tuples in the base set

πdtrSet(Model)(RS(Q)). After the first iteration, the algorithm

may have generated the following queries:

Q′
1 : σMake=Honda∧Body Style=Sedan∧Price between 15000 and 20000,

Q′
2 : σMake=Honda∧Body Style=Coupe∧Price between 15000 and 20000

Similarly, the algorithm generates additional rewritten queries by

replacing Price with value combination of its determining set

from the base set while keeping the original query constraint

Model=Accord. After this second iteration, the following rewrit-

ten queries may have been generated:

Q′
3 : σModel=Accord∧Y ear=2002,

Q′
4 : σModel=Accord∧Y ear=2001,

Q′
5 : σModel=Accord∧Y ear=2003

After generating a set of rewritten queries for each constrained at-

tribute, the sets are combined and the queries are ordered just as

they were in Step 2(b). The remainder of the algorithm requires no

modification to support multi-attribute selection queries.

Base Set vs. Sample: When generating rewritten queries, one may

consider simply rewriting the original query using the sample as op-

posed to first retrieving the base set and then rewriting. However,

since the sample may not contain all answers to the original query,

such an approach may not be able to generate all rewritten queries.

By utilizing the base set, QPIAD obtains the entire set of deter-

mining set values that the source can offer, and therefore achieves

a better recall.

4.3 Retrieving Relevant Answers from Data
Sources Not Supporting the Query At
tributes

In information integration, the global schema exported by a me-

diator often contains attributes that are not supported in some of the

individual data sources. We adapt the query rewriting techniques

discussed above to retrieve relevant possible answers from a data

source not supporting the constrained attribute in the query. For ex-

ample, consider a global schema GSUsedCars supported by the me-

diator over the sources Yahoo! Autos and Cars.com as shown in Fig-

ure 2, where Yahoo! Autos doesn’t support queries on Body Style

attribute. Now consider a query Q : σBody Style=Convt on the

global schema. The mediator that only returns certain answers

won’t be able to query the Yahoo! Autos database to retrieve cars

with Body Style Convt. None of the relevant cars from Yahoo!

Autos can be shown to the user.

Mediator GS(Make, Model, Y ear, P rice, Mileage, Location, Body Style)

Cars.com LS(Make, Model, Y ear, P rice, Mileage, Location, Body Style)

Yahoo! Autos LS(Make, Model, Y ear, P rice, Mileage, Location)

Figure 2: Global schema and local schema of data sources

In order to retrieve relevant possible answers from Yahoo! Autos,

we apply the attribute correlation, value distribution, and selectiv-

ity estimates learned on the Cars.com database to the Yahoo! Au-

tos database. For example, suppose that we have mined an AFD

ModelÃBody Style from the Cars.com database. To retrieve rel-

evant possible answers from the Yahoo! Autos database, the media-

tor issues rewritten queries to Yahoo! Autos using the base set and

AFDs from the Cars.com database.

The algorithm that retrieves relevant tuples from a source Sk not

supporting the query attribute is similar to the QPIAD Algorithm

presented in Section 4.2, except that the base result set is retrieved

from the correlated source Sc in Step 1.

DEFINITION 4 (CORRELATED SOURCE). For any au-

tonomous data source Sk not supporting a query attribute Ai, we

define a correlated source Sc as any data source that satisfies the

following: (i) Sc supports attribute Ai in its local schema, (ii) Sc

has an AFD where Ai is on the right hand side, (iii) Sk supports

the determining set of attributes in the AFD for Ai mined from Sc.

From all the sources correlated with a given source Sk, we use

the one for which the AFD for Ai has the highest confidence.

Then using the AFDs, value distributions, and selectivity estimates

learned from Sc, ordered rewritten queries are generated and issued

in Step 2 to retrieve relevant possible answers for the user query

from source Sk.

4.4 Handling Aggregate Queries
As the percentage of incomplete tuples increases, aggregates

such as Sum and Count need to take the incomplete tuples into ac-

count to get accurate results. To support aggregate queries, we first

retrieve the base set by issuing the user’s query to the incomplete

database. Besides computing the aggregate over the base set (cer-

tain answers), we also use the base set to generate rewritten queries

according to the QPIAD algorithm in Section 4.2. For example,

consider the aggregate query Q : σBody Style=Convt∧Count(∗) over

the Car database fragment in Table 2. First, we would retrieve the

certain answers t1, t2, and t3 for which we would compute their

certain aggregate value Count(∗) = 3. As mentioned previously,

our first choice could be to simply return this certain answer to the

user effectively ignoring any incomplete tuples. However, there is a

better choice, and that is to generate rewritten queries according to

the algorithm in Section 4.2 in an attempt to retrieve relevant tuples

whose BodyStyle attribute is null.

When generating these rewritten queries, tuple t2 from the base

set would be used to form the rewritten query Q′
2 : σModel=Z4

based on the AFD Model Ã Body Style. Before issuing the

query to the database we must first consider how to combine the cer-

tain and possible aggregate values. We combine the entire rewritten

query’s aggregate result with the certain aggregate but do so only

for those queries in which the most likely value is equal to the value

of the constrained query attribute.4

Using the approach above, we would find the probability dis-

tribution over all Body Style values given that the Model is

known. Since the original query Q was on Body Style=Convt

we check the Body Style distribution to find the value with

the highest probability. If the value with the highest prob-

ability happens to be Convt then the entire aggregate from

the rewritten query combined with the certain aggregate, if the

highest probability is not for the value Convt then the rewrit-

ten query’s aggregate is discarded. Therefore, when consider-

ing the rewritten query Q′
2 : σModel=Z4 from above, the final

4Another approach would have been to combine a fraction of the
rewritten query’s aggregate result with the certain aggregate where
the fraction is equal to the query’s precision. However, this method
tends to produce a less accurate final aggregate as it allows each
tuple, however irrelevant, to contribute to the final aggregate.
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resulting aggregate over the incomplete data source would be

CountTotal(∗)=CountCertain(∗)+CountPossible(∗)=3+1=4 as-

suming that Convt is the maximum predicted probability given that

Model=Z4. In Section 6, we present the results of our empirical

evaluation on aggregate query processing in the context of QPIAD.

The results show an improvement in the aggregate value accuracy

when incomplete tuples are included in the calculations.

4.5 Handling Join Queries
To support joins over incomplete autonomous data sources, the

results are retrieved independently from each source and then

joined by the mediator.5 When retrieving possible answers, the

challenge comes in deciding which rewritten queries to issue to

each of the sources and in what order.

We must consider both the precision and estimated selectivity

when ordering the rewritten queries. Furthermore, we need to en-

sure that the results of each of these queries agree on their join at-

tribute values. Given that the mediator provides the global schema,

a join query posed to the mediator must be broken down as a pair

of queries, one over each autonomous relation. In generating the

rewritten queries, we know the precision and selectivity estimates

for each of the pieces, thus our goal is to combine each pair of

queries and compute a combined estimate of precision and selec-

tivity. It is important to consider these estimates in terms of the

query pair as a whole rather than simply considering the estimates

of the pair’s component queries alone. For example, when perform-

ing a join on the results of two rewritten queries, it could be the case

that the top ranked rewritten query from each relation does not have

join attribute values in common. Therefore despite their high ranks

at each of their local relations, the query pair could return little or

no answers. As a result, when retrieving both certain and possible

answers to a query, the mediator needs to order and issue the rewrit-

ten queries intelligently so as to maximize the precision/recall of the

joined results.
In processing such join queries over relations R1 and R2, we

must consider the orderings of each pair of queries from the sets
Q1∪Q1′ and Q2∪Q2′ where Q1 and Q2 are the complete queries
derived from the user’s original join query over the global schema
and Q1′ and Q2′ are the sets of rewritten queries generated from
the bases sets retrieved from R1 and R2 respectively. Given that the
queries must return tuples whose join attribute values are the same
in order for a tuple to be returned to the user, we now consider
adjusting the α parameter in our F-Measure calculation so as to
give more weight to recall without sacrificing too much precision.

The details of the approach taken by QPIAD are as follows:6

1. Send complete queries Q1 and Q2 to the databases R1 and R2 to
retrieve the base result sets RS(Q1) and RS(Q2) respectively.

2. For each base set, generate a list of rewritten queries Q1′ and Q2′

using the QPIAD rewriting algorithm described in Section 4.2.

3. Compute the set of all query pairs QP by taking the Cartesian prod-
uct of each query from the sets Q1 ∪ Q1′ and Q2 ∪ Q2′. For
each pair, calculate the new estimated precision, selectivity, and F-

Measure values.

(a) For each rewritten query in Q1′ and Q2′, use the NBC clas-
sifiers to determine the join attribute value distributions JD1
and JD2 given the determining set attribute values from the
base sets RS1 and RS2 respectively as discussed in Sec-
tion 5.2.

5Although we only discuss two-way joins, the techniques presented
are applicable to cases involving multi-way joins.
6The selectivity estimation steps are only performed for the rewrit-
ten queries because the true selectivity of the complete queries is
already known once the base set is retrieved.

(b) For each join attribute value vj1 and vj2 in JD1 and JD2
respectively, compute its estimated selectivity as the product
of the rewritten query’s precision, selectivity, and the value
probability distribution for either vj1 or vj2.

(c) For each query pair qp ∈ QP compute the estimated selectiv-
ity of the query pair to be

EstSel(qp)=
∑

vj1 ∈ JD1

vj2 ∈ JD2

EstSel(qp1, vj1)∗EstSel(qp2, vj2)

4. For each query pair, compute its F-Measure score using the new pre-
cision, estimated selectivity, and recall values. Next, select the top-K
query pairs from the ordered set of all query pairs according to the
algorithm described in Section 4.2.

5. For each selected query pair qp, if the component queries qp1 and
qp2 have not previously been issued as part of another query pair,
issue them to the relations R1 and R2 respectively to retrieve the

extended result sets R̂S1 and R̂S2.

6. For each tuple t̂i1 in R̂S1 and t̂i2 in R̂S2 where t̂i1.vj1 = t̂i2.vj2

create a possible joined tuple. In the case where either t̂i1.vj1 or

t̂i2.vj2 is null, predict the missing value using the NBC classifiers
and create the possible join tuple. Finally, return the possible joined
tuple to the user.

5. LEARNING STATISTICS TO SUPPORT

RANKING AND REWRITING
As we have discussed, to retrieve possible answers in the or-

der of their relevance, QPIAD requires three types of information:

(i) attribute correlations in order to generate rewritten queries (ii)

value distributions in order to estimate the precision of the rewrit-

ten queries, and (iii) selectivity estimates which combine with the

value distributions to order the rewritten queries. In this section,

we present how each of these are learned. Our solution consists

of three stages. First, the system mines the inherent correlations

among database attributes represented as AFDs. Then it builds

Naı̈ve Bayes Classifiers based on the features selected by AFDs

to compute probability distribution over the possible values of the

missing attribute for a given tuple. Finally, it uses the data sampled

from the original database to produce estimates of each query’s se-

lectivity. We exploit AFDs for feature selection in our classifier

as it has been shown that appropriate feature selection before clas-

sification can improve learning accuracy[5]. For a more in depth

evaluation of our feature selection techniques we refer the reader to

[17].

5.1 Learning Attribute Correlations by
Approximate Functional Dependen
cies(AFDs)

In this section, we describe the method for mining AFDs from

a (probed) sample of database. We also present a brief description

of our algorithm for pruning noisy AFDs in order to retain only the

valuable ones for use in the query rewriting module. Recall that

an AFD φ is a functional dependency that holds on all but a small

fraction of tuples. According to [19], we define the confidence of

an AFD φ on a relation R as: conf(φ) = 1 − g3(φ), where g3 is

the ratio of the minimum number of tuples that need to be removed

from R to make φ a functional dependency on R. Similarly, we

define an approximate key (AKey) as a key which holds on all but a

small fraction of the tuples in R. We use the TANE[12] algorithm

to discover AFDs and AKeys whose confidence is above a threshold

β to ensure that we do not miss any significant AFDs or AKeys.
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Pruning Noisy AFDs: In most cases, AFDs with high confidence

are desirable for learning probability distributions for missing val-

ues. However, not all high confidence AFDs are useful for feature

selection. The latter include those whose determining set contains

high confidence AKeys. For example, consider a relation car(VIN,

Model, Make). After mining, we find that VIN is an AKey (in fact,

a key) which determines all other attributes. Given a tuple t with

null value on Model, its VIN is not helpful in estimating the missing

Model value, since there are no other tuples sharing t’s VIN value.

Therefore, AFDs with a superset of AKey attributes in the deter-

mining set are not useful features for classification and should be

removed. For example, suppose we have an AFD {A1, A2}ÃA3

with confidence 0.97, and an AKey {A1} with confidence 0.95.

Since most of {A1, A2} value pairs would be distinct, this AFD

won’t be useful in predicting the values for A3 and needs to be

pruned. An AFD will be pruned if the difference between its con-

fidence and the confidence of the corresponding AKey is below a

threshold δ (currently set at 0.3 based on experimentation).

5.2 Learning Value Distributions using Clas
sifiers

Given a tuple with a null value, we now need to estimate the prob-

ability of each possible value of this null. We reduce this problem

to a classification problem using mined AFDs as selected features.

A classifier is a function f that maps a given attribute vector ~x to

a confidence that the vector belongs to a class. The input of our

classifier is a random sample S of an autonomous database R with

attributes A1, A2, · · · , An and the mined AFDs. For a given at-

tribute Am, (1 ≤ m ≤ n), we compute the probabilities for all

possible class values of Am, given all possible values of its deter-

mining set dtrSet(Am) in the corresponding AFDs.

We construct a Naı̈ve-Bayes Classifier(NBC) Am. Let a value

vi in the domain of Am represent a possible class for Am. Let ~x

denote the values of dtrSet(Am) in a tuple with null on Am. We

use Bayes theorem to estimate the probabilities: P (Am=vi|~x) =
P (~x|Am=vi)P (Am=vi)

P (~x)
for all values vi in the domain. To im-

prove computation efficiency, NBC assumes that for a given class,

the features X1, · · · , Xn are conditionally independent, and there-

fore we have: P (~x|Am=vi) =
∏
i

P (xi|Am=vi). Despite this

strong simplification, NBC has been shown to be surprisingly ef-

fective[9]. In the actual implementation, we adopt the standard

practice of using NBC with a variant of Laplacian smoothing called

m-estimates[23] to improve the accuracy.

5.3 Combining AFDs and Classifiers
So far we glossed over the fact that there may be more than one

AFD associated with an attribute. In other words, one attribute may

have multiple determining set with different confidence levels. For

example, we have the AFD ModelÃMake with confidence 0.99.

We also see that certain types of cars are made in certain coun-

tries, so we might have an AFD CountryÃMake with some con-

fidence value. As we use AFDs as a feature selection step for NBC,

we experimented with several alternative approaches for combining

AFDs and classifiers to learn the probability distribution of possible

values for null. One method is to use the determining set of the AFD

with the highest confidence which we call the Best-AFD method.

However, our experiments showed that this approach can degrade

the classification accuracy if its confidence is too low. Therefore we

ignore AFDs with confidence below a threshold (which is currently

set to be 0.5 based on experimentation), and instead use all other

attributes to learn the probability distribution using NBC. We call

this approach Hybrid One-AFD. We could also use an Ensemble

of classifiers corresponding to the set of AFDs for each attribute,

and then combine the probability distribution of each classifier by

a weighted average. At the other extreme, we could ignore fea-

ture selection based on AFD completely but use all the attributes

to learn probability distribution using NBC. Our experiments de-

scribed in Section 6 show that Hybrid One-AFD approach has the

best classification accuracy among these choices.

5.4 Learning Selectivity Estimates
As discussed in Section 4, the F-measure ranking requires an

estimate of the selectivity of a rewritten query. This is computed as

SmplSel(Q)∗SmplRatio(R)∗PerInc(R), where SmplSel(Q)
is the selectivity of the rewritten query Q when it is issued to the

sample. SmplRatio(R) is the ratio of the original database size over

the size of the sample. We send queries to both the original database

and its sample off-line, and use the cardinalities of the result sets to

estimate the ratio. PerInc(R) is the percentage of tuples that are

incomplete in the database. It can be estimated as the percentage

of incomplete tuples that we encountered while creating the sample

database.

6. EMPIRICAL EVALUATION
In this section, we describe the implementation and an empirical

evaluation of our system QPIAD for query processing over incom-

plete autonomous databases.

6.1 Implementation and User Interface
The QPIAD system is implemented in Java and has a

web-form based interface through which the users issue their

queries. A live demo of the QPIAD prototype is available at

http://rakaposhi.eas.asu.edu/qpiad. Given a user

query, the system returns each relevant possible answer to the user

along with a confidence measure equal to the answer’s assessed de-

gree of relevance. Although the confidence estimate could be bi-

ased due to the imperfections of the learning methods, its inclusion

can provide useful guidance to the users, over and above the rank-

ing.

In addition, QPIAD can optionally “explain” its relevance as-

sessment by providing snippets of its reasoning as support. In

particular, it justifies the confidence associated with an answer

by listing the AFD that was used in making the density assess-

ment. In the case of our running example, the possible answer

t4 for the query Q′ will be justified by showing the learned AFD

ModelÃBody Style.

6.2 Experimental Settings
To evaluate the QPIAD system, we performed evaluations over

three data sets. The first dataset, Cars(year, make, model, price,

mileage, body style, certified), is built by extracting around 55,000

tuples from Cars.com. Databases like this one are inherently

incomplete as described in Table 1. The second dataset, Cen-

sus(age, workshop, education, marital-status, occupation, relation-

ship, race, sex, capital-gain, capital-loss, hours-per-week, native-

country), is the United States Census database made up of 45,000

tuples which we obtained from the UCI data repository. The third

dataset, Complaints(model, year, crash, fail date, fire, general com-

ponent, detailed component, country, ownership, car type, mar-

ket), is a Consumer Complaints database which contains roughly

200,000 tuples collected from the NHSTA Office of Defect Investi-

gations repository and is used in conjunction with the Cars database

for evaluating join queries.
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To evaluate the effectiveness of our algorithm, we need to have

a “ground truth” in terms of the true values corresponding to the

missing or null values. To this end, we create our experimental

datasets in two steps. First a “ground truth dataset” (GD) is created

by extracting a large number of complete tuples from the online

databases. Next, we create the experimental dataset (ED) by ran-

domly choosing 10% of the tuples from GD and making them in-

complete (by randomly selecting an attribute and making its value

null). Given our experience with online databases (see Table 1),

10% incompleteness is fairly conservative.

During the evaluation, the ED is further partitioned into two

parts: a training set (i.e. the sample from which AFDs and classi-

fiers are learned) and a test set. To simulate the relatively small per-

centage of the training data available to the mediators, we experi-

mented with training sets of different sizes, ranging in size from 3%
to 15% of the entire database, as will be discussed in Section 6.5.

To compare the effectiveness of retrieving relevant possible an-

swers, we consider two salient dimensions of the QPIAD ap-

proach, namely Ranking and Rewriting, which we evaluate in terms

of Quality and Efficiency respectively. For the experiments, we

randomly formulate single attribute and multi attribute selection

queries and retrieve possible answers from the test databases.

We compare QPIAD with the ALLRETURNED and ALL-

RANKED approaches. Recall that ALLRETURNED approach

presents all tuples containing missing values on the query con-

strained attribute without ranking them. The ALLRANKED ap-

proach begins by retrieving all the certain and possible answers,

as in ALLRETURNED, then it ranks possible answers according to

the classification techniques described in Section 5. In fact, nei-

ther approach is feasible as web databases are unlikely to support

binding of null values in queries. In contrast, the QPIAD approach

uses query rewriting techniques to retrieve only relevant possible

answers in a ranked order and fits for web applications. Even when

bindings of null values are allowed, we show in this section that the

QPIAD approach provides better quality and efficiency.

In the rest of the evaluation, we focus on comparing the effec-

tiveness of retrieving relevant possible answers. In other words, all

the experiments presented in this section, except for those on ag-

gregate queries, ignore the “certain” answers as all the approaches

are expected to perform equally well over such tuples.

6.3 Evaluation of Quality
To evaluate the effectiveness of QPIAD ranking, we compare it

against the ALLRETURNED approach which simply returns to the

user all tuples with missing values on the query attributes. Figures

3 and 4 show the precision and recall curves of a query on the Cars

and Census databases respectively. It shows that the QPIAD ap-

proach has significantly higher precision when compared to ALL-

RETURNED.

To reflect the “density” of the relevant answers along the time

line, we also plot the precision of each method at the time when first

K(K=1, 2, · · · , 100) answers are retrieved as shown in Figures

6 and 7. Again QPIAD is much better than ALLRETURNED in

retrieving relevant possible answers in the first K results, which is

critical in web scenarios.

Effect of Alpha Value on F-Measure: To show the effect of α on

precision and recall, we’ve included Figure 5 which shows the pre-

cision and recall of the query Q : σPrice=20000 for different values

of α. Here we assume a 10 query limit on the number of rewritten

queries we are allowed to issue to the data source. This assumption

is reasonable in that we don’t want to waste resources by issuing

too many unnecessary queries. Moreover, many online sources may

themselves limit the number of queries they are willing to answer

in a given period of time (e.g. Google Base).

We can see that as the value of α is increased from 0, QPIAD

gracefully trades precision for recall. The shape of the plots is

a combined affect of the value of α (which sets the tradeoff be-

tween precision and recall) and the limit on the number of rewritten

queries (which is a resource limitation). For any given query limit,

for smaller values of α, queries with higher precision are used, even

if they may have lower throughput. This is shown by the fact that

the lower α curves are higher up in precision but don’t reach high

recall. As α increases, we allow queries with lower precision so that

we can get a higher throughput, thus their curves are lower down

but extend further to the right.

6.4 Evaluation of Efficiency
To evaluate the effectiveness of QPIAD’s rewriting, we compare

it against the ALLRANKED approach which retrieves all the tuples

having missing values on the query constrained attributes and then

ranks all such tuples according to their relevance to the query. As

we mentioned earlier, we do not expect the ALLRANKED approach

to be feasible at all for many real world autonomous sources as they

do not allow direct retrieval of tuples with null values on specific

attributes. Nevertheless, these experiments are conducted to show

that QPIAD outperforms ALLRANKED even when null value se-

lections are allowed. Figure 8 shows the number of tuples that are

retrieved by the ALLRANKED and QPIAD approaches respectively

in order to obtain a desired level of recall. As we can see, the num-

ber of tuples retrieved by the ALLRANKED approach is simply the
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total number of tuples with missing values on the query attribute,

hence it is independent of the desired level of recall. On the other

hand, the QPIAD approach is able to achieve similar levels of re-

call while only retrieving a small fraction of the tuples retrieved by

ALLRANKED. The reason for this is that many of the tuples re-

trieved by ALLRANKED, while having missing values on the query

attributes, are not very likely to be the value the user is interested

in. QPIAD avoids retrieving irrelevant tuples and is therefore very

efficient. Moreover, the ALLRANKEDapproach must retrieve the

entire set of tuples with missing values on constrained attributes in

order to achieve even the lowest levels of recall.

6.5 Evaluation of Learning Methods

Accuracy of Classifiers: Since we use AFDs as a basis for feature

selection when building our classifiers, we perform a baseline study

on their accuracy. For each tuple in the test set, we compute the

probability distribution of possible values of a null, choose the one

with the maximum probability and compare it against the actual

value. The classification accuracy is defined as the proportion of the

tuples in the test set that have their null values predicted correctly.

Table 3 shows the average prediction accuracy of various AFD-

enhanced classifiers introduced in Section 5.3. In this experiment,

we use a training set whose size is 10% of the database. The clas-

sification accuracy is measured over 5 runs using different train-

ing set and test set for each run. Considering the large domain

sizes of attributes in Cars database (varying from 2(Certified) to

416(Model)), the classification accuracy obtained is quite reason-

able, since a random guess would give much lower prediction accu-

racy. We can also see in Table 3 that the Hybrid One-AFD approach

performs the best and therefore is used in our query rewriting im-

plementation.7

Database Best All Hybrid
AFD Attributes One-AFD

Cars 68.82 66.86 68.82

Census 72 70.51 72

Table 3: Null value prediction accuracy across different AFD-

enhanced classifiers

7In Table 3 the Best-AFD and Hybrid One-AFD approaches are
equal because there were high confidence AFDs for all attributes in
the experimental set. When this is not the case, the Hybrid One-
AFD approach performs better than the Best-AFD approach.

While classifier accuracy is not the main focus of our work,

we did do some comparison studies to ensure that our classifier

was competitive. Specifically, we compared AFD-enhanced NBC

classifier with two other approaches — one based on association

rules[31] and the other based on learning Bayesian networks from

the data [11]. For Bayes network learning, we experimented with

the WEKA Data Mining Software. We found that although the

AFD-enhanced classifiers were significantly cheaper to learn than

Bayes networks, their accuracy was competitive. To compare our

approach against association-rule based classifiers, we used the al-

gorithm proposed in [31]. Our experiments showed that associa-

tion rules perform poorly as they focus only on attribute-value level

correlations and thus fail to learn from small samples. In contrast

AFD-enhanced NBC classifiers can synergistically exploit schema-

level and value-level correlations. Details of these evaluations are

available [17].

Robustness w.r.t. Confidence Threshold on Precision: QPIAD

presents ranked relevant possible answers to users along with a con-

fidence so that the users can use their own discretion to filter off

answers with low confidence. We conducted experiments to eval-

uate how pruning answers based on a confidence threshold affects

the precision of the results returned. Figure 9 shows the average

precision obtained over 40 test queries on Cars database by pruning

answers based on different confidence thresholds. It shows that the

high confidence answers returned by QPIAD are most likely to be

relevant answers.
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Figure 9: Average Precision for various confidence thresh-

olds(Cars).

Robustness w.r.t. Sample Size: The performance of QPIAD ap-

proach, in terms of precision and recall, relies on the quality of the

AFDs, Naı̈ve Bayesian Classifiers and selectivity estimates learned

by the knowledge mining module. In data integration scenarios, the
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availability of the sample training data from the autonomous data

sources is restrictive. Here we present the robustness of the QPIAD

approach in the face of limited size of sample data. Figure 10 shows

the accumulated precision of a selection query on the Car database,

using various sizes of sample data as training set. We see that the

quality of the rewritten queries all fluctuate in a relatively narrow

range and there is no significant drop of precision with the sharp

decrease of sample size from 15% to 3%. We obtained a similar

result for the Census database [17].
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6.6 Evaluation of Extensions

Effectiveness of using Correlation Between Data Sources:

We consider a mediator performing data integration over three

data sources Cars.com (www.cars.com), Yahoo! Autos (au-

tos.yahoo.com) and CarsDirect (www.carsdirect.com). The global

schema supported by the mediator and the individual local schemas

are shown in Figure 2. The schema of CarsDirect and Yahoo! Autos

do not support Body Style attribute while Cars.com does support

queries on the Body Style. We use the AFDs and NBC classi-

fiers learned from Cars.com to retrieve cars from Yahoo! Autos

and CarsDirect as possible relevant possible answers for queries on

Body Style, as discussed in Section 4.3.

To evaluate the precision, we check the actual Body Style of

the retrieved car tuples to determine whether the tuple was indeed

relevant to the original query. The average precision for the first K

tuples retrieved from Yahoo! Autos and CarsDirect over the 5 test

queries is quite high as shown in Figure 11. This shows that using

the AFDs and value distributions learned from correlated sources,

QPIAD can retrieve relevant answers from data sources not sup-

porting query attribute.
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Figure 11: Precision curves for first K tuples retrieved using

correlated source Cars.com.

Evaluation of Aggregate Queries: To evaluate our approach in

terms of supporting aggregate queries, we measured the accuracy

of aggregation queries in QPIAD where missing values in the in-

complete tuples are predicted and used to compute the final aggre-

gate result. We compare the accuracy of our query rewriting and

missing value prediction with the aggregate results from the com-

plete oracular database and the aggregate results from the incom-

plete database where incomplete tuples are not considered. Next

we will outline the details of our experiments.

We performed the experiments over an Cars database con-

sisting of 8 attributes. First, we created all distinct subsets

of attributes where the size of the subsets ranged from 1 to

7 (e.g. {make}, {make, model}, {make, model, year}, ...,

{model}, {model, year}, ..., etc.). Next, we issued a query to

the sample database and selected the distinct combinations of val-

ues for each of these subsets.
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Figure 12: Accuracy of aggregate queries with and without

missing value prediction.

Using the distinct value combinations for each of these subsets,

we created queries by binding the values to the corresponding at-

tribute in the subsets. We then issued each query to the complete

database to find its true aggregate value. We also issued the same

query to the incomplete database and computed the aggregate value

without considering incomplete tuples. Finally, we issued the query

to the incomplete database only this time we predicted the missing

values and included the incomplete tuples as part of the aggregate

result.

In Figure 12, we show the percentage of queries which achieve

different levels of accuracy with and without missing value predic-

tion. The results are significant, for example, Figure 12(a) shows

that when missing value prediction is used to computed the aggre-

gate result, roughly 10% more queries achieve 100% accuracy than

if the aggregate had only taken the certain tuples into account, thus

ignoring all incomplete ones.

Evaluation of Join Queries: To evaluate our approach in the con-

text of join queries we performed a set of experiments on the Cars

and Complaints databases. In the experiments, we join the Cars and

Complaints relations on the Model attribute. The experimental re-

sults shown in Figure 13 involve join queries where the attributes

from both the relations are constrained. We evaluate the perfor-

mance of our join algorithm in terms of precision and recall with

respect to a complete oracular database.

We present the results for a join query Model =
Grand Cherokee ∧ General Component = Engine and

Engine Cooling. We set α to 0, 0.5 and 2 to measure the effect of

giving different preferences to precision and recall. In addition, we

restricted the number of rewritten queries which could be sent to

the database to 10 queries. Figure 13(a) shows the precision-recall

curve for this query. We can see that for α = 0 high precision is

maintained but recall stops at 0.34. For α = 0.5 the precision is

the same as when α = 0 up until recall reaches 0.31. At this point,

the precision decreases although, a higher recall, namely 0.66, is
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Cars ./Model Complaints

achieved. The precision when α = 2 is similar to the case where

α = 0.5 but achieves 0.74 recall with only a small loss in preci-

sion near the tail of the curve. When looking at the top 10 rewritten

queries for each of these α values we found that when α = 0, too

much weight is given to precision and thus incomplete tuples are

never retrieved from the Cars database. This is due to our ability

to predict missing values which happens to be better on the Com-

plaints database and hence the top 10 rewritten queries tend to in-

clude the complete query from the Cars database paired with an

incomplete query from the Complaints database. However, when

α = 0.5 or α = 2 incomplete tuples are retrieved from both the

databases because in this approach the ranking mechanism tries to

combine both precision and recall. Similar results for the query

Q :Model=f150∧General Component=Electrical System are shown

in Figure 13(b).

7. CONCLUSION
Incompleteness is inevitable in autonomous web databases. Re-

trieving highly relevant possible answers from such databases is

challenging due to the restricted access privileges of mediator, lim-

ited query patterns supported by autonomous databases, and sensi-

tivity of database and network workload in web environment. We

developed a novel query rewriting technique that tackles these chal-

lenges. Our approach involves rewriting the user query based on the

knowledge of database attribute correlations. The rewritten queries

are then ranked by leveraging attribute value distributions accord-

ing to their likelihood of retrieving relevant possible answers before

they are posed to the databases. We discussed rewriting techniques

for handling queries containing selection, joins and aggregations.

To support such query rewriting techniques, we developed methods

to mine attribute correlations in the form of AFDs and the value dis-

tributions of AFD-enhanced classifiers, as well as query selectivity

from a small sample of the database itself. Our comprehensive ex-

periments demonstrated the effectiveness of our query processing

and knowledge mining techniques.

As we mentioned, part of the motivation for handling incom-

pleteness in autonomous databases is the increasing presence of

databases on the web. In this context, a related issue is handling

query imprecision–most users of online databases tend to pose im-

precise queries which admit answers with varying degrees of rel-

evance (c.f. [25]). In our ongoing work, we are investigating the

issues of simultaneously handling data incompleteness and query

imprecision [16].
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