
Randomized Algorithms for Data Reconciliation in Wide
Area Aggregate Query Processing∗

Fei Xu, Christopher Jermaine
Department of Computer and Information Sciences and Engineering

University of Florida
Gainesville, FL, USA, 32611

{feixu, cjermain}@cise.ufl.edu

ABSTRACT
Many aspects of the data integration problem have been
considered in the literature: how to match schemas across
different data sources, how to decide when different records
refer to the same entity, how to efficiently perform the re-
quired entity resolution in a batch fashion, and so on. How-
ever, what has largely been ignored is a way to efficiently
deploy these existing methods in a realistic, distributed en-
terprise integration environment. The straightforward use
of existing methods often requires that all data be shipped
to a coordinator for cleaning, which is often unacceptable.
We develop a set of randomized algorithms that allow effi-
cient application of existing entity resolution methods to the
answering of aggregate queries over data that have been dis-
tributed across multiple sites. Using our methods, it is pos-
sible to efficiently generate aggregate query results that ac-
count for duplicate and inconsistent values scattered across
a federated system.

1. INTRODUCTION
The problem of large-scale data integration [21, 6, 25, 16,
28], is of fundamental, real-world importance. In the en-
terprise setting, data are often scattered across dozens or
hundreds of different databases, each of which were devel-
oped independently. The dominant approach to answering
queries in the enterprise integration environment has been
the so-called “federated” approach [21], where an enterprise-
wide query is broken up into a set or a series of individ-
ual queries that are then issued to the actual data sources.
Many systems-oriented aspects of this approach are well-
understood, but quite surprisingly there is a significant gap
in the state-of-the-art with respect to one of the most im-
portant applications for an enterprise information integra-
tion system: statistical or analytic processing. The specific
problem that we consider in this paper is answering SUM,

∗Material in this paper is based upon work supported by
the National Science Foundation under Grant No. 0347408.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

AVERAGE, GROUP BY, and/or HAVING queries and the like in a
distributed fashion.

This sort of query processing is quite different from trans-
action processing, and at first glance, it might seem very
easy to do in a federated environment. For example, imag-
ine the following, simple query:

SELECT SUM(e.SALARY)

FROM EMP e

WHERE e.DIVISION = ’MFG’ or e.DIVISION = ’SALES’

One simple way to answer this query is to compute a set
of summary statistics at each individual site, and then send
them back to a coordinator for final processing. If three
sites have relevant data and the individual results are ans1,
ans2, and ans3, then the final query result can be computed
as ans = ans1 + ans2 + ans3.

Unfortunately, in practice things might be much more dif-
ficult due to duplicated and/or inconsistent data. In our
example, an employee may have recently moved from one
of the company’s divisions to another, and as a result there
may be two records associated with that employee at two
different data sites. By simply adding the local totals, the
employee would be counted twice, and one of the records
counted would have old or stale data. Researchers have con-
sidered methods for discovering such duplicate data [23, 5,
29, 8, 12] and for efficiently handling this problem in a cen-
tralized environment [14, 1, 7]. However, what has not been
addressed is how to extend these methods to the real-life sit-
uation where they are most applicable: a distributed system
where different sites own different subsets of the data.

The obvious way to extend these methods to a distributed
environment is to ship all of the relevant data to the coor-
dinator, who gathers all of the data and performs the rec-
onciliation locally. However, a single aggregate query may
touch most of the database records across a large number of
data sites. Because so much data are relevant to comput-
ing the result, the obvious solution may require gigabytes or
terabytes of communication.

Our Contributions. We propose a set of algorithms that
allow computation of an aggregate function over a database
table that has been distributed across many sites, where de-
duplication and/or reconciliation may be needed. At the
most fundamental level, our goal is to allow the use of any
existing technique for entity resolution and data reconcili-
ation during the aggregate computation, but to provide a
framework that renders virtually any existing method prac-
tical in a distributed environment. This is not an easy prob-
lem: in the case where duplicate data may be located any-

639

where and the method used to reconcile the data is arbitrary,
it is non-obvious how to avoid shipping large volumes of data
around to locate duplicate or inconsistent records.

To avoid shipping all of the data, we propose using ran-
domization. Due to the randomness, the algorithms are not
guaranteed to provide an exact answer. However, the inac-
curacy of the approach is rigorously monitored and statisti-
cal accuracy guarantees are provided. These guarantees are
valid regardless of the underlying matching technology that
is used. While some users may be hesitant to accept any
uncertainty in the query result, there is a strong argument
that incurring a small amount of rigorously-controlled inac-
curacy in order to provide for efficient computation should
not be a concern: data integration will always be an approx-
imate process anyway, given the sort of questions that must
be asked (that is, one may never be quite sure that ’John

Smith’ at Site A is not the same person as ’Jon Smith’ at
Site B). Thus, adding a bit of additional inaccuracy above
and beyond the inaccuracy already incurred during the in-
tegration may be acceptable.

The technical contributions of this paper are as follows:

• We propose several different randomized algorithms
for addressing the computational issues associated with
wide-area reconciliation during wide-area aggregate pro-
cessing.

• Our algorithms are very general, in the sense that they
can handle any reconciliation problem specified by in-
stantiating a user-defined similarity function Sim()
that tells when records need to be reconciled, and
a user-defined reconciliation function Rec() that per-
forms the reconciliation.

• The applicability of our various algorithms depends
upon simple properties of Sim() and Rec(). As long
as the user can accurately answer a single “yes/no”
question regarding each of these functions, it is trivial
for a system to choose the best combination of algo-
rithms to use for greatest accuracy and efficiency.

Paper Organization. The paper is organized as follows.
Section 2 formally describes our problem as well as the basic
solution. Section 3 considers the important properties of the
Sim() and Rec() functions that dictate specific, computa-
tional aspects of the solution. Section 4 discusses how the
required randomness can be provided via distributed sam-
pling, and Section 5 considers how to boost the accuracy of
the computation. Section 6 presents experiments, Section 7
presents related work, and Section 8 concludes the paper.

2. THE RECONCILE-SUM PROBLEM

2.1 Example Application
Imagine that a large company has many employees working
in different cities. At each location, a database table stores
the information regarding employees’ salaries. Since an em-
ployee may have recently moved from one of the company’s
locations to another, there may be two records associated
with an employee at two different data sites.

R1: New York
Name Salary

Michael $10000
Daniel $7864
David $8433

R2: Chicago
Name Salary

Christina $7633
Steven $8003
Sean $9607

R3: Los Angeles
Name Salary

Christina $7412
Emily $10822
Michael $9899
James $7322

Now, imagine that the company wishes to generate a re-
port detailing its current salary expenditure. To allow for
this, we assume the existence of a user-specified, boolean
similarity function Sim() that returns true if two records
are similar enough that they may refer to the same entity.
Sim() may make use of the results of a mapping from schema
to schema [27], and it may encode other complex computa-
tions. As we discuss subsequently, many different similarity
functions are possible, though the choice of an appropriate
similarity function is not the focus of our work. In our ex-
ample, imagine that Sim(r1, r2) returns true if and only if
r1.Name = r2.Name. Given the function Sim(), the first step
in computing the total sum over all employees is to partition
R = R1 ∪ R2 ∪ R3 into a set of equivalence classes1. These
equivalence classes are defined so that if there exists a list
L where L = 〈r1, r2, ..., rn〉 and Sim(ri, ri+1) is always true
for i from 1 to n − 1, then all of the records in L are in
the same equivalence class. Intuitively, if two records are
“reachable” from one another in the sense that there is a
chain of similar records from one to another, then the two
records are said to be in the same equivalence class. In our
example, the following are the eight equivalence classes:

S = {{(Michael, 10000), (Michael, 9899)},
{(Christina, 7633), (Christina, 7412)},
{(Daniel, 7864)},
{(David, 8433)},
{(Steven, 8003)},
{(Sean, 9607)},
{(Emily, 10822)},
{(James, 7322)}}

Once R has been partitioned into a set of equivalence classes,
then the next step is to apply a reconciliation function Rec()
to each equivalence class, and to sum up the results. One
way to define Rec() is to take the average of the value to be
aggregated over all similar records:

Rec({(Michael, 10000),(Michael, 9899)}) =

(10000 + 9899)/2 = 9949.5

Many other functions are reasonable. For example, we can
define Rec() to accept the maximum value over all similar
records:

Rec({(Michael, 10000),(Michael, 9899)}) =

max(10000, 9899) = 10000

1Here, “∪” denotes the bag union operation. What we refer
to as “equivalence classes” are also referred to as “duplicate
clusters” in the literature.

640

In the first case, the final answer to the query is 9949.5 +
7864+8433+7572.5+8003+9607+10822+7322 = 69523;
in the second case, the final answer is 69684. In either case,
given that the similarity function Sim() is equivalent to
a check for equality on the Name attribute, if the relation
R could be materialized in its entirety, the resulting query
could easily be written in SQL as:

SELECT SUM (GroupTotal) FROM (

SELECT Rec(r) AS GroupTotal

FROM R r

GROUP BY r.Name)

This query can be made more general, but for simplicity we
will ignore the possibility of including a WHERE clause or a
HAVING clause in the inner query, since this is easy to do in
our framework. A HAVING clause can easily be incorporated
into Rec(), and a WHERE clause can be handled either at
each data site (by simply ignoring records not matching a
query predicate) or by incorporation into Rec(). Additional
GROUP BYs (such as returning a separate sum for each of
the company’s divisions) can be handled by issuing many
queries, one for each group. Other aggregation functions
(such as AVERAGE, STD DEV, and so on) can be seen as special
cases of the SUM aggregate because they can be written as a
function of several SUM queries. For example, AVERAGE is the
ratio of two SUM aggregates.

Why is this hard?
This example is simple, but performing the computation in
a distributed environment is not. We could simply perform
the query locally at each site and add the local totals at a co-
ordinator, but in our example, both Michael and Christina

would be counted twice in the final result. The difficulty of
performing this reconciliation in a distributed environment
is that it is virtually impossible to know whether a given
record r has external matches under Sim() at other sites
without shipping r to an external location to check for a
match. If a query touches millions of records, this shipping
of data is not acceptable.

2.2 Problem Definition
The problem we solve is defined as follows:

The Reconcile-Sum (RS) Problem. We are given the
following:

• A set of records R distributed over various data sites,

• A similarity function Sim(), which takes two records
and returns true if they are similar, false otherwise,

• A reconciliation function Rec(), which takes a subset
of records of R and returns some numerical value.

Let S be the set of equivalence classes in R that are induced
by Sim(). Let Mi denote the sum of Rec() over all classes
in S of size i:

Mi =
X

S∈S∧|S|=i

Rec(S)

Then the goal of the RS Problem is to compute M , which
is defined as:

M =
mX
i

Mi

where m is the maximum equivalence class size.

The reader may note that we have broken the computation
of M into a number of different compactions, each over a set
of classes of the same size. Breaking the computation of M
into the computation of a set of Mi values is not necessary
when defining the RS problem. However, it is convenient.
As we will see in the remainder of the paper, estimating
Mi for different values of i can vary widely in terms of the
computational cost and/or accuracy. Thus, it will make
sense to consider the various Mi’s separately.

2.3 The Basic Randomized Solution
Given the computational cost associated with computing the
answer to this type of aggregate in a distributed environ-
ment, this paper considers several sampling based random-
ized approaches for computing an approximate answer. Our
focus is on sampling due to its generality. Unlike other meth-
ods (such as sketches [11]) that are typically constructed to
answer a single query, the same sample can be re-used many
times for many different queries, and the cost of construct-
ing the sample can be amortized. All of our algorithms are
variations on Algorithm 1. The GetAnswer() function of

Algorithm 1: Basic RS Framework

Function GetAnswer()
1. S′ = SampleClasses()

2. M̂ = 0
3. For i = 1 to m:

4. M̂i = 0
5. For each class S ∈ S′ where |S| = i:

6. M̂i + = 1
pi

Rec(S)

7. M̂+ = M̂i

8. Return M̂

Algorithm 1 is run at a designated coordinator site. First,
the function SampleClasses() is run to obtain a Bernoulli
sample2 of S, the set of all equivalence classes over R. This
requires a distributed algorithm that samples data at all of
the sites and returns it to the coordinator (a problem that
we consider subsequently). Let the probability of sampling

a class of size i be pi. Then M̂i as computed in the loop of
line (5) is an unbiased estimator for the sum of Rec() applied
to all classes of size i. By simply summing over all possible
equivalence class sizes, the estimator M̂ is then an unbiased
estimate for M , the final answer to the RS Problem.

Determining the Accuracy
Not only is this solution fairly simple, it is also easy to de-
scribe the accuracy of the resulting estimate. For an unbi-
ased estimator, this is typically done by deriving the esti-
mator’s variance:

LEMMA 1. The variance of M̂i is

var(M̂i) = (
1

pi
− 1)

X
S∈S∧|S|=i

Rec2(S)

2A Bernoulli sample is a variable-sized sample where the
decision of whether or not to sample an item is made based
upon the result of a single, independent coin flip.

641

For brevity, the proof has been omitted. Because each M̂i

is independent, the next lemma follows immediately:

LEMMA 2. The variance of M̂ is

var(M̂) =
X

i

var(M̂i)

In general, it is not possible to use these formulas to com-
pute var(M̂i) or var(M̂) exactly without access to all of
the data. However, we can provide an unbiased estimate as
follows:

LEMMA 3. An estimator of var(M̂i) is

ˆvar(M̂i) =
1

pi
(

1

pi
− 1)

X
S∈S′∧|S|=i

Rec2(S)

LEMMA 4. An estimator of var(M̂) is

ˆvar(M̂) =
X

i

ˆvar(M̂i)

Given this estimate for the variance of M̂ , it is then easily
possible to attach confidence bounds to M̂ with any ap-
plicable method; we choose Central Limit Theorem based
bounds. For 95% confidence bounds, one can use M ∈
M̂ ± 2× var(M̂)

1
2 ; for 99% bounds, the 2 is replaced with a

3. More conservative Chebyshev bounds can also be used.

That’s Not All, Is It?
While the basic algorithm is simple, certain technical points
require far deeper consideration. The remainder of the pa-
per is devoted to two fundamental questions regarding the
algorithm:

1. How can one implement SampleClasses() efficiently
and correctly compute the required Bernoulli samples
over the distributed data?

2. Can more complex methods be used to improve the
simple estimator M̂?

3. CLASSIFYING THE FUNCTIONS
The answer to the first question depends on the similarity
function Sim(), and the second depends on the reconcilia-
tion function Rec(). This section considers at a high level
how the two functions answer the aforementioned questions.

3.1 Classifying the Similarity Function
The property of Sim() governing how the sampling should
be implemented is whether or not Sim() is transitive. Sim()
is transitive if and only if given three arbitrary records r1,
r2, and r3 it must always be the case that:

(Sim(r1, r2) = Sim(r2, r3) = true) ⇒ (Sim(r1, r3) = true)

A simple equality check on one or more attributes is tran-
sitive, as is an equality check preceded by the transformation
of all upper-case characters to lower-case. In fact, it can eas-
ily be shown that a transitive similarity function is exactly
one for which a canonical form for each equivalence class
induced by Sim() exists. For example, define the set:

William: {Will, Bill, William, Wm., Billy, Willy, Willie}

All members of this set are names that are often used as syn-
onyms for “William”. If Sim() first transforms any occur-
rence of a value in this set to the canonical form “William”
and then checks for equality, Sim() will be transitive.

On the other hand, many similarity functions are not tran-
sitive. For example, to allow for misspellings, Sim() may be
based upon edit distance. Define Sim() so that it returns
true if and only if the edit distance between two names is
within a cutoff value. It is obvious in this case that both
Sim(r1, r2) = true and Sim(r2, r3) = true cannot guar-
antee Sim(r1, r3) = true. Let r1, r2, and r3 be “Tom”,
“Thom”, and ”Thomas”, respectively. The edit distance
between the first two is one, the distance between the last
two is two, but the distance between the first and last is
three. At a cutoff of two, the first and last records are not
similar. However, if all three records appear in S, then r2

bridges the gap from r1 to r3 and all will be members of the
same equivalence class.

The Importance of Transitivity
For a transitive similarity function, it is relatively easy to
obtain a Bernoulli sample from S. We first map each record
to its canonical form, and then use the result as an argument
to a hash function in order to produce a random value be-
tween 0 and 1. If the return value is less than p, the record is
sampled and returned to the coordinator. Since all records
in an equivalence class map to the same canonical form (and
hence to the same random value), either none of the records
from a class will be sampled (with probability (1 − p)), or
else they all will (with probability p).

For non-transitive similarity functions, this method does
not work because two records in the same equivalence class
may be connected via a chain of records in such a way that
only adjacent records are similar; thus, membership in an
equivalence class is data-dependent. In this case, more com-
plicated methods are needed to obtain a Bernoulli sample,
as we discuss subsequently.

3.2 Classifying the Reconciliation Function
We call the analogous, important property of the Rec() func-
tion the size-ratio property. The presence of this property
determines whether we can use a more sophisticated esti-
mator than M̂ from Algorithm 1. Formally, the size-ratio
property holds if for any equivalence class S in S:P

r∈S Rec({r})
Rec(S)

= ρ(|S|)

In this equation, ρ is any arbitrary function taking a real-
valued input and returning a real-valued output. The size-
ratio property requires that the ratio of the sum of the values
returned by applying Rec() to each record in S and the value
returned by Rec(S) be some function of the size of S. For
example, if Rec() uses the average of all aggregate values in
an equivalence class, then the size-ratio property holds and
ρ(i) = i. If Rec() instead returns the maximum value, then
the size-ratio property no longer holds.

The Importance of the Size-Ratio Property
If the size-ratio property holds, then it is possible to con-
struct many different estimators for M with little additional
computational effort. These can then be combined to pro-
duce a single, final estimate which is more accurate than any

642

constituent. This subsection outlines how this is done; the
issue is considered formally in Section 5.

Imagine that we are trying to obtain a better estimate for
the answer to the example of Section 2.1. Assume that Rec()
simply returns the average aggregate value over an equiv-
alence class, so ρ(|S|) = |S|. Let the sampling probability
pi = .5 for all i, and imagine that we happen to sample S1 =
{(Michael, 10000), (Michael, 9899)}, S2 = {(Sean, 9607)},
S3 = {(Emily, 10822)}, and S4 = {(Steven, 8003)} from S.

Using Algorithm 1, M is estimated as:

M ≈ M̂1 + M̂2 =

1

0.5
× (avg(9607) + avg(10822) + avg(8003))+

1

0.5
× (avg(10000, 9899)) = 56864 + 19899 = 76763

Unfortunately, this is not very accurate (recall that the an-
swer for this particular query was 69523).

We can improve this as follows. First, we calculate W =
10000 + 9899+ 9607 + 10822+ 8003 + 7633 + 7412 +7864 +
8433+7322 = 86995. W is the overall sum of values returned
by applying Rec to each record. W can easily be computed
in a distributed fashion by simply scanning the data at each
site. Note that if there are data that must be reconciled,
then W is not equal to the final query answer M .

We then notice that given ρ, W = M1 + 2M2 (recall from
Section 2.2 that Mi is the total for Rec() applied to all

equivalence classes of size i). We also notice that M̂2 is
an unbiased guess for M2. This value is 19899. Thus:W ≈
M1+2×19899. Or:M1 ≈ 86995−2×19899 = 47197. Adding
this to M̂2 gives us 47197 + 19899 = 67096 which is another
estimate for M . In this particular example, this gives a
better guess. In general, we can use this method to build
many different estimators. By weighting them properly, we
can construct a final ensemble estimate that is far better
than any of the constituent individuals.

4. CLASS-WISE BERNOULLI SAMPLING
This section discusses how to implement the SampleClasses()
function efficiently and correctly in a distributed environ-
ment. As described in Section 3, the implementation of
SampleClasses() depends upon the nature of the similarity
function Sim(), and whether or not it is transitive.

4.1 Sampling With a Transitive Function
The method for sampling from the various equivalence classes
given a transitive similarity function has been described pre-
viously, and is given formally as Algorithm 2.

This algorithm is invoked with a call to SampleClasses()
at the coordinator, with two arguments. The first is the
expected fraction of the various equivalence classes that are
sampled, and the other is the hash function used to per-
form the sampling. It is referred to as the “Hash Bernoulli
Algorithm” because we use a hash function to perform a
Bernoulli sample over all equivalence sets. As discussed in
Section 3, this algorithm requires a function Canonical()
that is able to transform each record into a single, pre-
designated member of its equivalence class.

4.2 Sampling With a Non-Transitive Function

Algorithm 2: The Hash Bernoulli Algorithm

Function HashSample(p, i, h)
1. mySam = {}
2. For each record r at site i:

/*transfer to canonical form*/
3. r′ = Canonical(r)
4. If (h(r′) < p) then mySam ∪ = {r}

5. Return mySam

Fuction SampleClasses(p, h)
1. allSam = {}
2. For each site i:

3. allSam ∪ = HashSample(p, i, h)
4. Return allSam

For non-transitive similarity functions, there is no canoni-
cal form for each equivalence class and similarity is data-
dependent. In this subsection, we present two different
methods for acquiring the required Bernoulli sample of the
set of equivalence classes in the non-transitive case. Our first
method (described in Section 4.2.1) is quite simple, and is
a fairly straightforward modification of a classical algorithm
for computing a distributed transitive closure [20]. Unfor-
tunately, there is a significant drawback associated with the
simple algorithm: the probability of sampling a given equiv-
alence class increases with the class’ size, leading to a sample
that is biased towards larger classes. In order to have a rea-
sonable probability of sampling one of the smallest classes,
we may have a probability that is almost one of sampling
each member of the larger classes. In the worst case, this
requires that each site ship the majority of its records to
the coordinator. To avoid this and reduce the cost of com-
puting the distributed transitive closure, in Section 4.2.2 we
describe an alternative algorithm that can avoid most of the
computation associated with any very large classes that may
exist in the data.

4.2.1 The Uniform-p Algorithm
The first algorithm accepts as a parameter a sampling prob-
ability of p, and samples each record with this probability.
All sampled records are then shipped to a coordinator, who
computes a transitive closure over each sampled record. The
pseudo-code is given as Algorithm 3. This algorithm is in-
voked with a call to GetSamples() at the coordinator, with
an argument that is the expected fraction of records that
are sampled the first time around at each site. It is referred
to as the “Uniform-p Algorithm” because the probability of
sampling each record is uniform.

After the sampling phase, the coordinator sends those
samples off to every site in turn. Each site determines if
it has any records “reachable” from the set of samples, and
returns those to the coordinator. This process is repeated
with any newly discovered records until it is impossible to
find any similar records. In this way, once the while loop on
line (6) of SampleClasses() finishes, allSam will have all
records “reachable” from any sampled record via the simi-
larity function Sim(). A simple transitive closure over this
set then returns a sample S′ of the set of all equivalence
classes S, where the probability of sampling a class contain-
ing i records is 1− (1− p)i because the only way in which a
class cannot be sampled is if all of its members are missed.

643

Algorithm 3: The Uniform-p Algorithm

Function Sample(p, i)
1. mySam = {}
2. For each record r at site i:

3. With probability p, mySam ∪ = {r}
4. Return mySam

Function Extend(cur, i)
1. res = {}
2. For each record r at site i:

3. If Sim(r, s) = true for some s ∈ cur
4. res ∪ = {r}
5. remember r so it is never considered in fut-

ure calls to Extend
6. Return res

Function SampleClasses(p)
/* first, sample the sites */
1. allSam = {}
2. For each site i:

3. allSam ∪ = Sample(p, i)
/* next, get all records needed for closure */
4. newRec = allSam
5. nextRec = {}
6. While (|newRec| > 0):

7. For each site i:
8. nextRec ∪ = Extend(newRec, i)

9. allSam ∪ = nextRec
10. newRec = nextRec

11. Return the transitive closure of allSam under Sim

Several obvious optimizations of the algorithm are possi-
ble. For example, the local transitive closure of all of the
records in mySam can be computed and added to mySam
before mySam is returned at step (4) of the Sample() func-
tion. This will save iterations of the algorithm. Likewise,
the function Extend() can also include all records similar
to s in the set res in line (4) of the Extend() function. Fi-
nally, the search in line (3) of the Extend() function can be
speeded using any of a number of methods [4, 30, 31, 24].

This instantiation of SampleClasses() can be used seam-
lessly within Algorithm 1.

4.2.2 The Diminishing-p Algorithm
A problem with the Uniform-p Algorithm is that the sam-
pling probability for an equivalence class increases almost
linearly with the size of the group. Since the cost asso-
ciated with sampling a group increases super-linearly with
group size, most of the algorithm’s computational effort may
be directed at the most expensive groups. This subsection
presents an algorithm that does not suffer from this prob-
lem, called the Diminishing-p Algorithm.

The key difference between the Uniform-p Algorithm and
the Diminishing-p Algorithm is that each originally-sampled
seed record is labeled as “active” or not. All of the originally-
sampled seed records start out active, but become inactive in
a probabilistic fashion; at each iteration, each active record
has a probability q of staying active. At the ith iteration
of the algorithm, the only classes that we try to extend are
those that are currently of size i and still contain active seed
records. If a class becomes inactive before we are “done”
with it (that is, if the class is of size larger than i, but all of
its seed records become inactive before the ith iteration of
the algorithm), then the class is discarded.

Algorithm 4: The Diminishing-p Algorithm

Function DeactivateSome(active, q)
1. res = {}
2. For each record r ∈ active:

3. With probability q, res ∪ = {r}
4. Return res

Function SampleClasses(p, q)
/* first, sample the sites */
1. allSam = {}; ans = {};
2. For each site i:

3. allSam ∪ = Sample(p, i)
/* next, get all records needed for closure */
4. active = allSam
5. newRec = allSam
6. For i = 1 to ∞:

7. checkEm = {}
8. Compute the transitive closure S′ of allSam

under Sim
/* see if we are working on any class w active recs */
9. If there is no S ∈ S′ such that
|S| ≥ i and S ∩ active 6= {}:

/* we are not working on any such classes*/
10. Break

/* find any records which could make an active,
size i class larger */

11. For each set S ∈ S′ where |S| = i
12. If S ∩ active 6= {}:

13. checkEm ∪ = (S ∩ newRec)
14. newRec − = (S ∩ newRec)

/* try to make the active size i class larger */
15. For each site j:

16. newRec ∪ = Extend(checkEm, j)
/* find each active size i class not made larger */
17. For each set S ∈ S′ where |S| = i

18. If S ∩ active 6= {} and there is no
s ∈ S, r ∈ newRec where Sim(s, r):

/* these are added to the answer set */
19. ans ∪ = S

20. allSam ∪ = newRec
21. active = DeactivateSome(active, q)

22. Return ans

In this way, we can arbitrarily reduce the natural bias to-
wards sampling larger classes. While we still have a greater
chance of sampling seed records from a larger equivalence
class, the bias induced by this tendency is counteracted by
the chance that we probabilistically get “tired” of trying to
compute all of the members of a larger class before we finish.
This means that we can choose a large p value to ensure that
we sample many smaller classes, and we can choose a small
q value to ensure that we only sample a reasonable number
of larger classes, thus avoiding shipping too many records to
the coordinator.

Since this algorithm is fairly complicated, it is worthwhile
discussing some of its specifics. There are four important
sets maintained by SampleClasses(): allSam, ans, active,
and newRec. In order, these are: all of the records that
the coordinator has obtained from any local site, the set
of all sampled equivalence classes that we are building, the
set of active seed (originally sampled) records, and the set
of records at the “frontier” of the transitive closure compu-
tation. That is, newRec is the set of all records that are
reachable from some seed record. Furthermore, if a record
is in newRec, we have not yet sent it off to a local site to

644

see if it can be used to extend an equivalence class.
The main loop of line (6) of SampleClasses() controls the

size of the equivalence classes that we are currently dealing
with. For example, if i = 5, then this means that we are
done sampling any equivalence class of size 5 or less, and will
try to extend any equivalence class that is currently size 5.
Line (9) checks if it is still possible to find any equivalence
class of size i or larger. If it is possible, the loop at line
(11) checks which records in newRec could be used to grow
a class of size i into a larger class. The set checkEm holds
the records from newRec that could be used for this task.
Line (15) then sends all of the records from checkEm off to
the local sites. Line (17) checks to see if we were unable to
extend the size of any active classes of size i. If we were,
then we are done with these classes and they are added to
the final set of samples. Finally, line (21) of the algorithm
randomly removes some of the records from the set active.
Any still-growing equivalence classes with no active seeds
will not be sampled.

Producing an Estimate. The parameters p and q govern
how many active seeds are deactivated at each step of the
algorithm, and thus affect the value of pi that must be used
in conjunction with the Diminishing-p Algorithm to produce
an unbiased estimate. To derive a formula for pi, assume
that equivalence class S is of size i, and let allSam be the
set of records sampled using the original, Bernoulli sampling
process. Finally, let activei denote the set of records active
at the beginning of iteration i of the algorithm. Then:

pi = Pr[S ∈ ans]

=

iX
j=1

Pr[|S ∩ allSam| = j]× Pr[activei ∩ S 6= {}|j]

Note that:

Pr[activei ∩ S 6= {}|j] = 1− Pr[activei ∩ S = {}|j]

= 1− (1− Pr[(s ∈ S) ∈ activei])
j = 1− (1− qi−1)j (1)

Let binom(j, i, p) denote the binomial probability associated
with achieving j out of i successes with a success probability
of p. Since allSam is sampled using a Bernoulli sampling
scheme, Pr[|S ∩ allSam| = j] = binom(j, i, p). This gives
us:

pi =

iX
j=1

binom(j, i, p)× (1− (1− qi−1)j) (2)

Choosing p and q. If one has access to good statistics
over the data, then the choice of p and q is an optimization
problem: choose p and q so as to maximize the accuracy
(minimize the variance) of the resulting estimator given a
constraint on the amount of data that is to be communi-
cated to the coordinator. In the absence of this information,
we use the following heuristic. We begin with the assump-
tion that the variance of Rec() does not vary much across
equivalence classes of differing sizes and we assume that the
number of instances of each equivalence class size is uniform.
If we view each equivalence class as a stratum, then the so-
called Neyman sampling allocation (Page 471 of Sarndal et
al. [32]) will prescribe a uniform number of samples to each
stratum to reduce the variance of the resulting estimator.
Thus, given p, we then choose q so that the selection prob-
ability across classes is as uniform as possible. If we have a

rough guess for m (the size of the largest equivalence class),
we can attempt this by using numerical methods to choose
q so as to minimize the expression:

mX
i=2

(p− pi)
2

5. OPTIMIZED ESTIMATORS
The alternative estimator described in this section is based
upon the observation that if the reconciliation function that
is used has the size-ratio property, then we can easily build
many different estimators for the final query answer. By
combining them in an optimal fashion, it is easy to produce
a combined estimator that is always better than the simple
one from Section 2. Notice that this is totally orthogonal to
the issue of how to compute the Bernoulli sample.

5.1 The Basic Idea
The estimator described in this section is based upon the
observation that if the size-ratio property holds, it is eas-
ily possible to remove any single M̂i from the estimator
M̂ =

Pm
i=1 M̂i used by Algorithm 1. To do this, we first

compute W as defined in Section 3.2. Recall that W is a
simple sum of the reconciliation function applied to each tu-
ple in the system without using the similarity function to
perform a grouping. This is easily computed via a single
pass through the data at each site. If the size-ratio prop-
erty holds, then W is nothing more than a weighted sum
over each Mi, where ρ(i) is the weight for Mi. For example,
if the reconciliation function computes the average of each
equivalence class, then W =

Pm
i=1 i×Mi. This means that

we can write any Mi in terms of W and the other Mi values;
for example:

M1 = W −
mX

i=2

i×Mi

This allows us to define an unbiased estimator for any Mj

in terms of the various M̂i (i 6= j) estimators; for example:

M̂ ′
1 = W −

mX
i=2

i× M̂i

Then by replacing any M̂i in
Pm

i=1 M̂i with the corre-

sponding estimator M̂ ′
i , we can obtain an entirely new esti-

mate for the final query answer; the new estimator obtained
be replacing M̂i is denoted by Ei (for consistency, we define

E0 to be equivalent to M̂). In the remainder of this section,
we describe how to use this basic method to create an entire
ensemble of estimators in this fashion.

5.2 The Optimized-Estimator Algorithm
Algorithm 5 formalizes the process. Just like Algorithm 1,
it is invoked with a call to GetAnswer(). Algorithm 5 de-
scribes exactly how each individual estimate Ei is computed,
but leaves out a few key details regarding how each of the
Eis are combined to produce the final estimate E. Specifi-
cally, the questions that we have yet to answer are:

• How does the GetOptWeights() function determine
each αi? Ideally, each αi would be computed so as to
minimize the variance of the estimator E =

Pm
i=0 αiEi,

subject to the constraint that
Pm

i=0 αi = 1.

645

Algorithm 5: The Optimized-Estimator Algorithm

Function CompEi(i,S′, W)

1. Calculate each M̂j as in Algorithm 1
2. If i = 0:

3. res =
P

j M̂j

4. Else

5.M̂ ′
i =

W−
P

k 6=i ρ(k)M̂k

ρ(i)

6. res = W
ρ(i)

+
P

j(1−
ρ(j)
ρ(i)

M̂j)

7. Return res

Function GetW (i)
1. For each record r at site i:

2. W + = Rec({r})
3. Return W

Function GetAnswer()
1. S′ = SampleClasses()
2. W = 0
3. For each site i:

4. W + = GetW (i)
5. For each i ∈ {0...m}:

6. Ei = CompEi(i,S′, W)
/* α is a vector of weights */
7. α = GetOptWeights()
8. E = 0
9. For each i ∈ {0...m}:

10. E + = αiEi

11. Return E

• What exactly is the variance of the resulting estima-
tor? Ideally, we would be able to obtain a result anal-
ogous to Lemmas 2 and 4 that would allow us to esti-
mate the variance of E, which in turn would allow us
to attach confidence bounds to the estimate.

5.3 Computing the Optimal Weights
In general, we can represent every Ei as follows:

Ei = βi0W +
mX

j=1

βijM̂j

βij is the coefficient for M̂j in the ith estimator, and βi0

is the coefficient of W in the ith estimator. These are com-
puted as described by the CompEi() function in Algorithm
5.

As defined in Algorithm 5’s GetAnswer() function:

E =
mX

i=0

αiEi =
mX

i=0

αi(βi0W +
mX

j=1

βijM̂j)

=
mX

i=0

αiβi0W +
mX

j=1

mX
i=0

αiβijM̂j

To choose the optimal αi values, the goal is to minimize the
variance of E subject to

Pm
i=0 αi = 1. To do this, we first

divide the expression for E into two parts: one part that
is related to W , and one part that is related to each M̂j .
Since the part that is related only to W takes a constant
(non-random) value, it can be ignored during the variance

calculation. We also notice that for any j 6= k, M̂j and

M̂k are independent and so the covariance between them is
always 0. This gives us:

var(E) = var(
mX

j=1

(
mX

i=0

αiβij)M̂j)

=
mX

j=1

var((
mX

i=0

αiβij)M̂j) =
mX

j=1

(
mX

i=0

αiβij)
2var(M̂j) (3)

Note that the variance of each M̂j can easily be estimated
using Lemma 3.

Since we seek to minimize this subject to
Pm

i=0 αi = 1, we
have an optimization problem that is ideally suited to the
use of a Lagrangian multiplier λ [22]. Using this method,
our objective function becomes:

L = var(E)− λ(
mX

i=0

αi − 1) =
mX

j=1

(
mX

i=0

αiβij)
2var(M̂j)− λ(

mX
i=0

αi − 1)

In order to solve the resulting problem, we take the deriva-
tive with respect to each αi and λ, and set the resulting
m + 1 equations equal to 0. To do this, notice we can actu-
ally rewrite the formula for var(E) as follows:

var(E) =
mX

j=1

(
mX

i=0

αiβij)
2var(M̂j) =

mX
j=1

var(M̂j)(
mX

k=0

αkβkj

mX
l=0

αlβlj)

=
mX

j=1

var(M̂j)(
mX

k=0

mX
l=0∧l6=k

αkαlβkjβlj +
mX

k=0

α2
kβ2

kj)

Using this form of V ar(E) and differentiating L with re-
spect to any arbitrary αi we have:

∂L

∂αi
=

∂

∂αi
(

mX
j=1

var(M̂j)(
mX

k=0

mX
l=0∧l6=k

αkαlβkjβlj

+
mX

k=0

α2
kβ2

kj)− λ
X

i

αi)

=
mX

j=1

var(M̂j)(2
mX

k=0∧k 6=i

βijβkjαk + 2β2
ijαi)− λ

=
mX

j=1

var(M̂j)(2
mX

k=0

βijβkjαk)− λ

=
mX

k=0

(2
mX

j=1

βijβkjvar(M̂j))αk − λ = 0

Differentiating L with respect to λ we have:

∂L

∂λ
=

mX
i=0

αi = 0

By simultaneously solving the m + 1 equations in the re-
sulting linear system, we can obtain a set of optimized co-
efficients as required by GetAnswer() in Algorithm 5. Fur-
thermore, by using equation 3, it is easy to calculate the
variance of the resulting estimator, which can be used to
obtain confidence bounds, as described in Section 2.3.

6. EXPERIMENTS
There are three specific questions that our experiments are
designed to answer:

646

1. First, is the theory behind our algorithms sound? Do
our estimators behave as advertised? Are the various
variance computations described in the paper actu-
ally correct, and can they be used in conjunction with
central-limit-theorem-based confidence bounds in or-
der to accurately predict the accuracy of the estimate?

2. Second, how accurate are these estimators as a func-
tion of the data characteristics? Does the use of the
more complex estimator enabled by the size-ratio prop-
erty allow for more accurate estimation?

3. Finally, what is the effect of the sampling strategy on
the efficacy of the algorithms? Does simple sampling
using a transitive similarity function allow for higher
accuracy? How do the algorithms for dealing with a
non-transitive similarity function compare?

6.1 Data Generation and Basic Setup
Unless otherwise stated, all experiments are performed on
data generated using the following algorithm, parameterized
on size, shape, scale, µ, and σ2. The parameter size con-
trols the number of records in the distributed system that
are relevant for answering a specific query. Until the data
set generated is of size size, the following steps are repeated:

1. An equivalence class size is generated by taking a ran-
dom sample from a gamma distribution (Page 99 of
Casella [3]) with shape parameter shape and scale pa-
rameter scale; the result is then rounded up. The
gamma distribution can model a large number of data
characteristics: from the case where every equivalence
is of size one, to the case where most are size one but
some are huge, to the case where most are large. For
example, if shape = 1 and scale = 4, then 95% of the
classes fewer than 12 members, and 22% are of size 1.

2. A equivalence class mean µ′ is generated from a normal
distribution with mean µ and variance σ2.

3. For each record in this equivalence class, an aggregate
value is generated using a sample from another normal
distribution with mean µ′ and variance σ2.

4. Finally, each record in the equivalence class is ran-
domly sent to one of five data sites.

Due to space constraints, all queries tested are SUM queries
without selection predicates. We remind the reader that (as
discussed in Section 2.1) SUM queries can be used to encode
more complicated aggregates and queries, hence our focus.
In all cases, the function Rec() computes an average over
all records in the class. We use the same Rec() for both the
optimized and non-optimized estimators in order to make
the results comparable. Since we do not measure wall-clock
computation time, the exact similarity function Sim() is
not important; the important property is whether or not it
is transitive. This will vary from experiment to experiment.

6.2 Statistical Properties of the Estimators
Experimental Setup. In this subsection, we describe an
experiment designed to test the correctness of the estima-
tors used for the statistical properties of our algorithms. In
all, six different combinations of algorithms were proposed,
depending on whether the simple or optimized estimator

was used, and whether or not the function Sim() is transi-
tive (if not, then there are two separate sampling options:
the Uniform-p Algorithm and the Diminishing-p Algorithm).
All six combinations are tested in this subsection.

To check whether our algorithms are correct, we first gen-
erate a data set using arguments size = 107, shape = 1,
scale = 4, µ = 1, and σ2 = 1. Then we test each of the
six algorithms, in turn. A 1% sampling fraction is used.
For each algorithm, we repeat the sampling and estimation
process 500 times. For each of the 500 trials, the estima-
tor’s variance is estimated, and a 95% confidence bound is
computed using an assumption of normality.

In Figure 1, for each algorithm, we plot the fraction of the
500 trials where the confidence bound reported was correct.
In Figure 2 we plot a histogram of all 500 variance esti-
mates, as well as the actual observed variance over the 500
trials (this is given as a dotted line) and the mean variance
estimate over the 500 trials (as a thick solid line).

(a) (b) (c) (d) (e) (f)
93%

95%

97%

Estimators
A

cc
ur

ac
y

Figure 1: Observed coverage of the 95% confidence
intervals for the six combinations of algorithms:
(a) non-optimized, transitive; (b) optimized, tran-
sitive; (c) non-optimized, Uniform-p; (d) optimized,
Uniform-p; (e) non-optimized, Diminishing-p; (f)
optimized, Diminishing-p.

6.6 6.8 7

x 10
8

0

50

100
(a)

Variance Value

B
uc

ke
t C

ou
nt 2.8 2.9 3

x 10
8

0

50

100

(c)

4.1 4.2 4.3 4.4

x 10
8

0

50

100

(e)

1.6 1.7 1.8

x 10
8

0

50

100
(b)

8.5 9 9.5

x 10
7

0

50

100

(d)

1.3 1.4 1.5

x 10
8

0

50

100

(f)

Figure 2: Accuracy of the variance estimator for
each of the six algorithm combinations.

Discussion. Figure 1 seems to show conclusively that the

647

confidence bounds for all six estimators are in fact very re-
liable. The true coverage rate is always very close to the
specified 95%. Note that this experiment is designed only
to test the reliability of the various estimators. This ex-
periment shows that there is virtually no difference between
them. As we will show in the next subsection, the accuracy
of the estimators (that is, the ability of the various esti-
mators to provide for narrow confidence intervals) will differ
significantly with the optimized estimators giving much nar-
rower bounds.

Figure 2 examines the variance estimation in depth. All
variance estimates are fairly accurate, and estimation er-
rors of more than 10% are fairly rare. In general, the non-
optimized variance estimates are all more accurate than the
optimized variance estimates. This is not surprising, given
that the optimized estimator itself is parameterized on the
variance estimates. As a result, the optimized estimator
will often magnify any inaccuracy in a variance estimate by
weighting equivalence classes with an inaccurate estimate in
an especially heavy or light fashion. For the non-optimized
variance estimates, the difference between the average of the
computed variance and the observed variance is statistically
insignificant.

6.3 Estimator Accuracy
In this section, we study the effect of the data generation pa-
rameters on estimator accuracy. For simplicity, we test only
the Hash Bernoulli sampling algorithm (the other sampling
algorithms will be considered subsequently).

Experimental Setup. We run a number of different ex-
periments to test both the accuracy of the simple estimator,
as well as the accuracy of the optimized estimator making
use of the size-ratio property. We run four different tests:

1. First, we hold the sampling fraction constant at 1%,
and use size = 107, scale = 1, µ = 1, and σ2 = 1.
We then vary the gamma shape parameter from zero
to one. With a shape that is close to zero, there are
no equivalence classes that have a size larger than one.
With a shape of 0.5, a few percent of them do, and
with a shape of 1, around 60% of the classes are of
size larger than one. The results are given as “Width
vs. Shape” in Figure 3. For each shape value, and
both of the estimators, we compute the width of a 95%
confidence interval as a fraction of the interval’s mean
value. Thus, a small ratio indicates a tight bound.

2. Next, we hold the shape constant at 1. Using the same
parameter settings, we vary the sampling fraction from
0.1% to 10%. The results are given as “Width vs.
Sampling Ratio” in Figure 3.

3. Next, we again hold the sampling fraction constant at
1%, but vary the variance parameter σ2 from zero to
ten. The results are given as “Width vs. Variance”.

4. Finally, we use scale = 1, shape = 1, µ = 1, and
σ2 = 1, and vary the database size. However, we hold
the absolute number of samples constant at 10000 so
that (sampling frac) = 10000/size.

We also run one more experiment designed to test the ef-
fect of correlation between the size of an equivalence class
and its statistical properties. To do this, we generate 107

records. The ith record is generated using a normal vari-
able with a mean and variance 11 − (i/106). Equivalence
class sizes are then generated as before, with shape = 1 and
scale = 1. The equivalence classes are then sorted from
smallest to largest. The first record generated is assigned
to the smallest equivalence class (which is almost surely of
size one). All records are then assigned in sequence from
smallest equivalence class to largest equivalence class. The
statistical properties of the records within an equivalence
class are then correlated with class size.

In order to de-correlate class size and the properties of
the class, we can randomly swap records before we assign
the records to equivalence classes. If 50% of the records are
swapped, then half of the records will be in random positions
and there will be far less correlation. If all of the records
are swapped, there is no correlation. Figure 4 shows the
accuracy of the two estimators as a function of the fraction
of records swapped before they are assigned to classes.

10% 40% 70% 100%

0.008

0.012

0.016

0.02

0.024

Percentage of Swapping

W
id

th
/T

ru
eV

al
ue

Simple Estimator
Optimized Estimator

Figure 4: Estimator accuracy as a function of the
correlation between equivalence class size and the
statistical properties of the class.

Discussion. Several interesting results can be observed.
We point out a few significant ones here.

First, we see that the optimized estimator has a zero-
width confidence bound when there are no duplicates in the
data. Its accuracy then degrades gracefully as the num-
ber of duplicates in the database increases. This is a very
desirable property, because it is expected that in many ap-
plications, few or no records requiring reconciliation will be
found. In this case, the optimized estimator is equivalent
to simply computing an aggregate locally and shipping just
those aggregates back to the coordinator.

Second, we point out that the accuracy of both estimators
is related only to the sample size and not the sampling frac-
tion, assuming that all other parameters are held constant.
This means that the algorithms do not require more data
to be shipped to site to maintain a desired accuracy as the
database size grows.

Finally, we note that the accuracy of the optimized es-
timator actually decreases with decreasing correlation be-
tween equivalence class size and statistical properties of the
class. This can be explained because when equivalence classes
are particularly poorly-behaved, the optimized estimator
can effectively choose to “ignore” them during the estima-
tion process. The simple estimator performs worse in the
highly correlated case because the different equivalence classes
are no longer “interchangeable”. An error in the small classes
with large mean and large variance is more probable and
damaging than if all classes behave similarly.

648

10
5

10
6

10
7

0.03

0.04

0.05

0.06

0.07

0.08

DB Size

W
id

th
/T

ru
eV

al
ue

Width vs DB Size

2 4 6 8 10
0

0.04

0.08

0.12

0.16

0.2

Variance

W
id

th
/T

ru
eV

al
ue

Width vs Variance

0.1% 1% 10%
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sampling Fraction

W
id

th
/ T

ru
eV

al
ue

Width vs Sampling Ratio

0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Shape

W
id

th
/ T

ru
eV

al
ue

Width vs Shape

Simple Estimator
Optimized Estimator

Figure 3: Estimator accuracy as a function of data and sample size characteristics.

6.4 Cost Comparison
Our final set of comparisons is designed to test the mer-
its of the various sampling algorithms: the simple, Hash
Bernoulli algorithm for transitive Sim(), and the more com-
plicated algorithms for sampling equivalence classes in the
non-transitive case. In general, the quality of these algo-
rithms is best measured in terms of the number of records
that must be communicated from site-to-site in order to pro-
duce an estimate of a certain accuracy.

Experimental Setup. We prepare two datasets for this
experiment. The first uses a sampling fraction of 1%, and
size = 107, scale = 4, shape = 1, µ = 1, and σ2 = 1. The
second one is identical, except that it uses scale = 2. In
the first case, 95% of the equivalence classes are sized fewer
than 12, and 22% of the classes are size one. In the second
case, 95% of the classes have fewer than six elements and
44% of the classes are size one.

We then run each of the six algorithms on both of the
data sets (three sampling algorithms × two estimators). For
each, we test a number of different sampling fractions. For
each combination, we compute the number of records that
must be transferred to or from the coordinator, as well as
the accuracy of the resulting estimator. This results in a
number of (records transferred, accuracy) combinations for
each of the six algorithms that are plotted in Figure 5.

Discussion. In all cases, the Hash Bernoulli sampling al-
gorithm is the lowest cost sampling algorithm for a fixed-
accuracy estimate. This is not surprising; for a specific
equivalence class, it is computationally trivial to obtain all of
the records in an equivalence class if the transitive property
holds, and no back-and-forth communication is required.

Perhaps most interesting is the relationship between the
gamma scale parameter and the relative utility of the Uniform-
p algorithm compared to the Diminishing-p algorithm. At
scale = 2, the two algorithms show almost identical perfor-
mance. This is not surprising given that there are relatively
few duplicates in this data set. However, when scale = 4,
there are a number of larger equivalence classes; 5% of them
exceed size 12. In this case, the Uniform-p algorithm be-
gins to show significant bias towards computational effort
for these classes.

7. RELATED WORK
Data integration [17] has been an important research topic; a
few well-known projects in this area are Garlic [21], Clio [25],
TSIMIIS [6], Piazza [16], and Hyperion [28], just to name a

very few. Many of the sub-areas of this field of study such
as schema mapping and record linkage are related to the
topic of this paper, but are orthogonal in the sense that our
algorithms assume that appropriate methods are available
and have been selected. Our work has assumed a federated
or mediated integration approach. Thus, we assume that
a mapping between the various data sources is available.
Many methods have been proposed for computing such a
mapping, and we cite a few [10, 18, 2]. We also assume
that a method is available for dealing with the so-called
“record-linkage problem” that arises when checking whether
two records refer to the same entity. This functionality is
embedded within the Rec() function. This has been an ac-
tive research area; several approaches have been proposed by
the data management community [23, 5, 29, 8, 12]. In the
case of a non-transitive similarity function, our Uniform-p
and Diminishing-p algorithms assume that an efficient algo-
rithm exists for matching similar records at a specific data
site according to the function Sim(). This problem has also
been tackled [4, 30, 31]; see Koudas and Srivastava’s tutorial
on this subject [24].

Approximation has been studied widely in the data man-
agement literature [26, 19]. The closest work to our own
is that of Cormode et al. [9], who considered the problem
of continuous monitoring for duplicate-resilient aggregates
over a distributed data stream. They maintain an approx-
imate count of the number of distinct values in the stream
using a Flajolet-Martin Sketch [13]. They also maintain a
distinct sample using Gibbons’ distinct sampling algorithm
[15]. However, Cormode et al. solve quite a different prob-
lem, where “duplicates” are assumed to be identical records;
their methods are not applicable to arbitrary similarity and
reconciliation functions. We also point out that Gibbons’
distinct sampling algorithm is quite different from our own
sampling algorithms, in that our goal is to sample all of
the records from an equivalence class induced by Sim() in
a distributed fashion.

8. CONCLUSION
This paper has considered the computational issues associ-
ated with handling analytic queries over widely distributed
data, where there is a concern that individual records may
be repeated, possibly with errors, over multiple data sites.
Our algorithms are parameterized on a similarity function
and a reconciliation function that are user-defined, making
them extremely general. There are several avenues for future
work. The most obvious is the extension of our algorithms

649

0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

12

14

16

18
x 10

6

Width/TrueValue

C
os

t

(a)

Hash Bernoulli
Uniform−p
Diminishing−p

0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

12
x 10

6 (b)

0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6
x 10

6 (c)

C
os

t

Width/TrueValue Width/TrueValue

C
os

t

0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3
x 10

6 (d)

Width/TrueValue

C
os

t

Figure 5: Number of records that must be communicated in order to achieve a desired accuracy. (a) shows
results for non-optimized estimators over data with scale = 4. (b) shows optimized estimators for scale = 4.
(c) and (d) show non-optimized and optimized estimators, respectively, for scale = 2.

to more complex queries that may include join or relational
subtraction operations.

9. REFERENCES
[1] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases. In PODS, pages 68–79,
1999.

[2] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix.
Industrial-strength schema matching. SIGMOD Record,
33(4):38–43, 2004.

[3] G. Casella and R. L. Berger. Statistical Inference. Duxbury
Press, second edition, 2001.

[4] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch
top-k search for dictionary-based entity recognition. In
ICDE, page 28, 2006.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data cleaning.
In SIGMOD Conference, pages 313–324, 2003.

[6] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogeneous
information sources. In IPSJ, pages 7–18, Japan, 1994.

[7] J. Chomicki, J. Marcinkowski, and S. Staworko. Hippo: A
system for computing consistent answers to a class of sql
queries. In EDBT, pages 841–844, 2004.

[8] W. W. Cohen and S. Sarawagi. Exploiting dictionaries in
named entity extraction: combining semi-markov
extraction processes and data integration methods. In
KDD, pages 89–98, 2004.

[9] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s
different: Distributed, continuous monitoring of
duplicate-resilient aggregates on data streams. In ICDE,
page 57, 2006.

[10] A. Doan, P. Domingos, and A. Y. Halevy. Learning to
match the schemas of data sources: A multistrategy
approach. Machine Learning, 50(3):279–301, 2003.

[11] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data streams. In
SIGMOD Conference, pages 61–72, 2002.

[12] M. Elfeky, A. Elmagarmid, and V. Verykios. Tailor: A
record linkage tool box. In ICDE, pages 17–28, 2002.

[13] P. Flajolet and G. N. Martin. Probabilistic counting. In
FOCS, 1983.

[14] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient
management of inconsistent databases. In SIGMOD
Conference, pages 155–166, 2005.

[15] P. B. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports. In
VLDB-J, pages 541–550, 2001.

[16] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu,
and I. Tatarinov. The piazza peer data management
system. TKDE, 16(7):787–798, 2004.

[17] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data
integration: The teenage years. In VLDB, pages 9–16, 2006.

[18] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. In SIGMOD Conference, pages
217–228, 2003.

[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD Conference, pages 171–182, 1997.

[20] M. Houtsma, P. Apers, and S. Ceri. Distributed transitive
closure computations: The disconnection set approach. In
VLDB, pages 335–346, 1990.

[21] V. Josifovski, P. M. Schwarz, L. M. Haas, and E. T. Lin.
Garlic: a new flavor of federated query processing for db2.
In SIGMOD Conference, pages 524–532, 2002.

[22] D. Klein. Lagrange multipliers without permanent scarring.
In http://www.cs.berkeley.edu/ klein/papers/lagrange-
multipliers.pdf.

[23] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, pages
802–803, 2006.

[24] N. Koudas and D. Srivastava. Approximate joins: Concepts
and techniques. In VLDB, page 1363, 2005.

[25] R. J. Miller, M. Hernandez, L. M. Haas, L.-L. Yan, C. T. H.
Ho, R. Fagin, and L. Popa. The clio project: Managing
heterogeneity. SIGMOD Record, 30(1):78–83, March 2001.

[26] F. Olken. Random Sampling from Databases. PhD thesis,
UC Berkeley, 1993.

[27] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal: Very Large
Data Bases, 10(4):334–350, 12 2001.

[28] P. Rodŕıguez-Gianolli, M. Garzetti, L. Jiang,
A. Kementsietsidis, I. Kiringa, M. Masud, R. J. Miller, and
J. Mylopoulos. Data sharing in the hyperion peer database
system. In VLDB, pages 1291–1294, 2005.

[29] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[30] S. Sarawagi and A. Kirpal. Scaling up the alias duplicate
elimination system. In ICDE, pages 783–785, 2003.

[31] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[32] C. Sarndal, B. Swensson, and J. Wretman. Model Assisted
Survey Sampling. Springer, New York, 1992.

650

